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ABSTRACT: We present a general coarse-grained model for predicting the linear viscoelasic properties of branched
polymers from the knowledge of their molecular structure and three viscoelastic parameters, i.e., the Rouse time
of an entanglement segment, the plateau modulus, and the entanglement molecular weight. The model uses the
ingredients of the tube-based theories of McLeish and co-workers, and its implementation is based on a time-
marching algorithm; this conceptual approach was already successfully applied to linear and star polymers, and
it is appropriately modified here to account for more complex branched architectures, within the framework of
dynamic tube dilation (using the criteria of Graessley). Whereas the molecular physics behind this model is the
well-established hierarchical tube-based motion, the new element is a different macromolecular coordinate system
and account of the branch points diffusion. With proper account of polydispersity, successful description of a
wide range of rheological data of H and pompom polymers is obtained, with the use of the dilution exponent

= 1 and the parametg? = 1. The proposed methodology thus represents a generic approach for predicting the
linear rheology of branched polymers.

I. Introduction star polymers, as well as asymmetric star polymieérs.is

Branched polymer rheology represents a very active field of based_ on the tube mod(_el predictions .of the fluctuations and
research with important challenges, both from the scientific and r€ptation processes, Wh!Ch proceeq Slmultangously, but with
technological viewpoints. Recent progress in this field was different probabilities, without any imposed time scale sep-
triggered by the advances in the tube-model thebrieand the aration; the sc_)lvent effect due to relaxed segments is treated
availability of well-defined model polymefs22Itis now known @S @ constraint release effect based on the approach of
that branched polymers relax hierarchicafly’8 In other words, ~ CGraessley® % The model provides excellent predictions of the
entanglements belonging to topologically different parts of the linear rheology for a wide range of linear polymer mixtures
macromolecule (branches or backbone or different layers) relaxand asymmetric staf$ More importantly, in the latter case there
in a certain sequence, obeying seniority rules according to which 'S N0 need to invoke thg? parameter (as there isno artificially
the outermost parts of the molecule (those with free dangling Imposed time scale separation), thus avoiding the related
ends) relax first and the innermost ones last; the stress is fully COntroversy:#263132

relaxed only after the slowest segments have lost the memory On the basis of this recent success, and keeping in mind the
of their initial orientation. For example, for the case of an 0Ngoing concerns about the value of teparameter for dif-

H-polymers419 the simplest hierarchical branched structure ferent branched polyme_?§726v31~_32as well as on the availability
with a linear connector chain linking two grafted linear chains, Of accurate data sets with a variety of model branched polymers,
the relaxation sequence is as follows: the end-grafted chainsWe decided to expand this time-marching methodology to
relax first (via starlike relaxation, as described by the Milner ~ @rchitecturally complex macromolecules. This is the scope of
McLeish model®2) while the backbone remains frozen, and t_he present contribution, which focu_ses on the prediction of the
eventually the backbone relaxes by reptation. The analysis is!inear rheology of pompom and (their special case) H-polymers,
carried out in the context of dynamic tube dilation (DT49)23 and compares with existing relevant experimental data.
according to which the relaxed branches act as solvent for the The paper is organized as follows: After this introduction,

yet-unrelaxed backbone. However, the relaxed branches repreWe present in section Il the main ingredients of the theoretical
sent an extra friction for the branch point; the effect on the modeling, including the macromolecular coordinates, relaxation

overall relaxation process is accounted for by the branch point Modes, dilution and polydispersity effects. Then, in section Il
diffusion, which has to precede the backbone reptation. The We present and discuss the predictions of the model, and in
incorporation of the branch point diffusivity includes an particular we compare them against put_Jllshed expen_mental data
unknown parametep?.24-26 fc_>r model H and pompom polymers. Finally, the main cc_mclu-_

Recently, a time-marching algorithm was developed to pre- SIONS and consequences from this work are summarized in
dict the linear viscoelastic properties of mixtures of linear and Section IV.
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Likewise, defining the effective backbone equilibrium length Mbranch
(after the relaxation of the branches), about which the real length 0 NibEos et
of the backbone fluctuates, is also of great significance for the By '5b nner

proper analysis of branched polymer relaxation. As already 1 - A ~

mentioned, DTD suggests that the polymer fraction already y4 o

relaxed will act as a solvent for the relaxation of the remaining =0 /Xb= Xorpoint Xp= 1 \
oriented part of the polymer. Therefore, the equilibrium state Xbranch

of the polymer evolves in time as a function of the unrelaxed
part of the polymer(t):20.21.23

Figure 1. Macromolecular coordinates and definitions for a pompom

M_(0) molecule.
€

Me(H) = D(1)” (1) two branching points) will be shorter than the respective time
of another segment equally close to the branching point but on
Legt) = LefO)(@ ()™ (2 the branch side (see Figure 1 below). Therefore, in the following,

we will use another way to define a backbone segment.

a(t) = _a0) (3) [1.2. Time Marching Algorithm and Relaxation Moduli.
(D(1)*? The polymers analyzed in this work have H or pompom

architecture. As illustrated in Figure 1, they consist of a
whereq is the dilution exponentyl((t), the effective molecular  packbone and; branches at each of their ends. The inner part
weight between two entanglement{), the effective tube  of the backbone has a molecular weightf and each branch
diameter andLeqt), the effective equilibrium length of a  has a molecular weight oMuancn We consider here only
subchain at time if its length is equal td_(0) at timet = 0. molecules with branches of the same length. Note thaq fer
According to these equations, after the branches of a pompom we have an H-polymer.
molecule have relaxed, their effective equilibrium length is  Each molecular segment is defined by the normalized variable
reduced in exactly the same way as the effective equilibrium x For a branch segment, the variaBigncngoes from 0 at the
length of the backbone or of the inner part of the backbone. free end of the branch to 1 at the branching point. The choice
This is a consequence of the fact that both branches andof the starting point of the backbone is very important and can

backbone are assumed to “see” the same environment: have a strong impact on the predictions (via the potential). Here,
M to be consistent with the definition of the equilibrium length of
L =1L 0)(D(1)¥2 = [—22N 3 N (1))¥2 the backbone, we chose the branch free-end as the starting point
eqorancht) = Leq eranchO) (P (1) (Me(O) %|(®(0) for the definition ofx, = 0 (see Figure 1), and the middle of

