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Abstract

We review recent developments in the field of computational rheology applied
to the prediction of the flow of polymeric liquids in complex geometries. Af-
ter a brief discussion of the challenging rheological behaviour of polymers,
we outline the hierarchy of available modeling approaches and point to im-
portant recent progress there. The two current avenues towards complex
flow simulation are then visited, namely the macroscopic and micro-macro
approaches. Throughout the paper, we refer to review and research publica-
tions that are representative of current trends in the field.

1 Introduction

To most researchers engaged in Computational Fluid Dynamics, the low-
Reynolds number flow of a highly viscous Newtonian fluid would not be
considered as a challenging research topic. But add even a minute amount
of macromolecules into the fluid, thus producing a polymer solution, and the
situation is altered drastically: the rheological (i.e. flow) behaviour of the ma-
terial becomes highly non-Newtonian, resulting in intricate flow phenomena
whose prediction requires sophisticated modeling approaches and numerical
tools. In this paper, we give a very brief overview of the field of computational
rheology applied to polymeric liquids. What we mean by computational rhe-
ology is the development and use of numerical simulation methods for the
analysis of the flow of rheologically-complex fluids in geometries that are
relevant to either laboratory or processing work.

1Delivered as a Keynote Lecture at the 8th International Symposium on Computational
Fluid Dynamics, Bremen, Germany, 5-10 September, 1999.
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What makes computational rheology such a fascinating research field is its
important coupling with experimental and modeling work. Indeed, history
shows that progress in one area of rheology has often been supported by the
insight provided by the other two [1]. In this short paper, we wish to guide
the newcomer to the vast rheology literature. This we do by pointing to
introductory textbooks, research monographs, and review publications. We
also cite recent research papers that are representative of current progress in
rheology. Needless to say, many more references to important work can be
found there.

2 Rheological behaviour of polymeric liquids

Polymeric fluids exhibit a variety of non-Newtonian rheological properties
[2, 3]. The shear viscosity of these materials is often a non-linear function
of the rate of shear. This property alone can easily be taken into account
in a phenomenological way, yielding equations of motion that have the form
of generalized Navier-Stokes equations and which can be solved numerically
by means of methods very similar to those developed for Newtonian liquids
[4]. The situation is of course drastically different with the other facets of
non-Newtonian behaviour, such as the presence of normal stresses in shear
flows, a significant resistance to elongational deformation, and memory ef-
fects which manifest themselves in many ways (e.g. stress relaxation and
recoil). Indeed, polymeric liquids are viscoelastic materials in the sense that
the stress experienced by a fluid particle depends upon the history of the
deformation experienced by that particle. The elastic character of a given
flow is measured by the dimensionless Weissenberg number We = λγ̇, where
λ is a characteristic relaxation time of the fluid, and γ̇ is a characteristic
shear rate of the flow. While We = 0 for Newtonian fluids, it is of order 1
or 10 in many applications involving polymeric liquids.

Non-Newtonian rheological properties are responsible for a variety of flow
phenomena that are unseen with Newtonian liquids and which cannot at all
be predicted by the Navier-Stokes equations [5]. For example, large elonga-
tional stresses [6-8] have a dramatic impact on vortex structures and pres-
sure drops in creeping flows through abrupt contractions/expansions [9, 10],
as well as in industrially important processes such as atomisation [11, 12].
Hydrodynamic instabilities of a purely elastic nature :q are also observed in
a variety of flow situations; these occur at very low Reynolds numbers (of-
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ten zero for all practical purposes), where the corresponding Newtonian flow
would be stable [13-15]. Of particular importance to the polymer process-
ing industry is the issue of extrusion instabilities [16]. Indeed, a polymer
melt extruded at low speed will show a smooth extrudate free surface. At
progressively higher speeds, though, a series of surface instability modes sets
in, leading eventually to gross distortions of the extrudate (melt fracture).
The nature of the interactions between the flowing polymer and the die wall
appears critical here [17, 18]. All the above flow phenomena (as well as
many others) are observed at very low Reynolds numbers. Viscoelastic ef-
fects can be important in the turbulent regime as well, as revealed by the
drag-reduction phenomenon in dilute polymer solutions [19].

