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ABSTRACT: We present a general coarse-grained model for predicting the linear viscoelasic properties of branched
polymers from the knowledge of their molecular structure and three viscoelastic parameters, i.e., the Rouse time
of an entanglement segment, the plateau modulus, and the entanglement molecular weight. The model uses the
ingredients of the tube-based theories of McLeish and co-workers, and its implementation is based on a time-
marching algorithm; this conceptual approach was already successfully applied to linear and star polymers, and
it is appropriately modified here to account for more complex branched architectures, within the framework of
dynamic tube dilation (using the criteria of Graessley). Whereas the molecular physics behind this model is the
well-established hierarchical tube-based motion, the new element is a different macromolecular coordinate system
and account of the branch points diffusion. With proper account of polydispersity, successful description of a
wide range of rheological data of H and pompom polymers is obtained, with the use of the dilution exponentR
) 1 and the parameterp2 ) 1. The proposed methodology thus represents a generic approach for predicting the
linear rheology of branched polymers.

I. Introduction

Branched polymer rheology represents a very active field of
research with important challenges, both from the scientific and
technological viewpoints. Recent progress in this field was
triggered by the advances in the tube-model theories1-7 and the
availability of well-defined model polymers.8-12 It is now known
that branched polymers relax hierarchically.13-18 In other words,
entanglements belonging to topologically different parts of the
macromolecule (branches or backbone or different layers) relax
in a certain sequence, obeying seniority rules according to which
the outermost parts of the molecule (those with free dangling
ends) relax first and the innermost ones last; the stress is fully
relaxed only after the slowest segments have lost the memory
of their initial orientation. For example, for the case of an
H-polymers,14,19 the simplest hierarchical branched structure
with a linear connector chain linking two grafted linear chains,
the relaxation sequence is as follows: the end-grafted chains
relax first (via starlike relaxation, as described by the Milner-
McLeish model20,21) while the backbone remains frozen, and
eventually the backbone relaxes by reptation. The analysis is
carried out in the context of dynamic tube dilation (DTD),20-23

according to which the relaxed branches act as solvent for the
yet-unrelaxed backbone. However, the relaxed branches repre-
sent an extra friction for the branch point; the effect on the
overall relaxation process is accounted for by the branch point
diffusion, which has to precede the backbone reptation. The
incorporation of the branch point diffusivity includes an
unknown parameter,p2.24-26

Recently, a time-marching algorithm was developed to pre-
dict the linear viscoelastic properties of mixtures of linear and

star polymers, as well as asymmetric star polymers.27 It is
based on the tube model predictions of the fluctuations and
reptation processes, which proceed simultaneously, but with
different probabilities, without any imposed time scale sep-
aration; the solvent effect due to relaxed segments is treated
as a constraint release effect based on the approach of
Graessley.28-30 The model provides excellent predictions of the
linear rheology for a wide range of linear polymer mixtures
and asymmetric stars.27 More importantly, in the latter case there
is no need to invoke thep2 parameter (as there is no artificially
imposed time scale separation), thus avoiding the related
controversy.24-26,31,32

On the basis of this recent success, and keeping in mind the
ongoing concerns about the value of thep2 parameter for dif-
ferent branched polymers,24-26,31,32as well as on the availability
of accurate data sets with a variety of model branched polymers,
we decided to expand this time-marching methodology to
architecturally complex macromolecules. This is the scope of
the present contribution, which focuses on the prediction of the
linear rheology of pompom and (their special case) H-polymers,
and compares with existing relevant experimental data.

The paper is organized as follows: After this introduction,
we present in section II the main ingredients of the theoretical
modeling, including the macromolecular coordinates, relaxation
modes, dilution and polydispersity effects. Then, in section III
we present and discuss the predictions of the model, and in
particular we compare them against published experimental data
for model H and pompom polymers. Finally, the main conclu-
sions and consequences from this work are summarized in
section IV.

II. Theoretical Modeling

II.1. Equilibrium State and Equilibrium Lengths. As
already mentioned, he treatment of the friction around a branch
point, due to the relaxed branches, is very important for the
calculation of the fluctuations times of the backbone segments.
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Likewise, defining the effective backbone equilibrium length
(after the relaxation of the branches), about which the real length
of the backbone fluctuates, is also of great significance for the
proper analysis of branched polymer relaxation. As already
mentioned, DTD suggests that the polymer fraction already
relaxed will act as a solvent for the relaxation of the remaining
oriented part of the polymer. Therefore, the equilibrium state
of the polymer evolves in time as a function of the unrelaxed
part of the polymer,Φ(t):20,21,23

whereR is the dilution exponent,Me(t), the effective molecular
weight between two entanglements,a(t), the effective tube
diameter andLeq(t), the effective equilibrium length of a
subchain at timet if its length is equal toLeq(0) at timet ) 0.
According to these equations, after the branches of a pompom
molecule have relaxed, their effective equilibrium length is
reduced in exactly the same way as the effective equilibrium
length of the backbone or of the inner part of the backbone.
This is a consequence of the fact that both branches and
backbone are assumed to “see” the same environment:

whereLeq,branchandLeq,inner backboneare the equilibrium length of
one branch and of the half-inner part of the backbone, andΦ(t)
is the unrelaxed fraction of the polymer at timet.

According to these eqs, the equilibrium length of the branches
just after their relaxation is nonzero (Φ(τbranch) ≈ Φinner backbone).
Therefore, the equilibrium location of the real end of the
backbone chain after the relaxation of the branches is not at
the actual branching point. It is defined by the equilibrium length
of half-backbone,Leq,total backbone, which is the most probable
length of the half-molecule, not necessarily the shorter length
that the half-molecule has taken (first passage problem). Another
way to consider the situation is to say that, after the relax-
ation of the branches, the chain ends will not fluctuate around
the branching points but around the relaxed branch ends
instead.