(4) the molecule as the ending point, = 1. Therefore, the

L =L, ,(Q)(CI)(t))“/Z _ (effective) backbone is defined as the longest way from an end
eq,inner backbo eq.inner backbo to another end of the molecule, on whichg2¢ 1) branches
Minner backbork? ao)(q)(t))(xIZ ) are fixed (at distanceSyanch from the free ends), and their

M,(0) respective volumetric fractiongy and @pranch are
Leq,total backborg) = Leq,inner backborg) + Lbrancr(t) (6) Mb + 2Mbranch
. P> =M, + 2qM (7)
whereLeg,prancraNdLeg inner backbon@r€ the equilibrium length of b branch
one branch and of the half-inner part of the backbone @iyl 2 — DMpranch
is the unrelaxed fraction of the polymer at tirhe Poranch™ M+ oM (8)
Mb + 2c“vlbranch

According to these eqs, the equilibrium length of the branches

just after their relaxation is nonzer®(tprancy) ~ Pinner backbonk . . . .
Therefore, the equilibrium location of the real end of the 1he refaxation functior6(t) of the polymer is determined by

backbone chain after the relaxation of the branches is not atUsind the time-marching algorithm, which sums up all contribu-
the actual branching point. It is defined by the equilibrium length tions over all branches and positions along the bran¢tieisis

of half-backbone Leqotal backnoneWhich is the most probable @s explained in sgmg detail in Appendix I. In a similar way, to
length of the half-molecule, not necessarily the shorter length include the contribution of the (relaxed) polymer solvent to the

that the half-molecule has taken (first passage problem). Anotherf€Ptation and fluctuations processes (see the next sections
way to consider the situation is to say that, after the relax- P€low), we determine the unrelaxed fraction of the polymer

ation of the branches, the chain ends will not fluctuate around (&) at each time stefx as
the branching points but around the relaxed branch ends

. 1
instead. D(t) = @y f; (PrepXon i Priuc (X)) A, +
In the conventional molecular coordinate system used in the 1
literaturet®1° a backbone segment is defined by the normalized wbranclj/(‘) (Prucorancntid) Poranch (9)

variable X, inner ranging from 0 at the branching point to 1 at

the middle of the molecule. This means that, after the relaxation where p(x;,ty) is the survival probability of a segment (by

of the branches, the most stable configuration of a pompom reptation or by fluctuations) at timig.

molecule is obtained when the chain ends reach their branching [1.3. Tube Length Fluctuations and Branching Point
point, about which they fluctuate. However, this definition Diffusion. Branch Fluctuations. The branch fluctuations for
contradicts that of the equilibrium length. A related problem is a pompom molecule follow exactly the same rules as the
the fluctuations process of the backbone, where we need tofluctuations of the arms of a star polymer, which has been
consider that the fluctuations time of a molecular segment close already addressed The particular details for the pompom case
to the branching point but inside the backbone (between the are presented in Appendix IlI.
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Backbone Fluctuations: The Two Fluctuations Modes. From eqgs 12 and 13, we obtain
Segments along the (entire) backbone of a pompom molecule
can relax according two different modes: one is with respect 3m(q — 1) (My2 + Mpanen® 4
to the branching point, which involves the normal segmental Team(xb) = ) M Toranc 1% +
friction, and one with respect to the middle of the molecule, € .
which takes into account the extra friction due to the relaxing 97 (My2 + Mpaned” 4 (14
branches, and thus hinders the branching point motion. 16 M 2 Krousdo ™ (14)

e

The former mode describes fluctuations of the equilibrium

length of the outer part of the backbone with respect to the ) ) )
branching point. It considers only segmexg$ocalized beyond On the other hand, the activated (late) fluctuations times of the

the branching point (in the branch region), i.e., those between backbone are determined in the same way as for the branches

0 andxor point (S€€ Figure 1). These fluctuations are described (see Appendix I)
exactly as those of a star arm and are calculated by using egs

1I-3 to 11-9 (see Appendix II), after rescaling of the variable 9N TjadXy) (M2 + Mol
iNto Xpranch going from 0 at the branch end to 1 at the branching %, B M(t) B
point: M./2 + M
3 wijcb(tk,xb)“ (15)
M
_ %(Mpranch T My/2) €0

(10)
Mbranch where the unrelaxed part of the polym®(tx,x,), which does
not act as a solvent for the relaxation of segmeyis®2!

