
Exploiting Agent Symmetries for Performance Analysis of Distributed
Optimization Methods

Sebastien Colla
ICTEAM Institute, Department of applied mathematics, UCLouvain, Louvain-la-Neuve, Beglium
Julien M. Hendrickx
ICTEAM Institute, Department of applied mathematics, UCLouvain, Louvain-la-Neuve, Beglium

Abstract
We show that, in many settings, the worst-case performance of a distributed optimization algorithm is independent of the
number of agents in the system, and can thus be computed in the fundamental case with just two agents. This result
relies on a novel approach that systematically exploits symmetries in worst-case performance computation, framed as
Semidefinite Programming (SDP) via the Performance Estimation Problem (PEP) framework. Harnessing agent
symmetries in the PEP yields compact problems whose size is independent of the number of agents in the system. When
all agents are equivalent in the problem, we establish the explicit conditions under which the resulting worst-case
performance is independent of the number of agents and is therefore equivalent to the basic case with two agents. Our
compact PEP formulation also allows the consideration of multiple equivalence classes of agents, and its size only
depends on the number of equivalence classes. This enables practical and automated performance analysis of distributed
algorithms in numerous complex and realistic settings, such as the analysis of the worst agent performance. We leverage
this new tool to analyze the performance of the EXTRA algorithm in advanced settings and its scalability with the
number of agents, providing a tighter analysis and deeper understanding of the algorithm performance.

Keywords Distributed optimization, Performance estimation problem, Worst-case analysis.

Acknowledgments S. Colla is a FRIA grantee of the Fonds de la Recherche Scientifique - FNRS. J. M. Hendrickx is
supported by the Federation Wallonie-Bruxelles through the “RevealFlight” Concerted Research Action (ARC) and by
the F.R.S.-FNRS via the research project KORNET and the Incentive Grant for Scientific Research (MIS) "Learning
from Pairwise Comparisons".

1 Introduction

We consider the distributed optimization problem in which a set of agents V = {1, . . . , n} is connected through a
communication network and works together to minimize the average of their local functions fi : Rd → R,

min
x ∈ Rd

f(x) = 1
n

n∑
i=1

fi(x), (1)

Each agent i performs local computation on its own local function fi and exchanges local information with
its neighbors to update its own guess xi of the solution. The agents all want to come to an agreement on
the minimizer x∗ of the global function f . One of the first methods proposed to solve (1) is the distributed
(sub)gradient descent (DGD) [19] where agents successively perform an average consensus step (2) and a local
gradient step (3):

yk
i =

n∑
j=1

wk
ijxk

j , for i = 1, . . . , n, (2)

xk+1
i = yk

i − αk∇fi(xk
i), for i = 1, . . . , n, (3)

for given step-sizes αk > 0 and matrices of weights W k = [wk
ij] ∈ Rn×n, typically assumed symmetric and with

rows and columns summing to one. We call such matrices averaging matrices.
▷ Definition 1. We say that a matrix W ∈ Rn×n is an averaging matrix if
1. W T = W , (Symmetry)
2. W1 = 1 and 1T W = 1T , (Averaging Consensus)

© Sebastien Colla & Julien M. Hendrickx;
licensed under Creative Commons License Attribution 4.0 International

Draft paper as of March 18, 2024

https://creativecommons.org/licenses/by/4.0/
https://ojmo.centre-mersenne.org

2 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

This paper focuses on symmetric averaging matrices, but our results could be extended to non-symmetric ones.
There are many other methods combining gradient sampling and consensus steps. We call AD the set of all these
decentralized optimization algorithms.
▷ Definition 2 (Class of distributed optimization methods AD). We define AD as the set of all the decentralized
optimization algorithms built based on the three following types of operations and which may involve an arbitrary
number of local variables:
(i) Gradient: Each agent samples the (sub)gradient of its local function at any of its local variables xi

gi = ∇fi(xi) for i = 1, . . . , n.

(ii) Consensus: All the agents perform a consensus step on any of their local variables xi

yi =
n∑

j=1
wijxj , for i = 1, . . . , n. (4)

with weights wij given by an averaging matrix W . Different consensus steps can possibly use the same
averaging matrix.

(iii) Linear Combinations: Each agent declares that a linear combination of its local variables holds, with
coefficients known in advance. Depending on the settings, the linear coefficients should be identical for all
agents (coordinated) or not (uncoordinated).

This class of methods includes many algorithms. These three operations even allow implicit (or proximal) updates,
e.g. updates where the point at which the gradient is evaluated is not explicitly known:

xk+1
i = xk

i − αk∇fi(xk+1
i) for all i = 1, . . . , n.

Among the primal-based algorithms, AD includes, for example, DGD [19], DIGing [17], EXTRA [24], NIDS [15],
Acc-DNGD [21], OGT [27] and their variations [10,14,18, 35]. Among the dual-based algorithms, AD includes,
for example, the Distributed Dual Dveraging [7], MSDA [22], MSDP [23], APAPC [11], OPTRA [34], APM [13]
and others [32]. The classical decentralized version of ADMM [2,26] does not fit in AD because the agents do
not explicitly use averaging consensus when interacting, but the weighted decentralized version of ADMM [16]
does fit in AD.

In optimization, the assessment of the performance of a method is generally based on worst-case guarantees.
Accurate worst-case guarantees on the performance of decentralized algorithms are crucial for a comprehensive
understanding of how their performance is influenced by their parameters and the network topology, which
then allows to correctly tune and compare the different algorithms. However, deriving such bounds can often
be a challenging task, requiring a proper combination of the impact of the optimization component and of the
communication network, which may result in conservative or highly complex bounds. Moreover, theoretical
analyses often require specific settings that differ from one algorithm to another, making them difficult to
compare.

1.1 Contributions and paper organization
In this work, we propose a simplified and unified way of analyzing the worst-case performance of distributed
optimization methods from AD, based on the Performance Estimation Problem (PEP) framework and the
exploitation of agent symmetries in the problem. This allows us, in particular, to identify and characterize
situations in which performance is independent of the number of agents n in the network, in which case the
performance computation can be reduced to the basic case with two agents.

The Performance Estimation Problem (PEP) formulates the computation of a worst-case performance
guarantee as an optimization problem itself, by searching for the iterates and the function leading to the largest
error after a given number of iterations of the algorithm. The PEP approach has led to many results in centralized
optimization, see e.g. [29,30], and we have recently proposed a formulation tailored for decentralized optimization
that searches for the worst local iterates and local functions for each agent, see [5] (and its preliminary conference
version [3]). This formulation considers explicitly each agent in the PEP and so the size of the optimization
problem increases with the number of agents n, and the results are valid only for a given n. We therefore call
this formulation the agent-dependent formulation. Section 2 summarizes this formulation and adds some new
results and interpretations. To obtain guarantees that are valid for any symmetric and stochastic averaging

Sebastien Colla & Julien M. Hendrickx 3

matrix, with given bounds on the eigenvalues, in [5] we proposed a way of representing a consensus step (4) in
PEP via necessary constraints that consensus variables xi and yi should satisfy. Subsection 2.2 describes these
constraints and analyzes their sufficiency. We first show that no convex description can tightly describe the
consensus iterates, and then we characterize the generalized steps that are tightly described by the proposed
convex constraints. This helps explain why these necessary conditions enable accurate performance calculations
in PEP, as observed in [5].

In [5], we have observed that for many performance settings, the worst-case guarantees obtained with PEP
are independent of the number of agents, while the PEP problems are not. This motivates us to find compact
ways of formulating the agent-dependent PEP. We have performed a first attempt in [4], where we built a
relaxation of the problem whose size is independent of the number of agents n. In particular, the relaxation does
not exploit separability of the objective function f(x) in (1). While the relaxation in [4] gives good worst-case
bounds, it remains an open question whether the equivalence with the agent-dependent formulation holds and
how to interpret the resulting worst-case solution for the decentralized problem. In this paper, we provide an
intuitive and systematic way of exploiting the agent symmetries in PEP to make the problem compact, with a
size independent of the number of agents. In Section 3, we define equivalent agents in a PEP for decentralized
optimization, and we leverage the convexity of the PEP to show that we can restrict it to solutions symmetrized
over equivalent agents, without impacting its worst-case value. Section 4 focuses on the case where all the agents
are equivalent, meaning none of them play a specific role in the algorithm or the performance evaluation. In
that case, we show that the agent-dependent PEP can be written compactly, i.e. with an SDP whose size is
independent of n. Moreover, we show that the worst-case value of this compact formulation is also independent
of n in many common performance settings of distributed optimization which are scale-invariant. This result
is particularly powerful since it allows determining situations where the performance analysis of a distributed
algorithm can be reduced to the fundamental case with only two agents. We further leverage agent equivalence
to draw general conclusions about the symmetry of worst-case local functions and iterates in decentralized
algorithms.

Then, Section 5 generalizes the results from Section 4 to situations where there are several equivalence
classes of agents in the PEP, leading to a compact PEP formulation whose size only depends on the number
of equivalence classes m, and not directly on the total number of agents n. Indeed, while many performance
estimation problems for decentralized optimization have all agents equivalent, there are more complex ones
that involve multiple equivalence classes of agents, for example, when different groups of agents use different
(uncoordinated) step-sizes, function classes, initial conditions, or even different algorithms. It can also happen
that the performance measure focuses on a specific group of agents, e.g. the performance of the worst agent.
Efficiently and accurately assessing distributed optimization algorithm performance in such advanced settings
would enhance comprehensive analysis and deepen our understanding of their behavior.

We demonstrate this in Section 6, where we analyze the performance of the EXTRA algorithm [24] in
advanced settings and its evolution with the number of agents in the problem. We choose EXTRA because it is
a well-known decentralized optimization algorithm, one of the first to converge with constant steps, and has
served as an inspiration and building block for other algorithms. Our analysis of EXTRA first confirms our
theoretical results predicting which performance settings would lead to agent-independent guarantees. It also
reveals that the performance of the worst agent scales sublinearly with n and can benefit from an appropriate
step-size decrease with n. Inspired by statistical approaches, we go further by analyzing the 80-th percentile of
the agent performance, i.e. the error at or below which 80% of the agents fall in the worst-case scenario. This
performance measure presents a better dependence on the number of agents n than the performance of the
worst agent and quickly reaches a plateau when n increases, which can be validated by solving compact PEP for
n → ∞. To the best of our knowledge, such percentile analysis is beyond the reach of current classical analysis
techniques. Finally, we analyze the performance of EXTRA under agent heterogeneity in the classes of local
functions and observe that it does not depend on the total number of agents but only on the proportion of each
class of functions that are present in the system.

1.2 Related work
An alternative approach for automatic computation of performance guarantees of optimization method is
proposed in [12] and relies on the formulation of optimization algorithms as dynamical systems. Integral
quadratic constraints (IQC), generally used to obtain stability guarantees on complex dynamical systems, are
adapted to provide sufficient conditions for the convergence of optimization methods and deduce numerical

4 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

bounds on the convergence rates. This theory has been extended to decentralized optimization in [28]. The
methodology analyzes the convergence rate of a single iterate, which is beneficial for the problem size that
remains small, and that is also independent of the number of agents in the decentralized case. However, this does
not allow dealing with non-geometric convergences, e.g. on smooth convex functions, nor to analyze cases where
a property applies over several iterations, e.g. when averaging matrices are constant. These are possible with
the PEP approach which computes the worst-case performance on a given number t of iterations, but solving
problems whose size grows with t. Moreover, the current IQC approach only applies to settings where all the
agents are equivalent, which is not the case, for example, if we want to analyze the performance of the worst
agent. In this work, we propose a practical way, via the PEP approach, to compute performance where there
are several equivalence classes of agents. This expands the range of situations we can automatically analyze
efficiently in decentralized optimization, including more complex or realistic settings.

1.3 Notations

Let xk
i ∈ Rd denote the k-th local variable x of agent i. The local variable of all the agents can be stacked

vertically in xk ∈ Rnd:

xk =

xk
1
...

xk
n

 ,

We can also gather different iterates k = 0, . . . , t in a matrix X ∈ Rnd×t+1:

X =
[
x0 . . . xt

]
.