It should be pointed out that polymeric solutions and melts are only a
particular class of materials showing non-Newtonian flow behaviour. Among
others we can cite fiber suspensions, emulsions, colloids, liquid crystal poly-
mers, and biological fluids. Generic to non-Newtonian fluids is the role of
their internal microstructure in governing the macroscopic rheological prop-
erties [20]. In a flowing polymeric liquid, the relevant microstructure is the
conformation of the macromolecules, namely their orientation and degree of
stretch. Within each macroscopic material point, there is a large number
of polymers with a distribution of conformations. The macroscopic flow al-
ters the polymer conformations along the fluid trajectories. On the other
hand, the macroscopic stress field is governed by the distribution of polymer
conformations within each fluid element. Clearly, there is a strong non-
linear coupling between rheological behaviour, flow-induced evolution of the
microstructure, and flow parameters (such as geometry and boundary con-
ditions). Furthermore, practioners of processing applications (e.g. injection
moulding of plastic parts), are primarily interested in the physical properties
of the final product. These are intimately linked to the frozen-in microstruc-
ture. To understand and possibly control the above non-linear coupling is
the goal (Holly Grail?) of rheology.

3 A hierarchy of modeling approaches

The challenge for the theoretician is to build a proper mathematical model
that will describe, with a minimum number of state variables and parameters,
the rheological behaviour of polymers observed in well-controlled, rheometri-
cal experiments developed by the experimentalist (such as simple shear and

3



uniaxial elongation flows). Then, the hope is that the model can be used,
by means of appropriate numerical methods proposed by the computational
rheologist, to predict flow phenomena in more complex situations.

With polymers, the task is made very difficult indeed by the huge number
of microstructural degrees of freedom and the broad range of time and length
scales separating the relevant atomistic and macroscopic processes (typically
10−15s → 102s and 10−10m → 1m). Clearly, this rules out a modeling ap-
proach based on quantum mechanics and related ab initio computational
methods.
Atomistic modeling is the most detailed approach that could realistically

be thought of. Since the mid-eighties, researchers have developed a variety of
atomistic models and related molecular dynamics methods for the analysis
of equilibrium polymer structures and properties [21, 22]. Application of
atomistic modeling to polymer rheology is an active field of research [23-25].
Flow simulations using non-equilibrium molecular dynamics have also been
attempted recently [26-28] to study the behaviour of polymers near walls
and geometrical singularities (e.g re-entrant corners). In view of the very
significant computer resources involved in such calculations, the atomistic
models used in the latter studies are by necessity very coarse. Their potential
is great, however, in helping us resolve important issues such as wall slip.

The next level of description of a polymeric liquid is that of kinetic theory.
Here, one ignores atomistic processes altogether and focuses rather on the
evolution of a more or less coarse-grained model of the polymer conforma-
tions [29-31]. Kinetic theory models can be exploited by means of stochastic
simulation or Brownian dynamics methods [32].

Within the framework of kinetic theory, there also exists a hierarchy of
possible levels of description of a particular fluid. Consider a dilute solution
of linear polymers in a Newtonian solvent, for example. In kinetic theory, a
rather detailed description of the polymer is the Kramers freely jointed bead-
rod chain, which is made of NB beads connected linearly by NB − 1 rigid
segments; for realistic simulations, NB is of order 100. The beads are the
interaction sites of the polymer with the Newtonian solvent: they experience
Stokes’ drag and Brownian forces. Important effects like excluded volume and
hydrodynamic interactions can also be added in the theory. Clearly, this type
of model is not meant to describe the chemical structure of the polymer in any
detail. It does, however, have the important features needed to describe the
polymer conformations (i.e. a large number of internal degrees of freedom,
and the property of being oriented and deformed by the macroscopic flow). A

4



coarser model of the polymer is the freely jointed bead-spring chain, formed
fromNb beads connected linearly byNb−1 springs; Nb is now of order 10. The
spring represents the entropic non-linear force that resists to the deformation
of the molecule. An even coarser model is the single dumbbell, namely two
beads connected by a spring. Brownian dynamics studies using Kramers
chains [33-35], bead-spring chains [36], and dumbbells [37, 38], together with
the experimental observation of single polymer conformations [39-41], have
recently shed much light on the behaviour of dilute polymer solutions in
rheometrical flows.

The most successful kinetic theory for concentrated solutions or melts of
linear polymers is the Doi-Edwards reptation model [42]. The basic idea, due
to de Gennes, is that entanglements with other polymers impose topological
constraints on the motion of an individual polymer chain: it is indeed easier
for a chain to move in the direction of its backbone than in the transverse
direction. Since the mid-nineties, significant additions have been made to
the basic Doi-Edwards theory which correct most of its deficiencies [43-48].
Furthermore, detailed reptation models suited for stochastic simulations are
becoming available [49-51]. Significant progress has also been made recently
in extending the Doi-Edwards theory to branched polymers [52].

