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Lemâıtre, B-1348 Louvain-la-Neuve, Belgium

bUniversité catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (IMMC) & Earth and Life
Institute (ELI), 4 Avenue Georges Lemâıtre, B-1348 Louvain-la-Neuve, Belgium
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Abstract

A discontinuous Galerkin nonhydrostatic atmospheric model is used for two- and three-dimensional simula-
tions. There is a wide range of timescales to be dealt with. To do so, two different implicit/explicit time
discretizations are implemented. A stabilization, based upon a reduced-order discretization of the gravity
term is introduced to ensure the balance between pressure and gravity effects. While not affecting signif-
icantly the convergence properties of the scheme, this approach allows the simulation of anisotropic flows
without generating spurious oscillations, as it happens for a classical discontinuous Galerkin discretization.
This approach is shown to be less diffusive than usual spatial filters. A stability analysis demonstrates that
the use of this modified scheme discards the instability associated with the usual discretization.

Validation against analytical solutions is performed, confirming the good convergence and stability prop-
erties of the scheme. Numerical results demonstrate the attractivity of the discontinuous Galerkin method
with implicit/explicit time integration for large scale atmospheric flows.
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1. Introduction

Over the last decades, global climate models have been widely used to predict future climate trends.
However, climate change will mostly affect the ecosystems and social and economic well-being at the regional
scale (IPCC, 1997). Therefore, improving our capabilities in regional atmospheric simulations is of critical
importance. Despite the rapid advances in computational power, current global models are not able to
represent the multiscale aspects of the climate system (Slingo et al., 2009; Shukla et al., 2009). The advances
needed for performing multiscale regional climate simulations will come in part from the development of more
efficient numerical algorithms. Similar considerations also apply to numerical weather forecasting, for which
a better resolution of local terrain and important small-scale dynamics will be achieved through the use of
innovative multiscale techniques (e.g. Gopalakrishnan et al., 2002).

Spatial scales of interest in the atmosphere vary from meters for three-dimensional turbulence to thousands
of kilometers for the general circulation. Many different phenomena characterized by different scales, such
as thunderstorms (2-20 km) and hurricanes (200-2000 km), lie in this interval (Thunis and Borstein, 1996).
While numerical models cannot afford to resolve explicitly the whole range of scales, the recent increases
in computational power enabled the resolution of smaller and smaller scales of flows in large scale models.
During the past 10 years, the typical grid size in the atmosphere of coupled atmosphere-ocean global models
decreased from about 300 km to 25 km (Slingo et al., 2009; McMorrow, 2013).

This resolution is still not sufficient to capture phenomena such as thunderstorms and mesoscale con-
vection, which would need a grid size of order of 1-10 km. Models able to resolve such scales of motion
are restricted to a specific region and are usually referred to as regional models. They cannot produce an
accurate description of the interaction between regional phenomena and the global scale circulation. Indeed,
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energy transfers from the synoptic scale (> 1000 km) to the mesoscale (1-2000 km) act as a forcing to in-
duce mesoscale circulations. For example, large-scale vorticity and temperature advection may facilitate the
generation of mesoscale frontal systems (Lin, 2010). The resolution of individual mesoscale processes must
be considered in a global context, to encompass the interactions between the different scales. In other words,
an accurate regional model must also resolve the global scale of motion.

As a first step toward high-resolution modeling, several studies made the models extremely scalable, while
increasing their resolution homogeneously (Dennis et al., 2005; Wehner, 2008; McClean et al., 2011; Palipane
et al., 2013). The problem with such approaches is mainly computational. Indeed, each uniform doubling
of the horizontal resolution increases the computational cost by about one order of magnitude. The cost of
climate or weather simulations is directly correlated with the total number of spatial grid points employed.

New models need to be designed, using more effectively the computational resources than current models
do. Emerging numerical techniques have to be used, taking into account the multiscale aspect of the flows.
One way to reduce the number of grid points in a model, while preserving the range of spatial scales involved,
is to employ fully unstructured meshes, allowing one to increase the resolution exactly when and where
needed, thereby giving rise to multi-scale/physics numerical simulations. Well suited to unstructured grids,
the continuous finite element method has been proposed to replace the global spectral methods used on
structured grids (Taylor et al., 1997; Dennis et al., 2012). However, such methods are not stable for advection-
diffusion problems and require additional stabilization mechanisms. The finite volume method does not suffer
from this problem and has been chosen to build several atmospheric models (Steppeler et al., 2002; Weller
et al., 2009; Machenhauer et al., 2009; Rauscher et al., 2013; Park et al., 2013). To attain high-order accuracy,
the variables in an element need to be reconstructed based on the neighboring elements, the reconstruction
stencil being wider as the desired order of accuracy increases. As the parallel efficiency of models is highly
affected by the amount of communications between nodes, a good scalability of such non-local algorithms is
difficult to achieve.

The discontinuous Galerkin (DG) method is a combination of the continuous finite element method and
the finite volume method. It can achieve high-order accuracy while using a very compact stencil, the degrees
of freedom being local to the elements. This scheme is attractive for atmospheric modeling, where high-order
accuracy and parallel efficiency are generally considered desirable. In addition, allowing for precise advection
schemes (Cockburn et al., 1999), the DG method is particularly well adapted to atmospheric dynamics, which
is dominated by advective processes. Hence, several DG atmospheric models are currently under development
(St-Cyr and Neckels, 2009; Nair et al., 2005; Giraldo and Restelli, 2008; Nair et al., 2009; Giraldo et al., 2010;
Kelly and Giraldo, 2012; Brdar et al., 2013). While a few DG models simulate geophysical flows on the
sphere, they are still in active development, and generally not ready for production runs. The generalization
of those models to realistic three-dimensional flows on the sphere is a very challenging task. Given the high
increase of the computational load due to three-dimensional elements, parallel efficiency becomes critical but
is perfectly compatible with the discontinuous Galerkin method. As an example, Kelly and Giraldo (2012)
investigated the scaling properties of the discontinuous Galerkin method for three-dimensional nonhydrostatic
atmospheric simulations, demonstrating good scaling up to 32 000 computing cores.

The atmosphere is highly anisotropic, with vertical scales much smaller than horizontal ones. The compu-
tational grids used by numerical models usually consist of a certain number of vertical levels, with essentially
the same horizontal structure at each layer (Thuburn, 2015). Although the ratio between horizontal and
vertical resolutions depends on the scales considered, the vertical grid spacing has to be much smaller than
the horizontal one in order to capture the anisotropy (Lindzen and Fox-Rabinovitz, 1989). For large-scale
simulations the ratio of horizontal versus vertical resolution is usually around 150-300, while it can decrease
towards 1-15 for limited-area fine resolution models (Hamilton, 2008). Models based upon a variable hori-
zontal resolution should be able to handle both moderate and strong anisotropies in the grid. Hence, it is
important to rely upon a discretization which is stable, efficient and accurate for this whole range of aspect
ratios.

This paper focuses on the implementation and validation of a high-order three-dimensional discontinuous
Galerkin model solving the compressible Euler equations. To efficiently handle the wide range of timescales,
two different implicit/explicit time discretizations are implemented. Attention is paid to the convergence
properties and stability of the model for highly anisotropic meshes encountered in large-scale atmospheric
simulations. Due to the discrete incompatibility between the pressure and gravity terms, those simulations
may give rise to spurious oscillations if a classical discontinuous Galerkin method is resorted to. To avoid
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those artefacts, the vertical discretization of the gravity term is adapted such that its balance with the
pressure term can be ensured in the case of a hydrostatic equilibrium.

Section 2 of this article presents the continuous equations solved by the model. Section 3 is devoted to
the spatial discretization, including the boundary conditions and the stabilization used to prevent the model
from generating spurious oscillations, while section 4 describes the temporal discretization. Dissipation
mechanisms are presented in section 5. The last section describes the application of the model on two- and
three-dimensional test cases, in order to assess the dissipation mechanisms, the convergence properties and
stability of the scheme, its behavior on nonhydrostatic and complex terrain simulations, and its parallel
efficiency.