These vector notations apply to any variables that are used in the decentralized algorithms and assume that
the local variables exist for each agent and each iteration, but our work also applies if the variables are not
defined for all agents or all iterations of the algorithm. Furthermore, our approach also applies if there is no clear
concept of iterations. Using these vector notations, we can write the consensus step (4) for all agents at once as

yk = (W k ⊗ Id)xk, for k = 0, . . . , t

where W k ∈ Rn×n is the averaging matrix used in the consensus, Id denotes the identity matrix of size d and ⊗
the Kronecker product. This latter notation means that we apply the same matrix W k for each dimension of the
agent variables. Moreover, if the same averaging matrix W is used for different consensus steps (k = 0, . . . , t), we
can write all the consensus steps at once using matrix notations:

Y = (W ⊗ Id)X. (5)

The ith largest eigenvalues of a matrix W is denoted λi(W). The agent average of iterate xk ∈ Rnd is denoted
xk ∈ Rd and is defined as xk = 1

n

∑n
i=1 xk

i . We can also gather the agent average of different iterates k = 0, . . . , t

in a matrix X ∈ Rd×t+1: X =
[
x0 . . . xt

]
. Finally, 1 is the vector full of 1.

2 Agent-dependent performance estimation problem for distributed optimization

2.1 Performance Estimation Problem (PEP) framework

To obtain a tight bound on the performance of a distributed optimization algorithm A, the conceptual idea is
to find instances of local functions and starting points for all agents, allowed by the setting considered, that
give the largest error after a given number t of iterations of the algorithm. The performance estimation problem
(PEP) formulates this idea as a real optimization problem that maximizes the error measure P of the algorithm

Sebastien Colla & Julien M. Hendrickx 5

result, over all possible functions and initial points allowed [6]:

w(Sn) = max
x∗,{xk

i
,yk

i
,fi}i∈V

P(fi, x0
i , . . . , xt

i, x∗) e.g.= 1
n

n∑
i=1

(
fi(xt) − fi(x∗)

)
(6)

s.t. xk
i , yk

i from algorithm A,
e.g. DGD (2)-(3)

for i ∈ V, k = 1, . . . , t, (algorithm)

fi ∈ F , for i ∈ V (class of functions)
x0

i satisfies I,
e.g. ∥x0

i − x∗∥2 ≤ 1, i ∈ V
(initial conditions)

1
n

n∑
i=1

∇fi(x∗) = 0, (optimality condition for (1))

where Sn is the performance evaluation setting which specifies the number of agents n, the algorithm A, the
number of steps t, the performance criterion P, the class of functions F for the local function, the initial
conditions I and the class of averaging matrices W that can be used in the algorithm:

Sn = {n, A, t, P, F , I, W}.

We assume here that the local functions all belong to the same function class. This assumption is usually done in
the literature but is not necessary in this PEP formulation. The problem can also have other auxiliary iterates
as variables if needed for the analyzed algorithm. Here we have chosen to show auxiliary iterates yk

i which are
the results of the consensus steps (4) that may be used at each iteration of the algorithm.

The optimal value of problem (6), denoted w(Sn), gives by definition a tight worst-case performance bound
for the given setting Sn. Moreover, the optimal solution corresponds to an instance of local functions and initial
points actually reaching this upper bound, which can provide very relevant information on the bottlenecks
faced by the algorithm. Solving a PEP such as (6) is in general not easy because the problem is inherently
infinite-dimensional, as it contains continuous functions fi among its variables. Nevertheless, Taylor et al. have
shown [29, 30] that PEPs can be formulated as a finite semidefinite program (SDP) and can thus be solved
exactly, for a wide class of centralized first-order algorithms and different classes of functions. The reformulation
techniques developed for classical optimization algorithms can also be applied for distributed optimization, as
detailed in [5]. In what follows, we briefly explain how to reformulate the problem (6) into an SDP. One of
the differences in PEP for distributed optimization is that the problem must find the worst-case for each of
the n local functions fi and the n sequences of local iterates x0

i . . . xt
i (i = 1, . . . , n). To render problem (6)

finite, for each agent i, rather than considering its local function fi as a whole, we only consider the discrete set
{
(
xk

i , gk
i , fk

i

)
}k∈I={0,...,t,∗} of local iterates xk

i together with their local gradient-vectors gk
i and local function

values fk
i . We then impose interpolation constraints on this set to ensure its consistency with an actual function

fi ∈ F , in the sense that the set is F-interpolable: there exists a function fi ∈ F such that fi(xk
i) = fk

i and
∇fi(xk

i) = gk
i . Such interpolation constraints are provided for many classes of functions in [29, Section 3], such

as the class L-smooth and µ-strongly convex functions.
▷ Proposition 1 (Interpolation constraints for Fµ,L [29]). Let I be a finite index set and Fµ,L the set of L-smooth
and µ-strongly convex functions. A set of triplets {(xk, gk, fk)}k∈I is Fµ,L-interpolable if and only if the following
conditions hold for every pair of indices k ∈ I and l ∈ I:

fk − fl − gT
l (xk − xl) ≥ 1

2(1 − µ/L)

(
1
L

∥gk − gl∥2 + µ∥xk − xl∥2 − 2 µ

L
(gk − gl)T (xk − xl)

)
.

Then, all the constraints from (6) can be expressed in terms of {yk
i , xk

i , gk
i , fk

i }k∈I={0,...,t,∗}. When the
averaging matrix W is given, i.e. M = {W}, the algorithm constraints simply consist of linear constraints
between these variables. The optimality condition for (1) can be expressed as a linear constraint on the local
gradients at x∗. The performance criterion, the initial conditions, and the interpolation constraints are usually
quadratic and potentially non-convex in the local iterates and local gradients but they are linear in the scalar
products of these and in the function values. Hence, letting the decision variables of the PEP be these scalar
products and the function values, one can reformulate it as a semi-definite program (SDP) which can be solved
efficiently. For this purpose, we define a vector of functions values F and a Gram matrix G that contains scalar
products between all vectors, e.g. the local iterates yk

i , xk
i ∈ Rd and the local gradients vectors gk

i ∈ Rd.

F = [fk
i]i∈V,k∈I={0,...,t,∗}, G = P T P, with P =

[
yk

i xk
i gk

i

]
i∈V,k∈I

. (7)

6 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

By definition, G is symmetric and positive semidefinite. Moreover, every matrix G ⪰ 0 corresponds to a matrix
P whose number of rows is equal to rank G. It has been shown in [29] that the reformulation of a PEP, such as
(6), with G as variable is lossless provided that we use necessary and sufficient interpolation constraints for F
and that we do not impose the dimension d of the worst-case, and indeed look for the worst-case over all possible
dimensions (imposing the dimension would correspond to adding a typically less tractable rank constraint on G).
The resulting SDP-PEP takes thus the form of

w(Sn) = max
F,G

P(F, G) (8)

s.t. G ⪰ 0,

F, G satisfy algorithm constraints for A
interpolation constraints for F ,

initial conditions I,

optimality condition for (1).

Such an SDP formulation is convenient because it can be solved numerically to global optimality, leading to a
tight worst-case bound, and it also provides the worst-case solution over all possible problem dimensions. We
refer the reader to [29] for more details about the SDP formulation of a PEP, including ways of reducing the size
of matrix G. However, the dimension of G always depends on the number of iterations t, and on the number of
agents n.

From a solution G, F of the SDP formulation, we can construct a solution for the variables {yk
i , xk

i , gk
i , fk

i }i∈V,k∈I ,
e.g. using the Cholesky decomposition of G. For each agent i ∈ V , its resulting set of points satisfies the interpo-
lation constraints, so we can construct its corresponding worst-case local function from F interpolating these
points. Proposition 2 below states sufficient conditions under which a PEP on a distributed optimization method
can be formulated as an SDP. These conditions are satisfied in many PEP settings, allowing to formulate and
solve the SDP PEP formulation for any distributed first-order methods from AD, with many classes of local
functions, initial conditions, and performance criteria, see [29], [5]. The proposition uses the following definition.

▷ Definition 3 (Gram-representable [29]). Consider a Gram matrix G and a vector F , as defined in (7). We say
that an expression, such as a constraint or an objective, is linearly (resp. LMI) Gram-representable if it can be
expressed using a finite set of linear (resp. LMI) constraints or expressions involving (part of) G and F .

▷ Proposition 2 ([29, Proposition 2.6]). Let w(Sn = {n, A, t, P, F , I, W}) be the worst-case performance of the
execution of t iterations of distributed algorithm A with n ≥ 2 agents, with respect to the performance criterion
P, valid for any starting point satisfying the set of initial conditions I, any local functions in a given set of
functions F and any averaging matrix in the set of matrices W. If A, P, I and interpolation constraints for F
and for W are linearly (or LMI) Gram representable, then the computation of w(Sn) can be formulated as an
SDP, with G ⪰ 0 and F as variables, see (8).
▷ Remark. In [29], Definition 3 and Proposition 2 were only formulated for linearly Gram-representable
constraints, but their extension to LMI Gram-representable constraints are direct and were already introduced
in [5] in which LMI constraints are used to represent consensus steps in PEP.

As briefly mentioned, when the set of possible averaging matrices W contains only one given matrix W , i.e.
we know the averaging matrix used, the PEP framework presented here is complete and provides worst-case
bounds specific to this value of W . However, the literature on distributed optimization generally provides bounds
on the performance of an algorithm that are valid over a larger set of averaging matrices W, typically based on
its spectral properties, see [20] for a survey. Such bounds allow better characterization of the general behavior of
the algorithm and can be applied in a wider range of settings. Obtaining such bound with PEP requires to have
a tractable representation of the set of all pairs of variables {(xk, yk)} that can be involved in consensus steps
with the same matrix from the given matrix class. Our previous work [5] proposes and uses necessary constraints
for describing the set of symmetric and doubly-stochastic matrices with a given range on the non-principal
eigenvalues. The next section describes these constraints and analyzes their sufficiency.

Sebastien Colla & Julien M. Hendrickx 7

2.2 Representation of consensus steps in PEP

We consider the following set of symmetric averaging matrices, for a fixed number of agents n ≥ 2 and fixed
bounds λ−, λ+ ∈ (−1, 1) on the non-principal eigenvalues:

W(λ−, λ+) =


W T = W

W ∈ Rn×n : λ1(W) = 1, v1(W) = 1/
√

n

λ− ≤ λn(W) ≤ · · · ≤ λ2(W) ≤ λ+

 . (9)

Such a set is often used to derive theoretical bounds on distributed algorithms [20]. You may notice that it
is not restricted to non-negative matrices, even if the literature often assumes non-negativity through doubly-
stochasticity. We motivate this choice by two arguments. Firstly, non-negativity is not needed for convergence of
pure consensus steps [33]. Secondly, among results using doubly-stochasticity, we found no results exploiting
the non-negativity of the matrix, see e.g. [15,20,24]. Such results are thus about generalized doubly-stochastic
matrices [9], which refers to matrices whose rows and columns sum to one, as the ones contained in W(λ−, λ+).

This section first shows why there is no Gram representation of the consensus steps using a matrix from the
set W(λ−, λ+), which would have allowed integrating them in an SDP PEP (see Proposition 2). Secondly, we
present a relaxation to obtain a Gram-representable description of such consensus steps and we characterize the
set of matrices that are tightly described using this description.

2.2.1 The intractable quest for tightness

It would be ideal to find necessary and sufficient conditions for a set of pairs {(xk, yk)} to be W(λ−, λ+)-
interpolable, see Definition 4. Moreover, the conditions should be Gram-representable, i.e. linear in the scalar
products of xi and yi, to be able to use them in an SDP PEP formulation (see Proposition 2).
▷ Definition 4 (W(λ−, λ+)-interpolability). Let I be a set of indices of consensus steps. A set of pairs {(xk, yk)}k∈I

is W(λ−, λ+)-interpolable if,

∃W ∈ W(λ−, λ+) : yk = (W ⊗ Id)xk for all k ∈ I.

In this subsection, we will show, by a non-convexity argument, that there are no tight conditions for W(λ−, λ+)-
interpolability that are Gram-representable.
▷ Theorem 3. There is no Gram-representable necessary and sufficient conditions for W(λ−, λ+)-interpolability
of a set of pairs of variables {(xk, yk)}k∈I .
The proof of this theorem relies on a lemma showing the non-convexity of the set of Gram matrices we are
considering. To define this set properly, we consider matrices PX , PY ∈ Rd×nt aggregating consensus iterates of
n agents over t consensus steps.
▷ Definition 5 (G(λ−, λ+)). We define G(λ−, λ+) as the set of symmetric and positive semi-definite Gram matrices
of the form

Gc =
[
P T

XPX P T
XPY

P T
Y PX P T

Y PY

]
,

where PX =
[
x0

1 . . . x0
n . . . xt

1 . . . xt
n

]
∈ Rd×nt,

PY =
[
y0

1 . . . y0
n . . . yt

1 . . . yt
n

]
∈ Rd×nt,

such that the set of pairs {(xk, yk)}k=1,...,t is W(λ−, λ+)-interpolable.
In practice, in the PEPs, Gram matrices can involve other variables than those of the consensus (e.g. gradients).
We can therefore see Gc as a submatrix of the Gram matrix with all the scalar products related to consensus
steps.
▷ Lemma 3.1. Let λ− < λ+ ∈ (−1, 1). The set G(λ−, λ+) is non-convex.

