
1

Automatic Performance Estimation for
Decentralized Optimization

Sébastien Colla and Julien M. Hendrickx

Abstract— We present a methodology to automatically
compute worst-case performance bounds for a large class
of first-order decentralized optimization algorithms. These
algorithms aim at minimizing the average of local functions
that are distributed across a network of agents. They typ-
ically combine local computations and consensus steps.
Our methodology is based on the approach of Performance
Estimation Problem (PEP), which allows computing the
worst-case performance and a worst-case instance of first-
order optimization algorithms by solving an SDP. We pro-
pose two ways of representing consensus steps in PEPs,
which allow writing and solving PEPs for decentralized
optimization. The first formulation is exact but specific
to a given averaging matrix. The second formulation is
a relaxation but provides guarantees valid over an entire
class of averaging matrices, characterized by their spectral
range. This formulation often allows recovering a posteriori
the worst possible averaging matrix for the given algorithm.
We apply our methodology to three different decentralized
methods. For each of them, we obtain numerically tight
worst-case performance bounds that significantly improve
on the existing ones, as well as insights about the parame-
ters tuning and the worst communication networks.

Index Terms— Consensus, Distributed optimization,
Rates of convergence, Worst-case analysis, Performance
estimation problem.

I. INTRODUCTION

THE goal of this paper is to develop a methodology that
automatically provides numerically tight performance

bounds for first-order decentralized methods on convex func-
tions and to demonstrate its usefulness on different existing
methods. Decentralized optimization has received an increas-
ing attention due to its useful applications in large-scale
machine learning and sensor networks, see e.g. [1] for a survey.
In decentralized methods for separable objective functions, we
consider a set of agents {1, . . . , N}, working together to solve
the following optimization problem:

minimize
x ∈ Rd

f(x) =
1

N

N∑
i=1

fi(x), (1)

where fi : Rd → R is the private function locally held by
agent i. To achieve this goal, each agent i holds its own

S. Colla and J. M. Hendrickx are with the ICTEAM insti-
tute, UCLouvain, Louvain-la-Neuve, Belgium. S. Colla is supported
by the French Community of Belgium through a FRIA fellow-
ship (F.R.S.-FNRS). J. M. Hendrickx is supported by the “Re-
vealFlight” Concerted Research Action (ARC) of the Federation
Wallonie-Bruxelles and by the Incentive Grant for Scientific Re-
search (MIS) “Learning from Pairwise Comparisons” of the F.R.S.-
FNRS. Email addresses: sebastien.colla@uclouvain.be,
julien.hendrickx@uclouvain.be

version xi of the decision variable x ∈ Rd. Agents perform
local computations and exchange local information with their
neighbors to come to an agreement on the minimizer x∗ of
the global function f . Exchanges of information often take the
form of an average consensus step on some quantity, e.g., on
the xi. This corresponds to a multiplication by an averaging
matrix W ∈ RN×N , typically assumed symmetric and doubly
stochastic, i.e., a nonnegative matrix whose rows and columns
sum to one. This matrix W indicates both the topology of the
network of agents and the weights they are using during the
average consensus. Therefore, we call it network or averaging
matrix, without distinction.

One of the simplest decentralized optimization method is
the distributed (sub)gradient descent (DGD) [2] where agents
successively perform an average consensus step (2) and a local
gradient step (3):

yki =

N∑
j=1

wijx
k
j , (2)

xk+1
i = yki − αk∇fi(xki), (3)

for step-sizes αk > 0. Numerous other methods rely on the
interplay of gradient and average consensus steps, such as
EXTRA [3], DIGing [4], and NIDS [5]. The convergence
results of DIGing holds for time-varying network matrices
and the algorithm can also be extended to handle directed
communications [4]. Different other algorithms can handle
directed communications [6], [7]. There also are accelerated
decentralized methods, such as the accelerated distributed
Nesterov gradient descent (Acc-DNGD) [8].
Furthermore, average consensus is used in different distributed
primal dual methods such as DDA [9], MSDA [10] or MSPD
[11], though not directly in all, e.g., D-ADMM [12], [13].

We note in particular recent results have reached optimal
performance for certain specific performance criteria and
classes of functions [14], [11]. However, many questions
and challenges remain open in the design and analysis of
decentralized optimization method. For further information on
the topic, we refer the reader to the introduction of this recent
thesis [15] in the field.

The quality of an optimization method is often evaluated via
a worst-case guarantee. Having accurate performance bounds
for a decentralized algorithm is important to correctly under-
stand the impact of its parameters and the network topology on
its performance and to compare it fairly with other algorithms.
However, obtaining these guarantees using theoretical proofs
can often be a challenging task, requiring combining the
impact of the optimization component and the interconnection

2

network, sometimes resulting in bounds that are conservative
or overly complex. For example, we will show in Section IV
that the existing performance bounds for DGD or DIGing are
significantly worse than the actual worst-cases.

A. Contributions
We propose a new analysis methodology allowing to com-

pute numerically tight worst-case performance bounds of de-
centralized optimization methods. This methodology is based
on an alternative computational approach that finds a worst-
case performance guarantee of an algorithm by solving an
optimization problem, known as the performance estimation
problem (PEP), see Section II for more details. The PEP ap-
proach has led to many results in centralized optimization, see
e.g. [16], [17], but it has never been exploited in decentralized
optimization. The current PEP framework lacks ways of rep-
resenting the communications between the agents. Therefore,
we propose two formulations of the average consensus steps
that can be embedded in a solvable PEP. Both formulations are
presented in Section III. The first one uses a given averaging
matrix W and is exact. It can be used in PEP with any matrix
W and leads to performance bounds that are tight, but specific
to the given matrix. However, these bounds are too specific to
understand the general behavior of the algorithm. Our second
formulation thus considers entire spectral classes of symmetric
matrices, as often found in the literature. This allows the PEP
problem to obtain spectral upper bounds on the performance
that are valid over an entire spectral class of network matrices
and to look for the worst matrix in the given class. Although
this formulation is a relaxation, we observe tight results in
most cases, see Section IV. This spectral formulation is our
main methodological contribution.

Using these two new formulations, the PEP approach can
be applied directly to a large class of first-order decentralized
algorithms, in a wide range of settings and problems. We
demonstrate these new formulations by analyzing the worst-
case performance of DGD [1], DIGing [4] and Acc-DNGD [8]
in Section IV. For all three algorithms, the spectral formulation
leads to tight spectral performance bounds and we observe
that these bounds are actually independent of the number of
agents N (when N ≥ 2). For DGD and DIGing, these spectral
bounds significantly improve on the existing theoretical ones.
For DIGing, we also show how to use the PEP approach
to obtain linear convergence rate guarantees on an infinite
horizon. For Acc-DNGD, we use our tool to analyze the
impact of the parameters and nuance the conjecture from [8]
about the asymptotic convergence rate O(1

K2), where K is the
total number of iterations.

One of the advantages of this new methodology is its great
flexibility, allowing to answer many different questions, for
example, by changing the class of functions or the performance
criterion. In future works, this tool can easily be used to
analyze the effect of inexact communications or gradient com-
putations. This methodology could also consider performance
criteria that not only account for efficiency but also robustness
against errors in gradient computations or communications in
order to help designing algorithms with the best efficiency-
robustness trade-off.

A preliminary version of these results was published in
[18]. Our main new contributions with respect to [18] are (i)
the proof of the necessary constraints used in our spectral
formulation for any dimension d of the variables xi ∈ Rd; (ii)
the technique to find the worst averaging matrix based on the
worst-case solutions of the spectral formulation; (iii) a wider
demonstration of the methodology by analyzing DIGing and
Acc-DNGD algorithms in addition of DGD.

B. Related work
An alternative approach with similar motivations for au-

tomated performance evaluation and inspired by dynamical
systems concepts is proposed in [19]. Integral quadratic con-
straints (IQC), usually used to obtain stability guarantees on
complex dynamical systems, are adapted to obtain sufficient
conditions for the convergence of optimization algorithms. It
provides infinite-horizon linear rates of convergence, based on
relatively small size problems, but it only applies when the
convergence is geometric. In comparison, the PEP approach
computes the worst-case performance on a finite horizon, and
therefore, the size of the problem grows with the limit of the
horizon. However, this allows PEP to analyze non-geometric
convergence and the impact of time-varying properties. Un-
like PEP, the IQC approach offers no a priori guarantee of
tightness, though it turns out to be tight in certain situations.

An application of the IQC methodology to decentralized
optimization is presented in [20] and is also exploited for
designing a new decentralized algorithm that achieves a faster
worst-case linear convergence rate in the smooth strongly
convex case. This IQC formulation uses problems whose size
is independent of the number of agents N and it considers a
fixed framework of decentralized algorithms that embeds a lot
of explicit first-order methods such as DIGing [4], EXTRA [3]
and NIDS [5]. This methodology cannot be directly applied to
DGD, nor to smooth convex functions or any other situation
that does not have a geometric convergence. Our PEP approach
applies directly to any decentralized method (implicit or ex-
plicit) that involves consensus steps in the form of a matrix
product, without the need to cast the method into a specific
framework. This makes PEP very modular and user-friendly,
in particular with the PESTO toolbox [21].