2. Model equations

The model solves the two- and three-dimensional compressible Euler equations, describing non-hydrostatic
atmospheric processes. Different formulations of the equations are reviewed by Giraldo and Restelli (2008).
According to the latter, the differences between the formulations are rather small. We use the inviscid version
of equation set 2, because it is in conservative form. Further, the potential temperature appears directly in
the equations, avoiding the need for an extra step when using existing physical parameterizations. Hence,
the governing equations read:

∂

∂t

 ρ
ρu
ρθ

+

 ∇ · (ρu)
∇ · (ρuu + pI) + ρgêz

∇ · (ρθu)

 = 0, (1)

where ρ is the density, θ is the potential temperature, and u = (u, v, w)T is the velocity vector, v being used
in three-dimensional configurations only. The gravitational acceleration is denoted g while êz is a unit vector
pointing upwards and I = diag(1, . . . , 1) is an identity matrix of size equal to the spatial dimension d. The
pressure p in the momentum equation is computed by means of the equation of state

p = p0

(
ρθRd
p0

) cp
cv

, (2)

where p0 is the reference surface pressure, Rd = cp − cv is the gas constant, while cp and cv are the specific
heat of the air at constant pressure and volume. To allow for a better representation of the hydrostatic
balance, we follow the splitting introduced by Giraldo and Restelli (2008):

ρ(x, t) = ρ(z) + ρ′(x, t), (3a)

(ρθ) (x, t) = ρθ(z) + (ρθ)
′
(x, t), (3b)

p(x, t) = p(z) + p′(x, t) with p = p0

(
ρθRd
p0

) cp
cv

, (3c)

where x = (x, y, z)T is the position vector and the background (overlined) values are in hydrostatic balance
(i.e. ∂p

∂z + ρg = 0). The governing equations (1) can then be rewritten as

∂

∂t

 ρ′

ρu
(ρθ)′


︸ ︷︷ ︸

,q

+

 ∇ · (ρu)
∇ · (ρu u + p′I) + ρ′gêz

∇ · (ρθu)


︸ ︷︷ ︸

,F

= 0. (4)

This splitting allows us to trivially satisfy the prescribed background state (i.e. ρ = ρ, ρθ = ρθ, p = p and
ρu = 0), and reduces the discretization error for any solution close to this background state.
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Figure 1: Sketch of a column of hexahedra resulting from the vertical extrusion of a two-dimensional quadrilateral element.

3. Space discretization

3.1. Mesh

The computational domain is split into several elements, which can be either quadrilaterals (2D) or
hexahedra (3D). This is not a general restriction of the DG method, but rather a design choice: for such
elements, quadrature rules, test and shape functions can be seen as tensor products of their one-dimensional
equivalent. Given the large contrast between horizontal and vertical dynamics, the mesh is obtained by
extruding over the vertical a horizontal unstructured mesh. Figure 1 shows an example of a single two-
dimensional element of a horizontal mesh, which is extruded to form a column of hexahedra. Such a structure
allows for different treatments of horizontal and vertical dynamics (Blaise et al., 2010; Comblen et al., 2010).
Furthermore, coupling with physics packages, often working as column models, will be greatly facilitated.
This is of decisive importance for the future application of the discretization in a global circulation model.

3.2. Weak formulation

The Galerkin weak formulation of the momentum equation is obtained by multiplying equations (4) by a
set of test functions and integrating over the elements. Upon doing so, a local problem has to be solved for
each element Ωe and test function φi: ∫

Ωe

φi
∂ρ′

∂t
dΩ +

∫
Ωe

φi∇ · (ρu) dΩ = 0 (5a)∫
Ωe

φi
∂ρu

∂t
dΩ +

∫
Ωe

φi∇ · (ρu u + p′I) dΩ +

∫
Ωe

φiρ
′gêz dΩ = 0 (5b)∫

Ωe

φi
∂(ρθ)′

∂t
dΩ +

∫
Ωe

φi∇ · (ρθu) dΩ = 0 (5c)

The unknowns as well as the test functions belong to a common finite dimensional space, whose definition
will be detailed later. The discretization of the prognostic variables ρ′, ρu and (ρθ)′ is discontinuous at
the boundaries of each element. The DG method couples the local problems (5) through numerical fluxes
integrated over the boundaries between the elements. Mimicking the finite volume formulations, we integrate
(5) by parts, and the boundary flux

∫
Γe
φiF · ndΓ, with n the outward normal vector, appears at the left-

hand side as an integral along the interfaces between elements, Γe. This flux is the only mechanism that
allows information to be passed from one element to the others. It is double-valued, as the variables are
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not uniquely defined on the interfaces between elements. The key ingredient of the weak formulation is the
manner in which a unique flux

∫
Γe
φiF∗ · ndΓ is chosen, ensuring the accuracy and stability of the method.

Following Nair et al. (2005), we use the local Lax-Friedrichs approximation, defined as

F∗ · n =
1

2

((
F+ + F -

)
· n− λ

(
q+ − q-

))
, (6)

where the subscripts - and + correspond to the values of the discontinuous fields respectively at the inner

and outer sides of the interface, while λ = max
(√

pcp/ (ρcv) + ‖u‖
)

is the maximum value computed from

both sides of the propagation speed of the fastest phenomena described by the equations. Introducing the
mean {S} = 0.5 (S+ + S-) and jump [S] = 0.5 (S+ − S-) operators, the Lax-Friedrichs flux (6) can be writen
as F∗ · n = {F} − λ[q]. For each test function φi and element Ωe, equations (5) become∫

Ωe

φi
∂ρ′

∂t
dΩ−

∫
Ωe

∇φi · ρudΩ +

∫
Γe

φi ({ρu} · n− λ[ρ′]) dΓ = 0, (7a)

∫
Ωe

φi
∂ρu

∂t
dΩ−

∫
Ωe

∇φi · (ρu u + p′I) dΩ

+

∫
Γe

φi (({ρu u}+ {p′}I) · n− λ[ρu]) dΓ =

∫
Ωe

−φiρ′gêz dΩ,

(7b)∫
Ωe

φi
∂(ρθ)′

∂t
dΩ−

∫
Ωe

∇φi · (ρθu) dΩ +

∫
Γe

φi ({ρθu} · n− λ[(ρθ)′]) dΓ = 0. (7c)

3.3. Discrete formulation

The discrete formulation is obtained by using a DG polynomial approximation for the solution over each
element:

qh =

n−1∑
j=0

Qjφj , (8)

where n is the number of shape functions φj in the element. Following the usual Galerkin procedure, test
functions φi have been selected belonging to the same space as the polynomial basis functions used to
approximate the solution (Karniadakis and Sherwin, 2005; Hesthaven and Wartburton, 2008). Qj indicates
the discrete degrees of freedom corresponding to the prognostic variables q, associated with the shape function
of the corresponding index φj . Following a nodal approach, the shape functions are obtained using the
product, for each dimension, of a Lagrange interpolation polynomial Lk of degree k ranging from 0 to P .
Some main advantages of the nodal basis are simpler interpolation procedures, as well as the possibility to
interpolate the solution at the interface between elements using the element boundary nodes only, leading to
a more compact stencil for the interface terms. The three-dimensional shape functions read

φj(x, y, z) = Lk(x)Ll(y)Lm(z) with j = k + (P + 1)l + (P + 1)2m, (9)

resulting in n = (P + 1)3 shape functions. The integrals are performed numerically using a product of
one-dimensional Gauss-Legendre quadrature rules.