Proof. We build two Gram matrices G1, G2 ∈ G(λ−, λ+) and show that their combination G3 = 1
2 (G1 + G2) is

not in G(λ−, λ+). We build a counter-example for one consensus step, i.e. for t = 1, and then we explain why
it can also be used for t > 1. In the set G(λ−, λ+), there is no constraint on the rank d of the matrices, so we

8 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

choose to build G1 and G2 with rank d = 1, as follows

let x =


n

0
...
0

 ∈ Rn, [W1]ij =
{

1+(n−1)λ−

n for i = j
1−λ−

n for i ̸= j
[W2]ij =

{
1+(n−1)λ+

n for i = j
1−λ+

n for i ̸= j
,

and y1 = W1x =


1 + (n − 1)λ−

1 − λ−

...
1 − λ−

, y2 = W2x =


1 + (n − 1)λ+

1 − λ+

...
1 − λ+

 (10)

we build G1 and G2 as G1 =
[

xxT xyT
1

y1xT y1yT
1

]
, G2 =

[
xxT xyT

2
y2xT y2yT

2

]
.

The eigenvalues of W1 are {λ−, . . . , λ−, 1}, and those of W2 are {λ+, . . . , λ+, 1}, so that W1, W2 ∈ W(λ−, λ+).
Therefore, by construction, both pairs (x, y1) and (x, y2) are W(λ−, λ+)-interpolable, and so G1 and G2 are in
G(λ−, λ+), and can be combined as

G3 = 1
2(G1 + G2) =

[
xxT 1

2 x(y1 + y2)T

1
2 (y1 + y2)xT 1

2 (y1yT
1 + y2yT

2)

]
=
[
P T

X3
PX3 P T

X3
PY3

P T
Y3

PX3 P T
Y3

PY3

]
. (11)

We show that, for any dimension d3 > 0, there is no PX3 , PY3 ∈ Rd3×n satisfying (11) and such that G3 ∈ G(λ−, λ+).
Let us proceed by contradiction. Suppose there is some PX3 , PY3 satisfying (11) and

P T
Y3

= W3P T
X3

, for W3 ∈ W(λ−, λ+). (12)

Then, the block P T
X3

PX3 = xxT has rank one, because x ∈ Rn, and thus the block P T
Y3

PY3 , which can be
expressed as P T

Y3
PY3 = W3P T

X3
PX3W3 using (12), also has rank one1. However, the block is also defined as

P T
Y3

PY3 = 1
2 (y1yT

1 + y2yT
2) from (11), which has rank 2 for any λ− ≠ λ+ ∈ (−1, 1), because vectors y1 and y2

(10) are linearly independent in that case. By this contradiction argument, we have proved that G3 = 1
2 (G1 + G2)

is not in G(λ−, λ+), meaning that this set is not convex for t = 1.
When we consider multiple consensus steps using the same matrix, i.e. when t > 1, the counter-example

developed above for t = 1 can still be chosen for one of the steps, and the Gram matrices G1, G2, and G3 would
then be submatrices of the Gram matrices in G(λ−, λ+), showing the non-convexity of G(λ−, λ+) for t > 1 as
well. ◀

2.2.2 A relaxed formulation
In previous work [5], necessary constraints have been used to represent the effect of consensus steps in PEPs.
These constraints describe a convex set of Gram matrices that contains the non-convex set G(λ−, λ+), and can
therefore be exploited in PEP to derive upper bounds on worst-case performance of distributed algorithms.
However, the precise meaning of these constraints was not known. In this subsection, we show that these
constraints correspond to tight interpolation constraints for a larger class of steps, containing the consensus step
as a particular case.

In what follows, we assume X, Y ∈ Rnd×t to be the t points linked by a symmetric linear operator Y = MX

that preserves the projection of their columns onto a given subspace B, denoted respectively X// and Y//, i.e.
Y// = X//. We consider the decomposition of matrices of points X and Y in two orthogonal terms:

X = X// + X⊥ and Y = Y// + Y⊥,

where Y⊥, X⊥ ∈ Rnd×t are obtained by projecting each column of X and Y on the orthogonal subspace B⊥.
Therefore, the described matrix step acts on both terms as follows:

Y = MX = M(X// + X⊥) = X// + MX⊥ ⇔ Y// = X// and Y⊥ = MX⊥.

Consensus steps (5) with symmetric and generalized doubly-stochastic averaging matrices (9) are particular cases
of these general matrix steps where the preserved subspace is the consensus subspace (see Definition 6). Indeed,

1 This is due to rank(AB) ≤ min(rank(A), rank(B)).

Sebastien Colla & Julien M. Hendrickx 9

a consensus step always preserves the agent average; which corresponds to the projection on the consensus
subspace: Y = X. Moreover, consensus steps (5) require a specific shape for matrix M = W ⊗ Id, to ensure it
applies the same block matrix W ∈ Rn×n independently to each dimension of the variables.
▷ Definition 6 (Consensus subspace). The consensus subspace of Rnd is denoted C and is defined as

C =
{

x ∈ Rnd | x1 = · · · = xn ∈ Rd
}

.

The dimension of C is |C| = d. The orthogonal complement of C is denoted C⊥ and has dimension |C⊥| = (n − 1)d:

C⊥ =
{

x ∈ Rnd | xT y = 0, for all y ∈ C
}

.

Formally, we assume the matrices M to be part of the following set

MB
(λ−, λ+) =


MT = M

M ∈ Rnd×nd : λ1(M) = · · · = λ|B|(M) = 1, with eigenvectors forming a basis of B
λ− ≤ λnd(M) ≤ · · · ≤ λ|B|+1(M) ≤ λ+

 .

As in W(λ−, λ+), we impose symmetry of the matrix, which allows working with real eigenvalues. Extension
to non-symmetric averaging matrices would require defining matrix sets W(λ−, λ+) and M(λ−, λ+) based on
singular values. We now provide tight interpolation constraints for this set M(λ−, λ+) of symmetric matrices.
▷ Definition 7 (MB

(λ−, λ+)-interpolability). Let I be a finite set of indices of matrix steps and S be a subspace of
Rnd. A set of pairs of points {(xk, yk)}k∈I is MB

(λ−, λ+)-interpolable if,

∃M ∈ MB
(λ−, λ+) : yk = Mxk for all k ∈ I.

In this definition, the pairs of points {(xk, yk)}k∈I are all linked by the same matrix M ∈ M(λ−, λ+). Thus,
settings or algorithms using different matrices work with different sets of pairs of points. This definition is related
to the interpolation of a symmetric linear operator, developed in [1]. In this paper, we focus on linear operators
preserving a given subset B, which can be used to represent consensus steps. Based on results from [5] and [1],
we give necessary and sufficient conditions to have MB

(λ−, λ+)-interpolability of a set of pairs of points.
▷ Theorem 4 (MB

(λ−, λ+) interpolation constraints). Let I be a finite set of indices of matrix steps and S a
subspace of Rnd. A set of pairs of points {(xk, yk)}k∈I is MB

(λ−, λ+)-interpolable if, and only if,

X// = Y//, (13)

(Y⊥ − λ−X⊥)T (Y⊥ − λ+X⊥) ⪯ 0, (14)

XT
⊥Y⊥ = Y T

⊥ X⊥, (15)

where X//, Y// ∈ Rnd×t contains columns of X and Y projected onto the subspace B, and X⊥, Y⊥ ∈ Rnd×t the
columns projected on its orthogonal complement B⊥.

Proof. We need to prove that conditions (13), (14) and (15) are necessary and sufficient for the existence of
a matrix M ∈ MB

(λ−, λ+) such that Y = MX. The proof relies on the use of [1, Theorem 3.3] which proved
the necessity and sufficiency of interpolation constraints similar to (14) and (15), for general linear operators,
without any preserved subspace. In our case, we know that the matrix M has no impact on the subspace B and
only acts on the part in B⊥. We thus need to use [1, Theorem 3.3] on this part only. Decoupling both parts can
be done using an appropriate change of variables:

X̃ =
[

X̃//

X̃⊥

]
=
[

QT
//

QT
⊥

]
X = QT X, (16)

where Q = [Q// Q⊥] ∈ Rnd×nd is an orthogonal matrix of change of variables and is split into two sets of columns:
Q// ∈ Rnd×|B| form a basis of the subspace B and Q⊥ ∈ Rnd×|B⊥| a basis of B⊥. The new variable X̃ has thus two
sets of components, X̃// ∈ R|B|×t describing the coordinates along the subspace B, and X̃⊥ ∈ R|B⊥|×t describing

10 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

the coordinates along the orthogonal complement B⊥. By definition, X// and Y// have components only along B
and X⊥ and Y⊥ only along B⊥:

X// = Q

[
X̃//

0

]
, Y// = Q

[
Ỹ//

0

]
, and X⊥ = Q

[
0

X̃⊥

]
, Y⊥ = Q

[
0

Ỹ⊥

]
, (17)

By applying this change of variable to condition (13), we obtain X̃// = Ỹ//. The two conditions are well equivalent
because the change of variable is revertible. By applying this change of variable (17) to conditions (14) and (15),
since Q is orthogonal, i.e. QT Q = I, we obtain

(Ỹ⊥ − λ−X̃⊥)T (Ỹ⊥ − λ+X̃⊥) ⪯ 0,

X̃T
⊥Ỹ⊥ = Ỹ T

⊥ X̃⊥.

As the change of variable is revertible, the two sets of constraints are equivalent. By [1, Theorem 3.3], these
two constraints are necessary and sufficient for the existence of a symmetric matrix M̃⊥ ∈ R|B⊥|×|B⊥| with
eigenvalues between λ− and λ+ such that Ỹ⊥ = M̃⊥X̃⊥. Therefore, we have proved that conditions (13), (14)
and (15) are equivalent to[

Ỹ//

Ỹ⊥

]
=
[
Id 0
0 M̃⊥

] [
X̃//

X̃⊥

]
with M̃⊥ symmetric and λ(M̃⊥) ∈ [λ−, λ+]. (18)

We now need to come back to the initial variables X and Y and characterize the matrix M in terms of M̃⊥. We
can use the (revertible) change of variable (16) to express equation (18) in terms of Y and X

Y = Q

[
Id 0
0 M̃⊥

]
QT X with λ(M̃⊥) ∈ [λ−, λ+].

By splitting Q as Q = [Q// Q⊥], matrix M can be written as

M = Q//Q
T
// + Q⊥M̃⊥QT

⊥ with λ(M̃⊥) ∈ [λ−, λ+].

Since M̃⊥ is symmetric, this expression shows that M is also symmetric. We now show that symmetric matrix
M has |B| eigenvalues equal to 1, with associated eigenvectors Q//. Let v// denote any column of Q//, i.e. any basis
vector of the subspace B, we have well that

Mv// = Q//Q
T
// v// + Q⊥M̃⊥QT

⊥v// = v//.

Indeed, QT
⊥v// = 0 and Q//Q

T
// v// = v//, since v// is a column of Q// which satisfies QT

⊥Q// = 0 and QT
// Q// = I.

The other eigenvalues of M are equal to the ones of M̃⊥. Indeed, Let (v⊥, λ⊥) be a pair of eigenvector
and eigenvalue of matrix M̃⊥ ∈ RB⊥×B⊥ , then (Q⊥v⊥, λ⊥) is a pair of eigenvector and eigenvalue of matrix
M ∈ Rnd×nd. This can be verified easily as

M(Q⊥v⊥) = Q//Q
T
// (Q⊥v⊥) + Q⊥M̃⊥QT

⊥(Q⊥v⊥) = λ⊥Q⊥v⊥,

since QT
// Q⊥ = 0 and QT

⊥Q⊥ = I. ◀

In Theorem 4, we have proved that conditions (13), (14) and (15) are necessary and sufficient for the existence
of a matrix M ∈ MB

(λ−, λ+) such that Y = MX. In the case of consensus steps (5), we can apply Theorem 4 with

B being the consensus subspace C. Indeed, since
(

W(λ−, λ+) ⊗ Id

)
⊂ MC

(λ−, λ+), any set of pairs of points which
is W(λ−, λ+)-interpolable is also MC

(λ−, λ+)-interpolable. The reverse statement does not hold since a matrix
M ∈ MC

(λ−, λ+) can apply different weights to each agent component and may also mix different components
between them, which is not the case for consensus steps of the form (5). This means that Theorem 4 with B = C
provides non-tight interpolation constraints for W(λ−, λ+), leading to potentially non-tight performance bounds
when exploited in PEP for distributed optimization. One can always check the tightness of the PEP solution a
posteriori, by checking if the provided solution is W(λ−, λ+)-interpolable. If successful, this check also recovers
an instance of the worst matrix W ∈ W(λ−, λ+), see [5] for details.

