Romain Hollanders, Raphaël Jungers and Jean-Charles Delvenne

present

Policy Iteration has exponential complexity for solving Markov Decision Processes

But there is more to the story...

A Cesame Seminar production

PART-1: Exponential lower bounds for Policy Iteration

PART 2: Can we obtain good upper bounds?

Romain Hollanders, Raphaël Jungers and Jean-Charles Delvenne

present

Policy Iteration has exponential complexity for solving Markov Decision Processes

But there is more to the story...

A Cesame Seminar production

PART 2: Can we obtain good upper bounds?

Markov Chains

$$p^T = p^T P^k$$

How much will I pay

Markov Chains

$$p_k^T = p_0^T P^k$$

$$p_0^T = 1 \quad 0 \quad 0$$

$$p_1^T = 0 \quad 1 \quad 0$$

$$p_2^T = \frac{3}{4} \quad 0 \quad \frac{1}{4}$$

$$p_3^T = \frac{1}{8} \quad \frac{7}{8} \quad 0$$

$$p_4^T = \frac{21}{32} \quad \frac{4}{32} \quad \frac{7}{32}$$

How much will I pay if I start from state 1?

Total cost

$$x(1) = \sum_{k=0}^{H} p_k^T c$$

Average cost

$$x(1) = \lim_{H \to \infty} \frac{1}{H} \cdot \sum_{k=0}^{H} p_k^T c$$

Discounted cost

$$x(1) = \sum_{k=0}^{\infty} \gamma^k p_k^T c$$

Markov Decision Processes

Markov Chains

$$p_k^T = p_0^T P^k$$

$$p_0^T = 1 \quad 0 \quad 0$$

$$p_1^T = 0 \quad 1 \quad 0$$

$$p_0^T = \frac{3}{2} \quad 0 \quad \frac{1}{2}$$

Total cost

Average cost

$$x(1) = \lim_{H \to \infty} \frac{1}{H} \cdot \sum_{k=0}^{H} p_k^T$$

Discounted cost

How much will I pay if I start from state 1?

$$x(1) = \sum_{k=0}^{\infty} \gamma^k p_k^T c$$

The answer depends on the chosen objective function:

1/2

- Total cost
- Average cost
- Discounted cost

The answer depends on the chosen objective function:

- Total cost
- Average cost
- Discounted cost

Linear Programming

Value Iteration

Policy Iteration

0. Choose an initial policy π_0

while
$$\pi_k \neq \pi_{k-1}$$

1. Evaluate π_k (Bellman)

$$x^{\pi_k} = c^{\pi_k} + \gamma \ P^{\pi_k} x^{\pi_k}$$

2. Improve π_k

$$\pi_{k+1} = \underset{\pi}{\operatorname{argmin}} \ c^{\pi} + \gamma \ P^{\pi} x^{\pi_k}$$

$$k \leftarrow k+1$$

end

Policy Iteration

0. Choose an initial policy π_0

while
$$\pi_k \neq \pi_{k-1}$$

1. Evaluate π_k (Bellman)

$$x^{\pi_k} = c^{\pi_k} + \gamma P^{\pi_k} x^{\pi_k}$$

2. Improve π_k

$$\pi_{k+1} = \underset{\pi}{\operatorname{argmin}} \ c^{\pi} + \gamma \ P^{\pi} x^{\pi_k}$$

$$k \leftarrow k+1$$

end

Policy Iteration to solve Markov Decision Processes

Policy Iteration to solve Markov Decision Processes

We add discount $\,\gamma=1-arepsilon\,$

How much perturbation?

$$\begin{array}{c}
x^{\pi'}(s) \\
\tilde{x}^{\pi'}(s) \\
\tilde{x}^{\pi_{k}}(s)
\end{array}$$

$$\begin{array}{c}
\leq F(n, \delta, \kappa) \varepsilon \\
\leq F(n, \delta, \kappa) \varepsilon \\
\end{array}$$

$$\begin{array}{c}
\geq G(n, \delta) \\
\leq F(n, \delta, \kappa) \varepsilon
\end{array}$$
OK for some $\varepsilon \sim \frac{1}{2q(n, \delta, \kappa)}$

Policy Iteration to solve Markov Decision Processes

Policy Iteration to solve Markov Decision Processes Total cost Exponential I [Fearnley'11] Deterministic transitions Discounted cost Exponential I [Fearnley'11] Deterministic transitions Strongly polymonial (Post & Ye'12) Exponential I [HDJ'12] Fixed discount factor strongly polymonial [Ye'10]

PART 2: Can we obtain good upper bounds?

PART 2: Can we obtain good upper bounds?

