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Abstract

An unsteady discrete adjoint implementation for a discontinuous Galerkin
model solving the shallow water wave equations on the sphere is presented.
Its use for tsunami simulations is introduced to reconstruct the initial con-
dition automatically from buoy measurements. Based on this feature, a
real-time tsunami model is developed, using several numerical tools such as
a high-order discretization, hp-refinement, parallel dynamic load balancing
and adjoint-based data assimilation. The model is able to reconstruct the
tsunami source and accurately forecast its far-field propagation (e.g. from
Japan to Chile, at a distance of about 17000 km) in a computational time 20
times faster than the physical propagation time, to which the data collect-
ing time needs to be added. The work presented constitutes a step towards
an efficient nonlinear tsunami warning model. Additional features could be
added for more complete realistic forecasts.
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Introduction

While most popular geophysical flow solvers are based on classical numer-
ical methods such as finite differences, finite volumes or spectral methods,
innovative techniques developed in other fields are increasingly being applied
to those problems. During the last decade, several studies have focused on
unstructured grid methods to increase the model resolution where it is needed
(e.g. [1]). Despite improvements in computational power, multi-scale resolu-
tion is indeed essential to capture the interaction of phenomena whose spatial
scales vary from a few to thousands of kilometers at a bearable computational
cost.

The MUSE1 model has been developed in this framework, with the aim of
being an all scales unified simulation system that can exploit the next genera-
tion of petascale computers to simulate geophysical flows. It is based on the
discontinuous Galerkin method, whose potential has already been demon-
strated for marine modeling [2; 3; 4; 5] or atmospheric flows [6; 7; 8]. The
main advantages of this method, in addition to the use of unstructured grids,
consist of good stability properties thanks to the finite volume fluxes, effi-
cient parallel scaling due the the high locality of the method and high-order
accuracy. Further, the fact that no degree of freedom is shared between ele-
ments facilitates the implementation of nonconforming edges, characterized
by hanging nodes (i.e. a node attached to the middle of an edge) or different
polynomial orders on each side of the interface between elements. Hence,
the discontinuous Galerkin method is well suited for dynamic adaptation of
either the mesh [9; 10; 11], the polynomial order [12] or both [13; 14; 15].
Dynamic refinement concentrates the computing cost not only where, but
also when it is needed, as illustrated by hurricane forecasts [16] or tsunami
tracking applications [17; 14].

In order to exploit the multi-scale capabilities of the model, it is useful
to develop its adjoint. The present study focuses on this task, which is then
used to provide the response of a model to perturbations in state variables
or design parameters. Adjoints are used in engineering, for example to op-
timize automatically the shape of aerodynamic parts such as airfoils [18] or
to estimate an objective-oriented error in order to selectively adapt dynam-
ically the resolution [19; 20; 15]. Two different adjoint approaches can be
used: the discrete adjoint, considered in this study, or the continuous ad-

1http://muse.ucar.edu
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joint. The continuous adjoint is analytically derived from the flow equations,
then discretized while the discrete adjoint is derived at the level of the dis-
crete equations [21]. The continuous adjoint is implemented similarly to any
other equation. It can be used in the presence of non-differential operators
such as limiters. However, the continuous adjoint equations are not always
easy to derive, and the treatment of boundary conditions is considered not
trivial. Using the discrete adjoint guarantees that the exact sensitivities of
the discrete simulation process are obtained, ensuring robustness in the op-
timization process. The discrete adjoint has been used in geosciences either
for goal-oriented error estimation [22] or data assimilation [23; 24].

In this work, we propose to use the adjoint method in the framework of
real-time data assimilation, in order to forecast tsunami wave propagation.
Such forecasts allow for immediate actions by local authorities to limit the
human and material damages caused by potential tsunami-generated inunda-
tions. Hence, fast and accurate warnings are essential for the local emergency
managers to take appropriate actions [25]. The earliest warnings are based on
the analysis of seismic waves [26]. However, large errors can be generated by
using indirect measurements of the tsunami generation. Additional valuable
information can be obtained based on direct measurements of the elevation
of the sea surface. While the distance from the epicenter of the earthquake
to the measurement buoys is usually too large to provide a warning forecast
for the closest coasts, this method is useful to compute accurately far-field
tsunami amplitudes and propagation time. Moreover, even a late forecast
for the closest coasts is useful to emergency managers in critical decisions
regarding response, recovery and search-and-rescue [25].

Using direct measurements of the sea surface, the Method of Splitting
Tsunami MOST2 numerical model [27] relies upon a linearity assumption
to provide a fast estimate of the tsunami behaviour. A set of unit sources
covering active subduction zones is defined. For each unit source, a numer-
ical simulation is pre-computed and all the data stored. A tsunami forecast
for any initial condition belonging to the space defined by the unit sources
is obtained by a linear combination of the pre-computed solutions. The
coefficients of the linear combination have to be chosen such that the so-
lution matches measurements, which can be done through an optimization
procedure. However, this approach is only reliable if the flow is sufficiently

2http://nctr.pmel.noaa.gov/model.html
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linear for the solution to be expressed as a linear combination of several pre-
computed solutions. This linearity assumption is valid offshore, but coastal
flows can be highly nonlinear, especially if inundation phenomena are taken
into account. In those areas, the model solution can not be expressed as a
linear combination of different model runs. For the same reasons, buoy mea-
surements to be used with this method are limited to deep water locations
where the dynamics are free from coastal nonlinear effects [25]. Coastal mea-
surements may be easier to obtain and provide data earlier by being closer
to the epicenter of the earthquake, allowing faster forecasts.