In the conventional molecular coordinate system used in the
literature,13-19 a backbone segment is defined by the normalized
variablexb,inner ranging from 0 at the branching point to 1 at
the middle of the molecule. This means that, after the relaxation
of the branches, the most stable configuration of a pompom
molecule is obtained when the chain ends reach their branching
point, about which they fluctuate. However, this definition
contradicts that of the equilibrium length. A related problem is
the fluctuations process of the backbone, where we need to
consider that the fluctuations time of a molecular segment close
to the branching point but inside the backbone (between the

two branching points) will be shorter than the respective time
of another segment equally close to the branching point but on
the branch side (see Figure 1 below). Therefore, in the following,
we will use another way to define a backbone segment.

II.2. Time Marching Algorithm and Relaxation Moduli.
The polymers analyzed in this work have H or pompom
architecture. As illustrated in Figure 1, they consist of a
backbone andq branches at each of their ends. The inner part
of the backbone has a molecular weight ofMb and each branch
has a molecular weight ofMbranch. We consider here only
molecules with branches of the same length. Note that forq )
2 we have an H-polymer.

Each molecular segment is defined by the normalized variable
x. For a branch segment, the variablexbranchgoes from 0 at the
free end of the branch to 1 at the branching point. The choice
of the starting point of the backbone is very important and can
have a strong impact on the predictions (via the potential). Here,
to be consistent with the definition of the equilibrium length of
the backbone, we chose the branch free-end as the starting point
for the definition ofxb ) 0 (see Figure 1), and the middle of
the molecule as the ending point,xb ) 1. Therefore, the
(effective) backbone is defined as the longest way from an end
to another end of the molecule, on which 2(q - 1) branches
are fixed (at distancesxbranch from the free ends), and their
respective volumetric fractions,æb andæbranch, are

The relaxation functionG(t) of the polymer is determined by
using the time-marching algorithm, which sums up all contribu-
tions over all branches and positions along the branches.27 This
is explained in some detail in Appendix I. In a similar way, to
include the contribution of the (relaxed) polymer solvent to the
reptation and fluctuations processes (see the next sections
below), we determine the unrelaxed fraction of the polymer
Φ(tk) at each time steptk as

wherep(xi,tk) is the survival probability of a segmentxi (by
reptation or by fluctuations) at timetk.

II.3. Tube Length Fluctuations and Branching Point
Diffusion. Branch Fluctuations. The branch fluctuations for
a pompom molecule follow exactly the same rules as the
fluctuations of the arms of a star polymer, which has been
already addressed.27 The particular details for the pompom case
are presented in Appendix II.

Me(t) )
Me(0)

Φ(t)R (1)

Leq(t) ) Leq(0)(Φ(t))R/2 (2)

a(t) )
a(0)

(Φ(t))R/2
(3)

Leq,branch(t) ) Leq,branch(0)(Φ(t))R/2 ) (Mbranch

Me(0)
a0)(Φ(t))R/2

(4)

Leq,inner backbone(t) ) Leq,inner backbone(0)(Φ(t))R/2 )

(Minner backbone/2

Me(0)
a0)(Φ(t))R/2 (5)

Leq,total backbone(t) ) Leq,inner backbone(t) + Lbranch(t) (6)

Figure 1. Macromolecular coordinates and definitions for a pompom
molecule.

æb )
Mb + 2Mbranch

Mb + 2qMbranch
(7)

æbranch)
2(q - 1)Mbranch

Mb + 2qMbranch
(8)

Φ(tk) ) æb∫0

1
(prept(xb,tk)pfluc(xb,tk)) dxb +

æbranch∫0

1
(pfluc(xbranch,tk)) dxbranch (9)
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Backbone Fluctuations: The Two Fluctuations Modes.
Segments along the (entire) backbone of a pompom molecule
can relax according two different modes: one is with respect
to the branching point, which involves the normal segmental
friction, and one with respect to the middle of the molecule,
which takes into account the extra friction due to the relaxing
branches, and thus hinders the branching point motion.

The former mode describes fluctuations of the equilibrium
length of the outer part of the backbone with respect to the
branching point. It considers only segmentsxb localized beyond
the branching point (in the branch region), i.e., those between
0 andxbr.point (see Figure 1). These fluctuations are described
exactly as those of a star arm and are calculated by using eqs
II-3 to II-9 (see Appendix II), after rescaling of the variablexb

into xbranch, going from 0 at the branch end to 1 at the branching
point:

The latter mode describes fluctuations of the equilibrium length
of the half molecule, i.e., from the end of the extended backbone
to the middle of the molecule (xb ranging from 0 to 1). Indeed,
as already explained before section II.1, even if the branches
are relaxed, their equilibrium length is nonzero; it is therefore
important to consider the tube length fluctuations of the entire
backbone. This fluctuations mode requires the motion of the
branching point, where the branches are covalently bonded, and
which is able to move only at the time scale of the fluctuations
time of the branches,τbranch(1). This effect must be included in
the total friction coefficient,útot, felt by the backbone:24-26

wherea is the length of a segment between two entanglements,
ú0 is the monomeric friction coefficient andm0 is the monomeric
molecular weight. The first term is the friction contribution
arising from the branches and the second term the friction arising
from the backbone itself. The latter contribution is usually
negligible, unless the branches of the pompom molecules are
very short branches in comparison to the backbone.