Sebastien Colla & Julien M. Hendrickx 11

While the literature for distributed optimization usually assumes consensus steps of the form y = (W ⊗ Id)x
with W ∈ W(λ−, λ+), the existing theoretical performance guarantees also appear to use non-tight description of
these consensus steps. Indeed, we did not find any theoretical guarantee that exploits the shape (W ⊗ Id) of the
consensus steps. In particular, many results remain valid for generalized steps y = Mx with M ∈ MC

(λ−, λ+)
because many proofs rely on the convergence analysis of the consensus step, which is not impacted by the shape
of M ∈ MC

(λ−, λ+), as shown in Proposition 5. This proposition extends classical results of consensus theory to
matrices M ∈ Rnd×nd that do not have the shape of (W ⊗ Id).
▷ Proposition 5. Let M ∈ MC

(λ−, λ+) ⊂ Rnd×nd with λ−, λ+ ∈ (−1, 1) and x0 ∈ Rnd a vector stacking the
variables x0

i ∈ Rd of each agent. If the vector x0 is updated with a series of general matrix steps xk+1 = Mxk,
then the sequence of vectors xk converges to the agent average consensus vector, i.e. a vector staking n times
the agent average x0 = 1

n

∑n
i=1 x0

i :
lim

k→∞
xk = 1n ⊗ x0.

Proof of Proposition 5. Since M ∈ MC
(λ−, λ+), the matrix admits the following spectral decomposition:

M = V ΣV T , with V1,...,d = (1n ⊗ Id)/√
n,

where V is the orthogonal matrix of eigenvectors of M and Σ the diagonal matrix of eigenvalues of M . We define
a new variable zk = V T xk, for which the matrix step xk+1 = Mxk becomes

zk+1 = Σzk

The d first eigenvalues in Σ are associated with eigenvectors V1,...,d and are equal to 1; all the others are smaller
than 1 in absolute value. Therefore,

lim
k→∞

zk = lim
k→∞

Σkz0 =
[
z0

1 . . . z0
d 0 . . . 0

]T = z̃0,

where vector z̃0 contains the d first entries of z0 and (n − 1)d zeros. Thus, the sequence xk converges to V z̃0

which is the combination of the columns V1,...,d with coefficients given by the d first entries of z0, i.e.

lim
k→∞

xk = lim
k→∞

V zk = V z̃0 = V1,...,d z0
1,...,d.

Finally, by definition of variable z, we have z0 = V T x0, meaning that the d first entries of z0 are given by
z0

1,...,d = V T
1,...,dx0, and therefore:

lim
k→∞

xk = V1,...,dV T
1,...,dx0 = 1

n
(1n1T

n ⊗ Id)x0 = 1n ⊗ x0.
◀

One can show that the interpolation constraints stated in Theorem 4 are LMI Gram-representable when
B = C and by Proposition 2, they can therefore be used in SDP PEP formulations. The main idea is that
the constraints can all be expressed using only the scalar products of the local variables xk

i , yk
i . The detailed

proof is given in [5, Theorem 1] but we can observe that all projection matrices can be expressed based on the
agents variables matrices: the projections X//, Y// ∈ Rnd×t on the consensus subspace, can be computed with the
agent average of X and Y : X// = 1n ⊗ X and Y// = 1n ⊗ Y , with X

k = 1
n

∑n
i=1 xk

i , and the projections on the
orthogonal complement can be computed as X⊥ = X − X// and Y⊥ = X − Y//. These interpolation constraints
can thus be used to define a convex set of Gram matrices, which contains the non-convex set G(λ−, λ+).

In summary, in this section, we have seen that the worst-case performance of t iterations of a decentralized
optimization algorithm from AD can be computed using an SDP reformulation of the Performance Estimation
Problem (PEP) with a size growing with t and the number of agents n (see Proposition 2). When the averaging
matrix W is given, the resulting PEP worst-case bound is tight. When computing a worst-case valid for all
averaging matrices from W(λ−, λ+) (symmetric, generalized doubly-stochastic and with a range on non-principal
eigenvalues), the resulting PEP is a relaxation, which may provide non-tight performance bounds. We have
proved that some form of relaxation is inevitable if we want to obtain a convex formulation (see Theorem 3).
The constraints we provide to represent the consensus steps in PEP allow for more general matrix steps that
can mix components of vectors to which they apply (see Theorem 4). While this is not natural, it does not
alter the convergence of pure consensus, and we do not expect it to be an important source of conservatism in
performance limits. (see Proposition 5). Moreover, the tightness of the PEP solutions can be verified a posteriori.

In the rest of the paper, we will exploit symmetries of agents in this agent-dependent PEP formulation to
obtain equivalent PEP formulations whose size is independent of the number of agents n. We also characterize
conditions under which the resulting worst-case is also independent of n.

12 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

3 Equivalence classes of agents in PEP

To exploit agent symmetries in the agent-dependent PEP, let us define an equivalence relation between agents,
along with the corresponding equivalence classes. These will be used to build our new compact PEP formulation
whose size depends only on the number of equivalence classes.

Let F and G = P T P be a solution of an agent-dependent PEP, described in Section 2. We can order their
elements to regroup them depending on the agent to which they are associated:

F =
[
fT

1 . . . fT
n

]
, where fi =

[
fk

i

]
k∈I

∈ Rq is a vector with the q functions values of agent i, (19)

Similarly, we write P ∈ Rd×np as follows

P =
[
P1 . . . Pn

]
where Pi ∈ Rd×p contains the p vector variables related to with agent i, (20)

e.g. Pi =
[
yk

i xk
i gk

i

]
k∈I

, and the Gram matrix G ∈ Rnp×np is thus defined as

G = P T P =


P T

1 P1 P T
1 P2 . . .

P T
2 P1

. . .
... P T

n Pn

 =


G11 G12 . . .

G21
. . .

... Gnn

 . (21)

Therefore, diagonal block Gii are symmetric and off-diagonal blocks are such that Gij = GT
ji. We assume

that each block Pi (and fi) contains the same type and number of variables for each agent i. The variables
common to all agents, such as x∗, are copied into each agent block Pi. This also covers the case where agents are
heterogeneous and hold different types or numbers of variables since we can always add variables as columns of
Pi (and fi), even if agent i does not use them. Moreover, each agent block Pi (and fi) has the same column
order, so we can work with the same coefficient vectors for each agent. A coefficient vector for a variable x is
denoted ex ∈ Rp, and contains linear coefficients selecting the correct combination of columns in Pi ∈ Rd×p to
obtain vector xi ∈ Rd, i.e. Piex = xi, for any i = 1, . . . , n. This notation allows, for example, to write xT

i xi as
xT

i xi = eT
x P T

i Piex = eT
x Giiex, for any agent i. Similarly, let ef(x) be a vector of coefficients selecting the correct

element in the vector fi such that eT
f(x)fi = fi(xi). These coefficient vectors will be used to explicit our new

PEP formulations in Sections 4 and 5, as well as in Appendix A.
We use this agent blocks notation for F and G to define an equivalence relation between agents in Performance

Estimation Problems (PEP).

▷ Definition 8 (Equivalent agents). Let (F, G) be a feasible solution of an agent-dependent PEP formulation for
distributed optimization (8), written in the form of (19) and (21), and (FΠ, GΠ) be another solution, obtained
after permutation of agents i, j ∈ V in F, G. We define an equivalence relation between the two agents i ∼ j if
both solutions (F, G) and (FΠ, GΠ) are feasible for the PEP and provide the same performance value,

P(F, G) = P(FΠ, GΠ).

Intuitively, this means that equivalent agents have exactly the same role in the algorithm and the performance
setting. By definition, this relation is reflexive, symmetric, and transitive, and thus corresponds well to an
equivalence relation, which induces a partition into equivalence classes.

▷ Definition 9 (Equivalence classes of agents). Let V be a set of n agents. The equivalence relation from Definition
8 implies a partition T of set V into m equivalence classes (or subsets) of agents: T = {V1, . . . , Vm}. Each class
only contains agents that are equivalent to each other. The size of each class Vu is denoted nu. We also denote
the equivalence class of a given agent i by Vui .

Proposition 6 proves the existence of PEP solution for which equivalent agents have equal blocks in the
solution. This will be the building block of our compact PEP formulations in Sections 4 and 5.

▷ Proposition 6 (Existence of symmetric solution of a PEP). Let F ∈ Rnq and G ∈ Rnp×np be any feasible solution
of an agent-dependent PEP formulation for distributed optimization (8), and T = {V1, . . . , Vm} be the partition
of V induced by the equivalence relation from Definition 8. There is a symmetrized agent-class solution (F s

T , Gs
T),

Sebastien Colla & Julien M. Hendrickx 13

with equal blocks for equivalent agents, providing another valid solution for the PEP,

F s
T =

[
(fs

1)T . . . (fs
n)T
]

with fs
i = 1

nui

∑
k∈Vui

fk, for all i ∈ V, (22)

Gs
T =


Gs

11 Gs
12 . . .

Gs
21

. . .
... Gs

nn

 with Gs
ij =


1

nui

∑
k∈Vui

Gkk for i = j,
1

nui
(nui

−1)
∑

k∈Vui

∑
l∈Vui
l ̸=k

Gkl for j ̸= i ∈ Vui
,

1
nui

∑
k∈Vui

Gik, for j ̸= i ∈ V \ Vui
,

(23)

Moreover, this symmetrized solution (F s
T , Gs

T) provides the same performance value as (F, G)

P(F s
T , Gs

T) = P(F, G).

Proof. By definition, any permutation of equivalent agents Π ∈ Rn×n applied on a given PEP solution F , G

provides another valid PEP solution, with the same objective value:

FΠ = F (Π ⊗ Iq), PΠ = P (Π ⊗ Ip), GΠ = P T
Π PΠ = (Π ⊗ Ip)T

G(Π ⊗ Ip).

A permutation of agents corresponds to a permutation of (sets of) columns and then the permutation matrix
multiplies F and P on the right. The Kronecker products ⊗ are used to permute all the variables related to the
same agent at the same time.

Since the PEP problem is linear in F and G, the combination of PEP solutions with the same objective
value will give another PEP solution with the same objective value. We can thus construct a symmetrized PEP
solution with the same objective value as (F, G) by averaging all the possible permuted solutions (FΠ, GΠ). Each
permutation only involves agents from the same equivalence class, and therefore, the average applies to each
class separately:

fs
i = (nui

− 1)!
nui !

∑
k∈Vui

fk = 1
nui

∑
k∈Vui

fk, for all i ∈ V,

Gs
ii = (nui

− 1)!
nui

!
∑

k∈Vui

Gkk = 1
nui

∑
k∈Vui

Gkk for all i ∈ V,

Gs
ij = (nui − 2)!

nui
!

∑
k∈Vui

∑
l∈Vui

l ̸=j

Gkl = 1
nui

(nui
− 1)

∑
k∈Vui

∑
l∈Vui

l ̸=j

Gkl for all i ∈ V and j ̸= i ∈ Vui
,

Gs
ij = (nui

− 1)!
nui

!
∑

k∈Vui

Gik = 1
nui

∑
k∈Vui

Gik for all i ∈ V and j ̸= i ∈ V \ Vui
,

◀

▷ Remark. The blocks composing F s (22) are denoted by fu
A. For the symmetrized Gram matrix Gs (23), we

denote the three types of blocks composing it by Gu
A, Gu

B , and Guv
E , for all equivalence classes u, v = 1, . . . , m.

