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Abstract

The non-linear response of polymeric liquids observed experimentally in large amplitude oscillatory shear (LAOS) is generally characterized
by the presence of odd harmonics of the excitation frequency in the Fourier spectrum for the shear stress. Even harmonics of relatively smaller
amplitude have also been observed, whose appearance is usually attributed to wall slip phenomena. In the present work, we show that wall slip
is not a necessary condition for the occurrence of even harmonics. To this end, we perform a non-linear study of planar LAOS flow between
two infinite parallel plates using either a monotone or non-monotone viscoelastic constitutive equation (i.e., respectively, the Giesekus and
Johnson—-Segalman models). The analysis allows for spatially non-homogeneous velocity and stress fields. We assume no-slip boundary
conditions, and investigate the combined effects of inertia, elasticity, and shear thinning by means of spectral methods. A regular perturbation
analysis is also conducted in the inertialess monotone case. Results for the Giesekus model show that combination of elasticity and shear
thinning yields transient even harmonics in shear stress whose life span and intensity are considerably increased by inertia. Furthermore, the
one-dimensional flow is unstable to finite two-dimensional perturbations under inertia and at high elasticity. This results in the development
of secondary flows and saturation of even harmonics into small but finite values. Simulations for the non-monotone Johnson—Segalman model
predict even harmonics of relatively larger amplitude that settle in dynamic equilibrium. Furthermore, the fluid’'s response is quasi-periodic
with the appearance of incommensurate frequencies.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and Oldroyd-B modelf6], no bifurcation has been detected
and the system’s steady response has been found to be one-

Experimental studies of large amplitude oscillatory shear periodic. In recent studiegl] with simple non-Newtonian
(LAOS) flows of polymer melts show non-linear effectsyield- models (even inelastic), the excitation of the odd harmonics
ing multi- and quasi-periodic behaviour in certain parameter of the fundamental frequency has been demonstrated. The
rangeq1,2]. Fourier analysis of the shear stress response in-presence of even harmonics and higher-order bifurcations
dicates that multi-periodicity manifests itself mainly with the has been attributed to wall slip phenom¢nag], and use of
presence of odd harmonics of the fundamental excitation fre- dynamic wall slip (memory slip) models led to a chaotic re-
guency. In many cases, however, even harmonics of muchsponse with a continuous energy spectfth11] Recently,
smaller amplitude than the odd ones have also been observethe effects of inertia on the formation of even harmonics have
[1,3-5] Theoretical and numerical studies have been car- been investigated through the UCM model supplemented
ried out to investigate these non-linear effects. In a study us-with a kinetic rate equation, and the authors reported that
ing single and multi-mode upper-convected Maxwell (UCM) inertia does not create even harmorit3].

In the present study, we investigate whether even harmon-
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consider the combined effects of inertia, elasticity, and shear’ as the length scale. Adopting/ AL as characteristic time
thinning in planar LAOS flow between two infinite paral- scale would yield a dimensionless excitation with fixed an-
lel plates. Both monotone and non-monotone viscoelastic gular frequency 2 and variable amplitud&y/ i f; the Deb-
models (i.e., the Giesekus and Johnson—Segalman modelsprah number would then appear in the problem formulation.
respectively) are considered to elucidate the generation ofin the present work, we select instead the ratid as the
the harmonics. The problem is formulated3action 2 Re- time scale. This choice yields a dimensionless excitation with
sults assuming a known, homogeneous velocity gradient arefixed unit amplitude and variable angular frequeagy/ Vo;
given inSection 3 There we underline that an inelastic, non- the Weissenberg number is then used.

