
J. Non-Newtonian Fluid Mech. 122 (2004) 107–116

On the occurrence of even harmonics in the shear stress response of
viscoelastic fluids in large amplitude oscillatory shear

Kunt Atalıka, Roland Keuningsb,∗
a Mechanical Engineering Department, Bo˘gaziçi University, 34342 Bebek, Istanbul, Turkey
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Abstract

The non-linear response of polymeric liquids observed experimentally in large amplitude oscillatory shear (LAOS) is generally characterized
by the presence of odd harmonics of the excitation frequency in the Fourier spectrum for the shear stress. Even harmonics of relatively smaller
amplitude have also been observed, whose appearance is usually attributed to wall slip phenomena. In the present work, we show that wall slip
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s not a necessary condition for the occurrence of even harmonics. To this end, we perform a non-linear study of planar LAOS flo
wo infinite parallel plates using either a monotone or non-monotone viscoelastic constitutive equation (i.e., respectively, the Gie
ohnson–Segalman models). The analysis allows for spatially non-homogeneous velocity and stress fields. We assume no-s
onditions, and investigate the combined effects of inertia, elasticity, and shear thinning by means of spectral methods. A regular p
nalysis is also conducted in the inertialess monotone case. Results for the Giesekus model show that combination of elasticit

hinning yields transient even harmonics in shear stress whose life span and intensity are considerably increased by inertia. Furth
ne-dimensional flow is unstable to finite two-dimensional perturbations under inertia and at high elasticity. This results in the de
f secondary flows and saturation of even harmonics into small but finite values. Simulations for the non-monotone Johnson–Sega
redict even harmonics of relatively larger amplitude that settle in dynamic equilibrium. Furthermore, the fluid’s response is quas
ith the appearance of incommensurate frequencies.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Experimental studies of large amplitude oscillatory shear
LAOS) flows of polymer melts show non-linear effects yield-
ng multi- and quasi-periodic behaviour in certain parameter
anges[1,2]. Fourier analysis of the shear stress response in-
icates that multi-periodicity manifests itself mainly with the
resence of odd harmonics of the fundamental excitation fre-
uency. In many cases, however, even harmonics of much
maller amplitude than the odd ones have also been observed
1,3–5]. Theoretical and numerical studies have been car-
ied out to investigate these non-linear effects. In a study us-
ng single and multi-mode upper-convected Maxwell (UCM)

∗ Corresponding author. Tel.: +32 10 47 2087; fax: +32 10 47 2180.
E-mail address:roland.keunings@inma.ucl.ac.be (R. Keunings).

and Oldroyd-B models[6], no bifurcation has been detec
and the system’s steady response has been found to b
periodic. In recent studies[4] with simple non-Newtonia
models (even inelastic), the excitation of the odd harmo
of the fundamental frequency has been demonstrated
presence of even harmonics and higher-order bifurca
has been attributed to wall slip phenomena[7–9], and use o
dynamic wall slip (memory slip) models led to a chaotic
sponse with a continuous energy spectrum[10,11]. Recently
the effects of inertia on the formation of even harmonics h
been investigated through the UCM model suppleme
with a kinetic rate equation, and the authors reported
inertia does not create even harmonics[12].