The Lagrange polynomials have been constructed for a set of equidistant points spanning the element (see
Süli and Mayers (2003) for more details and the method to construct the polynomials). This node distribution
will facilitate a further model coupling with physics packages. Note that high-order equidistant interpolation
is subject to oscillations associated with Runge’s phenomenon (Runge, 1901). Yet, those oscillations were not
found to be significant for the relatively low polynomial orders considered in this study. It is also possible to
use Lagrange polynomials with roots at the Gauss-Legendre or Legendre-Gauss-Lobatto quadrature points,
allowing to bypass the interpolation between the nodes and quatrature points (Karniadakis and Sherwin,
2005; Blaise and St-Cyr, 2012). However, the gain resulting from such a configuration is reduced when
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some terms of the equations depend on the gradient of the solution (e.g. diffusion terms). In this case, an
interpolation is still necessary to compute the gradient. Further, the use of this technique prevents any control
over the accuracy of the integration in space: with P + 1 nodes, the GL quadrature rule integrates exactly
polynomials of order (2P+1) while the LGL rule only integrates exactly polynomials of order (2P−1). When
performing simulations on the sphere or on curved elements, those techniques result in an underintegration
in space.

3.4. Stabilization

When testing the model, strong spurious oscillations affecting the simulations were observed in the case
of strongly anisotropic meshes (see section 6.1 for numerical results). The oscillations grew continuously,
leading eventually to a model crash. The use of the alternative strong form (Hesthaven and Wartburton,
2008), obtained by performing a second integration by parts on (7), produces results which are slightly
different, but also affected by those strong oscillations (not shown). It can be inferred that the instabilities
are not caused by an underintegration in space (aliasing). The source of the oscillations can be found by
analyzing the governing equations (4), particularly the equation related to the variable ρw which can be
written as

∂ρw

∂t
+∇ · (ρuw) +

∂p′

∂z
+ ρ′g = 0. (10)

Its last two terms, related to the pressure and gravity effects, are by definition balanced in the case of
the hydrostatic equilibrium. This balance must be preserved in the discrete equations, in order to avoid the
generation of spurious motions (Botta et al., 2004). However, those terms do not share the same discretization
space: the pressure term is obtained from a gradient, which is of order P − 1 for a spatial approximation
of order P . On the other side, the contribution of gravity is expressed as a source term whose degree is P .
This discrepancy alters significantly the balance between the two terms, with the effect of producing spurious
oscillations.

In order to deal with this incompatibilty, the gravity term is projected into a space whose vertical discrete
polynomial order is P − 1. This order reduction can be performed through the use of a Legendre basis.
Following equation (8), the discrete approximation of the prognostic variables is a linear combination of
basis functions based on Lagrange polynomials. The exact equivalent approximation can be found based on
Legendre polynomials:

qh =
n−1∑
j=0

QLe
j φ

Le
j , (11)

where the Le superscript refers to the Legendre basis functions obtained using

φLe
j (x, y, z) = LLe

k (x)LLe
l (y)LLe

m (z) with j = k + (P + 1)l + (P + 1)2m, (12)

where LLe
k is the Legendre polynomial of degree k. The Legendre polynomials have the advantage of form-

ing a hierarchical basis, whose order can be easily decreased by dropping the highest degree components.
Combining (11) and (12), it is possible to restrict the space describing the vertical dimension to a lower
polynomial degree:

qh =
P∑
k=0

P∑
l=0

P∑
m=0

QLe
j L

Le
k (x)LLe

l (y)LLe
m (z) ' qh∗ =

P∑
k=0

P∑
l=0

P−1∑
m=0

QLe
j L

Le
k (x)LLe

l (y)LLe
m (z) (13)

If the source term related to gravity in (10) is computed using qh∗ instead of qh, the degree of the polynomial
basis describing the discretization space over the vertical will be reduced by one. Such a reduction of the
polynomial degree has a stabilizing effect on simulations that were unstable using the original discretization,
preventing the oscillations to appear. This effect is confirmed by a stability analysis, demonstrating that the
reduction of the polynomial degree discards unstable modes from the discrete spatial operator (see Section
6.1).

This local projection of the gravity term has no effect on mass conservation, which is still ensured up to
machine precision (Blaise et al., 2015). The computational overhead, resulting only from the local projection
operator, is below 5 percents of the total computational time.
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3.5. Boundary conditions

Four types of boundary conditions are available. When possible, boundary conditions are weakly imposed
by setting appropriate exterior values for the variables when computing the Lax-Friedrichs flux (6) at a
boundary edge. However sponge layers are used when needed to guarantee the stability of the model and the
absence of spurious reflections.

• The free-slip (wall) boundary condition is implemented by weakly imposing in (6) exterior values of the
variables which are mirrored from the interior values:

ρ′+ = ρ′−, (14a)

ρu+ = ρu− − 2
(
ρu− · n

)
n, (14b)

(ρθ)′+ = (ρθ)′−. (14c)

• The exterior value boundary condition is imposed similarly by replacing the right-hand side of (14)
with the desired values.

• Periodic boundary conditions are imposed by replacing the right-hand side of (14) with the values taken
from corresponding boundary at the opposite side of the domain.

• When strong damping is needed, sponge layers are used. In a sponge layer, an additional source term
S is added to the right-hand side of equations (7) to relax the variables towards a prescribed value qp:

S =

∫
Ω

φiτ
(
qh − qp

)
dΩ (15)

with a damping coefficient inspired from Durran and Klemp (1983):

τ = −α
2

(
1 + cos

(
−min(db , wb)

wb
π

))
, (16)

where db is the distance from the boundary. The parameter α, as well as the sponge layer width wb,
has to be tuned to fit the flow configuration and resolution.

4. Time discretization

The implicit/explicit Runge-Kutta methods (IMEX) are a trade-off between explicit and implicit Runge-
Kutta methods. On the one hand, explicit methods require a small time step. On the other hand, fully
implicit methods need the solution of large nonlinear systems, making them very expensive in terms of
memory, CPU time and parallel communications for large three-dimensional applications. Because of the
different temporal scales involved, the IMEX time discretization developed by Ascher et al. (1995, 1997) is a
good candidate for the equations (4), applied to the simulation of compressible flows (Restelli and Giraldo,
2009; Dolej̆śı and Feistauer, 2004). In standard atmospheric configurations, the acoustic waves are the fastest
phenomena, with a propagation speed of about 350 ms−1. This high celerity restricts the explicit time step
to a small value due to the CFL stability condition. However, acoustic waves are generally not an important
phenomena for modelers, who are more interested in advective timescales. The IMEX method allows to
circumvent the CFL condition by treating the linear acoustic waves implicitly, while the remaining terms are
explicit. Following Giraldo et al. (2010), to apply IMEX integration, the right-hand side of (4) is additively
split into a linear part responsible for the acoustic waves and a nonlinear part. The linear terms

FIM =

 ∇ · (ρu)
∇ · (p′IMI) + ρ′gêz
∇ ·
(
θρu

)
 , (17)

with the pressure linearized as

p′IM =
γp

ρθ
(ρθ)′, (18)
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are solved implicitly, while the remaining part FEX = F−FIM is solved explicitly. The acoustic waves being
damped by the implicit scheme, the time step is only limited by the advection scale. One advantage of this
splitting is that a single linear system has to be solved at each Runge-Kutta step. In contrast, the fully
implicit approach requires the solution of a nonlinear system at each step, which is performed by solving
several linear systems (e.g. one for each Newton-Raphson iteration). But its main asset is the constantness
of the system matrix, allowing the preconditioning/factorization to be performed only once. As an example,
when a LU factorization is possible, this technique leads to important savings in computational time since
the system can be solved at each step using fast forward/backward substitutions.

Despite its interesting properties, the splitting (17-18) still requires the solution of a global linear system.
For large three-dimensional problems, this solution is CPU and memory intensive. If parallel computing
is considered, the system is distributed over several processors, affecting the parallel performance. Giraldo
et al. (2010) proposed another splitting, taking advantage of the anisotropy characteristics of usual large scale
atmospheric simulations. The idea is to treat implicitly the linear vertical terms (hence filtering vertical fast
waves), while the remaining part is explicit:

FIM =


∂ρw

∂z(
∂p′IM
∂z

+ ρ′g

)
êz

∂θρw

∂z

s

 , (19)

with w being the vertical component of u. Equations (19) describe a one-dimensional problem. It is solved
using the classical three-dimensional discretization, with some modifications performed to make it equivalent
to a one-dimensional vertical discretization. First, when resolving the implicit part (19), each horizontal
component of the normal vector is set equal to zero while its vertical component nz remain unchanged:
n = (0, 0, nz). Additionally, the Lax-Friedriechs flux (6) is rewritten for the implicit part as:

F∗ · n =
1

2

((
F+ + F -

)
· n− λ

(
q+ − q-

)
(n · n)

)
(20)

to remove any horizontal contribution, the latter being included in the explicitly treated part of the equations
FEX = F− FIM.