Newtonian model with an arbitrary viscosity function can The conservation equations for isothermal, incompress-
only generate odd harmonics in the shear stress spectrum. Wéble viscoelastic flow can be written in dimensionless form
also present a regular perturbation analysis for the Giesekusas,

model in the inertialess regime, where the perturbation pa-

v
rameter is the mobility factor. It is found that shear thinning Re— = —-Vp + BV +(1—-B)V-T, (1)
and elasticity give rise to odd and even harmonics in the

shear stress spectrum, but the even harmonics appear only -V = 0. 2

in transient exponentially-decaying terms. Consideration of
non-homogeneous flow (assumed to be either one- or two-
dimensional) requires the use of numerical techniques. In
Section 4 we briefly describe the spectral methods used in
this work. Results are presentedSaction 5 For the mono-

Here,v is the velocity vectorT the viscoelastic extra-
stress tensop the pressure, anb/ Dr denotes the material
derivative. The dimensionless parameges the ratio of the
‘solvent’ viscosity us to the total zero-shear rate viscosity
tone Giesekus model, we find that combination of elastic- * = s+ #p: With jup being the zero-shear rate polymer
. . . . .. viscosity. The characteristic scales for the viscoelastic stress
ity and shear thinning yields transient even harmonics in and pressure are-Vo/h and wve/h. respectively. The
shear stress whose life span and intensity are considerably in2 © P #pVo/ #Vo/ h, Tesp Y-

creased by inertia. Furthermore, under inertiaand at high elas—ReynOIdS number is defined & = pVoh/u. wherep s the

ticity, the one-dimensional flow is found to be unstable to fi- ﬂwliccjjliarrr]lzlrt?;ionless form. the Giesekus constitutive equation
nite two-dimensional perturbations. This non-linear instabil- reads ' q
ity drives two-dimensional, periodic secondary flows which
i i v
produce even harmonics in the shear stress spectrum th | +aWeT] T + We T= 2D, 3)

saturate into small but finite values. For the non-monotone
Johnson-Segalman model, even harmonics of relatively while the Johnson—Segalman model is given by
larger amplitude are found to settle in dynamic equilibrium
and the fluid’s response is quasi-periodic with the appearancer __ y, [(1 _ §> ¥ + (ﬁ) %] —2D. (4)
of incommensurate frequencies. We conclud8éation 6 2 2

Here,D is the rate of deformation tensor, and the Weis-
senberg number is defined 8& = AVp/h, wherea is the
zero-shear rate relaxation time. The operatoandA denote

) respectively the upper and lower convected derivatives,
We consider the planar flow of a polymer melt between

2. Problem formulation and governing equations

two infinite parallel plates located at= +h, where#h is _Y__ b1 L.T_T.LT (5)
the channel half-width and the and y coordinates are in T Dt ’

the streamwise and cross-stream directions, respectively. TheA

lower plate is fixed, while the upper plate oscillates inthe T= or +LT.T+T-L, (6)

direction. The fluid is initially at rest and we specify no-
slip boundary conditions at the walls. Thecomponent of ~ whereL is the velocity gradient.
velocity is thus set to 0 at the fixed wall, and is equal to The viscometric response of the Giesekus and Johnson—
Vo cosgt) at the oscillating wall. Herey is the angular fre-  Segalman models is detailed[it]. The dimensionless mo-
quency of excitationd = 2xf, f being the frequency), and  bility factor & controls the shear thinning behaviour of the
Vo is the amplitude of excitation. Thecomponent of veloc-  Giesekus model (as well as its elongational response). For
ity vanishes at both walls. These boundary conditions amountrealistic propertiesy must take values between 0 ané.0
to applying a nominal shear strajtfr) = o sin(wt), where The constant shear viscosity UCM model is obtained with
yo = Vo/2hw, and a nominal shear raj€r) = yow cost). a=p8=0. Fora # 0 andg = 0, the power-law slope of

As noted previousl{3], the frequency (proportionaltothe the steady shear viscosity-sl at large shear rates. A small
Deborah number) and rate of deformation amplitude (pro- amount of solvent viscosity (e.g8,= 0.001) guarantees that
portional to the Weissenberg number) can be varied indepen-the magnitude of the total shear stress is a monotonically
dently in oscillatory shear flows. In order to obtain a dimen- increasing function of the deformation rate in steady-state
sionless formulation of the problem, we select the half-width shear flow. On the other hand, the Johnson—Segalman model
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yields a non-monotonic shear stress versus shear rate curveimensionless streamwise velocity is given by
for non-zero values of the slip parameteand a viscosity
ratio smaller than 9. u(y, t) = w.