This study aims at investigating the use of the discrete adjoint to re-
construct the tsunami source without any linearity assumption. It is not in-
tended as a full-fledged tsunami warning model, but rather as an exploratory
study to assess the potential of innovative numerical methods, such as high-
order discontinuous Galerkin discretizations, dynamic hp-adaptation, parallel
processing with load-banlancing and adjoint optimization in the framework
of the simulation of geophysical flows with focus on the real-time simulation
of tsunamis. The first section is a description of the discrete adjoint for a
general optimization process, while the second section explains how this con-
cept can be applied in the case of a real-time tsunami application. The third
section describes the modifications made in the nonconforming discontinuous
Galerkin code to add adjoint capabilities. The last section before the con-
clusion presents the application of the model to the simulation of the recent
2011 tsunami in Japan, including the reconstruction of the initial condition.

1. Discrete adjoint for minimization

For several engineering applications in computational fluid dynamics, the
design optimisation process corresponds to the minimization of a scalar ob-
jective function J , subject to the constraint that the discrete flow equations
and boundary conditions are satisfied [28]:

Find min
α
J(U(α),α) subject to N(U(α),α) = 0, (1)

where α is the vector of the design variables, i.e. the n parameters that
can be modified to minimize the objective function. The vector U contains
the degrees of freedom, describing the flow at each spatial node and each
time step, while N(U(α),α) expresses collectively the flow equations and
boundary conditions which are satisfied when its value is zero. In order to
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find this minimum, optimization methods such as the steepest descent [29]
or the more advanced BFGS technique [30] require the knowledge of the
derivatives

dJ

dαi
=
∂J

∂U

dU

dαi
+
∂J

∂αi
∀ i = 1→ n. (2)

While ∂J
∂U

and ∂J
∂αi

are generally easy to obtain, the computation of the sen-

sitivity of the flow variables to the parameters dU
dαi

is not straightforward.
The most direct method, in terms of implementation, is obtained by com-

puting numerically the derivative by means of a finite difference scheme where
each parameter is successively perturbed around a base solution U(α):

dU

dαi
' U(α + εδi)−U(α)

ε
∀ i = 1→ n, (3)

where δi is a unit vector such that only the i-th component is non-zero. The
perturbation ε is chosen sufficiently small to limit the errors due to nonlinear
effects, but sufficiently large to reduce numerical roundoff error. This method
requires n+1 numerical simulations : one to compute the base solution U(α)
and n to compute the perturbed solutions.

An alternative consists in a linearization of the flow equations (1) around
the base solution:

∂N

∂U

dU

dαi
+
∂N

∂αi
= 0 ∀ i = 1→ n. (4)

By defining [28]

ui ,
dU

dαi
, A ,

∂N

∂U
, fi , −

∂N

∂αi
and gT ,

∂J

∂U
, (5)

it is easy to see that (4) corresponds to n linear systems

Aui = fi ∀ i = 1→ n, (6)

whose resolution provides the different vectors ui to be introduced in the
expression of the derivatives (2):

dJ

dαi
= gTui +

∂J

∂αi
∀ i = 1→ n. (7)

This method does not need the additional parameter ε. However, n + 1
simulations are still needed: one for the base solution, and n simulations
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using the linearized equations to compute the sensitivity of the flow variables
to each of the parameters αi. If the number of design variables grows, the
amount of simulations needed can quickly become unaffordable, and a more
efficient method is needed.

Assuming A is invertible, (6) can be written as

ui = A−1fi ∀ i = 1→ n, (8)

gTui = gTA−1fi ∀ i = 1→ n. (9)

By defining a last variable vT , gTA−1, (9) simplifies into

gTui = vT fi ∀ i = 1→ n. (10)

Introducing this identity in (7), it is possible to compute equivalently the
derivative dJ

dαi
by

dJ

dαi
= vT fi +

∂J

∂αi
∀ i = 1→ n, (11)

subject to the constraint directly derived from the definition of vT :

ATv = g. (12)

After the computation of the base solution, there is only one linear system,
i.e. equation (12) to solve. Whatever the number of design parameters: the
knowledge of v allows the computation of the derivatives of the objective
function J with regards to each of the n designs parameters αi using vector
dot products.

2. Application in a real-time Tsunami alert system

The procedure considered in this work for the real-time prediction of
tsunamis is summarized in Figure 1. When an earthquake occurs, its effect
on the perturbation of the sea level is quickly measured by the NOAA DART3

tsunameters located around the epicenter. Those measurements are available
in real-time, but they need to be filtered to remove the tidal signal and
earthquake waves, which can be done by different approaches (e.g. [31; 32]).

