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THESIS COMMITTEE:

Pr Jean-Marie Beckers, Université de Liège
Pr Vincent Legat, Université catholique de Louvain
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Introduction

Marine waters cover 70% of the surface of the planet and represent 97% of all
the water of the earth. About half of mankind living in coastal regions, ma-
rine systems are strongly linked with human activities. They are provider of
resources (food, tourism,. . . ) but are also used as waste disposal areas. Be-
ing the habitat of 99% of the life of the planet, they have a considerable effect
over earth ecosystems. Water pollution is one of the main causes of their irre-
versible degradation (Ellis, 2000; Rajaram and Das, 2008; Camargo and lvaro
Alonso, 2006), but hydrodynamics also plays a role in their evolution. Flow
velocities and turbulence influence significantly the sediment structure, ero-
sion and deposition. Wind and ocean currents allow nutrient-rich water from
the sea bottom to rise to the surface, contributing to plankton blooms (Figure
1). These phenomena affect the local fauna and flora and their repartition (As-
mus et al., 2007). For example, Riisgård et al. (2007) showed that mixing in
the Odense Fjord (Denmark), by resuspending phytoplankton and making it
available to filter-feeding species, divided its lifetime by a factor of two. Lar-
vae and eggs are also directly carried by local and large scale water circulation
over distances up to hundreds of kilometers (Williams et al., 1984; Wolanski,
1994). These modifications at the individual or species level can cause inter-
actions with other physical parameters or species (Asmus et al., 2007).

Even though natural processes have an effect over the physical properties
of marine systems, the human influence is undeniable and varied. Industrial
discharges, urbanization and agriculture contribute among others to water
pollution (Ellis, 2000; Rajaram and Das, 2008; Tuncer et al., 1998). Human-
induced climate change has an influence on water properties such as temper-
ature, circulation patterns and sea level (Lewsey et al., 2004; Munday et al.,
2009). Human activities also affect directlty the hydrodynamics by modifying
the topography with dredging (Liria et al., 2009), reclaimed land (Gong et al.,
2008) or by constructing dams upstream estuaries (Kim et al., 2006; lun Yang
et al., 2002).

At the current level of development, preventing human activities from in-
fluencing the marine hydrodynamics, morphology and ecosystems is impossi-
ble. However, a good knowledge of the marine system would allow to reduce
this influence, or limit its harmful consequences by different means:
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2 Introduction

Figure 1: Phytoplankton bloom in the Bay of Biscay (France). Phytoplankton are sensi-
tive to available sunlight and local environmental variations such as nutrient
levels, temperature, currents and winds. Source: NASA
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• Predicting the impact of development projects (discharges, coastal engi-
neering,. . . ) to choose the safest alternative.

• Identifying some factors having a harmful influence on the ecosystems,
and developing remediation techniques.

• Helping to quantify the economical value of ecosystems services to in-
fluence policy decisions (Chee, 2004).

Although the knowledge of a marine system can be acquired from observa-
tions, the latter are generally expensive and may require an alteration of water
properties (e.g. discharge of tracers to be followed). Furthermore, these ob-
servations do not allow to predict the consequences of modifying the config-
uration on water properties (adding pollutants, changing the topography,. . . ).
Reduced scale models can provide informations about the influence of differ-
ent configurations, but they are long and complex to build. The principles of
physical similitude must be respected, leading sometimes to distorted model
ratios (Hughes, 1993). They can be too simple to take into account the com-
plexity of the flow and the results can be difficult to observe and interpret.
Another solution is to use a numerical model to simulate the marine system.
Once the model is calibrated, many different simulations can be performed,
only limited by the computational cost. These models allow sensitivity stud-
ies or estimations of the influence of different configurations over the marine
system (e.g. human works, tracer discharge, remediation,. . . ). A model is an
interactive way to learn about the response of the system to any perturbation.
Furthermore, models output are defined over the whole domain, which makes
their interpretation or the computation of diagnostic variables easier. They
need datasets (e.g. forcings, salinity, temperature, bathymetry. . . ), which can
be obtained from field surveys (Wolanski et al., 1996), satellite data (Egbert
et al., 1994) or other models.

Numerical models are used to simulate domains of interest either restricted
to a specific region (local or regional models) or covering the whole world
ocean (global models). Limited by the computing time, the resolution of mod-
els is not able to represent the whole spectrum of phenomena occuring in the
considered domain, as their characteristic sizes vary from 1 mm to more than
10 000 km in the world ocean (Figure 2). Regional models present various
resolutions, starting from dozens of meters. Global ocean models are gener-
ally too coarse to explicitly represent mesoscale eddies. High resolution mod-
els (with grid sizes of order 10 km) are able to represent those eddies, but
no computer is able to run them for a few hundreds to a few thousands of
years, as is necessary to study the earth climate. In the last decade, coupled
atmosphere-ocean climate models had their horizontal resolution in the ocean
increased from about 300 km in 1998 to 25 km nowadays using the UK Re-
search Council’s new supercomputer HECTOR (Slingo et al., 2009). Although
small in comparison with the computational domain, unresolved processes
may have a critical impact over the structure of larger scales which are ex-
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Figure 2: Time and horizontal space scales of several physical and biological marine
processes, from Dickey (2003).
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plicitely represented (Griffies, 2004). Some parameterisations, designed from
physical considerations, need to be developed to take this effect into account
(e.g. turbulence can be parameterised by the means of a diffusion operator
(Burchard, 2002a)). A different parameterisation must be developed for each
of the many unresolved physical processes, as these processes impact differ-
ently the larger scale properties. A major part of the present thesis is related
to the treatment of unresolved physics. Unresolved phenomena can be re-
lated to the whole domain, or specifically located near some boundaries. In
the latter case, they are referred to as “boundary layers” in which the vari-
ation of some physical variables is much steeper than their variation in the
mean flow. When related to boundary layers, the numerical representation
may also be improved to handle the steep variation of the variables without
refinement of the mesh (Hanert et al., 2007). In that case, no parameterisation
is needed. Another type of unresolved physics is related to phenomena that
cannot be represented due to a dimensional restriction of the model, e.g. a
two-dimensional phenomena in a one-dimensional model. In some cases, it
can be justified to parameterise these phenomena to obtain useful results in a
simple model.

Numerical marine models have been extensively developed in the recent
years. Their range increased from single discipline studies such as hydrody-
namics to coupled physical-chemical-biological ecosystems modelling. How-
ever, many of these models still use the same underlying numerical scheme:
the finite difference method. Being simple to implement, this method is lim-
ited to be used on structured grids. This implies several restrictions of such
models. The coastlines can only be defined using a staircase representation,
which induces spurious vorticity and mixing (Dupont et al., 2003). The grid
resolution does not vary over the computational domain. The global grid
resolution must then be chosen smaller than the charachteristic length of the
smallest phenomena in which we are interested. However, these phenomena
generally occur (or are of interest for the modeller) in a limited area of the do-
main, and a variable grid resolution is more efficient. Nested grids provide a
flexible variable resolution. It consists of a high resolution grid incorporated
within a lower resolution grid. However the transfer of information between
the different grids is problematic. The interpolation between grids must en-
sure mass conservation and should not generate numerical noise or reflection
of waves, which is far from easy (Debreu and Blayo, 2008). Unstructured grids
are an alternative to nested grid models. No interpolation is required to trans-
fer information from one region of the domain to another. Furthermore, they
avoid wave reflection issues if the transition from fine to coarse resolution
is sufficiently smooth. An example of the potential of unstructured grids is
the Great Barrier Reef, a group of over 2500 coral reefs located on the Aus-
tralian northeast continental shelf. Local data and simulations showed that
small scale phenomena mainly appear in the neighbourhood of small reefs,
islands and passages (Lambrechts et al., 2008b). A powerful approach to sim-
ulate the flow is to refine the resolution near these topographic features, while
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the main resolution is coarser. Such an approach has been used, relying on
unstructured grids (Figure 3), by Lambrechts et al. (2008b) who computed the
hydrodynamics over the whole Barrier Reef. In this perspective, several ef-
forts were done to build unstructured grids for plane or spherical geophysical
simulations (Lambrechts et al., 2008a). In a global scale model, unstructured
grids are useful to represent mesoscale eddies that are present in a relative
small fraction of the global ocean, but contains a significant part of the kinetic
energy of the world ocean.

Different metods can handle unstructured grids, both for coastal and global
scale applications. Finite volume methods are now widely used, and models
like FVCOM (Chen et al., 2003a) have a large community of users. Many other
finite volume models are developed for coastal and estuarine studies (Fringer
et al., 2006; Ham et al., 2005; Casulli and Walters, 2000) or large scale simula-
tions (Stuhne and Peltier, 2006). Another popular approach is the finite ele-
ment method. Since the first attempts to build finite element marine models,
different formulations were considered. The first models were developed us-
ing linear continuous elements for both velocity and elevation (Lynch et al.,
1996). Spurious oscillations were avoided by solving a wave equation for the
elevation, losing in this way mass conservation. The mixed formulation RT0

was then considered (Miglio et al., 1999; Walters and Casulli, 1998). How-
ever this formulation allows the existence of spurious velocity modes having
to be filtered. The PNC1 P1 pair, linear non-conforming for the velocity and
linear conforming for the elevation was shown to be free of spurious veloc-
ity and elevation modes (Hanert et al., 2005); and was successfully used in
a three-dimensional shallow-water model (White et al., 2008a). Recent stud-
ies presented the potential interest of the PDG1 − P2 (Cotter et al., 2009) and
PNC1 − PNC1 (Comblen et al., 2009b) pairs that should be further studied. Dis-
continuous Galerkin methods are focusing growing interest for coastal and es-
tuarine modelling (Aizinger and Dawson, 2002; Dawson and Aizinger, 2005;
Kubatko et al., 2006; Aizinger and Dawson, 2007; Bernard et al., 2008b). For
large scale ocean modelling, continuous finite element methods are used in
FEOM (Wang et al., 2008a,b; Timmermann et al., 2009), and ICOM relies on
mesh adaptivity to capture the multiscale aspects of the flow (Piggott et al.,
2008). The Spectral Element method was considered for marine modelling
(Iskandarani et al., 1995), but produces oscillations in the numerical solution
when the boundaries are irregular.

While the finite volume method is well suited for convection dominated
flows, it is restricted to a low order representation of the solution. In con-
trast, the finite element method benefits from the functional flexibility, allow-
ing a high order representation of the solution field; but it is designed for
diffusion problems and needs stabilisation when advection becomes signif-
icant. Discontinuous Galerkin methods are a kind of hybrid between finite
elements and finite volumes. They allow to keep most of the qualities of both
schemes while avoiding their drawbacks: the expression of the fluxes between
elements allows to use stable upstream-biased schemes, as for finite volumes
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Figure 3: Unstructured mesh of the Great Barier Reef (northeast Australia), from (Lam-
brechts et al., 2008b). The mesh contains 850 843 triangles of characteristic
sizes between 150 m and 10 km.
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methods, and the polynomial interpolation used inside each element allows
a high order representation of the solution. Further, no degree of freedom is
shared between two geometric entities, and this high level of locality consid-
erably simplifies the parallel implementation of the method.

The first chapter of this thesis describes the three-dimensional Discontinu-
ous Galerkin marine model developed in the framework of the present work.
Some results of baroclinic simulation are then shown and discussed. The
rest of the thesis is devoted to different types of unresolved physics in ma-
rine models. The second chapter introduces two different boundary layers
appearing in marine modelling: the bottom velocity boundary layer related
to the hydrodynamics, and the boundary layer of the residence time which
is a diagnostic variable. Both parameterisation and representation using the
extended finite element method will be discussed and compared. The param-
eterisation of the density gradient in one-dimensional baroclinic models is in-
troduced in Chapter 3. The point is to parameterise phenomena which are not
in the dimensional space of the model. The attention is paid to the stability of
the parameterisation under different physical conditions. Chapter 4 is related
to subgrid scale turbulence modelling in three-dimensional models, and com-
pares the effect of different parameterisations on a realistic simulation of the
flow around a shallow-water island.

This work was undertaken within the scope of the SLIM1 project that aims
at building a three-dimensional unstructured-mesh, finite-element ice-ocean
model. In the framework of the development of this model, this thesis pro-
vides practical solutions related to various numerical issues appearing in ma-
rine modelling. As different alternative methods exist, we try to identify the
advantages and drawbacks of those alternatives to help with the choice of
the appropriate method for a specific configuration. Marine modelling is the
subject of an active research, particularly since new models have appeared, re-
lying on unstructured grids. The work presented here fits into this evolution
and tries to help improving the representation and understanding of marine
processes. Some developments were carried out under the auspices of the
TIMOTHY2 project. Its main objective is to develop, validate and apply tools
to describe and evaluate the changes in quality of surface, ground and ma-
rine waters. In this perspective, the developed tools are applied to realistic
domains, which confirms their applicability to real configurations.

1Second-generation Louvain-la-Neuve Ice-ocean model (http://www.climate.be/SLIM)
2Tracing and Integrated Modeling of Natural and Anthropogenic Effects on Hydrosystems :

The Scheldt River basin and adjacent coastal North Sea (http://www.climate.be/TIMOTHY)
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Chapter 1

A three-dimensional
Discontinuous Galerkin
baroclinic marine model

This chapter focuses on the development of a marine model that should be
able to deal with problems ranging from local and regional scales to global
scales. The hydrostatic Boussinesq equations are considered. A novel mode
splitting procedure is described to treat implicitly fast surface gravity waves.
We focus on Discontinuous Galerkin methods because of their intrinsic qual-
ities for advection dominated processes, and the possible decoupling of hori-
zontal and vertical dynamics, thanks to the block-diagonal mass matrix.

1.1 Governing equations

Large scale ocean models usually solve the hydrostatic Boussinesq equations.
The conservation of mass degenerates into a conservation of volume, and the
density variations are taken into account in the pressure gradient term only.
The hydrostatic hypothesis assumes that the vertical momentum equation is
reduced to a balance between pressure gradient and gravitational forcing.
This Section describes in details this set of equations, and highlight the key
points that need to be dealt with.

11



12 Chapter 1. A three-dimensional DG baroclinic model

Spatial operators
x, y Horizontal coordinates
z Vertical coordinate, pointing upwards with its origin

at the sea surface at rest
∇h Horizontal gradient operator
ez Upward unit normal
∧ Cross product symbol

< x > Integral of x over the whole volume
� x� Integral of x over the boundary of the whole volume
< x >Ωe Integral of x over the the element Ωe
� x�∂Ωe Integral of x over the boundary of the element Ωe
� x�∆c Integral of x over the horizontal surface corresponding

to the triangle ∆cR
V
x dz Integral of x over the water depth
nz Vertical component of the outgoing normal of the

boundary of the element
nh Horizontal components of the outgoing normal of the

boundary of the element
nx First component of nh
ny Second component of nh

Variables, datasets and parameters
t Time
η Free-surface elevation

U Two-dimensional horizontal mean velocity vector
u Three-dimensional horizontal velocity vector
w Three-dimensional vertical velocity
c Three-dimensional tracer, can be S or T
S Salinity field
T Temperature field
g Gravitational acceleration
ρ0 Reference density
ρ′ Density deviation field
ρ Density field, ρ = ρ0 + ρ′

p Baroclinic pressure field
f Coriolis parameter
h Depth at rest
H Total water depth, H = h+ η
νh Horizontal turbulent viscosity parameter
νv Vertical turbulent viscosity parameter
κh Horizontal turbulent diffusivity parameter
κv Vertical turbulent diffusivity parameter

Table 1.1: Details of the mathematical notations used.
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The Boussinesq equations are the following (details of notations are found
in Table 1.1) :

• Horizontal momentum equation:

∂u
∂t

+∇h · (uu) +
∂(wu)
∂z

+ fez ∧ u +
1
ρ0
∇hp+ g∇hη

= ∇h · (νh∇hu) +
∂

∂z

(
νv
∂u
∂z

)
, (1.1)

• Continuity equation:

∇h · u +
∂w

∂z
= 0, (1.2)

• Free-surface equation:

∂η

∂t
+∇h ·

∫ η

−h
udz = 0, (1.3)

• Tracer equation:

∂c

∂t
+∇h · (uc) +

∂(wc)
∂z

= ∇h · (κh∇hc) +
∂

∂z

(
κv
∂c

∂z

)
, (1.4)

• Baroclinic pressure equation:

∂p

∂z
= −gρ(T, S) with ρ = ρ0 + ρ′(T, S). (1.5)

The baroclinic pressure equation is derived from the vertical momentum
equation using the hydrostatic approximation. This system of equation is of
mixed type. Depth-integrated, it reduces to the shallow water equations, that
are hyperbolic and parabolic, but with an hyperbolic component that domi-
nates. The hyperbolic character of these equations is taken into account in fi-
nite volume or Discontinuous Galerkin formulations using a Riemann solver
to deduce the value of the fields at the interelement interfaces (LeVeque, 2002;
Toro, 1997). It enables upwinding on the characteristic variables.

The momentum system can be seen as stacked shallow water systems. The
coupling between those layers is ensured only by the vertical advection and
diffusion. In the inviscid limit, impermeability cannot be imposed on lateral
boundary conditions, as the momentum equation becomes hyperbolic, and
only incoming characteristics can be prescribed (Rousseau et al., 2004).

The vertical velocity is not deduced from a momentum equation, but rather
from the incompressibility equation integrated from bottom to top. The den-
sity deviation ρ′ is deduced from temperature and salinity using an appropri-
ate equation of state.
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Viscosity and diffusivity coefficients are chosen to represent the different
effects of each of the many unresolved physical processes. Some dissipation
is also generated by the numerical scheme. The total mixing is then the sum
of the numerical mixing and the dissipation which is explicitely added. How-
ever, this numerically induced mixing should be the smallest possible, and
should be only present when and where it is needed in order to keep the
model stable. It is important that the level of numerical mixing do not over-
whelms the level of mixing induced by the physically based parameterisation.
Unfortunately, the latter requirement is not fulfilled in many ocean models. It
is possible to quantify the numerical mixing induced by the model (Burchard
and Rennau, 2008), and such a technique should be applied to the SLIM model
in a later study to confirm that additional diffusion must be added to represent
the effect of unresolved phenomena.

The viscosity and diffusivity are strongly anisotropic (Griffies, 2004). If we
consider a fluid stratified only in the vertical direction, stratification tends to
anihilate any motion along the vertical. As a consequence, many transport
processes tend to spread properties more efficiently along isopycnal surfaces
(horizontal direction) rather than across (vertical direction). Measurements of
the tracer diffusivity in the ocean by Ledwell et al. (1993) showed that, at the
larger scales (order of hundreds of kilometers), the ratio between horizontal
and vertical mixing can be up to eight orders of magnitude. Particular at-
tention must be paid to ensure the stability and accuracy of the anisotropic
diffusion scheme, as discussed in Section 1.6. The subgrid scale phenomena
are completely different whether they are related to the horizontal or the ver-
tical direction. Vertical processes consist of small scale (from some millimeters
to some meters) turbulence, mainly generated by shear instabilities and grav-
itational instabilities. Due to their very small scales, these processes are never
resolved in ocean models. Horizontal dominant subgrid scale processes cor-
respond to larger scales of motions such as the mesoscale eddies (tens to hun-
dreds of kilometers). In that case, larger phenomena can be resolved by the
model, depending of the resolution, and the eddy diffusivity must increase
with the mesh size.

1.2 Time discretization

1.2.1 Mode splitting procedure

Explicit methods have stability constraint on the time step related to the fastest
propagation phenomenon. In the hydrostatic Boussinesq system, the surface
gravity waves are the fastest phenomenon, and the related stable time-step
is so small that long term completely explicit simulations require by far too
many iterations. However, we cannot afford to solve implicitly the whole
coupled equations. The size of the resulting system is so large that the memory
requirements are unaffordable.
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An efficient strategy to solve implicit free-surface is to solve a smaller sys-
tem corresponding to the Schur complement of the global system. If the linear
discrete system corresponding to equations (1.1) and (1.3) reads:[

Mu G
D Mη

] [
Xu

Xη

]
=
[
fu
fη

]
, (1.6)

where Mu, Mη and Xu, Xη are respectively the mass matrices and vectors of
degrees of freedom for velocities and elevation. G and D correspond respec-
tively to the elevation gradient term of (1.1) and the velocity divergence term
of (1.3), while fu and fη are their righ-hand-sides. An equivalent smaller sys-
tem for the elevation is obtained substituting Xu in the last line of the system:[

Mη −DM−1
u G

]
Xη = fη −DM−1

u fu (1.7)

Such a methodology is found in Dukowicz and Smith (1994) as well as in
Marshall et al. (1997) for global-scale models, but also in Giraldo et al. (2003)
for shallow water problems on the sphere. For this methodology to be effi-
cient, the mass matrix for velocities Mu must be easily invertible, hence diag-
onal or block-diagonal. For continuous finite elements, mass lumping must
be performed for such a methodology to apply. If some differential implicit
operators are added to Mu, its inversion may become difficult.

The finite element ocean model FEOM uses a similar approach (Wang,
2007). The semi-discrete implicit form of the free-surface equation (1.3) is

ηn+1 − ηn

∆t
+∇h ·

∫ 0

−h
un+1dz = 0, (1.8)

where ∆t is the time step while n and n + 1 correspond respectively to the
old and new times of the temporal discretisation. If we consider that only
the elevation gradient is implicit in equation (1.1), the new velocity un+1 is
determined using

un+1 − un

∆t
= −g∇hηn+1 + F explicit, (1.9)

where F explicit includes explicit terms. This expression can be substituted in
(1.8) to obtain an implicit free-surface:

ηn+1 − ηn

∆t
+∇h ·

∫ 0

−h

[
un + ∆t

(
−g∇hηn+1 + F explicit

)]
dz = 0. (1.10)

If an implicit vertical diffusion is used to reduce time step limitations, an in-
termediate velocity must be introduced to allow the substitution:

u∗ − un

∆t
− ∂

∂z
· νv

∂u∗

∂z
= −g∇h(ηn) + F explicit. (1.11)
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The new velocity un+1, determined using a correction step

un+1 − u∗

∆t
= −g∇h(ηn+1 − ηn), (1.12)

can be substituted into the free-surface equation (1.8):

ηn+1 − ηn

∆t
+∇h ·

∫ 0

−h

[
u∗ −∆t g∇h

(
ηn+1 − ηn

)]
dz = 0. (1.13)

Equation (1.11) is first solved to obtain u∗. Then, the implicit free-surface can
be deduced by solving equation (1.13). Finally, the velocity is obtained from
equation (1.12). Implicit vertical viscosity is neglected in the correction step.
That is needed to be able to perform the subtitution and obtain (1.13). Then,
velocity can be obtained by solving equation (1.9). The method of substitution
is similar to the Schur complement approach used by Dukowicz and Smith
(1994), but the substitution is performed in the continuous space rather than
at the discrete level. Reasoning in the continuous world is so that the inverse
of the mass matrix M−1

u disappears in what corresponds to the Schur comple-
ment; and the discrete operator is not the same.

Another method usually performed by ocean models is mode splitting. In-
deed, the free-surface evolution only depends on the depth-integrated veloc-
ities, but not on the details of the three-dimensional field. Therefore, the ver-
tically averaged equations are used to deduce the sea surface elevation evolu-
tion using a small time step, while the three-dimensional baroclinic mode is
evolved using a larger time-step. Three-dimensional velocities are generally a
posteriori corrected so that their mean matches the velocities of the barotropic
mode (Blumberg and Mellor, 1987; Gadd, 1978). The barotropic mode can also
be time-stepped implicitly, using the same time-step as the baroclinic mode.
The advantage of the mode splitting approach is that the barotropic mode cor-
responds to the well known shallow water equations. Its discretisation and the
expression of interface fluxes ares stable and validated (Comblen et al., 2009b).
We chose to use this approach, with the same time step for the baroclinic mode
(explicit) and the barotropic mode (implicit).

The two-dimensional shallow water momentum equation is the result of
the depth-integration of Equation 1.1. It is shown in Appendix A that this
depth-integration can be obtained by summing the lines and columns of the
three-dimensional discrete system matrix and vector whose corresponding
nodes share the same vertical. We then derive the barotropic equations by
discretely adding all three-dimensional contributions onto the corresponding
two-dimensional degree of freedom. We neglect implicit vertical advection
and vertical diffusion of momentum in the barotropic mode, that introduce
a small horizontal coupling due to the nondiagonal mass matrix. It is also
possible to treat these terms explicitely in the barotropic mode, and obtain
an approximation similar to what is done by Wang (2007). Identity between
depth-averaged three-dimensional velocity and two-dimensional velocity is
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enforced using Lagrange multipliers in the three-dimensional system. It is
better to use Lagrange multipliers than a posteriori correct the velocities as
this correction is taken into account in the terms treated implicitly, such as
Coriolis. The effect of these Lagrange multipliers is to correct the discrepancy
due to the different treatment of vertical terms in the baroclinic and barotropic
modes. The correction is not optimal, because the finite element space used
for the Lagrange multipliers correction (surface term; constant over the verti-
cal) is smaller than the space used for vertical dynamics terms (volume term
with interface terms on horizontal faces; variable along the vertical). How-
ever, the baroclinic mode is consistent with the barotropic mode, and mass
conservation is ensured.