The case of the ent and serv-inquiring bloom approximation of $a, 0.07 \le 0.07$. Since the contract of $a^{\prime\prime} = 0.07$ and $a^{\prime\prime} = 0.02$ $a^$

Summary on the complexity of Policy Iteration

Lower bounds In general: exponential in the worst case With some particular structures: strongly polynomial What about the average complexity? Upper bounds Best known bound: $O(2^n/n)$

Our hope: $O(1.618^n)$

Experimentally:

Conjecture [Hansen & Zwick '12]

Policy Iteration to solve Markov Decision Processes

PART 2: Can we obtain good upper bounds?

The state of the art and some inspiring ideas

Upper bounds on m* $m^* \leq O(2^n/n) \leq O(2^n)$ Conjecture on m* $m^* \sim O(\phi^n) = O(1.618^n)$ Lower bounds on m* $m^* \geq \Omega(\sqrt{2}^n) = \Omega(1.4142^n)$

Simplex

 $\Omega(Exponential)$

[Friedmann '11] [Friedmann, Hansen & Zwick 11']

Markov Decision Processes

Policy Iteration

 $\Omega(Exponential)$ [Fearnley '10]

 $O(2^n/n)$ [Mansour & Singh '99]

Acyclic Unique Sink Orientations

Every face has a unique sink

No cycle

Order-Regular matrices

 $\Pi \in \{0,1\}^{m \times \, n}$ is Order-Regular

iff $\forall 0 < i < j < m, \exists 0 < k \le n$ s.t.:

$$\Pi_{i,k} \neq \Pi_{i+1,k} = \Pi_{j,k} = \Pi_{j+1,k}$$

The goal:

Bound the length of any "PI-path" in any Acyclic Unique Sink Orientation

The goal:

Bound the number of rows of any Order-Regular matrix

Best

O

$$\Pi = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Order-Regular matrices

 $\Pi \in \{0,1\}^{m \times n}$ is Order-Regular

iff $\forall \ 0 < i < j < m, \ \exists \ 0 < k \leq n$ s.t.:

$$\Pi_{i,k} \neq \Pi_{i+1,k} = \Pi_{j,k} = \Pi_{j+1,k}$$

$$\Pi = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\Pi_{i,k} \neq \Pi_{i+1,k} = \Pi_{j,k} = \Pi_{j+1,k}$$

The goal:

Bound the number of rows of any Order-Regular matrix

Best known upper bound:

 $O(2^n/n)$ [Mansour & Singh '99]

Experimentally:

n	1	2	3	4	5	6	7
m*	2	3	5	8	13	21	34

Conjecture [Hansen & Zwick '12]

$$m^* = F_{n+2}$$

$$= O(\phi^n)$$
golden ratio

The state of the art and some inspiring ideas

Upper bounds on m*

$$m^* \le O(2^n/n) \le O(2^n)$$

Conjecture on m*

$$m^* \sim \mathcal{O}(\phi^n) = O(1.618^n)$$

Lower bounds on m*

$$m^* \ge \Omega(\sqrt{2}^n) = \Omega(1.4142^n)$$

A natural idea

The state of the art and some inspiring ideas

Upper bounds on m*

$$m^* \leq O(2^n/n) \leq O(2^n)$$

Conjecture on m*

$$m^* \sim \mathcal{O}(\phi^n) = O(1.618^n)$$

Lower bounds on m*

$$m^* \ge \Omega(\sqrt{2}^n) = \Omega(1.4142^n)$$

A relaxation

 $\Pi \in \{0,1\}^{m \times n}$ is quasi-Order-Regular

iff $\forall 0 < i < j < m, \exists 0 < k \le n$ s.t.:

$$\Pi_{i,k} \neq \Pi_{i+1,k} = \Pi_{j,k} \equiv \Pi_{j+1,k}$$

We can build quasi-Order-Regular matrices with $2^{n-1} + 1$ rows!

The state of the art and some inspiring ideas

Upper bounds on m*

$$m^* \le O(2^n/n) \le O(2^n)$$

Conjecture on m*

$$m^* \sim \mathcal{O}(\phi^n) = O(1.618^n)$$

Lower bounds on m*

$$m^* \ge \Omega(\sqrt{2}^n) = \Omega(1.4142^n)$$

Policy Iteration to solve Markov Decision Processes

PART 2: Can we obtain good upper bounds?

The state of the art and some inspiring ideas

Upper bounds on m*	$m^* \leq \ O(2^n/n) \leq O(2^n)$
Conjecture on m*	$m^* \sim \Theta(\phi^n) = O(1.618'')$
Lower bounds on m*	$m^* \ge \Omega(\sqrt{2}^n) = \Omega(1.4142^n)$

Summary on the complexity of Policy Iteration

Lower bounds

In general: exponential in the worst case

With some particular structures: strongly polynomial

What about the average complexity?

Upper bounds

Best known bound: $O(2^n/n)$

Our hope: $O(1.618^n)$