3http://nctr.pmel.noaa.gov/Dart
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Figure 1: Real-time tsunami warning procedure. Once early measurements are available,
the source of the tsunami is reconstructed to provide an initial condition to simulate the
propagation of the tsunami through the world ocean.

Once early buoy measurements have been collected and filtered, they can
be used in the process of reconstructing the tsunami source, i.e. the initial
perturbation of the free-surface of the ocean generated by the earthquake.
To this aim, we define an objective value to minimize, corresponding to the
time-integration of the model error on the free-surface elevation η at the
position of the nb tsunameters:

J(U(α)) =

nb∑
j=1

[∫ t

t=0

(
ηmodel(U(α),xj, t)− ηmeas

j (t)
)2

dt

]
, (13)

where xj is the coordinate of the j-th buoy. The way of computing ηmodel

from the vector of degrees of freedom U will be discussed in the following
section. In order to minimize this objective function, design parameters to
act on are needed. To this aim, a set of unit sources (initial perturbations of
the sea level) is considered. Those unit sources ηiunit have to be chosen such
that their adequate linear combination forms a good approximation of the
tsunami initial perturbation ηinit:

ηinit(x) '
n∑
i=1

αiη
unit
i (x). (14)
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Hence, the factors αi multiplying each of those unit sources to establish the
initial condition characterize the parameter space used to minimize the ob-
jective function J(U(α)). It is now possible to use the concepts introduced in
section 1 to minimize this objective and build the best approximation possible
of the tsunami source given the parameters space. The number of parame-
ters being generally high, it is more efficient to use the adjoint technique in
the computation of the derivatives dJ

dαi
rather than finite differenciation or a

direct linearization.
Once the initial condition is reconstructed, a complete simulation of the

propagation of the tsunami through the whole ocean can be performed to
anticipate the effects of the tsunami on remote coastal areas.

3. Improving the model with adjoint capabilities

The MUSE shallow water wave model, described in detail by [14], is used
in this work. It is a discontinuous Galerkin model, solving the shallow wa-
ter wave equations on the sphere. It captures the dynamically varying key
aspects of the flows by having the advantageous ability to locally modify
the mesh as well as the order of interpolation within each element. The
computational load is efficiently distributed amongst processors in paral-
lel using a weighted recursive coordinate bisection strategy. The flows are
expressed in three-dimensional Cartesian coordinates but tangentially con-
strained to the sphere by adding a Lagrange multiplier to the system of
equations [33]. The model has been validated on classical atmospheric test
cases such as those described by [34], and on the simulation of the February
2010 Chilean tsunami propagation [14]. Its multiscale strategy was able to
reduce the computational time by an order of magnitude on the tsunami
simulation, demonstrating its potential towards multi-resolution oceanic and
atmospheric applications.

The modification of the code to obtain an adjoint model begins with
the linearization of the discrete governing equations to derive the linear sys-
tem given by equation (6). Using the third-order strong stability preserving
Runge-Kutta scheme (SSP33, see [14] for more details), the discrete flow
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equations and boundary conditions can be expressed as

N =



I
I −I
3
4
I 1

4
I −I

1
3
I 2

3
I −I

. . .

I −I
3
4
I 1

4
I −I

1
3
I 2

3
I −I

. . .





U0

U0,1

U0,2

...
Un

Un,1

Un,2

...

...


+



Uinit

F(U0)∆t
1
4
F(U0,1)∆t

2
3
F(U0,2)∆t

...
F(Un)∆t

1
4
F(Un,1)∆t

2
3
F(Un,2)∆t

...


= 0, (15)

where Ua,b is the vector of the discrete degrees of freedom at the b-th Runge-
Kutta stage of the a-th time iteration (no b means the vector corresponds to
the beginning of a complete Runge-Kutta iteration), while I is the identity
matrix of the corresponding size. The time step is denoted ∆t, and F(Ua,b) is
the discrete right hand side of the governing equations at the corresponding
time iteration (see [14] for details). In the case of an explicit discontinuous
Galerkin code, no matrix needs to be built, and the equation can be computed
locally element by element. The solution at any time iteration depends only
on the solutions computed at the previous steps. Hence, the equations are
advanced in time in a forward step-by-step fashion.

It is now possible to derive A and fi needed to build the linear system
(6) corresponding to the linearized equations :

A =



I A0
b


. . . An

b


. . .


, fi =



−∂Uinit

∂αi

0
...


, (16)

with

An
b =


I + ∂F(Ui

n)
∂Ui

n ∆t −I
3
4
I 1

4

(
I + ∂F(Ui

n,1)

∂Ui
n,1 ∆t

)
−I

1
3
I 2

3

(
I + ∂F(Ui

n,2)

∂Ui
n,2 ∆t

)
−I

 . (17)
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After some manipulations, this linear system can be expressed as

I

I −I
3
4
I 1

4
I −I

1
3
I 2

3
I −I

. . .