1.2.2 Overall time discretization

We use implicit/explicit Runge-Kutta time stepping schemes (Ascher et al.,
1997), where stiff linear terms are treated implicitly while nonlinear terms are
treated explicitly. For the momentum and free-surface equations, the terms
related to surface gravity waves, vertical advection, vertical diffusion, and
Coriolis are treated implicitly, while horizontal advection and diffusion are
explicit. The resulting linear system to solve is block, each block correspond-
ing to a column of prisms. It is then not necessary to build a three-dimensional
global matrix, and the memory usage is highly reduced. The parallel scaling
is strong as each block system is solved independently. Tracers are fully im-
plicit to avoid a restriction on the time step due to a large tracer diffusivity.
Different equations are solved at each Runge-Kutta sub-time step in an order
defined by the following sequence:
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1. Compute the terms common to two and three-
dimensional modes

2. Solve the two-dimensional mode to obtain U
and η

3. For each column of prisms

(a) Compute the implicit terms for the three-
dimensional momentum

(b) Compute the constraint matching u mean
with U

(c) Solve the related local linear system, using
a direct sparse solver to obtain u

4. Solve the incompressibility equation to obtain w

5. For each tracer

(a) Compute the terms

(b) Solve the linear system

6. Compute the density field ρ

7. Compute the baroclinic pressure gradient field to
obtain ∇hp

1.3 Weak formulation and spatial discretization

Equations (1.1) to (1.5) are discretized in space using the finite element method.
As already mentioned, linear Discontinuous Galerkin elements are used ex-
cept for density deviation and baroclinic pressure gradient (Table 1.2). The
justifications of this choice will be given in the corresponding paragraphs.
Prismatic elements obtained from the extrusion of triangular two-dimensional
elements are used, taking into account the high anisotropy found in marine
waters.

1.3.1 Riemann solver at the interfaces

The two-dimensional barotropic equations are deduced from the
depth-integration of the three-dimensional set of equations. These
two-dimensional equations are similar to the shallow water equations. There-
fore, depth-integration of the three-dimensional terms should be close to usual
discretization of the shallow water equations. Indeed, the lateral interface
terms must be chosen in a way that warrants a robust two-dimensional dis-
cretization. Comblen et al. (2009b) describe in details a finite element formu-
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Field Finite element space

Free surface elevation η PDG1

2d horizontal mean velocity vector U PDG1

Horizontal three-dimensional velocity vector u PDG1 × LDG1

Vertical three-dimensional velocity w PDG1 × LDG1

Three-dimensional tracer c PDG1 × LDG1

Density deviation ρ′ P1 × L1

Baroclinic pressure gradient F p P1 × L1

Table 1.2: Summary of the finite element spaces used for each field. Triangular lin-
ear elements are noted P1 while vertical linear elements are noted L1. The
superscript DG stands for Discontinuous Galerkin.

lation for the shallow water equations, where stabilizing terms appear in the
interface terms only. Our Discontinuous Galerkin formulation falls within this
framework.

Due to the discontinuous representation of the variables, they are double-
valued at the interface between elements, and must be defined in a way to
ensure stability and accuracy. Riemann solvers are used to deduce proper val-
ues of the variables at the interface. For the boundary integrals corresponding
to linear terms, we use the values from the Riemann solver of the linearized
two-dimensional equations, i.e. the linear shallow water equations, that are a
wave equation. If we define respectively {a} = ain+aext

2 and [a] = ain−aext

2 the
mean and the jump of a at the interface, those values read:

uRiemann = u +
√
g

h
[η] , ηRiemann = η +

√
h

g
[u], (1.14)
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For the boundary integrals corresponding to nonlinear terms, we use the
values from the Roe approximate Riemann solver of the nonlinear
two-dimensional equations, i.e. the nonlinear shallow water equations. Those
values are deduced from the conservative variables as (Comblen et al., 2009b):

HRoe = {H}+
1√
gH̄

([Hu]− ū [H]) , (1.15)

(Hu)Roe = {Hu}+
1√
gH̄

(
ū [Hu]− ū2 [H]

)
, (1.16)

(Hv)Roe = (Hv)upwind + v̄({H} −Hupwind) (1.17)

+
1√
gH̄

(v̄ [Hu]− ūv̄ [H]) , (1.18)

ηRoe = HRoe − h, (1.19)

uRoe =
(Hu)Roe

HRoe , (1.20)

vRoe =
(Hv)Roe

HRoe . (1.21)

where the Roe means are:

H̄ = {H} , (1.22)

ū =
uL
√
HL + uR

√
HR√

HL +
√
HR

, (1.23)

v̄ =
vL
√
HL + vR

√
HR√

HL +
√
HR

. (1.24)

1.3.2 Momentum equation

The weak continuous formulation of the horizontal momentum equation is
obtained by multiplying equation (1.1) by a test function û and integrating
over the whole domain Ω:

< û · ∂u
∂t

> + < û · (∇h · (uu)) > + < û · ∂wu
∂z

>

+ < û · fez ∧ u > + < û · 1
ρ0
∇hp > + < û · g∇hη >

− < û · (∇h · (νh∇hu)) > − < û · ∂
∂z

(
νv
∂u
∂z

)
>= 0, (1.25)



1.3. Weak formulation and spatial discretization 21

where < · > denotes the volume integral over Ω. The latter is then split into
Ne elements Ωe to allow the spatial discretization:

Ne∑
e=1

< û · ∂u
∂t

>Ωe︸ ︷︷ ︸
1

+< û · (∇h · (uu)) >Ωe︸ ︷︷ ︸
2

+ û · ∂wu
∂z︸ ︷︷ ︸

3

+< û · fez ∧ u >Ωe︸ ︷︷ ︸
4

+< û · 1
ρ0
F p >Ωe︸ ︷︷ ︸

5

+< û · g∇hη >Ωe︸ ︷︷ ︸
6

−< û · (∇h · (νh∇hu)) >Ωe︸ ︷︷ ︸
7

−< û · ∂
∂z

(
νv
∂u
∂z

)
>Ωe︸ ︷︷ ︸

8

 = 0. (1.26)

The latter formulation is still a continuous weak formulation. We now con-
sider a discontinuous representation of the variables. The terms containing
spatial derivatives of discontinuous quantities (i.e. all apart from the baro-
clinic pressure term) are integrated by part in order for the Neumann bound-
ary fluxes to appear. Those terms then read:

2
Ne∑
e=1

[
− < ∇hû : uu >Ωe

+�
(
uRoeuRoe · û

)
· nh �∂Ωe

]

3
Ne∑
e=1

[
− < ∂û

∂z
· wu >Ωe +�

(
û · wdownuupwind

)
nz �∂Ωe

]

6
Ne∑
e=1

[
− < ∇h · ûgη >Ωe

+� gηRiemannû · nh �∂Ωe

]

7
Ne∑
e=1

[
� interface term�∂Ωe

− < νh (∇hû) : (∇hu)T >Ωe

]

8
Ne∑
e=1

[
� interface term�∂Ωe − <

∂û
∂z
· νv

∂u
∂z

>Ωe

]
The interface terms for the diffusion operators 7 and 8 are detailed in Section
1.6 dealing with the treatment of anisotropic diffusion in DG.

Lagrange multiplier to ensure compatibility between 2d and 3d velocities

As described in Section 1.2, we first solve the equation for the two-dimensional
elevation and mean velocities, and then we solve the equation for
three-dimensional velocities. To ensure that 2d and 3d velocities have the
same mean, we use Lagrange multipliers, that act as fictitious forces to project
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the three-dimensional velocities onto a space with the right averages. We de-
fine the two-dimensional Lagrange multiplier vector field λ lying in the same
finite element space as the two-dimensional velocities.

Then we add to the linear system for the degrees of freedom of a column
of prisms, derived from (1.26), six lines and columns corresponding to the two
Lagrange multipliers for each of the three surface nodes. The lines correspond
to the compatibility constraint:

Ne∑
e=1

< λ̂(u−U) >Ωe
= 0, (1.27)

while the columns corresponds to the fictitious force:

Ne∑
e=1

[
< û

∂u
∂t

>Ωe
+ · · ·+ < ûλ >Ωe

]
= 0 (1.28)

1.3.3 Incompressibility equation

The incompressibility equation is used to deduce the vertical velocity by inte-
grating the horizontal velocity divergence from bottom to top. The weak form
of this equation reads:

< ŵ
∂w

∂z
> + < ŵ∇h · u >= 0. (1.29)

This can be split onto a sum on all elements (continuous form):

Ne∑
e=1

[
< ŵ

∂w

∂z
>Ωe + < ŵ∇h · u >Ωe

]
= 0. (1.30)

Considering a discontinuous representation, we integrate each term by part
to get:

Ne∑
e=1

[
� ŵwdownnz �∂Ωe − <

∂ŵ

∂z
w >Ωe

+� ŵuRiemann · nh �∂Ωe︸ ︷︷ ︸
a

− < ∇hŵ · u >Ωe

]
= 0. (1.31)

This equation can be viewed as a steady vertical transport equation, with
unit velocity, where the divergence of the horizontal velocity is a source term.
This expresses that it is a hyperbolic equation, where the information goes
from bottom to top. A single boundary condition must be prescribed, at the
bottom boundary, where the vertical velocity is nil. This boundary condition
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is imposed weakly, by suppressing the boundary integral on the bottom. Fur-
ther, at the interfaces between layers of prisms, wdown must be upwinded.

It can be seen from equation (1.31) that the only term that could prevent
horizontal jumps is the term labeled a. However, this term does not contain
the jumps of w and, in fact, it appears that it is sufficient only for barotropic
applications. To ensure smoothness of the vertical velocity, we add to the left-
hand side of (1.31) a penalty term as:

− � γŵ(win − wout)�∂Ωe
, (1.32)

where γ is a non-dimensional penalty parameter taken as:

γ =
maximum horizontal edge length

h

1.3.4 Free-surface equation

The free-surface equation can be seen as the two-dimensional counterpart of
the incompressibility equation. By working on a fixed mesh (see Section 1.3.7)
and commuting the divergence operator with the integral, the free-surface
equation (1.3) reads

∂η

∂t
− u|z=−h∇h(−h) +

∫ 0

−h
∇h · u dz = 0. (1.33)

A bottom term appears, which vanishes because the bottom velocity u|z=−h is
imposed at zero (see Section 1.4). The last term of (1.33) is exactly the depth-
integration of the velocity divergence term corresponding to the incompress-
ibility equation (1.2). Rather than computing this term twice at the risk of in-
troducing inconsistencies which would break mass conservation, the velocity
divergence operator is computed only once for the incompressibility equation.
Then, it is discretely depth-integrated by aggregating the lines and columns
of the three-dimensional discrete matrix whose corresponding nodes share
the same veritcal. It is shown in Appendix A that this aggregation correspond
to a depth-integration of the continuous equation. The free-surface discrete
equation is then

Ne∑
e=1

� η̂
∂η

∂t
�∆c

+ aggregated 3d velocity divergence = 0. (1.34)

The penalty term used for the vertical velocity must also be included in the
free-surface equation to ensure consistency between equations.
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1.3.5 Tracer equation & consistency

The weak formulation for the tracer equation reads:

< ĉ
∂c

∂t
> + < ĉ∇h · (uc) > + < ĉ

∂wc

∂z
>

=< ĉ∇h · (κh∇hc) > + < ĉ
∂

∂z

(
κv
∂c

∂z

)
> . (1.35)

As a sum on each elements, one gets (continuous form):

Ne∑
e=1

[
< ĉ

∂c

∂t
>Ωe

+ < ĉ∇h · (uc) >Ωe
+ < ĉ

∂wc

∂z
>Ωe

]

=
Ne∑
e=1

[
< ĉ∇h · (κh∇hc) >Ωe + < ĉ

∂

∂z

(
κv
∂c

∂z

)
>Ωe

]
. (1.36)

Considering a discontinuous representation, we integrate by part the trans-
port and diffusion terms to obtain:

Ne∑
e=1

[
< ĉ

∂c

∂t
>Ωe +� ĉcupwinduRiemann · nh �∂Ωe − < ∇hĉ · uc >Ωe

+� ĉwdowncupwindnz �∂Ωe
− < ∂ĉ

∂z
wc >Ωe

− � γĉ(win − wout)c�∂Ωe

]
=

Ne∑
e=1

[
� interface term�∂Ωe − < ∇hĉ · (κh∇hc) >Ωe

− < ∂ĉ

∂z

(
κv
∂c

∂z

)
>Ωe

]
. (1.37)

The interface terms for diffusion are detailed in Section 1.6.
As this is a transport equation, the interface fluxes need to be upwinded to

ensure a stable discretization.
To ensure consistency, it is mandatory that the advection term degener-

ates to the incompressibility equation when a unit constant tracer is evolved
(White et al., 2008b). Therefore, one must use the same interpolation for both c
and w. Indeed, u and w must follow the same definition as in the incompress-
ibility equation. Further, the additionnal penalty term on w must be included.

1.3.6 Density & baroclinic pressure

It is well known that using some vertical coordinates (e.g. sigma coordinates)
lead to an error in the computation of the baroclinic pressure gradient term in
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the momentum equation (Haney, 1991). To partly circumvent this trouble, fol-
lowing Wang et al. (2008b), we compute the pressure gradient by integrating
the density gradient:

∂p

∂z
= −gρ(T, S) with ρ = ρ0 + ρ′(T, S) (1.38)

becomes
∂∇hp
∂z

= −g∇hρ′(T, S) (1.39)

as ρ0 is constant. In the finite element discretization, we define a discrete vec-
tor field F p that stands for the numerically computed baroclinic pressure gra-
dient. The discrete formulation of the pressure gradient equation follows:

Ne∑
e=1

[
< F̂ p

∂F p
∂z

>Ωe

]
=

Ne∑
e=1

[
− < gF̂ p∇hρ′(T, S) >Ωe

]
. (1.40)

The tracer fields use discontinuous interpolation. Therefore, a component
of their gradient is contained in the inter-element jumps. To take this jumps
into account within the computation of the pressure gradient, we define the
density deviation field ρ′ as the L2 projection of the functionEOS(T, S) onto a
continuous finite element field. According to Table 1.2, the density deviation
is then represented by continuous elements. The horizontal pressure gradi-
ent is also continuous, so that the pressure forcing term of the momentum
equation (1.26) is continuous. Figure 1.1, with a simulation of a light water
column inside denser water, shows that a continuous baroclinic pressure gra-
dient avoids the apparition of noise in the velocity field. The pressure gradient
equation must be integrated from top to bottom. To obtain a stable discretiza-
tion of this equation, we must introduce some kind of upwinding. As we use
for this equation a continuous interpolation, we resort to a Petrov-Galerkin ap-
proach, with upwinded test functions, that are the Cartesian product of usual
triangular P1 continuous test function and vertical linear upwinded L1 shape
function whose value is equal to one in the element above the corresponding
node and zero elsewhere.

1.3.7 Moving mesh & ALE methods

The variation of the sea surface elevation modify the domain of integration.
To ensure consistency, this volume modification must be taken into account
(White et al., 2008b). By working on a fixed mesh, three kind of errors appears:

• Conservation and consistency errors

• Biased weighting as the volume of the cells is modified

• Biased spatial operators
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Figure 1.1: Effect of a continuous horizontal baroclinic pressure gradient on the veloc-
ity field. Column of light water in denser water.
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For ocean modelling, where a wide spectrum of scales is parameterized, and
where the free-surface oscillations are small compared to the depth, the two
latter errors can be accepted. However, consistency errors must be avoided.
Consistency can be ensured by extracting in the right way the temporal deriva-
tive of the mass term from the spatial integral on the moving domain which,
in a conservative form, leads to the modified mass term:

< ĉ
∂c

∂t
>Ωe(t)=

∂

∂t
< ĉc >Ωfixed

e

+ < ĉc
wsurface

mesh

h
>Ωfixed

e
− < ĉ

∂(cwmesh)
∂z′

>Ωfixed
e
, (1.41)

where wmesh and wsurface
mesh are respectively the vertical velocity of the compu-

tational domain, and its value at the sea surface. This relation is obtained by
neglecting the bias on weighting and spatial operators. The last term of (1.41)
is acting as an advection term, which correspond to substract the mesh veloc-
ity from the vertical advection term of (1.36). The other term can be viewed as
a correction to the volume modification introduced by the movement of the
moving mesh.

1.4 Boundary conditions

As explained in Section 1.1, the momentum equation degenerates to an hyper-
bolic equation when the horizontal viscosity disappears. Rousseau (2005) and
Oliger and Sundstrm (1978) demonstrated with a modal analysis that, if no
viscosity is considered, the hydrostatic equations are not well-posed for any
set of boundary conditions of local type. For usual viscosity values, if imper-
meability is imposed at the boundary, a viscous boundary layer is generated,
which is generally much smaller than the element size. This boundary layer
for the horizontal velocity generates a strong vertical velocity to recover the
incompressibility. This high vertical velocity induces stability problems, that
are usually alleviated using limiting. However, we propose an alternative ap-
proach, that circumvent completely this problem. We only impose imperme-
ability for the two-dimensional mean problem (i.e. forU ). We allow a vertical
profile of horizontal velocity whose mean is nil at the boundaries. We let the
momentum go out of the domain, mimicking the dissipation in the boundary
layer, as in the hydrostatic equations, no momentum can be transfered to the
vertical component of the velocity. For tracer equations, in order to ensure
conservation and consistency, we define a two-dimensional mean value of the
tracer at the external side of the boundary, so that the mean advection flux
cancels out. This models an infinite vertical diffusivity in the boundary layer,
which takes into account upwelling or downwelling that appears due to the
boundary layer.

The bottom boundary needs a specific treatment. Physically, a no-slip
boundary condition should be enforced (u = w = 0). As the bottom veloc-



28 Chapter 1. A three-dimensional DG baroclinic model

Bottom layer

Regular domain

u=0

bottom    friction

Figure 1.2: Additional layer of elements to handle the bottom boundary layer. The bold
line shows a typical velocity profile. Note that, in a real application, the
height of the bottom layer is much smaller than the mean elements height.

ity presents a logarithmic boundary layer whose characteristic length is often
much smaller than the mesh size (Hanert et al., 2007), it is often parameterised
using a bottom stress τ derived from the law of the wall (Black and Gay, 1987):

τ

ρ0
=
[
νv
∂u
∂z

]
z=−h

=

 κ

ln
(
zb+h
z0

)
2

‖ub‖ub (1.42)

where z0 is the bottom roughness length and κ = 0.4 is the von Karman con-
stant. The bottom velocity ub is computed at a chosen distance from the sea
bed d = zb + h, which should be in the logarithmic boundary layer, typi-
cally the mid-height of the bottommost cell. The continuity equation being
upwinded from the bottom to the top to obtain the vertical velocity, one needs
to upwind w from the bottom boundary. Its value is choosen to avoid the flow
to cross the bottom boundary:

[w]z=−h = − [u · ∇h]z=−h . (1.43)

However, (1.43) is imposed by specifying an exterior value for the upwinding
of w. It is then only weakly enforced. This allows flows through the bottom
boundary, which break tracers consistency and conservation. On the other
hand, imposing strongly the bottom vertical velocity generates, according to
(1.43), jumps between each elements whose bottom slopes are different. These
jumps can be important and alter the solution.

A solution to overcome this issue is to impose strictly the no-slip condi-
tion at the bottom. Extended finite elements could be used to represent the
boundary layer (Hanert et al., 2007), but it would be complex to handle. An-
other method is to add an additionnal layer of elements at the bottom, much
smaller than the mean elements height (Figure 1.2). We enforce the no-slip
condition on the lower side of this layer, while the classical bottom friction
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(a) (b) (c)

Figure 1.3: Different vertical coordinates systems implemented in the code: classical σ
cordinates (a), classical z coordinates (b) and shaved cells (c)

(1.42) is applied on the lower side of the bottommost element above the addi-
tionnal layer. In this layer, a linear profile connects the no-slip bottom condi-
tion with the velocity in the upper element. This layer has no influence on the
velocity in the above layers and, as the momentum equation is not computed
in it, it doesn’t add any limitation on the time step. Vertical velocity is then
computed on the whole domain, even in the bottom layer, to ensure incom-
pressibility. The Dirichlet boundary condition for vertical velocity is imposed
weakly, i.e. the boundary term is omitted.

1.5 Vertical coordinates and their impact

Three different vertical coordinates systems are implemented in the model
(Figure 1.3). Sigma coordinates offer an accurate representation of the bathy-
metry, which prevents the apparition of excessive vorticity and mixing, com-
pared to z coordinates. However, in the presence of highly anisotropic op-
erators whose orientation is mainly horizontal (diffusion, baroclinic pressure
forcing), little errors in the computation of horizontal gradients, generated
by the inclination of the cells, can alter significantly the solution. Two main
problems are the pressure gradient error (Haney, 1991), and the spurious ver-
tical diffusion (Huang and Spaulding, 1996). While the first issue is partially
avoided for a linear density (Section 1.3.6), the spurious vertical diffusion re-
mains a problem. Under certain conditions developed below, shaved cells
introduced by Adcroft et al. (1997), offer the combined advantages of σ and z
coordinates (i.e. they do not generate vorticity and, except in the bottommost
cells, the horizontal gradients are exactly computed for a fluid stratified in the
z direction).

A simulation of a flow over a seamount was run to compare the additional
vorticity generated by the choice of vertical coordinates (Figure 1.4). The do-
main is 1000 km long (x-direction) and its depth varies from 100 m to 1000 m.
It is infinitely long (periodic) in the y-direction.

The steady velocity of maximum 0.5 m/s is induced by different eleva-
tions imposed at the left and right boundaries of the domain. The vorticity,
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a b c

Figure 1.4: Vorticity of a steady state flow over a seamount, computed using classical
σ cordinates (a), classical z coordinates (b) and shaved cells (c).

computed in the x− z plane, is defined by

ζ =
∂w

∂x
− ∂u

∂z
. (1.44)

Figure 1.4 shows that σ coordinates and shaved cells generate a small vortic-
ity, due to the deviation of the flow around the seamount, while z coordinates
induce a strong vorticity. Generated by the staircase representation of the bot-
tom, this strong vorticity is clearly not physical.

The same domain was used with a new setup to emphasize the spurious
diffusion generated by the vertical discretization. A stratified tracer is ini-
tially set over the left slope of the seamount (Figure 1.5). Its concentration is
zero for a depth under 400 m, has no horizontal structure, and is a quadratic
function of depth. The fluid is at rest. A horizontal diffusion coefficient of
κh = 100 m2/s is used, while there is no vertical diffusion. Once a steady
state is reached, the tracer concentration using σ coordinates is highly dif-
fused in the vertical direction (Figure 1.5a). The remaining tracer concentra-
tion over the left slope of the seamount is less than half of its initial value,
and some tracer has climbed the mount to reach the right part of the domain.
The quadratic structure of the tracer concentration induced errors in the com-
putation of horizontal gradients in inclinated cells (grey elements in Figure
1.3a) and interfaces (dashed lines in Figure 1.3a), generating spurious vertical
diffusion. This diffusion is active until a linear vertical profile of tracer con-
centration is obtained. Then, the gradient computation errors disappear. With
z coordinates, the horizontal gradient is exactly zero, and the steady state so-
lution is the same as its initial concentration (Figure 1.5b). When shaved cells
are used, the steady state solution is linear by part (Figure 1.5c). The spurious
diffusion propagates along the bottommost cells and interfaces, which are the
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a b c

Figure 1.5: Stratified tracer in a fluid at rest, computed using classical σ cordinates
(a), classical z coordinates (b) and shaved cells (c). Initial condition (up
and middle) and steady state solution when applying horizontal diffusion
(down). The last two rows of graphs show the tracer concentration at each
side of the slope.
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only elements subject to errors of the horizontal gradient. This propagation
is stopped when discrete levels and horizontal elements boundaries intersect
exactly at the sea bottom (e.g. the bold line in Figure 1.3c). However, this con-
figuration is unlikely to appear in a realistic three-dimensional domain, and
the same drawbacks as those associated with σ coordinates may appear (with
a higher characteristic time however). This problem can be avoided by vanish-
ing the horizontal diffusion flux through inclinated interfaces (dashed lines in
Figure 1.3c). Doing that, diffusion can not propagates through different levels,
and the steady state concentration is very close to its initial state.

Shaved cells seem to be an appropriate choice for ocean simulations. How-
ever, the choice of the vertical coordinates depends on the applications and
must be studied for each different configuration.

1.6 Treatment of anisotropic diffusion with interior
penalty method

1.6.1 Interior penalty methods

Using Discontinuous Galerkin methods, there are mainly two ways to treat the
Laplacian operator. The local-DG approach (Cockburn and Shu, 1998a), that
introduces a mixed formulation for the field and its gradient and can be diffi-
cult to handle with an implicit time-stepping, and the interior penalty family
of methods (Arnold et al., 2002a; Riviere, 2008).

It can easily be seen that the intuitive treatment of the Laplacian operator
lacks convergence. Integrating by part, one gets:

< ĉ∇2c >Ωe
=� ĉ(∇c)∗ · n�∂Ωe

− < ∇ĉ · ∇c >Ωe
, (1.45)

where (∇c)∗ is the mean of the gradients at the two sides of the interface.
This formulation does not take into account the component of the gradient

embedded in the inter-elements jumps. If the values in a whole element are
shifted, the residual remains the same. Further, even if the Laplacian operator
is symmetric, this formulation is not. To solve the problem, we use the sym-
metric interior penalty method (SIPG). It alleviates both of these troubles and
can be written as follows:

� ĉ
∇cin +∇cout

2
· n�∂Ωe

+� ∇ĉ cin − cout

2
· n�∂Ωe

+� σĉ(cin − cout)�∂Ωe − < ∇ĉ · ∇c >Ωe . (1.46)

Notice the penalty term, with the associated parameter σ. It allows the
formulation to take into account the component of the gradient embedded in
the jumps. There is a lower bound on σ that ensures optimal convergence,
and this bound must be as tight as possible, as the higher σ, the worser the



1.7. Density driven flow 33

conditioning of the operator. Shahbazi (2005) provides good values of σ as:

σ = max
e

[
(k + 1)(k + d)

d

A(interface)
V (Ωe)

]
, (1.47)

where d is the spatial dimension, and k the order of the interpolation.

1.6.2 Anisotropy of the operator

Solving anisotropic diffusion is not an easy problem. Indeed, it is really diffi-
cult to ensure that the discrete anisotropic diffusion satisfy a discrete max-
imum principle (Kuzmin et al., 2009). However, in ocean modelling, both
the diffusion operator and the mesh are anisotropic. We propose to men-
tally stretch the mesh in the vertical direction so that we recover an isotropic
diffusion on the stretched mesh. The mesh is not really stretched, but inte-
rior penalty coefficients are chosen is such a way that they correspond to an
isotropic diffusion on a stretched mesh.