In the present study, we investigate whether even har
ics in the shear stress spectrum can possibly occur in L
flows when no-slip boundary conditions are assumed
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consider the combined effects of inertia, elasticity, and shear
thinning in planar LAOS flow between two infinite paral-
lel plates. Both monotone and non-monotone viscoelastic
models (i.e., the Giesekus and Johnson–Segalman models,
respectively) are considered to elucidate the generation of
the harmonics. The problem is formulated inSection 2. Re-
sults assuming a known, homogeneous velocity gradient are
given inSection 3. There we underline that an inelastic, non-
Newtonian model with an arbitrary viscosity function can
only generate odd harmonics in the shear stress spectrum. We
also present a regular perturbation analysis for the Giesekus
model in the inertialess regime, where the perturbation pa-
rameter is the mobility factor. It is found that shear thinning
and elasticity give rise to odd and even harmonics in the
shear stress spectrum, but the even harmonics appear only
in transient exponentially-decaying terms. Consideration of
non-homogeneous flow (assumed to be either one- or two-
dimensional) requires the use of numerical techniques. In
Section 4, we briefly describe the spectral methods used in
this work. Results are presented inSection 5. For the mono-
tone Giesekus model, we find that combination of elastic-
ity and shear thinning yields transient even harmonics in
shear stress whose life span and intensity are considerably in-
creased by inertia. Furthermore, under inertia and at high elas-
ticity, the one-dimensional flow is found to be unstable to fi-
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h as the length scale. Adopting 1/f as characteristic time
scale would yield a dimensionless excitation with fixed an-
gular frequency 2π and variable amplitudeV0/hf ; the Deb-
orah number would then appear in the problem formulation.
In the present work, we select instead the ratioh/V0 as the
time scale. This choice yields a dimensionless excitation with
fixed unit amplitude and variable angular frequencyωh/V0;
the Weissenberg number is then used.

The conservation equations for isothermal, incompress-
ible viscoelastic flow can be written in dimensionless form
as,

Re
Dv
Dt

= −∇p + β∇2v + (1 − β)∇ · T, (1)

∇ · v = 0. (2)

Here,v is the velocity vector,T the viscoelastic extra-
stress tensor,p the pressure, andD/Dt denotes the material
derivative. The dimensionless parameterβ is the ratio of the
‘solvent’ viscosityµs to the total zero-shear rate viscosity
µ = µs + µp, with µp being the zero-shear rate polymer
viscosity. The characteristic scales for the viscoelastic stress
and pressure areµpV0/h and µV0/h, respectively. The
Reynolds number is defined asRe = ρV0h/µ whereρ is the
fluid density.

In dimensionless form, the Giesekus constitutive equation
r
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ite two-dimensional perturbations. This non-linear insta
ty drives two-dimensional, periodic secondary flows wh
roduce even harmonics in the shear stress spectrum
aturate into small but finite values. For the non-mono
ohnson–Segalman model, even harmonics of rela
arger amplitude are found to settle in dynamic equilibr
nd the fluid’s response is quasi-periodic with the appea
f incommensurate frequencies. We conclude inSection 6.

. Problem formulation and governing equations

We consider the planar flow of a polymer melt betw
wo infinite parallel plates located aty = ±h, whereh is
he channel half-width and thex and y coordinates are i
he streamwise and cross-stream directions, respectivel
ower plate is fixed, while the upper plate oscillates in thx
irection. The fluid is initially at rest and we specify n
lip boundary conditions at the walls. Thex-component o
elocity is thus set to 0 at the fixed wall, and is equa
0 cos(ωt) at the oscillating wall. Here,ω is the angular fre
uency of excitation (ω = 2πf , f being the frequency), an
0 is the amplitude of excitation. They-component of veloc

ty vanishes at both walls. These boundary conditions am
o applying a nominal shear strainγ(t) = γ0 sin(ωt), where
0 = V0/2hω, and a nominal shear rateγ̇(t) = γ0ω cos(ωt).

As noted previously[3], the frequency (proportional to t
eborah number) and rate of deformation amplitude (
ortional to the Weissenberg number) can be varied inde
ently in oscillatory shear flows. In order to obtain a dim
ionless formulation of the problem, we select the half-w
t

eads

I + α We T] · T + We
�
T= 2D, (3)

hile the Johnson–Segalman model is given by

+ We

[(
1 − ξ

2

) �
T +

(
ξ

2

) 	
T

]
= 2D. (4)

Here,D is the rate of deformation tensor, and the W
enberg number is defined asWe = λV0/h, whereλ is the
ero-shear rate relaxation time. The operators�and	denote
espectively the upper and lower convected derivatives,