I −I
3
4
I 1

4
I −I

1
3
I 2

3
I −I

. . .





ui
0

ui
0,1

ui
0,2

...

ui
n

ui
n,1

ui
n,2

...

...


+



∂Uinit

∂αi
∂F(U0)
∂U0 u0

i ∆t
1
4
∂F(U0,1)
∂U0,1 u0,1

i ∆t
2
3
∂F(U0,2)
∂U0,2 u0,2

i ∆t
...

∂F(Un)
∂Un un

i ∆t
1
4
∂F(Un,1)
∂Un,1 un,1

i ∆t
2
3
∂F(Un,2)
∂Un,2 un,2

i ∆t
...


= 0, (18)

which is very similar in shape to the discrete flow system (15). Hence the
linearization of the model to obtain dU

dαi
consists in

1. using ∂Uinit

∂αi
instead of Uinit as initial condition,

2. replacing the discrete right hand side by its derivative with respect to
Ua,b, multiplied by ui

a,b, at each Runge-Kutta stage b of the a-th time-
iteration. Note that the base solution U either needs to be computed
simultaneously or reloaded at each time iteration from a pre-computed
flow simulation.

The drawback of this approach is the requirement of a model run per dimen-
sion of the parameter space. To obtain the derivatives dU

dαi
for any i with a

single model run, one needs to solve the linear system for the dual problem
(12). To compute g = ∂J

∂U
at the discrete level, the discrete version of the

objective function (13) at a time iteration a, corresponding to the time ta is
constructed as:

J(U(α)) =

nb∑
j=1

a∑
k=1

∆t

[
1

6

(
ηmodel(U(α),xj, t

k)− ηmeas
j (tk)

)2

+
1

6

(
ηmodel(U(α),xj, t

k,1)− ηmeas
j (tk,1)

)2

+
2

3

(
ηmodel(U(α),xj, t

k,2)− ηmeas
j (tk,2)

)2
]
. (19)

The sum over the time steps corresponds to the time integration of the error.
The associated coefficients (i.e. 1/6, 1/6 and 2/3) have been derived from
the SSP33 Runge-Kutta time discretization scheme to ensure that this time
integration is done similarly to the time integration of the discrete equations.
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The elevation of the sea surface computed by the model at the coordinate
xj, time iteration a and Runge-Kutta step b is computed using the vector
product

ηmodel(U(α),xj, t
a,b) = ηa,b(U(α)) · φ(xj), (20)

where ηa,b(U(α)) is the subset of U(α) related to the degrees of freedom for
the elevation of the free-surface at time iteration a and Runge-Kutta step
b, while the vector φ contains the associated shape functions which are zero
everywhere except in the element to which they belong (see [14] for details).
The vector g is obtained by a differentiation of the objective function (19)
with respect to U, leading to the linear system (12) for the adjoint problem:

AT =



I
 (A0

b)
T


. . .

 (An
b)T


. . .



, g =



0∑nb

j=1
2
6
∆t
(
η0φ(xj)− ηmeas

j (t0)
)
φ(xj)∑nb

j=1
2
6
∆t
(
η0,1φ(xj)− ηmeas

j (t0,1)
)
φ(xj)∑nb

j=1
4
3
∆t
(
η0,2φ(xj)− ηmeas

j (t0,2)
)
φ(xj)

...∑nb

j=1
2
6
∆t
(
ηnφ(xj)− ηmeas

j (tn)
)
φ(xj)∑nb

j=1
2
6
∆t
(
ηn,1φ(xj)− ηmeas

j (tn,1)
)
φ(xj)∑nb

j=1
4
3
∆t
(
ηn,1φ(xj)− ηmeas

j (tn,2)
)
φ(xj)

...



.

(21)
After some manipulations, this linear system can be expressed as

I I 3
4
I 1

3
I

−I 1
4
I

−I 2
3
I

− I
. . . I 3

4
I 1

3
I

−I 1
4
I

−I 2
3
I

−I
. . .





vi
0

vi
0,1

vi
0,2

...

vi
n

vi
n,1

vi
n,2

...

...



+



(
∂F(Ui

0)

∂Ui
0

)t
v0,1
i ∆t

1
4

(
∂F(Ui

0,1)

∂Ui
0,1

)t
v0,2
i ∆t

2
3

(
∂F(Ui

0,2)

∂Ui
0,2

)t
v1
i ∆t

...(
∂F(Ui

n)
∂Ui

n

)t
vn,1
i ∆t

1
4

(
∂F(Ui

n,1)

∂Ui
n,1

)t
vn,2
i ∆t

2
3

(
∂F(Ui

n+2)

∂Ui
n+2

)t
vn+1
i ∆t

...
0



− g = 0.

(22)
Hence, it is possible to convert the linearization of the forward code to an
adjoint code by

1. setting the initial condition to zero and substracting the vector g de-
fined in (21) to the system,
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2. replacing the derivative of the right hand side by its transpose,

3. transposing the SSP33 Runge-Kutta coefficient describing the time dis-
cretization.