Let us consider a general large scale tracer problem, on a mesh whose typ-
ical horizontal and vertical elements sizes are 100 km and 10 m. Considering
unresolved phenomena for this mesh scale, typical values of turbulent diffu-
sivity in the ocean interior are of the order κh = 104 m2s−1 and κv = 10−4

m2s−1 (Griffies, 2004; Ledwell et al., 1993; Mellor and Blumberg, 1985). The
dimensionless equivalent problem with a vertical diffusivity κv = 104 m2s−1

corresponds to a mesh stretched by a factor 104 in the vertical direction. In
such a mesh, the typical vertical mesh size would be 100 km. So we recover
isotropic diffusion on an isotropic mesh. The values taken here are more or
less representative of the order of magnitude found in an ocean model, and
illustrate that the anisotropy of the problem is rather small.

However, this is strongly related to the hydrostatic consistency of Haney
(1991), as if the elements are too shallow, the stretched grid is highly distorted,
as illustrated in Figure 1.6.

1.7 Density driven flow

The model is now applied to different typical ocean modelling benchmarks
to check that it reproduces a correct physical behaviour of the fluid. These
simulations do not validate the model, as we focus mainly on the qualitative
behaviour. The model is still in validation and some quantitative comparisons
need to be done.

The first testcase is a baroclinic and rotational benchmark developed by
Avlesen et al. (2001). It was designed to be “a test problem complex enough
to measure fundamental qualities of numerical schemes in ocean models, but
otherwise as simple as possible”. The domain is a box of 200 km × 200 km,
with closed boundaries. The horizontal coordinates x and y are equal to zero
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Figure 1.6: Dimensionless equivalent problem on stretched mesh leads to isotropic dif-
fusion. The mesh is highly distorted as it does not respect the hydrostatic
consistency principle.

at the center of the box. The mean water depth is 200 m. If we define the two
metrics

rh =
√

(x− 105)2 + (y − 105)2 and rv = 1000z, (1.48)

where x and y are the horizontal coordinates in metres, the initial density is
given by

ρh(x, y) = ρc −∆ρ tanh(rh/∆r) (1.49)

ρ(x, y, z) = ρh(x, y)(1− tanh(rv/∆r)) + ρ0 tanh(rv/∆r) (1.50)

with ρc = 1024 kg/m3, ∆ρ = 4 kg/m3 and ∆r =
√

3 · 5 · 104 m. The reference
density is ρ0 = 1025 kg/m3. The initial density deviation field is shown in
Figure 1.7a. The initial free-surface is determined from (Avlesen et al., 2001)

∂η

∂x
=

1
ρ0

∫ 0

−h

∂ρ

∂x
dz and

∂η

∂y
=

1
ρ0

∫ 0

−h

∂ρ

∂y
dz, (1.51)

assuming that the average of the elevation η over the domain is nil. The initial
velocity obeys

f
∂u

∂z
=

g

ρ0

∂ρ

∂y
and f

∂v

∂z
= − g

ρ0

∂ρ

∂x
. (1.52)

with a bottom velocity ubtootm = vbottom = 0.
Following Avlesen et al. (2001), the coriolis parameter is set to f = 1.3 ·

10−4 s−1. The bottom friction follows the relation (1.42) with a bottom rough-
ness length z0 = 0.01 m. The vertical viscosity and diffusivity are νv = κv =
0.01 m2/s, while the horizontal ones are νh = κh = 1 · 104 m2/s. This test case
is highly viscous. Avlesen et al. (2001) justified these high values of viscosity
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(a)

(b)

Figure 1.7: Initial density deviation (a) and steady-state horizontal velocity norm and
direction obtained from the model on the diagnostic run (b).
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Figure 1.8: Two-dimensional mesh to be extruded for the simulation. It contains 531
triangles.
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Figure 1.9: Evolution of the kinetic energy for the diagnostic run. SLIM results com-
pared to a high-resolution finite-difference reference solution.

and diffusivity by the need to obtain a diagnostic in a short time on a modest
computer. The norm of the acceleration due to the gravity is g = 9.806 m/s2.

The mesh is made of 531 triangles extruded over 8 layers to obtain 4248
prisms. Its two-dimensional part is refined near the center where the spatial
variations of the variables are stronger (Figure 1.8). The model uses a time-
step of 180 seconds. A first run is performed in diagnostic mode. The density
is constant in time, and will act as a forcing term on the momentum equa-
tion. An equilibrium between pressure forcing and coriolis acceleration will
develop to reach a stead-state regime. The norm and direction of the veloc-
ity in this steady-state regime are visible on Figure 1.7b. Figure 1.9 shows the
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Figure 1.10: Evolution of the kinetic energy for the prognostic run. SLIM results com-
pared to a high-resolution finite-difference reference solution.

evolution of the kinetic energy, computed using

Kinetic energy =
∫

1
2
ρ(u2 + v2)dΩ. (1.53)

Oscillations of a period of approximately 15 hours are generated by an ad-
justement around an equilibrium state dictated by the constant density field
(Avlesen et al., 2001). A comparison is made with a reference finite-difference
model (i.e. the Bergen Ocean Model (BOM)). The latter uses a higher reso-
lution (345.600 cells). As it was designed without mode splitting, the time
step, constraint by the surface gravity waves celerity, is set to 15 seconds. This
comparison shows that the kinetic energy oscillations are obtained with cor-
rect amplitude and period, as well as the evolution towards the steady-state
regime.

The second run is fully prognostic: the density is advected by the flow and
subject to diffusion. Both density and velocity interact mutually. The kinetic
energy is exponentially damped to be finally anihilated when no density gra-
dient subsists due to the high dissipation (Figure 1.10). The comparison with
BOM results also shows that this exponential decrease occurs at a correct rate.

1.8 The DOME test-case

In this section, the model is applied to the simulation of a density driven flow
inspired by the common DOME test-case. DOME stands for Dynamics of
Overflow Mixing and Entrainment. It is a benchmark setup designed to assess
the qualities and drawbacks of ocean models in terms of deep water formation
by gravity currents. The DOME test-case was the subject of many studies to
understand the influence of vertical coordinates (Ezer and Mellor, 2004; Wang
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Figure 1.11: The computational domain for the DOME benchmark.

et al., 2008a), resolution and physical parameters (Legg et al., 2006; Tseng and
Dietrich, 2006; Jiang and Garwood, 1996), geometry (Ezer, 2006) or parame-
terisations (Ezer, 2005). In this section, we try to reproduce the qualitative
behaviour observed in previous models or observations. The computational
domain and initial setup is provided in Figure 1.11: dense water (density ρb)
is initially set into the half lower part of the embayment of depth 600 m. Dif-
ferent values of the density are obtained by using a temperature field T that
impacts on the density by the means of a linear equation of state (Cushman-
Roisin, 1994):

ρ = ρ0 (1− α(T − T0)) , (1.54)

where α = 1.945525291 · 10−4 (◦C)−1 and ρ0 = 1025 kg/m3. As a simpli-
fication, the effect of salinity is neglected and the density is only a function
of temperature. The reference temperature is not defined, but temperature
deviation T ′ = T − T0 is initially imposed at T ′ = 0 in the whole domain
and T ′ = −10 ◦C in the embayment, leading respectively to densities of
1025 kg/m3 and 1027kg/m3.

Lateral boundaries are closed except the northern one (e.g. the end of the
bay) where geostrophically balanced inflow conditions are imposed (Harig,
2004) with an incoming velocity of vin = 0.5 m/s in the lower part and an op-
posed velocity in the upper part. The interface between the lower and upper
parts of the boundary as well as the sea surface elevation are derived from
the geostrophic equilibrium (Harig, 2004). Water enters in the domain with a
temperature deviation of T ′ = −10 ◦C, corresponding to its initial value in the
lower part of the embayment.

The experiment is used here to check stability and good physical behaviour
of the model with little explicit viscosity and little explicit diffusion on a rela-
tively coarse mesh. The latter contains 53.244 prismatic elements distributed
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Figure 1.12: Unstructured grid used for the simulations, containing 53.244 prismatic
elements generated with the extrusion of 2958 triangles to form 18 layers.
Its horizontal resolution varies from 11 km to 30 km. Initially dense water
is placed in the red area for the experiment.

among 18 layers. Its horizontal resolution varies from 11 km to 30 km (Figure
1.12).

The horizontal turbulent viscosity νh is computed via a Smagorinsky sche-
me (Smagorinsky, 1963a):

νh = cs∆2

[(
∂u

∂x

)2

+ 0.5
(
∂u

∂y
+
∂v

∂x

)2

+
(
∂v

∂y

)2
]1/2

(1.55)

where ∆2 is the surface area of the local triangle (Akin et al., 2003). The
Smagorinsky constant cs is set to 0.01 and the horizontal viscosity is con-
strained by a maximum value of νh ≤ 50 m2/s. A Pacanowski and Philan-
der model (Pacanowski and Philander, 1981a) prescribes vertical viscosity in
terms of a function of the Richardson number:

νv =
ν0

(1 + αRi)n
+ νb, (1.56)

where n and α > 0 are adjustable parameters, respectively set to 2 and 10 in
the present study following Wang et al. (2008a). The neutral and background
values of vertical viscosity are set to ν0 = 5 ·10−2 m2/s and νb = 2 ·10−5 m2/s.
The Richardson number is defined by

Ri =
N2

M2
, (1.57)
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in which M and N are respectively the Prandtl and Brunt-Väisälä frequencies

M =
∣∣∣∣∂u∂z

∣∣∣∣ and N =

√
∂b

∂z
, (1.58)

where b = −g(ρ − ρ0)/ρ0 is the buoyancy. If the Richardson number is nega-
tive, its value is taken to be zero. The horizontal diffusion coefficient is set
to κh = 10 m2/s while vertical diffusion coefficient is prescribed to κv =
1 ·10−4 m2/s. The choice of these viscosity/diffusion coefficients is somewhat
artificial, and was made to obtain values comparables to previous studies us-
ing constant coefficients such as Wang et al. (2008a). As the flow is largely un-
resolved, a considerable numerical diffusion is generated by the model, and
the effect of the turbulence parameterisations may not be dominant. Further
studies should be performed to estimate the effect of the numerical diffusion
versus the turbulence parameterisations, as proposed by Burchard and Ren-
nau (2008).

Results of simulation are shown in Figure 1.13. A large plume develops
along the slope and splits into several smaller subplumes, well defined after
10 days of simulation. Surface depressions and mean velocity show counter-
rotating eddies whose genesis is clearly related to these subplumes. As the
simulation evolves, the subplumes interact with each other to finally merge.
Eddies propagate along the isobath with the shallow side on the right, cor-
responding to topographic Rossby waves (Cushman-Roisin, 1994). This be-
haviour was described in detail by (Jiang and Garwood, 1996) who performed
similar simulations in a non-stratified domain.

To provide a comparison with previous models, Figure 1.14a shows the
profile of temperature along a vertical line of coordinates (x, y) = (700, 560) km
after 40 days, obtained with the SLIM model. Figures 1.14b shows the profile
of a tracer initially at 0 with a unitary value at the inflow boundary, obtained
at the same location and same time by (Wang et al., 2008a). The profile of
density from Ezer and Mellor (2004) along the same line at the same time is
visible on Figure 1.14c. The different variables (temperature, tracer concen-
tration and density) are not of the same scale, but their profiles are charac-
teristic of the shape of the plume and can be compared. According to (Ezer
and Mellor, 2004; Wang et al., 2008a), the thickness of the bottom plume is ap-
proximately 50 − 100 m. The shape of the plume is better described with the
models of Wang et al. (2008a) and Ezer and Mellor (2004), particularly close
to the bottom. This is a consequence of the lack of vertical resolution of the
SLIM simulation, using 18 layers, while the others studies used respectively
36 and 50 layers. The thin bottom plume (the last 55 m near the sea bottom) is
represented with only one layer of prisms in the SLIM simulation, explaining
that its profile is linear.

This simulations shows that the SLIM model is able to represent some
physical processes encountered in the ocean. Such a coarse resolution does
not allow to represent the complete structure of the flow, but its general be-
haviour is in accordance with the previous model studies.
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Figure 1.13: (UP) Temperature deviation just above the bottom. Isolines every 2◦C.
(DOWN) Free-surface elevation and direction of depth-averaged velocity.
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Figure 1.14: Profiles along a vertical line of coordinates (x, y) = (700, 560) km, after
40 days. (a) Temperature profile with the SLIM model. (b) Tracer concen-
tration profile from Wang et al. (2008a) (horizontal resolution 10 km, 36
layers). (c) Density profile from (Ezer and Mellor, 2004) (horizontal reso-
lution 10 km, 50 layers), in sigma-t units.
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1.9 Baroclinic instability

The last benchmark is a baroclinic instability, modelled in laboratory by Grif-
fiths and Linden (1981) and simulated with three-dimensional models by
James (1996) and Tartinville et al. (1998). It consists of an initial cylinder of
water of lower salinity than the ambient sea water. This cylinder extends on
the half upper layer of the domain. An eddy forms which, after an adjust-
ment period, develops a second order instability and splits into two smaller
eddies (Griffiths and Linden, 1981). The domain of interest is a square box of
depth 20 m and length 30 km with open boundaries. Tartinville et al. (1998)
and James (1996) used sponge regions to approximate open boundaries. In
this study, the mesh flexibility of the finite element method is used to move
the boundaries far enough from the region of interest to limit their influence.
The resulting two-dimensional mesh of 3742 triangles has a resolution vary-
ing from 1 km to 100 km (Figure 1.15). This mesh is extruded in the vertical
direction to obtain 18 layers.

The initial salinity is a function of the distance to the center d, given by

S = min

[
1.1
(

d

3000

)8

+ 33.75 , 34.85

]
. (1.59)

The equation of state is linearised following

ρ = 1025 + 0.78(S − 33.75). (1.60)

The coriolis parameter is set to f = 1.15 · 10−4 s−1. Initial velocity and ele-
vation are set to zero. No bottom or surface stress is considered. Constant
diffusivities are used, respectively 1 m2/s in the horizontal direction, and
5 · 10−5 m2/s in the vertical direction. The horizontal viscosity is computed
via a Smagorinsky scheme (Equation 1.55) using a coefficient cs = 0.06 while
the vertical viscosity is set to 1 · 10−4 m2/s. The values of horizontal viscos-
ity are modified to respect the constraint 0.5 m2/s ≤ νh ≤ 5 m2/s. These
values were chosen the smallest possible but high enough to provide a stable
discretization.

The evolution of density, mean velocity and sea surface elevation is shown
in Figure 1.16. Gravity waves are quickly generated, propagating radially out
of the domain of interest. Then, the eddy oscillates around a geostrophic equi-
librium. Finally, the mode 2 instability develops as expected, and the vortex
breaks into two smaller vortices.

The evolution of kinetic energy (Equation 1.53) and enstrophy, defined as
the square of the horizontal vorticity

Enstrophy =
∫ (

∂v

∂x
− ∂u

∂y

)2

dΩ (1.61)

is sketch in figure 1.17. We observe inertial oscillations of a period of approxi-
mately 15 hours, linked to the eddy oscillations visible in the three first shots
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Figure 1.15: Unstructured two-dimensional mesh used for the benchmark simulations.
It contains 3742 triangles and its resolution varies from 1 km to 100 km.
The size of the box on the right panel is 60 × 60 km.

of Figure 1.16, corresponding to simulation times of 30min, 8 h and 15 h. Both
kinetic energy and enstrophy starts to increase after about 150 hours, when the
vortex break up in two smaller vortices. The values of the diagnostics evolve
in the same range as the results obtained by Tartinville et al. (1998) using dif-
ferent finite-difference models.

As some models were unable to obtain a mode 2 instability, it should be
interesting to perform a mathematical analysis to ensure that this mode 2 in-
stability is really the lowest energy mode. However, such a study is not in the
framework of the present work. Laboratoty experiments observed a mode 2
instability, and it it seems that the apparition of this mode is not very sensi-
ble to small perturbations of the initial conditions. According to Griffiths and
Linden (1981), the order of the instability depends on the initial characteris-
tics of the cylinder. After several laboratory experiments, Griffiths and Linden
(1981) were able to provide a map of the mode of the instability as a function
of two initial parameters: the relative height of the light water cylinder δ and
a Richardson number

θ =
g (ρ−ρref)

ρref
20δ

f2R2
(1.62)

where ρref is the density at 34.85 PSU and R is the radius of the cylinder of
light water. On this map (Figure 1.18), the simulation performed with the
SLIM model (X mark on the plot) should clearly produce a second order in-
stability, even if the parameters change slightly. Futhermore, by decreasing
the height of the light water cylinder δ, the order of the unstable mode pro-
duced by the SLIM model increased as expected in Figure 1.18 (not shown).
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30 min. 8 h

15 h 110 h

144 h 180 h

216 h 288 h

Figure 1.16: Illustration of the baroclinic instability testcase. At the bottom of the do-
main, we show the sea-surface elevation, the arrows representing the two
dimensional mean velocities. Isocontours of the salinity are given, ranging
in [34.5, 34.7875] PSU and separated by 0.0125 PSU .
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time [h]

Figure 1.17: Evolution of the kinetic energy and enstrophy. SLIM results (UP) ver-
sus results from Tartinville et al. (1998) obtained with different models
(DOWN). The vertical lines denote times where the snapshots of Figure
1.16 were taken.
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Figure 1.18: Map of order of the unstable mode, depending on the initial δ and θ, from
Griffiths and Linden (1981). The value of the parameters corresponding
to the current experiment with the SLIM model is represented with the X
mark.

Following laboratory experiments from Griffiths and Linden (1981), the
mode 2 instability should appear in numerical simulations. In his model in-
tercomparison, Tartinville et al. (1998) interpreted that a too high numerical
viscosity related to the advection scheme had the effect of producing an or-
der 4 instability rather than the expected mode 2, explaining the discrepancy
between models.

1.10 Discussion

These testcases show that the model is able to represent the expected physical
behaviour in different configurations, specifically designed to evaluate ocean
models. More analysis and sensitivity studies should be performed to com-
plete the validation and have a better understanding of the model behaviour.
Then, simulations have to be made on realistical configurations. The model is
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still in developments stage, and should be optimized when its core character-
istics will be definitively decided.

Our Discontinuous Galerkin advection scheme is little diffusive; but it has
the drawback of producing over- and under-shoots when the advected field is
too sharp. They are not a problem for some applications, but can become crit-
ical when reaction terms influe on the considered variables and do not have
a specific treatment taking into account these overshoots (e.g. biological vari-
ables,. . . ). Slope limiters can be used to prevent overshoots to appear (Cock-
burn and Shu, 1998b) but will inevitably introduce additional diffusion.





Chapter 2

Boundary layers:
representation or
parameterisation?

This chapter is devoted to the treatment of some boundary layers. Several
types of boundary layers exist in marine systems. They can be related to lateral
boundaries, sea bottom or surface. The characteristic lengths corresponding to
these boundary layers are generally much smaller than the ones correspond-
ing to the mean flow. Due to that, the computational mesh is often too coarse
to be able to represent the boundary layers with classical numerical methods.
Even though their exact representation can be not important for the modeller,
their effect on the mean flow must be taken into account. Three solutions are
then possible to handle these boundary layers:

• Refine the mesh in the proximity of the boundary layer to be able to
represent it

• Use specific representation methods adapted to the type of boundary
layer

• Parameterise the boundary layer

The first solution requires a very fine mesh near the boundary. While it is used
in engineering (Sahni et al., 2008), this method remains expensive for geophys-
ical simulations. The second solution tries to represent the boundary layer
without increasing significantly the computational cost. Although impossible
to perform in finite differences, this solution is easier to implement using fi-
nite elements due to their functional flexibility, i.e. the ability to use different
types of shape functions to represent the model variables (Hanert et al., 2007).
However, its use is subject to the knowledge of the behaviour of the bound-
ary layer and cannot always be applied. The last solution does not represent
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the boundary layer but takes its effect into account, usually by imposing spe-
cific boundary conditions derived from an idealised analytical solution. This
method does not involve significant additional computational cost, but the pa-
rameterisation must reflect the behaviour of the boundary layer. Furthermore,
it is not possible to know the state of the variables inside the boundary layer.
In the next sections, the two last solutions (specific representation method and
parameterisation) will be used and developed for the treatment of two specific
boundary layers: the ocean logarithmic bottom boundary layer and the resi-
dence time inflow boundary layer. The advantages and inconvenients of each
solution will be discussed.

2.1 Ocean bottom logarithmic boundary layer

The ocean bottom logarithmic boundary layer is a well known phenomenon,
parameterised in most marine models (Blumberg and Mellor, 1987; Deleersni-
jder et al., 1992; Davies et al., 1995b; White and Deleersnijder, 2007). This sec-
tion shows the possibility to represent this boundary layer using the extended
finite elements method.

In non-rotating marine waters, the velocity of the fluid near the bottom is
described by a logarithmic law which can be written as (Burchard, 2002a)

u(z) =
u∗
κ

ln(
zb + z0

z0
), (2.1)

where u, κ, z and z0 are respectively the horizontal velocity of the fluid, the
von Karman constant (κ = 0.4), the vertical coordinate pointing upwards with
its origin at the sea surface and the bottom roughness length. u∗ =

√
τ/ρ is

the bottom friction velocity where τ is the bottom stress, and zb = z + h is
the distance from the bottom. A scalar velocity and a constant water depth
h are considered for simplicity. Classical numerical methods are not able to
represent such a logarithmic profile without increasing significantly the mesh
resolution. Parameterisations were developed, derived from the law of the
wall whose most popular consists in estimating a bottom stress as a quadratic
function of the bottom velocity (Equation 1.42).

If one needs to know the behaviour of the model variables near the bottom,
the boundary layer must be represented. Starting from (2.1), the extended fi-
nite element method can be used to handle the bottom boundary layer, be-
cause (2.1) is constant in time up to a multiplicative factor u∗. The idea is
to use additional shape functions in the functional basis used for the repre-
sentation of the solution (Figure 2.1). Using this method, the velocity can be
approximated by

uh =
N∑
j=1

ujΦj(z) +
NX∑
j=1

bjΦj(z)F (z), (2.2)
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Figure 2.1: Shape functions used to represent the solution, and associated degrees of
freedom (plain circles and crosses for respectively classical and extended
finite elements). Classical linear finite elements use only the linear shape
functions (dashed lines). Two enrichement shape functions are added near
the bottom for the extended finite element method (dotted lines), here cor-
responding to F (z) of equation 2.3.

where the total number of nodes is N and the number of extended nodes is
NX . Φj are the classical linear shape functions used to represent the field. F (z)
is the enrichement function representing the idealised analytical solution near
the bottom up to a multiplicative factor

F (z) = ln

(
z + h+ z0

z0

)
. (2.3)

Using (2.2), the logarithmic boundary layer can be exactly described by the
extended shape functions. To save computational time, only the nodes located
near the bottom should use extended functions, as they are not needed far
from the boundary when the velocity field is smooth.

To derive the discrete extended finite element equations, we consider for
simplicity a one-dimensional water column model subject to diffusion only.
The velocity is then driven by

∂u

∂t
=

∂

∂z

(
νv
∂u

∂z

)
. (2.4)
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The eddy viscosity is computed using a turbulence closure model. Using con-
tinuous finite elements, this equation has the following discrete formulation:∫ 0

−h

∂u

∂t
ûdz =

∫ 0

−h

∂

∂z

(
νv
∂u

∂z

)
ûdz, (2.5)

where û is the Galerkin test function. We then integrate by part to obtain∫ 0

−h

∂u

∂t
ûdz =

[
νv
∂u

∂z
û

]0

−h
−
∫ 0

−h
νv
∂u

∂z

∂û

∂z
dz. (2.6)

The term to evaluate at the sea bed and surface represent the Neuman bound-
ary condition. An implicit euler temporal discreatization leads to∫ 0

−h

u(n+1)

∆t
ûdz = −

∫ 0

−h
νv
∂u(n+1)

∂z

∂û

∂z
dz +

∫ 0

−h

u(n)

∆t
ûdz, (2.7)

where (n) and (n+1) are the considered old and new time steps. Introducing
(2.2) in the discretization, we obtain∫ 0

−h

∑N
j=1 u

(n+1)
j Φj +

∑NX

j=1 b
(n+1)
j (ΦjF )

∆t
ûdz

+
∫ 0

−h
νv

 N∑
j=1

u(n+1)
j

∂Φj
∂z

+
NX∑
j=1

b(n+1)
j

∂ (ΦjF )
∂z

 ∂û

∂z
dz (2.8)

=
∫ 0

−h

∑N
j=1 u

(n)
j Φj +

∑NX

j=1 b
(n)
j (ΦjF )

∆t
ûdz.

Following the Galerkin discretisation we replace for each node the test func-
tion by Φi and ΦiF (z) to consider the extended functions. The linear system
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of equations of size (N +NX) reads:

- for 0 < i < N :
N∑
j=1

u(n+1)
j

[∫ 0

−h

ΦjΦi
∆t

dz +
∫ 0

−h
νv
∂Φj
∂z

∂Φi
∂z

dz

]

+
NX∑
j=1

b(n+1)
j

[∫ 0

−h

(FΦj) Φi
∆t

dz +
∫ 0

−h
νv
∂ (FΦj)
∂z

∂Φi
∂z

dz

]
(2.9)

=
∫ 0

−h

∑N
j=1 u

(n)
j ΦjΦi

∆t
dz +

∫ 0

−h

∑NX

j=1 b
(n)
j FΦjΦi
∆t

dz,

- for 0 < i < NX :
N∑
j=1

u(n+1)
j

[∫ 0

−h

FΦjΦi
∆t

dz +
∫ 0

−h
νv
∂Φj
∂z

∂ (FΦi)
∂z

dz

]

+
NX∑
j=1

b(n+1)
j

[∫ 0

−h

F 2ΦjΦi
∆t

dz +
∫ 0

−h
νv
∂ (FΦj)
∂z

∂ (FΦi)
∂z

dz

]
(2.10)

=
∫ 0

−h

∑N
j=1 u

(n)
j FΦjΦi
∆t

dz +
∫ 0

−h

∑NX

j=1 b
(n)
j F

2ΦjΦi
∆t

dz.