II. GENERAL PEP APPROACH

In principle, a tight performance bound on an algorithm
could be obtained by running it on every single instance - func-
tion and initial condition - allowed by the setting considered
and selecting the worst performance obtained. This would also
directly provide an example of “worst” instance if it exists. The
performance estimation problem (PEP) formulates this abstract
idea as a real optimization problem that maximizes the error
measure of the algorithm result, over all possible functions
and initial conditions allowed [22]. This optimization problem
is inherently infinite-dimensional, as it contains a continuous
function among its variables. Nevertheless, Taylor et al. have
shown [16], [17] that PEP can be solved exactly using an
SDP formulation, for a wide class of centralized first-order
algorithms and different classes of functions.

3

The main ingredients of a centralized PEP are: (i) a perfor-
mance measure P , e.g. f(xk)−f(x∗); (ii) a class of functions
F , e.g. the class Fµ,L of µ-strongly convex and L-smooth
functions; (iii) an optimization method M on class F ; (iv)
a set I0 of initial conditions, e.g. ‖x0 − x∗‖2 ≤ 1. These
ingredients are organized into an optimization problem as

sup
f,x0,...,xK ,x∗

P
(
f, x0, . . . , xK , x∗

)
(4)

s.t. f ∈ F , x∗ ∈ argmin f,

xk are iterates from method M applied on f ,
I0 holds.

To overcome the infinite dimension of variable f , the problem
can be discretized into {

(
xk, gk, fk

)
}k∈I , where gk and fk

are respectively the (sub)gradient and the function value of
f at point k and I = {0, . . . ,K, ∗}. Then, the constraint
f ∈ F is replaced by interpolation conditions ensuring that
there exists a function of class F which interpolates those
data points {

(
xk, gk, fk

)
}k∈I , i.e. these values are consistent

with an actual function. Such constraints are provided for
many different classes of functions in [17, Section 3]. They
are generally quadratics and potentially non-convex in the
iterates and the gradients vectors, but they are linear in the
scalar products of these and in the function values. The same
holds true for most classical performance criteria and initial
conditions. We can then consider these scalar products directly
as decision variables of the PEP. For this purpose, we define
a Gram matrix G that contains scalar products between all
vectors, e.g. the iterates xk ∈ Rd and subgradients gk ∈ Rd.

G = PTP, with P =
[
g0 . . . gKg∗x0 . . . xKx∗

]
.

By definition, G is symmetric and positive semidefinite. More-
over, to every matrix G � 0 corresponds a matrix P whose
has a number of rows equal to rank G. We can show (see
[17]) that the reformulation of (4) with G is lossless provided
that we do not impose the dimension d in (4), and indeed
look for the worst-case over all possible dimensions (imposing
the dimension would correspond to adding a typically less
tractable rank constraint on G). The idea is therefore to
formulate a PEP of the form of (4) as an equivalent positive
semidefinite program (SDP) using the Gram matrix G and the
vector of functional values fv = [fk]k∈I as variables.

This SDP formulation is convenient because it can be solved
numerically to global optimality, leading to a tight worst-case
bound, and it also provides the worst-case solution over all
possible problem dimensions. We refer the reader to [17] for
more details about the SDP formulation of PEP, including
ways of reducing the size of matrix G. However, the dimension
of G always depends on the number of iterations K. From
a solution G, fv of the SDP formulation, we can construct
a solution for the discretized variables {

(
xk, gk, fk

)
}k∈I ,

e.g. using the Cholesky decomposition of G. Since these
points satisfy sufficient interpolation constraints, we can also
construct a function from F interpolating these points.

Proposition 1 states sufficient conditions under which a
PEP in the form of (4) can be formulated as an SDP. These
conditions are satisfied in most PEP settings, allowing to
formulate and solve the SDP PEP formulation for a large class

of (implicit and explicit) first-order methods, with different
classes of functions and performance criteria, see [17]. The
proposition uses the following definition.

Definition 1 (Gram-representable [17]): Consider a Gram
matrix G and a vector fv , as defined above. We say that
a constraint or an objective is linearly (resp. LMI) Gram-
representable if it can be expressed using a finite set of linear
(resp. LMI) constraints involving (part of) G and fv .

Proposition 1 ([17, Proposition 2.6]): If the interpolation
constraints of the class of functions F , the satisfaction of
the method M, the performance measure P and the set of
constraints I, which includes the initial conditions, are linearly
(or LMI) Gram-representable, then, computing the worst-case
for criterion P of method M after K iterations on objective
functions in class F with constraints I can be formulated as
an SDP, with G � 0 and fv as variables.
This remains valid when the objective function is the sum of N
sub-functions being each in a class of functions with linearly
(or LMI) Gram representable interpolation constraints.

Remark: In [17], Definition 1 and Proposition 1 were only for-
mulated for linearly Gram-representable constraints, but their
extension to LMI Gram-representable constraints is direct.
Such constraints appear in the analysis of consensus steps with
spectral classes of network matrices.

PEP techniques allowed answering several important ques-
tions in optimization, see e.g. the list in [23], and to make
important progress in the tuning of certain algorithms in-
cluding the well-known centralized gradient-descent. It was
further exploited to design optimal first-order methods: OGM
for smooth convex optimization [24] and its extension ITEM
for smooth strongly convex optimization [25].

It can also be used to deduce proofs about the performance
of the algorithms [26]. It has been made widely accessible via
a Matlab [21] and Python [27] toolbox. However, PEPs have
never been used to study the performance of decentralized
methods.

III. REPRESENTING CONSENSUS STEPS IN PEP

The main missing block to develop a PEP formulation for
decentralized methods is to find a proper way of representing
the consensus steps of the methods in the SDP PEP. In PEP
for decentralized methods, we must find the worst-case for
each of the N local functions fi and the N sequences of
local iterates x0i . . . x

K
i (i = 1, . . . , N). The same techniques

as in Section II can be applied to discretize the problem,
using proper interpolation conditions on each local function.
We also want to use a Gram matrix of scalar products
to reformulate it as an SDP that can be solved efficiently.
Therefore, according to Proposition 1, we need to use linearly
Gram representable performance criteria, classes of functions
and initial conditions. Moreover, we also need to find a linearly
or LMI Gram-representable way of expressing the updates of
the decentralized method to be analyzed. There is currently no
representation of the consensus steps that can be embedded
in the SDP formulation. Therefore, the rest of this section
proposes ways to represent agent interactions in the SDP PEP

4

formulation and thus provides the missing block for analyzing
decentralized first-order optimization methods with PEP.

Agent interactions are part of any decentralized methods
and often take place via a weighted averaging, which can be
described as a consensus step of the following form, similar
to that used in DGD (2):

yi =

N∑
j=1

wijxj , for all i ∈ {1, . . . , N}, (5)

where xj can represent any vector in Rd held by agent j, e.g.,
its local iterates in the case of DGD or something else in more
advanced methods. Vector yi ∈ Rd is an auxiliary variable that
represents the result of the interaction and W ∈ RN×N is the
averaging matrix. This form of communication is used in many
decentralized methods such as DGD [2], DIGing [4], EXTRA
[3], NIDS [5] and the results presented in this section can be
exploited for all these methods.

When K different consensus steps are involved in the
algorithm, we observe that the Gram matrix G of all scalar
products contains the submatrix Gc:

Gc = PTc Pc, (6)

with Pc =
[
x00 . . . x

0
N . . . x

K
0 . . . xKN y00 . . . y

0
N . . . y

K
0 . . . yKN

]
.

We will see that the new constraints we propose to represent
the consensus steps are linearly or LMI Gram-representable in
Gc, and then also linearly or LMI Gram-representable in G.

A. Averaging matrix given a priori
When the averaging matrix is given a priori, the consensus

step (5) corresponds to a set of linear equality constraints on
yi and xj , which are equivalent to the constraints(
yi −

N∑
j=1

wijxj

)T(
yi −

N∑
j=1

wijxj

)
= 0, for i = 1, . . . , N .

These constraints only involve scalar products from Gc (6)
and are thus linearly Gram-representable. They can therefore
be used in the SDP formulation of a PEP, see Proposition 1.
Alternatively, linear equality constraints (5) can also be used to
substitute the values of yi in the problem, allowing to reduce
its size. This solution is also preferable for numerical reasons.
In any case, this allows writing PEPs that provide exact worst-
case performances for the given decentralized method and the
specific averaging matrix given a priori. We call this the exact
PEP formulation. It can be applied to any matrix W , and
not only for symmetric or doubly stochastic ones. This can
be useful for trying different network matrices and observing
their impact on the worst-case performance of the algorithm.
It will serve as an exact comparison baseline in the numerical
experiments of Section IV. The next section presents a way
of representing communications in PEP that allows obtaining
more general performance guarantees, valid over entire classes
of network matrices and not only for a specific one.

B. Averaging matrix as a variable
We now consider that the matrix W is not given a priori,

but is one of the decision variables of the performance

estimation problem with bounds on its possible eigenvalues.
Hence, the PEP also looks for the worst averaging matrix
among all the possible ones. Typically, the literature considers
matrices that are symmetric, doubly-stochastic and whose all
eigenvalues (except 1) are in a given range. We were unable to
represent this class of matrices in the SDP PEP formulation,
in particular the non-negativity assumption embedded in the
doubly stochasticity. Therefore, we will consider a slightly
more general class of matrices, where we relax this non-
negativity assumption.

Definition 2 (Generalized doubly stochastic matrix [28]):
A matrix W ∈ RN×N is generalized doubly stochastic if its
rows and columns sum to one, i.e., if

N∑
i=1

wij = 1,

N∑
i=1

wji = 1, for j = 1, . . . , N .