The time step is then limited by the fast acoustic waves in the horizontal direction and the slow advective
scale in the vertical direction. The elements being usually much wider than tall, it is possible to obtain a
similar time step restriction for horizontal and vertical dynamics.

Atmospheric simulations have been performed using several different resolutions, and the choice of the
time integration method is related to the considered application. We can consider the grid corresponding to
a typical global model, as mentioned by Hamilton (2008): 300 km horizontal resolution and 1 km vertical
resolution. With acoustic waves propagation speed of 350 ms−1 and typical horizontal and vertical wind
speeds of respectively 50 ms−1 and 1 ms−1, it is possible to compare the estimation of the maximum stable
time steps associated with different time discretizations (Table 1). The IMEX method with linear vertical
terms implicit (IMEX V) is limited to a time step which is only slightly smaller than the one associated with
the IMEX method with linear implicit terms (IMEX HV). Note that several global circulation models rely on a
vertical resolution which is drastically increased in the planetary boundary layer. With such models, the time
step is clearly not affected by the explicit horizontal dynamics, since the limiting phenomena are the vertical
advective terms (Table 1). The IMEX V method has several advantages. Thanks to the absence of horizontal
coupling, there is no global linear system to solve, but many small systems, each one being associated with a
column of elements. Those small systems can be solved efficiently without requiring excessive memory, e.g.
using a direct solver based upon a factorization performed only once at the beginning of the simulation. If
the mesh is partitioned in such a way that each column of elements belongs to the same process, the systems
are not distributed, reducing the communication costs. Those properties make the IMEX V splitting very
appealing for large three-dimensional atmospheric simulations.

The IMEX time integration scheme used in this study is the so-called ARS(2,2,2) method, developed
by Ascher et al. (1997). To advance the solution qh

n−1 at time tn−1 to its value qh
n at time tn−1 + ∆t,
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∆tHmax = ∆xH

cH
∆tVmax = ∆xV

cV
∆tmax = min(∆tHmax,∆t

V
max)

Explicit 857 s 2.86 s (0.286 s) 2.86 s (0.286 s)
IMEX HV 6000 s 1000 s (100 s) 1000 s (100 s)
IMEX V 857 s 1000 s (100 s) 857 s (100 s)

Table 1: Estimation of the maximum stable time step associated with the explicit time discretization, IMEX method with linear
terms implicit (IMEX HV), and IMEX method with linear vertical terms implicit (IMEX V). The propagation speed of the
fastest explicitly treated phenomena in the horizontal and vertical directions are respectively called cH and cV . The grid size
is taken from the example of Hamilton (2008), while the values between parenthesis consider a vertical resolution of 100 meters
near the ground.

intermediate states qh
(i) need to be computed at different sub-steps i. Then, the final solution is recovered

using those sub-step states:

qh
(i) = qh

n−1 + ∆t
i∑

j=1

ai,jFIM(qh
(j), tn−1 + cj∆t) + ∆t

i−1∑
j=1

âi,jFEX(qh
(j), tn−1 + ĉj∆t) (21)

qh
n = qh

n−1 + ∆t

s∑
i=1

biFIM(qh
(i), tn−1 + ci∆t) + ∆t

s∑
i=1

b̂iFEX(qh
(i), tn−1 + ĉi∆t). (22)

with qh
(0) = qh

n−1. For the particular ARS(2,2,2) scheme, s = 3 and the coefficients are written as a double
Butcher tableau, in which the hats notation refers to the explicit part of the scheme:

c a
b

=

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

and
ĉ â

b̂
=

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

δ 1− δ 0

, (23)

with γ = 1−
√

2
2 , δ = 1− 1

2γ . This scheme has been chosen because of its property to be stiffly accurate and
strong stability preserving. Note that several alternatives to ARS IMEX are available. In a recent article,
Weller et al. (2013) analyzed different IMEX Runge-Kutta schemes for horizontally explicit, vertically implicit
solutions of atmospheric models, including some schemes from Ascher et al. (1997). However, ARS(2,2,2)
was not part of the tested methods.

5. Dissipation mechanisms

Dissipation is an inevitable ingredient for a practical atmospheric model. It generally serves two purposes.
The first one is to parametrize some unresolved physical phenomena which are not described either because of
inaccurate equations or a too coarse resolution. This parametrization takes the form of a diffusion operator,
which is added to the equations. The second pourpose of dissipation is stability: numerical methods with
low dissipation, such as high-order finite element methods, are likely to produce strong Gibbs oscillations
in the presence of shocks or unresolved flows. Several techniques can be used to prevent those oscillations,
such as limiters (e.g. Cockburn and Shu, 1998b; Krivodonova, 2007) or a diffusion operator with a non-
constant artificial viscosity coefficient (e.g. Persson and Peraire, 2006). The impact of such filters should
be minimal in smooth and well-resolved areas. The design of stable and high-order accurate stabilization
mechanisms is a difficult task, especially in the case of a (semi-)implicit discretization, and is the focus of
intense reseach. In this work, two dissipation mechanisms are considered: a diffusion operator, and a filter
designed by Boyd (1996), which is often reffered to as the Boyd-Vandeven filter, and has already been used in
atmospheric modeling (e.g. Giraldo and Restelli, 2008; Lauritzen et al., 2011). Both methods are independent
and compatible with the stabilization described in section 3.4.

5.1. Diffusion operator

In the realm of discontinuous Galerkin methods, various discretizations of the Laplacian operator exist
(see Arnold et al. (2002) for a review). Two of them are especially popular: the Interior Penalty (IP) methods
(Arnold, 1982; Riviere, 2008) and the local-DG method (Cockburn and Shu, 1998a).
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To accurately handle the diffusion terms without adding any equation to the system, we resort to the
IP technique. Following the usual discontinuous Galerkin method (see section 3), the weak form D of the
diffusion operator ∇ ·κ∇c for any variable c and diffusivity coefficient κ can be obtained by multiplying this
operator with a test function and integrating the resulting product over each element. Integrating by parts
and choosing the mean values at the interfaces yields:

D =

∫
Γe

φi {κ∇c} · ndΓ−
∫

Ωe

∇φi · κ∇cdΩ. (24)

Choosing the mean values at the interface seems natural for an elliptic operator where the information
propagates along all directions. However, such a simple and intuitive treatment of the Laplacian operator is
incomplete. Indeed, the jump of the variables at the interfaces between elements is not taken into account
by the diffusion operator, even though it is part of the fields variability. In order to complete the discrete
formulation, the IP Method consists in adding a penalty term on the discontinuities of the field at the
inter-element interfaces

D =

∫
Γe

φi {κ∇c} · ndΓ +

∫
Γe

φi {κ}µ [c] dΓ−
∫

Ωe

∇φi · κ∇cdΩ = 0, (25)

where µ is a penalty parameter scaled in such a way that µ [c] is a term similar to a gradient, at the interface
level. In other words, 1/µ has to be a suitable length scale. There is a lower bound on µ that ensures optimal
convergence. This bound must be as tight as possible, as the larger the value of µ, the worse the conditioning
of the operator. Shahbazi (2005) suggests to use the following formula:

µ =

[
2(P + 1)(P + d)

d

A(Γef )

V (Ωe,Ωf )

]
, (26)

where A(Γef ) is the area of the interface Γef between two considered elements Ωe and Ωf , and V (Ωe,Ωf ) is
the mean volume of those elements.