This system must be solved to obtain the new nodal values for the velocity
uj and bj that allow a description of the velocity field over the whole domain
using relation 2.2.

Using the extended finite element method for the bottom boundary layer
allows to impose the no-slip condition at the sea bed, which is the real physical
condition to impose:

u = 0|z=−h (2.11)

As the extended shape functions vanish at the sea bottom, this condition is
only to be imposed to the degree of freedom associated with the classical
shape function of the bottom node.

It is then possible to represent the theoretical profile of the bottom bound-
ary layer described by relation (2.1) with the model. For these simulations,
the surface velocity is enforced to its analytical value. The bottom friction
velocity and roughness length are respectively set to u∗ = 0.01 [m/s] and
z0 = 0.001 [m]. Figure 2.2a shows the results from a simulation of the bot-
tom boundary layers using two elements, with two enriched nodes. With few
elements, the method is able to compute a solution which is very similar to the
analytical one. The remaining error is due to the fact that the linear functions
are not able to represent the upper part of the domain where the function is
not enriched. When the number of elements is increased to nine (Figure 2.2b),
the model solution cannot be distinguished from the analytical solution.

Due to the existence of linear shape functions, the extended finite element
method is still able to represent the solution when it differs from the analyt-
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a)

b)

Figure 2.2: Representation of the bottom velocity using the extended finite element
method with two elements (a) and nine elements (b). Only the two bot-
tommost nodes are enriched.
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ical one. Hanert et al. (2007), used four different methods to represent the
bottom boundary layer and compared them. These methods are the classical
linear finite element method with a no-slip condition at the bottom, the same
method with a free-slip condition and a bottom stress as parameterisation, the
extended finite elements method and the use of logarithmic shape functions
near the bottom instead of the linear shape functions. While the logarithmic
shape functions are good at representing the exact bottom boundary layer, the
results differ from the solution when other phenomena affect the logarithmic
profile of velocity (e.g. the coriolis effect). If then, the solution is no longer
in the functional space used for its representation and cannot be represented
by the model. Figure 2.3 shows the computation of the rotating boundary
layer using the four different methods. The coriolis factor is set to f = 10−4 s.
Figure 2.3 confirms that the use of classical finite elements with a no-slip bot-
tom generates high discretization errors, while the parameterisation produces
acceptable results. However, the latter are less precise near the bottom where
the gradient of velocity is very large. The use of logarithmic shape functions is
not optimal due to the coriolis effect which induces an inconsistency between
the shape functions and the solution. The extended finite elements bypass this
inconsistency by using simultaneously logarithmic and linear shape functions
for the bottommost elements. This method is then able to compute the solu-
tion with a high precision, even in the bottom of the boundary layer.

If the extended finite element method produces very good results, it how-
ever requires a very high order integration rule in the enriched elements to
obtain a good approximation of the product of logarithmic shape functions
and test functions or their derivatives. It is possible to use analytical integra-
tion, but the expression of the integrals can become complex and unaffordable
in a three-dimensional model. However, if the number of layers is important,
the use of a high order integration rule in the bottom layers may not increase
too significantly the computational time.

2.2 Residence time boundary layer

The extended finite element method is powerful to represent some types of
boundary layers. However, its implementation increases significantly the level
of complexity of the model to obtain results which are not always useful. The
sparsity of the system matrix is also modified with the use of enriched shape
functions, which can make the linear system harder and slower to be solved.
If one needs to obtain a simple treatment of the boundary layer, parameter-
isations are often sufficient in the domains of interests covered by a marine
model.

In the following article (Blaise et al., 2009b), both parameterisation and ex-
tended finite element method will be developed and used to treat the bound-
ary layer of the residence time at inflow boundaries. The residence time will
then be computed on idealised and realistic problems. While the the logarith-
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Figure 2.3: Comparison of different representation of the rotating bottom boundary
layer from Hanert et al. (2007). Analytical solution (solid line) versus re-
sults obtained using classical linear finite elements with no-slip condition
(3) and parameterised bottom (+), extended finite elements (×) and loga-
rithmic bottom shape functions (◦). The mesh is made of two elements (up)
and height elements (down).
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mic boundary layer is linked with the hydrodynamic part of the model, the
residence time is a diagnostic variable, used by the modeller to have better un-
derstanding of the physical phenomena occuring. The residence time is useful
to quantify the time during which a tracer will stay in a pre-defined domain.
In addition to the treatment of the boundary layer, an interest of this paper is
that it is associated with a recent method, developed by Delhez et al. (2004),
that allows to compute the residence time at any time anywhere in the com-
putational domain by using an adjoint model. This method is implemented
successfully in finite elements, and a discussion explains how to maintain the
consistency between residence time and hydrodynamics discrete equations.
This consistency is mandatory to avoid the apparition of spurious extrema
in the solution. This article shows a description of the residence time in the
Scheldt estuary which has never been obtained before with such details.
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B-4000 Liège, Belgium

E-mail: sebastien.blaise@uclouvain.be

Submitted to Ocean Dynamics (September 2009)

Abstract

At high Peclet number, the residence time exhibits a boundary layer adjacent
to incoming open boundaries. Resolving this boundary layer would require
an unacceptably high spatial resolution. Therefore, alternative methods are
needed in which no grid refinement is required to capture the key aspects of
the physics of the residence time boundary layer. An X-FEM representation
and a boundary layer parameterisation are presented and tested herein. It is
also explained how to preserve local consistency in reversed time simulations
so as to avoid the generation of spurious residence time extrema. Finally, the
boundary layer parameterisation is applied to the computation of the resi-
dence time in the Scheldt Estuary (Belgium/Netherlands). This timescale is
simulated by means of a depth-integrated, finite element, unstructured mesh
model, with a high space-time resolution. It is seen that the residence time
temporal variations are mainly affected by the semidiurnal tides. However,
the spring-neap variability also impacts the residence time, particularly in the
sandbank and shallow areas. Seasonal variability is also observed, which is
induced by the fluctuations over the year of the upstream flows. In general,
the residence time is an increasing function of the distance to the mouth of the
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estuary. However, smaller-scale fluctuations are also present: they are caused
by local bathymetric features and their impact on the hydrodynamics.

Keywords: Residence time, Boundary layer, Parameterisation, X-FEM, Finite elements, Diagnos-
tic, Adjoint modelling, Local Consistency

1 Introduction

The output files of most marine models are so huge that interpreting them
is far from trivial, calling for the design and implementation of simple esti-
mators of the state of the system under consideration (e.g. Deleersnijder and
Delhez 2007). Several efforts have been made to introduce such estimators;
among them it is worth mentioning timescales such as the age, flushing time,
exposure time and residence time (Deleersnijder et al., 2001; Monsen et al.,
2002; Delhez et al., 2004a,b; Delhez and Deleersnijder, 2006; Delhez, 2006). The
latter is the time taken by a particle of water to touch an open boundary of a
control domain for the first time (Bolin and Rhode, 1973; Zimmerman, 1976;
Takeoka, 1984; Delhez and Deleersnijder, 2006). The exposure time is an analo-
gous concept, defined to be the accumulated time during which water parcels
stay in a control domain (Delhez, 2006). Both diagnostics can be used; and the
choice of the method depends on the context. The present study focuses on
the residence time.

The definition of the residence time suggests a Lagrangian representation
(Tartinville et al., 1997; Luther and Haitjema, 1998; Miller and Luther, 2008).
Then, random walks are necessary to represent diffusive processes (Nauman,
1981; Allen, 1982). The stochastic nature of Lagrangian approaches requires
the computation of statistical quantities which are relevant only if the num-
ber of particles is large (e.g. Tartinville et al. 1997; Spivakovskaya et al. 2007).
The direct Eulerian computation of the residence time is also possible (Wang
et al., 2004; Soetaert and Herman, 1995; Gourgue et al., 2007; Arega et al., 2008;
Liu et al., 2008). However, a specific tracer model run is required for the com-
putation of the residence time at each location and at each time where and
when the information is sought. Therefore, many tracer runs may be needed
to estimate the residence time with a significant time-space resolution. The
computing cost can be reduced by having recourse to the adjoint method re-
cently developed by Delhez et al. (2004b). The latter allows one to obtain the
residence time at any time and location in the whole domain by resolving an
adjoint advection-diffusion problem in a backward time integration mode.

At high Peclet number, the residence time exhibits a boundary layer ad-
jacent to incoming boundaries (Delhez and Deleersnijder, 2006). This bound-
ary layer, induced by the homogeneous Dirichlet condition imposed at open
boundaries, makes the residence time difficult to compute with common nu-
merical methods. In a Eulerian model, spurious oscillations are likely to be
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generated. This issue does not occur when the exposure time is computed,
as we do not prescribe boundary conditions at the boundary of the control
domain.

Although the description of the boundary layer itself may not be that im-
portant for the interpretation of the results, its effect on the neighbouring field
must be taken into account. Refining the grid so as to resolve the steep gra-
dient of the residence time can overcome this issue, but the needed resolution
would lead to an unacceptably large computing time. In this study, we present
solutions to treat the boundary layer without increasing significantly the com-
puting cost.

A first possible solution is based on X-FEM, the extended finite element
method (Moës et al., 1999). X-FEM consists of a classical finite element method
enriched by a set of test and shape functions especially designed to represent
the solution whose analytical behaviour is a priori known. The method can
represent exactly a solution that is known up to a multiplicative factor. The
classical polynomial test and shape functions allow for a good approxima-
tion of the solution when it differs from the assumed behaviour (Hanert et al.,
2007). Initially designed for fracture mechanics (Moës et al., 1999; Combescure
et al., 2005; Wyart et al., 2008), this method was successfully applied to marine
simulations for the representation of the logarithmic bottom boundary layer
(Hanert et al., 2007).

The second method consists in parameterising the boundary layer. The
latter is not explicitly resolved but appropriate boundary conditions, derived
from the analytical solution of an idealised problem, are enforced. This kind
of parameterisation is also often used to treat the logarithmic bottom bound-
ary layer. In this case, the bottom stress (i.e. the momentum flux) is parame-
terised as a quadratic function of the velocity, a formulation that is in agree-
ment with the logarithmic nature of the velocity profile (Blumberg and Mellor,
1987; Black and Gay, 1987; Burchard, 2002).

The present article is organized as follows. Section 2 introduces the adjoint
method for a depth-integrated model, along with the boundary conditions to
enforce. The issue of the boundary layer of the residence time is introduced
in Section 3. Two solutions to handle this boundary layer, one derived from
the extended finite element method and a parameterisation are developed and
validated by means of a one-dimensional test case. Section 4 introduces the
concept of local consistency and explains how to ensure it for multidimen-
sional tracer simulations backward in time. In Section 5, the residence time
is computed in a realistic problem, the flow in the Scheldt Estuary. Finally,
conclusions are drawn in Section 6.
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2 Residence time

The two-dimensional time-dependent residence time θ can be obtained by
solving backward in time the partial differential problem

∂(Hθ)
∂t

+∇ · (Huθ) = ∇ · [(−κ)H∇θ]−H, (1)

where t is the time, while u, κ and H denote the depth-averaged horizontal
velocity, the diffusivity and the total water depth, which is the sum of the
surface elevation (positive upwards) and the reference water depth. It must
be stressed that this equation is not a classical depth-integrated advection-
diffusion equation (with a production term). If it were so, the diffusivity term
would appear with a positive sign in the right-hand side, while it is negative
here. In fact, equation (1) is obtained from an adjoint approach similar to that
of Delhez et al. (2004b). Details of its derivation may be found in Appendix A.

Equation (1) must be integrated backward in time, otherwise the differen-
tial problem dealt with would be ill-posed (e.g. Garabedian, 1964). The phys-
ical meaning of this backward integration is that the residence time at time t
depends on the dynamics within the interval [t,∞]. The backward integration
starts at time T , which corresponds to the end of the physical simulation time
(i.e. the beginning of the reverse integration time). Introducing τ = T − t,
equation (1) transforms to

∂(Hθ)
∂τ

+∇ · [H (−u) θ] = ∇ · (κH∇θ) +H, (2)

which is a classical tracer equation with reversed velocity and a source term.
The residence time is the time taken by a water parcel to touch an open

boundary of a control domain for the first time. Water parcels can flow out of
the control domain through open boundaries, but they are completely ignored
from the moment they quit the domain. A homogeneous Dirichlet bound-
ary condition must be enforced at open boundaries to ensure that the water
parcels touching the boundary are removed from the computation (Delhez
et al., 2004b). In addition, a no-flux condition is imposed at closed boundaries:

θ = 0 at open boundaries, (3)
n · (H∇θ) = 0 at closed boundaries, (4)

where n is the outgoing unit normal to the boundary. Unfortunately, at high
Peclet number, condition (3) induces a boundary layer in the vicinity of in-
coming (inflow in physical time) open boundaries. This boundary layer must
be treated in a suitable manner in order to prevent spurious oscillations from
developing.

3 One-dimensional developments

To gain insight into the residence time boundary layer issue, consider first a
one-dimensional steady-state configuration with a constant depth. The do-
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main is defined by 0 ≤ x ≤ L where x is the spatial coordinate. For simplicity,
the velocity u = U and the diffusivity κ = K are taken to be positive con-
stants. This configuration can be interpreted as a highly idealised channel
(Delhez et al., 2004b). Under these assumptions, equation (2) simplifies to

K
d2θ

dx2
+ U

dθ
dx

+ 1 = 0. (5)

The boundaries are assumed to be open. Therefore, according to condition (3),
the residence time is prescribed to be zero at x = 0 and x = L. This equation
can be adimensionalised, using x = x̃L and θ = θ̃L/U , and defining the Peclet
number Pe as UL/K. This yields

1
Pe

d2θ̃

dx̃2
+

dθ̃
dx̃

+ 1 = 0. (6)

For the sake of simplicity, the tildes are dropped hereinafter.
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Figure 1: Residence time for the dimensionless, steady-state one-dimensional problem
for various Peclet numbers. The thick curve represents the analytical solu-
tion. The thin curve represents the numerical solution obtained with a clas-
sical finite element method where the circles indicate the mesh nodes. The
dimensionless thickness of the boundary layer is Pe−1. The mesh Peclet
number is defined by Peh = U∆x/K, where ∆x is the grid spacing.
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Solving equation (6) under the abovementioned Dirichlet boundary con-
ditions leads to

θ(x) =
1− e−Pe x

1− e−Pe
− x. (7)

As pointed out by Delhez and Deleersnijder (2006), this solution exhibits a
boundary layer near the inflow boundary, i.e. in the vicinity of x = 0. The
thickness of this boundary layer is of the order of Pe−1, i.e. K/U in dimen-
sional variables. This can be seen in Figure 1 for values of the Peclet number
ranging from 10 to 1600. Figure 1 also shows the results of a linear finite-
element resolution of equation (5), with a mesh made up of ten elements. Ac-
cordingly, the solution is approximated by

θ(x) ≈ θhfem =
N∑
j=1

θjφj(x), (8)



2.2. Residence time boundary layer 67

where φj is a piecewise linear shape function corresponding to the j-th node
of the mesh whose total number of nodes is N . The nodal values associated
with the shape functions φj are denoted θj . Figure 1 shows that the solution
oscillates if the Peclet number is higher than a threshold value. It is shown
in Appendix B that, for a finite-differences scheme, oscillations appear when
the mesh Peclet number Peh = U∆x/K is higher than 2, where ∆x is the grid
spacing. It can be seen that the linear finite elements scheme used for the one-
dimensional simulation with U and K constants and a homogeneous mesh is
strictly equivalent to the finite-differences scheme. This is illustrated in Figure
1, which exhibits spurious oscillations for Peh > 2.

To address this issue, one may have recourse to the X-FEM method (Moës
et al., 1999), which is able to represent exactly a solution known up to a mul-
tiplicative factor. A polynomial component needs to be retained to take into
account the discrepancies between the actual solution and that assumed in
X-FEM. Accordingly, the set of shape functions in (8) is enriched with shape
functions derived from the exact solution:

θ(x) ≈ θhfem + θhx-fem =
N∑
j=1

θjφj(x) +
Nx∑
j=1

bjφj(x)F (x), (9)

where Nx is the number of enriched nodes. F (x) is a function derived from
the a priori known shape of the solution. It describes the solution up to a mul-
tiplicative factor, the latter being unknown. For the present one-dimensional
experiment, this function is meant to represent the boundary layer. It is ob-
tained by extracting from the exact solution (7) the part that is associated with
the steep residence time gradient in the boundary layer, i.e.

F (x) = 1− e−Pe x. (10)

The second linear term of (7) will be handled by the classical linear shape
functions. Thus, multiplying (10) by a nodal factor in combination with the
linear shape functions contribution will allow for a good representation of the
solution.

The residence time is computed in the idealised one-dimensional channel
using X-FEM with an enriched shape function for the first node of the mesh
(corresponding to the inflow boundary). The X-FEM results (Figure 2b) do
not show the strong oscillations that appear when a classical finite element
method is used (Figure 1), and are very close to the analytical solution (Figure
2a). However, oscillations still appear for moderate mesh Peclet numbers (e.g.
when Peh = 5, 10, 20). These oscillations appears only when the first node is
enriched and the boundary layer length exceeds the width of the enrichment
zone. One might think that it is desirable to enrich more nodes. But, when
doing so, problems arise, especially if extended shape functions are present
where the solution is quasi-linear. In this case, the enriching function F (x) is
almost equal to 1, and the linear system to be solved becomes ill-conditioned
because φj(x) and φj(x)F (x) are almost equivalent. It is thus safe to enrich



68 Chapter 2. Boundary layers

Figure 2: Residence time for the dimensionless, steady-state one-dimensional problem
for various Peclet numbers (the label on the curves indicates the mesh Peclet
number, which is 0.1Pe in this case). The simulation configuration corre-
sponds to Figure 1. Dashed vertical lines correspond to the mesh nodes po-
sition. (a) Analytical solution, (b) Boundary layer treated using the X-FEM
method, (c) Parameterised boundary layer.

(a)

(b)

(c)
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only the node that is adjacent to the boundary, or to resort to a strategy con-
sisting in determining a priori the number of nodes to enrich to obtain the
most accurate solution while retaining a well-conditioned system. The second
option is unlikely to be easy to implement. Furthermore, in many realistic ap-
plications, the width of the boundary layer is generally much smaller than the
element size, implying that enriching only the first node will be sufficient in
most cases.

While the X-FEM method seems promising in an idealised problem, its
application in a realistic model might present some difficulties:

• As they depend on the velocity, the extended shape functions vary in
time. They thus need to be updated after each temporal iteration. The
solution at time t+ ∆t is expressed as a linear combination of the shape
functions defined at time t. However the test functions at time t + ∆t
must be used to compute the next time step. It is thus necessary to use
two different sets of shape/test functions.

• The shape functions are expressed as a function of the normal distance
from the boundary. It is possible to define a generalized distance to the
the boundary in complex geometries (Fares and Schröder, 2002), but this
distance can be more difficult to compute.

• The enrichment is performed only near the boundary, which can be dif-
ficult to handle in a general finite elements code.

• The steepness of the enriched shape functions requires a very high or-
der integration rule. While an exact integration can be performed in the
one-dimensional model, it can be more complex in a two-dimensional
framework. A possible solution would be to develop integration rules
specifically designed for the function to integrate, but this is not straight-
forward.

Because of these difficulties, it seems appropriate to look for another so-
lution to deal with the boundary layer. An alternative consists in a parame-
terisation, derived from the analytical solution of the one-dimensional steady-
state problem. The idea is to derive an appropriate boundary condition for the
outer solution of the boundary layer problem (Figure 3). The representation
of the boundary layer is indeed not crucial as long as its effects are taken into
account.

We need to enforce a correct boundary condition at the limit of the compu-
tational domain. The one-dimensional steady-state equation for the residence
time (5) is an ordinary differential equation which can be solved analytically.
We first assume that the velocity and diffusivity are constant in the parame-
terised zone. This hypothesis is acceptable, as this zone generally is very nar-
row compared with the other length scales of the flow under consideration.
Furthermore, the boundary for the residence time is not a physical bound-
ary for the hydrodynamics (i.e. it is just an arbitrary limit fixed by the user),
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Figure 3: Parameterisation of the boundary layer for the residence time. The numerical
domain boundary is moved to avoid the computation of the boundary layer.
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and thus does not affect the velocity and diffusivity. Under these hypotheses,
equation (5) will be solved in the parameterised domain to obtain the gradi-
ent to enforce (Neumann condition) at the boundary of the computational do-
main. Following condition (3), a zero residence time is to be imposed at x = 0,
and we denote θ∗ the value of the residence time computed by the model at
x = L∗/L (see Figure 3), the boundary of the computational domain (called
hereafter numerical boundary). Then, the exact expression of the residence
time may be rewritten as follows

θ =
e−Pe x − 1

e−Pe
L∗
L − 1

(
θ∗ +

L∗

L

)
− x. (11)

To know the gradient to impose at the numerical boundary, expression (11) is
derived with respect to x and then evaluated at x = L∗/L, leading to

dθ
dx

∣∣∣∣
x= L∗

L

= Pe
e−Pe

L∗
L

1− e−PeL∗
L

(
θ∗ +

L∗

L

)
− 1, (12)

which corresponds in the dimensional world to:

dθ
dx

∣∣∣∣
x=L∗

=
1
K

e−UL
∗/K

1− e−UL∗/K
(θ∗U + L∗)− 1

U
. (13)

It is worth mentioning that the implementation does not require to know the
length scale L, as the latter does not appear in (13).

This technique provides numerical results that are devoid of any oscilla-
tion (Figure 2c) and very close to the analytical solution (Figure 2a). It must be
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stressed, however, that the presence of an oscillating mode is not directly re-
lated to the boundary conditions (3); this mode is part of the general solution
of the discrete equation if the Peclet number exceeds a critical value. How-
ever, selecting the appropriate strategy to impose boundary conditions can
strongly reduce the amplitude of the oscillatory mode, particularly at high
Peclet number (Appendix C) .

As the X-FEM and parameterisation methods were developed from a time-
independent analytical solution, it is useful to validate them on a transient
simulation to make sure that they are still relevant if the solution varies in
time. In a time-dependent configuration, the velocity in the parameterised
region, U , can sometimes be equal to zero. If so, (12) contains divisions by
zero, and cannot be computed. This case must be treated separately. If U = 0,
the advection term of equation (5) vanishes, and the equation for the residence
time reduces to

K
d2θ

dx2
= −1. (14)

Under the previously-used assumptions, the analytical solution of equation
(14) in the parameterised zone is

θ = − x2

2K
+
L∗x
2K

+
θ∗x
L∗

. (15)

Therefore, the gradient to enforce on the numerical boundary is:

dθ
dx

= − x

K
+
L∗

2K
+
θ∗

L∗
. (16)

Expressions (12) and (16) exhibits terms that are linear in θ∗, the other terms
being independent of θ∗. The former terms must be treated implicitly to en-
sure the stability of the numerical method; otherwise an unacceptably small
time step is to be used.

To validate the method for a time-dependent flow, we consider the same
one-dimensional domain, the velocity being modulated in time by a sine rep-
resenting an idealised tide. A residual velocity Uresidual = Utide/100 is con-
sidered, where Utide is the amplitude of the velocity associated with the tidal
oscillations. The variables are still dimensionless, and the ratios between pa-
rameters are chosen to be comparable to a realistic situation, roughly similar
to the characteristic scales encountered in the simulations of the Scheldt Es-
tuary (Section 5). The tidal period is Ttide = 0.864. The Peclet number is set
to Pe = 1000. The left half of the domain has a mesh size of 0.02L, leading
to a maximum mesh Peclet number Peh = 20. The right half of the domain
has a mesh resolution of 10−3L. Only the left open boundary is treated specif-
ically, while the right open boundary has a sufficient resolution to handle the
boundary layer.

A first run is performed using a high-resolution model (mesh size of 10−3L)
so as to obtain a reference solution (Figure 4a). To remove the effects of initial-
isation, the solution is shown after a simulation time of 30 tidal periods, cor-
responding approximately to twice the residence time (Delhez et al., 2004b).



72 Chapter 2. Boundary layers

Figure 4: Evolution of the residence time for the transient one-dimensional problem,
after an initialisation of 30 tidal periods (τ ′ = τ

Ttide
− 30). The colorbar in-

dicates the residence time. (a) High-resolution solution, (b) Boundary layer
treated using the X-FEM method, (c) Parameterised boundary layer.
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Due to the residual flow, the peak of the residence time is shifted towards the
left of the domain; and the solution is non symmetric. This is clearly visible in
the middle of the domain, represented by the dashed lines on Figure 4. The X-
FEM solution (Figure 4b) is very similar to the high-resolution solution, even
in the boundary layer. The parameterised solution (Figure 4c) does not show
the boundary layer, but the residence time in the rest of the domain is well
computed.

While the X-FEM method allows for an excellent representation of the
boundary layer, it was pointed out above that its application in a
two-dimensional realistic model can become quite intricate. For this reason,
and as we do not need to know exactly the shape of the boundary layer, we
will only use the parameterisation method for the realistic application. This
method has the advantage of being very simple to implement.

4 Consistency

For simulations involving hydrodynamics and tracer simulations, special at-
tention must be paid to local consistency. A passive tracer simulation is said to
be locally consistent if the numerical scheme is such that the tracer concentra-
tion remains constant as time progresses, assuming that the initial concentra-
tion was homogeneous in space (White et al., 2008). This concept may be ap-
plied to the transport terms of the residence time equation, in order to prevent
the development of spurious extrema. The latter can be rather strong in coastal
and estuarine areas, partly because the sea surface elevation is in many loca-
tions of the same order of magnitude as the unperturbed depth. White et al.
(2008) showed that a discrete compatibility between the free-surface equation
and the tracer equation must be fulfilled to ensure consistency. This compati-
bility is of two kinds:

• Spatial compatibility is ensured if the discrete advection operator for
a unit tracer simplifies to the divergence term of the incompressibility
equation ∇ · ((h + η)u). This is obtained by using the same element to
represent sea surface elevation and tracers.