Because of this additional friction coming from the branches,
the early fluctuation times of the backbone segments are
slowed.17,26 This is taken into account by adding an “delay”
time, τdelay, to the Rouse time of the chain in eq II-7:

This delay time is easily determined from the fact that the
branches take a time proportional to (q - 1)τbranch(1) to retract
and that each retraction allows the chain end to cover a distance
equal toa, the distance between two entanglements. Since to
be completely relaxed by the Rouse process, the chain end has
to cover a distance equal toLeq ()aZ), we have

From eqs 12 and 13, we obtain

On the other hand, the activated (late) fluctuations times of the
backbone are determined in the same way as for the branches
(see Appendix II)

where the unrelaxed part of the polymerΦ(tk,xb), which does
not act as a solvent for the relaxation of segmentxb is5,21

Because the reptation of the backbone takes place only at the
end of the pompom polymer overall relaxation, we can neglect
its effect on the fluctuations times andΦ(tk,xb) reflects only
the fluctuations process. The transition between the two fluctua-
tion processes occurs at a transition segment for which the
potential is equal tokT, and is described by eqs II-8 and II-9 in
Appendix II.

Backbone Fluctuations: From the First to the Second
Mode. While, in principle, segments localized beyond the
branching point can move according to the two fluctuations
modes, the second one (with respect to the chain middle point)
is so slow in comparison to the first one (with respect to the
branch point) that we can neglect it: backbone segments
localized beyond the branching point (outer part of backbone,
branches region) will relax via the tube length fluctuations of
the outer part of the molecule (branches), with respect to the
branching point. On the other hand, segments localized on the
inner part of the backbone will relax according to the second
fluctuations process with respect to the middle point. However,
the transition between the two modes leads to a discontinuity
of the segments fluctuations times at the branching point, the
second mode assuming a value ofτbackbone(xbr. point) > τbranch(1)
(see Figure 3 below). To account for the fact that a chain end
will diffuse faster to its branching point than expected from
the second fluctuations mode only, we defined an “equivalent
pompom molecule” with shorter branch length, such as the
second fluctuations mode predicts that the chain ends reach the
branching point after a time equal toτbranch(1). This is schemati-
cally illustrated in Figure 2: the length of the equivalent
branches Mi is fixed so that the chain ends of the “equivalent
pompom molecule” take a time equal toτbranch(1) to diffuse up
to the branching point, while feeling the total frictionútot.
Therefore, to calculate the fluctuations times of the segments
localized on the inner part of the backbone, i.e., the segments
from xb ) xbr.point to xb ) 1, the backbone segments are described
by a new variable,xb,rescaled, ranging from 0 at the end of the
branches of the equivalent molecule to 1 at the middle of the
backbone. Therefore, in eqs 14 and 15, the molecular weight

xbranch)
xb(Mbranch+ Mb/2)

Mbranch
(10)

útot ) (q - 1)kT
2τbranch(1)

a2
+ ú0(Mb/2 + Mbranch

m0
) (11)

τearly(xb) ) 9π3

16(Mb/2 + Mbranch

Me
)2

(τR,chain+ τdelay)xb
4 (12)

τdelay) 2

3π2
(q - 1)τbranch(1)Z )

2

3π2
(q - 1)τbranch(1)(Mb/2 + Mbranch

Me
) (13)

τearly(xb) )
3π(q - 1)

8 (Mb/2 + Mbranch

Me
)3

τbranch(1)xb
4 +

9π3

16

(Mb/2 + Mbranch)
4

Me
2

KRousexb
4 (14)

∂ ln τlate(xb)

∂xb
) 3(Mb/2 + Mbranch

Me(t) )xb )

3(Mb/2 + Mbranch

Me0
)xbΦ(tk,xb)

R (15)

Φ(tk,xb) ) æb(1 - xb) +

æbranchmax(0,1- xMb/2 + Mbranch

Mbranch
xb) (16)

6250 van Ruymbeke et al. Macromolecules, Vol. 39, No. 18, 2006

D
ow

nl
oa

de
d 

by
 U

N
IV

 C
A

T
H

O
L

IQ
U

E
 D

E
 L

O
U

V
A

IN
 o

n 
O

ct
ob

er
 1

5,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 A
ug

us
t 1

0,
 2

00
6 

| d
oi

: 1
0.

10
21

/m
a0

60
43

85



of a branch,Mbranch, must be replaced byMi and the reference
variablexb, by the variablexb,rescaled:

We now obtain a continuous curve to describe the fluctuations
times of the segments along the entire backbone, as shown in
Figure 3.

II.4. Reptation of the Backbone. The probability that a
segment of the backbone relaxes by reptation during a time
interval ∆t has been described by Doi and Edwards.2 It is a
function of the reptation timeτrept of the molecule:

For a pompom molecule, the reptation time of the backbone is
determined by taking into account the friction of the backbone
itself as well as that due to the relaxed branches, in a way
comparable to that used for asymmetric star molecules27

whereτe is the Rouse time of an entanglement segment. As
explained in ref 27, we consider that a chain is relaxed by
reptation when its center of mass has diffused a distanceLeq.