�= DT
Dt

− L · T − T · LT , (5)

	= DT
Dt

+ LT · T + T · L , (6)

hereL is the velocity gradient.
The viscometric response of the Giesekus and John

egalman models is detailed in[13]. The dimensionless m
ility factor α controls the shear thinning behaviour of
iesekus model (as well as its elongational response)

ealistic properties,α must take values between 0 and 0.5.
he constant shear viscosity UCM model is obtained
= β = 0. For α 
= 0 andβ = 0, the power-law slope o

he steady shear viscosity is−1 at large shear rates. A sm
mount of solvent viscosity (e.g.,β = 0.001) guarantees th

he magnitude of the total shear stress is a monoton
ncreasing function of the deformation rate in steady-s
hear flow. On the other hand, the Johnson–Segalman
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yields a non-monotonic shear stress versus shear rate curve
for non-zero values of the slip parameterξ and a viscosity
ratio smaller than 1/9.

ForRe 
= 0, the streamwise velocity component is an un-
known non-linear function of the cross-stream coordinate. If
the cross-stream velocity is assumed to vanish, the flow prob-
lem stated above is then spatially one-dimensional. We shall
also consider the two-dimensional case, wherein spatially pe-
riodic solutions in the streamwise directionx are sought in a
computational domain spreading over a dimensionless peri-
odicity lengthLx. In both one- and two-dimensional cases,
suitable numerical methods are needed to solve the problem.
These are described inSection 4.

Before discussing the numerical results, we find it useful to
consider the much simpler inertialess case (Re = 0), wherein
the velocity gradient is uniform. This we do in the following
section.

3. Inertialess case

3.1. Inelastic fluid

We wish to underline first that an inelastic, non-Newtonian
model with an arbitrary viscosity function can only generate
odd harmonics in the shear stress spectrum.
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dimensionless streamwise velocity is given by

u(y, t) = (1 + y) cos(ωt)

2
. (9)

Treating the mobility factorα of the Giesekus model as a
small perturbation parameter, we expand each extra-stress
component as follows:

Tij = T 0
ij + αT 1

ij + α2T 2
ij + · · · , (10)

and introduceEqs. (9) and (10)in the constitutiveEq. (3). We
thus obtain a linear system of first order non-homogeneous
ordinary differential equations for successive perturbation or-
dersn of the form,

We
dT n

xx

dt
+ T n

xx − We cos(ωt)T n
xy

= −We[(T n−1
xx )2 + (T n−1

xy )2], (11)

We
dT n

xy

dt
+ T n

xy − 1
2We cos(ωt)T n

yy

2

= −We[T n−1
xy (T n−1

xx + T n−1
yy )] + cos(ωt)

2
, (12)

W
dT n

yy
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T

T

T
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Indeed, the shear stressTxy for a general inelastic fluid
iven by,

xy = η(|γ̇|)γ̇, (7)

hereηdenotes the viscosity function with the absolute va
f the shear rate|γ̇| as argument. In oscillatory shear atRe =
, the dimensionless shear rate is uniform,

˙ = cos(ωt)

2
. (8)

hus, as noted previously (e.g.,[4,5]), the Fourier series of|γ̇|
nly involves even harmonics of the frequency 2ω. The sam
onclusion then also applies to the viscosity functionη(|γ̇|).
y trigonometric addition laws, the product of the visco

unction (having Fourier components of the form cos(2nωt))
ith the shear rate (proportional to cos(ωt)) can only generat
dd harmonics of the fundamental frequency, i.e., terms o

orm cos(2n±1)ωt. Hence, in the inertialess inelastic ca
or any form of the viscosity function having as argument
bsolute value of the shear rate, the Fourier spectrum o
hear stress only contains odd harmonics of the fundam
requency. This shows the necessity of introducing elas
nd inertia to possibly obtain a richer spectrum.