Here we use linear discontinuous Galerkin elements. The Riemann sol-
ver used to deduce interface values for velocities and sea-surface eleva-
tion must be the same for tracer and continuity equations. The mesh
used to compute the residence time is a submesh of the global mesh
used for the hydrodynamics simulations. Hence, there is no error due to
interpolation or projection of data.

• Temporal compatibility is more complex, as we use a residence time
simulation which is reversed in time. As we use an implicit Euler me-
thod, the time discretisation of the free surface equation reads

ηn+1 − ηn

∆t
= −∇ ·

(
(h+ ηn+1)un+1

)
, (17)
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where η is the free surface elevation and h is the water depth at rest.
The superscripts correspond to the time step at which the variables are
expressed, n + 1 being the new time step in the physical time (not the
simulation time) and n being the old one. If we reverse the time of the
simulation, n+ 1 and n need to be switched in the mass term. The oppo-
site of the velocity must be taken for the divergence term, the latter still
being computed at time n+ 1 to be consistent with the forward simula-
tion:

ηn+1 − ηn

−∆t
=
ηn − ηn+1

∆t
= −∇ ·

(
(h+ ηn+1)(−un+1)

)
. (18)

The variables used for the residence time equation must be taken at the
same time than the corresponding variables in the free surface equation.
Thus, the time discretisation of the residence time equation reads

(h+ ηn)θn − (h+ ηn+1)θn+1

∆t
= −∇ ·

(
(h+ ηn+1)(−un+1)θn

)
. (19)

Only the advection and mass terms are taken into account as they are
the only ones that need to be compatible with the free surface equa-
tion. Source and diffusion terms do not break consistency because the
first one is constant over the whole domain and the second one depends
on the gradient of the residence time concentration, which is zero if the
tracer is constant in space. The mean depth h being constant in time, it
is obvious that, for a constant θ, expressions (18) and (19) are equivalent.
We thus need to use the variables η and u at the times corresponding to
equation (19) to ensure the local consistency when time is reversed. Hy-
drodynamic results must then be saved at each time step to reload them
for the adjoint simulation. As the method is implicit, the number of time
steps can be reduced to a reasonable amount.

5 Application to a two-dimensional realistic problem

The residence time is now computed in a two-dimensional realistic domain,
i.e. the Scheldt Estuary (Belgium/Netherlands). First, the hydrodynamics
is simulated using the two-dimensional version of the finite element model
SLIM (Comblen et al., 2009; de Brye et al., 2009, http://www.climate.be/
SLIM). This hydrodynamic simulation concerns most of the North Western
European Continental Shelf, the Scheldt Estuary, the Scheldt River and the
fraction of its tributaries under the influence of tides, the latter two being rep-
resented by a one-dimensional mesh (Figure 5). The residence time is then
computed backward in time in the Scheldt Estuary sub-domain. The com-
putational grid is unstructured and refined in the regions of interest (e.g. the
Scheldt Estuary) or where the dynamics is more demanding (e.g. next to coast-
lines). The mesh is made up of 26000 triangular elements, and 5000 of them
are located in the Scheldt Estuary. The river and its tributaries are represented
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Figure 5: Unstructured mesh used for the numerical simulations, with a zoom on the
Scheldt Estuary (lower panel). The blue part of the mesh (Scheldt Estuary)
is used for the residence time computations. The mesh is made up of 26000
triangular elements, and 5000 among them are located in the Scheldt Estu-
ary. The river and its tributaries are represented by 350 one-dimensional ele-
ments. The mesh resolution is about 400m in the one-dimensional rivers and
varies from 150 metres to 30 kilometres in the two-dimensional domain.
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by 350 line elements. The mesh size is about 400 m in the one-dimensional
river and tributaries; and it varies from 150 metres to 30 kilometres in the two-
dimensional domain. The minimum thickness of the boundary layer κ

(−n·u)max

is approximately 10 metres near the upstream boundary and 70 metres near
the sea mouth boundary. The characteristic spatial resolution at the estu-
ary/river interface (150m) and at the sea mouth (400m) provides the reference
value for the length scale L∗ used in the boundary representation. The model
and its validation on the present domain are described in detail by de Brye
et al. (2009). At the shelf break, the sea surface elevation is prescribed from
values of the TPXO model, which assimilates satellite altimetry data (Egbert
et al., 1994). The following tidal constituents are taken into account: Mm, Mf ,
Q1, O1, P1, K1, N2, M2, S2, K2, and M4. The surface atmospheric pressure
and the wind velocity are obtained from the NCEP Reanalysis data provided
by the NOAA/OAR/ESRL PSD (Kalnay et al., 1996). The non-tidal part of the
flow in the Scheldt and its tributaries is obtained from various sources, which
are mentioned in de Brye et al. (2009).

Figure 6 shows the evolution of the residence time in the Scheldt Estuary
on February 1, 2001. As the residence time is defined to be the time needed to
touch an open boundary of the estuary for the first time, the residence time de-
creases towards both the upstream and downstream ends. Obviously, most of
the water will eventually leave through the mouth of the estuary, because the
residual current is directed from the land to the sea. However, due to the tidal
motion, some water can indeed cross the upstream boundary first. The resi-
dence time varies with the tidal phase. At the sea mouth, the residence time
is highest at the end of the ebb tide, because the water will be pushed into the
estuary during the coming rising water. Conversely, at the end of flood tide,
the residence time is relatively low. This simply reflects the fact that external
water has been entering the estuary during rising tide but much of it will be
pushed back out soon. The opposite behaviour is observed at the upstream
boundary, where rising water correspond to an outflow: the residence time
is highest at the end of flood tide, while it is lowest at the end of ebb tide. In
addition to tidal effects, Figure 6 also shows that the residence time varies spa-
tially, due to bathymetry and related hydrodynamical features. For instance,
the large tidal flat area of the Verdronken Land van Saeftinghe (Figure 6a), is
associated with longer residence times than the surroundings. This is because
this area is very shallow with a few trenches (the only parts included in the
computational domain) and therefore the water velocity is rather low. It is the
first time residence times in the Scheldt Estuary have been estimated in such a
detailed way, i.e. with such a space-time resolution. The range of the residence
time (0 - 56 days) corresponds well with previous studies estimating residence
times in a number of longitudinal boxes (0 - 50 days, Soetaert and Herman
(1995)) or the nominal flushing time for the entire estuary (25 - 65 days, Steen
et al. (2002)). Note that these results refer to winter situations and that the res-
idence time tends to increase significantly in summer, up to 70 days (Soetaert
and Herman, 1995) or even higher, depending on how much the freshwater
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Figure 6: Residence time in the Scheldt Estuary on February 1, 2001 during a tidal pe-
riod. The arrows are a qualitative indication of the transport through open
boundaries. The residence time interval between isolines is five days.

5h00 sea mouth: 3h00 before high tide
upstream boundary : 4h30 before high tide

7h00 sea mouth: 1h00 before high tide
upstream boundary : 2h30 before high tide
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9h00 sea mouth: 1h00 after high tide
upstream boundary : 0h30 before high tide

11h00 sea mouth: 3h00 after high tide
upstream boundary : 1h30 after high tide
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13h00 sea mouth: 1h15 before low tide
upstream boundary : 2h45 before low tide

15h00 sea mouth: 0h45 after low tide
upstream boundary : 0h45 before low tide
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Figure 7: Mean residence time over the estuarine domain. The red curve represents a
one day running mean taken to filter out tidal oscillation. Results between
the dashed line (November 1, 2001) and December 31, 2001 correspond to the
initialisation of the backward simulation and cannot be trusted (a period of
twice the order of magnitude of the residence time, following Delhez et al.
(2004b)).

discharge decreases. This seasonal variation, related to the Scheldt flow vari-
ability, is also observed in Figure 7 showing the mean residence time over
the whole estuary, as it is computed backward from December 31 to January
1, 2001. Besides the seasonal cycle and the high frequency variability of the
semi-diurnal tidal cycle (discussed above), Figure 7 also displays a fortnightly
variation in the mean residence time, corresponding to the spring-neap tidal
cycle. Note that the results from November, 2001 to December, 2001 corre-
spond to the initialisation of the backward simulations and cannot be trusted.
According to Delhez et al. (2004b), the results become significant after an ini-
tialisation period whose duration is about twice the mean residence time, i.e.
about two months.

It is interesting to understand how different tidal components act upon
the residence time. To this aim, a tidal decomposition using the T TIDE soft-
ware (Pawlowicz et al., 2002) was performed on the residence time field with
data covering the period from May, 2001 to October, 2001. Figure 8 shows the
amplitudes of the residence time fluctuations associated with the M2, S2 and
Msf tidal components. As the adjoint method is used to compute the resi-
dence time, these amplitudes can be computed over the whole domain. As in
the hydrodynamics, theM2 component is clearly dominant. This variability is
related to the displacement of the residence time structure by the tidal excur-
sion. The S2 signal is weaker, but its amplitude distribution over the domain
is very similar. This is due to the fact that semi-diurnal lunar (M2) and solar
(S2) components are characterised by a similar period (respectively 12.42 h
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Figure 8: Amplitude of the residence time variations associated with the M2, S2 and
MSF tidal components, in days.
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and 12 h). The small amplitudes next to the boundaries are an effect of the
boundary layer related to the fact that the residence time should be zero at the
open boundaries. However, the variability a few kilometers downstream the
upstream boundary is very high. The water at rising tide will be carried to the
river and will then quit quickly the control domain. At falling tide, most of
the water in this zone will flow toward the sea mouth and after many tidal cy-
cles will quit the control domain by the downstream boundary. Its residence
time will then be much higher, explaining the high variability in this region.
The fortnightly signal Msf of period 13.66 days is induced by the combina-
tion of M2 and S2 components. As this signal is related to slower variations,
it generates a larger boundary layer compared to semi-diurnal components.
The residence time in the trenches of the Verdronken Land van Saeftinghe is
almost not affected by tidal components, because the temporal variablility of
the residence time is limited in this zone. However, a slight temporal vari-
ation is related to the Msf period. This is because the variations associated
with the main flow are too fast to significantly influence the residence time in
this zone; but the variations of the flow corresponding to the fortnightly tidal
component are slow enough to drain or fill sufficiently the trenches to impact
somewhat the residence time. The residence time variations associated with
the fortnightly signal are stronger on sandbanks, because these areas have a
relatively large water depth during spring tides (lower residence time), but are
covered with a thin layer of water during neap tides, enhancing the relative
impact of bottom friction (higher residence time).

Figure 9 shows the residence time along a longitudinal section from the
estuary/river interface. The snapshots are taken at times similar to those of
Figure 6. As expected, the residence time remains always positive, and tends
to zero at the boundaries. The influence of the boundary layer is visible at
11h00. After that time, the water flux enters in the estuary from the river. This
inflow boundary influences the residence time in the backward simulations to
create the boundary layer which is fully developed at 11h00. For the solution
using the parameterisation of the boundary layer, the latter is entirely com-
prised in the parameterised zone, while the solution using a Dirichlet bound-
ary condition oscillates. If we continue back in time, the outgoing flux breaks
the boundary layer and the residence time decreases smoothly in space near
the boundary. The residence time at both inflows and outflows is well rep-
resented by the model. In the case of the Scheldt Estuary, the issue of the
boundary layer is rendered less severe by the time dependency of the flow, as
the boundary layer disappears every time the tide reverses. In a flow exhibit-
ing a unique direction, this problem would be more critical as the boundary
layer would be present during the whole simulation (Delhez and Deleersni-
jder, 2006).
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Figure 9: Residence time along the line A-B on February 1, 2001 during a tidal pe-
riod. Solutions using the parameterisation of the boundary layer (black) and
a Dirichlet boundary condition (red).
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6 Conclusion

The adjoint method from Delhez et al. (2004b) presumably is the only one that
allows one to obtain at an acceptable CPU cost the residence time at any time
and location in the domain of interest. Thus, the residence time is also com-
puted near boundaries, where it exhibits a boundary layer whose characteris-
tic length is generally much smaller than the mesh size.

Two methods were presented for dealing with the residence time bound-
ary layer without explicitly resolving it. The first one, using the extended fi-
nite elements method, consists in enriching the functional space available for
the representation of the field with shape functions derived from an idealised
analytical solution. It is able to represent the boundary layer itself with a high
degree of precision and has been validated on one-dimensional stationary and
non-stationary configurations. While this method seems promising to repre-
sent the boundary layer of the residence time, its implementation in a two-
dimensional or three-dimensional realistic model could be revealed difficult.

The second method is a parameterisation of the boundary layer, the latter
not being explicitly solved. The effect of the boundary layer is parameterised
by imposing on the boundary a normal gradient of the solution, whose ex-
pression was developed from an idealised analytical behaviour. This method
is easy to implement in realistic models and produces results which are phys-
ically acceptable and devoid of any spurious oscillation. This method was
validated on one-dimensional simulations and applied to a two-dimensional
realistic configuration.

The residence time was computed in the Scheldt Estuary with a high level
of detail. The amplitudes of its variations associated with the main tidal com-
ponents were obtained over the whole domain, showing that the residence
time temporal variability is mainly affected by the semidiurnal signals. How-
ever, the spring-neap variability also has an influence on the residence time,
particularly in the sandbanks and shallow areas. On top of the tidal effects,
the residence time varies spatially, due to the bathymetry and related hydro-
dynamical processes.

The use of the adjoint method to compute the residence time addresses the
problem of spatial and temporal consistency, which are mandatory to obtain
acceptable results. The way to preserve consistency, specifically for reversed
time simulation, was explained in detail.

The adjoint method has strong advantages over other methods to compute
the residence time, and it should help significantly doing physical diagnoses.
However, its implementation is more complex due to the integration back-
ward in time and boundary aspects. This article is a complement to Delhez
et al. (2004b) and should help the modeller to compute the residence time dis-
tribution in any domain without any critical issue.
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Appendix A: Derivation of the two-dimensional residence time
equation

The equation (1) for the depth-averaged residence time can be derived by
adapting the procedure introduced in Delhez et al. (2004b) in the context of
a three-dimensional model.

In the context of two-dimensional depth-integrated model, the (mean) res-
idence time in a control domain ω at a particular location x0 and a given time
t0 is given by

θ(t0,x0) =
∫ ∞
t0

(∫∫
ω

H(t,x)C(t,x)dx
)
dt (20)

where C(t,x) denotes the concentration field produced by a unit point dis-
charge at x0 at time t0 and where H is the total water depth (which is the sum
of the surface elevation and the reference water depth).

In a direct approach,C is obtained by solving the advection-diffusion prob-
lem

∂(HC)
∂t

+∇ · (HuC) = ∇ · (κH∇C)

H(t0,x)C(t0,x) = δ(x− x0)

C = 0 at the open boundaries of ω,

n · κH∇C = 0 at material boundaries of ω,
(21)

where u and κ denote respectively the depth-averaged horizontal velocity and
the diffusivity and where δ is the Dirac impulse function. Using this approach,
the direct problem (21) must be solved for a variety of initial conditions cor-
responding to the times and locations at which the residence time is sought,
which can be very demanding in computer resources.

An alternative and more efficient procedure can be derived by consider-
ing the adjoint of (21). To this end, we define the adjoint variable C?T as the
solution of the differential problem

H
∂C?T
∂t

+Hu · ∇C?T +∇ · (κH∇C?T ) = 0

C?T (T,x) = 1 in ω,

C?T = 0 at the open boundaries of ω,

n · κH∇C?T = 0 at material boundaries of ω.
(22)

where T denotes some fixed time horizon.
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Using (21) and (22), it is easy to show that (see Delhez et al., 2004b)

C?T (t0,x0) =
∫∫

ω

H(T,x)C(T,x)dx (23)

so that the adjoint variable can be interpreted as the amount of the tracer con-
sidered in the direct problem that is still present in the control domain at time
T , i.e. the fraction of the mass of the tracer released at time t0 and location x0

with a residence time larger than T − t0. One has therefore

θ(t0,x0) =
∫ ∞
t0

C?t (t0,x0)dt =
∫ ∞

0

D(t0, τ,x0)dτ (24)

where we introduced the cumulative distribution function

D(t0, τ,x0) = C?t0+τ (t0,x0) (25)

With this definition and using the depth-integrated continuity equation

∂H

∂t
+∇ · (Hu) = 0 (26)

it is easy to show from (22) that D satisfies the differential equation

∂HD

∂t
− ∂HD

∂τ
+∇ · (HuD) +∇ · (κH∇D) = 0 (27)

and the auxiliary condition

D(t, 0,x) = 1 in ω. (28)

Integrating (27) with respect to τ and assuming that D(t, τ,x) decreases to
zero when τ tends to infinity, i.e. that all the particles are eventually flushed
out of the control domain, one gets finally

∂Hθ

∂t
+H +∇ · (Huθ) +∇ · (κH∇θ) = 0 (29)

which is the differential equation for the (mean) depth-averaged residence
time in ω.
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Appendix B: Constraint on the mesh Peclet number

Starting from equation (6), we will solve the steady-state, one-dimensional
problem defined in section 3 by means of a finite difference scheme.

The domain is discretised by N finite difference nodes of indices n = 1 →
N , whose locations are defined by x̃n = (n − 1/2)/N . The grid resolution
is then defined by ∆x̃ = 1/N . The discrete residence time at these points is
noted θ̃hn, where h refers to the approximate value of the variable. Two fictive
points are added beyond both boundaries of the domain (i.e. at x̃0 = −1/(2N)
and x̃N+1 = 1 + 1/(2N)) whose values will be noted θ̃h0 and θ̃hN+1. These
points will be useful to enforce the Dirichlet boundary conditions, as no grid
point is defined on the boundary. The second order centered finite-difference
discretisation of the non-dimensional form of equation (6) yields

1
Pe

θ̃hn+1 − 2θ̃hn + θ̃hn−1

∆x̃2
+
θ̃hn+1 − θ̃hn−1

2∆x̃
+ 1 = 0, n = 1, 2 . . . N. (30)

Boundary conditions, which consist in a zero residence time at each boundary,
are enforced by imposing

θ̃h0 + θ̃h1
2

= 0,

θ̃hN + θ̃hN+1

2
= 0. (31)

The solution of the discrete problem defined by (30) and (31) is of the form

θ̃hn = Arn +Bn+ C (32)

where

r =
2− Pe∆x̃
2 + Pe∆x̃

, (33)

A =
2

(1 + r)(rN − 1)
, (34)

B = − 1
N
, (35)

C =
1

1− rN
+

1
2N

. (36)

The constant r then satisfies
−1 < r < 1. (37)

When the mesh Peclet number Peh = Pe∆x̃ is higher than 2, the constant r is
negative, and a spurious oscillating oscillating mode appears in the solution
(32). In dimensional variables, the critical factor Peh becomes Pe∆x/L. It can
be written as ∆x/(LPe−1), i.e. the mesh size divided by the thickness of the
boundary layer.
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Appendix C: Influence of the boundary condition on the oscil-
lations

Starting from the non-dimensional finite-difference discretisation of the res-
idence time (30), the parameterisation of the boundary layer (12) is now ap-
plied to the inflow boundary, while a Dirichlet boundary condition is still used
at the outflow boundary:

θ̃h1 − θ̃h0
∆x̃

=
e−Pe

L∗
L

1− e−PeL∗
L

Pe

(
θ̃h1 + θ̃h0

2
+
L∗

L

)
− 1,

θ̃hN + θ̃hN+1

2
= 0. (38)

The solution of the discrete problem is still of the form (32). However, due to
the different boundary conditions, the coefficients modify to:

A = 2Pe(1+ L∗
L )

Pe(1+r)(rN−1)+2N(e
L∗
L

P e−1)(r−1)
,

B = − 1
N ,

C =
2N(e

L∗
L

P e−1)(r−1)(1+2N)−Pe(1+r)[1+2N+rT (2 L∗
L N−1)]

2N

»
Pe(1+r)(rN−1)+2N(e

L∗
L

P e−1)(r−1)

– .

(39)

When the mesh Peclet number Pe∆x̃ is higher than 2, the oscillating mode
is still present. The amplitude of the oscillations is controlled by the constant
A. Figure 10 shows that if we use a Dirichlet inflow boundary condition, the
norm of this constant will increase with the mesh Peclet number. If the mesh
Peclet number is high, the solution will inevitably show significant oscilla-
tions. If the parameterisation of the inflow boundary layer is used with a suf-
ficiently large L∗

L , the oscillatory part of the solution is limited and decreases
as the mesh Peclet number increases (Figure 10). This is due to the fact that,
for a high mesh Peclet number, the boundary layer is entirely comprised in
the parameterised zone. The parameterisation used with L∗

L = 0 produces the
same results as the Dirichlet boundary condition. It is then necessary to use a
sufficiently large value of L

∗

L to limit the oscillating part of the solution.
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Figure 10: Evolution of the constantA from equation (32) with the mesh Peclet number
Pe∆x̃ for the stationary one-dimensional problem. Results obtained using
a Dirichlet boundary condition (plain line) and the parameterisation of the
inflow boundary layer (dotted lines). The values along the curves indicate
different parameterised length L∗/L used for the parameterisation of the
boundary layer. The dashed line indicates a mesh Peclet number of 2 under
which the solution does not present any oscillation. The number of nodes
N = 10.
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Chapter 3

Density gradient in estuarine
models

A three-dimensional model is described by Chapter 1, while Chapter 2 pre-
sents two-dimensional simulations performed on the Scheldt estuary. Becom-
ing more and more complex, two-dimensional and three-dimensional models
results can be difficult to interpret and diagnostic variables like the residence
time can be needed. These models are also long to configure for a specific
application and require generally a lot of data sets (bathymetry and coasts,
forcings,. . . ), especially when there is a baroclinic components (salt and tem-
perature). A strong simplification is to use one-dimensional models. When the
physics is mainly one-dimensional (horizontal or vertical), these models can
be fast to set up and lead to results that are easy to interpret. Furthermore, the
computational time is generally much smaller using one-dimentional models.
These models can then be used for preliminary studies to provide a quick idea
of the physics before performing more complex simulations. However, this di-
mensional simplification adresses the need of parameterisations for phenom-
ena which do not occur in the one-dimensional model space.

The next article (Blaise and Deleersnijder, 2008) introduces a new param-
eterisation of the horizontal density gradient in a one-dimensional baroclinic
water column model applied to an estuary. In the absence of more complete
data, this density gradient is estimated from upstream and downstream den-
sity. However, being used as a forcing term in the momentum equation, it
has a strong impact on the results and can influence the stability of the model.
It is then useful to develop some parameterisations that ensure the model to
remain stable, and constraint the model output to physically acceptable val-
ues. Such a parameterisation is developed in the following article. It is shown
that short analytical developments can be used to obtain the above mentioned
properties.

Although these developments are related exclusively to one-dimensional
models, the underlying method can be used in parameterisations applied to

93
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models of higher dimension. It is worth noticing that a one-dimensional model
implies several hypothesis which must be verified before using it. Some im-
portant phenomena could not be represented by a one-dimensional model
and be missed by the user of such a model. Moreove, these phenomena could
modify the one-dimensional flow, which would make the model results wrong
if they are not taken into account. It is generally useful to verify the typical
configuration of the considered domain of interest with a three-dimensional
model or data to validate the one-dimensional simplification.
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Abstract

A new parameterisation of horizontal density gradient for a one-dimensional
water column estuarine model, inspired by the first-order finite-difference up-
wind scheme, is presented. This parameterisation prevents stratification from
growing indefinitely, a deficiency usually referred to as “runaway stratifica-
tion”. It is seen that, using this upwind-like parameterisation, the salinity
must remain comprised between upper and lower bounds set a priori and that
any initial over- or under-shooting is progressively eliminated. Simulations of
idealised and realistic estuarine regimes indicate that the new parameterisa-
tion lead to results that are devoid of the runaway stratification phenomenon,
as opposed to previously used models.

1 Introduction

Estuaries and their regions of freshwater influence (ROFIs) have been studied
for a long time. They exhibit strong gradients of several variables: salinity,
temperature, plankton and nutrient concentrations can vary over a wide range
of values, strongly impacting physical and biological processes. For instance,
complex dynamics, influenced by tides and input of freshwater from rivers,
have a strong influence on the growth of phytoplankton (Lucas et al., 1998,
1999).
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This work focuses on estuarine dynamics, especially on the evolution of
stratification. The latter is a key player in vertical mixing, which influences
directly the vertical fluxes of heat, salt, momentum and nutrients (Simpson
et al., 1990). Many studies were devoted to the evolution of stratification in
estuaries. They firstly described in situ observations gathered from field sur-
veys (Sharples and Simpson, 1993; Stacey and Monismith, 1999), showing that
the dynamics is mainly driven by the tidal flow, associated with a density
driven circulation generated by an input of freshwater from rivers. This was
reproduced in laboratory experiments by Linden and Simpson (1986, 1988),
who focused on the mechanisms influencing stratification. These mechanisms
were described in detail by Simpson et al. (1990). Several models were applied
to simulate and understand the evolution of stratification in estuaries. Linear
prescriptive models were first used (Simpson et al., 1991; Nunes Vaz and Simp-
son, 1994; Scott, 2004). Then, several authors turned to one-dimensional water
column non linear models (Monismith et al., 1996; Monismith and Fong, 1996;
Nunes Vaz and Simpson, 1994; Lucas et al., 1998). Recently, three-dimensional
models were used to simulate estuarine flows (Burchard and Baumert, 1998;
Hetland and Geyer, 2004; Warner et al., 2005).

One-dimensional non linear models can be very useful to understand and
predict the evolution of stratification in an estuary. They are light and simple
to build. They require a minimal amount of data and parameters. Further-
more, they generate simple results, which permits to easily understand the
key processes and quickly establish diagnoses. However, one common fail-
ure of these models is the generation of runaway stratification : when the
tidal amplitude is low, stratification tends to grow without bound due to an
inadequate parameterisation of horizontal density gradient (Nunes Vaz and
Simpson, 1994; Monismith et al., 1996; Warner et al., 2005). This paper shows
that simple analytical developments can lead to a new version of the model
which keeps stratification under control. It is also seen that, in the long run,
the model is insensitive to an unrealistic initial stratification.