along the tube, while most papers consider that the diffusion of
the center of mass occur on a distanceLeq(1 - xd), wherexd is
the fractional distance of the deepest segment relaxed by
fluctuations at that time. The fact that contour length fluctu-

ations speed up the total relaxation process of the polymer is
rather taken into account in separated term (see eq I.2) than in
the expression of the reptation time (eq 19). This way of
including contour length fluctuations and reptation in two
separated terms is based on the fact that on the average, the
center of mass of a molecule does not change its position, and
that the primitive path of each molecule has an average length
equal to its equilibrium lengthLeq,molecule. Some segments can
be relaxed by both reptation and fluctuations. However, these
two relaxation mechanisms are not necessarily additive: if
fluctuations occur toward deeper segments (that means that the
real length of the molecule is smaller thanLeq,molecule) during
the reptation of the molecule can accelerate the reptation process
(see Figure 4, left); on the other hand, fluctuations toward the
other direction (that means that the real length of the molecule
becomes larger thanLeq,molecule), which happens with the same
probability, will have the opposite effect (see Figure 4, right).
Since fluctuations far from the equilibrium length (for example,
fluctuations of the segmentxd (such asτfluc(xd) ) τrept)) cannot
be considered fast compared to the reptation time, we cannot
assume that the chain will fluctuate again toward a real length
of Leq.,molecule(1 - xd) during the reptation process. Therefore,
it seems more reasonable to consider that the molecule reptates
along its equilibrium length and not along the shorter length
that it has taken at timet ) τrept (which is a first passage
problem).

When there is a large time scale separation between the two
different relaxation processes, the backbone feels the relaxed
branch fraction acting as a solvent during its reptation:13

The value ofΦactive(t) stems from the extended criteria of
Graessley,27,28 according to which a relaxed polymer fraction
Φ(t) will act as a solvent for the remaining part of the
(unrelaxed) polymer only if their relaxation processes are well
separated in time. Indeed, the tube can be dilated by the slow
removal of entanglements, but reptation within the dilated tube
requires correlated release of entanglement constraints and can
only occur if constraint release is fast with respect to the
reptation time of the test chain. This condition is verified if the
reptation time of the backbone is larger than its constraint
release-Rouse time associated with its partially relaxed state
corresponding to an unrelaxed proportionΦ(t); the ratio of the
two times is called the Graessley number27,31-33 and is given
by

whereZb is the number of backbone segments andtΦ is the
necessary time for a segment to reach a probability of being
relaxed by constraint release equal to (1- Φ(t)) (thus,tΦ ) t).

Figure 2. Definition of an “equivalent pompom molecule” used to calculate the fluctuations times of the segments localized in the inner part of
the backbone.

Figure 3. Fluctuation times of the segments along the extended
backbone, by consideringxb ) 0 at the branching point (- - -), or by
consideringxb ) 0 at the end of a branch, with (s) or without (‚‚‚)
rescalingxb to calculate the fluctuations times of the inner part of the
backbone.

xb,rescaled)
xb(Mbranch+ Mb/2) - Mbranch+ Mi

(Mi + Mb/2)
(17)

p(xi,t) ) ∑
n odd

4

pπ
sin (nπxi

2 ) exp(-n2∆t

τrept
) (18)

τrept,0)

Leq,0
2

π2 ( 1
Dbackbone

+
2(q - 1)
Dbranch

) ) 3τe(Mb + 2Mbranch

Me,0
)3

+

2(q - 1)τbranch(1)

π2 (Mb + 2Mbranch

Me,0
)2

) τrept,0,b+ τrept,0,a (19)

τrept(t) ) τrept,0,bΦactive(t) + τrept,0,branch(Φactive(t))
2 (20)

Gr )
τrept(t)

τCRRouse,backbone(Φ(t))
)

τrept(t)

tΦZb
2

> 1 (21)
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Alternatively, at timet, the polymer fraction,Φactive(t), which
acts as a solvent in the reptation process of the backbone, is
equal to the relaxed polymer fractionΦ(t/Zbac

2) (see eq 9).
Because this later value evolves through time, the reptation time
of the backbone is not constant, and this is taken into account
by the time-marching algorithm.27

Consequently,Φactive(t) in eq 20 is equal to the unrelaxed
polymer fraction at timet/((Mb + 2Mbranch)/Me)2. As will be
shown in section III below, this criterion influences the
predictions of the relaxation moduli a great deal. As already
discussed in the context of linear polymer mixtures,27 the
reptation time considered here is not proportional to (1- xrel(t)),
wherexrel(t) is the deeper inner backbone segment which is
relaxed by fluctuations at timet, but instead it is considered
along the equilibrium length of the backbone.

II.5. Constraint Release and Dynamic Tube Dilation.The
constraint release effect is known to play an important role in
the relaxation of the polymer.20-23 Its influence can be accounted
for in two different ways: The first, which is a global effect, is
based on the fact that each entanglement is formed by two
segments and that the relaxation of one of these disentangles
the other one, enabling its “early” relaxation.22,23,29,30 This
constraint release effect can be considered as “global” effect,
as we can assume that each segment senses the same environ-
ment and thus, has the same probability of relaxing in this way.
This implies an increase of the effective molecular weight
between two such entanglements (which have an effective role
in the orientation of the molecule), a decrease of the equilibrium
length of the molecules and a increase of the tube diameter (see
eqs 1-3). This is in fact the dynamic tube dilution, introduced
by Marrucci22 and developed by Ball and McLeish.23 In this
work, this important effect is taken into account in the term
penvir.(xi,t) of eq I.2.27 This term is nearly equal to the unre-
laxed fraction of the polymer (see eq 9), and represents the
conditional probability that any random segment in the poly-
mer is still oriented, if we know that the segmentxi (see eq I-2)
is not relaxed (either by reptation or by fluctuations):

The segmentsxequiv,b.(xi) and xequiv,branch(xi) are potentially
equivalent to the probe segmentxi. If the branch is completely
relaxed, thenxequiv,branch(xi) ) 1.

