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Abstract— What influence can be exerted by one or a few
nodes in the consensus or stationary distribution reached by
a global network? We address this general question regarding
the sensitivity of the invariant probability distribution of an
irreducible row-stochastic matrix to the perturbation of a few
of its rows, and provide tight bounds on the co-norm of the
perturbation that can be computed in polynomial time.

I. INTRODUCTION

How much can individual nodes of a network affect the
properties of the whole network? In this work, we address
this general question regarding the sensitivity of the invariant
probability distribution 7 of an irreducible row-stochastic
matrix P (i.e., its left dominant eigenvector) to the arbitrary
modification of one or several rows.

Such invariant probability distributions arise in many fields
of applications related to networks, of which a well known
example is the concept of PageRank. First introduced by Brin
and Page as a measure of centrality (i.e., importance) of the
nodes in a graph, the notion of PageRank has been success-
fully applied to rank web pages in the well known search
engine “Google” [BP98]. The idea is that the importance
of a web page should be high if it is referred to by many
important pages. Computing the PageRank of a network is
rather cheap as it can be achieved by calculating the invariant
probability distributions of a Markov chain corresponding to
a uniform random walk on this network. In this context,
a natural question is whether it is possible to optimize the
PageRank of some nodes while only making local changes
to the network [dKNDOS8], [IT09], [CIB11]. To state the
question otherwise, we ask how robust the PageRank of a
node is to the manipulation of a few other nodes. These
questions come down to studying the sensitivity of the
PageRank vector to sparse (i.e., localized) perturbations of
the Markov chain describing the uniform random walk.

A dual interpretation exists in terms of averaging and
consensus algorithms [FD10], [FD13]. In the simplest set-
ting, agents starting from an initial opinion replace it at
each time step by a weighted average of their neighbors.
The averaging weights of agent i are encoded in the i
row of a row-stochastic matrix, and the repeated application
of the process drives every agent to a common consensus
value, provided that the matrix is irreducible and acyclic.
The weight of every agent’s initial opinion is given once
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again by the corresponding entry of the left eigenvector. In
this interpretation, the question arises whether a few agents
could change their averaging strategy so as to significantly
modify the dominant eigenvector, e.g. in order to maximize
their impact on the final consensus value or minimize the
impact of some other nodes. Other applications of the same
problem exist as well, e.g., in the context of interacting
particle systems, as described in [CF13].

The general problem we are interested in can be formu-
lated as follows. Let P € R™*™ be a row-stochastic matrix
whose i row represents the transition probabilities of a
state ¢ of a Markov chain with state space V and assume
that we are given control over a small subset W C V
of the states. This means that we are allowed to freely
modify the rows of P corresponding to the states in W. Let
P := P + Z be the row-stochastic matrix obtained from P
by applying a perturbation Z on the rows corresponding to
W. We are interested in bounding ||w —7||, where 7 = PT'r
and T = PTT are the invariant probability distributions of
P and P respectively, and where Z affects only the rows
of P that correspond to the states in W. In this general
problem formulation, the choice of the norm to use has been
deliberately left open for later.

As explained in [CF13], classical perturbation analysis
fails to provide a satisfactory answer to the above question.
Indeed, the bounds that can be obtained via these approaches
are of the form:

I =7l < kpllP = Pllg, (1

for some p, ¢ > 1, where xp is a condition number that only
depends on the original matrix P. These bounds typically
blow up when the size of the network in question increases.
If these bounds were to be tight, it would mean that a single
node of the network is eventually capable on its own to
dramatically affect the whole network. This clearly indicates
a need for better, tighter bounds. Moreover, it often makes
sense in applications to consider not the magnitude of the
perturbation, but rather its support (i.e., the set of perturbed
entries). Typically, if the network represents agents, and a
few of them decide to modify their connections, this might
result in a change in the rows corresponding to these agents,
not necessarily of small magnitude, but definitely restricted
to a small set of entries.

In [CF13], the authors proposed another bound of the
form:

|r =7 <6 (T- W) : )
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where 6 is a continuous, non-decreasing function, 7 is the
mixing time of the original Markov chain defined by P,
Tw—y 1S the expected escape time of W and Ty_,yy is
the expected hitting time of the states in V. This bound
behaves much better than the ones of the form (1) in terms of
scalability. Additionally, it provides interesting insight about
the dynamics generated by the perturbation and relates it
to physical concepts. For instance, using (2), it is easy to
quantify the impact of fixing the escape time of WV, which
could be interpreted in the context of PageRank as a way
to prevent being detected as a link farm by Google. On the
other hand, it is not supposed to be tight and it only works
to bound the 1-norm of the perturbation. It is indeed not
straightforward to adapt the bound to other important norms,
like the co-norm, using the same kind of techniques.