AT being an upper triangular matrix, the solution at any time iteration de-
pends only on the solutions computed at the latter steps, and the equations
can be solved by back substitution which corresponds to a backward inte-
gration in time. For this reason, it is necessary when computing the base
solution with a forward run to store the value of the degrees of freedom after
each Runge-Kutta stage. For large problems, it can result in massive disk
usage forcing the model to be disk bound, especially in the case of an ex-
plicit time-stepping where the time-step is relatively small due to the CFL
condition. Although not used in this work, a checkpointing mechanism can
be used to reduce the disk storage requirements, at the expense of additional
recomputations [35].

The construction of the right-hand side for the linearized equations in-
volves several products by matrices, corresponding to different discrete opera-
tors (mass matrices, differentiation matrices, constraint to handle the sphere,
combinations of variables). Each of those operators need to be transposed.
Further, the order in which the products are performed need to be inverted
when the transposition is done. If the linearized right-hand side is obtained
by np products of matrices Pj:

∂F(Ui
a,b)

∂Ui
a,b

=

np∏
j=1

Pj Ui
a,b, (23)

the one to be used for the adjoint problem will be(
∂F(Ui

a,b)

∂Ui
a,b

)T
=

np∏
j=1

PT
np−j+1 Ui

a,b, (24)

where the superscripts a, b correspond to the b-th Runge-Kutta stage of the
a-th time iteration. In this work, a conforming mesh is considered, but not
a conforming order: neighboring elements can have different orders, hence
sharing faces with different numbers of nodes. In this case, additional projec-
tion operators appear to transfer the data between each side of the interfaces
between elements, which need to be transposed correctly and applied at the
right moment following (24). The manner to transpose and change the order
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of the operations being implementation-specific, no further details will be
provided. However, the modification of the code has to be handled with care
in order to preserve the equivalence of the dual form (10). This identity can
be used to check the correctness of the adjoint implementation compared to
the forward linearization at each step of the development of the code. The
linearization itself can be verified by comparing with sensitivities obtained
using a finite difference scheme (3).

4. Application to the 2011 tsunami in Japan

The model with adjoint capabilities has been applied to the simulation
of the tsunami generated by the earthquake off the coast of Japan that oc-
curred on Friday, 11 March 2011. As mentioned in section 2, the simulation
process consists of two steps: the reconstruction of the initial condition using
an adjoint-based source optimization (section 4.1) and a complete far-field
simulation of the propagation of the tsunami (section 4.2). Those two steps
share similar characteristics. The computational domain encompasses the
global world ocean. Hence, there is no open boundary condition to enforce.
The bathymetry of the ocean is derived from the ETOPO data [36] and varies
from 0 to about 9000 m. The bottom stress is computed using the Manning
formula with a coefficient n = 0.03 matching the values usually employed in
the literature.

4.1. Source optimization

The mesh used in this first step is generated using the Gmsh4 software
[37] and focuses on the area surrounding the earthquake location (Figure
2). Away from the region of interest (i.e. outside of the area between the
epicenter of the earthquake and the DART measurement buoys), the char-
acteristic size of the elements increases strongly such that more than 80% of
the elements (1850 over 2227) are located where the resolution of the flow
is important. Further, the polynomial order of the elements away from the
area of interest is set to its minimum value (4x4 nodes per element).

No dynamic adaptation of the mesh or polynomial order is considered
during the source optimization. While it is possible to implement this fea-
ture in the model (see e.g. [38]), additional projection operators to transfer

4http://www.geuz.org/gmsh
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Figure 2: Computational mesh and number of nodes per element used for the first step of
the simulation process: source optimization. The blue spheres correspond to the location
of the DART buoys providing the free-surface elevation measurements to be used for
the reconstruction of the initial condition. The Cartesian domain has been mapped to
longitude/latitude coordinates.
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the data when an element is modified need to be taken into account when
constructing the adjoint. The different states of the mesh during the adjoint
and forward runs need to match. Hence, it would be necessary to store at
each time iteration the current mesh with the polynomial order used in each
element, such that the adjoint model can load it to be coherent with the
forward one. Given the relatively small domain of interest, using dynamic
adaptation for the source optimization may not be worth the additional in-
vestment and cost. For similar reasons, a variable time resolution would
require to keep track of the time step at each Runge-Kutta iteration. Since
the time-step is limited by the celerity of the gravity waves, which is almost
constant, there is no advantage to use a variable value; and it has been set
to 4.5 seconds throughout.

To optimize the efficiency and stability of the simulation, the polynomial
order varies spatially. Around coastal and shallow areas, small lower-order
elements are used for stability: in unresolved areas, a high-order discretiza-
tion is indeed susceptible to develop oscillations that may generate negative
depths and make the model crash. Further, several small elements are needed
to capture the geometry of the coastlines, which makes the use of a high-order
discretization too costly. For large offshore elements, the polynomial order
is increased to fully benefit from the high-order accuracy. To avoid a strong
spatial change of resolution, the difference of the polynomial orders between
two neighboring elements is constrained to 2.