In addition, the constraint release mechanism influences the
reptation and fluctuations times of the molecules, as already
described by the parameterΦ above. However, the disoriented
(relaxed) part of the polymer cannot be immediately considered

as a solvent for these relaxation mechanisms: the “fast”
segments act effectively as a solvent for the “slow” segments
only if the latter have had enough time to explore all the
conformations in their dilated tube. This means that occu-
pying this dilated tube without being able to move freely inside
is not a sufficient condition to consider the (accelerated)
relaxation of the “slow” segments within the dilated tube. This
idea, introduced by Graessley28 for mixture of two linear
chains and confirmed by McLeish,23 Watanabe,31,32 and Park
and Larson33 also works well for branched polymers.27 There-
fore, in this work, we considerΦactive instead ofΦ to determine
the reptation time (see eq 20), in order to conform with this
criterion. Since the initial fluctuations times of the segments
are exponentially separated, we assume, in this work, that they
are not affected by this criterion. In the case of a pompom or H
molecule considered here, only the deepest segments, near the
middle of the molecule, can be sensitive to this criterion.
However, since this part of the molecule relaxes by reptation,
this does not affect the predictions. In general, however, for
other architectures such as treelike polymers, this criterion must
be accounted for.

II.6. Polydispersity. The pompom and H-polymer samples
analyzed in the next section are assumed to be monodisperse.
This is based on the characterization34-36 of these samples and
the widely used hypothesis that samples withMw/Mn < 1.1 can
be treated as truly monodisperse ones.7,13,27Nevertheless, it has
been shown that in branched polymers, in particular, this is not
necessarily true, and polydispersities as low as 1.05 can
influence the rheological predictions significantly.17,18 In this
work, because of the latter, as well as our own observations of
the high sensitivity of the fluctuations process to the molecular
weight, we chose to include this effect in the model by
considering a constant polydispersity of 1.05 in both the
branches and the backbone for each sample.

We used a Wesslau distribution37 for determining the mo-
lecular weight of the branches and of the inner part of the
backbone (between the two branching points). As shown in
Figure 5, we considered five molecular weights in a distribution,
each of them representative of one-fifth of the overall distribu-
tion. Assuming that all branches of the same molecule have
the same molecular weight, we thus worked with 25 different
molecules in same proportion in the polymer. Next, we used
the eqs described above to determine the relaxation times of
each kind of molecules, with only a few modifications:

(i) The variableΦ(x,t) was determined for all the molecules.
To define the part of each branch relaxed by fluctuations, we
used the potential equivalence between the molecules, intro-
duced in part II.3. For simplicity in the calculations ofΦ(t),
we assumed that none of the backbone segments relaxes before
the relaxation of the branches in all the molecules is completed.
Since the polydispersity is very small, this approximation did
not affect the results.

Figure 4. Interaction between reptation and the contour length fluctuations; left: additive effect, right: nonadditive effect.

p(x,t) ) [æb(∫0

xequiv,b(xb)(prept(xb,t)pfluc(xb,t)) dxb +

∫xequiv b(xb)

1
prept(xb,t) dxb) +

æbranch(∫0

xequi branch(xbranch)pfluc(xbranch,t) dxbranch+

∫xequiv branch(xbranch)

1
1 dxbranch)] (22)
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(ii) Equations 9, 16, 22, I-2, I-6, and II-5 were extended to
consider every molecule.

Figure 6 depicts the effects of the polydispersity, first on the
backbone, next on the branches, then on both the backbone and
the branches. One can observe that polydispersity smears out
the relaxation peak, in the sense that it makes it weaker and
much broader. Moreover, its effect is larger on the branches
than on the backbone. This is due to the large influence of the
branch molecular weight on the motion of the branching point.
Also, at high frequencies, where local motions are probed, there
are no effects of polydispersity.

III. Results and Discussion

III.1. Parameters and Predictions. H-Polystyrene Melts.
To assess the model in more detail, we compared predictions
with available experimental relaxation moduli from different
sets of polymers (H or pompom). The first set is composed of
several polystyrene H-polymers synthesized and measured by
Roovers.34 Their average molecular weights are listed in Table
1 (samples PS1-PS5).34-36,38

Backbone and branches of these samples have the same
molecular weight. The model has two parameters that need to
be defined: the entanglement molecular weight,Me, and the
Rouse time of a segmentτe. We used consistentlyτe ) 8 ×
10-4 s, Me ) 16 000 g/mol (atTref ) 169.5°C). The value of
the plateau modulus,GN

0, was 2.3× 105 Pa. Given that the
density of the PS is 0.959 kg/m3, this value is consistent
with7,17,39,40 GN

0) (4/5)(FRT/Me) within 15%. Such a small
deviation is acceptable and in line with what has been reported
in the literature when using similar modeling efforts to predict
polymer rheology.41 The origin of this small deviation remains
a puzzle at present, but two issues that should be considered
are the small experimental uncertainties in the high-frequency
rheometrical measurements and the fact that the coupling
between the faster Rouse relaxation of an entanglement segment
and the branches relaxation (which can start before the former
relaxes fully) are not taken into account. Furthermore, we fixed
the value of the dilution exponentR to 1.42 We decided to keep
R constant for all the polymers analyzed in this work in order
to test the predictive capability of the model without having an
additional parameter. Since there is no real consensus on the
value of this exponent, we fixed its value to 1 as proposed in
refs 13, 14, 17, 18, and 24. Results obtained with this set of
parameters are shown in Figure 7. Very good agreement between
experimental data and the model predictions was found for all
samples without any adjustable parameters. This is already a
departure from the earlier approaches which used a sensitive
adjustable parameter,p2. To ensure the universal validity of the
model, we also tested two linear PS samples, again synthesized
and measured by Roovers and co-workers,34,38 at the same

temperature (see Table 1, samples PS6 and PS7). Comparison
between model predictions and experimental data are shown in
Figure 7d, with the same set of parameters. Note that a linear
polymer is a limiting case of this model, i.e., an H-molecule
with branches of zero length.