ranch™

The latter mode describes fluctuations of the equilibrium length

of the half molecule, i.e., from the end of the extended backbone P (toXp) = @b(1 — X,) +

to the middle of the molecule ranging from 0 to 1). Indeed, My/2 + Myanch

as already explained before section II.1, even if the branches PoranciNaxq 0,1 — v % (16)

are relaxed, their equilibrium length is nonzero; it is therefore branch

important to consider the tube length fluctuations of the entire

backbone. This fluctuations mode requires the motion of the Because the reptation of the backbone takes place only at the
branching point, where the branches are covalently bonded, andend of the pompom polymer overall relaxation, we can neglect

which is able to move only at the time scale of the fluctuations its effect on the fluctuations times anbi(ty,x,) reflects only
time of the branchesyanc{1). This effect must be included in  the fluctuations process. The transition between the two fluctua-

the total friction coefficientfy, felt by the backboné*-26 tion processes occurs at a transition segment for which the
potential is equal t&T, and is described by egs 11-8 and 1I-9 in
2Tpranc1) M2+ M Appendix 1.
Giot = (@ — 1KT branzc + Co( e (11) Backbone Fluctuations: From the First to the Second
a M Mode. While, in principle, segments localized beyond the

branching point can move according to the two fluctuations

wherea is the length of a segment between two entanglements, modes, the second one (with respect to the chain middle point)
&ois the monomeric friction coefficient amty is the monomeric S S0 slow in comparison to the first one (with respect to the
molecular weight. The first term is the friction contribution branch point) that we can neglect it: backbone segments
arising from the branches and the second term the friction arisinglocalized beyond the branching point (outer part of backbone,
from the backbone itself. The latter contribution is usually branches region) will relax via the tube length fluctuations of
negligible, unless the branches of the pompom molecules arethe outer part of the molecule (branches), with respect to the
very short branches in comparison to the backbone. branching point. On the other hand, segments localized on the
Because of this additional friction coming from the branches, inner part of the backbone will relax according to the second

the early fluctuation times of the backbone segments are fluctuations process with respect to the middle point. However,
slowed!7:26 This is taken into account by adding an “delay” the transition between the two modes leads to a discontinuity

time, Tqelay to the Rouse time of the chain in eq I1-7: of the segments fluctuations times at the branching point, the
second mode assuming a valuergfckbonéXor. poin) > Toranc(1)
93 (My/2 + Myraneil? A (see Figure 3 below). To account for the fact that a chain end
Toary(Xp) = 16\ M (TR chain T Taelayo (12) will diffuse faster to its branching point than expected from
e the second fluctuations mode only, we defined an “equivalent
pompom molecule” with shorter branch length, such as the
This delay time is easily determined from the fact that the second fluctuations mode predicts that the chain ends reach the

branches take a time proportional < 1)tanc1) to retract ~ branching point after a time equal t@anc{1). This is schemati-
and that each retraction allows the chain end to cover a distancecally illustrated in Figure 2: the length of the equivalent
equal toa, the distance between two entanglements. Since to branches Mis fixed so that the chain ends of the “equivalent
be completely relaxed by the Rouse process, the chain end hapompom molecule” take a time equaldganc{1) to diffuse up

to cover a distance equal ta, (=a2), we have to the branching point, while feeling the total frictiafi:.
Therefore, to calculate the fluctuations times of the segments

2 _ localized on the inner part of the backbone, i.e., the segments

Taelay = 5 2 @ = Drpranc1)Z = from Xp = Xor point 10 X% = 1, the backbone segments are described
5 My/2 + M by a new variablexb,fescmed ranging from O at the end of the

= (q- 1)Tbranc}(1)(+branc’) (13) branches of the equivalent molecule to 1 at the middle of the

2 M, backbone. Therefore, in eqs 14 and 15, the molecular weight
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Figure 2. Definition of an “equivalent pompom molecule” used to calculate the fluctuations times of the segments localized in the inner part of

the backbone.
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Figure 3. Fluctuation times of the segments along the extended
backbone, by considering, = 0 at the branching point (- - -), or by
considerings, = 0 at the end of a branch, with—) or without (--)
rescalingx, to calculate the fluctuations times of the inner part of the
backbone.

of a branchMyranch must be replaced byl; and the reference
variablex,, by the variablex rescalei

_ Xb(Mbranch+ Mblz) — Myanent M
Xp rescaled— (Mi 4 Mb/Z)

17)

We now obtain a continuous curve to describe the fluctuations

ations speed up the total relaxation process of the polymer is
rather taken into account in separated term (see eq 1.2) than in
the expression of the reptation time (eq 19). This way of
including contour length fluctuations and reptation in two
separated terms is based on the fact that on the average, the
center of mass of a molecule does not change its position, and
that the primitive path of each molecule has an average length
equal to its equilibrium length.eg molecue SOMe segments can

be relaxed by both reptation and fluctuations. However, these
two relaxation mechanisms are not necessarily additive: if
fluctuations occur toward deeper segments (that means that the
real length of the molecule is smaller th&gy molecu} during

the reptation of the molecule can accelerate the reptation process
(see Figure 4, left); on the other hand, fluctuations toward the
other direction (that means that the real length of the molecule
becomes larger thaltegmolecuy, Which happens with the same
probability, will have the opposite effect (see Figure 4, right).
Since fluctuations far from the equilibrium length (for example,
fluctuations of the segmeng (such asruc(Xd) = Trepy) CanNNot

be considered fast compared to the reptation time, we cannot
assume that the chain will fluctuate again toward a real length
of Leq.molecule(1 — Xg) during the reptation process. Therefore,

it seems more reasonable to consider that the molecule reptates
along its equilibrium length and not along the shorter length

times of the segments along the entire backbone, as shown inp4t it has taken at time = Trept (Which is a first passage

Figure 3.
11.4. Reptation of the Backbone. The probability that a

segment of the backbone relaxes by reptation during a time

interval At has been described by Doi and Edwatdsis a
function of the reptation timeep; of the molecule:

i, —n’At

4
p(x;,t) = —sin{—| ex
n%d pr 2 Trept

(18)

problem).