The resulting worst matrix of the PEP may thus have negative
elements. However, the provided worst-case guarantees are
also valid for non-negative matrices. Moreover, we note that
most results from the literature exploiting spectral information
of stochastic matrices do in fact not use the non-negativity of
W and are thus really about generalized stochastic matrices,
see e.g. [1], [3], [5]. We analyze the impact of this relaxation
in the case of DGD in Section IV-A.

Formally, the search space for W is restricted by the
following constraints, for each agent i ∈ {1, . . . , N} and each
consensus steps k ∈ {1, . . . ,K},

yki =

N∑
j=1

wijx
k
j , (7)

W ∈ W(λ−, λ+), (8)

whereW(λ−, λ+) is the set of real, symmetric and generalized
doubly stochastic N ×N matrices that have their eigenvalues
between λ− and λ+, except for λ1 = 1:

λ− ≤ λN ≤ · · · ≤ λ2 ≤ λ+ where λ−, λ+ ∈ (−1, 1) .

We do not have a direct way for representing constraints
(7) and (8) in an LMI Gram-representable manner that can be
embedded in an SDP PEP, hence we will use a relaxation of
these constraints that we will see in Section IV is often close to
tight. From constraints (7) and (8), we derive new necessary
conditions involving only variables yki and xki , allowing to
eliminate W from the problem. We also show that these
new constraints can be expressed in terms of Gc (6) and are
therefore Gram-representable.

Notations: Let xki , y
k
i ∈ Rd be the local variables of agent

i at iteration k of an algorithm. Let Xj , Y j ∈ RN×K be
matrices containing the jth component of each of these local
variables:

Xj
i,k = (xki)j and Y ji,k = (yki)j for

j=1,...,d
i=1,...,N
k=1,...,K

Each column corresponds thus to a different consensus step
k, and each row to a different agent i. Using this notation,
the consensus steps constraints (7) can simply be written as d
matrix equations: Y j =WXj for each j = 1, . . . , d.

5

Moreover, we can stack each Xj and Y j vertically in
matrices X,Y ∈ RNd×K , and write all the consensus steps
(7) with one matrix equation:Y

1

...
Y d

︸ ︷︷ ︸
Y

=

W 0
. . .

0 W

︸ ︷︷ ︸

W̃

X
1

...
Xd

︸ ︷︷ ︸
X

.

The matrix W̃ ∈ RNd×Nd is block-diagonal repeating d times
W and can be written as W̃ = (Id⊗W), where Id ∈ Rd×d is
the identity matrix and ⊗ denotes the Kronecker product. We
decompose matrices X and Y in average and centered parts:

X = (X ⊗ 1N) +X⊥, Y = (Y ⊗ 1N) + Y⊥,

where X and Y are agents average vectors in Rd×K , defined
as X ·k = 1

N

∑N
i=1 x

k
i , Y ·k = 1

N

∑N
i=1 y

k
i for k = 1, . . . ,K

and 1N = [1 . . . 1]
T ∈ RN . The centered matrices X⊥, Y⊥ ∈

RNd×K have by definition an agent average of zero for each
component and iteration: (Id ⊗ 1N)TX⊥ = 0d×K .

Gram-representable relaxation of (7) and (8):
Theorem 1 (Consensus Constraints): If Y j = WXj , for

every j = 1, . . . , d and for a same matrix W ∈ W(λ−, λ+),
i.e., if Y = (Id ⊗W)X , then

(i) The matrices XTY and XT
⊥Y⊥ are symmetric,

(ii) The following constraints are satisfied

X = Y , (9)

λ−XT
⊥X⊥ � XT

⊥Y⊥ � λ+XT
⊥X⊥, (10)

(Y⊥ − λ−X⊥)T (Y⊥ − λ+X⊥) � 0, (11)
where the notations � and � denote respectively positive
and negative semi-definiteness.

(iii) Constraints (9), (10), (11) are LMI Gram-representable.
Proof: First, we average elements from both sides of the

assumption Y j =WXj to obtain constraint (9):

Y j· =
1TY j

N
=

1TWXj

N
=

1TXj

N
= Xj· for j = 1, . . . , d

where 1TW = 1T follows from W being generalized doubly
stochastic, i.e., its rows and columns sum to one (see Defini-
tion 2).

In the sequel, we will consider all the components j at once,
and then we use the notation Y = W̃X , where W̃ = Id ⊗W
is in RNd×Nd. Since W̃ is a block-diagonal matrix repeating
d times W , if W ∈ W(λ−, λ+), then W̃ ∈ W(λ−, λ+).
The symmetry of the matrix XTY follows from the assump-
tion Y = W̃X , with W̃ symmetric. The same argument shows
the symmetry of XT

⊥Y⊥, because Y = W̃X and X = Y imply
Y⊥ = W̃X⊥.
Since the averaging matrix W̃ is real and symmetric, we
can take an orthonormal basis v1, . . . ,vNd of eigenvectors,
corresponding to real eigenvalues λ1 ≥ · · · ≥ λNd. Since
W̃ is composed of d diagonal blocks of the generalized
doubly stochastic matrix W , it has the same eigenvalues as
W but with a multiplicity d times larger for each of them.
Therefore, its largest eigenvalues are λj = 1 (j = 1, . . . , d)
and corresponds to the eigenvectors vj = [0 . . .1TN . . . 0]

T

where the position for 1N corresponds to the position of the

block j in W̃ . These eigenvectors can be written in matrix
form as V1,...,d = Id ⊗ 1N . By assumption, other eigenvalues
are such that

λ− ≤ λi ≤ λ+ for i = d+ 1, . . . , Nd, with λ−, λ+ ∈ (−1, 1).

Let us now consider a combination X⊥z of the columns
of the matrix X⊥, for an arbitrary z ∈ RK . It can be
decomposed in the eigenvector basis of W̃ , and used to
express the combination Y⊥z as well:

X⊥z =

Nd∑
i=d+1

γivi, and Y⊥z = W̃X⊥z =

Nd∑
i=d+1

γiλivi, (12)

where γi are real coefficients. These coefficients for v1, . . .,vd

are zero because X⊥z is orthogonal to these eigenvectors
associated with eigenvalue λj = 1. Indeed X⊥ is centered
with respect to the agents, for any component j or iteration k
and then we have

(Id ⊗ 1N)TX⊥ = V T1,...,dX⊥ = 0d×K .

Using the decomposition (12) to compute the scalar product
zTX⊥Y⊥z for any z ∈ RK leads to the following scalar
inequalities

zTXT
⊥Y⊥z =

Nd∑
i=d+1

γ2i λi ≥ λ−zTXT
⊥X⊥z,

≤ λ+zTXT
⊥X⊥z.

Having these inequalities satisfied for all z ∈ RK , is equivalent
to (10). In the same way, (11) is obtained by verifying that
the following inequality holds for all z ∈ RK :

(Y⊥z − λ−X⊥z)T (Y⊥z − λ+X⊥z) ≤ 0.

This can be done by substituting X⊥z and Y⊥z using equation
(12), and by using the bounds on λi (i = d+ 1, . . . , Nd).
Finally, we prove part (iii) of the theorem. Constraint (9) is
linearly (and thus also LMI) Gram-representable because it
can be expressed using only elements of Gc (6), i.e. scalar
product between xki and ykj ,(
1

N

∑
i

(
xki − yki

))T(1

N

∑
j

(
xkj − ykj

))
= 0 for k = 1, ...,K.

Constraints (10) and (11) are LMI Gram-representable because
they are LMIs whose entries can be defined using only the
entries of Gc, which is a submatrix of the full Gram matrix G
of scalar products. For example, the entry k, l of XT

⊥X⊥ can
be expressed as the scalar product of columns k and l of X⊥(
XT
⊥
)
k·(X⊥)·l =

N∑
i=1

(
xki −

1

N

∑
j

xkj

)T(
xli −

1

N

∑
j

xlj

)
.

Using Theorem 1, we can relax constraints (7) and (8) and
replace them by (9), (10) and (11), which are LMI Gram-
representable. Then, Proposition 1 allows to write a relaxed
SDP formulation of a PEP providing worst-case results valid
for the entire spectral class of matricesW(λ−, λ+). We call this
formulation the spectral PEP formulation and its results the
spectral worst-case. This SDP formulation has matrix G � 0

6

and vectors fi,v (i = 1, ..., N) as decision variables. The vector
fi,v contains the function values of fi at the different iterates
xki (k = 1, ...,K). The values in G correspond to the scalar
products of the iterates (xki , y

k
i) and the gradients (gki) of the

different agents.
When different averaging matrices are used for different

sets of consensus steps, the constraints from Theorem 1 can
be applied independently to each set of consensus steps.

Constraint (9) is related to the stochasticity of the averaging
matrix and imposes that variable x has the same agents average
as y, for each consensus step and for each component. Linear
matrix inequality constraints (10) and (11) imply in particular
scalar constraints for the diagonal elements. They correspond
to independent constraints for each consensus step, i.e., for
each column x⊥ and y⊥ of matrices X⊥, Y⊥:

λ−xT⊥x⊥ ≤ xT⊥y⊥ ≤ λ+xT⊥x⊥,
(y⊥ − λ−x⊥)T (y⊥ − λ+x⊥) ≤ 0.