.2. Elastic fluid

In order to analyze the combined effects of shear t
ing and elasticity, we perform a regular perturbation an
is where the stress non-linearities in the Giesekus mod
re treated as perturbation terms. In the inertialess cas
e
dt

+ T n
yy = −We[(T n−1

xy )2 + (T n−1
yy )2]. (13)

The initial conditions on the stresses at each perturb
rder are zero. At zeroth order, the solution has the follow

orm,

0
xx = a0

11 cos(2ωt) + b0
11 sin(2ωt) + c0

11

× exp
(
− t

We

)
sin(ωt) + d0

11 exp
(
− t

We

)
+ e0

11,

0
xy = a0

12 cos(ωt) + b0
12 sin(ωt) + c0

12 exp
(
− t

We

)
,

0
yy = 0. (14)

t ordern, we have

T n
xx(t) =

2n∑
k=0

[an11k cos(2kωt) + bn11k sin (2kωt)]

+
2n+1∑
m=0

exp
(
− mt

We

) 2n+1−1∑
k=0

× [cn11km cos(kωt) + dn11km sin(kωt)],

T n
xy(t) =

2n−1∑
k=0

[an12k cos(2k + 1)ωt + bn12k sin (2k + 1)ωt]

+
2n+1−1∑
m=0

exp
(
− mt

We

) 2n+1−2∑
k=0

× [cn12km cos(kωt) + dn12km sin(kωt)],
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T n
yy(t) =

2n−1∑
k=0

[an22k cos(2kωt) + bn22k sin (2kωt)]

+
2n+1−2∑
m=0

exp
(
− mt

We

) 2n+1−3∑
k=0

× [cn22km cos(kωt) + dn22km sin(kωt)], (15)

where the coefficients in front of the expressions (14) and (15)
are rational functions ofWe andω. One observes from Eqs.
(14) and(15) that the solutions are composed of decaying
exponential terms, sine/cosine terms decaying exponentially
in time, and sine/cosine terms which eventually define the dy-
namic equilibrium. In the shear stress expressions, even har-
monics of the fundamental excitation frequency appear only
in exponentially decaying sine/cosine terms, and the long-
time solution is composed only of the fundamental frequency
and its odd harmonics. In the normal stress expressions, dy-
namic equilibrium terms are constituted of even harmonics of
the fundamental frequency, while odd harmonics appear only
in exponentially decaying sine/cosine terms. We also note the
absence of the fundamental excitation frequency in the dy-
namic equilibrium for the normal stresses. Since higher-order
perturbation terms are represented in the final solution by in-
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u(y, t) =
M∑

m=0

am(t)Tm(y), (16)

Tij(y, t) =
M∑

m=0

(bij)m(t)Tm(y), (17)

where the functionTm(y) is the Chebyshev polynomial of
orderm, andam and (bij)m are time dependent spectral coef-
ficients. The above expressions are then inserted in the gov-
erning equations, which are integrated in space according to
the Galerkin method of weighted residuals. A system of or-
dinary differential equations in time (a dynamical system) is
thus obtained. In order to satisfy the no-slip boundary con-
ditions at each time step, we drop the (M − 1) andM’th
Galerkin equations for the velocity and replace them by the
spectral versions of the boundary conditions:

u(−1, t) =
M−2∑
m=0

am(t)Tm(−1) =
M−2∑
m=0

am(t)(−1)m = 0,

(18)

u(+1, t) =
M−2∑
m=0

am(t)Tm(+1) =
M−2∑
m=0

am(t) = cos(ωt).
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reasing powers of the perturbation parameter, it is clea
he Fourier spectrum will be of decreasing intensity tow
igher harmonics, as it can be expected. We also note th

he exponential functions, the non-dimensional time is sc
ith the Weissenberg number. Thus, ifWe is zero (inelasti
uid), the transient harmonics disappear, while whenWe is