The initial condition to be tuned is a combination of unit source functions
defined by the NOAA center for tsunami research5. Those source functions
are located along the known fault zones susceptible to generate a tsunami and
are available for the entire Pacific Basin, Caribbean for the Atlantic region
and Indian Ocean. A combination of eighteen unit sources, located around
the epicenter of the earthquake, were chosen (Figure 3). Each unit source
corresponds to a deformation due to an earthquake characterized by a fault
length of 100 km, fault width of 50 km, and a slip value of 1 m [39]. The
space of the design parameters in the source optimization is constituted by
the coefficients multiplying each of those unit sources to compose the initial
condition. Those coefficients are initially set to 0.1, and constrained in a
range of physically acceptable values:

0 ≤ αi ≤ 0.33, (25)

5http://nctr.pmel.noaa.gov/propagation-database.html
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Figure 3: Unit tsunami source functions: elevation of the free-surface for each source. A
linear combination of these sources is used to reconstruct the initial condition.

ensuring that the initial depth is always positive.
The source optimization procedure is driven by the L-BFGS-B6 software

[30; 40], a quasi-Newton code for bound-constrained optimization. The value
of the objective function J and its derivatives dJ

dαi
with respect to the design

parameters αi are obtained from the forward and adjoint runs and provided
to L-BFGS-B. The latter computes a projected gradient, taking into account
the set of variables that will be held at the bounds [41]. A new set of
design parameters values, computed to minimize this gradient, is generated
by L-BFGS-B for a new iteration of forward and adjoint runs. After each
iteration, the initial condition converges towards a shape minimizing the
objective function and its projected gradient (Figure 4). Table 1 shows that a
total of 16 iterations are needed towards convergence. However, the criterion
used for convergence (projected gradient < 10−5 while J and αi are of order
1) is rather severe and may be relaxed. After 8 iterations, the value of
the objective function is almost definitive, and the error is negligible for the
considered application. The average computational cost associated with each

6http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html
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Figure 4: Initial condition before the 8 first forward/adjoint iterations of the source opti-
mization. Contour line every 1.3 m.

iteration on 96 AMD 2.2 GHz Opteron processors of a Cray XT5m is 125
seconds for the forward run and 128 seconds for the adjoint run. Hence, a
sequence of 8 iterations lasts around 33 minutes 44 seconds.

According to Table 2, several parameters are stuck at the zero lower
bound, indicating that the associated unit sources cannot reduce the error.
As the set of unit sources has been chosen simply based on a proximity crite-
ria, some of them do not correspond to the actual tsunami source and should
not be activated. Hence, the source optimization process automatically se-
lects the sources that, by being able to reduce the error, are part of the actual
tsunami initial condition.

The computed sensitivities have been compared with the ones obtained
using the finite differentiation technique and the linearization of the equa-
tions described in section 1 to validate the correct implementation of the
adjoint. This comparison was performed for the first iteration of the source
optimization procedure, for each of the eighteen design parameters and is
shown on Table 3. The parameter ε from (3) is chosen to be 10−7, which
is large enough compared with the machine precision, but small enough to
limit the errors due to nonlinear effects. For most of the parameters, the rel-
ative error when comparing with finite differences is small and rather close
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Iteration J(α) · 10−3 [m2s·10−3] projected gradient [m2s·10−3]

1 1.1056267738 2.300e-01
2 0.4903519590 3.300e-01
3 0.3532528041 2.057e-01
4 0.3300028885 6.775e-02
5 0.3232013498 4.172e-02
6 0.3209625334 3.452e-02
7 0.3206245630 1.149e-02
8 0.3205895815 6.812e-03
9 0.3205772213 4.823e-03
10 0.3205703566 3.096e-03
11 0.3205656472 9.224e-04
12 0.3205653295 2.670e-04
13 0.3205652873 1.317e-04
14 0.3205652795 7.179e-05
15 0.3205652769 2.350e-05
16 0.3205652766 2.309e-06

Table 1: Values of the objective function J(α) (scaled to be around 1) and its projected
gradient for each forward/adjoint iteration of the source optimization.

i αi αi (double res)

1 0.0000 0.0000
2 0.0589 0.0391
3 0.0000 0.0000
4 0.1112 0.0787
5 0.2003 0.1850
6 0.0489 0.0499
7 0.2651 0.2705
8 0.0000 0.0000
9 0.2272 0.2092
10 0.0000 0.0000
11 0.0735 0.0663
12 0.0336 0.0180
13 0.0000 0.0000
14 0.0000 0.0088
15 0.0000 0.0000
16 0.0000 0.0000
17 0.0000 0.0000
18 0.0000 0.0000

Table 2: Values of the design parameters αi at convergence, associated with the 18 unit
sources for two optimization runs of different resolutions.
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i Adjoint Finite differences (rel. error) Linearization (rel. error)