In this work we consider another approach that aims to
bound the oo-norm of m — 7. In contrast to the bounds
above, our bound is algorithmic and has no proper explicit
form, hence it does not have the same explicative power as,
e.g., (2). On the other hand, it is tight and fairly cheap to
compute. Additionally, our algorithm provides the optimal
perturbation that meets the bound. We also explore how
fixing the escape time of WV can be included into the picture.

II. APOLYNOMIAL TIME ALGORITHM FOR
COMPUTING THE MAXIMUM PERTURBATION OF
THE INFINITE NORM

To bound the co-norm of m—7, our approach is to compute
the minimum and the maximum value of 7 for every state
v and then look at the maximum difference with 7 which is
achieved for some v.

We first reformulate the problem in terms of Markov
chains. The invariant probability distributions 7 = P77
quantifies the stationary frequency of visit of every state of
a Markov chain when following a random walk with the
transition probabilities in P. For some state v, m, can also
be seen as the inverse of the first return time A\, of v, i.e., the
expected number of steps between two visits of v. Another
interesting measure is the first hitting time to v from the other
states of the Markov chain, i.e., the expected number of steps
that the other states need to reach v for the first time. We will
denote the vector of first hitting times to v by ¢". The first
hitting time to v of state u is the weighted sum of the first
hitting times of its neighbors plus 1 (for performing a step)
and hence, ©" can be computed by solving the following
linear system:

' =Pp"+1, with ¢, =0.

Then the first return time of v is obtained from:
)\v = Iy,: QOU + 17

where we used standard Matlab notations, and we have
my = 1/A,. Hence, to maximize (resp. minimize) m,, one
should minimize (resp. maximize) \,.

Coming back to our original problem, we should choose a
probability distribution on the outgoing edges of the states in
W in order to maximize or minimize A, for all v. This is a

From w, go “all in” to wu:

e u=u: o, =5, T, =0.18

1 eu=us o, =9, T, =0.14

Fig. . An example showing that pointing to the node maximizing
the first hitting time to v may be suboptimal to minimize 7, . Here
Yuy = 3.33 < 4 = ¢, . However, in order to minimize 7, the
unique outgoing edge of w should point to w2 instead of w;. (the
pictured Markov chain is the unperturbed P).

Algorithm 1 MAXIMIZATION OF || — 7|0
Ensure: The maximum value of |7 — 7| so.

: Compute 7 = PTr, 177 = 1.

: For all states v, compute 7,;'** (known perturbation).

- For all states v, compute 7" (test ~|V| perturbations).
return || — 7|00 = max max {7max qminl,

AW o~

» — Ty, Ty — Ty,

similar approach to the one described in [CJB11] to optimize
the PageRank of a node in a network. Furthermore, since the
decision states are grouped into a set WV, it is straightforward
to see that optimizing the first return time of v comes back
to optimizing the first hitting time to v of the states in W.

Minimizing the first hitting time to v of any control state,
and hence maximizing its invariant probability, is easy: the
control state should simply jump towards v with probability
1. As for minimizing 7, it is easy to see that all the states of
W should stay in YW with probability 1 in order to maximize
their distance to v. However, if no regulation is applied to P,
this irremediably creates a reducible matrix. To prevent this,
a natural thing to do is to impose a fixed escape time 1" for
the states of V. It turns out that a solution of the resulting
problem can still be found in polynomial time. Indeed in that
case, it can be shown using a convexity argument that all the
control states of YV should remain in W at the next step with
some probability p(7') < 1 and go “all in” to some unique
other state v ¢ W with probability 1 — p(T').

At first glance, it could be tempting to choose w as the
state with the highest first hitting time to v in the Markov
chain defined by P, i.e., the state which is originally the
furthest away from v. This is unfortunately wrong in general
as the example of Figure 1 illustrates. Therefore, finding u
a priori requires to scan every candidate state and pick the
one that minimizes 7,,.

Based on the above observation, we can now propose
an algorithm to maximize ||7 — 7[|.. The main steps are
described in Algorithm 1. Note that the minimization of 7
requires looping through every state u € V\W, each time



computing 7 for the Markov chain in which the control
states point towards themselves with probability p(7) and
towards w with probability 1 — p(T"). The number of times
that we need to compute an invariant probability distribution
is polynomial, hence the result stated in Theorem 1.

Theorem 1: It is possible to compute an exact upper
bound on || — 7|| in polynomial time.

III. CONCLUSION AND PERSPECTIVES

In this work, we have chosen an algorithmic approach to
compute upper bounds on the maximal perturbation of the
invariant probability distribution of a Markov chain for the
oo-norm in polynomial time. In future works, we would like
to investigate whether the same approach could be applied
to the l-norm. In this case, we would like to quantify
empirically the improvement of our tight bound against the
one given by (2).
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