When there is a large time scale separation between the two
different relaxation processes, the backbone feels the relaxed
branch fraction acting as a solvent during its reptatfon:

Trept(t) = Trept,o,bq)active(t) + Trept,o,branc(zq)activc(t))z (20)

The value of ®,eivdt) stems from the extended criteria of
Graessley/28 according to which a relaxed polymer fraction

For a pompom molecule, the reptation time of the backbone is () will act as a solvent for the remaining part of the

determined by taking into account the friction of the backbone

(unrelaxed) polymer only if their relaxation processes are well

itself as We” as that due to the relaxed brancheS, in a Way Separated in t|me Indeed, the tube can be dllated by the SlOW

comparable to that used for asymmetric star moleélles

Trept,OZ
Leq,02/ 1 n
.7'[2 \Dbackbone Dbranch
29— 1)Tbrancr(1) (Mb + 2Mbranc

.7'[2 I\/Ie,O

20— 1 M, + 2M 3
(q )) — 31_9( b Y brancr) +
e,0

2
’) = Trept,O,b+ Trept,o,a (19)

wheret. is the Rouse time of an entanglement segment. As
explained in ref 27, we consider that a chain is relaxed by
reptation when its center of mass has diffused a distaage

along the tube, while most papers consider that the diffusion of

the center of mass occur on a distahggl — xg), wherexq is

removal of entanglements, but reptation within the dilated tube
requires correlated release of entanglement constraints and can
only occur if constraint release is fast with respect to the
reptation time of the test chain. This condition is verified if the
reptation time of the backbone is larger than its constraint
release-Rouse time associated with its partially relaxed state
corresponding to an unrelaxed proporti@i(t); the ratio of the

two times is called the Graessley nunidéit32 and is given

by

Trept(t) _ Trept(t) >

Gr= =
TCRRouse,backbor(g)(t)) tq)sz

(21)

where Z, is the number of backbone segments agpds the

the fractional distance of the deepest segment relaxed bynecessary time for a segment to reach a probability of being

fluctuations at that time. The fact that contour length fluctu-

relaxed by constraint release equal to{1b(t)) (thus,tp = t).
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Reptation: motion of the center of mass

Loy o Lo o
l+ Fluctuations: towards shorter length Towards longer length l

Same probability

H_’ — .
< —
v
Lreal< Leq l er> LN
New relaxed segments (additive effect) Less relaxed segments than expected by reptation

Figure 4. Interaction between reptation and the contour length fluctuations; left: additive effect, right: nonadditive effect.

Alternatively, at timet, the polymer fraction® acive(t), which as a solvent for these relaxation mechanisms: the “fast”
acts as a solvent in the reptation process of the backbone, issegments act effectively as a solvent for the “slow” segments
equal to the relaxed polymer fractiob(t/Zna?) (see eq 9). only if the latter have had enough time to explore all the

Because this later value evolves through time, the reptation timeconformations in their dilated tube. This means that occu-
of the backbone is not constant, and this is taken into accountpying this dilated tube without being able to move freely inside

by the time-marching algorithr. is not a sufficient condition to consider the (accelerated)
Consequently®acivt) in eq 20 is equal to the unrelaxed relaxation of the “slow” segments within the dilated tube. This
polymer fraction at time/((My + 2Mpranch/Me)2. As will be idea, introduced by Graessfyfor mixture of two linear

shown in section Ill below, this criterion influences the chains and confirmed by McLei$8 Watanabé32 and Park
predictions of the relaxation moduli a great deal. As already and Larso??® also works well for branched polymetsThere-
discussed in the context of linear polymer mixtutéghe fore, in this work, we considebciveinstead of® to determine
reptation time considered here is not proportional te- (%(t)), the reptation time (see eq 20), in order to conform with this
where x.(t) is the deeper inner backbone segment which is criterion. Since the initial fluctuations times of the segments
relaxed by fluctuations at timg but instead it is considered  are exponentially separated, we assume, in this work, that they
along the equilibrium length of the backbone. are not affected by this criterion. In the case of a pompom or H
I1.5. Constraint Release and Dynamic Tube Dilation.The molecule considered here, only the deepest segments, near the
constraint release effect is known to play an important role in middle of the molecule, can be sensitive to this criterion.
the relaxation of the polyméf-23Its influence can be accounted  However, since this part of the molecule relaxes by reptation,
for in two different ways: The first, which is a global effect, is  this does not affect the predictions. In general, however, for
based on the fact that each entanglement is formed by twoother architectures such as treelike polymers, this criterion must
segments and that the relaxation of one of these disentanglege accounted for.
the other one, enabling its “early” relaxatié#?329.30 This
constraint release effect can be considered as “global” effect,
as we can assume that each segment senses the same envir
ment and thus, has the same probability of relaxing in this way
This implies an increase of the effective molecular weight
between two such entanglements (which have an effective role 4 . . L
in the orientation of the molecule), a decrease of the equilibrium been sho_vvn that in branched _polym_e_rs, in particular, this is not
length of the molecules and a increase of the tube diameter (Seenecessarlly true, and polydispersities as low as 1.05 can
9

eqs 1-3). This is in fact the dynamic tube dilution, introduced influence the rheological predictions significanti?8 In this
by Marrljcc?—z and developed by Ball and McLeiéh In this work, because of the latter, as well as our own observations of

work, this important effect is taken into account in the term \t/\r/]:i h;]%hivinsgﬂ\é';ﬁ o{;hﬁqglﬂ(ggaﬂﬁgsepfgggﬁﬁ t(t)htgemn;?jlgr ublar
Penvir(Xi,t) of eq 1.227 This term is nearly equal to the unre- gnt, y

laxed fraction of the polymer (see eq 9), and represents thetc)on3|?1er|ng gtﬁoantaEé pol;;dlspershlty of |1'05 in both the
conditional probability that any random segment in the poly- ' ancnes and e bac o_ne. or each samp e_' _
mer is still oriented, if we know that the segmen(see eq I-2) We used a Wesslau distributitrfor determining the mo-

is not relaxed (either by reptation or by fluctuations): lecular weight of the branches and of the inner part of the
backbone (between the two branching points). As shown in