ncreased (higher elasticity), the corresponding terms d
ore slowly. However, when shear thinning effects are ab

i.e., when the perturbation parameterα is zero), all highe
armonics in dynamic equilibrium and transient terms

sh, as it can be seen in the zeroth order solution (Eq. 14).
umerical time integration of the Giesekus model for fi
(i.e., without the perturbation assumption) confirms qu

atively the above results.
We conclude from this analysis that shear thinning

lasticity give rise (in the inertialess regime) to both odd
ven harmonics in the shear stress spectrum, but the
armonics appear only in transient exponentially-deca

erms. Consideration of the effects of inertia requires the
f numerical techniques, which we detail next.

. Spectral methods

In the inertial case (Re 
= 0), the velocity field is a prio
nknown and one must resort to the numerical solution o
overning equations detailed inSection 2.

For the one-dimensional problem (vanishing cross-str
elocity), we use a spectral tau method. The streamwis
ocity u and viscoelastic extra-stress componentsTij are de
omposed into Chebyshev spectral modes as follows:
(19)

Our simulations typically involve 50 Chebyshev mo
or each unknown field. Initial values are all set to zero (
tate).

We also wish to address the stability of the one-dim
ional results obtained with the monotone Giesekus m
n order to compute the evolution of finite-amplitude, tw
imensional perturbations to the one-dimensional base

ions, we adopt the streamfunction formulation used in
revious work[14] and apply periodic boundary conditio

n the streamwise direction. In this case, the perturba
treamfunction and stress components are decompose
ourier and Chebyshev spectral modes, respectively i
treamwise and cross-stream directions, as follows:

(x, y, t) =
M∑

m=2

N∑
k=−N

akm(t) exp

(
i2πkx

Lx

)
Φm(y), (20)

ij(x, y, t) =
M−2∑
m=0

N∑
k=−N

(bij)km(t) exp

(
i2πkx

Lx

)
Tm(y),

(21)

hereakm and (bij)km are time-dependent complex coe
ients which satisfy the reality condition andΦm(y) is a lin-
ar combination of the Chebyshev polynomials chose
atisfy the wall boundary conditions on the perturbation
14].Lx is the dimensionless periodicity length in the stre
ise direction. As in[14], a fully-spectral approach is use
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Our simulations typically involve 50 Chebyshev modes and
8 Fourier modes for each unknown field.

For both the one- and two-dimensional simulations, time
integration is performed using a semi-implicit scheme of sec-
ond order. Linear terms are integrated by the implicit Crank-
Nicolson method, while all non-linear terms are integrated
by the explicit Adams-Bashforth scheme.

Finally, we point out that it was not found necessary to add
any artificial stress diffusion to the constitutive equations to
obtain numerically stable results.

5. Inertial case: numerical simulations

We now include inertial effects for both monotone and
non-monotone models. All results reported in this section
are for a dimensionless frequency equal to 0.01. This value
corresponds to a maximum imposed strainγ0 = 8 that is typ-
ical of experimental conditions. Unless stated otherwise, we
focus on the one-dimensional simulation results. The initial
conditions for the one-dimensional case are the start-up con-
ditions, i.e., all flow variables are set to zero initially. All
numerical data are given in dimensionless form according to
Section 2.
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Fig. 2. Centerline shear stress vs. shear rate loop for the Giesekus model
(Re = 1,We = 1, β = 0.001, α = 0.01, f = 0.01).

first and second odd harmonics (Fig. 3). The corresponding
shear stress–shear rate loop is then a deformed ellipse (Fig. 4).

In view of [6], if shear thinning effects were totally absent
(α = 0), the response would be one-periodic as well.

We now significantly increase shear thinning effects (α =
0.5), all other parameters being unchanged. The net result
is an increase of the multi-periodic character of the shear
stress response, with the the appearance of additional odd
harmonics in the Fourier spectrum (Fig. 5). Their amplitude
is decreasing rapidly with increasing order.