1 545.89369124140035 545.89458668401562 1.6403e-06 545.89369124147311 1.3329e-13
2 309.51194848571919 309.50488105459510 2.2834e-05 309.51194848574244 7.5115e-14
3 714.45754849775346 714.45000486805009 1.0559e-05 714.45754849772027 4.6464e-14
4 51.94654524408983 51.94625631194072 5.5621e-06 51.94654524388099 4.0203e-12
5 -309.06529204770328 -309.06111984924303 -1.3499e-05 -309.06529204803832 -1.0840e-12
6 -98.21564376933510 -98.19515231935128 -2.0864e-04 -98.21564376972265 -3.9459e-12
7 -1183.39213001641292 -1183.40001953512751 -6.6669e-06 -1183.39213001618600 -1.9175e-13
8 1.41714986533523 1.41012219242753 4.9590e-03 1.41714986578511 3.1746e-10
9 -500.02168037345700 -500.02065758192714 -2.0455e-06 -500.02168037239215 -2.1296e-12
10 944.07435894297760 944.08967279994272 1.6221e-05 944.07435894337311 4.1895e-13
11 961.68910696649993 961.70494593797866 1.6470e-05 961.68910696695843 4.7676e-13
12 742.96681771204578 742.97355183111665 9.0638e-06 742.96681771172109 4.3702e-13
13 930.68312253188617 930.70583198560939 2.4401e-05 930.68312253242266 5.7645e-13
14 1213.62922647885603 1213.59977680192765 2.4266e-05 1213.62922647852179 2.7540e-13
15 857.26930802852178 857.30989401754346 4.7343e-05 857.26930802920856 8.0113e-13
16 2054.87664900041182 2054.89822982379656 1.0502e-05 2054.87664900030768 5.0678e-14
17 1772.98399749335999 1772.98019365494542 2.1454e-06 1772.98399749452165 6.5520e-13
18 1543.15813970857198 1543.14799526789693 6.5738e-06 1543.15813970817885 2.5476e-13

Table 3: Values of dJ
dαi

[m2s] at the first iteration for the 18 unit sources, computed using
the adjoint method, finite differentiation and the forward linearization. The relative error
is computed by taking the adjoint computation as reference.

to ε. The eighth parameter is an exception, which is not caused by a higher
absolute error, but the normalization performed using a smaller sensitivity
value: the relative error is higher because resulting from a division by a
reference value closer to zero. The linearization, meanwhile, matches the
adjoint model with an error close to machine precision, confirming a correct
implementation.

4.2. Forward run

Once the initial condition is reconstructed, a complete forward run can be
performed to simulate the propagation of the tsunami across the ocean. For
this step, the mesh has a similar resolution around the epicenter of the earth-
quake than the mesh used for the optimization (Figure 5). However, since
the domain of interest includes the whole globe, the resolution is increased
along the global ocean coasts to represent more accurately the coastlines.
The resulting mesh is made up of 6840 elements.

For a global simulation, dynamic adaptation is much more interesting,
and its efficiency for tsunami simulations has been highlighted by [14]. We
use a similar adaptation strategy but the behaviour has been slightly mod-
ified for better efficiency and stability in this application. In shallow and
coastal areas, the polynomial order is limited to a maximum value that de-
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Figure 5: Sea depth at rest and initial computational mesh used for the forward run. The
circles indicate the location of the DART boys used for the comparison of the model with
measurements. The Cartesian domain has been mapped to longitude/latitude coordinates.

pends on the distance to the coasts and depth. Hence, the resolution in those
regions can be increased only by mesh refinement. In the rest of the domain,
polynomial refinement is preffered, and mesh refinement occurs when the
polynomial order reaches its maximum. To avoid refinement where the res-
olution is initially sufficient, hp-refinement can only occur if the resolution
is above a given threshold, which is about 45 km. Strong spatial changes of
resolution are avoided by constraining the difference of the polynomial orders
and refinement levels between two neighboring elements to be respectively 2
and 1.

The model has been run in parallel on 96 cores using domain decomposi-
tion with dynamic load-balancing (see [14] for details). While it takes about
22 hours for the tsunami to cross the Pacific Ocean, the numerical simula-
tion is obtained in less than 31 minutes. The propagation of the tsunami
can be observed in Figure 6, as well as the mesh with the number of nodes
per element. As long as the tsunami travels through the Pacific Ocean, the
order of interpolation and the mesh are adapted to precisely track the waves.
The computational power is used effectively by concentrating the load at the
front of the wave, where it is needed to accurately resolve the propagation
and best match the arrival times.

The elevation of the free-surface has been compared with the DART data
at fourteen different stations (Figure 5), including those used during the op-
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Figure 6: Propagation of the wave after 0h, 7.5h, 15h and 22.5h. UPPER PART: Free-
surface elevation. The isocontour lines have been set to ±1 cm. LOWER PART: State of
the mesh with number of nodes per element. The Cartesian domain has been mapped to
longitude/latitude coordinates.
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Figure 7: Comparison of the free-surface elevation provided by the model at two different
resolutions with DART data. The measurements at the left of the dashed line have been
used in the source optimization procedure as the reference to match.

timization. It is seen that the model estimates correctly the time at which
the tsunami reaches the different stations, with an error up to 34 minutes
at station 14 (Figure 7). The amplitude of the waves is also well predicted.
The variations of the elevation at the left of the dashed line is better ap-
proximated, which is coherent since those measurements correspond to the
reference to match in the source optimization. For farther stations, the model
is not always able to reproduce the high frequency oscillations, which is prob-
ably due to numerical diffusion.