These constraints imply in particular that

yT⊥y⊥ ≤ λ2max x
T
⊥x⊥, where λmax = max(|λ−|, |λ+|),

meaning that the disagreement between the agents, measured
by yT⊥y⊥ for y and xT⊥x⊥ for x, is reduced by a factor
λ2max ∈ [0, 1) after a consensus. But constraints (10) and (11)
also allow linking different consensus steps to each other, via
the impact of off-diagonal terms, in order to exploit the fact
that these steps use the same averaging matrix.
We can also interpret constraints (10) and (11) as a sum
over all the dimensions j = 1, . . . , d. Each term of this sum
corresponds to the same constraint expression as (10) and (11),
but applied only to Xj

⊥ and Y j⊥ ∈ RN×K . Indeed, any product
involving X⊥ or Y⊥ ∈ RNd×K can be written as a sum over
the dimensions d. For instance, for XT

⊥X⊥, we have

XT
⊥X⊥ =

d∑
j=1

(Xj
⊥)

TXj
⊥.

The following proposition show that constraint (10) is
redundant when we consider a symmetric range of eigenvalue,
i.e., when λ+ = −λ−.

Proposition 2 (Symmetric range of eigenvalues): If λ+ =
−λ− = λ ∈ [0, 1], then LMI constraints (10) and (11) from
Theorem 1 are equivalent to

Y T⊥ Y⊥ � λ2XT
⊥X⊥. (13)

Proof: Constraint (11) is equivalent to (13) when λ+ =
−λ− = λ. Constraint (10) with λ+ = −λ− = λ becomes

−λXT
⊥X⊥ � XT

⊥Y⊥ � λXT
⊥X⊥, (14)

We now show that constraint (14) is implied by (13), which
achieves the proof. When λ ≥ 0, constraint (13) is equivalent
to the following bound on ‖Y⊥z‖, for any z ∈ RK ,

‖Y⊥z‖ ≤ λ‖X⊥z‖ for any z ∈ RK . (15)

Moreover, the scalar product between X⊥z and Y⊥z can
be bounded, for any z ∈ RK , using the Cauchy-Schwarz
inequality

−‖X⊥z‖ ‖Y⊥z‖ ≤ (X⊥z)
T (Y⊥z) ≤ ‖X⊥z‖ ‖Y⊥z‖. (16)

We can combine inequality (16) with (15) and obtain

−λzTXT
⊥X⊥z ≤ zTXT

⊥Y⊥z ≤ λzTXT
⊥X⊥z, for any z ∈ RK ,

which is equivalent to (14).
Proposition 2 means that when we consider a class of matrices
with a symmetric range of eigenvalues, i.e., W(−λ, λ), we
can remove constraint (10) from the spectral PEP formulation,
without modifying its result. Other constraints from Theorem
1, including the symmetry of XTY and XT

⊥Y⊥, should still
be imposed.

Recovering the worst averaging matrix: Theorem 1 provides
necessary constraints for describing a set of consensus steps
Y j = WXj that use an unknown averaging matrix W from
a spectral class of symmetric generalized doubly-stochastic
matricesW(λ−, λ+). But these constraints are not known to be
sufficient; so even if matrices X and Y satisfy constraints (9),
(10), (11), we do not know if there is a matrix W ∈ W(λ−, λ+)
such that Y j = WXj for all j = 1, . . . , d. The question of
the existence of such a matrix can be expressed as follows: is
the optimal cost of the following problem equal to 0?

min
Ŵ ∈ W(λ−, λ+) ‖Ỹ − Ŵ X̃‖F (17)

where matrices X̃, Ỹ ∈ RN×Kd stack the Xj , Y j ∈ RN×K
horizontally and thus reshape matrices X and Y . This reshape
is needed for recovering a matrix Ŵ which is identical for
every dimension j and that has appropriate size (N × N).
Note that problem (17) can easily be solved since it is an
SDP, as the constraint Ŵ ∈ W(λ−, λ+) can be formulated
as λ−I � (Ŵ − 11T

N) � λ+I together with ŴT = Ŵ and
Ŵ1 = 1. If the optimal cost of (17) is zero, the optimal
value of Ŵ is a valid worst averaging matrix W . Alterna-
tively, problem (17) without any constraints is a least-square
problem whose solution is cheaper to compute and is given
by Ŵp = Ỹ X̃†, where X̃† is the pseudo-inverse of X̃ . If its
remainder ‖Ỹ − ŴpX̃‖F is zero, then we check a posteriori
that the constraint Ŵp ∈ W

(
λ−, λ+

)
is satisfied. This was often

the case in our experiments from Section IV and allows to
recover rapidly the value of the worst averaging matrix. Note,
though, that when Ŵp does not satisfy the required conditions,
a valid W might still exist, and so one must solve (17) to find
it.

We have now all the elements to write and solve PEPs for
decentralized optimization methods, including ways of repre-
senting the consensus steps in a Gram-representable manner,
allowing to formulate the PEP as an SDP. In the next section,
we demonstrate the methodology by analyzing 3 decentralized
methods.

IV. DEMONSTRATION OF OUR METHODOLOGY

Using results from previous sections, we can build two PEP
formulations for analyzing the worst-case performance of a
large class of decentralized optimization methods: the exact
and the spectral formulations. These formulations allow to
obtain rapidly and automatically accurate numerical perfor-
mance bound. We demonstrate the power of the methodology
by focusing on the analysis of 3 selected algorithms. For each

7

algorithm, we use the same settings (performance criterion,
initial condition, class of functions,...) as its theoretical bound,
in order to obtain comparable results. These particular settings
are not a limitation from our PEP formulations, which allows
to represent a larger diversity of situations.

A. Distributed (sub)gradient descent (DGD)
We consider K iterations of DGD described by (2) and

(3), with constant step-size α, in order to solve problem (1),
i.e., minimizing f(x) = 1

N

∑N
i=1 fi(x), with x∗ as minimizer

of f . There are different studies on DGD; e.g., [29] shows
that its iterates converge to a neighborhood of the optimal
solution x∗ when the step-size is constant. In the sequel, we
take as baseline the results of a recent survey [1] providing a
theoretical bound for the functional error at the average of all
the iterates, valid when subgradients are bounded.

Theorem 2 (Performance of DGD [1, Theorem 8]):
Let fi, . . . , fN ∈ FR, i.e. convex local functions with sub-
gradients bounded by R. Let x0 be an identical starting
point for all agents such that ‖x0 − x∗‖2 ≤ D2. And let
W ∈ W(−λ, λ) for some λ ∈ [0, 1), i.e. W is a symmetric
and generalized doubly stochastic matrix with eigenvalues
λ2, . . . , λN ∈ [−λ, λ].
If we run DGD for K steps with a constant step-size α = 1√

K
,

then there holds1

f(xav)− f(x∗) ≤
D2 +R2

2
√
K

+
2R2

√
K(1− λ)

, (18)

where xav = 1
N(K+1)

∑N
i=1

∑K
k=0 x

k
i is the average over all

the iterations and all the agents.
Theorem 2 was stated in [1] for doubly stochastic matrix
W but the proof never uses the non-negativity assumption
and therefore it also holds for generalized doubly stochas-
tic matrices. For comparison purposes, we will analyze the
performance of DGD using our PEP formulations in exactly
the same settings as Theorem 2. Our first PEP formulation
searches for solutions to the following maximization problem:

max
x∗,fi,x

0
i ,y

0
i ...x

K
i ,y

K
i

for i=1,...,N

1

N

N∑
i=1

(fi(xav)− fi(x∗)) (DGD(W)-PEP)

s.t. fi ∈ FR ∀i

x∗ = argmin
x

1

N

N∑
i=1

fi(x),

‖x0i − x∗‖2 ≤ D2 and x0i = x0j ∀i, j

yki =

N∑
j=1

wijx
k
j , ∀i, k (19)

xk+1
i = yki − αk∇fi(xki), ∀i, k

The objective function and the constraints of (DGD(W)-PEP)
are all linearly Gram-representable and the problem can then
be formulated as an SDP, according to Proposition 1. This
is referred to as the exact formulation because it finds the
exact worst-case performance of the algorithm for a specific

1Note the factor 2 in the second term of the bound (18) was missing in [1]
but its presence was confirmed by the authors of [1].

given matrix W . The second formulation relaxes the consensus
constraints imposed by equation (19) and replaces them with
the constraints from Theorem 1, with −λ− = λ+ = λ. Those
are LMI Gram-representable (see Theorem 1) and can then be
used in the SDP formulation of PEP, according to Proposition
1. This formulation is referred to as the spectral formulation
and provides spectral worst-cases, i.e., upper bounds on the
worst-case performances of the algorithm, valid for any matrix
W ∈ W(−λ, λ). These spectral bounds can thus be compared
with the bound from Theorem 2.

In our experiments, we focus on the situation where D = 1
and R = 1, but the results obtained can be scaled up to general
values using changes of variables, see Appendix I.

a) Impact of the number of agents N : In Fig. 1, we observe
that the results of the spectral formulation are independent
of the number of agents N ≥ 2 in the problem. This is
shown for K = 5 iterations and different spectral ranges. This
observation has been confirmed for other values of K (10, 15,
and 20). The theoretical performance bound from Theorem
2 is also independent of N . Therefore, in the sequel, we
analyze the spectral formulation for N = 3, which keeps the
computational complexity low while keeping some non-trivial
network matrices.

2 5 10 15 20
0.5

0.6

0.7

0.8

Fig. 1: Independence of N for the spectral worst-case perfor-
mance of 5 iterations of DGD in the setting of Theorem 2.

b) Comparison with Theorem 2: We compare the spectral
bound with the theoretical bound from Theorem 2 for different
ranges of eigenvalues [−λ, λ] for the network matrix. The
value of 1 − λ corresponds to the algebraic connectivity of
the network. Fig. 2 shows the evolution of both bounds with
λ for K = 10 iterations of DGD with N = 3 agents.
We observe that the spectral worst-case performance bound
(in blue) largely improves on the theoretical one (in red),
especially when λ approaches 1, in which case the theoretical
bound grows unbounded.

