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The answer depends on the chosen objective function :
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® Average cost

® Discounted cost
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Policy Iteration to solve Markov Decision Processes
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Summary on the complexity of Policy Iteration

Lower bounds In general: exponential in the worst case

With some particular structures: strongly polynomial

What about the average complexity?

Upper bounds Best known bound: Q2" /)

Our hope:  O[1.618")
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Total cost
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PART 2 : Can we obtain good upper bounds?

The state of the art and some inspiring ideas
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Acyclic Unique Sink Orientations Order-Regular matrices
Every face has a unique sink IT e {0,1}"™*" is Order-Regular
No cycle iff Vo<i<ji<m,30<k<n st.:
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The goal: The goal: Best
Bound the length of any "PI-path" Bound the number of rows O
in any Acyclic Unique Sink Orientation of any Order-Regular matrix
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Order-Regular matrices

IT € {0,1}"™*" is Order-Regular
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The goal:

e # Wi e =0 =04

Bound the number of rows
of any Order-Regular matrix

Experimentally:
n 1 2 3 4 5 6 7
m* 2 3 5 8 13 21 34
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Best known upper bound:

O(Qn/n) [Mansour & Singh '99]

Conjectu re [Hansen & Zwick '12]
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The state of the art and some inspiring ideas

Upper bounds on m* m* < 02"/n) < O(2")
Conjecture on m* m" ~ O(¢") = 0(1.618")
Lower bounds on m* m* > Q(\/ﬁn) = 2(1.4142")
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A natural idea

fails...
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The state of the art and some inspiring ideas

Upper bounds on m*

Conjecture on m*

Lower bounds on m*
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m* < 0(2"/n) < O(2")
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A relaxation IT € {0,1}™*" is quasi-Order-Regular

iff VOo<i<ji<m, d0<k<n st.:
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As high as we can get!
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We can build quasi-Order-Regular matrices with 2"~ ! + 1 rows!
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Summary on the complexity of Policy Iteration

Lower bounds In general: exponential in the worst case
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What about the average complexity?
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