5.2. Boyd-Vandeven filter

Based on the Legendre approximation of the variable fields qh for a three-dimensional configuration (13),
and following the idea of Boyd (1996), it is possible to obtain a smoother approximation of the prognostic
variables qh′

using a filtered partial sum:

qh =
P∑
k=0

P∑
l=0

P∑
m=0

QLe
j L

Le
k (x)LLe

l (y)LLe
m (z) ' qh′

=
P∑
k=0

P∑
l=0

P∑
m=0

QLe
j σkL

Le
k (x)σlL

Le
l (y)σmL

Le
m (z), (27)

with

σi =
1

2
erfc

2
√
P

(
|δi| −

1

2

)√√√√√− log
(

1− 4
(
δi − 1

2

)2)
4
(
δi − 1

2

)2
 , (28)

and

δi =

{
1 for i < s,
i−s

P+1−s for i ≥ s. (29)

The complementary error function in (27) is defined as

erfc(z) =
2√
π

∫ ∞
z

e−ζ
2

dζ. (30)

A parameter s is introduced such that the filter only acts on the components of higher polynomial orders.
To limit the filter effect, the final approximation of the solution qh′′

is taken as a combination of the original
unfiltered approximation and the filtered one, introducing an additional parameter η whose value is between
0 and 1:

qh′′
= qh(1− η) + qh′

η. (31)
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Figure 2: Gravity waves: potential temperature deviation θ′ after 0, 10, 20 and 30 minutes (from top to bottom). Contour
lines every 0.0005 K from −0.005 K to 0.005 K, without the zero contour, for the model simulation (blue negative, red positive)
and analytical solution (black). The solution was computed using third-order polynomials on 64× 8 elements. For visualization
purposes, the domain is vertically stretched by a factor of 4. As the model solution is close to the analytical solution, the
difference between them is only visible for the largest times (lower panels).

6. Numerical results

The model has been successfully applied on different test cases, in order to assess the dissipation mech-
anisms, the convergence properties and stability of the scheme, its behaviour on nonhydrostatic simulations
and in the presence of complex terrain. A reference surface pressure p0 = 105 Pa has been considered for all
the benchmarks described in this section.

6.1. Two-dimensional gravity waves

For a polynomial order P , the expected order of convergence is P + 1. To check numerically that the
model reproduces this theoretical order, we resort the gravity waves test case from Baldauf and Brdar
(2013), described in Appendix A. It consists of a channel in which gravity waves are triggered by an initial
perturbation of the potential temperature in the form of a warm bubble. The waves then propagate along
the axis of the channel (Figures 2 and 3).

We consider the spatial and temporal convergences of the L2 error on the domain Ω, defined as

L2(qhi ) =

√√√√√√
∫

Ω

(
qhi − qi

)2
dΩ∫

Ω
q2
i dΩ

, (32)

where qi and qhi are the components corresponding to each field of the exact solution q and its approximation
qh. For a spatial discretization of order P , explicit Runge-Kutta time integration methods of the same
order P are used, with a time step chosen sufficiently small for the spatial error to be dominant. When the
resolution is sufficient to attain the convergence zone, the model exhibits a convergence rate of about P + 1
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Figure 3: Gravity waves: potential temperature deviation θ′ after 0, 10, 20 and 30 minutes. The figure displays profiles at
mid-height z = 5 000 m.

for a polynomial order P (Figure 4). Some convergence rates are even higher than P + 1, which is probably
related to the superconvergence properties of the discontinuous Galerkin method (Adjerid and Baccouch,
2007).

Based on those convergence results, the spatial discretization seems optimal. However, stability issues
were noticed for larger scale anisotropic simulations over longer periods of time. As an illustration, we
consider the gravity waves test case for which the horizontal dimension (domain length, bubble width and
position) has been multiplied by 80 (Figure 5a: L = 24 000 km, xc = 8 000 km and d = 400 km). Using 64×8
elements, the elements are stretched horizontally, leading to a ratio of horizontal versus vertical resolutions
of 300 and approximate horizontal and vertical resolutions (' ∆x

P and ∆z
P ) of 125 km and 417 m. This

anisotropy corresponds to the example, already discussed in the previous section, of the typical grid of a
global model mentioned by Hamilton (2008).

The flow is expected to behave similarly as in the isotropic case, i.e. the propagation of the wave along the
axis of the channel. However, the solution is affected by strong oscillations (Figure 5b). Those oscillations
grow continuously, leading to a model crash. As explained in Section 3.4, this behaviour is attributed to the
imbalance between the vertical pressure gradient and gravity effect in the vertical momentum equation. A
modified treatment of the gravity term, based upon a reduction of the polynomial degree associated with
the vertical discretization, has been proposed. With this reduction of the polynomial degree, the simulation
of gravity waves in an anisotropic domain produces the expected results without any spurious oscillation
(Figure 5c).

Those results are supported by a linear stability analysis. Considering a discrete linear spatial operator
A, the evolution of the associated solution q in continuous time reads

∂q

∂t
= Aq. (33)

The system is considered unstable if the spectrum of A contains at least one eigenvalue with positive real
part (Teschl, 2012). The Euler equations (4) being nonlinear, it is not possible to perform directly a linear
stability analysis. Two linear operators are considered as approximations of this nonlinear system: the linear
equations used for the implicit part of the IMEX method (17), and the complete equations (4) linearized
around the initial condition. The eigenvalues have been computed for the spatial discretization of those
two linear operators. To reduce the computational time needed to extract the eigenvalues, the horizontal
domain is restricted to the eight columns of hexahedra surrounding the bubble: 5 000 km < x < 11 000 km,
with periodic lateral boundaries. As can be seen in Figure 6, the spectrum of the two operators contains
eigenvalues whose real part is positive when the regular gravity term is resorted to, indicating an unstable
spatial operator. Note that the use of the nonlinear equations exacerbates the instability, which can be
seen by the presence of eigenvalues with larger positive real parts. However, in both cases, the use of the
reduced-order gravity term results in a displacement of the eigenvalues with positive real part towards the
negative side of the real axis, rendering the unstable scheme stable.
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Figure 4: Gravity waves: spatial convergence of the L2 error after 30 minutes for the prognostic variables, using spatial
polynomial orders P from 1 to 4.
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(a) Initial condition
L = 24 000 km

H
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(b) Regular gravity term, after 800 minutes

(c) Reduced-order gravity term, after 800 and 2400 minutes
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Figure 5: Gravity waves on an anisotropic mesh: potential temperature deviation θ′. The solution was computed using third-
order polynomials on 64 × 8 elements (gray lines). Countour lines every 0.00001 K from 0.00001 K to 0.0001 K (white lines).
For visualization purposes, the domain is vertically stretched by a factor of 320.
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Figure 6: Gravity waves on an anisotropic mesh: eigenvalues λ of the discrete spatial operator for simulations with the regular
gravity term (blue) and the reduced-order gravity term (red). This spatial operator corresponds to the linear equations (17) for
the left plot and the complete equations (4) linearized around the initial condition for the plot on the right. The inner plots
show a zoom for real parts of the eigenvalues lying around zero. The solution was computed using third-order polynomials on
8 × 8 elements.
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Figure 7: Original gravity waves test case from Baldauf and Brdar (2013): eigenvalues λ of the discrete spatial operator for
simulations with the regular gravity term (blue) and the reduced-order gravity term (red). This spatial operator corresponds to
the linear equations (17) for the left plot and the complete equations (4) linearized around the initial condition for the plot on
the right. The inner plots show a zoom for real parts of the eigenvalues lying around zero. The solution was computed using
third-order polynomials on 8 × 8 elements.
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However, a question remains: why do those oscillations appear in the case of the anisotropic simulation
only, while the height of the domain is the same for both configurations? The eigenvalues associated with the
discrete spatial operators in the case of a regular mesh follow a similar pattern than the ones associated with
the anisotropic mesh (Figure 7). In both cases, the operators are unstable for the regular gravity term, and
the reduced-order gravity term removes the instability. However, because of the different scales involved, this
instability is not always visible. For each setup, the gravity waves propagate at the same speed. By expanding
significantly the horizontal dimensions in the anisotropic case, the time scale has been increased, resulting in
much longer runs (i.e. 2400 minutes versus 30 minutes). The time for the waves to travel across the domain
is then longer. This allows more time for the instabilities to develop. In contrast, with the isotropic run,
the relatively fast dynamics hides the oscillations before they can grow significantly. Similar oscillations were
observed when running the original gravity waves test case from Skamarock and Klemp (1994), modified in
the same manner to obtain an anisotropic bubble in an anisotropic domain. In that case also, the vertical
order reduction of the gravity term solved the problem, producing a solution without any spurious oscillation
(not shown). A similar behaviour was also observed for simulations using high-order polynomials (P = 8).