The corresponding Lissajous plot shows secondary loops
associated with the occurrence of higher-order odd harmon-
ics (Fig. 6). For the same case, the normal stressTxx has a
Fourier spectrum containing even harmonics of the funda-
mental frequency, but not the fundamental frequency itself
(Fig. 7). Here, the amplitude of the higher-order harmonics
is scaled with respect to the first even harmonic. It should be
noted that we also observe during an early transient phase
the appearance of first even (resp. odd) harmonics of relative
amplitude 10−3–10−4 for the shear (resp. normal) stress.

Finally, we consider a situation with significant shear thin-
ning (α = 0.2) and high elasticity (We = 100). The multi-
periodic evolution of the shear and normal stresses is depicted
in Figs. 8 and 9, while the shear stress–shear rate loop is given
in Fig. 10. It is clear that the transient phase is much longer
.1. Monotone Giesekus model

The results obtained with the Giesekus fluid are forRe =
. We start with the caseα = 0.01 andWe = 1, namely
ery weak shear thinning and weak elasticity. As expe
rom previous work with constant shear viscosity UCM
ldroyd-B fluids[6], the shear stress response is nearly
eriodic with a Fourier spectrum that shows one spike a

undamental excitation frequency (Fig. 1). [Note that the fre
uencies/energies of the Fourier spectra shown in this se
re usually scaled with respect to the frequency/energy o
xcitation.] The corresponding shear stress–shear rate
ajous loop is a thin ellipse as expected for a weakly el
uid (Fig. 2).

If we increase elasticity (We = 10), all other parame
ers being unchanged, we observe the transition to a m
eriodic response in shear stress with the appearance

Fig. 1. (a) Evolution of shear stress at fixed plate for the Gieseku
 el (= 1,We = 1, β = 0.001, α = 0.01, f = 0.01); (b) Fourier spectrum.
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Fig. 3. (a) Evolution of shear stress at fixed plate for the Giesekus model (Re = 1,We = 10, β = 0.001, α = 0.01, f = 0.01); (b) Fourier spectrum.

Fig. 4. Centerline shear stress vs. shear rate loop for the Giesekus model
(Re = 1,We = 10, β = 0.001, α = 0.01, f = 0.01).

than in the previous cases. Indeed, the long-time limit of the
Lissajous plot is not fully reached in the simulation. The final
behavior tends to a deformed ellipse with secondary loops.

In the present case, the even harmonics for the shear stress
remain in the spectrum for much longer times (att = 600,
their relative amplitude is still of order 10−3–10−4). This can
be seen in detail inTable 1. A similar observation holds for
the transient odd harmonics in normal stress.

The transient behaviour of the first even harmonic of shear
stress is illustrated inFig. 11. Also shown there is the cor-
responding result obtained atRe = 0. In the latter case, the

Fig. 5. (a) Evolution of shear stress at fixed plate for the Giesekus model (Re = 1,We = 10, β = 0.001, α = 0.5, f = 0.01); (b) Fourier spectrum.

Fig. 6. Centerline shear stress vs. shear rate loop for the Giesekus model
(Re = 1,We = 10, β = 0.001, α = 0.5, f = 0.01).

decay is very fast, in agreement with the exponential be-
haviour predicted in the perturbation analysis ofSection 3.2.
The results forRe = 1 show that inertial effects significantly
increase both the amplitude and the life span of the first even
harmonic. On the other hand, the saturation of the first odd
harmonics of shear stress into a steady-state value is clearly
shown inFig. 12.

At this point, it is useful to question the stability of these
one-dimensional flow results to two-dimensional perturba-
tions. The initial conditions for the perturbation part have
been formed from the eigenfunctions corresponding to the
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Fig. 7. (a) Evolution of normal stress at fixed plate for the Giesekus model (Re = 1,We = 10, β = 0.001, α = 0.5, f = 0.01); (b) Fourier spectrum.