Finally, besides atomistic modeling and kinetic theory lies the macro-
scopic approach of continuum mechanics. Here, details of the fluid mi-
crostructure are not taken into account explicitly. Rather, the stress ex-
perienced by the macroscopic fluid elements is related to the deformation
history through a suitable constitutive equation. Added to the conservation
laws for mass, energy, and linear momentum, the constitutive model yields
a closed set of partial differential (or integro-differential) equations that can
be solved by means of a suitable grid-based numerical method, such as the
finite element technique [53]. A very large majority of publications in com-
putational rheology has been based on the macroscopic approach, which is
briefly reviewed in the next section.

It should be noted that macroscopic constitutive equations can in princi-
ple be derived from kinetic theory. In fact, almost all constitutive equations
used today in computational rheology [54] have been inspired in one way
or another by a kinetic theory model (a recent significant addition to the
list is the pom-pom constitutive equation for branched polymers [55, 56]).
These molecular-based constitutive equations yield quantitative information
on the distribution of polymer conformations within a macroscopic fluid el-
ement in the form of averaged quantities such as the second moment of the
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distribution. The latter can be related to birefringence [54]. Unfortunately,
mathematical closure approximations are usually needed in the derivation of
a constitutive model from kinetic theory. For example, in the context of dilute
solutions, only the linear dumbbell model yields a mathematically equivalent
constitutive equation (the Oldroyd-B model [30]). A closure approximation
is needed for more sophisticated (and realistic) dumbbell models, which can
have a significant qualitative impact [57]. In particular, it changes the mean-
ing of some molecular parameters of the underlying kinetic theory. Thus,
in view of the closure issue, it is not always easy to connect the results ob-
tained with molecular-based constitutive equations to the actual distribution
of polymer conformations.

Finally, we wish to close this section on modeling by pointing to im-
portant recent developments in non-equilibrium thermodynamics of complex
fluids [58-62]. These should provide guidance in linking the various levels of
description of polymeric liquids that we have briefly discussed. They should
also help in the development of improved theories [63, 64].

Since its pioneering days (circa 1975), computational rheology has fol-
lowed the purely macroscopic approach. The amazing increase in computer
processing capacity has made feasible a complementary micro-macro ap-
proach, which involves the coupled solution of the macroscopic conservation
laws and a microscopic kinetic theory model. Issues and progress in these
two lines of research are reviewed in the next two sections. Finally, we wish
to point out that alternative approaches to computer modeling of polymeric
liquids have been advanced very recently, most notably Dissipative Particle
Dynamics [65] and Lattice Boltzmann Models [66, 67].

4 Macroscopic simulations

Let us consider for the sake of illustration the particular problem of incom-
pressible, isothermal creeping flow in a confined geometry. The conservation
laws read

∇ · {−p δ + 2ηsD + τ p} = 0, ∇ · v = 0, (1)

where p is the pressure, v is the velocity, τ p is the polymer contribution to
the stress tensor, and 2ηsD is a purely viscous component of the stress. The
latter represents the contribution of the solvent in dilute solutions, or of fast
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relaxation modes in more concentrated systems; it involves the rate of strain
tensor D and a solvent viscosity ηs.

In macroscopic simulations, one closes the governing equations with a
suitable constitutive equation of either the differential type

Dτ p

Dt
= f (τ p,∇v), (2)

or of the integral type

τ p =
∫ t
−∞

m(t− t′)St(t
′)dt′. (3)

Here, Dτ p/Dt denotes the material derivative of the polymer stress, f is a
model-dependent tensor function, m(t− t′) is the memory function of linear
viscoelasticity, and St(t

′) is a model-dependent non-linear strain measure rel-
ative to the present time t. Note that the integral in (3) is computed along
fluid trajectories that are a priori unknown. The above generic constitu-
tive equations express the memory of polymeric liquids, namely the polymer
stress carried by a fluid particle at present time t is a function of the de-
formation history experienced at past times t′ by the particle flowing along
its trajectory. Note that constitutive equations derived recently from kinetic
theory [55, 68, 69] give the stress as an algebraic function of a number of mi-
crostructural tensor variables, which themselves follow an evolution equation
similar to (2).

The macroscopic equations (1-2 or 3), supplemented with suitable bound-
ary and initial conditions, present formidable numerical challenges. The gov-
erning equations are of mixed mathematical type (elliptic-hyperbolic), with
possible local changes of type [70]. Stress boundary layers develop in many
flow fields where the corresponding Newtonian fluid mechanical problem is
quite smooth [71-73]. Stress singularities (e.g. at re-entrant corners) are
much stronger than in the Newtonian case [74-76]. Finally, the non-linear
qualitative behaviour of the solutions is very rich (e.g. multiplicity, of solu-
tions, bifurcations), and can be affected by the discretization process [77-79].
Whether these difficulties reflect the actual physics of polymeric liquids (in
which case we have to live with them!) or result from inadequate modeling
is an open issue which continuum mechanics alone cannot resolve.