Figure 5, we considered five molecular weights in a distribution,

I1.6. Polydispersity. The pompom and H-polymer samples
analyzed in the next section are assumed to be monodisperse.
%Phis is based on the characteriza8®i® of these samples and
" the widely used hypothesis that samples WitfyM, < 1.1 can
be treated as truly monodisperse oh&%%?’Nevertheless, it has

_ Xequiv,b(xb)
p(x.t) = [(pb(b/(]) (pfepl(xb't)pﬂuc(xb’t)) o, + each of them representative of one-fifth of the overall distribu-
l . .

f . Prep¥p:l) 0X;) + tion. Assuming that all branches of the same molecule have

Yequiv B3 the same molecular weight, we thus worked with 25 different

Porancl j(;xequibrancﬁxhrancepﬂuc(xbrancht) X oo molecules in same proportion in the_ polymer. Nex_t, we used
B the eqs described above to determine the relaxation times of

fxequwmncﬁxbrancel Wyranca] (22) each kind of molecules, with only a few modifications:

(i) The variabled(x,t) was determined for all the molecules.
The segmentXequiv,p(X) and XequivbranckXi) are potentially To define the part of each branch relaxed by fluctuations, we
equivalent to the probe segmedtlf the branch is completely ~ used the potential equivalence between the molecules, intro-
relaxed, therequiv,oranckX) = 1. duced in part 1.3. For simplicity in the calculations @f(t),

In addition, the constraint release mechanism influences thewe assumed that none of the backbone segments relaxes before
reptation and fluctuations times of the molecules, as already the relaxation of the branches in all the molecules is completed.
described by the paramet@rabove. However, the disoriented Since the polydispersity is very small, this approximation did
(relaxed) part of the polymer cannot be immediately considered not affect the results.
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dw(M) ' | G’, G"(w)
d log(M) ‘ [Pa] 10°
3r g
il ‘ ‘ ‘ 10°¢ = §
N
| i
LU 3
10° 10 a
Log(M) . . .
-4 -2 0 2
Figure 5. Normalized Wesslau molecular weight distribution. The 10 10 10 10 10
overall distribution is divided to five equivalent surfaces (separated by o (1/sec)
the black continuous lines). Each of the surfaces is represented by its
average molecular weight (- - -). G’, G"(w) /’"
[Pa] —
(i) Equations 9, 16, 22, I-2, I-6, and II-5 were extended to 107}
consider every molecule.
Figure 6 depicts the effects of the polydispersity, first on the 10*t
backbone, next on the branches, then on both the backbone ani
the branches. One can observe that polydispersity smears ou 1651
the relaxation peak, in the sense that it makes it weaker and
much broader. Moreover, its effect is larger on the branches : 1
than on the backbone. This is due to the large influence of the P 10° 10°
branch molecular weight on the motion of the branching point.  (1/sec)
Also, at high frequencies, where local motions are probed, there
are no effects of polydispersity. G[P(&J)} .
al 10t S
lll. Results and Discussion e
I1l.1. Parameters and Predictions. H-Polystyrene Melts. 4 /
. i > 107} 1
To assess the model in more detail, we compared predictions
with available experimental relaxation moduli from different
sets of polymers (H or pompom). The first set is composed of 102! 1
several polystyrene H-polymers synthesized and measured by | ¢
" ) . ) . . . . i
Roovers* Their average molecular weights are listed in Table 10" 102 10° 10° 10°
1 (samples PS31PS5)34-36.38
(BackFl))one and br?’:\nches of these samples have the sami ® (1/sec)
molecular weight. The model has two parameters that need to G™(®)
be defined: the entanglement molecular weid¥i, and the [Pa] 107}
Rouse time of a segmemt. We used consistently. = 8 x sf
104 s, M = 16 000 g/mol (afl,ef = 169.5°C). The value of 19 P
the plateau modulusz\®, was 2.3x 10° Pa. Given that the 164l f"""—:’r
density of the PS is 0.959 kghnthis value is consistent

with7.17:3940 G\0= (4/5)(oRT/Me) within 15%. Such a small
deviation is acceptable and in line with what has been reported
in the literature when using similar modeling efforts to predict
polymer rheology*! The origin of this small deviation remains

a puzzle at present, but two issues that should be considerec

10

W/ :

10° 10° 10°

o (1/sec)

are the Sma" experimental uncertainties in the hlgh-frequer!cy Figure 6. Model predictions of the relaxation moduli of samples PB4
rheometrical measurements an.d the fact that the coupling see Table 1) for different values of polydispersity: 1, 1.05, 1.1, and
between the faster Rouse relaxation of an entanglement segment.2 (from black to light gray). Polydispersity is considered (a) for the
and the branches relaxation (which can start before the formerbackbone molecular weight only; (b) for the branch molecular weight
relaxes fully) are not taken into account. Furthermore, we fixed only; (c and d) for both the backbone and the branch molecular weights.
the value of the dilution exponentto 142 We decided to keep

o constant for all the polymers analyzed in this work in order temperature (see Table 1, samples PS6 and PS7). Comparison
to test the predictive capability of the model without having an between model predictions and experimental data are shown in
additional parameter. Since there is no real consensus on thé-igure 7d, with the same set of parameters. Note that a linear
value of this exponent, we fixed its value to 1 as proposed in Polymer is a limiting case of this model, i.e., an H-molecule
refs 13, 14, 17, 18, and 24. Results obtained with this set of With branches of zero length.