Herein we use a one-dimensional finite-element water column model. Such
finite-element models and their advantages were described by Hanert et al.
(2006, 2007). As mixing is a key player in the evolution of the stratifica-
tion (Nunes Vaz and Simpson, 1994), we use the Mellor and Yamada level
2.5 turbulence closure (Mellor and Yamada, 1974, 1982; Galperin et al., 1988)
which is well suited for the prediction of stratification in estuaries (Nunes Vaz
and Simpson, 1994). This turbulence closure was recently implemented us-
ing the finite-element method for one-dimensional (Hanert et al., 2006) and
three-dimensional (Blaise et al., 2007) models.

The physical setting is described in section 2. Then, in section 3, the model
is presented. Two parameterisations of horizontal density gradient, the clas-
sical one and a new one, are introduced in section 4 and it is seen rigorously
that the new approach prevents stratification from running away. This is il-
lustrated by numerical results in section 5. Section 6 examines the sensitivity
of the model to the initial stratification and the influence of the parameteri-
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Figure 1: Physical setting: the stratification is to be simulated in the water column lo-
cated at point C. The latter is located in a region of high salinity gradient. Its
order of magnitude is (Ss−Sr)/2L, where Ss and Sr denote the downstream
and the upstream salinity, respectively.

sation of the horizontal salinity gradient in the momentum equation. Finally,
conclusions are drawn in section 7.

2 Physical setting

We will study the stratification in an estuary, which is generated by the front
between freshwater and salty seawater. This front is of a crucial importance
for the dynamics of the estuary, notably for the vertical density gradient.
Therefore, we will consider a water column located at C in Fig. 1, at a dis-
tance L to the sea limit. We assume that the salinity at a distance L upstream
of C is of the order of Sr and that the salinity at the sea limit is of the order
of Ss. We also assume that Sr and Ss are constants satisfying the following
condition:

Sr < Ss. (1)

In such a configuration, the water velocity is mainly caused by two pro-
cesses (Simpson et al., 1990):

• The presence of freshwater originating from the river creates a density
front with the salty seawater (Fig. 2a). This front induces a circulation,
with light freshwater going towards the sea at the surface, and dense
water going towards the river near the bottom. Due to the bottom fric-
tion, this circulation is reduced near the sea bottom.

• The tidal circulation, influenced by the shear stress due to the bottom
friction, generates a logarithmic-like velocity profile (Fig. 2b). This pro-
file induces a transport of freshwater varying over the water column,
leading to stratification. The succession of ebbs/floods generates a
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Figure 2: Circulation induced (a) by the freshwater input generating a front with the
dense seawater and (b) by tides (here at falling tide), as described by Simpson
et al. (1990).

(a)

(b)

Strain-Induced Periodic Stratification (SIPS) regime, which can be de-
scribed as follows: during falling tide, a stable stratification develops,
which is reduced by mixing at the end of the falling tide. During ris-
ing tide, the salinity profile is unstable and is quickly mixed over the
vertical, leading to a non stratified water column. Due to the tidal ve-
locity asymmetry, the velocity profile is different at ebb and flood tides
(Jay and Musiak, 1994). The mixing near the bottom is indeed enhanced
at flood tides, due to the unstable stratification resulting from the quick
displacement of salty water over slow freshwater or brackish (Burchard
and Baumert, 1998). This high near-bottom mixing at flood tides leads
to higher bottom velocities during rising tides than during falling tides,
which has the effect of increasing the stratification.

The combination of these processes can generate different flow regimes. If the
tides are dominant, the SIPS regime prevails. When the effect of the horizontal
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density gradient becomes important compared to the tidal effect, the tidal mix-
ing is not sufficient to annihilate the stratification; this stratification strength-
ens during each tidal cycle, inducing a persistent stratification regime (Lucas
et al., 1998). The presence of different non-synchronous tidal components, by
generating an alternation of spring/neap tides, can lead to a succession of
SIPS and permanent stratification periods (Simpson et al., 1990; Sharples and
Simpson, 1993; Nunes Vaz and Simpson, 1994; Monismith et al., 1996).

3 Model description

The model used herein is based on that of Lucas et al. (1998) and Monismith
et al. (1996). For the flow under study, the impact on density of temperature
variations is negligible compared with those of salinity. Therefore, density is
assumed to be a function of salinity only and the following equations will be
expressed in terms of salinity. As in Lucas et al. (1998) and Monismith et al.
(1996), a linear equation of state is adopted:

ρ = ρ0 (1 + β(S − S0)) , (2)

where ρ and S are the density and the salinity, whose reference values are
denoted ρ0 and S0, respectively; β = 7.6 · 10−4 psu−1 is the salinity expansion
coefficient, which is assumed to be constant.

If x is the horizontal coordinate increasing toward the sea, the
along-estuary horizontal velocity u(t, z) at location C obeys the following mo-
mentum equation:

∂u

∂t
= −g ∂η

∂x
− gβ ∂S

∂x

(
−z + γ

H

2

)
+

∂

∂z

(
ν
∂u

∂z

)
, (3)

where g, η, z and H are the gravitational acceleration, the sea surface eleva-
tion, the vertical coordinate pointing upwards with its origin at the sea sur-
face and the constant water depth, respectively. The effect of Earth rotation is
neglected. The surface stress and bottom velocity are equal to zero. The tur-
bulent viscosity ν is calculated by means of the Mellor and Yamada level 2.5
turbulence closure (Mellor and Yamada, 1974, 1982) implemented in its quasi-
equilibrium version (Galperin et al., 1988; Deleersnijder and Luyten, 1994).
The surface slope due to the barotropic tides can be represented as

−g ∂η
∂x

=
∑
i

Ui,max

(
2π
Ti

)
cos
(

2π
Ti
t

)
(4)

in which Ti is the tide period and Ui,max the maximum velocity for the i-th
tidal component. The baroclinic pressure gradient can be divided into two
contributions (Lucas et al., 1998; Monismith et al., 1996): a term derived from
the horizontal salinity gradient, gβ ∂S∂x z, and a term derived from the surface
slope generated by the baroclinic flow, −gβ ∂S∂x γ

H
2 . The dimensionless coef-

ficient γ is to be tuned in such a way that the residual transport is zero, i.e.
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the average over a tidal cycle of the depth-integrated velocity vanishes. Prac-
tically, γ is found iteratively to minimize this velocity (Lucas et al., 1998). It
is possible to impose a prescribed mean velocity, and in this way take into
account the effect of residual run-off from the river (Burchard, 1999), but this
was not done in the present paper.

The salinity S obeys the equation

∂S

∂t
= −u∂S

∂x
+

∂

∂z

(
λ
∂S

∂z

)
, (5)

where the eddy diffusivity λ is obtained from the same turbulence closure
model as the eddy viscosity. The surface and bottom salinity fluxes are pre-
scribed to be zero: [

λ
∂S

∂z

]
z=−H,0

= 0. (6)

4 Parameterisation of the horizontal salinity gradient

In the previous governing equations, most authors (Nunes Vaz and Simpson,
1994; Lucas et al., 1998; Monismith et al., 1996; Monismith and Fong, 1996)
assumed the horizontal salinity gradient to be a constant that was evaluated
as follows:

∂S

∂x
= τ, (7)

where τ = Ss−Sr

2L . In some situations (e.g. for some idealised studies or when
it is in accordance with observations), it is a good choice to prescribe the salin-
ity gradient as a constant. However, this parameterisation has been identified
as the cause of the so-called “runaway stratification”, a phenomenon in which
stratification increases indefinitely (Warner et al., 2005). The salinity reaches
values that are no longer comprised in the interval [Sr, Ss], which is unaccept-
able. By annihilating vertical mixing, this overestimated stratification corrupts
the computation of the evolution of velocity and water properties.

This complication is related to the variation of the forcing terms over the
water column in the momentum equation (3). Figure 3 shows that, when av-
eraged over a tidal cycle, the sum of each forcing term present in (3) decreases
linearly with depth. This variation over the vertical will lead to a seaward
tidally-averaged velocity greater in the upper part of the water column than
near the bottom. With such a distribution of the velocity, it is obvious that the
use of a constant salinity gradient in (5) will inevitably lead to a constantly
increasing stratification if mixing is not taken into account. Indeed, at falling
tide, the advection of freshwater will decrease with depth whereas, at rising
tide, the advection of seawater will increase with depth, causing stratifica-
tion to grow indefinitely. The turbulent mixing can counterbalance this phe-
nomenon and stabilize the stratification, especially at the end of rising tide
when its effect surpasses the effect of advection. At falling tide, the mixing is
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Figure 3: Vertical profiles of the tidally-averaged forcing terms appearing in the mo-
mentum equation (3). The resulting forcing varies linearly with depth.

intense due to the low or unstable stratification, contributing to a non strati-
fied water column. However, if turbulent mixing is not sufficient, the water
column will stratify indefinitely.

The apparition of “runaway stratification” can be avoided by using an al-
ternative parameterisation of the horizontal salinity gradient, inspired by the
first-order upwind difference scheme:

∂S

∂x
=

{
S−Sr

L if u ≥ 0,
Ss−S
L if u < 0.

(8)

By introducing u+ and u− the positive and negative parts of the longitudinal
velocity,

u± =
u± |u|

2
, (9)

and by using relation (8), we can rewrite equation (5) as

∂S

∂t
= −u+S − Sr

L
−
∣∣u−∣∣ S − Ss

L
+

∂

∂z

(
λ
∂S

∂z

)
. (10)

If the velocity is directed toward the sea (u > 0), the first term in the right-hand
side of (10) relaxes the salinity to its river value Sr, the relaxation timescale
being L/u+. On the other hand, when the velocity is directed toward the river,
the salinity is relaxed toward Ss with a relaxation timescale equal to L/|u−|.

It is interesting to notice that resorting to this new parameterisation is
equivalent to add to the classical formulation (7) a horizontal diffusion term.
Indeed, with the parameterisation suggested herein, the horizontal salinity
advection may be rewritten as (E. Hanert, personal communication, March
2008)

−u∂S
∂x

= −uSs − Sr
2L

+
|u|L

2
Ss − 2S + Sr

L2
. (11)
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Clearly, the last term in the equation above may be viewed as the discrete form
of the harmonic diffusion operator, the associated diffusivity being |u|L/2.

The interpretation of the role of the first two terms in the right-hand side
of salinity equation (10) suggests that, whatever the horizontal velocity, the
salinity should tend to be comprised in the interval [Sr, Ss]. In fact, this can be
demonstrated rigorously. For an arbitrary large value of t (t→∞), the salinity
must obey the following inequalities:

Sr ≤ S(t, z) ≤ Ss, (12)

implying that stratification cannot grow out of control. We first define the
overshooting of the salinity by

δ+ = max [0, S(t, z)− Ss] (13)

So, the overshooting is a positive variable that is equal to S(t, z) − Ss if the
salinity is greater than its sea value Ss, and is equal to zero otherwise. Mul-
tiplying equation (10) by the overshooting and integrating over the height of
the water column yields:

1
2

d
dt

∫ 0

−H

(
δ+
)2 dz =

−
∫ 0

−H

[
u+S − Sr

L
+
∣∣u−∣∣ S − Ss

L

]
δ+dz −

∫ 0

−H
λ

(
∂δ+

∂z

)2

dz. (14)

The manipulations leading to this equation are not trivial, but they are of the
same type as those of Appendix C of Deleersnijder et al. (2001). All of the
terms in the right-hand side of (14) are negative unless the overshooting is
zero at every point of the water column. Thus, the quadratic measure of the
overshooting tends to zero as time increases, implying that

lim
t→∞ δ

+ = 0. (15)

Combining relations (13) and (15) leads to

S(t, z) ≤ Ss for t→∞. (16)

A similar analysis can be performed for the undershooting
δ− = max [0, Sr − S(t, z)], eventually leading to S(t, z) ≥ Sr for t → ∞.
Hence, (12) holds valid. QED.

Needless to say, it cannot be seen that, when the classical parameterisation
(7) is used, the salinity asymptotically remains within the interval [Sr, Ss].

5 Model results

To illustrate the advantages of the parameterisation designed above, we will
simulate the situations described in section 2. All of the simulations are achie-
ved using a time-step of 60 seconds. The one-dimensional vertical mesh con-
tains 30 nodes. The main physical parameters are similar to those of Nunes
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Vaz and Simpson (1994). The water column depth is 15 m, and the values of
Sr and Ss are respectively 0 psu and 35 psu.

We first consider a SIPS regime similar to that of Nunes Vaz and Simpson
(1994). There is only one tidal component with a magnitude ofU0,max = 1m/s
and a period of T0 = 12 h. The longitudinal constant salinity gradient τ is set
to 0.25 psu/km. Figure 4 shows that the SIPS regime is quickly established,
with an alternation of stratified/unstratified phases. The tidal mixing at the
end of the falling tide is sufficient to annihilate stratification. The latter is
very similar using both parameterisations of salinity gradient. However, the
constant parameterisation (7) leads to higher peaks of stratification while the
latter is limited using the new parameterisation (8). These smaller peaks can
be explained by the horizontal diffusion added to the model (11) when we
use the new parameterisation of salinity gradient. The mean velocity remains
rather insensitive to the used parameterisation.

For the SIPS regime simulated above, the two expressions of the salinity
gradient led to rather similar results. This is not always the case, especially
if a permanently stratified regime is considered, such as that investigated by
Nunes Vaz and Simpson (1994). Accordingly, the tidal amplitude is decreased
(U0,max = 0.5 m/s) to reduce mixing and the longitudinal salinity gradient
is increased (τ = 0.3 psu/km). All the other parameters remain unchanged.
Model results are displayed on Fig. 5. Using the classical parameterisation of
the horizontal salinity gradient, the stratification grows out of control to unre-
alistic values exceeding the imposed bounds, which is the deficiency known
as “runaway stratification”. As demonstrated in section 4, the stratification
remains within the imposed limits when we use the new parameterisation.
The slight oscillations show that, even when the stratification is high, it is still
influenced by tide. While the classical parameterisation (7) gives useless re-
sults, the new parameterisation (8) gives qualitatively realistic results for a
large number of tidal cycles.

The spring/neap cycles are now simulated by taking into account two
tidal components. The first one has an amplitude of U0,max = 0.8 m/s and
a period of T0 = 12.42 h; while the second component has an amplitude of
U1,max = 0.46 · U0,max and a period of T1 = 12 h (Nunes Vaz and Simp-
son, 1994). Using this combination of tidal components, we generate an al-
ternation of spring and neap tides (Fig. 6). We set the longitudinal constant
salinity gradient to the value of τ = 0.25 psu/km. It is shown on Fig. 6 that
both parameterisations represent a spring-neap cycle of stratification. Dur-
ing neap tides, the stratification grows until the tidal amplitude increases at
spring tides. Then, the stratification weakens and comes back to a SIPS regime.
However, the classical parameterisation leads to unrealistic peaks of stratifica-
tion, with salinity exceeding the limits imposed by the river and sea salinities.
This is a common issue when using expression (7) (i.e. Nunes Vaz and Simp-
son (1994) in which the difference between bottom and surface density grows
during neaps as far as 180 kg/m3). This problem does not occur when the new
parameterisation is resorted to.
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Figure 4: Simulation of a Strain-Induced Periodic Stratification (SIPS) regime: results
obtained using the old (7) (dashed curves) and the new (8) (solid curves) pa-
rameterisations of the horizontal salinity gradient. The tidal forcing is charac-
terised by U0,max = 1 m/s and T0 = 12 h. The longitudinal salinity gradient
is set to τ = 0.25 psu/km. The bounds of salinity are set to Sr = 0 psu and
Ss = 35 psu. Upper panel: Evolution of the stratification (difference between
bottom salinity and surface salinity). Middle panel: Minimum and maxi-
mum values of salinity over the water column. Lower panel: Evolution of
the depth-averaged velocity. The latter is similar for both parameterisations.
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Figure 5: Simulation of a persistent stratification regime: results obtained using the
old (7) (dashed curves) and the new (8) (solid curves) parameterisations
of the horizontal salinity gradient. The tidal forcing is characterised by
U0,max = 0.5 m/s and T0 = 12 h. The longitudinal salinity gradient is set
to τ = 0.3 psu/km. The bounds of salinity are set to Sr = 0 psu and Ss = 35
psu. Upper panel: Evolution of the stratification (difference between bottom
salinity and surface salinity). Middle panel: Minimum and maximum val-
ues of salinity over the water column. Lower panel: Evolution of the depth-
averaged velocity. The latter is similar for both parameterisations.
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Figure 6: Simulation of the circulation induced by a succession of spring/neap tides:
results obtained using the old (7) (dashed curves) and the new (8) (solid
curves) parameterisations of the horizontal salinity gradient. The tidal
forcing is characterised by U0,max = 0.8 m/s, T0 = 12.42 h, U1,max =
0.46 · U0,max and T1 = 12 h. The longitudinal salinity gradient is set to
τ = 0.25 psu/km. The bounds of salinity are set to Sr = 0 psu and Ss = 35
psu. Upper panel: Evolution of the stratification (difference between bottom
salinity and surface salinity). Middle panel: Minimum and maximum val-
ues of salinity over the water column. Lower panel: Evolution of the depth-
averaged velocity. The latter is similar for both parameterisations.
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Figure 7: Simulation of the circulation induced by a of succession spring/neap tides:
results obtained using the old (7) (dashed curves) and the new (8) (solid
curves) parameterisations of the horizontal salinity gradient. The tidal
forcing is characterised by U0,max = 0.7 m/s, T0 = 12.42 h, U1,max =
0.46 · U0,max and T1 = 12 h. The longitudinal salinity gradient is set to
τ = 0.3 psu/km. The bounds of salinity are set to Sr = 0 psu and Ss = 35
psu. Upper panel: Evolution of the stratification (difference between bottom
salinity and surface salinity). Middle panel: Minimum and maximum val-
ues of salinity over the water column. Lower panel: Evolution of the depth-
averaged velocity. The latter is similar for both parameterisations.
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Figure 8: Sensitivity to the initial stratification: evolution of the stratification (differ-
ence between bottom salinity and surface salinity) for the different parame-
terisations of the horizontal salinity gradient, in the case of a SIPS regime (a)
and persistent stratification (b). Two simulation results are showed for both
regimes, with initial differences between bottom salinity and surface salinity
set to 40 psu and 80 psu.
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In the last experiment, we simulate a spring-neap cycles regime giving
rise to runaway stratification. To this aim, the tidal amplitude is decreased
to U0,max = 0.7 m/s and U1,max = 0.46 · U0,max, while the longitudinal con-
stant salinity gradient is increased to τ = 0.3 psu/km. Figure 7 shows that
the classical parameterisation of the horizontal salinity gradient term leads to
a stratification which increases unboundedly and then cannot come back to
the SIPS regime. During successive tidal cycles, the stratification strengthen
to excessively large values. The new parameterisation, by limiting the peak
of stratification to acceptable values, permits to come back to the SIPS regime
during spring tides which is believed to be consistent with observation (Simp-
son et al., 1990; Sharples and Simpson, 1993).

6 Discussion

We now investigate the impact of the initial conditions, in particular the strat-
ification prescribed at the initial instant. Figure 8a shows the evolution of the
stratification using different initial stratifications for the SIPS regime. For each
parameterisation, the mixing is able to annihilate the stratification, yielding
a SIPS regime. However, the decrease of the stratification is much faster us-
ing the new parameterisation. It was demonstrated in section 4 that, even if
we have an overshooting or an undershooting in the initial salinity, this ex-
cess will be eliminated by the new parameterisation of the horizontal salin-
ity gradient. If the stratification exceeds the upper limit, it cannot strengthen
anymore when the new parameterisation is used, whereas the classical pa-
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rameterisation still generates cycles of increase/decrease of stratification. In a
persistent stratification regime (Fig. 8b), using the new parameterisation, the
stratification decreases under its upper limit value, and then reaches a regime
solution. The solution converges for any initial stratification. This confirms
that any overshooting is directly eliminated by that parameterisation. The
classical parameterisation, on the other hand, generates a runaway stratifica-
tion.

By slightly modifying the equations, the present model could also be ap-
plied to the simulation of the tidal straining in a Region of Freshwater Influ-
ence (ROFI), for which the stratification induced by a gradient of density is
also a key process (Visser et al., 1994). The new parameterisation of the salin-
ity gradient should be able to avoid the generation of runaway stratification
in a ROFI model, for which this numerical complication can also occur.

7 Conclusions

Using simple mathematical developments, a new expression of the horizon-
tal density gradient was developed in order to avoid the phenomenon known
as “runaway stratification”. This method allows for the simulation of rather
realistic flows such as spring/neap cycles without any unrealistic stratifica-
tion peak. It is guaranteed that no over- or under-shooting will be generated
and that any initial over- or under-shooting will progressively disappear. The
mathematical method we had recourse to for establishing the properties of the
new parameterisation of horizontal salinity gradient may be applied to a wide
range of partial differential problems in order to derive a priori upper or lower
bounds of their solution. This technique is inspired by Lewandowski (1997).
To the best of our knowledge, it has been used in a small number of oceano-
graphic studies only (Deleersnijder et al., 2001; Legrand et al., 2006; Gourgue
et al., 2007).
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Figure 3.1: Equivalent two-dimensional x−z model with three grid points and Dirich-
let boundary conditions.

3.1 Comments on the publication

The configuration of the model described in the previous publication can be
compared to a two-dimensional x − z model with three grid points along the
horizontal direction (Figure 3.1). The main difference is that upstream salinity
Sr and downstream salinity Ss are not part of the discretization but consist of
external data, not included in the discretization space. It is then comparable
to the two-dimensional x− z model with three grid points along the horizon-
tal direction, in which we enforce Dirichlet boundary conditions on the two
external water columns (Figure 3.1).

The treatment of the density gradient is called “parameterisation”, because
it is not included in the discretization space and can only be deduced from
upstream and downstream constant values. It is then needed to parameterise
this density gradient to be able to compute the advection term. Two different
parameterisations were compared: a constant parameterisation (7) and a new
parameterisation (8) which prevents the runaway stratification to appear.

If we consider the problem as a two-dimensional x − z model with three
grid points along the horizontal direction and dirichlet boundary conditions,
the constant parameterisation (7) can no longer be called a parameterisation,
as the density gradient is now included in the discretization space. Instead of
a parameterisation, the method is equivalent to a centered discretization. As
for the new parameterisation, it consists of a first order upwind discretization.
It is then obvious that this upwind discretization will add horizontal diffusion
(Fletcher, 1988).



Chapter 4

Turbulence modelling in
three-dimensional models

Despite a highly multiscale aspect, a marine model is never able to compute all
the scales of a flow. Complex phenomena whose characteristic lengths cannot
be handled by the mesh need to be parameterised using a turbulence model.
Turbulence model also parameterise phenomena that cannot be described by
the equations. Such models have been subject to an extensive research for
more than twenty years, and their increasing complexity is motivated by the
raise of computing power that allows to use them on real scale problems (Bur-
chard, 2002a).

4.1 The Mellor-Yamada level 2.5 turbulence closure

Different popular turbulence models were implemented in the framework of
the present thesis. They belong to the class of eddy viscosity models: the ef-
fect of turbulence is parameterised using a turbulent viscosity (diffusivity for
tracers) which is added to the molecular one, the latter often being negligi-
ble. The complexity of these models vary with the method used to compute
the turbulent viscosity and diffusivity. Each turbulence model has assets and
drawbacks, and no one can be claimed superior to others. However, some
turbulence models are better adapted for specific configurations. It was also
shown that more complex turbulence models can improve significantly the
computation of ocean properties (Goosse et al., 1999; Li et al., 2001). In this
chapter, we focus on the Mellor and Yamada level 2.5 turbulence closure de-
veloped by Mellor and Yamada (1974, 1982). It is a two-equations model with
an equation used to compute the turbulent velocity energy scale while the
other equation is used to obtain the turbulence length scale. The vertical eddy

113
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viscosity and diffusivity for tracers are given by

νv = Suql and κv = Sbql (4.1)

where l is a length scale, named the turbulence macroscale, representing the
size of the energy-containing eddies. q is a velocity scale, linked to the turbu-
lent kinetic energy k by

k =
q2

2
. (4.2)

The two equations of the model read

∂q2

∂t
= 2νvM2 − 2κvN2 − 2q3

B1l
+

∂

∂z

(
Kq

∂q2

∂z

)
, (4.3)

∂(q2l)
∂t

= E1lνvM
2 − E1lκvN

2 − Wq3

B1
+

∂

∂z

(
Kq

∂q2l

∂z

)
, (4.4)

where B1 = 16.6 and E1 = 1.8 are constants of the model, and Kq is the eddy
diffusivity for turbulence variables that is given by

Kq = Sqql. (4.5)

Stability functions Su, Sb and Sq are needed to compute the eddy viscosity
and diffusivity coefficients. Sq is generally taken equal to 0.2. The Su and Sb
stability functions devised by Galperin et al. (1988) for the quasi-equilibrium
version of the MY25 turbulence closure are used, leading to a more robust
model for marine modelling (Deleersnijder and Luyten, 1994):

Su =
0.39− 3.09GH

1− 40.8GH + 212G2
H

, (4.6)

Sb =
0.49

1− 34.7GH
, (4.7)

with GH = − l2

q2N
2. The following constraints are enforced

l2 ≤ 0.28q2

max(0, N2)
and − 0.28 ≤ GH ≤ 0.0233. (4.8)

A wall proximity function is needed to represent the logarithmic bottom
boundary layer. This function W is defined as

W = 1 +
E2l

2

(κL)2
, (4.9)

with the constant E2 = 1.33. The function L depends on the distance to the
sea bed db and the distance to the sea surface ds, and is given by

L =
dsdb
ds + db

. (4.10)



4.1. The Mellor-Yamada level 2.5 turbulence closure 115

The following article (Blaise et al., 2007) is devoted to the influence of the
Mellor and Yamada level 2.5 model on the simulation of the flow in the wake
of a shallow-water island. It is shown that some phenomena, like the hys-
teresis effect, are not taken into account by simple closure models, and that
the results are then less realistic in the considered configuration. The stress
is put on the interaction between vertical mixing and upwelling, which are
key players in the carrying of sediments from the seabed to higher depths. By
making these sediments available to higher trophic levels, they act upon the
whole food chain and have then a critical influence on the ecosystem.