Fig. 8. (a) Evolution of shear stress at fixed plate for the Giesekus model (Re = 1,We = 100, β = 0.001, α = 0.2, f = 0.01); (b) Fourier spectrum.

least stable eigenvalue of the linear stability problem. These
normalized eigenfunctions are then multiplied by a perturba-
tion factor and added to the one-dimensional solutions. Our
spectral simulations indicate that the above solutions are lin-
early stable in the two-dimensional case, i.e., they are stable
to infinitesimal two-dimensional perturbations of order 10−4

or less.
We then investigated the stability of the above one-

dimensional solutions to two-dimensional, finite perturba-
tions of order 10−3–10−1, for a streamwise periodicity length
Lx = 10. ForRe = 1 andWe ≥ 70, we find that the one-
dimensional solution shows a non-linear instability leading to
secondary flows (Figs. 13 and 14). The evolution of the stress
components presents a similar multi-periodic behaviour as in
the one-dimensional case. The secondary flow considerably

modeRe

affects, however, the Fourier spectrum: the first even har-
monic in shear stress becomes pronounced and saturates into
a finite value, while the first odd harmonic reaches quickly
a constant value (see 2D results inFigs. 11 and 12). Upon
decreasingRe below 1, we find that the secondary flow and
corresponding sustained even harmonics of shear stress are
suppressed. The numerical convergence of these results has
been confirmed with respect to the number of Chebyshev and
Fourier modes used in the simulations.

5.2. Non-monotone Johnson–Segalman model

We now briefly consider one-dimensional results obtained
with the Johnson–Segalman model forRe = 0.1 andWe =
10. The model parameters are set toξ = 0.2 andβ = 0.01.
l (= 1,We = 100, β = 0.001, α = 0.2, f = 0.01); (b) Fourier spectrum.
Fig. 9. (a) Evolution of normal stress at fixed plate for the Giesekus
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Fig. 10. Centerline shear stress vs. shear rate loop for the Giesekus model
(Re = 1,We = 100, β = 0.001, α = 0.2, f = 0.01).

Fig. 11. Evolution of the first even harmonic of shear stress at fixed plate
for the Giesekus model (We = 100, β = 0.001, α = 0.2, f = 0.01):Re = 0
(	), Re = 1(+), Re = 1 (2D results) (�).

Fig. 12. Evolution of the first odd harmonic of shear stress at fixed plate
for the Giesekus model (We = 100, β = 0.001, α = 0.2, f = 0.01):Re = 0
(	), Re = 1(+), Re = 1 (2D results) (�).

Fig. 13. Secondary flow: streamlines for the Giesekus model att = 700
(Re = 1,We = 100,β = 0.001,α = 0.2, f = 0.01).

Fig. 14. Secondary flow: contour lines of shear stress for the Giesekus model
at t = 700 (Re = 1,We = 100,β = 0.001,α = 0.2, f = 0.01).

Fig. 15. Streamwise velocity distribution for the Johnson–Segalman model
at t = 360 (Re = 0.1,We = 10,β = 0.01,ξ = 0.2,f = 0.01).
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Table 1
Evolution of the relative amplitude of the harmonics of shear stress at fixed plate for the Giesekus model (Re = 1,We = 100,β = 0.001,α = 0.2, f = 0.01)

Harmonic t = 500–600 t = 600–700 t = 700–800 t = 800–900

First even 9.7 × 10−3 4.0 × 10−3 9.0 × 10−4 4.5 × 10−4

First odd 2.2 × 10−1 2.3 × 10−1 2.4 × 10−1 2.4 × 10−1

Second even 5.8 × 10−3 2.8 × 10−3 8.1 × 10−4 3.8 × 10−4

Second odd 7.3 × 10−2 7.6 × 10−2 7.9 × 10−2 7.9 × 10−2

Third even 2.7 × 10−3 1.9 × 10−3 4.6 × 10−4 1.5 × 10−4

Third odd 2.6 × 10−2 2.4 × 10−2 2.4 × 10−2 2.4 × 10−2

Forth even 2.0 × 10−3 2.8 × 10−4 5.6 × 10−5 4.4 × 10−5

Table 2
Evolution of the relative amplitude of the harmonics of shear stress at fixed plate for the Johnson–Segalman model (Re = 0.1, We = 10,β = 0.01, ξ = 0.2,
f = 0.01)