Blocks Gu
A ∈ Rp×p (for u = 1, . . . , m) correspond to the blocks of the Gram matrix containing the scalar

products between the variables of one agent from Vu. These blocks lie on the diagonal of Gs and are symmetric
by definition.
Blocks Gu

B ∈ Rp×p (for u = 1, . . . , m) correspond to the blocks of the Gram matrix containing the scalar
products between variables of two different agents from the same class Vu. These blocks are symmetric
because they can be written as a sum of symmetric matrices 1

nui
(nui

−1)
∑

k,l∈Vui
,k>l(Gkl + GT

lk). Moreover,
they are only defined for classes with at least 2 agents (nu ≥ 2).
Blocks Guv

E ∈ Rp×p (for u ̸= v = 1, . . . , m) correspond to the blocks of the Gram matrix containing the scalar
products between variables of two agents from different classes Vu and Vv. These blocks are non-symmetric
and are only defined when there are at least 2 different classes of agents (m ≥ 2).
Therefore, we can solve the agent-dependent PEP problem, described in Section 2, restricted to symmetric

solutions of the form of Proposition 6, without impacting the resulting worst-case value. The symmetry in the
solutions allows working with a limited number of variables fu

A, Gu
A, Gu

B, and Guv
E in PEP, depending only

on the (smaller) number of equivalent classes of agents m. This requires reformulating all the elements of the

14 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

agent-dependent PEP (objective and constraints) in terms of these variables. Section 4 shows how to perform
such a reformulation when all the agents are equivalent in the PEP, which occurs in many usual settings. This
leads to a PEP formulation with only one equivalence class and hence whose size is independent of the number of
agents. Section 5 generalizes reformulation techniques from Section 4 to a general number of equivalence classes.

4 Agent-independent PEP formulation when all agents are equivalent

This section focuses on cases where all agents are equivalent.
▷ Assumption 1 (Equivalent Agents). All the agents are equivalent in the Performance Estimation Problem
applied to a distributed algorithm, in the sense of Definition 8. Therefore, there is only one equivalence class
which is V. In other words, this assumption means that all the agents can be permuted in a PEP solution
without impacting its worst-case value and thus no agent plays a specific role in the algorithm or its performance
evaluation.
This assumption is satisfied in many usual performance evaluation settings Sn, for which all agents play an
identical role in the algorithm and its performance evaluation. Under Assumption 1, the symmetrized solution
from Proposition 6 only has a few different blocks that repeat.
▷ Corollary 6.1 (Fully symmetric PEP solutions). When all the agents (n ≥ 2) are equivalent, see Assumption 1,
any PEP solution (F, G) can be fully symmetrized, without impacting its worst-case value:

F s =
[
fT

A . . . fT
A

]
with fA = 1

n

n∑
i=1

fi ∈ Rq, (24)

Gs =


GA GB . . .

GB
. . .

... GA

 with GA = 1
n

n∑
i=1

Gii ∈ Rp×p, and GB = 1
n(n − 1)

n∑
i=1

n∑
j ̸=i

Gij ∈ Rp×p. (25)

Proof. The results follow from applying Proposition 6 with V as the only equivalence class. Since there is only
one equivalence class of agents, the Gram matrix only has two types of blocks, as explained in Remark 3. ◀

We consider the agent-dependent PEP formulation from Section 2, with a given class of averaging matrix,
and we constrain its solution to be fully symmetric, as expressed in (24) and (25), to obtain a compact PEP
formulation with size independent of the number of agents. In a second time, we describe the implications of a
fully symmetrized PEP solution on the worst-case local iterates and functions.

4.1 The PEP formulation restricted to fully symmetric solutions
When all agents are equivalent (Assumption 1), Corollary 6.1 shows that it does not impact the value of the
worst-case but we will see in Theorem 7 that it allows writing the PEP in a compact form since the performance
measure and the constraints can be expressed only in terms of the smaller blocks fA, GA, and GB that are
repeating in F s and Gs. Theorem 7 states sufficient conditions for which a PEP for distributed optimization
can be made compact and for which it provides a worst-case value independent of the number of agents n. The
theorem relies on the following definitions.
▷ Definition 10 (Scale-invariant expression and constraint). In a distributed system with n agents, we call a
Gram-representable expression h scale-invariant if it can be written as a linear combination h =

∑
j cjhj , where

coefficients cj are independent of n and terms hj are any of these three forms, for any variables xi and yj

assigned to agents i and j, including the case xi = yj :

(a) 1
n

n∑
i=1

fi(xi), the average of function values,

(b) 1
n

n∑
i=1

xT
i yi, the average of scalar products between two variables of the same agent,

(c) 1
n2

n∑
i=1

n∑
j=1

xT
i yj , the average over the n2 pairs of agents of the scalar products

between two variables, each assigned to any agent.

A Gram representable constraint h ≤ D, for D ∈ R, is scale-invariant if the expression h is scale-invariant.

Sebastien Colla & Julien M. Hendrickx 15

▷ Remark. The name scale-invariant comes from the fact that, if we duplicate each agent of the system, with
its local variables and its local function, then the value of a scale-invariant expression is unchanged. For example,
the following expressions can be shown, possibly after algebraic manipulations, to be scale-invariant:

1
n

n∑
i=1

(fi(x) − fi(x∗)), 1
n

n∑
i=1

∥xi − x∗∥2,
1
n

n∑
i=1

∥xi − x∥2,

∥∥∥∥∥ 1
n

n∑
i=1

∇fi(xi)

∥∥∥∥∥
2

.

The variables common to all agents, such as x or x∗, can indeed be used in scale-invariant expression because
they are assumed to be copied in each agent set of variables:

xi = x = 1
n

n∑
j=1

xj for all i ∈ V and x∗
i = x∗ for all i ∈ V.

These constraints can then be written with scale-invariant expressions. See Appendix A for details.
▷ Definition 11 (Single-agent expression and constraint). In a distributed system with n agents, we call an
expression h single-agent if it can be written as a linear combination h =

∑
k ckhk(i), where coefficients ck are

independent of n and all terms hk(i) only involve the local variables and the local function of a single agent i. A
constraint h ≤ D, for D ∈ R, is single-agent if the expression h is single-agent.
▷ Remark. When all the agents are equivalent in the PEP, they all share the same single-agent constraints.
Here are examples of single-agent constraints

∥xi − x∗∥2 ≤ 1, for all i ∈ V, ∥∇fi(xi)∥2 ≤ 1, for all i ∈ V.

We can now state Theorem 7 which characterizes the settings where the worst-case value w(Sn) can be
computed (i) in a compact manner for all n ≥ 2 and (ii) independently of the value of n. We remind that
w(Sn = {n, A, t, P, F , I, W}) denotes the worst-case performance of the execution of t iterations of distributed
algorithm A with n agents, with respect to the performance criterion P, valid for any starting point satisfying
the set of initial conditions I, any local functions in the set of functions F and any averaging matrix in the set
of matrices W.

▷ Theorem 7 (Agents-independent worst-case performance). Let n ≥ 2 and W = W(λ−, λ+) with λ− ≤ λ+ ∈ (−1, 1).
We assume that the algorithm A ∈ AD, the performance measure P , the initial conditions I, and the interpolation
constraints for F are linearly (or LMI) Gram-representable. If Assumption 1 holds, meaning that all the agents
are equivalent in the PEP, then
1. The computation of w(Sn) can be formulated as a compact SDP PEP, with fA ∈ Rq, GA ∈ Rp×p and

GB ∈ Rp×p as variables and whose size is independent of the number of agents n.
2. If, in addition, the performance criterion P is scale-invariant and the set of initial conditions I only contains

single-agent constraints, applied to every agent i ∈ V , and scale-invariant constraints, then the resulting SDP
PEP problem and its worst-case value w(Sn) are fully independent of the number of agents n.

▷ Corollary 7.1. Under the conditions stated in part 2. of Theorem 7, a general worst-case guarantee, valid for
any n ≥ 2 (including n → ∞), can be obtained using n = 2:

w(Sn) = w(S2) for all n ≥ 2.

▷ Remark. The conditions of part 2 of Theorem 7, which guarantee agent-independent worst-case performance,
are satisfied for many usual settings, as illustrated in Appendix A.

To prove Theorem 7, we rely on Lemma 7.1 which gives a way of imposing the SDP condition Gs ⪰ 0 solely
based on its block matrices GA and GB .
▷ Lemma 7.1. Let Gs ∈ Rnp×np be a fully symmetrized Gram matrix, as defined in (25), for n ≥ 2. The SDP
constraint Gs ⪰ 0 can be expressed with GA ∈ Rp×p and GB ∈ Rp×p:

Gs ⪰ 0 ⇔ GA + (n − 1)GB ⪰ 0 and GA − GB ⪰ 0. (26)

Proof. We will use the fact that

Gs ⪰ 0 ⇔ zT Gsz ≥ 0 for all z ∈ Rnp.

16 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

Let us separate the vector z ∈ Rnp into n sub-vectors zi (i = 1, . . . , n) that can each be written as the sum of an
average part z ∈ Rp and a centered one z⊥

i :

zi = z + z⊥
i , where z = 1

n

n∑
i=1

zi and
n∑

i=1
z⊥

i = 0.

Using this decomposition of z, together with the definition of Gs (25), we can express zT Gsz as followsz + z⊥
1

...
z + z⊥

n


T


GA GB . . .

GB
. . .

... GA


z + z⊥

1
...

z + z⊥
n

 =
n∑

i=1

n∑
j=1

(z + z⊥
i)T GB(z + z⊥

j) +
n∑

i=1
(z + z⊥

i)T (GA − GB)(z + z⊥
i),

Since
n∑

i=1
z⊥

i = 0, = n2zT (GB)z + nzT (GA − GB)z +
n∑

i=1
(z⊥

i)T (GA − GB)(z⊥
i),

= zT (nGA + n(n − 1)GB)z +
n∑

i=1
(z⊥

i)T (GA − GB)(z⊥
i).

Therefore, zT Gsz ≥ 0 for all z ∈ Rnp when

zT (nGA + n(n − 1)GB)z +
n∑

i=1
(z⊥

i)T (GA − GB)(z⊥
i) ≥ 0, for all z, z⊥

i ∈ Rp such that
n∑

i=1
z⊥

i = 0. (27)

Conditions GA + (n − 1)GB ⪰ 0 and GA − GB ⪰ 0 are sufficient to ensure that (27) is satisfied and hence that
Gs ⪰ 0. To show the necessity of these conditions, let us consider different cases for z and z⊥

i :
When z⊥

i = 0 for all i, then (27) simply imposes that zT (nGA + n(n − 1)GB)z ≥ 0 for all z ∈ Rp, which is
equivalent to GA + (n − 1)GB ⪰ 0.
When z = 0, z⊥

1 = −z⊥
2 = s, for an arbitrary s ∈ Rp, and z⊥

i = 0 for i = 3, . . . , n, then (27) imposes that
sT (GA − GB)s ≥ 0 for all s ∈ Rp, which is equivalent to GA − GB ⪰ 0.

◀

Proof of Theorem 7 (part 1). As detailed in Section 2.2, the set of averaging matrices W(λ−, λ+) has Gram-
representable necessary interpolation constraints, see Theorem 4 applied to the consensus subspace C. Since
A, P, I and interpolation constraints for F are also Gram-representable, Proposition 2 guarantees that the
computation of w(n, A, t, P, I, F , W(λ−, λ+)) can be formulated as an agent-dependent SDP PEP problem (8).
Moreover, since the agents are equivalent, we can restrict to fully symmetric solutions without impacting the
worst-case value (see Corollary 6.1). Hence, all the PEP components can be written in terms of F s and Gs,
which are composed of blocks fA, GA, and GB. Lemma 7.1 shows how the SDP constraint Gs ⪰ 0, can be
expressed in terms of GA and GB . The other elements of the PEP can directly be expressed in terms of fA, GA,
and GB, using the definition of F s and Gs (24) (25), as detailed in Appendix A. Since all the PEP elements
can be expressed in terms of blocks fA ∈ Rq, GA ∈ Rp×p and GB ∈ Rp×p, the problem can be made smaller by
considering them as the variables of the SDP PEP, instead of the full matrix Gs ∈ Rnp×np and vector F s ∈ Rnq.
The size of the problem is thus independent of the number of agents n, but n could still appear as a coefficient
in the constraints or the objective of the problem. ◀

Lemma 7.1 makes the value of n appear as a coefficient, but we can define a change of variables allowing to
remove the dependency on n in the new constraints (26). Let us defined the new matrix variables GC ∈ Rp×p as
follows:

GC = 1
n

(GA + (n − 1)GB). (28)

Moreover, we can also express GC directly based on the blocks of the initial Gram matrix G (21):

GC = 1
n2

n∑
i=1

n∑
j=1

Gij . (29)

While GA contains the average scalar products between local variables of the same agent, and GB the average
scalar products between local variables of different agents, this new block GC contains the average scalar products
between local variables of any two agents. We call GC the collective block matrix. By applying this change of
variables (28) in Lemma 7.1, we obtain conditions that are independent of n:

Sebastien Colla & Julien M. Hendrickx 17

▷ Lemma 7.2 (Constraint Gs ⪰ 0). Let Gs ∈ Rnp×np be a symmetric Gram matrix, as defined in (25). The SDP
constraint Gs ⪰ 0 can be expressed with GA ∈ Rp×p and GC ∈ Rp×p:

Gs ⪰ 0 ⇔ GC ⪰ 0 and GA − GC ⪰ 0.