The improvements of the bounds when λ is close to 1
is particularly relevant since large values for λ are frequent
for averaging matrices of large networks of agents [30]. For
example, for a 5 by 5 grid of agents with Metropolis weights
[1], the range of eigenvalues of the resulting averaging matrix
is [−0.92, 0.92]. In that case, after K = 10 iterations, our
spectral bound guarantees that the performance measure is
below 0.85, compared to 8.2 for the theoretical bound from
Theorem 2. This accuracy of 0.85 would only be guaranteed
using Theorem 2 with K = 936.

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 2: Evolution with λ of the worst-case performance of
K = 10 iterations of DGD in the setting of Theorem 2
with N = 3 agents. The plot shows (i) the theoretical bound
from equation (18) (in red), largely above (ii) the spectral
worst-case performance (in blue), (iii) the exact worst-case
performance for the symmetric generalized doubly stochastic
matrix W (1) from equation (20) (in green) and (iv) the
exact worst-case performance for symmetric doubly stochastic
matrices found based on an exhaustive exploration of such
matrices used in the exact PEP formulation (in pink). This
indicates the tightness of the spectral formulation of PEP for
DGD with symmetric generalized doubly stochastic matrices,
within numerical errors.

c) Worst averaging matrix and tightness analysis: When con-
sidering the spectral formulation with a symmetric spectral
range −λ− = λ+ = λ, we observe that the worst averaging
matrices are matrices of the following form

W (1) = J − λ(I − J), (20)

where J = 11T

N , i.e. it has all entries equal to 1
N , and I is

the identity matrix. Matrix W (1) is symmetric and generalized
doubly stochastic, leading 1 to be one of its eigenvalues. All
its other eigenvalues are equal to −λ. Matrix W (1) always
produces a remainder ‖Ỹ −W (1)X̃‖F close to zero for DGD,
but it may not be the only one. The bound obtained using
the exact PEP formulation with this specific matrix W (1) for
K = 10 is plotted in green in Fig. 2 and exactly matches the
spectral bound in blue, within numerical errors. This means
that the spectral formulation provides a tight performance
bound for DGD with symmetric generalized doubly stochastic
matrices, even though it is a relaxation,. This observation has
been confirmed for other values of K (5, 15, and 20).

d) Doubly stochastic versus generalized doubly stochastic:
Since every doubly stochastic matrix is also generalized dou-
bly stochastic, the spectral bound also provides an upper bound
on the performance of DGD with symmetric doubly stochastic
matrices. This bound remains tight for λ ≤ 1

N−1 because the
worst-case matrix W (1) (20) we have obtained is non-negative
and is therefore doubly stochastic. For λ > 1

N−1 , this is no
longer the case and the analysis is performed by empirically
looking for symmetric stochastic averaging matrices leading
to the worst performance. In Fig. 2, for N = 3 and λ >

0.5, we have generated more than 6000 random symmetric
doubly stochastic 3 by 3 matrices. We have analyzed their
associated DGD performance using the exact PEP formulation
and have only kept those leading to the worst performances.
The resulting pink curve deviates no more than 20% below
the spectral bound. In that case, the spectral bound is thus
no longer tight for DGD with doubly stochastic matrices but
remains very relevant. This observation has been confirmed
for other values of K and N (N = 3, 5, 7, and K = 10, 15).

e) Evolution with the total number of iterations K: Fig. 3
shows the evolution of the spectral worst-case performance
for DGD multiplied by

√
K, for different values of λ. Except

when λ = 1, all lines tend to a constant value, meaning
that the spectral bound behaves in O

(
1√
K

)
, as the theoretical

bound (18), but with a much smaller multiplicative constant.
When λ = 1, the line grows linearly and never reaches a
constant value. In that case, the worst averaging matrices
lead to counterproductive interactions, preventing DGD from
working in the worst case.

f) Tuning the step-size α: The PEP methodology allows us
to easily tune the parameters of a method. For example, Fig.
4 shows the evolution of the spectral worst-case performance
of DGD with the constant step-size it uses, in the setting

5 10 15 20 25 30
0

2

4

6

8

10

Fig. 3: Evolution with K of the normalized spectral worst-
case performance of K iterations of DGD in the setting of
Theorem 2 with N = 3. The shown spectral worst-cases are
normalized by 1√

K
to show that they evolve at this rate.

10-2 10-1 100

100

Fig. 4: Evolution with α of the spectral worst-case perfor-
mance of K = 10 iterations of DGD in the setting of Theorem
2 with N = 3 agents and λ = 0.8 (except for α).

9

of Theorem 2 with N = 3, K = 10 and λ = 0.8. In that
case, we observe that the value α = 1√

K
used in Theorem 2

for deriving the theoretical performance bound is not the best
possible choice for α and should be divided by two to improve
the performance guarantees by 30%. The optimal value for
α, regarding our spectral bound, is the one that provides the
best worst-case guarantee, whatever the averaging matrix from
W(−λ, λ) is used.

The impact of the step-size on the other experiments and
observations can be studied by setting α = h√

K
, for some

h > 0. We focused on h = 1 for comparison with the
theoretical bound from Theorem 2. Nevertheless, all our other
observations have been confirmed2 for h = 0.1, 0.5, 2, 10.

B. DIGing

The DIGing algorithm [4], described in Algorithm 1, com-
bines DGD with a gradient tracking technique. Each agent i
holds an estimation si of the average of all the local gradients
and uses it in its update instead of its own local gradient. The
DIGing algorithm allows using a different network matrix W k

at each iteration k.

Algorithm 1 DIGing

Choose step-size α > 0 and pick any x0i ∈ Rd;
Initialize s0i = ∇fi(x0i) for all i = 1, . . . , N ;
for k = 0, 1, . . . do

for i = 1, . . . , N do
xk+1
i =

∑N
j=1 w

k
ijx

k
j − αski ;

sk+1
i =

∑N
j=1 w

k
ijs

k
j +∇fi(x

k+1
i)−∇fi(xki);

end for
end for

The linear convergence of DIGing has been established in
[4, Theorem 3.14] provided that the local functions fi are
L-smooth and µ-strongly convex (with L ≥ µ > 0); the
network matrices are symmetric, doubly stochastic, and have
their second largest eigenvalue λ below 1 (in absolute value);
and the step-size is within the interval

α ∈

(
0,

(1− λ)2

2L
(
1 + 4

√
N
√
L/µ

)].
The largest accepted step-size decreases thus as O(1√

N
) and

has also a dependence in O(1

L
√
L/µ

) which is less favorable

than the usual O(1
L) in optimization, leading thus often to

very small values for accepted α. The spectral condition
on the network matrices (|λ| < 1) guarantees the network
connectivity at each iteration. Actually, [4] imposes a weaker
spectral condition which only requires that the union of all the
networks over B steps is connected. In this section, we con-
sider the case B = 1. Under all these conditions, [4, Theorem

2For too small step-size such as h ≤ 0.1, the worst averaging matrix
observed is no more W (1).

3.14] guarantees the following R-linear3 convergence:√√√√ N∑
i=1

‖xKi − x∗‖2 ≤ Cρ
K
theo, for any K ∈ N, (21)

where C is a positive constant and ρtheo ∈ (0, 1) is the
convergence rate depending on N , λ, L and µ (see [4,
Theorem 3.14] for details about its expression).

This section analyzes the worst-case performance of DIGing
via the exact and spectral formulations, in the same settings
as [4, Theorem 3.14] to get a fair comparison. Therefore, we
consider the set of L-smooth and µ-strongly convex functions
for local functions. As performance criterion, we consider the
same as in (21) but squared and scaled by N :

PK =
1

N

N∑
i=1

‖xKi − x∗‖2. (22)

The corresponding theoretical convergence rate for this cri-
terion is given by ρ2theo. We also consider initial conditions
similar to those used implicitly in [4, Theorem 3.14]:

1

N

N∑
i=1

‖x0i − x∗‖2 ≤ D2, (23)

1

N

N∑
i=1

‖s0i −
1

N

N∑
j=1

∇fj(x0j)‖2 ≤ E2. (24)

Condition (23) bounds the initial performance criterion P(x0)
which measures the average error of the initial iterates x0i .
Condition (24) bounds the average error made by the agents
on the initial average gradient estimates s0i .
For the spectral formulation, to have the same setting as [4,
Theorem 3.14], we consider time-varying averaging matrices
that are symmetric, generalized doubly stochastic, and with a
symmetric range of eigenvalues [−λ, λ], i.e. in W(−λ, λ). In a
second time, we will also consider constant network matrices.

The problem depends on 6 parameters: L, µ, D, E, λ, α.
We fix L = 1 and D = 1, as the results can then be scaled
up to general values using appropriate changes of variables.
The value of E is arbitrarily fixed to E = 1, but all the
observations have been confirmed for other values of E (E =
0.1, 10). Different values of the step-size α will be analyzed
to understand its impact on the worst-case performance of
the DIGing algorithm. We show the results for representative
values of µ and λ (µ = 0.1 and λ = 0.9).

a) Impact of the number of agents N : As it was the case for
DGD (see Section IV-A), we have observed that the spectral
worst-case of DIGing is independent of the number of agents
N (for N ≥ 2). This differs from the theoretical analysis
of DIGing from [4, Theorem 3.14] for which the range of

3 We recall the definition of the R-linear convergence and its differences
with the Q-linear convergence, based on the definitions provided in [4].
Suppose that a sequence {xk} converges to x∗ in some norm ‖·‖. We say that
the convergence is: (i) R-linear if there exists ρ ∈ (0, 1) and some positive
constant C such that ‖xk − x∗‖ ≤ Cρk for all k; (ii) Q-linear if there
exists ρ ∈ (0, 1) such that ‖x

k+1−x∗‖
‖xk−x∗‖ ≤ ρ for all k. Both convergences are

geometric but the Q-linear convergence is stronger since it implies monotonic
decrease of ‖xk − x∗‖, while R-linear convergence does not. By definition,
Q-linear convergence implies R-linear convergence with the same rate but the
inverse implication does not hold in general.