Harmonic t = 500–600 t = 600–700 t = 700–800 t = 800–900

First even 3.4 × 10−2 5.2 × 10−2 2.4 × 10−2 5.3 × 10−2

First odd 2.7 × 10−1 3.1 × 10−1 3.5 × 10−1 2.9 × 10−1

Second even 2.2 × 10−2 2.6 × 10−2 5.5 × 10−3 4.8 × 10−2

Second odd 2.0 × 10−1 2.0 × 10−1 2.1 × 10−1 1.1 × 10−1

Third even 2.4 × 10−2 2.7 × 10−2 2.8 × 10−2 2.9 × 10−2

Third odd 1.4 × 10−1 9.7 × 10−2 1.1 × 10−1 1.3 × 10−1

Forth even 2.2 × 10−2 4.8 × 10−2 4.0 × 10−2 2.6 × 10−2

Fig. 16. (a) Evolution of shear stress at fixed plate for the Johnson–Segalman model (Re = 0.1,We = 10, β = 0.01, ξ = 0.2, f = 0.01); (b) Fourier spectrum.

In view of the non-monotone behaviour of the model, even
the one-dimensional problem is numerically challenging. In-
deed, the streamwise velocity component is far from having
a linear profile, as can be seen in the instantaneous snapshot
of Fig. 15.

The evolution of the shear stress at the fixed plate is shown
in Fig. 16, together with the Fourier spectrum. Note that the
amplitudes have not been scaled with the energy of the exci-
tation frequency (the latter is the large peak located at 0.01
on the frequency axis).

The shear stress response is quasi-periodic: the Fourier
spectrum contains incommensurate frequencies, in addition
to odd and even multiples of the excitation frequency. Fur-
thermore, the energy of the first even harmonic is one order
of magnitude higher than in the one-dimensional results for
the monotone Giesekus model, and it does not decay in time
(Table 2).

Finally, the corresponding Lissajous plot is shown in
Fig. 17. It clearly shows the intricacy of quasi-periodic

Fig. 17. Centerline shear stress vs. shear rate loop for the Johnson–Segalman
model (Re = 0.1,We = 10,β = 0.01,ξ = 0.2,f = 0.01).



116 K. Atalık, R. Keunings / J. Non-Newtonian Fluid Mech. 122 (2004) 107–116

behaviour. Although the Lissajous plot for this case seems to
be chaotic, it may be noted that it also includes part of the
transitory phase of the time evolution. The quasi-periodicity
of the final response can be deduced from the corresponding
energy spectrum (Fig. 16) which is not continuous and decays
towards high frequencies.

6. Conclusions

By performing a non-linear study of large amplitude os-
cillatory shear flows between two infinite plates with no-slip
boundary conditions, we have shown that wall slip is not a
necessary condition for the occurrence of even harmonics in
the LAOS shear stress response of viscoelastic fluids. Results
for the monotone Giesekus model indicate that combination
of elasticity and shear thinning yields transient even harmon-
ics in shear stress whose life span and intensity are consider-
ably increased by inertia. Furthermore, the one-dimensional
flow is found to be unstable to finite two-dimensional pertur-
bations under inertia and at high elasticity, resulting in sec-
ondary flows and saturation of even harmonics into small but
finite values. One-dimensional results for the non-monotone
Johnson–Segalman model predict even harmonics of rela-
tively larger amplitude that settle in dynamic equilibrium.
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