For Re # 0, the streamwise velocity component is an un- 2
known non-linear function of the cross-stream coordinate. If Treating the mobility factor of the Giesekus model as a
the cross-stream velocity is assumed to vanish, the flow prob-small perturbation parameter, we expand each extra-stress
lem stated above is then spatially one-dimensional. We shallcomponent as follows:
also consider the two-dimensional case, wherein spatially pe-
riodic solutions in the streamwise directiorare soughtin a

computational domain spreading over a Qimengionless peri-ang introduc&gs. (9) and (1aj the constitutivEq. (3. We
odicity lengthL,. In both one- and two-dimensional cases, 5 ghtain a linear system of first order non-homogeneous

suitable numerical methods are needed to solve the problemyqinary differential equations for successive perturbation or-
These are described 8ection 4 dersn of the form

Before discussing the numerical results, we find it useful to

©)

7}j=7}?+a7}}+a27}§+-~, (10)

conS|der_the mugh sw_npler merﬂale;s ca%e(: 0), Whereln We—% 1 T" _ We cosfor)T".
the velocity gradient is uniform. This we do in the following dr
section. — _We[(T;lx—l 2 + (T;z)—l 2]’ (11)
i 1
3. Inertialess case WedT;ly N !, — We cosr)T?,
3.1. Inelastic fluid d 2 r)
CoSs(t
_ - N _ = —Wel T} (T 4+ Ty ] + : (12)
We wish to underline first that an inelastic, non-Newtonian 2
model with an arbitrary viscosity function can only generate
odd harmonics in the shear stress spectrum. Ty, n n—112 n—12
Indeed, the shear stregs, for a general inelastic fluid is e dr + Ty = —Wel(Ty )"+ (T )] (13)
given by, The initial conditions on the stresses at each perturbation
Ty = n(I7)7, 7) order are zero. At zeroth order, the solution has the following
form,
wheren denotes the viscosity function with the absolute value 0 0 o . 0
of the shear ratg/| as argument. In oscillatory shearrat = Ty, = aj; cos(2vt) + byy sin(2wr) + cq;
0, the dimensionless shear rate is uniform, t ) 0 t 0
X exp(——) sin(wr) + diy exp(——) +e3y,
cosgt) We We
-T2 ®) 0 0 0 o 0 4
Ty, = ay, COS(r) + by, sinwt) + 1, exp(—W) ,
Thus, as noted previously (e.Bt,5]), the Fourier series ¢f| ¢
only involves even harmonics of the frequeney. Zhe same Tyoy =0. (14)

conclusion then also applies to the viscosity functigfy|).

By trigonometric addition laws, the product of the viscosity At Ordern, we have

function (having Fourier components of the form ce={?) o

withthe shear rate (proportional to cag)) can only generate 77 (¢) = Z [a]y, cos(Zwt) + by, Sin (Zkwt)]

odd harmonics of the fundamental frequency, i.e., terms of the =0

form cos(2+1)wt. Hence, in the inertialess inelastic case, i1 i1y

for any form of the viscosity function having as argument the mt

absolute value of the shear rate, the Fourier spectrum of the + Z exp(—m) Z

shear stress only contains odd harmonics of the fundamental m=0 =

frequency. This shows the necessity of introducing elasticity X [y COSkwt) + diy,, sinkwr)],

and inertia to possibly obtain a richer spectrum. n_q

25 Elastic fluid TA(1) = Y [d}y cos(Z + Lot + by sin (2 + L]
2. k=0

In order to analyze the combined effects of shear thin- ity rr-2

mt
ning and elasticity, we perform a regular perturbation analy- + Z exp(—%) Z
sis where the stress non-linearities in the Giesekus model (3) m=0 =

are treated as perturbation terms. In the inertialess case, the X [, COSkwE) + dioy,, Sin(kot)],
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2"—-1 M