The instability can be suppressed by having recourse to filtering or increasing the resolution. An increase
of the resolution in not always possible, especially in a multi-resolution model for which the areas away
from a region of interest are discretized with a coarse mesh. Filters have two main drawbacks. First,
they usually rely upon parameters, needing to be tuned for the different applications, as well as spatial
and temporal resolutions. Second, filtering is responsible for additional dissipation, which cannot be easily
controlled. While the reduced-order gravity term is the source of numerical dissipation, it can be seen
that this dissipation is lower than the one associated with the usual Boyd-Vandeven filter. To this aim,
simulations of the anisotropic gravity waves have been performed. The numerical error regards to a reference
solution has been computed using filtering or the reduced-order gravity term. The filter parameters are set
to s = 2

3 (P +1) = 8
3 , which is a typical choice (Lauritzen et al., 2011), and several values of η decreasing until

the model becomes unstable (Figure 8). The reference solution was computed using third-order polynomials
on 256 × 32 elements, while the other simulations use the 64 × 8 elements mesh. To focus on the spatial
error, an explicit time discretization with a sufficient small time step has been considered (0.05 seconds
for the reference run and 0.2 seconds for the other simulations). It is seen in Figure 8 that, even for the
lowest filtering ensuring stable simulations, the numerical error is always larger compared to simulations
using the reduced-order gravity term. While realistic simulations will probably need additional filtering, a
stable discretization with low numerical diffusivity allows for more control on the additional dissipation (e.g.
through the use of selective filters). This additional flexibility will result in improved accuracy, especially in
smooth resolved areas. While a loss of convergence is expected from the order reduction associated with the
modified vertical discretization of the gravity term, a comparison with results presented in Figure 4 shows
that the convergence is hardly affected (Figure 9). Because of its good properties, the modified scheme will
be used for all the subsequent simulations presented in this section.

The temporal convergence of both the IMEX HV and IMEX V methods has been assessed on the gravity
waves test case using a second-order time integration in combination with fifth order polynomial shape
functions, ensuring the temporal error to be dominant. A unique mesh of 64 × 8 elements is used, and the
simulations start with the maximum stable time step which is successively reduced by a factor of 2. In the
convergence zone, the expected order 2 convergence is precisely attained, either for the IMEX HV and IMEX
V methods (Figure 10). The global error stagnates when the temporal error reaches the same value as the
spatial error.

6.2. Three-dimensional convergence

To assess the accuracy of the three-dimensional component of the model, a fully three-dimensional test
case is needed, with a reference solution against which the results can be compared. Unfortunately, ana-
lytical solutions of three-dimensional nonhydrostatic flows are difficult to obtain. In order to estimate the
convergence properties of the scheme, it is possible to solve the problem the other way around by having
recourse to so-called manufactured solutions: an arbitrary solution is chosen, and source terms are added to
the equations such that the assumed solution is actually the analytical solution of the problem.

For any prognostic variable field f , the solution is assumed to be of the form

f(x, y, z, t) = Af cos

(
2π

L
x+ φfx

)
cos

(
2π

L
y + φfy

)
cos

(
2π

H
z + φfz

)
cos

(
2π

T
t+ φft

)
, (34)

17



10−5 10−4 10−3 10−2 10−1

10−3

10−2

10−1

100

u
n

st
ab

le

reduced-order gravity term

L
2

er
ro

r
[-

]

ρ′

10−5 10−4 10−3 10−2 10−1
10−14

10−12

10−10

10−8

10−6

10−4

u
n

st
ab

le

reduced-order gravity term

ρu

10−5 10−4 10−3 10−2 10−1

10−4

10−3

10−2

10−1

u
n

st
ab

le

reduced-order gravity term

Filter parameter η

ρθ′

10−5 10−4 10−3 10−2 10−1

10−5

10−4

10−3

10−2

10−1

100

u
n

st
ab

le

reduced-order gravity term

Filter parameter η

L
2

er
ro

r
[-

]

ρw

Figure 8: Gravity waves on an anisotropic mesh: L2 error after 30 minutes for the prognostic variables, using the reduced-order
gravity term (green), and the regular gravity term stabilized using a Boyd-Vandeven filter with several values of the parameter
η (red). The vertical red lines corresponds to the minimum value of η under which the simulations are not stable (model crash).
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f Af φfx φfy φfz φft

ρ′ 0.1 2π 2
3 2π 5

9 0 2π 6
7

ρu 5 2π 6
11 2π 5

7
3
2π 2π 1

5

ρv 3 2π 3
5 2π 3

8
1
2π 2π 2

7

ρw 1 2π 3
7 2π 11

13
3
2π 2π 2

7

(ρθ)′ 0.1 2π 5
11 2π 2

5 π 2π 5
6

Table 2: Parameters used for the analytical solution described by equation (34), with L = H = 10000 m and T = 100 s.

where L and H are respectively the horizontal and vertical dimensions of the domain while T is the total
simulated time. This way, the prognostic variables describe a a complete wavelength along each dimension of
the computational domain. The parameters for each of the variables are given in Table 2. The phases φfz are
chosen such that the lower and upper boundaries are compatible with wall boundary conditions. The lateral
boundaries are periodic, allowing more freedom for the remaining parameters. The source terms to add to
the equations such that the analytical solution is (34) have been found using the Symbolic Math Toolbox of
Matlab1.

For the different orders tested, the three-dimensional component of the model exhibits good convergence
properties, as can be seen on Figure 11.

6.3. Density current

High-order discontinuous Galerkin methods may be subject to nonlinear aliasing errors, likely to generate
spurious high-frequency oscillations. To prevent this noise from contaminating the solution, dissipation
mechanisms may be needed in the case of practical applications (Jablonowski and Williamson, 2011). A
good test case to evaluate those mechanisms is the density current benchmark, designed by Straka et al.
(1993) and used to assess several non-hydrostatic atmospheric models (e.g. Giraldo and Restelli, 2008; Brdar
et al., 2013). It consists in an initial cold bubble evolving in a neutral atmosphere at rest. The cold bubble

1http://www.mathworks.nl/products/matlab
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Figure 10: Gravity waves: temporal convergence of the L2 error after 30 minutes for the prognostic variables, using respectively
the second order IMEX HV and IMEX V time discetizations. Fifth order polynomials are used for the spatial discretization.
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Figure 11: Three-dimensional box with analytical solution: spatial convergence of the L2 error after T = 100 seconds for the
prognostic variables, using spatial polynomial orders P from 1 to 4.
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Figure 12: Density current: potential temperature perturbation θ′ after 900 seconds at different resolutions using a background
diffusion (left) or the Boyd-Vandeven filter (right). Contour lines every 0.25 K from -9 K to -0.25 K. Only a part of the domain
is displayed, corresponding to the interval [0,19200] ×[0,4800] m.

initiates a downward density current which spreads out laterally along the lower boundary, forming Kelvin-
Helmholtz shear instability rotors (Figure 12). The description of the test case can be found in Appendix
B.

To allow for the computation of grid-converged numerical solutions, the original test case was designed
with a background diffusion whose effect is to enforce a scale limit under which the flow cannot develop
(Straka et al., 1993). For the purpose of this study, in addition to the classical test case with a background
diffusion, a second simulation without diffusion has been run. The flow is not scale-limited anymore, and the
simulation results become unresolved as smaller and smaller eddies are continuously generated. To prevent
the apparition of excessive oscillations in this case, a Boyd-Vandeven filter with parameters η = 0.2 and
s = 2

3 (P + 1) = 8
3 is applied after each time step. Such a simulation with no background diffusion is used

to demonstrate the ability of the model to simulate accurately unresolved flows without generating spurious
oscillations.