Proof. The result can be obtained by applying change of variables (28) in the constraints stated in (26). ◀

The new variable GC allows writing many constraints without any dependence on n. Let us state a lemma,
that will be used to prove the second part of Theorem 7.
▷ Lemma 7.3. In an SDP PEP for distributed optimization (8), with equivalent agents (Assumption 1), any
scale-invariant Gram-representable expression can be written independently of n, using variables fA, GA, and
GC .

Proof. By Corollary 6.1, since all the agents are equivalent, we can restrict the PEP to fully symmetric solution
(F s, Gs) from (24)-(25). Since the expression is scale-invariant and Gram-representable (Definition 10), it can
only combine three types of terms, with coefficients independent of n,
(a) The average of function values

1
n

n∑
i=1

fi(xi) = 1
n

n∑
i=1

eT
f(x)fi = eT

f(x)fA, for any j = 1, . . . , n, (30)

where ef(x) is the vector of coefficients such that eT
f(x)fi = fi(xi). The second equality holds because fi = fA

for all i, by definition of the agent-symmetric F s (24).
(b) The average of scalar products between two variables related to the same agent i:

1
n

n∑
i=1

xT
i yi = 1

n

n∑
i=1

eT
x Giiey = eT

x (GA)ey, (31)

where ex (resp. ey) is the vector of coefficients such that Piex = xi (resp. Piey = yi), with Pi defined in (20).
The second equality holds because Gii = GA, by definition of the agent-symmetric Gs (25).

(c) The average over the n2 pairs of agents of the scalar products between two variables each related to any
agent:

1
n2

n∑
i=1

n∑
j=1

xT
i yj = 1

n2

n∑
i=1

n∑
j=1

eT
x Gijey = eT

x (GC)ey, (32)

where the last equality follows from the definition of GC (29).
We have shown that the three types of terms (a), (b), (c) can be written independently of n with fA, GA, and
GC , and so can any Gram-representable and scale-invariant expression. ◀

We are now ready to prove the second part of Theorem 7, about the worst-case value being independent of the
number of agents.

Proof of Theorem 7 (part 2). Under the conditions stated in the theorem (part 2.), we will show that the
SDP-PEP problem can be written, independently of n, with fA, GA, and GC as variables. When all the agents
are equivalent in the PEP, we can restrict to fully symmetric solutions (Corollary 6.1). In that case, Lemma 7.2
shows that SDP constraints Gs ⪰ 0 can be expressed with GA and GC , independently of n.

Then, we prove that, in the symmetrized PEP, any single-agent constraint (Definition 11) can be written with
fA and GA, independently of n. Since the PEP components are all Gram-representable, any of its single-agent
constraints for agent i linearly combines local function values fi(xi) and scalar products of local variables xT

i yi,
with coefficients that are independent of n. Here, xi and yi denote any local vector held by agent i. By definition
of the symmetric F s (24), a local function value term can be expressed with fA as

fi(xi) = eT
f(x)fi = eT

f(x)fA, for any i = 1, . . . , n. (33)

By definition of the symmetric Gram Gs (25), a local scalar product term can be expressed with GA as

xT
i yi = eT

x Giiey = eT
x GAey for any i = 1, . . . , n, (34)

18 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

We have shown that the two types of terms (33) and (34) can be written independently of n with fA, GA, and
so can any Gram-representable single-agent constraint. The resulting constraint, expressed with fA and GA, is
valid for any agent i ∈ V. This is consistent with the equivalent agents assumption, which requires that each
single-agent constraint is applied similarly to every agent i ∈ V. The reformulation of single-agent constraints,
independently of n, applies to the interpolation constraints for F , the algorithm constraints for A ∈ AD (except
consensus), and part of the initial constraints I.

We now show that the other PEP components, see e.g. (6), can also be expressed independently of n. When
agents are equivalent, by Lemma 7.3, any Gram-representable and scale-invariant expression can be expressed
with fA, GA, and GC , independently of n. As explained in the proof of part 1 of the theorem, all the PEP
components are Gram-representable. Therefore, we will simply prove that all the PEP components that cannot
be expressed as single-agent constraints, treated above, can be written with scale-invariant expressions. The
performance measure P and the rest of the initial conditions I are scale-invariant, by assumption of the theorem
statement. The optimality condition for (1), can be written in a Gram-representable manner as∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x∗)

∥∥∥∥∥
2

= 0,

which is well scale-invariant thanks to the 1/n factor. Finally, the interpolation constraints for consensus steps
with averaging matrices from W(λ−, λ+) are given by (13), (14) and (15), from Theorem 4 applied to the consensus
subspace C. In these constraints, notations hide sums over the agents and can be written with Gram-representable
and scale-invariant expressions as

X = Y ⇔

(
1
n

n∑
i=1

(Xi − Yi)
)T
 1

n

n∑
j=1

(Xj − Yj)

 = 0,

(Y⊥ − λ−X⊥)T (Y⊥ − λ+X⊥) ⪯ 0 ⇔ 1
n

n∑
i=1

(
(Yi − Y) − λ−(Xi − X)

)T ((Yi − Y) − λ+(Xi − X)
)

⪯ 0,

XT
⊥Y⊥ − Y T

⊥ X⊥ = 0 ⇔ 1
n

n∑
i=1

(Xi − X)T (Yi − Y) − 1
n

n∑
i=1

(Yi − Y)T (Xi − X) = 0.

where matrices Xi, Yi ∈ Rd×t contain the different consensus iterates xk
i , yk

i ∈ Rd (k = 1, . . . , t) of agent i as
columns. The two last constraints have been multiplied by 1/n to obtain scale-invariant expressions. This does
not alter these constraints that have left-hand sides equal to zero.

In the end, all the PEP components can well be expressed independently of n, with fA ∈ Rq, GA ∈ Rp×p and
GC ∈ Rp×p. We refer to Appendix A for explicit expressions of different possible PEP constraints and objectives.
Therefore, the SDP PEP can be made smaller and fully independent of the number of agents n, by considering
these blocks as variables of the problem, instead of the full matrix Gs ∈ Rnp×np and vector F s ∈ Rnq. ◀

4.2 Impact of agent symmetry on the worst-case solution
▷ Proposition 8. If all the agents are equivalent in the agent-dependent PEP (Assumption 1), then there is a
worst-case instance such that,

the worst-case sequences of iterates of the agents x0
i , . . . , xt

i ∈ Rd (i = 1, . . . , n) are unitary transformations,
i.e. rotations or reflections, of each other:

xk
i = Rix

k
1 with Ri ∈ Rd×d such that RT

i Ri = I, for all i ∈ V and all k.

the worst-case local functions have equal values at their own iterates fi(xk
i) = fj(xk

j) (for all i, j ∈ V and all
k), and can be chosen identical up to a unitary transformation of variables:

fi(x) = f1(RT
i x) for all i ∈ V.

▷ Remark. Proposition 8 is stated for the worst-case iterates, but is also valid for any linear combinations
of columns of Pi (20). Indeed, as detailed in the proof below, we have Pi = RiP1, with Ri ∈ Rd×d such that
RT

i Ri = I, for all i = 1, . . . , n. Moreover, the result is also valid for more than one agent at a time and can be
written for any groups of agents, e.g. for groups of two agents, we have:

[Pi Pj] = R̃ij [P1 P2] with R̃ij ∈ Rd×d such that R̃T
ijR̃ij = I, for all i, j ∈ V and all k.

Sebastien Colla & Julien M. Hendrickx 19

This holds by definition of the fully symmetrized Gram matrix Gs (25) which has equal diagonal blocks: Gii = GA

for all i ∈ V, but also equal off-diagonal blocks: Gij = GB for i ̸= j ∈ V.

Proof. By Corollary 6.1, when the agents are all equivalent, there is a worst-case solution of the agent-dependent
PEP, which is fully symmetric: (F, G) = (F s, Gs). When the solution is agent-symmetric, by definition of Gs

(25), we have

Gii = P T
i Pi = P T

j Pj = Gjj for all i, j ∈ V,

which imposes that matrices of agent variables Pi are all unitary transformations of each other. Without loss of
generality, we can express all the Pi depending on P1:

Pi = RiP1 with RT
i Ri = I, for all i ∈ V.

Matrices Ri are not especially unique. This unitary transformation relation is valid for any column or combination
of columns of Pi and P1, so we have it for iterates and gradient vectors of the agents:

xk
i = Rix

k
1 gk

i = Rig
k
1 with RT

i Ri = I, for all i ∈ V and all k. (35)

Concerning the local functions, by definition of Fs (24), we have, for all i, j ∈ V,

fi = fj where fi ∈ Rq is a vector containing the functions values related to agent i. (36)

In particular, we have well that fi(xk
i) = fj(xk

j), for all i, j ∈ V and all k. Let f1 be a function interpolating the
set of triplets {xk

1 , gk
1 , fk

1 }k=0,...,t. We can choose fi, the local function of agent i, as follows:

fi(x) = f1(RT
i x),

Indeed, fi interpolates well the set of triplets {xk
i , gk

i , fk
i }k=0,...,t since (35) and (36) guarantee that RT

i xk
i = xk

1 ,
RT

i gk
i = gk

1 and fk
i = fk

1 , which are well interpolated by f1 by definition. ◀

5 Compact PEP with multiple equivalence classes of agents

While the agents are all equivalent (Assumption 1) for many common performance evaluation settings, there are
advanced settings for which there are several equivalence classes of agents, see Definition 9. For example, when
different groups of agents use different (uncoordinated) step-sizes, function classes, initial conditions, or even
different algorithms. It can also happen that the performance measure focuses on a specific group of agents,
e.g. the performance of the worst agent. The ability to efficiently and accurately evaluate the performance of
distributed optimization algorithms in such advanced settings would enable a more comprehensive analysis and
deeper understanding of algorithms performance.

In this section, we exploit symmetries in different equivalence classes of agents in PEP, revealed in Proposition
6, to write agent-dependent PEPs in a compact form whose size only depends on the number of equivalence
classes m, and not on the total number of agents n. By Proposition 6, we can solve the agent-dependent PEP
problem, described in Section 2, restricted to symmetric agent-class solutions (F s

T , Gs
T), without impacting

the worst-case value. These symmetric solutions (F s
T , Gs

T), defined in (22) and (23), depend on the partition
T of the set of agents V into equivalence classes: T = {V1, . . . , Vm}, see Definition 9. A symmetrized solution
(F s

T , Gs
T) has equal blocks for equivalent agents. In this section, we order the agents by equivalence classes in the

symmetrized solution (F s
T , Gs

T) (22)-(23) so that we can write it as

F s
T =

[
FV1 . . . FVm

]T where FVu
= 1nu

⊗ fu
A (37)

Gs
T =


Gs

V1
Gs

V1V2
. . . Gs

V1Vm

Gs
V2V1

Gs
V2

...
...

. . .
Gs

VmV1
. . . Gs

Vm


where Gs

Vu
=
{

Gu
A if nu = 1,

1nu
1T

nu
⊗ Gu

B + (Inu
⊗ (Gu

A − Gu
B)) if nu ≥ 2,

and Gs
VuVv

= 1nu1T
nv

⊗ Guv
E ,

(38)

and where fu
A ∈ Rq, Gu

A, Gu
B , Guv

E ∈ Rp×p for u, v = 1, . . . , m are the blocks repeating in F s
T and Gs

T , which have
been defined in Section 3.

20 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

▷ Remark (Limit cases for m).
m = n: When no agents are equivalent, the partition T contains m = n equivalence classes of size 1 and then
the symmetrized agent-class solution F s

T , Gs
T , defined in Proposition 6 is identical to the agent-dependent

PEP solution F , G:

F s
T = F, and Gs

T = G.