Pompom Polybutadiene Melts and Solutions.The particular
molecules have three branches on each side of the backbone (q
) 3) and are described in Table 1 (see samples PB1-PB4).35

The rheological properties were measured at 24.5°C.33 Because
they contain a large fraction of 1,2-microstructure (about 50%),
the value of their plateau modulus (GN

0 ) 700 000 Pa) was
found low compared to the typical value of 1 MPa for 1,4-

Figure 5. Normalized Wesslau molecular weight distribution. The
overall distribution is divided to five equivalent surfaces (separated by
the black continuous lines). Each of the surfaces is represented by its
average molecular weight (- - -).

Figure 6. Model predictions of the relaxation moduli of samples PB4
(see Table 1) for different values of polydispersity: 1, 1.05, 1.1, and
1.2 (from black to light gray). Polydispersity is considered (a) for the
backbone molecular weight only; (b) for the branch molecular weight
only; (c and d) for both the backbone and the branch molecular weights.

Macromolecules, Vol. 39, No. 18, 2006 Linear Rheology of Branched Polymers6253

D
ow

nl
oa

de
d 

by
 U

N
IV

 C
A

T
H

O
L

IQ
U

E
 D

E
 L

O
U

V
A

IN
 o

n 
O

ct
ob

er
 1

5,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 A
ug

us
t 1

0,
 2

00
6 

| d
oi

: 1
0.

10
21

/m
a0

60
43

85



Pbd;17,39,40the corresponding value ofMe is higher and amount
to 2250 g/mol. We usedR ) 1 andτe ) 9 × 10-7 s atTref )
24.5 °C. Results are shown in Figure 8. It is evident that
predictions and experiments are in very good agreement.

Again, to test the universality of the model, the linear rheology
of three linear polybutadienes from the same source (Table 1,
samples PB5-PB7)35 was successfully predicted using the same
set of parameters. The results are shown in Figure 9.

The last set of data presented in this work concerns the linear
viscoelasticity of a pompom polybutadiene diluted in an
oligomeric solvent (a 1,4-polybutadiene withMw ) 1000 g/mol)
at different concentrations, as described in Table 1 (sample PB8).
Parameters used here areMe ) 2050 g/mol andτe ) 3 × 10-7s
at Tref ) 23 °C. From eq 22, the plateau modulus is 0.83 MPa.
In this case, because a solvent is used, the (static) dilution
concept works well. Very good agreement between experience
and theory was found.

III.2. Influence of the Reptation on the Backbone Relax-
ation: Failure of Dynamic Dilution? From a closer inspection
of the experimental data for the H and the pompom molecules
(Figures 7, 8, and 10) around the terminal region, which is
expected to be governed by the reptation process, it appears
that the loss modulus exhibits a very broad maximum and that
the storage modulus also exhibits a broad low-frequency
relaxation. This behavior is reminiscent of relaxation by
fluctuations (e.g., in star polymers),5 suggesting that there is
virtually no reptation contribution to the terminal flow (or too
small contribution, if any). This is tested below:

Figure 11 shows the comparison of the measured viscoelastic
moduli of sample PS3 (see Table 1) with the respective
predictions in three different cases: first, by taking into account
the reptation process as described as in section II.4; next, by
assuming that the backbone of the pompom molecule relaxes
by reptation in its dilated tube; last, by assuming that the
polymer does not relax by reptation. By comparing the different
results, it seems clear that in this case, the reptation process
does not occur in the dilated tube. Indeed, because the branches
of the pompom molecule represent 80% of the polymer,
reptation in a dilated tube (see eq 20, withΦactive

2 ) 0.04) will
always be predicted immediately after the branches fluctuations,
whichever the set of parameters. However, in the real case we
distinctly see a “shoulder” at low frequencies, coming from the
unrelaxed part of the backbone. This represents a failure of the
dynamic dilution concept, where time scale separation is not
observed, which is corrected in the model by the extended
criteria of Graessley.27,28,31,32Furthermore, by comparing the
prediction with and without the reptation process, we observe
that the results are nearly similar: reptation does not have a
strong influence on this pompom polymer relaxation. Similar

results were found for the other H-polymer samples, confirming
these conclusions. This is a consequence of the large volume
fraction of the branches and similarMbranchandMb.

On the other hand, for some of the pompom samples PB1 to
PB4, reptation plays a more important role, as shown in Figure
12 (both the shape ofG′ and G′′ and the model predictions).
Note that the low-frequency shoulder ofG′ in PB1 (Figure 12a)
is probably an experimental issue (maybe not so well-character-
ized polymer) and does not relate to the backbone reptation.
These results indicate that, for reptation to dominate the terminal
response, the backbone must be much longer than the branches
of these macromolecules.