Th(1) = Y [dy cos(Zat) + by, sin (2kwt)] u@.0) =Y an(OTu(), (16)
k=0 m=0
on+tl_o mi ontl_3 M
+ Y en(-o) X Ty = 3 Gidn(OTn (), (7
m=0 k=0 m=0
X [opm COSkwt) + dyy,, Sinkwt)], (15) where the functioril}, (y) is the Chebyshev polynomial of

orderm, anda,, and {;;),, are time dependent spectral coef-
where the coefficients in front of the expressions (14) and (15) ficients. The above expressions are then inserted in the gov-
are rational functions oe andw. One observes from Egs.  erning equations, which are integrated in space according to
(14) and(15) that the solutions are composed of decaying the Galerkin method of weighted residuals. A system of or-
exponential terms, sine/cosine terms decaying exponentiallydinary differential equations in time (a dynamical system) is
in time, and sine/cosine terms which eventually define the dy- thus obtained. In order to satisfy the no-slip boundary con-
namic equilibrium. In the shear stress expressions, even harditions at each time step, we drop th® ¢ 1) and M'th
monics of the fundamental excitation frequency appear only Galerkin equations for the velocity and replace them by the
in exponentially decaying sine/cosine terms, and the long- spectral versions of the boundary conditions:
time solution is composed only of the fundamental frequency
and its odd harmonics. In the normal stress expressions, dy-
namic equilibrium terms are constituted of even%armonics o¥ u(=10= 2 anOTn(=1)= ) an()(~1" =0,
the fundamental frequency, while odd harmonics appear only m=0 m=0
in exponentially decaying sine/cosine terms. We also note the (18)
absence of the fundamental excitation frequency in the dy-
namic equilibrium for the normal stresses. Since higher-order M-2 M-2
perturbation terms are represented in the final solution by in- #(+1,7) = > an@Tu(+1) = an(r) = cosgr).
creasing powers of the perturbation parameter, it is clear that m=0 m=0
the Fourier spectrum will be of decreasing intensity towards (29)
higher harmonics, as it can be expected. We also note that, in . ) ) )
the exponential functions, the non-dimensional time is scaled ~ OUr simulations typically involve 50 Chebyshev modes
with the Weissenberg number. Thusi is zero (inelastic for each unknown field. Initial values are all set to zero (rest
fluid), the transient harmonics disappear, while whiénis state). _ . _
increased (higher elasticity), the corresponding terms decay = Ve @lso wish to address the stability of the one-dimen-
more slowly. However, when shear thinning effects are absentSional results obtained with the monotone Giesekus model.
(i.e., when the perturbation parameteis zero), all higher In order to compute the evolution of flplte—amplltude, two-
harmonics in dynamic equilibrium and transient terms van- o_hmensmnal perturbations to the_one-dlmens_lonal bas_e solu-
ish, as it can be seen in the zeroth order solutieq. (14. t|0n§, we adopt the streamfunct!on_formulatlon used_ in our
Numerical time integration of the Giesekus model for finite Previous work{14] and apply periodic boundary conditions

« (i.e., without the perturbation assumption) confirms quali- " the streamwise direction. In this case, the perturbation
tatively the above results. streamfunction and stress components are decomposed into

We conclude from this analysis that shear thinning and Fourier and Chebyshev spectral modes, respectively in the
elasticity give rise (in the inertialess regime) to both odd and Streamwise and cross-stream directions, as follows:

M-2 M-2

even harmonics in the shear stress spectrum, but the even M N ,
. . . . . i2kx
harmonics appear only in transient exponentially-decaying w(x, y, ) = Z Z apon () exp(—) Pn(y),  (20)
terms. Consideration of the effects of inertia requires the use P Ly
of numerical techniques, which we detail next.
M—2 N i2mkx
Ty y. )= > > (bijm(t) exp( 7 ) T (),
4. Spectral methods m=0 k=—N *