4.1. The Mellor-Yamada level 2.5 turbulence closure 117

Influence of the Turbulence Closure Scheme on the
Finite-Element Simulation of the Upwelling in the

Wake of a Shallow-Water Island
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Abstract

A three-dimensional finite-element model is used to investigate the tidal flow
around Rattray Island, Great Barrier Reef, Australia. Field measurements and
visual observations show both stable eddies developing at rising and falling
tide in the wake of the island. The water turbidity suggests intense upwelling
able to carry bed sediments upwards. Based on previous numerical studies, it
remains unclear at this point whether the most intense upwelling occurs near
the centre of the eddies or off the island’s tips, closer to the island. All these
studies resorted to a very simple turbulence closure, with a zero-equation
model whereby the coefficient of vertical viscosity is computed via an alge-
braic expression. In this work, we aim at studying the influence of the tur-
bulence closure on model results, with emphasis on the prediction of vertical
motions. The Mellor and Yamada level 2.5 closure scheme is used and an in-
crease in the intensity of vertical transport is observed. This increase is partly
explained by the fact that the Mellor and Yamada model takes into account the
hysteresis effect in the time variation of turbulence variables. The influence of
the advection of turbulence variables is estimated to be negligible. By a better
representation of transient coastal phenomena, the Mellor and Yamada level
2.5 turbulence closure improves the model to a significant degree.
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Keywords: Finite Element Method, Turbulence closure scheme, Upwelling, Lee eddies, Shelf dy-
namics, Tidal currents, Unstructured mesh, Australia, Great Barrier Reef, Rattray Island

1 Introduction

Over the last decade, increasing effort has been directed toward the devel-
opment of marine models using unstructured meshes. A thorough review
of these studies is presented by Pain et al. (2005). Admittedly, unstructured
meshes have much to offer for marine modelling. They allow for an accu-
rate representation of the topography (e.g., islands, narrow straits) and the
bathymetry (Legrand et al., 2007, 2006). The mesh can easily be refined in re-
gions of interest or coarsened in those regions where the dynamics is less de-
manding. Finally, unstructured meshes set up in spherical geometry should
be able to circumvent the singularity at the poles, rendering those techniques
potentially very useful for global scale ocean modelling (Legrand et al., 2000;
Gorman et al., 2006). These assets are quite compelling for marine modelling
and should prompt further developments and research for improving current
models. Several numerical methods can handle unstructured meshes; among
them the finite volume method, the spectral element method and the finite
element method. In this paper, we focus on the finite element (FE) method.

The first developments of FE marine models were based on the wave conti-
nuity equation (Lynch and Gray, 1979), whereby the primitive shallow-water
equations are manipulated to form a wave equation to predict the free-surface
elevation. This method does not suffer from spurious oscillations occurring
when using equal-order interpolations with the primitive equations. The gen-
eralisation of this method led to the generalised wave continuity equation
(GWCE), documented by Kinnmark (1986). The GWCE has been extensively
used over the past 20 years with successful applications in coastal regions for
tidal predictions (Walters and Werner, 1989; Lynch and Naimie, 1993; Lynch
et al., 1996; Fortunato et al., 1997; Cushman-Roisin and Naimie, 2002). This
method, however, is subject to advective instabilities (Kolar et al., 1994) and
suffers from the breaking down of mass conservation (Massey and Blain, 2006),
making it less suitable for coupling with transport equations and long-term
integrations.

These limitations urged the development of marine models based on the
primitive equations. To that end, research toward finding a stable mixed FE
formulation for the shallow-water equations has been thriving since the end
of the nineties (Le Roux et al., 1998; Le Roux, 2001; Hanert et al., 2003; Le Roux,
2005). Early issues of the FE method, often cited as pretexts not to use it,
are starting to lose resilience. Nowadays, developments and applications of
FE marine models based on the primitive equations are becoming less of an
exception (Nechaev et al., 2003; Danilov et al., 2004; Ford et al., 2004a,b; Danilov
et al., 2005; Hanert et al., 2005b; Labeur and Pietrzak, 2005; Pain et al., 2005;
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Figure 1: Left: location of Rattray Island in the Great Barrier Reef, Northeast Australia.
Right: domain of interest with bathymetry in metres. Rattray Island is the
black area in the centre. (from White et al., 2007)

Pietrzak et al., 2005, 2006; Walters, 2006; White and Deleersnijder, 2006; White
et al., 2007). This revolution in model design calls for validation test cases.
Idealised test cases are generally too simple and are usually set up to validate
the numerical component of a model without too much regard onto the ability
of the model to represent the physics. There is a great need of realistic test
cases against which models can assess their ability at representing processes
encountered in the field. With this objective in mind, a self-forming group is
putting together a set of realistic benchmarks that ought to remain relevant for
the next decade (Aikman et al., 2006). Following these guidelines, Blaise and
White (2006) recently set up a benchmark focusing on the three-dimensional
flow around Rattray Island, Great Barrier Reef, Northeast Australia (Figure 1).

In 1982, the Australian Institute of Marine Science carried out an extensive
field survey at Rattray Island (Wolanski et al., 1984). Twenty-six currentmeters
were deployed at various sites in the southeast of the island and the water
elevation was recorded. Landsat imagery and aerial photographs allow for
direct visualisation of the secondary circulation in the wake of the island. The
recirculating water is turbid, facilitating the interpretation of the circulation
from the air. Since then, Rattray Island has been the focus of several stud-
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ies (Falconer et al., 1986; Black and Gray, 1987; Wolanski and Hamner, 1988;
Deleersnijder et al., 1992; Wolanski et al., 1996; White and Deleersnijder, 2006;
White et al., 2007), all of them but the last using the finite difference method.
By using a finite element model, White and Deleersnijder (2006) aimed at in-
vestigating the effect of an increase in mesh resolution, keeping all other pa-
rameterisations identical to that used in previous studies using the finite dif-
ference method (Deleersnijder et al., 1992; Wolanski et al., 1996). In this paper,
the same FE model is utilised but it is improved with a more sophisticated
turbulence closure.

Vertical mixing by turbulence is a key player in the dynamics of processes
encountered in shallow coastal areas (Burchard, 2002). Simple turbulence clo-
sures, such as that used by Deleersnijder et al. (1992) and White and Deleer-
snijder (2006), neglect parts of the complex evolution of turbulent flows. In
this paper, the Mellor and Yamada level 2.5 turbulence closure (MY25) (Mel-
lor and Yamada, 1974, 1982) is considered mainly because it was designed and
tuned for geophysical fluid flow problems. Moreover, this turbulence closure
has been widely used in marine models (e.g. Blumberg and Galperin, 2006;
Ruddick et al., 1995; Ezer, 2005; Timmermann and Losch, 2005) and was re-
cently implemented in a FE water column model (Hanert et al., 2006). With
a better parameterisation of turbulence, we seek to improve the prediction of
the flow around Rattray Island and, in particular, the representation of the up-
welling mechanisms. By carrying the sediments from the sea bed to the sea
surface, an intense upwelling could be a dominant factor explaining the water
turbidity in the wake of the island. Previous numerical models gave an insuffi-
cient upwelling velocity in the wake of the island. It was initially thought that
the resolution of the models was insufficient (Deleersnijder et al., 1992); but
recent finite-element simulations with variable horizontal resolutions (White
and Deleersnijder, 2006) showed that the resolution was not in question. In
that study, the authors used a diagnosis of vertical transport based on the age
of the bottom water, that can be considered to be the time elapsed since a con-
stituent left the sea bottom (Delhez et al., 1999; Deleersnijder et al., 2001). Their
results allow for concluding that upwelling also occurs off the island’s tips
(very close to the island) and not only near the centre of the eddies. Moreover,
they found that upwelling off the island’s tips was the most intense. However,
the upwelling predicted by the model was not always sufficient to explain the
presence of sediments at the sea surface. The turbulence closure used in their
study was admittedly too simple. Therefore, it remains unclear whether the
most significant upwelling mechanisms occur off the island’s tips or near the
centre of the eddies.

In this paper, after introducing the upwelling velocity we will describe the
model and the parameters used to perform the simulations. Sections 4 to 7
will be devoted to the results of simulations and comparisons using different
parameterisations of turbulence. The last section before the conclusion will
estimate the importance of the advection of turbulence variables in the model
applied to Rattray Island.
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Figure 2: Schematic illustration of the mechanism of the upwelling induced in the cen-
tre of an eddy. Fc is the centrifugal acceleration due to the rotating velocity
on the top (utop) and on the bottom (ubottom) perimeters of the eddy.

2 Upwelling velocity within eddies

The quantitative assessment of vertical motions calls for a representative es-
timator. In this work, the intensity of vertical transport will be estimated by
using the so-called upwelling velocity (Deleersnijder, 1989, 1994). The up-
welling velocity is not directly influenced by the bathymetry but is entirely
due to upwelling mechanisms. Let us consider the following transformation
to σ-coordinates:

σ =
z − η
h+ η

, (1)

where h and η are respectively the unperturbed sea depth and the sea surface
elevation, positive upwards. The vertical coordinate z is pointing upward
with its origin at the mean sea level. The upwelling velocity is the component
of the vertical velocity that modifies the relative position of a particle within
the water column, i.e. the vertical velocity component that allows a particle to
cross iso-sigma surfaces. In this study, we will focus on the upwelling velocity,
and the transport by turbulent mixing will not be included in the diagnoses.
White and Deleersnijder (2006) showed that the upwelling velocity is presum-
ably a dominant process in the rise of sediments.

Upwelling mechanisms in an eddy configuration are represented in Figure
2. The velocity of the fluid on the perimeter of the eddy is smaller near the sea
bed (ubottom) than near the sea surface (utop) because of bottom friction. The
rotating fluid is sustained by a centrifugal acceleration in equilibrium with
the pressure gradient induced by the slope of the sea surface. Close to the
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sea bed and because of bottom friction, the centrifugal acceleration magni-
tude decreases while the pressure gradient remains constant and this balance
breaks down. This leads to flow convergence near the seabed and upwelling
within the centre of the eddy. On the outer edge of the eddy, the centrifugal
acceleration leads to a convergence of the flow at the sea surface, inducing
downwelling. Thus, shallow-water eddies tend to induce upwelling at the
centre and downwelling along the outer edge. The upwelling mechanism in
eddies is similar to that occuring in a stirred tea cup, with a convergent flow
near the bottom and upwelling in the centre (Bowker, 1988; Wolanski et al.,
1996). In this work, we will focus on upwelling zones. According to the fore-
going explanations, the larger the difference between the bottom velocity and
the surface velocity, the larger the upwelling in the centre of the eddy.

3 Model description

We use the three-dimensional finite-element marine model developed within
the scope of the SLIM project (Second-generation Louvain-la-Neuve Ice-ocean
Model, http://www.climate.be/SLIM). A version of the model SLIM, using sigma
coordinates and considering a constant density, is described in detail by White
et al. (2007) and the configuration used for studying the flow around Rattray
Island is presented by White and Deleersnijder (2006). It is very briefly re-
called here. According to Wolanski et al. (1984), temperature and salinity con-
trasts are negligible near Rattray Island. Therefore, we consider the water to
have a constant density. We work on an f -plane and under the hydrostatic ap-
proximation. Wind stress is not considered. The same assumptions as those
of White and Deleersnijder (2006) are made here so that the only difference
between both models is the turbulence closure.

The horizontal momentum equation is then

∂u
∂t

+ (v · ∇) u + f êz ∧ u = −g∇hη +
∂

∂z

(
νv
∂u
∂z

)
+ D, (2)

where v = (u, v, w) is the velocity and u = (u, v) contains the horizontal
components of v. The three-dimensional gradient operator is designated by
∇; ∇h is used to designate the horizontal gradient operator, which applies
on the horizontal components of a vector. The constant Coriolis parameter
and the gravitational acceleration are respectively represented by f and g; νv
and êz are respectively the vertical eddy viscosity coefficient and the upward-
pointing unit vector. In the scope of this work, the vertical eddy viscosity will
be calculated by means of different turbulence closure schemes in order to
investigate their effect on the results. D is the parameterisation of horizontal
momentum diffusion. In addition to equation (2), the continuity equation is
used to diagnostically compute the vertical velocity:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (3)
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The free-surface elevation equation is derived from

∂η

∂t
+∇h ·

(∫ η

−h
udz

)
= 0. (4)

The total height of the water column is defined asH(x, y, t) = h(x, y)+η(x, y, t).
The horizontal momentum diffusion term D is

D =
∂

∂x

(
νh
∂u
∂x

)
+

∂

∂y

(
νh
∂u
∂y

)
, (5)

in which νh is computed using a Smagorinsky scheme (Smagorinsky, 1963)

νh = cs42

[
∂u

∂x

∂u

∂x
+ 0.5

(
∂u

∂y
+
∂v

∂x

)2

+
∂v

∂y

∂v

∂y

] 1
2

, (6)

where cs is a constant and ∆2 is a the surface area of the local triangle (Akin
et al., 2003). The overbar stands for depth-averaged quantities.

In this paper, the domain geometry, boundary conditions and forcings are
identical for all simulations.. The tidal ellipses are strongly polarised (Wolan-
ski et al., 1984) and a good approximation consists in assuming the mean flow
to be unidirectional. The domain is rotated so that its y-axis is parallel to the
direction of the tidal flow. Lateral boundaries are then assumed to be im-
permeable, without lateral friction. The southeast and northwest boundaries
remain open. On the open boundaries, the depth-averaged velocity and the el-
evation obtained from field measurements are imposed under the form of the
incoming characteristic variable un − η

√
g/h where un is the depth-averaged

normal velocity (Flather, 1976; Ruddick et al., 1994). The phase lag between
incoming and outgoing boundaries is neglected. The size of the domain is
8, 2km in the x-direction and 12, 1km in the y-direction.

Two different unstructured meshes, refined in the vicinity of the island,
are employed. The coarse mesh is made of 3024 triangles and 10 layers on the
vertical (Figure 3). Its horizontal resolution varies from 140m in the vicinity of
the island to 700m near the domain boundaries. The fine mesh comprises 6096
triangles and 16 layers on the vertical. Its horizontal resolution in the vicin-
ity of the island is 85m whereas the resolution near the domain boundaries
is unchanged. The Smagorinsky constant cs is set to 0.1 for the coarse mesh
and 0.3 for the fine mesh, giving approximately the same peak eddy viscosity
values in the island’s wake (νh = 0.5 m2s−1 ) for both meshes, in agreement
with estimates by Wolanski et al. (1984). The time step is 15 seconds. All re-
sults are presented after three days of physical time in order to reach a regime
situation.

4 Simple turbulence closure

In this section, the simple algebraic turbulence closure suggested by Fisher
et al. (1979) and used by Deleersnijder et al. (1992) and White and Deleersnijder
(2006) is presented. Accordingly, the vertical eddy viscosity νv is
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Figure 3: Coarsest unstructured mesh used for the simulations. The mesh contains
3024 triangles and 10 layers on the vertical. To better render the bathymetry,
a stretch is applied in the vertical direction.
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νv = κu∗ (h+ z + z0)
(

1− δ h+ z + z0

H

)
, (7)

where κ ' 0.4 is the von Karman constant, δ is an adjustable parameter,
z0 is the bottom roughness height and u∗ is the bottom friction velocity com-
puted as

u2
∗ =
|τ |
ρ0

(8)

in which ρ0 is the water density and τ is the bottom stress parameterised by

τ

ρ0
=

 κ

ln
(
h+z+z0
z0

)
2

|u(z)|u(z), (9)

where z is taken at mid-height of the first layer near the bottom. First, the δ
parameter is taken to be the usual value of 0.6. This value was used in several
works, including studies focusing on Rattray Island (Deleersnijder et al., 1992;
White and Deleersnijder, 2006). However, using this value implies a nonzero
vertical eddy viscosity at the sea surface. With the MY25 closure, the bound-
ary condition is νv = 0 at the sea surface when the wind stress is neglected.
Obtaining a qualitatively comparable eddy viscosity profile with the simple
turbulence closure requires the choice of δ = 1. Results for both values of δ
are presented.

Results considered in this section are taken at four different simulation
times. Snapshots at these times (labelled 1 to 4) correspond respectively to
December 1, 1982 at 1h40 (falling tide, peak ebb velocity), 5h00 (end of falling
tide, shortly before tide reversal), 7h55 (rising tide, peak flood velocity) and
10h50 (end of rising tide, shortly before tide reversal). Figure 4 shows the
depth-averaged velocity at these different times, using the model with the
simple turbulence closure and δ = 0.6. Trial calculations showed that the
choice of turbulence closure (simple or MY25) did not significantly influence
the depth-averaged horizontal velocity field. Therefore, Figure 4 gives an
overview of the flow around the island that is applicable to all subsequent
discussions. Figure 4 clearly shows two counter-rotating eddies of different
sizes in the wake of the island. The difference between these eddies is mostly
due to bathymetric effects. A study by Falconer et al. (1986) shows that when
the model is run on a flat bottom, both eddies are almost symmetric in size
and intensity. Our model reproduces these predictions (not shown).

Results for the upwelling velocity using the simple turbulence closure and
δ = 0.6 are depicted in Figure 5. Simulations on the coarse mesh give results
that are slightly noisier, but not qualitatively different. Therefore, further sim-
ulations with the simple turbulence closure will only be carried out on the
fine mesh. Since the model is the same as that used by White and Deleersni-
jder (2006), we have similar results. Using a value of δ = 1 (Figure 6) has the
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1 2

3 4

Figure 4: Depth-averaged velocity field on the fine mesh, using the model with simple
turbulence closure with the parameter δ = 0.6. Snapshots (1,2,3 and 4) re-
spectively taken on December 1, 1982 at 1h40 (falling tide, peak ebb velocity),
5h00 (end of falling tide, shortly before tide reversal), 7h55 (rising tide, peak
flood velocity) and 10h50 (end of rising tide, shortly before tide reversal).
The velocity has been interpolated on a structured mesh. The mean velocity
in the y-direction at snapshots (1,2,3 and 4) is respectively 0.49m/s, 0.16m/s,
−0.52m/s and −0.16m/s.
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Figure 5: Upwelling velocity at mid-depth for the coarse mesh (left column) and for
the fine mesh (right column), using the simple turbulence closure with the
parameter δ = 0.6. Snapshots (1,2,3 and 4) respectively taken on December 1,
1982 at 1h40 (falling tide, peak ebb velocity), 5h00 (end of falling tide, shortly
before tide reversal), 7h55 (rising tide, peak flood velocity) and 10h50 (end of
rising tide, shortly before tide reversal).
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Figure 6: Upwelling velocity at mid-depth for the fine mesh, using the simple turbu-
lence closure with the parameter δ = 1. Snapshots (1,2,3 and 4) respectively
taken on December 1, 1982 at 1h40 (falling tide, peak ebb velocity), 5h00 (end
of falling tide, shortly before tide reversal), 7h55 (rising tide, peak flood ve-
locity) and 10h50 (end of rising tide, shortly before tide reversal).

effect of increasing the area on which upwelling is significant. The explana-
tion is as follows. As we can see in equation (7), a larger value of δ leads to
a lower value of νv , implying less vertical mixing. This decrease in vertical
mixing gives rise to a larger vertical shear in the horizontal velocity near the
bottom, inducing more intense upwelling.

5 A sophisticated turbulence closure

We have implemented the Mellor and Yamada level 2.5 (MY25) turbulence clo-
sure that was developed by Mellor and Yamada (1974, 1982). This turbulence
closure includes an equation for the evolution of the variable q2 (where q2/2
is the turbulent kinetic energy), and an equation for the evolution of the vari-
able q2l (where l is the turbulent length scale). To have a more robust model
for marine modelling, the quasi-equilibrium version of the MY25 turbulence
closure was used (Galperin et al., 1988; Deleersnijder and Luyten, 1994). Since
we consider a fluid of constant density, stratification is not considered in the
model. The following boundary condition on q2 is enforced both at the sea
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surface and at the bottom (Stacey and Pond, 1997):

q2 = B
2/3
1 u2

∗. (10)

Note that we neglect the surface stress, which implies that we have q2 = 0 at
the surface. The boundary condition on the turbulent length scale, used at the
bottom, is

l = κz0. (11)

As in Deleersnijder et al. (1992) and White and Deleersnijder (2006), the value
of the bottom roughness height z0 is fixed to 5 · 10−3m, that is typical of rough
sea beds (Black and Gray, 1987). Simulations showed that variations of the
bottom roughness height do not change significantly the results. At the sea
surface, the boundary condition on the turbulent length scale is:

l = 0. (12)

In this section, horizontal diffusion and advection of turbulence variables are
not considered since they are generally deemed negligible in marine mod-
elling compared to the more important production and destruction terms. We
will investigate below how including advection affects the turbulence closure
behaviour. Simulation results with the MY25 turbulence closure are shown in
Figure 7. Similarly to the simple closure, simulation results are less noisy with
the finest mesh. However, results using the two meshes are not qualitatively
different. Now, these results will be compared with the model using the sim-
ple closure and δ = 1 (Figure 6). This comparison emphasises an increase in
the upwelling velocity with the MY25 model, especially for snapshots (1) and
(3).

Though upwelling mechanisms are influenced by a lot of complex pro-
cesses, general tendencies can nonetheless be brought to light. In order to
analyse the effect of the turbulence closure scheme upon the upwelling veloc-
ity, let us consider a particular location in the two-dimensional plane where
these mechanisms will be studied. This location, noted P in Figure 8, lies on
the perimeter of the main eddies in the wake of the island at falling tide. Fig-
ure 9 shows the temporal evolution of the vertical eddy viscosity coefficient at
P and at a depth equivalent to 90% of the total depth. Two differences between
both turbulence closures are clearly visible. First, the mean eddy viscosity co-
efficient is slightly greater with the simple closure model. Second, there is a
time lag between the two models. With the simple closure, the eddy coeffi-
cients react instantaneously when the flow changes. However, in nonstation-
ary flows, the turbulence variables are affected by a hysteresis phenomenon.
The latter has a great influence on the modeled flow during the acceleration
and deceleration phases of the tide (Baumert and Radach, 1992). This hys-
teresis phenomenon is taken into account by the MY25 closure but not by the
simple closure. In Figure 9, the time line is decomposed into two types of
intervals (A and B), corresponding respectively to intervals where the vertical
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Figure 7: Upwelling velocity at mid-depth for the coarse mesh (left column) and for the
fine mesh (right column), using the Mellor and Yamada level 2.5 turbulence
closure. Snapshots (1,2,3 and 4) respectively taken on December 1, 1982 at
1h40 (falling tide, peak ebb velocity), 5h00 (end of falling tide, shortly before
tide reversal), 7h55 (rising tide, peak flood velocity) and 10h50 (end of rising
tide, shortly before tide reversal).
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P P

1 2

Figure 8: Position of the water column where temporal plots of velocity and eddy vis-
cosity are studied. P is located on the perimeter of the eddy at falling tide.
Snapshots (1,2) taken respectively on December 1, 1982 at 1h40 (falling tide,
peak ebb velocity) and 5h00 (end of falling tide, shortly before tide reversal).

Figure 9: Temporal evolution of the eddy viscosity at a depth of 90% near the bottom
and at P position. Comparison between the Mellor and Yamada level 2.5 tur-
bulence closure and the simple turbulence closure (Fisher) with δ = 1. Times
(1,2,3 and 4) correspond respectively to December 1, 1982 at 1h40 (falling tide,
peak ebb velocity), 5h00 (end of falling tide, shortly before tide reversal), 7h55
(rising tide, peak flood velocity) and 10h50 (end of rising tide, shortly before
tide reversal).
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Figure 10: Temporal evolution of the bottom velocity at P position. Comparison be-
tween the Mellor and Yamada level 2.5 turbulence closure and the simple
turbulence closure (Fisher) with δ = 1. Times (1,2,3 and 4) correspond re-
spectively to December 1, 1982 at 1h40 (falling tide, peak ebb velocity), 5h00
(end of falling tide, shortly before tide reversal), 7h55 (rising tide, peak flood
velocity) and 10h50 (end of rising tide, shortly before tide reversal).

eddy viscosity coefficient with the MY25 model is smaller or larger than that
computed by the simple closure. Figure 10 shows the bottom velocity in the y
direction at P using both closures. The velocity in the y direction was chosen
in lieu of the norm of the velocity in order to clearly distinguish between ris-
ing and falling tides. Moreover, the velocity in the y direction corresponds to
the main component of the three-dimensional velocity during the simulation.
The interesting time intervals for the study of upwelling in Figure 10 and 9 are
situated in the proximity of times (1) and (2). At times (3) and (4), location P is
situated upstream of the island where there is neither eddies nor upwelling.

The effects of the MY25 closure in the A intervals are explained in Figure
11. In these zones, we have less mixing with the MY25 model yielding a larger
vertical shear in the horizontal velocity. Then, the accelerations near the bot-
tom are smaller with the MY25 closure, whereas the decelerations are larger;
i.e. the bottom velocity tends to be lower with the MY25 closure. This is visible
in Figure 10, mainly in (A-2) and (A-4) intervals.

Over the B intervals (Figure 11), the opposite behaviour is expected (i.e.
the bottom velocity tends to be greater with the MY25 closure). In Figure 10, it
is difficult to observe such a tendency. There are three possible reasons for this.
First, the bottom velocity is so small in these regions, that the bottom friction
has a very limited effect. Second, there is a time lag between the variations of
the vertical eddy viscosity and their effect on the velocity. Third, the differ-
ence in the vertical eddy viscosity between both closures remain quite limited
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Figure 11: Effects on the bottom velocity due to the MY25 model.

in these intervals (except in (B-3) where we can better observe the expected
tendency).

The influence of the turbulence closure on the bottom velocity causes dif-
ferences in the upwelling velocity. As the A intervals are dominant in this
case, the bottom velocity is generally lower with the MY25 model. This leads
to a greater vertical gradient of velocity and a more intense upwelling with
the MY25 model, which can be seen by comparing Figure 6 and Figure 7.