Simulations based on third-order polynomials for the spatial discretization have been run at different
resolutions (Figures 12 and 13). The left columns of the figures show a numerical solution which is similar
to the results of Giraldo and Restelli (2008), but some differences are seen. At 400 m resolution, two Kelvin-
Helmholtz rotors are visible, and the second rotor is better resolved 200 m at resolution. However, the third
rotor is already visible with a resolution of 200 m. Changing the resolution to 100 m slightly improves the
results, decreasing the noise. The 50 m resolution simulation is almost identical to the 100 m resolution
run, which is due to the fact that the test case is scale-limited by the constant diffusion term. The same
conclusion can be drawn for the profile along 1 200 m height (Figure 13).

This result does not hold when no background diffusion is used: the test-case is not limited in scale
anymore and an increase of resolution always results in an increase of flow complexity. This can be seen
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Figure 13: Density current: potential temperature perturbation θ′ after 900 seconds at different resolutions using a background
diffusion (left) or the Boyd-Vandeven filter (right). The figure displays profiles at the height z = 1 200 m.

on the right column of Figure 12, showing the model results obtained without diffusion term, but having
recourse to the Boyd-Vandeven filter to stabilize the simulation. This is even more obvious on Figure 13 in
which, rather to converging towards a solution, the finest resolution run produces strong and rapid fluctua-
tions. While reproducing a known behaviour, these results also demonstrate the effectivity and robustness
of the stabilization mechanisms for the simulation of complex unresolved flows in the absence of background
diffusion.

6.4. Flows past mountains

To assess the model ability to represent nonhydrostatic flows and handle complex terrains, this section
focuses on the simulation of flows past mountains. Such test cases have been widely used to validate nonhy-
drostatic models (Giraldo and Restelli, 2008; Brdar et al., 2013; Simarro et al., 2013). The definitions of the
test cases considered in this section are described in Appendix C. They all consider a steady-state regime.
In practice, the model is initiated with an unperturbed flow, and results are shown after 5 hours of physical
time simulation, which has been verified to be long enough for the flow to reach a steady-state. For each of
the mountain test cases, the orography is taken into account by a deformation of a rectangle mesh, whose
elements are discretized using polynomials of the same order as the one used to discretize the prognostic
variables (isoparametric elements). For the simulations of flows past mountains, radiative boundaries are im-
plemented by using exterior value boundary conditions for which the prescribed state is the initial condition
(i.e. the background flow). However, for the two-dimensional cases, a sponge layer was needed at the top
boundary, characterized by wb = 7 km and α = 0.01. For the three-dimensional simulation, no sponge layer
was necessary, the coarser resolution and boundary conditions being sufficient to damp the waves propagating
towards the top.

The first benchmark is part of the test set devised by Skamarock et al. (2004), and has been specifically
designed to evaluate the capability of a model to describe nonhydrostatic small-amplitude flows. An analytical
solution has been derived, based on the linear mountain wave theory (Smith, 1979), and implemented in a
Matlab code written by Giraldo and Restelli (2008). Because of the strong influence of boundary conditions,
this test case is not optimal for convergence studies. However, the analytical solution is useful to validate
the solution in the proximity of the mountain. Figure 14 shows the contours of simulated velocity compared
to the analytical solution for a simulation using third-order polynomials on 133× 33 elements, corresponding
to approximate effective horizontal and vertical resolutions of respectively 360 m and 300 m. The IMEX HV
time integration method has been used with a time step of 3.6 seconds. The model results are accurate close
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Figure 14: Flow past a nonhydrostatic mountain: numerical solution (blue negative, red positive) and analytical solution (black)
after 5 hours. Contour lines for the horizontal velocity perturbation (u − 10 ms−1) every 0.0025 ms−1 from −0.025 ms−1 to
0.025 ms−1 (left). Contour lines for the vertical velocity (w) every 0.0005 ms−1 from −0.005 ms−1 to 0.005 ms−1 (right).
Solution computed using third-order polynomials on 133 × 33 elements, corresponding to approximate effective horizontal and
vertical resolutions of respectively 360 m and 300 m. The green triangle indicates the location of the mountain.
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Figure 15: Schär mountain: numerical solution (blue negative, red positive) and analytical solution (black) after 5 hours.
Contour lines for the horizontal velocity perturbation u − 10 ms−1 (left) and vertical velocity w (right) every 0.2 ms−1 from
−0.2 ms−1 to 2 ms−1. Solution computed using third-order polynomials on 133 × 47 elements, corresponding to approximate
effective horizontal and vertical resolutions of respectively 250 m and 210 m.

to the mountain, but diverge from the analytical solution away from the mountain, due to the influence of
the boundary conditions. The influence of nonhydrostatic effects is visible through the downstream tilt of the
wave pattern associated with the vertical velocity, which cannot be catch by an hydrostatic model (Männik
et al., 2003).

To validate the model behaviour in the case of complex terrain, we consider another test case describing
an idealized flow past a mountain, originally developed by Schär et al. (2002). The analytical solution can be
obtained in the same manner as for the nonhydrostatic mountain. Figure 15 shows the contours of simulated
velocity compared to the analytical solution for a simulation using third-order polynomials on 133 × 47
elements, corresponding to approximate effective horizontal and vertical resolutions of respectively 250 m
and 210 m. The IMEX HV time integration method has been used with a time step of 2.5 seconds. As for
the nonhydrostatic mountain, the numerical results compare well with the analytical solution.

The last benchmark in this section is used to validate the three-dimensional component of the model. It
consists of the simulation of a flow past a three-dimensional hydrostatic mountain. This test-case, already
employed by Kelly and Giraldo (2012) to validate a three-dimensional discontinuous Galerkin model is an
extension of the two-dimensional mountain test cases. An analytical solution along the plane of symmetry,
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Figure 16: Flow past a three-dimensional linear hydrostatic mountain: density deviation ρ′ after 5 hours. Left: contour lines
every 5 · 10−6 kgm−3 from −2.5 · 10−5 kgm−3 to 5.5 · 10−5 kgm−3 for the model simulation (color) and analytical solution
(black). Right: vertical profile at x = y = 0. Solution computed using third-order polynomials on 53 × 53 × 26 elements,
corresponding to approximate effective horizontal and vertical resolutions of respectively 1 500 m and 310 m. The green triangle
indicates the location of the mountain.

based upon the linear Boussinesq approximation, has been made available thanks to the theory developed
by Smith (1988) in isosteric coordinates.

The computational domain is discretized using 53 × 53 × 26 third-order elements, corresponding to ap-
proximate effective horizontal and vertical resolutions of respectively 1 500 m and 310 m. Compared to the
previous mountain benchmarks, this test case is characterized by a higher horizontal/vertical aspect ratio,
fostering the IMEX V method, which has been used with a time step of 0.45 seconds. As for the previous test
cases, the agreement with the analytical solution, based on a linear model, is very good close to the mountain,
but deteriorates away from the mountain, due to the influence of the boundary conditions (Figure 16). The
oscillations of density deviation around the zero value ρ′ = 0 are likely due to the absence of boundary sponge
layer and filtering mechanism.

7. Conclusions

In the continuity of published studies, a discontinuous Galerkin nonhydrostatic atmospheric model has
been built and used for two- and three-dimensional simulations. To ensure stable simulations, the vertical
order of the polynomial space used for the discretization of the gravity term has been reduced by one. While
not affecting significantly the convergence properties of the scheme, this approach allowed the simulation
of anisotropic flows without generating spurious oscillations, as it happened for the regular discretization.
Those results are supported by a linear stability analysis, demonstrating that the use of this modified scheme
discards the instability associated with the usual discretization. While filtering could have been used instead
of the modified discretization, numerical results show that, in addition to the requirement of an additional
parameter to be tuned, the use of filtering introduces a larger amount of numerical dissipation.