Therefore, the resulting PEP formulation is equivalent to the agent-dependent PEP from Section 2 and is
not compact as its size is scaling with m = n.
m = 1: When all the agents are equivalent, the partition T contains m = 1 equivalence class of size n and then
the symmetrized agent-class solution F s

T , Gs
T defined in Proposition 6 is identical to the fully symmetrized

solution F s, Gs defined in Corollary 6.1

F s
T = F s, and Gs

T = Gs.

Therefore, the resulting compact PEP formulation is identical to the one presented in Section 4.

5.1 The PEP formulation restricted to symmetric agent-class solutions
Based on the results from Proposition 6, the definitions of the symmetric PEP solutions F s

T (37) and Gs
T (38),

we now show when and how an agent-dependent PEP can be expressed in a compact form, using only the
blocks fu

A, Gu
A, Gu

B , and Guv
E (u, v = 1, . . . , m) as variables. This will enable efficient computing of w(Sn) for all

n ≥ 2, even when all the agents are not equivalent. We remind that w(Sn = {n, A, t, P, Fu, I, W}) denotes the
worst-case performance of the execution of t iterations of distributed algorithm A with n agents, with respect
to the performance criterion P, valid for any starting point satisfying the set of initial conditions I, any local
functions being each in a given set of function fi ∈ Fui and any averaging matrix in the set of matrices W.

▷ Theorem 9 (Agent-class worst-case performance). Let V be a set of n ≥ 2 agents, T be a partition of V into
m ≤ n equivalence classes of agents, as defined in Definition 8, and W = W(λ−, λ+) with λ− ≤ λ+ ∈ (−1, 1).
If the algorithm A ∈ AD, the performance measure P , the initial conditions I, and the interpolation constraints
for each Fu (u = 1, . . . , m) are linearly (or LMI) Gram representable, then the computation of w(Sn) can be
formulated as a compact SDP PEP, with fu

A, Gu
A, Gu

B , and Guv
E (u, v = 1 . . . , m) as variables and, hence, whose

size only depends on the number of agent equivalence classes m but not directly on the total number of agents n.
▷ Remark. The blocks Gu

B contain scalar products between variables of different, but equivalent, agents.
Therefore, Gu

B does not exist for equivalence classes with only one agent nu = 1. The blocks Guv
E contain scalar

products between variables of different agents that are not equivalent. Therefore, these blocks do not exist when
m = 1. The other blocks fu

A and Gu
A, related to only one agent, always exist.

To prove this theorem, we rely on the following lemma which reformulates the SDP condition Gs ⪰ 0 with the
blocks Gu

A, Gu
B , and Guv

E , and generalizes Lemma 7.1.
▷ Lemma 9.1. Let Gs

T ∈ Rnp×np be a symmetrized agent-class Gram matrix, as defined in (38). The SDP
constraint Gs

T ⪰ 0 can be expressed with Gu
A ∈ Rp×p, Gu

B ∈ Rp×p and Guv
E ∈ Rp×p, u, v = 1 . . . , m:

Gs
T ⪰ 0 ⇔

{
Gu

A ⪰ 0 for all u with nu = 1,
Gu

A − Gu
B ⪰ 0 for all u with nu ≥ 2,

and HT ⪰ 0, (39)

where HT ∈ Rmp×mp is a symmetric matrix composed of m2 blocks of dimension p × p:

Huv
T =

{
nuGu

A + nu(nu − 1)Gu
B , when u = v,

nunvGuv
E , when u ̸= v

. u, v = 1, . . . , m. (40)

Proof. We have that

Gs
T ⪰ 0 ⇔ zT Gs

T z ≥ 0 for all z ∈ Rnp.

The vector z ∈ Rnp can be divided into m sub-vectors of length nup to match with the blocks of matrix Gs
T (see

Proposition 6). We also decompose each sub-vector zu in two terms : the average of zu over the agents from the
class Vu, and the remaining part of z⊥

u :

zu = 1nu
⊗ zu + z⊥

u with zu = 1
nu

(1nu
⊗ Ip)T zu, zu ∈ Rp, z⊥

u ∈ Rnup and zu ∈ Rnup.

Sebastien Colla & Julien M. Hendrickx 21

By definition, we have that 1
nu

(1nu
⊗ Ip)T z⊥

u = 0 for all j = 1, . . . , m. We now compute zT Gs
T z by summing

over each block:

zT Gs
T z =

m∑
u=1

zT
u Gs

Vu
zu +

m∑
u=1

∑
v ̸=u

zT
u Gs

VuVv
zv, (41)

where Gs
Vu

and Gs
VuVv

are defined in (38). In the definition, we have two cases for Gs
Vu

, depending on the value
of nu. In the rest of the proof, we assume nu ≥ 2 and only work with Gs

Vu
= 1nu1T

nu
⊗ Gu

B + (Inu ⊗ (Gu
A − Gu

B)).
The special case for nu = 1, Gs

Vu
= Gu

A, can be adapted to this case nu ≥ 2, by defining Gu
B = 0 when nu = 1.

Here is the development for each term of (41):

zT
u Gs

Vu
zu =

(
1nu

⊗ zu + z⊥
u

)T (1nu
1T

nu
⊗ Gu

B + (Inu
⊗ (Gu

A − Gu
B))
)(

1nu
⊗ zu + z⊥

u

)
= zT

u n2
uGu

Bzu + zT
u nu(Gu

A − Gu
B)zu + (z⊥

u)T (Inu
⊗ (Gu

A − Gu
B))z⊥

u ,

= zT
u (nuGu

A + nu(nu − 1)Gu
B)zu + (z⊥

u)T (Inu
⊗ (Gu

A − Gu
B))z⊥

u ,

zT
u Gs

VuVv
zv =

(
1nu

⊗ zu + z⊥
u

)T (1nu
1T

nv
⊗ Guv

E

)(
1nv

⊗ zv + z⊥
v

)
= zununvGuv

E zv.

Using these expressions, we can write (41) as a sum of quadratic forms

zT Gs
T z = zT HT z +

m∑
u=1

(z⊥
u)T (Inu

⊗ (Gu
A − Gu

B))z⊥
u ,

where z ∈ Rmp is a vector stacking the average vectors zu of each equivalence class (u = 1, . . . , m), and
HT ∈ Rmp×mp is the matrix defined in (40). Therefore, the constraint Gs

T ⪰ 0 can be expressed as

zT HT z +
m∑

u=1
(z⊥

u)T (Inu
⊗ (Gu

A − Gu
B))z⊥

u ≥ 0, for all z ∈ Rmp and all z⊥
u ∈ Rnup s.t. (1nu ⊗ Ip)T z⊥

u = 0 (42)

Conditions HT ⪰ 0 and Gu
A − Gu

B ⪰ 0 (for all u = 1, . . . , m) are sufficient to ensure that (42) is satisfied and
hence that Gs ⪰ 0. To show the necessity of these conditions, let us consider different cases for z and z⊥

u :
When z⊥

u = 0 for all u, then (42) simply imposes that zT HT z ≥ 0 for all z ∈ Rmp, i.e. HT ⪰ 0.
When z = 0, z⊥

u = 0, for all u, except for an arbitrary u = v, then (42) imposes
nv∑
i=1

(z⊥
v (i))T (Gv

A − Gv
B)z⊥

v (i) ≥ 0, for all z⊥
v ∈ Rp such that (1nv

⊗ Ip)T z⊥
v = 0,

where z⊥
v (i) ∈ Rp, for i = 1, . . . , nv, denotes the ith part of vector z⊥

v ∈ Rnvp. Since nv ≥ 2, we can choose
z⊥

v (1) = −z⊥
v (2) = s, for an arbitrary s ∈ Rp, and z⊥

v (j) = 0 for j ≥ 3, so that the above equation becomes
sT (Gv

A − Gv
B)s ≥ 0 for all s ∈ Rp, which is equivalent to Gv

A − Gv
B ⪰ 0. This is valid for an arbitrary

v = 1, . . . , m.
Therefore, by setting Gu

B = 0 when nu = 1, we have well proved the equivalence (39) for the SDP condition
Gs

T ⪰ 0. ◀

Proof of Theorem 9. As detailed in Section 2.2, the set of averaging matrices W(λ−, λ+) has Gram-representable
necessary interpolation constraints, see Theorem 4 applied to the consensus subspace C. Since A, P, I and
interpolation constraints for each Fu are also Gram-representable, Proposition 2 guarantees that the computation
of w(n, A, t, P, I, Fu, W(λ−, λ+)) can be formulated as an agent-dependent SDP PEP problem (8). Moreover, by
Proposition 6, we can restrict the PEP to symmetric agent-class solutions of the form of F s

T (22) and Gs
T (23).

The symmetric solutions F s
T and Gs

T are composed of blocks fu
A, Gu

A, Gu
B , and Guv

E (u, v = 1 . . . , m). Therefore,
all the PEP elements can be expressed in terms of these smaller blocks. Lemma 9.1 shows how the SDP constraint
Gs

T ⪰ 0, can be expressed in terms of Gu
A, Gu

B , and Guv
E . The other elements of the PEP can directly be expressed

in terms of fu
A, Gu

A, Gu
B , and Guv

E (u, v = 1 . . . , m), using the definition of F s
T (22) and Gs

T (25), as detailed in
Appendix A. Since all the PEP elements can be expressed in terms of blocks fu

A ∈ Rq, Gu
A ∈ Rp×p, Gu

B ∈ Rp×p

(when nu ≥ 2) and Guv
E ∈ Rp×p (u, v = 1 . . . , m), the problem can be made smaller by considering them as the

variables of the SDP PEP, instead of the full matrix Gs
T ∈ Rnp×np and vector F s

T ∈ Rnq. The size of the problem
depends on the number m of equivalence classes of agents, and not directly on the total number of agents. ◀

22 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

Theorem 9 shows that the worst-case performance of a distributed optimization method can be computed with
an SDP PEP whose size only depends on the number m of equivalence classes of agents, but not directly on the
total number of agents n. Therefore, if the number of equivalence classes m is independent of n, so is the size of
the problem. However, the problem can depend on n and nu (u = 1, . . . , m) as parameters. Appendix A provides
details to explicitly construct this compact PEP formulation.

Infinitely many agents
If the number m of equivalence classes of agents is independent of n, so is the size of the compact SDP PEP,
and we can solve it efficiently for any value of n. In particular, we can take the limit when n tend to ∞ in the
problem, to compute the worst-case performance of an algorithm on an infinitely large network of agents

lim
n→∞

w
(

n, A, t, P, I, Fu, W(λ−, λ+)

)
,

and to determine if this performance is bounded or not. In all the cases we treated (see Section 6), we observed
that if the worst-case value for n → ∞ is bounded, then it depends on the size proportions of each equivalence
class ρ1, . . . , ρm:

ρu = lim
n→∞

nu

n
.

6 Case study: the EXTRA algorithm

In this section, we leverage our new PEP formulation, based on equivalence classes of agents, to evaluate the
performance of the EXTRA algorithm [24] in advanced settings, and the performance evolution with system size
n. This provides totally new insights into the worst-case performance of the algorithm. The EXTRA method,
described in Algorithm 1, is a well-known distributed optimization method that was introduced in [24] and
further developed in [10,14,25].

Algorithm 1 EXTRA
Choose step-size α > 0, matrices W, W̃ ∈ Rn×n and pick any x0

i ∈ Rd (∀i);
x1

i =
∑

j wijx0
j − α∇fi(x0

i), ∀i;
for k = 0, 1, . . . do

xk+2
i = xk+1

i +
∑

j

(
wijxk+1

j − w̃ijxk
j

)
− α

(
∇fi(xk+1

i) − ∇fi(xk
i)
)
, ∀i;

end for

Authors in [24] recommend to choose W̃ = W +I
2 . This allows computing only one new consensus step at each

iteration. In that case, the sharpest convergence results for EXTRA are given in [14], and summarized below for
the strongly-convex case.
▷ Proposition 10 (Theoretical performance guarantee for EXTRA [14]). We consider the decentralized optimization
problem (1) with optimal solution x∗ ∈ Rd. Under the following assumptions,
1. All local functions fi (i ∈ V) are L-smooth and µ-strongly convex, with 0 ≤ µ ≤ L;
2. The averaging matrix W ∈ W(−λ, λ), with λ ∈ [0, 1), and W̃ = W +I

2 ;
3. The starting points satisfy

∥x0
i − x∗∥2 ≤ R1 and ∥∇fi(x∗)∥2 ≤ R2 for all i = 1, . . . , n;

the EXTRA algorithm with α = 1
4L guarantees that

Ef (t) := f(xt) − f(x∗) ≤ (1 − τ)t LR1 + R2/L

1 − λ
, (functions error) (43)

Ex(t) := 1
n

n∑
i=1

∥xt
i − x∗∥2 ≤ (1 − τ)t R1 + R2/L2

1 − λ
, (iterates error) (44)

where xt = 1
n

∑n
i=1 xt

i and τ = 1
39(L

µ + 1
1−λ) .