10

accepted step-sizes, as well as the convergence rate, depend
on N . It appears that the worst-case performance of DIGing
does not get worst when N increases, or can at least be
bounded uniformly for all values of N , for example with
our spectral bound. Such uniform bound will allow us to
better choose the step-size α of DIGing, identically for all
N . For the subsequent analysis of the results of our spectral
PEP formulation for DIGing, we fix N = 2 for keeping a
low computational complexity. This also corresponds to the
most favorable situation for the theoretical results [4, Theorem
3.14], which get worse as N increases.

b) Comparison between the spectral and theoretical bounds:
We compare the spectral bounds obtained with PEP with
the corresponding guarantees obtained using ρ2theo, i.e. the
square of the theoretical convergence rate bound [4, Theorem
3.14]. Fig. 5 shows the evolution of both guarantees (spectral
and theoretical) with the total number of iterations K of
the algorithm, for different values of the step-size α and for
N = 2, λ = 0.9 and µ = 0.1. The spectral bounds are always
smaller than the corresponding theoretical ones.

For the three values of α, we observe a linear decrease
of the spectral worst-cases, which strongly suggests a linear
convergence rate. The observed rates are listed in TABLE I
below and can be compared with the theoretical convergence
rate ρ2theo, which are all larger. The step-size α = 2.6×10−4 is
the one that optimizes the theoretical convergence guarantee
ρtheo from [4, Theorem 3.14] for N = 2. For some step-
sizes, such as α = 10−3, convergence is not guaranteed by
[4, Theorem 3.14], even when N = 2, while our observations
suggest that it does occur. And this get worse when N becomes
larger since it would require the theoretical step-sizes to be
smaller, i.e. αmax ≈ 4×10−4

√
N

. Therefore, the spectral bound for
DIGing can help to greatly improve the choice of the step-size.

The same observations can be done for other values of µ
and λ. In particular, other values of µ leads to the same graphs,
with a different scale for the vertical axis. We test it for µ =
0.01 and µ = 0.001.

0 5 10 15 20 25 30
0.998

0.999

1

1.001

Fig. 5: Evolution with K of the spectral worst-case of K
iterations of DIGing with N = 2, λ = 0.9, µ = 0.1, and
different values of step-size α. The corresponding theoretical
rates from [4, Theorem 3.14] are also shown in comparison.
Logarithmic y-axis.

step-size α 1− observed rate 1− theoretical rate

10−4 2× 10−5 7× 10−6

2.6× 10−4 5× 10−5 2× 10−5

10−3 2× 10−4 /

TABLE I: Theoretical [4] and observed spectral rates for
N = 2, λ = 0.9, µ = 0.1 and for different step-sizes α.

c) Convergence rate analysis with PEP: Fig. 5 strongly sug-
gests a linear convergence rate but the performance guarantees
only hold for the values of K tested and we cannot extrapolate
them with certainty, e.g. the performance could explode after a
larger number of iterations. We now show how to use our PEP
formulations to obtain a guaranteed convergence rate valid for
any number of iterations. The idea is to use the same metric
as an initial condition and performance measure to be able to
consider the problem over only one general DIGing iteration.
We also need to ensure that the DIGing update preserved the
assumptions on initial conditions. The metric we use is the
weighted combination of the two error measures (23) and (24)
previously used separately in the initialization:

PKγ =
1

N

N∑
i=1

‖xKi − x
∗‖2 +

γ

N

N∑
i=1

‖sKi −
1

N

N∑
j=1

∇fj(xKj)‖2,

(25)where γ is a positive weighting coefficient.
Proposition 3 (Convergence rate of DIGing with PEP):

Consider the one iteration spectral PEP formulation of DIGing
with P1

γ as performance criterion and with the following
initialization: pick any x0i , s

0
i ∈ Rd such that

N∑
i=1

s0i =

N∑
i=1

∇fi(x0i) and P0
γ = 1.

Let θγ be the optimal value of this PEP, then

Pk ≤ Pkγ ≤ θkγP0
γ for any k, γ ≥ 0.

Convergence is Q-linear4 for Pkγ (25) and R-linear for Pk (22),
both with convergence rate θγ depending on coefficient γ.

Proof: One can verify that the following changes of
variables, using a coefficient M ≥ 0,

x̃i =
√
Mxi, s̃i =

√
Msi and f̃i(x̃i) =Mfi(xi),

do not affect the behavior of DIGing and scale both P0
γ and

P1
γ by a factor M :

P̃0
γ =MP0

γ , P̃1
γ =MP1

γ .

Since θγ is the optimal value of P1
γ and M = P̃0

γ (for P0
γ = 1),

we have that
P̃1
γ ≤ θγP̃0

γ . (26)

Equation (26) holds for any value of P̃0
γ ≥ 0 (e.g. for Pkγ).

Moreover, the iterations of DIGing are independent of k, and
thus, inequality (26) is valid for any iteration k

Pk+1
γ ≤ θγPkγ ,

provided that iterates xki , s
k
i also satisfy the initial condition

N∑
i=1

ski =

N∑
i=1

∇fi(xki), for any k. (27)

4See definition of Q-linear and R-linear convergence in footnote 3

11

This condition (27) holds by assumption for k = 0 and is
preserved by a DIGing update with a stochastic matrix W
(see Algorithm 1), as

N∑
i=1

sk+1
i =

N∑
i=1

N∑
j=1

wkijs
k
j +

N∑
i=1

∇fi(xk+1
i)−

N∑
i=1

∇fi(xki)

=

N∑
j=1

skj +

N∑
i=1

∇fi(xk+1
i)−

N∑
i=1

∇fi(xki)

=

N∑
i=1

∇fi(xk+1
i),

Finally, by definition of Pk (see (22)) and Pkγ , we have well
that Pk ≤ Pkγ for any k, γ ≥ 0.

Using Proposition 3, we can obtain guaranteed convergence
rates for DIGing, which depend on the weighting coefficient γ,
for the metric PKγ . These convergence rates are also valid for
PK , for all γ ≥ 0, and can thus be compared with the observed
rates from Fig. 5 and the theoretical convergence rates (21)
([4, Theorem 3.14]). An exploration of the different values
for the weighting coefficient γ ≥ 0 suggests that the best rates
are obtained for γ = α

L but other rates are also valid. With
γ = α

L , we recover exactly the same rates as those observed in
Fig. 5, but they are guaranteed with certainty for any number
of iterations K. The PEP problem from Proposition 3 has a
small size since it only considers one iteration, and is thus
rapidly solved. The size of the problem still increases with
the number of agents N but once again, we observe that the
results are independent of N .

The approach above can be applied to other algorithms
provided that their updates are independent of each other.
It presents some parallels with the approach used in the
automatic analysis with IQC [20]. Both approaches analyze
the decrease of a particular function over only one iteration.
We design the decreasing criterion Pγ by hand and have
optimized the value of γ to find the smallest rate. The IQC
approach allows to easily optimize the rate over a wider class
of Lyapunov functions and it may therefore give smaller rates.
On the other hand, our PEP approach provides the worst
functions and communication networks resulting from the
worst-case solutions. It also allows comparing what happens
over one iteration and over several, and with network matrices
that are variable or constant in time.

d) Impact of the step-size α: Fig. 6 compares the spectral
rates, obtained with the spectral PEP formulation from Propo-
sition 3 with the theoretical ones from [4, Theorem 3.14] for a
wide range of values for the step-size α. The spectral rates are
identical for any value of N and present a first regime where
they decrease as α increases until a certain threshold step-
size αt. This decrease is numerically close to 1− 2µα. After
αt, we observe a sharp increase in the spectral rates. Since the
theoretical results [4] depends on the value of N , Fig. 6 shows
different curves, corresponding to theoretical bounds on the
convergence rates for different numbers of agents N . All these
curves also present two regimes, however, the decrease of the
first regime is slower and the sharp increase takes place after
a much lower threshold step-size. Moreover, both the sharp
increase and the threshold step-size worsen as N increases.

10-5 10-4 10-3 10-2
0.999

1

1.001

Fig. 6: Convergence rate evolution with the step-size α for
DIGing with λ = 0.9 and µ = 0.1. Theoretical rates from [4]
are shown for different values of N . PEP rates θγ , obtained
with Proposition 3 for γ = α

L , are lower and allow for larger
step-sizes. These rates are computed with N = 2 but the
results are identical for any value of N .