Validations against analytical solutions demonstrate the good convergence properties of the scheme, in
accordance with the theoretical expectations. Dissipation mechanisms have been validated, as well as the
scheme behavior in the case of unresolved flows, complex terrain or nonhydrostatic flows.

According to Giraldo et al. (2012), constructing scalable IMEX HV methods remains a challenge because
such methods rely on iterative solvers and preconditioners. Thanks to the decoupling between columns, and
the constantness of the system matrices, the IMEX time discretization with linear vertical terms implicit
(IMEX V) can use direct solvers, and is supposed to be particularly efficient in the case of large-scale parallel
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simulations. For high-resolution runs for which the anisotropy of the mesh is smaller, IMEX method with
linear terms implicit (IMEX HV) or explicit methods may be more appropriate.

In the case of multi-resolution simulations, it would be interesting to study the coupling of different time
integration methods, each one being applied to a different part of the computational domain. Other further
developments should include dynamic mesh adaptivity, the resolution of the equations on the sphere for
global simulations, as well as the implementation of parametrizations of simple physical processes.
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Appendix A. Two-dimensional gravity waves in a channel

This gravity waves test case, for which an analytical solution is available, allows to analyze the order of
convergence of the scheme without relying upon high-resolution solutions obtained either by the tested model
or a different one. Its initial version was developed by Skamarock and Klemp (1994) and has been widely
used for the validation of models. It consists of a channel in which gravity waves are triggered by an initial
perturbation of the potential temperature in the form of a warm bubble. The waves then propagate towards
the lateral boundaries. However, the original test case does not provide any analytical solution. Baldauf
and Brdar (2013) recently proposed a slightly modified version, which allows to analytically derive the exact
solution of the linearized compressible, non-hydrostatic Euler equations.

The computational domain is a vertical x − z slice of the atmosphere of length L = 300 km and height
H = 10 km with the bottom left corner as its origin. The initial atmosphere is described by a stably stratified
state perturbed by a warm bubble. The hydrostatic background state reads:

ρ = ρ0 exp (−δz) , (A.1)

θ = T0 exp (δz)
Rd
cp , (A.2)

p = p0 exp (−δz) , (A.3)

with ρ0 = p0δ/g and δ = g/(RdT0). The background constant temperature T0 is set to 250 K. According to
Baldauf and Brdar (2013), the following constants are used: Rd = 287.05 Jkg−1K−1, cp = 1005 Jkg−1K−1

and g = 9.80665 ms−2. A constant flow u = [20, 0] ms−1 is initially considered. The gravity waves are excited
by an initial perturbation of the background state, corresponding to a warm bubble:

ρ′ = exp (−δz/2) ρb, (A.4)

T ′ = exp (δz/2)Tb, (A.5)

p′ = 0, (A.6)

with

ρb = − p0Tb
T 2

0Rd
, (A.7)

Tb = ∆T exp

(
− (x− xc)2

d2

)
sin(

πz

H
). (A.8)
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Figure A.17: Gravity waves with ∆T = 10−2 K and ∆T = 10−4 K: spatial convergence of the L2 error on (ρθ)′ after 30 minutes,
using spatial polynomial orders P from 1 to 4.

The temperature perturbation of the bubble ∆T is set to 0.01 K, while its position and width are defined by
xc = 100 km and d = 5000 m. The initial solution in terms of the model variable ρθ can be obtained using:

ρθ = ρ θ, (A.9)

(ρθ)
′

= (ρ+ ρ′) (T0 + T ′)

(
p0

p

)Rd
cp

− ρθ. (A.10)

Periodic boundary conditions are used on the lateral boundaries while free slip boundary conditions (i.e. zero
vertical velocity) are enforced at the bottom and top boundaries.

Due to the linear approximation upon which the derivation of the analytical solution is based, there is a
residual error in the analytical solution making model convergence stagnate at a certain level (e.g. dashed
lines of Figure A.17). Decreasing the temperature perturbation to ∆T = 10−4 K produces very similar results
in terms of convergence (Figure A.17), except that the error stagnates at a lower level due to the diminution
of nonlinear effects. Note that, while only the error on (ρθ)

′
is displayed on Figure A.17, a similar behaviour

has been noticed for the other prognostic variables. To consider the analytical solution subject to the lowest
approximation error, simulations presented in this article are performed with ∆T = 10−4 K.

Appendix B. Density current

Originally described by Straka et al. (1993), this test case consists in an initial cold bubble evolving
in an atmosphere at rest of constant potential temperature θ0 = 300 K (neutral atmosphere). The cold
bubble initiates a downward density current which spreads out laterally along the lower boundary, forming
Kelvin-Helmholtz shear instability rotors. The initial state reads

θ = θ0 +
θc
2

(1 + cos (πr)) , (B.1)

ρ =
p0

θRd

(
1− gz

cpθ0

) cv
Rd

, (B.2)

with

r = min

1 ,

√(
x− xc
xr

)2

+

(
z − zc
zr

)2
 (B.3)
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as well as θc = −15 K, xc = 0, zc = 3 km, xr = 4 km and zr = 2 km. The following constants are considered:
g = 9.80616 ms−1, Rd = 287 Jkg−1K−1, cv = 717.5 Jkg−1K−1 and cp = 1004.5 Jkg−1K−1.

Wall (free slip) conditions are considered for all four boundaries. To allow for the computation of grid-
converged numerical solutions, the original test case was designed with a background diffusion κ = 75 m2s−1,
whose effect is to enforce a scale limit under which the flow cannot develop.

Appendix C. Flows past mountains

Appendix C.1. Linear nonhydrostatic mountain

This test case has been designed by Skamarock et al. (2004) to assess the ability of a model to describe
nonhydrostatic small-amplitude flows. The computational domain is a vertical x− z slice of the atmosphere
with the bottom left corner as its origin, of length 144 km and height 30 km. The bottom boundary elevation
zb is perturbed by a mountain of height hc = 1 m and horizontal scale ac = 1 km, centered at xc = 72 km:

zb =
hc

1 +
(
x−xc

ac

)2 . (C.1)

The model is started with a hydrostatic unperturbed flow defined by:

θ = θ0 exp

(
N2z

g

)
, (C.2)

ρ =
p0

θRd

1 +
g2
(

exp
(
−N2z

g

)
− 1
)

cpθ0N2


cv
Rd

, (C.3)

where N = 0.01 s−1 is the Brunt-Väisälä frequency and θ0 = 280 K. The constants g, Rd, cv and cp, take the
same values as for the density current benchmark (Appendix B). A initial constant velocity is considered,
which is horizontal: u = [10, 0] ms−1.

A free-slip condition is employed at the bottom boundary, while non-reflecting conditions need to be used
for the lateral and top boundaries.

Appendix C.2. Schär mountain

For this test case, proposed by Schär et al. (2002) the setup is the same as for the linear nonhydrostatic
mountain benchmark, except that the domain length is L = 100 km, and the orography is more complex,
representing a five-peak mountain chain:

zb = hc exp

(
−
(
x

ac

)2
)

cos2

(
π(x− xc)

λc

)
(C.4)

with hc = 250 m, λc = 4 km, ac = 5 km and xc = 50 km.

Appendix C.3. Linear hydrostatic 3d mountain

This test-case, already employed by Kelly and Giraldo (2012) to validate a three-dimensional discontinuous
Galerkin model is an extension of the two-dimensional mountain test cases. An analytical solution of the
linear problem is available along the plane of symmetry, thanks to the theory developed by Smith (1988) in
isosteric coordinates.

The configuration is similar to the two-dimensional mountain test cases, except that a three-dimensional
domain of horizontal size 240× 240 km and height 24 km is considered, in which the bottom elevation reads:

zb =
hc(

1 +
(
x−xc

ac

)2

+
(
y−yc
ac

)2
) 3

2

, (C.5)

with xc = yx = 120 km and hc = 1 m. A constant Brunt-Väisälä frequency N = g√
cpθ0

s−1 with θ0 = 250 K

is considered. The initial background velocity is constant and horizontal: u = [20, 0, 0] ms−1.
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