parameters are shown in Figure 7. Very good agreement between Pompom Polybutadiene Melts and SolutionsThe particular
experimental data and the model predictions was found for all molecules have three branches on each side of the backfone (
samples without any adjustable parameters. This is already a= 3) and are described in Table 1 (see samples-HE34)3°
departure from the earlier approaches which used a sensitiveThe rheological properties were measured at 28.%° Because
adjustable parameteg?. To ensure the universal validity of the  they contain a large fraction of 1,2-microstructure (about 50%),
model, we also tested two linear PS samples, again synthesizedhe value of their plateau modulu&{ = 700 000 Pa) was
and measured by Roovers and co-workés$, at the same found low compared to the typical value of 1 MPa for 1,4-
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Table 1. Molecular Characteristics of the Samples Used G'(o) 10°l
sample My (g/mol)  Myranch(g/mol) q Tef (°C)  ref [Pa] i
PS1 19 000 19 000 2 169.5 34 LU
PS2 44000 46 000 2 169.5 34 4l
PS3 100 000 103 000 2 1695 34 10
PS4 123 000 132 000 2 169.5 34 a
PS5 204 000 205 000 2 169.5 34 10 ¢
PS6 275000 linear 169.5 34 2
PS7 800 000 linear  169.5 38 10°¢
PB1 47 000 14 800 3 24.5 35 A
PB2 47 000 19 500 3 24.5 35 10 1072 10° 102 10*
PB3 90 700 12 000 3 24.5 35
PB4 90 700 19 500 3 24.5 35  (rad/sec)
PB5 86 000 linear 24.5 35 . . .
PB6 129 000 linear 24.5 35 G"(w)
PB7 176 000 linear 24.5 35 [Pa]
PB8 89 000 21 000 3 23 36 10°}
Pbdi7:39.4%the corresponding value d. is higher and amount 10°l
to 2250 g/mol. We used = 1 andze =9 x 1077 s atTief =
24.5 °C. Results are shown in Figure 8. It is evident that .
predictions and experiments are in very good agreement. 10
Again, to test the universality of the model, the linear rheology : . .
of three linear polybutadienes from the same source (Table 1, 107" 107° 10° 10°
samples PB5PB7)® was successfully predicted using the same o (rad/sec)

set of parameters. The results are shown in Figure 9.

The last set of data presented in this work concerns the linear
viscoelasticity of a pompom polybutadiene diluted in an
oligomeric solvent (a 1,4-polybutadiene witk, = 1000 g/mol)
at different concentrations, as described in Table 1 (sample PB8).
Parameters used here &fle= 2050 g/mol ande= 3 x 107 ’s
at Tres = 23 °C. From eq 22, the plateau modulus is 0.83 MPa.
In this case, because a solvent is used, the (static) dilution
concept works well. Very good agreement between experience
and theory was found.

111.2. Influence of the Reptation on the Backbone Relax-
ation: Failure of Dynamic Dilution? From a closer inspection
of the experimental data for the H and the pompom molecules G° G(w)
(Figures 7, 8, and 10) around the terminal region, which is [Pa] 10°
expected to be governed by the reptation process, it appears

that the loss modulus exhibits a very broad maximum and that 10°
the storage modulus also exhibits a broad low-frequency "
relaxation. This behavior is reminiscent of relaxation by L
fluctuations (e.g., in star polymerz)suggesting that there is 10°
virtually no reptation contribution to the terminal flow (or too %
small contribution, if any). This is tested below: 10
Figure 11 shows the comparison of the measured viscoelastic 10" 16_2 o po=e

moduli of sample PS3 (see Table 1) with the respective
predictions in three different cases: first, by taking into account
the reptation process as described as in section 11.4; next, byFigure 7. (a—c) Linear viscoelastic moduli and loss angle @wof
assuming that the backbone of the pompom molecule relaxes'('"se;rgﬁlfzxpse}i;?eﬁgf ((ssensz?stilﬁalt)a C(g)r%&a’éiic’nr]‘e%‘?g’l"ggg tf;ggirgtté%al
by reptation in its dilated tube_; last, by assuming th_at the 1 oduli for ngples PS6 %’0 PS7 (see Table B. P

polymer does not relax by reptation. By comparing the different

results, it seems clear that in this case, the reptation processesults were found for the other H-polymer samples, confirming
does not occur in the dilated tube. Indeed, because the branchethese conclusions. This is a consequence of the large volume
of the pompom molecule represent 80% of the polymer, fraction of the branches and similltyanchand My,

reptation in a dilated tube (see eq 20, wibthve = 0.04) will On the other hand, for some of the pompom samples PB1 to
always be predicted immediately after the branches fluctuations, PB4, reptation plays a more important role, as shown in Figure
whichever the set of parameters. However, in the real case wel2 (both the shape d&' andG" and the model predictions).
distinctly see a “shoulder” at low frequencies, coming from the Note that the low-frequency shoulder@fin PB1 (Figure 12a)
unrelaxed part of the backbone. This represents a failure of theis probably an experimental issue (maybe not so well-character-
dynamic dilution concept, where time scale separation is not ized polymer) and does not relate to the backbone reptation.
observed, which is corrected in the model by the extended These results indicate that, for reptation to dominate the terminal
criteria of Graessley’28:31.32Furthermore, by comparing the response, the backbone must be much longer than the branches
prediction with and without the reptation process, we observe of these macromolecules.

that the results are nearly similar: reptation does not have a IlI1.3. Effects of the Polydispersity. Even if the polydispersity
strong influence on this pompom polymer relaxation. Similar considered here is very smal{/M, = 1.05), its effect can be

 (rad/sec)
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10°;
10°
10°
107 10° 10° 107 10° 10 10°
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.[Pa] T g ] Figure 9. Linear viscoelastic moduli of samples PB5 to PB7 (see Table
10°%! J 1). Comparison between predictions (- - -) and experimental (symbols)
- data.
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Figure 8. Linear viscoelastic moduli of pompom samples PB1 to PB4
(see Table 1). Comparison between predictions (- - -) and experimental
(symbols) data. g i)