To verify this assumption, the model, including the source reconstruction,
has been run on a refined mesh in which each element of the original mesh
has been initially split into four children elements to double the resolution.
For the closest measurements used as reference for the optimization, there
is no significant improvement (Figure 7). The optimizer set stronger values

22



of the design parameters (hence the initial condition) for the lower resolu-
tion run (Table 2), which has the effect of counterbalancing the additional
numerical diffusion related to the coarser grid. Hence, close measurements
can be accurately resolved with the coarser grid. However, far-field forecasts
are more accurate for the high-resolution run which is better to approximate
higher frequency oscillations (this is especially visible for stations 9 and 11,
which are located offshore). The model error at some stations close to the
earthquake is not significantly improved by the increase of resolution (e.g.
stations 6 and 7). This is probably due to the fact that this error is not
caused by the discretization, but rather by a parameter space that may be
too poor to match exactly the actual initial condition. For stations 12, 13
and 14 the shift in the tsunami arrival time is not improved by the increase of
resolution. This is likely due to a insufficiently accurate or wrong bathymetry
which is the most important factor impacting wave propagation times. This
shift may also result from an incorrect assumption about the tsunami source,
considered to have no spatial dimension. Each unit source corresponds to a
displacement of the sea-surface occuring at time t = 0 which may not match
the exact moment at which the ground moved. Additional design parameters
could be added to specify the time at which each unit source is activated.
Apart from numerical errors, additional potential sources of error should be
investigated, such as the choice of the mathematical model (e.g. approxi-
mations associated with the shallow water equations), and reliability of data
(e.g. bathymetry, tsunameter measurement and tidal filtering procedures).

The value of the objective function for the adaptive run is shown in Table
4, for which the initial condition is obtained from the source optimization, but
using different numbers of optimization iterations. A comparison with table 1
indicates that the forward runs with and without dynamic adaptation do not
share exactly the same point of convergence; which is obvious since different
meshes and methods are used. However, they converge towards a similar
value, suggesting that using different space discretizations for the source
optimization and the forward run is acceptable as soon as their resolution
is similar. Table 4 also confirms that no more than 8 iterations are needed,
since the objective function is not sensibly improved with more iterations.

Conclusions

The present article describes an application of a real-time tsunami model,
using several numerical tools such as the high-order discontinuous Galerkin
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Iterations Jadapt(α) · 10−3

0 0.5391000503
1 0.6295562139
2 0.3883790240
3 0.3430059138
4 0.3568695893
5 0.3662980102
6 0.3621919843
7 0.3668633141
8 0.3660865801
9 0.3649512666
10 0.3662966313
11 0.3660944804
12 0.3661192840
13 0.3688849627
14 0.3661253032
16 0.3661250145

Table 4: Values of the objective function for the adaptive forward run Jadapt(α) (scaled
to be around 1), using the initial condition from the source optimization after different
numbers of iterations.

method, hp-refinement, parallel dynamic load balancing and adjoint-based
data assimilation. While the physical propagation time of the tsunami across
the Pacific Ocean is around 22 hours, accurate estimations of the tsunami
propagation time and its wave amplitude can be obtained in about 6 hours
on 96 processors (5 hours to collect the measurements, 34 minutes of source
optimization and 31 minutes of forward run), allowing for far-field early fore-
casts.

As mentioned in the introduction, the objective of this study is not a
presentation of a full-fledged tsunami warning model, but rather a proof of
concept showing that several advanced numerical methods can be used effi-
ciently to solve geophysical problems of interest, such as the computation of
fast and accurate tsunami warnings. Some improvements should be consid-
ered for an application in real life.

Real-time data gathering and filtering is needed to provide measurements
of the free-surface usable by the code. This should not be a difficulty, as real-
time raw data is available online, and studies have shown that the detiding
can be done on the fly [31; 32]. In this work, the data is collected over a
period of 5 hours, on which the model is fitted. Shorter (or larger) time
intervals may be considered to identify the critical period over which the
model results are reliable. The method can be improved by updating the
available data during the source optimization. As long as the number of
available measurements increases, they would be provided to the model to
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generate a series of increasingly accurate forecasts.
A wetting and drying algorithm should be added to the model, in or-

der to simulate tsunami-generated inundations. While the implementation
may not be straightfoward, mostly because of the need for a differentiable
algorithm to allow for the linearization, the model should generate valuable
information by taking inundations into account. It should also accelerate the
data assimilation process. Collecting the measurements in coastal and dry
areas closer to the eathquake epicenter will allow for a faster initial condition
reconstruction and shorter range simulations, taking full advantage of the
ability of the adjoint model to handle nonlinear effects.

If large computers are available, increasing the resolution with the number
of processors can be used to improve the forecast. However, the bathymetry
must be precise and the source functions chosen adequately to ensure the
accuracy of the results.
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