Progress in macroscopic simulations has been steady since the early days
(circa 1975), along the path of (i) getting numbers, (ii) assessing their nu-
merical accuracy, and (iii) assessing their physical relevance. For successive
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reviews, see [4,80-82]. Step (i) was quickly found to be by no means a trivial
matter: obtaining numerical solutions of the discrete, non-linear algebraic
equations at significant values of the Weissenberg number We has long been
difficult or even impossible (this is known as the High Weissenberg Number
Problem or HWNP). It is fair to say that the HWNP is now partially resolved,
in the sense that high-We numerical solutions have been made available over
the years for a variety of flow problems. Step (ii) can only be performed
by means of careful mesh-refinement experiments. Indeed, the mathematical
analysis of numerical methods for viscoelastic fluids is quite difficult [83, 84].
Step (iii) is a test of the validity of the physical model (constitutive equation,
values of the material parameters, and boundary conditions).

Although a wide spectrum of techniques and problems has been investi-
gated, most of the published work deals with mixed finite element methods
for 2d steady-state flows using a differential constitutive equation [82,85-87].
Recent developments are related to integral constitutive equations [88-90],
time-dependent flows [91-97], temporal stability analysis of complex flows [98-
100], iterative solvers [101], parallel algorithms [102, 103], 3d flows [104, 105],
or various combinations thereof. Methods for high-Reynolds number vis-
coelastic flows have also been proposed recently, to study in particular the
drag-reduction phenomenon [106-109].

In addition to these various extensions in numerical technology, macro-
scopic simulations have been exploited for two important tasks, namely (i)
the evaluation of constitutive equations in benchmark complex flows (usu-
ally through a detailed comparison with experimental observations), and (ii)
computational rheometry, or use of numerical simulation to aid the exper-
imentalist in reducing its data. Representative examples of the former are
reported in [110-122], while computational rheometry is illustrated in [123-
126].

5 Micro-macro simulations

Although there is still much room for further numerical and algorithmic de-
velopments in macroscopic computational rheology, advances made there has
revealed that improved modeling of the rheological behaviour is necessary.
Further progress will not come from continuum mechanical arguments alone.
While the direct molecular dynamics simulation of polymer flows in geome-
tries of macroscopic dimensions is likely to remain out of reach for many
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years to come, use of the simpler, coarse grain models of kinetic theory is
becoming feasible with the availability of powerful parallel computers.

In the micro-macro approach, one solves the macroscopic conservation
equations (1) by means of a grid-based numerical method, and uses a kinetic
theory model rather than a constitutive equation to evaluate the polymer
contribution to the stress. Clearly, this approach is much more demanding
in computer resources than macroscopic methods. On the other hand, it
allows the direct evaluation of kinetic theory models in complex flows with-
out having to resort to mathematical closure approximations of questionable
value.

A possible approach for evaluating the polymer stress in the micro-macro
approach is to solve numerically the diffusion or Fokker-Planck equation [32]
for the probability density ψ(X, t) of the conformation X of the polymer
chains within a material point. The diffusion equation has the generic form

∂ψ(X , t)

∂t
= −

∂

∂X
· {A(X, t) ψ(X, t)}+

1

2

∂

∂X

∂

∂X
: {D(X, t) ψ(X, t)} .

(4)
Here, the symbol X is the set of variables defining the coarse-grained mi-
crostructure. For example, it reduces to the vector connecting the two beads
in the simple dumbbell model of a polymer solution. The factors A and
D define the deterministic and stochastic components of the model, respec-
tively. In particular, the macroscopic velocity gradient ∇v enters in the
formulation of A, while diffusion phenomena are described in D. Equation
(4) allows the computation of the probability density ψ. Relevant macro-
scopic variables (such as the polymer contribution to the stress tensor) are
then computed as statistical averages of some function of the polymer con-
formation X. In a complex flow, the time derivative of ψ in (4) is replaced
by the material derivative and one must solve (4) at each material point of
the flow domain.