21
In the inertial caseRe # 0), the velocity field is a priori @D

unknown and one must resort to the numerical solution of the whereay,, and ¢;;)w, are time-dependent complex coeffi-
governing equations detailed 8ection 2 cients which satisfy the reality condition add,(y) is a lin-

For the one-dimensional problem (vanishing cross-streamear combination of the Chebyshev polynomials chosen to
velocity), we use a spectral tau method. The streamwise ve-satisfy the wall boundary conditions on the perturbation part
locity # and viscoelastic extra-stress compondhtsare de- [14]. L, is the dimensionless periodicity length in the stream-
composed into Chebyshev spectral modes as follows: wise direction. As iff14], a fully-spectral approach is used.
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Our simulations typically involve 50 Chebyshev modes and ' ' ' ' '
8 Fourier modes for each unknown field. 0.8 - 7
For both the one- and two-dimensional simulations, time 0.6 - -
integration is performed using a semi-implicit scheme of sec- 0.4 -
ond order. Linear terms are integrated by the implicit Crank- g o2 | -
Nicolson method, while all non-linear terms are integrated % ok i
by the explicit Adams-Bashforth scheme. § 02 L |
Finally, we point out that it was not found necessary to add 04 L |
any artificial stress diffusion to the constitutive equations to o6 L |
obtain numerically stable results. 0‘8 i |
os 0.4 0.2 0 0.2 0.4 0.6
5. Inertial case: numerical simulations Shear Rate

We now include inertial effects for both monotone and Fig. 2. Centerline shear stress vs. shear rate loop for the Giesekus model
non-monotone models. All results reported in this section (ke =1 We=1,§=000L« =001 f =001).
are for a dimensionless frequency equal to 0.01. This value
corresponds to a maximum imposed stnajir= 8thatistyp-  first and second odd harmonidsig. 3). The corresponding
ical of experimental conditions. Unless stated otherwise, we shear stress—shear rate loop is then a deformed elfijrse.
focus on the one-dimensional simulation results. The initial  |n view of [6], if shear thinning effects were totally absent
conditions for the one-dimensional case are the start-up con-(o = 0), the response would be one-periodic as well.

ditions, i.e., all flow variables are set to zero initially. All We now significantly increase shear thinning effeats<(
numerical data are given in dimensionless form according to 0.5), all other parameters being unchanged. The net result
Section 2 is an increase of the multi-periodic character of the shear
stress response, with the the appearance of additional odd
5.1. Monotone Giesekus model harmonics in the Fourier spectrufig. 5. Their amplitude
is decreasing rapidly with increasing order.
The results obtained with the Giesekus fluid areRer= The corresponding Lissajous plot shows secondary loops

1. We start with the case = 0.01 and We = 1, namely associated with the occurrence of higher-order odd harmon-
very weak shear thinning and weak elasticity. As expected ics (Fig. 6). For the same case, the normal strésshas a
from previous work with constant shear viscosity UCM and Fourier spectrum containing even harmonics of the funda-
Oldroyd-B fluids[6], the shear stress response is nearly one- mental frequency, but not the fundamental frequency itself
periodic with a Fourier spectrum that shows one spike at the (Fig. 7). Here, the amplitude of the higher-order harmonics
fundamental excitation frequendyi@. 1). [Note that the fre- is scaled with respect to the first even harmonic. It should be
guencies/energies of the Fourier spectra shown in this sectiomoted that we also observe during an early transient phase
are usually scaled with respect to the frequency/energy of thethe appearance of first even (resp. odd) harmonics of relative
excitation.] The corresponding shear stress—shear rate Lis-amplitude 103-10~* for the shear (resp. normal) stress.
sajous loop is a thin ellipse as expected for a weakly elastic  Finally, we consider a situation with significant shear thin-
fluid (Fig. 2). ning (@ = 0.2) and high elasticity We = 100). The multi-