Vertical profiles of the vertical eddy viscosity are shown in Figure 12 at the
four different times. The profiles are very similar for the two models. They
have the same parabolic shape, but the maximum value of the eddy viscos-
ity on the water column is different. The difference between both closures is
mainly related to the time lag and the generally larger values of the eddy vis-
cosity coefficient for the simple closure model. These two factors influence the
difference between the profiles.

To isolate the hysteresis effect, one can fix the eddy viscosity coefficient,
averaged over the whole spatial and temporal domains, at the same value
for the two methods. Doing so, only the hysteresis phenomena will have an
effect in the comparison between both closures. This correction was made by
multiplying the eddy viscosity coefficient field obtained with the MY25 model
by a constant value in order to make its mean value equal to the mean eddy
viscosity obtained with the simple closure model with δ = 1.

Results obtained with the MY25 modified closure are shown in Figure 13.
We see that, for snapshots 1, 2 and 3, the upwelling velocity increases with the
MY25 modified closure in comparison with the simple closure model. How-
ever, at snapshot (4) at the end of rising tide, values of upwelling velocity are
smaller with the MY25 modified model. This can be explained in Figure 14
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Figure 12: Vertical profile of vertical eddy viscosity at P position. Comparison between
the Mellor and Yamada level 2.5 turbulence closure and the simple turbu-
lence closure (Fisher) with δ = 1. Snapshots (1,2,3 and 4) respectively taken
on December 1, 1982 at 1h40 (falling tide, peak ebb velocity), 5h00 (end of
falling tide, shortly before tide reversal), 7h55 (rising tide, peak flood veloc-
ity) and 10h50 (end of rising tide, shortly before tide reversal).

showing the temporal evolution of the vertical eddy viscosity coefficient at P
and at a depth of 90% near the bottom. We can see that the only effect is the
time lag. The MY25 modified closure responds with a delay compared with
the simple closure. The consequence is that, at the beginning of the tides (A
intervals), the MY25 modified closure gives less mixing than the simple clo-
sure model. The upwelling at these times tends to be more important for the
MY25 modified closure. However, before tide reversal (B intervals), the MY25
modified closure gives more mixing than the simple closure model. This is
particularly visible at snapshot (4). At this moment, the upwelling velocity is
less important compared with the simple closure model.

The time lag effect can cause differences in the upwelling velocity, but since
these differences can be positive or negative, they do not necessarily lead to a
global increase or decrease in upwelling. This time lag may be substantial and
can reach up to one hour.

6 Discussion

To see if the predicted upwelling would be sufficient to carry the sediments
from the sea bed to the sea surface within an eddy, the upwelling velocity can
be time-integrated during the course of a tidal cycle. This integration yields
what we will define as an upwelling height, and takes into account both up-
welling and downwelling that can occur during the integration period. This
integration was carried out at a location (noted Q in Figure 15), situated in
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Figure 13: Upwelling velocity at mid-depth for the fine mesh, using the Mellor and
Yamada level 2.5 turbulence closure with modified vertical eddy viscosity
in order to have the same mean value than using the simple turbulence clo-
sure. Snapshots (1,2,3 and 4) respectively taken on December 1, 1982 at 1h40
(falling tide, peak ebb velocity), 5h00 (end of falling tide, shortly before tide
reversal), 7h55 (rising tide, peak flood velocity) and 10h50 (end of rising
tide, shortly before tide reversal).
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Figure 14: Temporal evolution of the eddy viscosity at a depth of 90% near the bot-
tom and at P position. Comparison between the Mellor and Yamada level
2.5 turbulence closure with a multiplicative factor for νv and the simple tur-
bulence closure (Fisher) with δ = 1. Times (1,2,3 and 4) correspond respec-
tively to December 1, 1982 at 1h40 (falling tide, peak ebb velocity), 5h00 (end
of falling tide, shortly before tide reversal), 7h55 (rising tide, peak flood ve-
locity) and 10h50 (end of rising tide, shortly before tide reversal).

Figure 15: Position of the water column where the upwelling velocity is time-
integrated over a tide period. Snapshot taken on December 1, 1982 at 5h00
(end of falling tide, shortly before tide reversal) with the Mellor and Yamada
level 2.5 turbulence closure.
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Turbulence model Upwelling height [m]
Simple closure, δ = 0.6 11.5
Simple closure, δ = 1 19.6

MY25 modified 24.6
MY25 30.1

Table 1: Time-integration over a tide period of the upwelling velocity at mid-depth on
Q position. Integration started on December 1, 1982 at 0h55 and ended at 7h05,
the same day.

a high upwelling zone at falling tide. The results of the time integration of
the upwelling velocities are shown on Table 1. As the depth at Q is about
25 m, we can reasonably assume that only the MY25 and the MY25 modified
closures will be able to account for the vertical transport throughout the wa-
ter column during the period considered. However, this diagnosis is based
on restrictive hypotheses. First, we use the upwelling velocity at mid-depth
where it typically reaches its maximum value. Second, the integration of the
upwelling velocity does not take into account the horizontal transport. By re-
sorting to the theory of the age (Delhez et al., 1999; Deleersnijder et al., 2001),
the study by White and Deleersnijder (2006) showed that horizontal transport
could be crucial in explaining upwelling mechanisms. Nevertheless, the time
integration of the upwelling velocity can give a good idea of the capacity of
the vertical flow to carry the sediments to the sea surface within eddies.

It is often assumed that the characteristic time is much larger for the ad-
vection of turbulence variables than for the production/destruction terms. If
so, the advection term can be regarded as negligible. At smaller scales, this
term could be more important, particularly for complex bathymetries. There
we study the influence of the advection term of turbulence variables upon the
upwelling velocity. Figure 16 shows the upwelling velocity at four different
times, obtained from the simulation using the MY25 closure with advection
of turbulence variables. The simulations are performed with the coarse mesh.
In comparison with Figure 7, we can see that advection of turbulence vari-
ables has a small influence on the results. This can be understood with an
order of magnitude analysis of the different terms influencing the evolution
of the turbulent kinetic energy. The simulation results show that the advec-
tion has an influence that is on average 10 times less important than the pro-
duction/destruction terms. Vertical diffusion is almost of the same order of
magnitude as the production/destruction term. In the context of Rattray Is-
land and similar problems, the advection of turbulence variables has a limited
effect and can be neglected. It might, however, be important in other configu-
rations, especially for flow characterised by smaller horizontal scales.
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Figure 16: Upwelling velocity at mid-depth for the coarse mesh, using the Mellor and
Yamada level 2.5 turbulence closure with advection of turbulence variables.
Snapshots (1,2,3 and 4) respectively taken on December 1, 1982 at 1h40
(falling tide, peak ebb velocity), 5h00 (end of falling tide, shortly before tide
reversal), 7h55 (rising tide, peak flood velocity) and 10h50 (end of rising
tide, shortly before tide reversal).
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7 Conclusion

In this work, a Mellor and Yamada level 2.5 (MY25) turbulence closure was im-
plemented in a three-dimensional finite element hydrodynamic marine model.
Simulations were performed around Rattray Island, in order to estimate the
effect of the turbulence closure on the upwelling velocity in the wake of the
island.

The upwelling velocity is significantly altered when using the MY25 clo-
sure instead of a simple algebraic closure. This difference is mostly caused
by two factors. First, the vertical eddy viscosity is, on average, smaller with
MY25. This leads to less mixing and a larger vertical shear in the horizontal
velocity at the bottom. As a consequence, this tends to increase upwelling in
the centre of the eddies. The second reason is that the MY25 closure takes into
account the hysteresis effect on turbulence variables. This hysteresis effect in-
duces a delay in the variation of turbulence variables, which has an influence
on the upwelling velocity. This influence can, depending on the situation, in-
crease or decrease the upwelling. The shape of the vertical profiles of eddy
viscosity are quite similar with both closures.

The MY25 closure gives sufficient upwelling in the wake of the island to
reasonably explain the transport of sediments from the sea bottom to the sea
surface. This is not the case with the model using the simple turbulence clo-
sure. However, a diagnosis based on the age (White and Deleersnijder, 2006)
accounted for the presence of mud at the surface via intense upwelling off the
tips of the island. The high turbidity downstream of the island is possibly
due to the combination of upwelling in the centre of the eddies and vertical
transport near the tips of the island.

A simulation was performed with advection of turbulence variables in or-
der to estimate its effect on smaller scale. In the case of the tidal circulation
around a shallow-water island, the effect of advection of turbulence variables
is relatively small and can be neglected. This conclusion was confirmed by
an analysis of orders of magnitude carried out on the turbulent kinetic energy
equation.

The Mellor and Yamada level 2.5 turbulence closure improves the model in
its ability to predict upwelling. The sophistication level of MY25 is not manda-
tory for a non-stratified problem such as Rattray Island, yet it brings to light
phenomena that are simply absent when using a simple algebraic closure.
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4.2 Comments on the publication

The original paper from Mellor and Yamada (1982) suggests to use a Dirichlet
boundary condition for the turbulence energy scale q2 at the sea surface and
at the sea bottom:

q2 = B
2/3
1 u2

∗. (4.11)

In the absence of wind, the surface friction velocity u∗ =
√
τ/ρ vanishes be-

cause the surface stress τ is nil. The resulting zero turbulent kinetic energy at
the sea surface does not represent a physical behaviour, and a Neumann-type
boundary leads to more accurate results (Burchard, 2002a). In order to avoid a
zero turbulent kinetic energy at the sea surface, a no-flux boundary condition
for q2 is typically used

∂q2

∂z
= 0. (4.12)

Such a condition may lead to more realistic results and should have been con-
sidered in the study. If so, there would have been no need to chose δ = 1 as a
parameter in the turbulence closure (7) suggested by Fisher et al. (1979).

The Mellor and Yamada (1982) turbulence closure model is quite old, but
it is still used in many realistic simulations. Its study is then still of interests
because of its availability in popular marine model. However, more recent
approaches may provide a better representation of the turbulence.





Conclusions and perspectives

The first objective of this work was to build a three-dimensional unstructured
finite-element marine model that uses suitable numerical methods, in order
to obtain the most accurate representation of physical phenomena. Based
upon the Discontinuous Galerkin method, the model was designed to be sta-
ble and introduce few numerical diffusion. Its stabilization relies on interface
fluxes only and the treatment of closed and bottom boundaries produces non-
oscillating solutions without adding any explicit diffusion.

The model was applied to different baroclinic benchmarks, showing that
it was able to reproduce the qualitative behaviour of physical phenomena
in typical ocean test cases. These applications are however not sufficient to
validate the model quantitatively. Deeper diagnostics need to be performed
on various benchmarks, and intercomparisons with other models should be
done.

The current structure of the model, still in development, is presented in the
first chapter. As it is continuously evolving, the formulation is not definitively
set and the present conclusion is probably already out of date; but its main
characteristics should not change. Among them, the core features making
the model computationnaly efficient and scaling on large parallel clusters will
eventually be preserved:

• Unstructured prismatic three-dimensional meshes.

• Discontinuous Galerkin method with explicit treatment of horizontal
advection and diffusion to allow independent block systems associated
to columns of prisms.

• Implicit/explicit Runge-Kutta time discretization, with an implicit treat-
ment of vertical processes, gravity waves and coriolis

• Mode splitting technique in which two-dimensional and
three-dimensional operators are computed only once.

Some components may be subject to modifications or improvements. To
compute the fluxes at the interfaces between elements, we rely on Riemann
solvers derived from the two-dimensional shallow-water equations (Comblen
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et al., 2009b). However, it is not clear if a baroclinic component should be in-
cluded in the formulation. More sophisticated expressions of the interface
fluxes may improve the simulation of baroclinic flows. Another choice to be
investigated is the specific treatment of lateral and bottom boundaries. It pro-
vides a new alternative to model consistent and conservative closed bound-
aries without adding diffusion in the momentum equations. However, further
studies should confirm that this treatment produces a physically acceptable
behaviour. In particular, it should be confirmed that the vertical transport of
tracers induced at the lateral closed boundaries is acceptable. This solution
should be compared with classical ones such as limiting or increased viscos-
ity.

To evolve into a global ocean model, many improvements need to be de-
veloped in the code. In the perspective of the research for a stable and accurate
formulation, the code has been made very flexible, sometimes at the expense
of efficiency. After that exploratory work, further optimisations are needed
to efficiently take advantage of the numerical scheme and allow fast simula-
tions of multiscale realistic cases. For a complete validation, the model must
be applied to realistic baroclinic applications, first at the regional scale. An in-
teresting application is the simulation of the flow in the Northwest European
Continental Shelf Sea. Unstructured grid abilities can be used by performing
a mesh refinement in the vicinity and inside the main estuaries. It is then a
good application to evaluate a multiscale model. Two-dimensional and three-
dimensional diagnostics can validate that the model predicts the correct water
properties: the tidal residual flow, the presence or absence of stratification and
the dispersion of freshwater injected by the rivers. Simulations of the global
ocean require additional components to be added to the model. Computations
on the sphere were made possible through the work of Comblen et al. (2008)
that is already implemented in the code. The different vertical coordinates sys-
tems have to be toroughly validated in order to be able to really conclude that
shaved cells are the most appropriate choice. Then, a long period of param-
eterisation tuning is needed before obtaining global ocean three-dimensional
results fitting the main aspects of the global circulation.

When the model will be able to reproduce the global circulation, additional
components will have to be considered. Mesh adaptation can be implemented
using the MAdLib library, developed at the UCL1. It is open source and sup-
ports mesh adaptation on the sphere. When making use of mesh adaptation,
attention must be paid to the interpolation of variables between meshes that
must conserve mass and tracers. High-order computations should be investi-
gated. They fit in the framework of the Discontinuous Galerkin method and
seem promising for ocean modelling (Bernard et al., 2005). Technically, high-
order elements are already implemented in the code. A major adaptation to
work on is the use a high-order description of the boundaries, needed for such
methods (Bernard et al., 2008b).

1MAdLib: an open source Mesh Adaptation Library (http://sites.uclouvain.be/
madlib)
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Fulfilling the objective of building a finite-element marine model, some
issues related to unresolved physics were addressed. A part of this work is
dedicated to this topic. Three types of phenomena, unresolved in most of the
models, are considered:

• Phenomena related to boundaries, called boundary layers

• Phenomena whose spatial dimension is higher than the model dimen-
sion

• Small-scale phenomena, not necessarily related to boundaries, which are
smaller than the grid size

Numerical techniques were developed in this work to efficiently capture some
unresolved phenomena while ensuring stability.

The extended finite element method is very powerful to represent some
boundary layers. Its application to the logarithmic bottom and the residence
time boundary layers showed that the latter can be resolved up to a high de-
gree of precision without refinement of the mesh, simply by taking into ac-
count the behaviour of an idealised solution in the choice of the shape func-
tions. However, the interest of this method in most geophysical models is
limited, as the complete description of subgrid scale phenomena is generally
not of interest for the modeller. The advantages of the extended finite element
method for boundary layers (i.e. the explicit representation of the bound-
ary layer) may not worth the extra complexity in the implementation of the
method. Making use of parameterisations is often much more simple, par-
ticularly in two-dimensional and three-dimensional models, and is generally
sufficient. This exploratory work opens new perspectives about the use of the
extended finite elements method for computational fluid dynamics, but is not
necessary to be applied to geophysical flows models.

Consequently, we relied on a parameterisation to capture the boundary
layer of the residence time appearing at inflow open boundaries when the
Peclet number is high. This parameterisation was developed upon an ide-
alised one-dimensional stationary solution. Its use for the computation of
the residence time in the Scheldt Estuary showed that it is applicable to two-
dimensional realistic domains. A three-dimensional generalisation should be
straightforward. In order to simulate the residence time in the Scheldt Estu-
ary using a two-dimensional finite element model, some work was done to
preserve spatial and temporal consistency for finite element backward simu-
lations. Using the techniques developed in this work, it is now relatively easy
to perform finite element computations of the residence time using the adjoint
method of Delhez et al. (2004) which, to the best of our knowledge, was never
done in the past. These developments can be of great use for physical stud-
ies as they combine the advantages of a full spatial and temporal description
of the residence time field with the multiscale abilities of the finite element
method.
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The parameterisation of the horizontal density gradient in a
one-dimensional model was investigated to prevent the model to generate
unrealistic under- and over-shoots of density. When the one-dimensional ap-
proximation is valid, the use of simple column models is interesting to get
a quick overview of the main aspects of the flow. One-dimensional mod-
els are however not able to represent some phenomena which are typically
two- or three-dimensional and can have a strong influence on marine sys-
tems. Three dimensional models may be needed when the behaviour of the
system can not be predicted by means of a lower dimension model, or to val-
idate the one-dimensional approximation. Used to limit the stratification in
a one-dimensional model, the mathematical method we had recourse to for
establishing the properties of the new parameterisation of horizontal salinity
gradient may be applied to a wide range of partial differential problems in
order to derive a priori upper or lower bounds of their solution.

The last chapter of this work is dedicated to the effect of the turbulence
closure scheme on the simulation of the flow in the wake of a shallow-water
island. This study clearly shows that the turbulence closure scheme has a sig-
nificant influence on the simulation of the flow, as the model using the Mellor
and Yamada level 2.5 turbulence closure was able to explain physical obser-
vations (i.e. the transport of bed sediments to the sea surface) which were not
in accordance with previous studies using simpler turbulence closures. This
highlights the critical importance of the turbulence closures, and more gener-
ally parameterisations in geophysical models. Various configurations usually
require different parameterisations and the choice of the latter must be made
with care. Furthermore, the use of a multiscale model implies that the param-
eterisations may differ regarding the location in the computational domain, as
the resolution and involved physics are different from an area to another. In a
global scale model, several parameterisations are needed, related to the high
number of unresolved phenomena from small scale turbulence to mesoscale
eddies; and a consequent work must be done to use the appropriate parame-
terisation where it is required.

In the framework of a three-dimensional finite element baroclinic model,
various numerical aspects related to geophysical flows in general were tackled
in this thesis. The model developed in this work confirms that the Discontin-
uous Galerkin method can be efficiently applied to marine modelling. Even
though global ocean applications need additional components, the dynamical
core of the model is ready for such simulations. This thesis is a contribution
to the development of the SLIM2 model and a step towards Discontinuous
Galerkin global multiscale simulations.

2Second-generation Louvain-la-Neuve Ice-ocean model (http://www.climate.be/SLIM)



Appendix A

Complementary material to
Chapter 1

Depth-integrating three-dimensional equations

In section 1.2.1, depth-integration of the momentum equation is performed
by summing the lines and columns of the three-dimensional discrete system
matrix and vector whose corresponding nodes share the same vertical. This
property is demonstrated in this section.

Any term of the hydrodynamic equations can be written, after a short de-
velopment, in a generic form:(

1 + α

(
∂pu

∂ap
− 1
))

f(x, z, u), (A-1)

where ∂pu
∂ap represents the p − th derivative of the unknown u regard to a, the

latter being either the horizontal or vertical coordinate (i.e. x or z). The linear
dependency of the term is expressed byαwhich is 1 when the term has a linear
implicit dependence to u and 0 if it is not the case. The function f(x, z, u) is
related to any nonlinear/explicit dependency. As a simplification, u is a scalar
and the horizontal direction y was dropped to work only in the x− z plane.

The discrete formulation of this term reads

Ne∑
e=1

N∑
j=1

< Φi

(
1 + α

(
∂pΦj
∂ap

uj − 1
))

f(x, z, u) >Ωe for i = 1→ N, (A-2)

where N is the total number of nodes. In a finite-element code, the linear
system of equations is usually written in a matrix form A · U = B, where the
unknown degrees of freedom uj are located in the vector U . The terms with an
implicit linear dependency are stored in the matrix A and their contribution
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Figure A-1: Indices corresponding to the nodal discrete values. The global indices
i(k,m) and j(k,m) are a function of the horizontal position and the verti-
cal position.

at indices (i, j) is:

A(i, j) = α

Ne∑
e=1

< Φi
∂pΦj
∂ap

f(x, z, u) >Ωe (A-3)

The terms without implicit linear dependency are stored in the vector B and
their contribution at index (i) is:

B(i) = (α− 1)
Ne∑
e=1

< Φif(x, z, u) >Ωe
(A-4)

We can express the indices i and j in terms of horizontal indices k and l and
vertical indices m and n (Figure A-1), leading to

A
(
i(k,m), j(l, n)

)
= α

Ne∑
e=1

< Φi(k,m)

∂pΦj(l,n)

∂ap
f(x, z, u) >Ωe (A-5)

and

B
(
i(k,m)

)
= (α− 1)

Ne∑
e=1

< Φi(k,m)f(x, z, u) >Ωe
(A-6)

As specified in Section 1.3.2, if the term contains any spatial derivative, it
needs to be integrated by parts. The different possibilities will now be treated
separately.

1 The term is not integrated by parts

The term can then be simplified, as it does not deal with spatial derivation.
If the term has a linear dependency to u, its contribution to the matrix A at
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indices (i, j) is:

A
(
i(k,m), j(l, n)

)
= α

Ne∑
e=1

< Φi(k,m)Φj(l,n)f(x, z, u) >Ωe
. (A-7)

The depth-integrated term is obtained by summing the rows and columns
which correspond to the same horizontal index (i.e. corresponding to degrees
of freedom which are located on the same vertical) in the matrix of the linear
system of equations, leading to a new matrix A.

A(k, l) = α

Ne∑
e=1

Nv∑
m=1

Nv∑
n=1

< Φi(k,m)Φj(l,n)f(x, z, u) >Ωe

= α

Ne∑
e=1

<

Nv∑
m=1

Φi(k,m)

Nv∑
n=1

Φj(l,n)f(x, z, u) >Ωe
. (A-8)

If we define

Φk =
∑Nv

m=1 Φi(k,m),
Φl =

∑Nv

n=1 Φl(l,n),

which is supposed to be constant over the vertical, the contribution of the term
in the matrix A reads

A(k, l) = α

Ne∑
e=1

< Φk Φlf(x, z, u) >Ωe

= α

Nc∑
c=1

� Φk
∫
V

Φlf(x, z, u) dz �∆c , (A-9)

where c is associated with the Nc two-dimensional elements (i.e . triangles)
corresponding to a stacked column of three-dimensional elements. If the term
has no implicit linear dependence, the same operations can be done by sum-
ming the rows of the vector B over the index m to obtain the contribution

B(k) = (α− 1)
Nc∑
c=1

� Φk
∫
V

f(x, z, u) dz �∆c
. (A-10)

By using the reverse development than the one leading from (A-1) to (A-4),
we obtain the generic continuous term∫

V

(1 + α (u− 1)) f(x, z, u) dz, (A-11)

where u ' uh =
∑
l ΦlU l. For a term without spatial derivatives, (A-11)

correspond to the depth-integrated version of (A-1).
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2 The term is integrated by part

We first consider that the integration by part is related to a spatial derivation
of the linear implicit term. Then, the contribution of the term in the matrix A
at indices (i, j) is

A
(
i(k,m), j(l, n)

)
= α

Ne∑
e=1

[
− <

∂Φi(k,m)f(x, z, u)
∂a

∂(p−1)Φj(l,n)

∂a(p−1)
>Ωe

+� Φi(k,m)

∂(p−1)Φj(l,n)

∂a(p−1)
f∗(x, z, u)na �∂Ωe

]
, (A-12)

where f∗(x, z, u) is a uniquely defined value at the interface between two el-
ements. It is still possible to sum the rows and columns of A over the indices
m and n to obtain

A
(
k, l
)

= α

Ne∑
e=1

[
− < ∂Φkf(x, z, u)

∂a

∂(p−1)Φl
∂a(p−1)

>Ωe

+� Φk
∂(p−1)Φl
∂a(p−1)

f∗(x, z, u)na �∂Ωe

]
. (A-13)

Some integrals may vanish depending if the spatial derivation operator is hor-
izontal or vertical. By reverting the integral by part, the contribution of the
term reads

A
(
k, l
)

= α

Ne∑
e=1

< Φk
∂pΦl
∂ap

f(x, z, u) >Ωe
=

α

Nc∑
c=1

� Φk
∫
V

∂pΦl
∂ap

f(x, z, u) dz �∆c . (A-14)

Relation (A-14) can be obtained by the same method if the integration by part
is related to a spatial derivation of the nonlinear/explicit term f(x, z, u). If
there is no linear implicit dependency, the contribution to the right hand side
vector at index (k) will be

B(k) = (α− 1)
Nc∑
c=1

� Φk
∫
V

f(x, z, u) dz �∆c
. (A-15)

We can then come back to the generic continuous term∫
V

(
1 + α

(
∂pu

∂ap
− 1
))

f(x, z, u) dz, (A-16)

which is the depth-integrated version of (A-1).
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Numerical models are very helpful to understand the behaviour of the marine system. 
Ocean models have been developed for more than forty years, and their design is 
an area of active research. If the representation of the physics has been highly 
improved, the fundamental numerical technique has not evolved: they still use the 
finite difference method on structured grids. Recent efforts focus on developing 
the new generation of ocean models, taking advantage of the potential of modern 
numerical methods. Based on unstructured grids, such models allow to faithfully 
represent complex topographic features such as the coastlines, narrow straits and 
islands. The mesh resolution can be refined locally in regions of interest or where 
the dynamics is more demanding.

This PhD dissertation focuses on the development of a three-dimensional baroclinic 
marine model using the Discontinuous Galerkin finite element method. The model is 
described, with some results of baroclinic simulations. The rest of the thesis is devoted 
to different types of unresolved physics. Two different boundary layers are introduced: 
the bottom velocity boundary layer and the boundary layer of the residence time. 
Both parameterisation and representation using the extended finite element method 
are discussed. A chapter is dedicated to the treatment of the horizontal density 
gradient in baroclinic column models.  Attention is paid to the stability of the method 
under different configurations. Then, the turbulence modelling in three-dimensional 
models is studied by comparing the effect of different turbulence closure models on 
a simulation of the flow around a shallow-water island.
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