An early micro-macro method [127] was based on the solution of the
Fokker-Planck equation (4). This approach, however, is limited to kinetic
theory models with a conformation space of small dimension. Brownian
dynamics or stochastic simulation techniques provide a powerful alternative
[32]. They draw on the mathematical equivalence between the Fokker-Planck
equation (4) and the following Itô stochastic differential equation

dX = A(X, t) dt+B(X, t) · dW , (5)
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where D = B · BT and W is a multi-dimensional Wiener process. Thus,
instead of solving the deterministic diffusion equation (4) for ψ, one solves the
associated stochastic differential equation (5) by means of suitable numerical
techniques, which can be a considerably simpler task. Macroscopic fields of
interest are then obtained by averaging over a large ensemble of realizations
of the stochastic process X. In a complex flow, the stochastic differential
equation (5) applies along the macroscopic flow trajectories.

The idea of combining a stochastic simulation of a kinetic theory model
with the numerical solution of the conservation equations has been pioneered
in [128, 129], and further developed in [130-133]. Second-generation micro-
macro methods, with much improved numerical properties, have been pro-
posed recently for computing 2d transient flows. They are referred to as
Brownian Configuration Field [134, 135] and Lagrangian Particle [96, 97]
methods. Although their implementation is currently limited to elementary
kinetic theory models, their potential range of applications is quite wide in-
deed.

6 Conclusions and perspectives

Research in computational rheology has been steadily producing over the
last two decades a variety of complementary tools which will help us better
understand the dynamics of polymeric liquids. It has indeed gone a long way
since the first successful attempts [136, 137] to predict the flow of a memory
fluid in a complex geometry.

Macroscopic methods, which rely on a constitutive equation to describe
the polymer dynamics, have reached a state of relative maturity. Techniques
are indeed available that allow, at least in principle, the computation of 3d
time-dependent flows with either differential or integral models. They are
used increasingly to validate constitutive theories in complex flows, and to
aid the data reduction process in rheometrical experiments. Computing nu-
merically accurate solutions at high Weissenberg numbers remains, however,
a challenge which should not be overlooked. That the task is made consid-
erably easier with more realistic constitutive equation is a fact that has long
been known [138] and which has often been witnessed since. While certainly
very comforting, it should not hide the need for careful numerical valida-
tion of present and future methods. The role of benchmark flow problems is
crucial in that regard, especially for 3d and time-dependent flows where our
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experience is rather meager.
Over the last few years, the scope of computational rheology has expanded

considerably with the development of micro-macro techniques. These allow
in principle the direct use of a hierarchy of kinetic theory models in com-
plex flow simulations, without the dubious closure approximations that are
invariably needed to derive a constitutive equation from kinetic theory. It
thus becomes possible to assess the validity of coarse-grain molecular theo-
ries that are being developed by theoretical rheologists. Collaborative work
with experimentalists, in particular those who develop methods for probing
the microstructure of polymers undergoing flow [20], should ease the identi-
fication of the most important physical mechanisms to blend into a model.
Also, the knowledge accumulated with the more detailed levels of description
of kinetic theory should provide guidance for the development of improved
constitutive equations. Finally, even more detailed molecular dynamics sim-
ulations are becoming feasible to study important phenomena such as wall
rheology. These should provide useful information on the relevant bound-
ary conditions to specify in macroscopic or micro-macro simulations. The
need for careful numerical validation of these micro-macro and atomistic ap-
proaches is undeniable as well.

Acknowledgments
This work is supported by the ARC 97/02-210 project, Communauté Fran-
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[64] H.C. Öttinger, A Termodynamically Admissible Reptation Model for Fast Flows of
Entangled Polymers. I. Model Formulation, J. Rheol. 43 (1999) No.6, in press.

[65] B.I.M. ten Bosch, On an Extension of Dissipative Particle Dynamics for Viscoelastic
Flow Modelling, J. Non-Newtonian Fluid Mech. 83 (1999) 231-248.

[66] L. Giraud, D. d’Humieres and P. Lallemand, A Lattice Boltzmann Model for Jeffreys
Viscoelastic Fluid, Europhys. Lett. 42 (1998) 625-630.

[67] L. Giraud, D. d’Humieres and P. Lallemand, Non-Linear Viscoelastic Models Using
the Lattice Boltzmann Method, preprint.

[68] G. Lielens, R. Keunings and V. Legat, The FENE-L and FENE-LS Closure Approx-
imations to the Kinetic Theory of Finitely Extensible Dumbbells, J. Non-Newtonian
Fluid Mech., in press.

[69] G. Lielens, P. Halin, I. Jaumain, R. Keunings and V. Legat, New Closure Approxi-
mations for the Kinetic Theory of Finitely Extensible Dumbbells, J. Non-Newtonian
Fluid Mech. 76 (1998)249-279.

15
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