If we increase elasticity We = 10), all other parame-  periodic evolution of the shear and normal stresses is depicted
ters being unchanged, we observe the transition to a multi-in Figs. 8 and 9while the shear stress—shear rate loop is given
periodic response in shear stress with the appearance of thén Fig. 1Q It is clear that the transient phase is much longer

1
0.8 1
0.6 Y
L, 04 g 0.8
g 02 =
=
x £os
5 oo P
=0 £ 04
-0.4 )
[+7
-0.6 0.2
-0.8
-1 0
0 20 40 60 80 100 120 140 160 180 200 o 1 2 3 4 5 6 7 8 9 10
(a) Time (b) Relative Frequency

Fig. 1. (a) Evolution of shear stress at fixed plate for the Giesekus mBdet (1, We = 1, 8 = 0.001, « = 0.01, f = 0.01); (b) Fourier spectrum.
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Fig. 3. (a) Evolution of shear stress at fixed plate for the Giesekus mBdet (1, We = 10, 8 = 0.001, « = 0.01, f = 0.01); (b) Fourier spectrum.
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Fig. 4. Centerline shear stress vs. shear rate loop for the Giesekus modeFig. 6. Centerline shear stress vs. shear rate loop for the Giesekus model
(Re = 1, We = 10, 8 = 0.00L & = 0.01 f = 0.01). (Re =1, We = 10, f = 0.001 & = 0.5, f = 0.01).

than in the previous cases. Indeed, the long-time limit of the decay is very fast, in agreement with the exponential be-
Lissajous plot is not fully reached in the simulation. The final haviour predicted in the perturbation analysiSettion 3.2
behavior tends to a deformed ellipse with secondary loops. The results foRe = 1 show that inertial effects significantly
In the present case, the even harmonics for the shear stres#crease both the amplitude and the life span of the first even
remain in the spectrum for much longer times «at 600, harmonic. On the other hand, the saturation of the first odd
their relative amplitude is still of order 18—10~%). This can harmonics of shear stress into a steady-state value is clearly
be seen in detail iTable 1 A similar observation holds for ~ shown inFig. 12
the transient odd harmonics in normal stress. At this point, it is useful to question the stability of these
The transient behaviour of the first even harmonic of shear one-dimensional flow results to two-dimensional perturba-
stress is illustrated ifrig. 11 Also shown there is the cor- tions. The initial conditions for the perturbation part have
responding result obtained & = 0. In the latter case, the been formed from the eigenfunctions corresponding to the

0.15
1
0.1
Q
= 0.8
5 0.05 £
13} =3
=
ZI E 0.6
g ®
2 204
$-0.05 g0
Q
~
-0.1 0.2
0.15 0 | :
0 20 40 60 80 100 120 140 160 180 200 01234567 891011121314151617181920
(a) Time (b) Relative Frequency

Fig. 5. (a) Evolution of shear stress at fixed plate for the Giesekus mBdet (1, We = 10, 8 = 0.001, « = 0.5, f = 0.01); (b) Fourier spectrum.
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Fig. 7. (a) Evolution of normal stress at fixed plate for the Giesekus m@&aek(1, We = 10, 8 = 0.001, o = 0.5, f = 0.01); (b) Fourier spectrum.
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Fig. 8. (a) Evolution of shear stress at fixed plate for the Giesekus midet (1, We = 100, 8 = 0.001, « = 0.2, f = 0.01); (b) Fourier spectrum.

least stable eigenvalue of the linear stability problem. These affects, however, the Fourier spectrum: the first even har-
normalized eigenfunctions are then multiplied by a perturba- monic in shear stress becomes pronounced and saturates into
tion factor and added to the one-dimensional solutions. Our a finite value, while the first odd harmonic reaches quickly
spectral simulations indicate that the above solutions are lin-a constant value (see 2D resultsFigs. 11 and 12 Upon

early stable in the two-dimensional case, i.e., they are stabledecreasingke below 1, we find that the secondary flow and

to infinitesimal two-dimensional perturbations of order40
or less.

corresponding sustained even harmonics of shear stress are
suppressed. The numerical convergence of these results has