III.3. Effects of the Polydispersity.Even if the polydispersity
considered here is very small (Mw/Mn ) 1.05), its effect can be

Table 1. Molecular Characteristics of the Samples Used

sample Mb (g/mol) Mbranch(g/mol) q Tref (°C) ref

PS1 19 000 19 000 2 169.5 34
PS2 44 000 46 000 2 169.5 34
PS3 100 000 103 000 2 169.5 34
PS4 123 000 132 000 2 169.5 34
PS5 204 000 205 000 2 169.5 34
PS6 275 000 linear 169.5 34
PS7 800 000 linear 169.5 38
PB1 47 000 14 800 3 24.5 35
PB2 47 000 19 500 3 24.5 35
PB3 90 700 12 000 3 24.5 35
PB4 90 700 19 500 3 24.5 35
PB5 86 000 linear 24.5 35
PB6 129 000 linear 24.5 35
PB7 176 000 linear 24.5 35
PB8 89 000 21 000 3 23 36

Figure 7. (a-c) Linear viscoelastic moduli and loss angle tanδ of
H-samples PS1 to PS5 (see Table 1). Comparison between theoretical
(- - -) and experimental (symbols) data. (d) Experimental and predicted
moduli for samples PS6 to PS7 (see Table 1).
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very important.17,18 This is demonstrated in Figure 13a, which
shows the experimental data for the polybutadiene pompom
sample PB4, along with the model predictions without and with
a polydispersity of 1.05. This enables us to conclude that these
samples are on the average slightly polydisperse. Likewise,
Figure 13b shows the case of a H-polystyrene (sample PS3). In
the latter case, because of the small fraction of backbone (20%)
in comparison to the branches, polydispersity does not affect
the predictions appreciably.

III.4. Comparison with the Existing Tube-Model Theo-
ries: The Effect of the p2 Parameter. In the tube-model
theories, originated by Milner and McLeish20 and advanced by
several groups.14-19,24-26,36,43 the parameterp2 appears in the
equaton of the curvilinear diffusion constant, expressing the

fraction of the tube diameter the branch point moves in a time
scale of orderτbranch(1):

As explained in the Introduction,p2 is usually treated as an
adjustable parameter, and assumes a wide range of values. A

Figure 8. Linear viscoelastic moduli of pompom samples PB1 to PB4
(see Table 1). Comparison between predictions (- - -) and experimental
(symbols) data.

Figure 9. Linear viscoelastic moduli of samples PB5 to PB7 (see Table
1). Comparison between predictions (- - -) and experimental (symbols)
data.

Figure 10. Linear viscoelastic moduli of samples PB8 (see Table 1)
diluted in solvent at different concentrations:Φpolym ) 1, 0.73, and
0.5 (a); Φpolym ) 0.9, 0.63, and 0.34 (b). Comparison between
predictions (- - -) and experimental (symbols) data.

Da ) p2a2

2τbranch(1)
(23)
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valuep2 < 1, typically used in most branched polymer studies,
implies a slowing- down of the backbone relaxation.14-19,24-26,36,43

There are also situations where a value of 1 is used.14,24,25In
general, this parameter is considered to depend on chemistry
only,14-19 although there are suggestions of possible dependence
on the macromolecular architecture as well.24-26 In the present
work, we fix p2 ) 1 and there is no need to vary the value of
p2 across the different samples. This represents a distinct
difference that needs being elaborated. Thus, we briefly discuss
below the differences in the calculations of the different
contributing relaxation processes.

The reptation time of the backbone is given by eqs 19 and
20. Considering that reptation takes place in a (nearly) undi-
luted tube, this already slows down the backbone relax-
ation process. However, as shown in the literature, this
modification is not enough.24,27-30 The main contribution to the
slower backbone relaxation, and key difference between the
current approach and the previous ones14,15,17,18,24,25,36-43 origi-
nates from the factor (1- xd), which is used in the equation of
the reptation time;xd represents the deeper inner backbone
segments relaxed by fluctuations before the reptation process.
As already explained in section II.4, to analyze the backbone
relaxation by reptation, we consider that the backbone center-
of-mass diffuses along its total average equilibrium length.
Indeed, even if some segments are already relaxed by fluctua-
tions, they still have a nonzero equilibrium length that we
consider here. In fact, the same conclusion was already drawn
from the original time-marching model applied to highly
asymmetric stars.27 Last, the respective difference observed in
the calculation of the backbone fluctuations times, which
precedes and slows down the backbone reptation process arises
principally from the rescaling of the variablexb, from the outer
free end of a branch to the middle of the molecule (see sections
II.1 and II.3).

IV. Conclusions

We have developed a general coarse-grained model for
predicting the linear viscoelasic properties of branched polymers
from the knowledge of their molecular structure and three
viscoelastic parameters, i.e., the Rouse time of an entanglement
segment, the plateau modulus and the entanglement molecular
weight. This is an extension of earlier work using a time-
marching algorithm to successfully predict the rheology of linear
and star polymers. uses the physics of tube-based theories,
originated by McLeish and co-workers. We have appropriately
modified and extended this earlier model by proposing a new
macromolecular coordinate system and accounting for the
diffusion of the branching points and the polydispersity, within
the framework of dynamic tube dilation (using the citeria of
Graessley). We have obtained excellent predictions for the linear
viscoelastic properties of different complex macromolecular
architectures, such as H polymers and pompom polymers,
without any adjustable parameters. It has been demonstrated
that polydispersity is very important, even when it amounts to
5% only. There are still some issues at stake, such as the value
of the dilution exponent, the validity of the rubber elasticity
relation within 15%, and the coupling of the different relaxation
modes. Nevertheless, the successful and self-consistent applica-
tion of the model to different chemistries and architectures gives
us confidence that the proposed methodology represents a

Figure 11. Storage and loss moduli (a) and tanδ (b) of sample PS3
calculated without reptation (light gray), by considering the “solvent”
polymer fraction described by eqs 19 and 20 (dark gray) or by
considering the unrelaxed fraction of the sample equal to the volumetric
fraction of the (inner) backbone (black).