Therefore, the spectral rates obtained with PEP allow for
significant improvements in the tuning of the step-size α by
choosing a larger value (≈ αt), which is independent of N .
This leads to better convergence guarantees and therefore to
better use of DIGing. For example, in the setting of Fig. 6,
when N = 20, the theoretical bound requires a step-size below
10−4, while the optimal step-size according to our spectral
rate is around 4 × 10−3. This choice of the step-size allows
improving the convergence guarantee by at least 2 orders of
magnitude.
We observed the same two regimes for all the other values of
µ and λ we tested. However, the smaller the value of λ is,
the larger the gap between the values of the theoretical and
spectral convergence rate at the threshold step-size.

e) Impact of time-varying averaging matrices: In the spectral
formulation, we can choose to link different iterations together
and to analyze the worst-case when we use the same constant
averaging matrix W at each iteration. We can also choose to
consider each consensus step independently with potentially
time-varying averaging matrices. For DIGing, we have chosen
the second option to allow time-varying averaging matrices
and be in the same condition as [4]. However, we observe that
both choices lead to the same worst-case values, even though
the solution achieving these worst-cases may be different.
One worst-case solution obtained with a constant matrix is
therefore also a worst-case solution of the situation with time-
varying matrices. We can thus analyze what is the worst
constant matrix for DIGing and it will also be valid for time-
varying settings.

f) Worst averaging matrix and tightness analysis: When the
step-size α is optimized, i.e., equal to the threshold value
(αt), we observe that the worst matrix for DIGing is the
same as for DGD, and is thus given by W (1) in (20). This
matrix is only determined by the value of λ and N and the
remainder it produces ‖Ỹ −W (1)X̃‖ is always close to zero

12

in that case. This matrix W (1) is symmetric and generalized
doubly stochastic. The same worst matrix is also recovered
for larger step-size α. The bounds obtained using the exact
PEP formulation with this specific matrix W (1) exactly match
the corresponding spectral bounds, within numerical errors.
This means that the spectral formulation, even though it is
a relaxation, provides again a tight performance bound for
DIGing with symmetric generalized doubly stochastic matrices
and sufficiently large step-size.

In summary, our spectral PEP formulation provides numer-
ically tight convergence rates for DIGing that are independent
of the number of agents N , and allows for better tuning of
the constant step-size α, leading to more efficient use of the
DIGing algorithm.

C. Accelerated Distributed Nesterov Gradient Descent
As third use case, we analyze the accelerated distributed

Nesterov gradient descent (Acc-DNGD) algorithm proposed
in [8]. We focus on the version designed for convex (not nec-
essarily strongly convex) and L-smooth functions, described
in Algorithm 2. It achieves one of the best proved convergence
rate in such setting, O

(
1

K1.4−ε

)
for any ε ∈ (0, 1.4), but

there remains several open questions on choice of parameters
and actual performance. We show how our technique allows
shedding light on these questions. We use the notations of
[8], which are slightly different from the rest of this paper.
Here, ηk denotes the diminishing step-size and αk denotes a
weighting factor. Each agent i keeps variables xi, vi, yi, and si.
The variables si are local gradient tracking variables allowing
each agent to estimate the average gradient 1

N

∑N
i=1∇fi(yi).

The step-size ηk is diminishing as

ηk =
η

(k + k0)β
, (28)

where η ∈
(
0, 1

L

)
, β ∈ (0, 2) and k0 ≥ 1. The sequence of

αk starts with α0 =
√
η0L ∈ (0, 1) and the next element of

the sequence is each time computed as the unique solution in
(0, 1) of

α2
k+1 =

ηk+1

ηk
(1− αk+1)α

2
k.

The convergence result [8, Theorem 4] guarantees that the
algorithm achieves an average functional error bounded as

f(xk)− f(x∗) ≤ O(1

k2−β
) for β ∈ (0.6, 2).

Algorithm 2 Acc-DNGD

Initialize x0i = v0i = y0i = 0 and s0i = ∇f(0) for all i;
for k = 0, 1, . . . do

for i = 1, . . . , N do
xk+1
i =

∑N
j=1 wijy

k
j − ηkski ;

vk+1
i =

∑N
j=1 wijv

k
j −

ηk
αk
ski ;

yk+1
i = αk+1x

k+1
i + (1− αk+1)v

k+1
i ;

sk+1
i =

∑N
j=1 wijs

k
j +∇fi(y

k+1
i)−∇fi(yki);

end for
end for

Recall that f(x) = 1
N

∑N
i=1 fi(x), x

k = 1
N

∑N
i=1 x

k
i and x∗ is

a minimizer of f . This convergence guarantee for Acc-DNGD
only holds under specific conditions concerning the values of
η and k0 [8, Theorem 4]. These assumptions seem strong since
they impose, in particular, that η tends to 0 and k0 tends to∞
both when λ tends to 1 (disconnected graph) and to 0 (fully
connected graph). The authors of [8] conjecture that

(i) Exact values of parameters η, k0 do not actually matter
and we can choose values that are not satisfying assump-
tions from [8, Theorem 4], and still obtain a rate of
O(1

k2−β
). For example, authors of [8] used η = 1

2L ,
k0 = 1 in their numerical experiments with β = 0.61.

(ii) Choosing β ∈ [0, 0.6] leads to the same rate O(1
k2−β

).
The case β = 0 uses constant step-size η and is important
because it would lead to a rate O(1

k2), i.e. the best
possible rate in centralized framework for similar settings
[31, Theorem 2.1.7].

In this section, we use our spectral PEP formulation to
analyze the Acc-DNGD algorithm, which allows having a
better idea about the impact of the parameters on its perfor-
mance and nuance the conjectures (i) and (ii) of [8]. Fig. 7
shows the evolution of the worst-case average functional error
f(xK) − f(x∗) with the total number of iterations K. We
consider a symmetric range of eigenvalues −λ− = λ+ = λ,
and thus we obtain spectral bounds valid over the entire class
of matrices W(−λ, λ). The results are shown for different
values of β, η and λ, while L, N and k0 are fixed. We
aim at testing the conjectures (i) and (ii). To test (ii), about
the validity range of β, conjectured to extend below 0.6,
we choose β = {0, 0.1, 0.3, 0.5}. To compare with proven
valid values of β and test conjecture (i), we also choose
β = {0.61, 1}. We choose λ = {0, 0.75} and η = {0.05, 0.5}
to have two representative values for each parameter (small
and large). We fix L = 1 because the results for other values
of L can be recovered by scaling. We fix N = 2 because the
value of N does not impact the worst-case value obtained with
the spectral formulation, as for the two previous algorithms.
We fix k0 = 1 for simplicity and because it does not affect
the long term evolution of the performance. In particular, the
value of k0 has no impact when β = 0, see (28).

We first observe that the value η influences the performance
of the algorithm. Indeed, when η becomes larger (e.g., from
Fig. 7a, 7b to Fig. 7c, 7d), the worst-case functional error
decreases faster in a first phase but it sometimes explodes
afterwards, preventing the algorithm to converge. This occurs
for example when β is too small (e.g. β = 0 and β = 0.1 in
Fig. 7c) or when λ is too large (e.g. in Fig. 7d and 7b where
λ = 0.75). In Fig. 7d, this sharp increase even occurs in the
experimental setting of [8], i.e. η = 1

2L = 0.5 and β = 0.61
(green line). These observations contradict conjecture (i) as
currently stated.

Secondly, we observe in Fig. 7 that the curves for β = 0.5
and β = 0.61 behaves similarly in all the different plot.
This suggests that the worst-case values present no phase
transition at β = 0.6, and therefore, supports conjecture
(ii) claiming that values of β lower than 0.6 also provide
rates O(1

K2−β), including the case β = 0. The curves for

13

100 101 102
10-3

10-2

10-1

100

101

(a) η = 0.05, λ = 0

100 101 102
10-3

10-2

10-1

100

101

(b) η = 0.05, λ = 0.75

100 101 102
10-3

10-2

10-1

100

101

(c) η = 0.5, λ = 0

100 101 102
10-3

10-2

10-1

100

101

(d) η = 0.5, λ = 0.75

Fig. 7: Evolution with K of the worst-case average functional error f(xK)−f(x∗) for Acc-DNGD, obtained with the spectral
PEP formulation, with N = 2, L = 1 and k0 = 1. Different values of β, η and λ are shown. Dashed lines show curves
evolving in O(1

K2), which corresponds to the rate conjectured in [8] when β = 0. This asymptotic rate is reached for β = 0
only when η is sufficiently small.

β = 0 appear indeed to approach a decrease in O(1
K2), as

conjectured in [8], but only in Fig. 7a where the values η and
λ are sufficiently small. Indeed, the rate O(1

K2) cannot be
observed for larger values of η or λ where PEP problems may
become unbounded (see Figures 7b, 7c and 7d). Therefore,
the η parameter should be tuned according to the values
of λ and the choice of β. Qualitatively, we can see that it
must decrease when λ increases or when β decreases. Further
analysis should be performed to tune the value of η in general.
Having sufficiently small step-sizes η seems thus to be the
key for conjecture (ii) to be true. Since smaller values for β
appear to require a smaller step-size, the performance would
approach the convergence rate O(1

K2−β) more slowly in that
case. However, even with well-tuned η, we cannot exclude that
the worst-case performance of Acc-DNGD does not explode
after a large number of iterations in some cases, as is the case
in an early phase for some settings in Fig. 7.

In addition, it is interesting to note that the worst matrix
that is recovered from the spectral PEP formulation for Acc-
DNGD is again W (1) from (20), as it was the case for
DGD and DIGing. For Acc-DNGD also, the bounds obtained
using the exact PEP formulation with this specific matrix

W (1) exactly match the corresponding spectral bounds, within
numerical errors. This means that the spectral formulation,
even though it is a relaxation, provides a tight performance
bound for Acc-DNGD with symmetric generalized doubly
stochastic matrices.