_ o - _ 10 10 10
very important”18 This is demonstrated in Figure 13a, which o [1/sec]
shows the experlmental data for the pollybutaqllene pomppm Figure 10. Linear viscoelastic moduli of samples PB8 (see Table 1)
sample_PB4, glong with the_model predictions without and with diluted in solvent at different concentration®poym = 1, 0.73, and
a polydispersity of 1.05. This enables us to conclude that theseo.5 (a); ®poym = 0.9, 0.63, and 0.34 (b). Comparison between
samples are on the average slightly polydisperse. Likewise, predictions (- - -) and experimental (symbols) data.
Figure 13b shows the case of a H-polystyrene (sample PS3). In ] . ) . .
the latter case, because of the small fraction of backbone (20%)fraction of the tube diameter the branch point moves in a time
in comparison to the branches, polydispersity does not affect Scale of ordempranc(1):
the predictions appreciably. -

I1l.4. Comparison with the Existing Tube-Model Theo- D =_P& (23)

ries: The Effect of the p?> Parameter. In the tube-model & 2tpancdl)
theories, originated by Milner and McLe®rand advanced by
several groupgt1924-26.36.43the parametep? appears in the  As explained in the Introductiorp? is usually treated as an
equaton of the curvilinear diffusion constant, expressing the adjustable parameter, and assumes a wide range of values. A

10°
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Figure 11. Storage and loss moduli (a) and tar{b) of sample PS3 [Pa] i ;

calculated without reptation (light gray), by considering the “solvent”
polymer fraction described by egs 19 and 20 (dark gray) or by s
considering the unrelaxed fraction of the sample equal to the volumetric 10 ¢
fraction of the (inner) backbone (black).

4
10
valuep? < 1, typically used in most branched polymer studies, .
implies a slowing- down of the backbone relaxatiti?24-26.36:43 10
There are also situations where a value of 1 is 44é82°In . . _ .
general, this parameter is considered to depend on chemistry 107 107 10° 102
only,*4~1% although there are suggestions of possible dependence o [1/sec]

i 6
on tEe maf(_:rorgltilelcula(rj aLchlte_Cture as Vjéﬂz' In thi preslent f Figure 12. Storage and loss moduli of samples PB1 (a), PB2 (b), and
WOrK, we X p e and there is no ne_e to vary the va u_e _O PB4 (c), calculated without any reptatios % x), or with reptation,

p? across the different samples. This represents a distinctpy considering that the “solvent” polymer fraction for the backbone is
difference that needs being elaborated. Thus, we briefly discussdescribed by eqs 19 and 20 (- - -); see text for details.
below the differences in the calculations of the different v/ conclusions

contributing relaxation processes. .
R o We have developed a general coarse-grained model for

The reptation time of the backbone is given by eqs 19 and yregicting the linear viscoelasic properties of branched polymers
20. Considering that reptation takes place in a (nearly) undi- from the knowledge of their molecular structure and three
luted tube, this already slows down the backbone relax- yiscoelastic parameters, i.e., the Rouse time of an entanglement
ation process. However, as shown in the literature, this segment, the plateau modulus and the entanglement molecular
modification is not enougf-27-30 The main contribution to the weight. This is an extension of earlier work using a time-
slower backbone relaxation, and key difference between the marching algorithm to successfully predict the rheology of linear
current approach and the previous dri@g?!71824253¢3 grigj- and star polymers. uses the physics of tube-based theories,
nates from the factor (* xq), which is used in the equation of  griginated by McLeish and co-workers. We have appropriately
the reptation timeXy represents the deeper inner backbone modified and extended this earlier model by proposing a new
segments relaxed by fluctuations before the reptation processmacromolecular coordinate system and accounting for the
As already explained in section 1.4, to analyze the backbone diffusion of the branching points and the polydispersity, within
relaxation by reptation, we consider that the backbone center-the framework of dynamic tube dilation (using the citeria of
of-mass diffuses along its total average equilibrium length. Graessley). We have obtained excellent predictions for the linear
Indeed, even if some segments are already relaxed by fluctua-viscoelastic properties of different complex macromolecular
tions, they still have a nonzero equilibrium length that we architectures, such as H polymers and pompom polymers,
consider here. In fact, the same conclusion was already drawnwithout any adjustable parameters. It has been demonstrated
from the original time-marching model applied to highly that polydispersity is very important, even when it amounts to
asymmetric stard’ Last, the respective difference observed in 5% only. There are still some issues at stake, such as the value
the calculation of the backbone fluctuations times, which of the dilution exponent, the validity of the rubber elasticity
precedes and slows down the backbone reptation process ariseelation within 15%, and the coupling of the different relaxation
principally from the rescaling of the varialyg, from the outer modes. Nevertheless, the successful and self-consistent applica-
free end of a branch to the middle of the molecule (see sectionstion of the model to different chemistries and architectures gives
1.1 and 11.3). us confidence that the proposed methodology represents a
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G.G"(w) the polymer fraction acting as a solvent), we use a time-
[Pa] 10| B marching algorithn#’ which determines the survival prob-
E ; abilities of each segment at a given tihefrom the corre-
LG sponding values at the previous tire;:
4
107 Priuc(td = Pt 1)Pauc (5 [t 1.td) (1-3)

10° LA

prepl(xi’tk) = prepl(xi vtk—l)prepl(xiv[tk—l’tk]) (|'4)