We then investigated the stability of the above one- been confirmed with respect to the number of Chebyshev and
dimensional solutions to two-dimensional, finite perturba- Fourier modes used in the simulations.

tions of order 103-10-1, for a streamwise periodicity length
L, =10. ForRe =1 andWe > 70, we find that the one-

5.2. Non-monotone Johnson—-Segalman model

dimensional solution shows a non-linear instability leading to

secondary flowsKigs. 13 and 1% The evolution of the stress

We now briefly consider one-dimensional results obtained

components presents a similar multi-periodic behaviour as in with the Johnson—-Segalman model ®f = 0.1 andWe =
the one-dimensional case. The secondary flow considerablyl0. The model parameters are sette 0.2 andg = 0.01.
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Fig. 9. (a) Evolution of normal stress at fixed plate for the Giesekus médek(1, We = 100, 8 = 0.001, & = 0.2, f = 0.01); (b) Fourier spectrum.
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Table 1

Evolution of the relative amplitude of the harmonics of shear stress at fixed plate for the GiesekusRaeddl,(We = 100,8 = 0.001,« = 0.2, f = 0.01)
Harmonic t = 500-600 t = 600-700 t = 700-800 t = 800-900
First even 97 x 1073 4.0x 1073 9.0x 1074 45x 1074
First odd 22 x 101 23x101 24x 101 24x 101
Second even Bx 103 28x 1073 8.1x 104 38x 104
Second odd Bx 1072 7.6 x 102 7.9 %1072 7.9x 1072
Third even 27 x 1078 19x 103 46x 1074 15x%x 104
Third odd 26 x 1072 2.4 x 1072 2.4 x 1072 2.4 %1072
Forth even Dx10°3 28x 104 5.6 x 1075 44x10°°
Table 2

Evolution of the relative amplitude of the harmonics of shear stress at fixed plate for the Johnson-SegalmaRanre@el (We = 10, 8 = 0.01,£ = 0.2,
f =0.01)

Harmonic t = 500-600 t = 600-700 t = 700-800 t = 800-900
First even A x 102 5.2 x 102 2.4 x 1072 5.3 x 1072
First odd 27 x 1071 31x 101 35x 101 29x 101
Second even 2x1072 2.6 x 1072 5.5x 1073 4.8 x 1072
Second odd P x 101 20x 1071 21x 101 11x 101
Third even 24 x 1072 2.7x 1072 2.8x 1072 2.9x 1072
Third odd 14 x 101 9.7 x 1072 11x 101 13x 101
Forth even 2 x 1072 4.8 x 102 4.0x 102 2.6 x 1072
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Fig. 16. (a) Evolution of shear stress at fixed plate for the Johnson-Segalman ®wee0(1, We = 10, 8 = 0.01, § = 0.2, f = 0.01); (b) Fourier spectrum.

In view of the non-monotone behaviour of the model, even
the one-dimensional problem is numerically challenging. In-
deed, the streamwise velocity component is far from having
a linear profile, as can be seen in the instantaneous snapshc
of Fig. 15

The evolution of the shear stress at the fixed plate is shown
in Fig. 16 together with the Fourier spectrum. Note that the 0.05
amplitudes have not been scaled with the energy of the exci-
tation frequency (the latter is the large peak located at 0.01
on the frequency axis).

The shear stress response is quasi-periodic: the Fouriel™™ _0.05
spectrum contains incommensurate frequencies, in addition
to odd and even multiples of the excitation frequency. Fur- -0.1
thermore, the energy of the first even harmonic is one order
of magnitude higher than in the one-dimensional results for ~ -0.15
the monotone Giesekus model, and it does not decay in time
(Table 2.

Finally, the corresponding Lissajous plot is shown in Fig 17. Centerline shear stress vs. shearrate loop for the Johnson—Segalman
Fig. 17 1t clearly shows the intricacy of quasi-periodic model Re = 0.1, We = 10, 8 = 0.01,& = 0.2,f = 0.01).
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