D. Code and Toolbox

PEP problems have been written and solved using the
PESTO Matlab toolbox [21], with Mosek solver, within
200 seconds maximum. For example, for N = 3, the
time needed for a regular laptop to solve the spectral
formulation for DGD (from Section IV-A) is about 3, 12,
48, and 192 seconds respectively for K = 5, 10, 15, 20.
The PESTO toolbox is available on GITHUB
(https://github.com/PerformanceEstimation/
Performance-Estimation-Toolbox). We have
updated PESTO to allow easy and intuitive PEP formulation
of gradient-based decentralized optimization methods, and
we have added a code example for DGD, DIGing, and
Acc-DNGD.

https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox

14

V. CONCLUSION

We have developed a methodology that automatically com-
putes numerical worst-case performance bounds for any de-
centralized optimization method that combines first-order or-
acles with average consensus steps. This opens the way for
computer-aided analysis of many other decentralized algo-
rithms, which could lead to improvements in their performance
guarantees and parameter tuning, and could allow rapid explo-
ration of new algorithms. Moreover, the guarantees computed
with our tool appear tight in many cases.

Our methodology is based on the performance estimation
problem (PEP) for which we have developed two repre-
sentations of average consensus steps. Our first formulation
provides the exact worst-case performance of the method for
a specific network matrix. The second formulation provides
upper performance bounds that are valid for an entire spec-
tral class of matrices. This spectral formulation often allows
recovering the worst possible network matrix based on the
PEP solutions. We demonstrate the use of our automatic per-
formance methodology on three algorithms and we discover,
among other things, that DGD worst-case performance is much
better than the theoretical guarantee; DIGing has performance
independent of the number of agents and accepts much larger
step-size than predicted by the theory; Acc-DNGD appears to
present a rate O(1

K2−β), for β ∈ (0, 2), only if the step-sizes
are sufficiently small.

Further developments of our methodology may include a
spectral formulation that is independent of the number of
agents [32] or that considers other classes of network matrices,
e.g. non symmetric or B-connected networks.

ACKNOWLEDGMENT

The authors wish to thank Adrien Taylor for his helpful
advice concerning the PESTO toolbox.

APPENDIX I
NOTE ON SCALING OF DGD

In the DGD analysis, we have one constant R to bound
the subgradients ‖∇fi(xki)‖2 ≤ R2 (for k = 0, . . . ,K), and
another one D to bound the initial distance to the optimum
‖x0−x∗‖2 ≤ D2. In our performance estimation problem, we
consider general positive values for these parameters D > 0
and R > 0 and we parametrize the step-size by α = Dh

R
√
K

,
for some h > 0. To pass from this general problem to the
specific case where D = 1 and R = 1, that we actually solve,
we consider the following changes of variables:

x̃i =
xi
D
, f̃i(x̃i) =

1

DR
fi(xi) and α̃ =

Rα

D
.

These changes of variables do not alter the updates of the
algorithm or the nature of the problem. They allow expressing
the worst-case guarantee obtained for f(xav) − f(x∗) with
general values of D, R, and h, denoted w(D,R, h), in terms
of the worst-case guarantee obtained for f̃(x̃av)− f̃(x̃∗) with
D = R = 1, denoted w̃(1, 1, h):

w(D,R, h) = DR w̃(1, 1, h). (29)

The same kind of scaling can be applied to Theorem 2. The
theorem is valid for general values of D and R but is specific
to α = 1√

K
, which is equivalent to picking h = R

D . After
the scaling, we obtain the following bound, valid for D = 1,
R = 1 and any value of α = h√

K
with h > 0:

f̃(x̃av)− f̃(x̃∗) ≤
h−1 + h

2
√
K

+
2h√

K(1− λ)
. (30)

This scaled theoretical bound with h = 1 is equivalent to the
bound from Theorem 2 with D = R = 1, which was the focus
of the numerical analysis in Section IV.
This bound (30) can be extended to any value of D > 0 and
R > 0, using the relation from equation (29):

f(xav)− f(x∗) ≤ DR
(
h−1 + h

2
√
K

+
2h√

K(1− λ)

)
.

REFERENCES

[1] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proceedings of the IEEE, vol. 106, no. 5, pp. 953–976, 2018.

[2] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
pp. 48 – 61, 02 2009.

[3] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, 04 2014.

[4] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM Journal on
Optimization, vol. 27, 07 2016.

[5] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method
with network independent step-sizes and separated convergence rates,”
IEEE Transactions on Signal Processing, vol. PP, 04 2017.

[6] C. Xi, R. Xin, and U. A. Khan, “Add-opt: Accelerated distributed di-
rected optimization,” IEEE Transactions on Automatic Control, vol. 63,
no. 5, pp. 1329–1339, 2018.

[7] R. Xin and U. A. Khan, “A linear algorithm for optimization over
directed graphs with geometric convergence,” IEEE Control Systems
Letters, vol. 2, no. 3, pp. 315–320, 2018.

[8] G. Qu and N. Li, “Accelerated distributed nesterov gradient descent,”
IEEE Transactions on Automatic Control, vol. 65, no. 6, pp. 2566–2581,
2020.

[9] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606,
2012.

[10] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
algorithms for smooth and strongly convex distributed optimization in
networks,” in Proceedings of the 34th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
D. Precup and Y. W. Teh, Eds., vol. 70. PMLR, 06–11 Aug 2017,
pp. 3027–3036.

[11] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
convergence rates for convex distributed optimization in networks,”
Journal of Machine Learning Research, vol. 20, no. 159, pp. 1–31, 2019.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
pp. 1–122, 01 2011.

[13] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the admm in decentralized consensus optimization,”
Signal Processing, IEEE Transactions on, vol. 62, 07 2013.

[14] Z. Song, L. Shi, S. Pu, and M. Yan, “Optimal gradient tracking for
decentralized optimization,” 2021.

[15] H. Hendrikx, “Accelerated methods for distributed optimization,” Ph.D.
dissertation, PSL, 2021, advisors : Francis, BACH and Laurent, MAS-
SOULIE.

[16] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Smooth strongly convex
interpolation and exact worst-case performance of first-order methods,”
Mathematical Programming, vol. 161, 02 2015.

15

[17] ——, “Exact worst-case performance of first-order methods for com-
posite convex optimization,” SIAM Journal on Optimization, vol. 27, 12
2015.

[18] S. Colla and J. M. Hendrickx, “Automated worst-case performance anal-
ysis of decentralized gradient descent,” in 2021 60th IEEE Conference
on Decision and Control (CDC), 2021, pp. 2627–2633.

[19] L. Lessard, B. Recht, and A. Packard, “Analysis and design of opti-
mization algorithms via integral quadratic constraints,” SIAM Journal
on Optimization, vol. 26, 08 2014.

[20] A. Sundararajan, B. V. Scoy, and L. Lessard, “Analysis and design of
first-order distributed optimization algorithms over time-varying graphs,”
IEEE Transactions on Control of Network Systems, vol. 7, pp. 1597–
1608, 2020.

[21] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Performance estimation
toolbox (PESTO): Automated worst-case analysis of first-order opti-
mization methods,” in IEEE 56th Annual Conference on Decision and
Control (CDC), 2017, pp. 1278–1283.

[22] Y. Drori and M. Teboulle, “Performance of first-order methods for
smooth convex minimization: A novel approach,” Mathematical Pro-
gramming, vol. 145, 06 2012.

[23] A. Taylor, “Convex interpolation and performance estimation of first-
order methods for convex optimization,” Ph.D. dissertation, UCLouvain,
2017, advisors : François Glineur and Julien M. Hendrickx.

[24] D. Kim and J. Fessler, “Optimized first-order methods for smooth convex
minimization,” Mathematical Programming, vol. 159, 06 2014.

[25] A. B. Taylor and Y. Drori, “An optimal gradient method for smooth
strongly convex minimization,” Mathematical Programming, pp. 1–38,
2022.

[26] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Exact worst-case
convergence rates of the proximal gradient method for composite convex
minimization,” Journal of Optimization Theory and Applications, vol.
178, 08 2018.

[27] B. Goujaud, C. Moucer, F. Glineur, J. Hendrickx, A. Taylor,
and A. Dieuleveut, “PEPit: computer-assisted worst-case analy-
ses of first-order optimization methods in Python,” arXiv preprint
arXiv:2201.04040, 2022.

[28] Hanley and C.-K. Li, “Generalized doubly stochastic matrices and linear
preservers,” Linear and Multilinear Algebra, vol. 53, pp. 1–11, 01 2005.

[29] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, 10 2013.

[30] P. Bhunia, S. Bag, and K. Paul, “Bounds for eigenvalues of the adjacency
matrix of a graph,” Journal of Interdisciplinary Mathematics, vol. 22,
06 2019.

[31] Y. Nesterov, Lectures on Convex Optimization, 2nd ed. Springer
Publishing Company, Incorporated, 2018.

[32] S. Colla and J. M. Hendrickx, “Automated performance estimation for
decentralized optimization via network size independent problems,” in
2022 61th IEEE Conference on Decision and Control (CDC), 2022.

	Introduction
	Contributions
	Related work

	General PEP approach
	Representing consensus steps in PEP
	Averaging matrix given a priori
	Averaging matrix as a variable

	Demonstration of our methodology
	Distributed (sub)gradient descent (DGD)
	DIGing
	Accelerated Distributed Nesterov Gradient Descent
	Code and Toolbox

	Conclusion
	Appendix I: Note on scaling of DGD
	References