Figure 12. Storage and loss moduli of samples PB1 (a), PB2 (b), and
PB4 (c), calculated without any reptation (×××), or with reptation,
by considering that the “solvent” polymer fraction for the backbone is
described by eqs 19 and 20 (- - -); see text for details.
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powerful generic approach for predicting the linear rheology
of branched polymers.
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Appendix I: Relaxation Modulus of a Pompom Molecule

The relaxation modulus of a monodisperse polymer melt or
a concentrated solution is described in general by three terms:
the first represents the relaxation of the polymer from its
equilibrium state (by reptation, fluctuations, or constraint
release), the second is longitudinal modes relaxation, and the
third is fast Rouse motion inside the tube:4,7,44

The relaxation modulusF(t) of the polymer is calculated by
summing up all contributions from segments along the branches
and the backbone:

A given segment will contribute to the modulus if it has not
been relaxed by any of the three possible relaxation mecha-
nisms: prept, pfluc, andpenvir represent the probabilities that the
segment x remains oriented by reptation, fluctuations or
constraint release, respectively. These terms are described in
sections II.3, II.4 and II.5. Because the reptation and the
fluctuations times of a segment are not necessary time-
independent (for example they may decrease with increasing

the polymer fraction acting as a solvent), we use a time-
marching algorithm,27 which determines the survival prob-
abilities of each segment at a given timetk from the corre-
sponding values at the previous timetk-1:

The survival probability attk is the product of the survival prob-
ability at tk-1 and the survival probability during the time interval
taken betweentk-1 andtk. The latter probabilities are calculated
from the values of the relaxation timesτrelax(xi,tk) calculated at
time tk, after the update ofΦ(tk), the polymer fraction acting as
a solvent in the reptation and fluctuation processes:

The time τrelax represents either the reptation time or the
fluctuations time of the segmentxi. The second and third terms,
calculated as in ref 7, are functions of the Rouse time of the
backbone and of the branches

whereZ is the number of entanglements andN, the number of
Khun segments, and

Me is the entanglement molecular weight andτe is its Rouse
time of an entanglement segment:

where ú0 represents the monomeric friction coefficient. The
storage and loss moduli are then calculated from the relaxation
modulusG(t) by using the Schwarzl relations, which are an
approximation of the Fourier transform.6,45

Appendix II: Branches Fluctuations

The branches of a pompom molecule relax exactly as the
arms of a star molecule. As described by Milner and McLeish,20

each branch has an equilibrium length,Leq(Mbranch), coming from
the balance between an entropic force which tends to reduce
the distance between the end chain and the branching point,
and a topological force, representing the effect of the environ-
ment, which prevents this retraction. Because the real length of
the branch fluctuates about this equilibrium length (which is
the most probable), the initial tube segments relax little by little,
from the outer to the inner one. Their corresponding fluctuations

Figure 13. Storage and loss moduli of samples PB4 (a) and PS3 (b),
calculated by considering a polydispersity of 1.05 (- - -), or by
considering the samples as monodisperse (×××).

G(t) )
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0F(t) + 1
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0FRouse,longitudinal(t) + 5
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0Ffast Rouse(t) (I-1)

F(t) ) æb∫0
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τRouse,Mi
) τe(Mi

Me
)2

, i ) branch,b (I-8)

τe )
ú0b

2

3π2kT(Me

m0
)2

(I-9)

Macromolecules, Vol. 39, No. 18, 2006 Linear Rheology of Branched Polymers6257

D
ow

nl
oa

de
d 

by
 U

N
IV

 C
A

T
H

O
L

IQ
U

E
 D

E
 L

O
U

V
A

IN
 o

n 
O

ct
ob

er
 1

5,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 A
ug

us
t 1

0,
 2

00
6 

| d
oi

: 1
0.

10
21

/m
a0

60
43

85



time increases exponentially with the depth of the segment:

Since the fluctuations times of the segments are exponentially
dependent on their location on the branch, we consider that the
external segments already relaxed act as a solvent for the
relaxation of the inner segments. This is the idea of dynamic
dilution:22,23 if a fraction (1- Φ(tk,xbranch)) of the polymer acts
as a solvent, the molecular weight between two effective
entanglements (which have an effective role in the orientation
of the polymer),Me(tk,xbranch), increases

where Me,0 is the nominal entanglement molecular weight
(before dilution) and the parameterR is the dilution exponent,
usually between 1 and 4/3.42,46This effect must be included in
the expression II-2:

The functionΦ(tk,xbranch) represents the unrelaxed part of the
pompom polymer, when the branches are relaxed until the
segment defined by the normalized variablexbranch, at time tk.
In this particular case, because the reptation process occurs only
after the relaxation of the branches has been completed, no
“dynamic reptation solvent” is taken into account inΦ(tk,xbranch).
Therefore, this variable does not depend on the time:

In this expression, the value ofxb, which is defined as in Figure
1, is directly calculated fromxbranch:

As introduced in ref 20, for segments having a potentialU(xa)
< kT, their early fluctuations times do not follow eq II.4 but
are described by a Rouse process:

where τR,branch is the Rouse time of the branch. No polymer
solvent is considered in this equation. Indeed, to act as a solvent,
the relaxed part of the polymer must be well-separated in time
scale from the relaxing segments. This is not observed here
because of the speed of the Rouse relaxation.

The transition between the two fluctuation processes happens
at a transition segmentxtrans, for which the potentialU(xtrans) )
kT, and it is described as

By using these expressions, we do not need to calculate any
waiting time τ0, contrary to the other approaches in the
literature.20
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