16{4 16 2 160 oF The survival probability aty is the product of the survival prob-
ability attx—1 and the survival probability during the time interval
o [1/sec] taken betweet,_; andty. The latter probabilities are calculated

from the values of the relaxation timega(%,t) calculated at

G*,G"(w) 10°

time t, after the update ob(ty), the polymer fraction acting as
[Pa] a solvent in the reptation and fluctuation processes:
4 —(At)
107} _ (
valXolt_ptl]) = exp————————= I-5
psurvwa(x1 [ k—1 k]) r{rrelaxxi'tkvq)(tk))) ( )
108 The time trelax represents either the reptation time or the
fluctuations time of the segmert The second and third terms,
f , , , calculated as in ref 7, are functions of the Rouse time of the
107 1072 10° 10° backbone and of the branches
o [1/sec] 1zl %
Figure 13. Storage and loss moduli of samples PB4 (a) and PS3 (b), FRouseJongitudinaF — % Z exg — +
calculated by considering a polydispersity of 1.05 (---), or by Z £ 7Rouse(Mb+ 2Mbranct)
considering the samples as monodispersse k). 1 7-1 jzt
powerful generic approach for predicting the linear rheology E(pbra”‘?h]; X TrousM ) (1-6)
of branched polymers. Rousé ™ branc
S . 1 2%
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Appendix I: Relaxation Modulus of a Pompom Molecule whereZ is the number of entanglements aNgthe number of
The relaxation modulus of a monodisperse polymer melt or Khun segments, and

a concentrated solution is described in general by three terms: M\2
the first represents the relaxation of the polymer from its Trousay, = Te —'|' . i=branchb (1-8)
equilibrium state (by reptation, fluctuations, or constraint i M,
release), the second is longitudinal modes relaxation, and the . o
third is fast Rouse motion inside the tubg% Me is the entanglement molecular weight andis its Rouse
time of an entanglement segment:
G(t) =
GOF(D) + LG, OF ) + 2 G F et ronel (D) o b (M2 (1-9)
N 4 N ' Rouse,longitudin. 4 N ' fast Rous e 377:2|(T m0

The relaxation modulug(t) of the polymer is calculated by  where §, represents the monomeric friction coefficient. The

summing up all contributions from segments along the branchesstorage and loss moduli are then calculated from the relaxation

and the backbone: modulusG(t) by using the Schwarzl relations, which are an
approximation of the Fourier transforg®

F(t) = q)b‘/;l(prepl(xb!t)pfluc(xbvt)penvir(xbvt)) dxb +

1
Poranchfy (Piucorancht) Penvilorancht)) Poranch (1-2) The branches of a pompom molecule relax exactly as the
arms of a star molecule. As described by Milner and McLéJsh,

A given segment will contribute to the modulus if it has not each branch has an equilibrium lendtbMprancy, coming from
been relaxed by any of the three possible relaxation mecha-the balance between an entropic force which tends to reduce
NiSMS: Preps Prive, aNdpPenvir represent the probabilities that the  the distance between the end chain and the branching point,
segmentx remains oriented by reptation, fluctuations or and a topological force, representing the effect of the environ-
constraint release, respectively. These terms are described irment, which prevents this retraction. Because the real length of
sections 11.3, 1.4 and II.5. Because the reptation and the the branch fluctuates about this equilibrium length (which is
fluctuations times of a segment are not necessary time-the most probable), the initial tube segments relax little by little,
independent (for example they may decrease with increasingfrom the outer to the inner one. Their corresponding fluctuations

Appendix II: Branches Fluctuations
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time increases exponentially with the depth of the segment:

3kT
UXoranch = m(Le@(brancgz + const

U(Xbrancr)

In Tlate(xbrancr) = KT + const

(11-2)

Macromolecules, Vol. 39, No. 18, 2006

Tfluc(xbranct) = Tearlyxxbrancf) for Xbranch< Xtrans (”'8)

AU(Xtransq Xbrancr))

(“'1) Tfluc(xbranct) = Tearl)()(trang ex;{ kT

for Xbranch> Xirans (”'9)

By using these expressions, we do not need to calculate any
waiting time 7o, contrary to the other approaches in the

Since the fluctuations times of the segments are exponentially literature2°

dependent on their location on the branch, we consider that the

external segments already relaxed act as a solvent for theReferences and Notes

relaxation of the inner segments. This is the idea of dynamic
dilution:22.23if a fraction (1— ®(ty,Xorancy) Of the polymer acts

as a solvent, the molecular weight between two effective
entanglements (which have an effective role in the orientation
of the polymer),Mg(tk,Xorancy), iNnCreases

Me,O

— (11-3)
(I)(tk1xbrancr)a

Me(t!xbrancr) =

where Mo is the nominal entanglement molecular weight
(before dilution) and the parameters the dilution exponent,
usually between 1 and 4346 This effect must be included in
the expression 1I-2;

dIn Tlate(xbrancl) —

-4
axbranch )Xbranch ( )

( branch
M e(tkvxbranct)

The function®(tx,Xprancy) represents the unrelaxed part of the
pompom polymer, when the branches are relaxed until the
segment defined by the normalized variaklgnc, at timety.

In this particular case, because the reptation process occurs only
0(15) Daniels, D. R.; McLeish, T. C. B.; Croshy, B. J.; Young, R. N,;

after the relaxation of the branches has been completed, n
“dynamic reptation solvent” is taken into account(ty,Xoranch -
Therefore, this variable does not depend on the time:

q)(tkixbranct) = q)(xbranct) = (pb(l - Xb) + q)branck(l - Xbraan
(11-5)

In this expression, the value ®f, which is defined as in Figure
1, is directly calculated fromyrancn

X, = Xbrancfl\/lbranch (||-6)
Mbranch+ Mb/2

As introduced in ref 20, for segments having a poteritigd,)

< KT, their early fluctuations times do not follow eq 1.4 but

are described by a Rouse process:

97%(Mp 2
Tearl)(xbrancf) = E( Mrar;cj rR,brancﬁ(brancr:‘ (”'7)
e,

where Tr pranch IS the Rouse time of the branch. No polymer

solvent is considered in this equation. Indeed, to act as a solvent,
the relaxed part of the polymer must be well-separated in time
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