Proof. Bounds (43) and (44) directly follows from [14, Corollary 2]. ◀

Sebastien Colla & Julien M. Hendrickx 23

For comparison purposes, our PEP-based analysis of EXTRA will use the same assumptions as in Proposition
10, with L = 1, µ = 0.1, λ = 0.5, R1 = 1 and R2 = 1, unless specified otherwise. Our PEP framework with
equivalence classes of agents also enables the analysis of a variety of settings other than those of Proposition
10, many of which have not yet been studied in the literature. In this section, we explore, in particular, the
performance of the worst agent, the k-th percentile performance, and the performance under agent heterogeneity
in the classes of local functions. Other possible settings include agent heterogeneity in the initial conditions, the
network topology, the algorithm parameters or algorithm execution. For example, it could be used to analyze
the performance of an algorithm when there is a subset of malicious agents.

6.1 Performance of the worst agent
Classical analysis of distributed optimization algorithms often focuses on performance metrics averaged over all
the agents, namely

Ef (t) = f(xt) − f(x∗) or Ex(t) = 1
n

n∑
i=1

∥xt
i − x∗∥2, (45)

where xt = 1
n

∑n
i=1 xt

i. Theoretical guarantees on these criteria for EXTRA are given in (43) and (44) from
Proposition 10. As we have seen in Section 4, these error criteria lead to performance bounds that are independent
of the number of agents n and are therefore easier to treat analytically. However, there exist other relevant
performance measures that are more difficult to analyze and for which there are few or no results. This is the
case of the performance of the worst agent in the network,

Ef,worst(t) = max
i∈V

f(xt
i) − f(x∗) or Ex,worst(t) = max

i∈V
∥xt

i − x∗∥2, (46)

where V = {1, . . . , n} is the set of agents in the network. To analyze these performance measures using PEP, we
need to fix (arbitrarily) the agent that will be the worst one and use it in the PEP objective:

f(xt
1) − f(x∗) or ∥xt

1 − x∗∥2,

101 102

10-2

10-1

100

101

Figure 1 Comparison of the average functional error Ef (45) and the worst functional error Ef,worst

(46) for t = 15 iteration of the EXTRA algorithm and their evolution with the number of agents n

in the system. The plot shows (i) the constant theoretical bound on Ef (43), in black, (ii) the PEP
bounds on the function error of the worst agent Ef,worst, scaling sublinearly with n, in red and (iii)
the PEP bounds for the function error of the average iterate Ef , in blue. The constant step-size α∗

has been optimized for this performance criterion and leads to a bound constant with n (plain blue
line). Step-sizes can also be optimized with respect to Ef,worst(15), leading to smaller step-sizes α∗

w(n)
decreasing as 1√

n
. They improve the guarantee for Ef,worst and its scaling with n but they deteriorate

the corresponding guarantee for Ef (see dashed lines). In this plot, the range of eigenvalues for the
averaging matrix is [−0.5, 0.5] and the local functions are 1-smooth and 0.1-strongly convex.

24 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

The maximization of such objectives ensures that agent 1 will be the one with the largest error (on f or x).
Indeed, if another agent j has a larger error, then the permutation of variables of agents 1 and j in the PEP
solution would lead to another feasible PEP solution with a larger objective. Agent 1 will thus receive a specific
role in the PEP solution and is not equivalent to the n − 1 others. We can formulate a compact PEP using two
equivalence classes of agents

V1 = {1} and V2 = {2, . . . , n},

and applying the theory developed in Section 5.

The worst agent functions error

Figure 1 shows the evolution of Ef and Ef,worst with the size of the network, for 15 iterations of the EXTRA
algorithm. These results have been validated with the agent-dependent PEP formulation (from Section 2) for
small values of n, for verification purposes. However, as n becomes larger, this agent-dependent formulation
becomes computationally intractable, reaching an SDP size of 325 × 325 for n = 10 (and t = 15). This limitation
precisely motivated the development of the compact symmetrized PEP formulations from Sections 4 and 5.

Firstly, Figure 1 shows that the PEP bound for the average performance Ef is well constant over n, as
predicted by Theorem 7, and outperforms the theoretical bound from [14, Corollary 2], which requires 2750
iterations to guarantee the same error as the PEP bounds after 15 iterations. The theoretical bound is valid for
a step-size α = 1

4L , while the PEP bound is shown for an optimized step-size α∗ = 0.78
L , which minimizes the

bound. Since the bound is constant over n, the value of the optimized step-size can be used for any system size,
however, it may depend on other settings, such as the range of eigenvalues for W : [λ−, λ+].

There is currently no theoretical guarantee for the worst agent functions error Ef,worst of EXTRA in the
literature, but we can analyze it with our compact PEP formulation. Figure 1 shows that the PEP bound for
the worst agent Ef,worst (in red) is scaling sublinearly with the number of agents n. Using the constant step-size
α∗ = 0.78

L (plain red line), we obtain a logarithmic slope of 0.92. The step-size can also be tuned with respect to
Ef,worst, and would then have a different value for each value of n, denoted α∗

w(n). Using α∗
w(n) (dashed red

line), we obtain a logarithmic slope of 0.67, which means the scaling with n is less important when using suitable
step-sizes. In our case, the step-sizes α∗

w(n) are diminishing in 1√
n

. However, these smaller step-sizes deteriorate
the average performance Ef (dashed blue line).

The worst agent iterates error

There is currently no theoretical guarantee for the worst agent iterates error Ex,worst of EXTRA in the literature,
but one could derive2 a conservative bound on Ex,worst from (44), scaling linearly with the number of agents n.
Using our compact PEP formulation, we can analyze such performance metric accurately and show that the
performance of the worst agent Ex,worst for EXTRA actually scales sublinearly with n, as shown in Figure 2.
Figure 2 shows, in particular, PEP-based bounds for Ex and Ex,worst. The observations are similar to those
of Figure 1. The PEP bound for the average performance Ex is constant over n, as predicted by Theorem 7
and the corresponding optimized step-size is α∗ = 0.78

L . Moreover, the PEP bound for the worst agent Ex,worst
is scaling sublinearly with the number of agents n. Using the constant step-size α∗ = 0.78

L (plain red line), we
obtain a logarithmic slope of 0.82. As previously, the step-size can also be tuned with respect to Ex,worst, and
would then have a different value for each value of n, denoted α∗

w(n). Using the optimal diminishing step-sizes
α∗

w(n) (dashed red line), we obtain a logarithmic slope of 0.60, which means the scaling with n is less important
when using suitable step-sizes. These smaller step-sizes only slightly deteriorate the average performance Ex

(dashed blue line).

6.2 The 80-th percentile of the agent performance
In some cases, the performance of the worst agent may not be the most appropriate performance measure. When
the network is very large, the performance of the worst agent can be terribly bad, while the average performance
is good. Using our PEP approach, we can consider other performance measures that were so far completely out
of reach of theoretical analysis. Inspired by statistical approaches, we propose here to analyze the k-th percentile
in the distribution of the individual performance of each agent. In this experiment we have chosen the 80-th

2 using the fact that maxi∈V ∥xt
i − x∗∥2 ≤

∑n

i=1 ∥xt
i − x∗∥2

Sebastien Colla & Julien M. Hendrickx 25

percentile, that is the performance of the worst agent, after excluding the 20% worst agents. In other words, it
measures the error at or below which 80% of the agents fall in the worst-case scenario. The performance of the
worst agent, analyzed in the previous subsection, can be seen as the 100-th percentile of the agent performance
and can be analyzed via PEP using two equivalence classes of agents. When considering smaller percentiles, such
as the 80-th, we can formulate a compact PEP using three equivalence classes of agents:

V1 = {1, . . . , 0.2n}, V2 = {0.2n + 1}, V3 = {0.2n + 2, . . . , n},

where we assume n can be divided by 5. The class V1 contains the 20% worst agents to exclude, the class V2
contains the agent for which the individual performance will provide the 80-th percentile, and V3 contains all
the other agents. The PEP will therefore maximize the performance of agent i ∈ V2 and imposes that the
performance of each agent j ∈ Vj is larger:

Ex,80(t) = maximum
{fu

A
,Gu

A
,Gu

B
Guv

E
}u,v=1,2,3

∥xt
i − x∗∥2 with i ∈ V2 (47)

s.t. ∥xt
j − x∗∥2 ≥ ∥xt

i − x∗∥2 for all j ∈ V1,
All the other PEP constraints.

In problem (47), the squared norms ∥xt
i − x∗∥2 can be written as (ext − ex∗)T Gu

A(ext − ex∗) with u chosen
according to the class Vu containing agent i. Details about the explicit construction of compact PEP formulations
are given in Appendix A.

Figure 2 shows the evolution of Ex,80 with the size of the network, for 15 iterations of the EXTRA algorithm
(green line). We observe that the scaling of Ex,80 with the number of agents n is very limited and quickly reaches
a plateau, making this performance almost as good as the average performance Ex. Moreover, the optimal
step-size for this bound, denoted α∗

80, is independent of n and, in this case, it stays close to α∗, optimized for Ex.
The value of the plateau for Ex,80 has been confirmed by solving the compact PEP with n tending to ∞, as
described at the end of Section 5.

101 102
10-1

100

Figure 2 Comparison of the average iterates error Ex (45), the worst iterates error Ex,worst (46)
and the 80-th percentile iterates error Ex,80 (47) for t = 15 iterations of the EXTRA algorithm and
their evolution with the number of agents n in the system. The plot shows (i) the PEP bounds on the
iterates error of the worst agent Ex,worst, scaling sublinearly with n, in red, (ii) the PEP bound on
the 80-th percentile iterates error Ex,80, in green, and (iii) the PEP bounds for the average iterates
error Ex, in blue. The constant step-size α∗ has been hand-tuned for this performance criterion and
leads to a bound constant with n (plain blue line). Step-sizes can also be hand-tuned with respect to
Efworst(15), leading to smaller step-sizes α∗

w(n). They improve the guarantee for Ef,worst and its scaling
with n without deteriorating too much the corresponding guarantee for Ef (see dashed lines). In this
plot, the range of eigenvalues for the averaging matrix is [−0.5, 0.5] and the local functions are 1-smooth
and 0.1-strongly convex.

26 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

Figure 3 shows the evolution with k of the k-th percentile of the agent performance for EXTRA, when
n → ∞. We see that the limit of the k-th percentile performance is finite for all values of k ∈ (0, 100) and has a
vertical asymptote in k = 100. The 100-th percentile computes the performance of the worst agent and grows
well to infinity with n (see Figure 2). According to Figure 3, the value of the k-th percentile performance first
increases slowly with k, and then it starts to blow up after some threshold on k, depending on t, to match the
vertical asymptote in k = 100. This means that it seems useful to exclude a small part of the worst agents in the
performance metric, e.g. 10–20% in the settings we are considering, but not more. Moreover, the k-th percentile
of EXTRA for n → ∞ seems to converge geometrically. Indeed, in Figure 3, when considering 5 more iterations
in total, the k-th percentile improves by a factor between 2.2 and 3.2, depending on k.
▷ Remark. Figures 2 and 3 show the performance of EXTRA for rather well-connected averaging matrices
(λ = 0.5). Similar results and observations can be obtained for larger ranges of eigenvalues, i.e. λ ∈ (0.5, 1), but
this would require more iterations to get small errors.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3 Evolution with k of the k-th percentile of the agent performance for t iterations of EXTRA,
when the number of agents tends to infinity (n → ∞). Different total numbers of iterations t are
compared. In this plot, the step-size is α = 0.78, the range of eigenvalues for the averaging matrix is
[−0.5, 0.5] and the local functions are 1-smooth and 0.1-strongly convex.

6.3 Performance under local functions heterogeneity
In many applications, the agents hold local functions sharing general properties, e.g. convexity or smoothness,
but it is unlikely that all the local functions have exactly the characterization for these properties. For example,
the local functions can be µi-strongly convex and Li-smooth, but with different parameters µi and Li. In general,
the performance is then computed by considering that all the local functions have the worst parameters:

µ = min
i

µi and L = max
i

Li.

In this experiment, we analyze the gain in the performance guarantee when instead of considering fi ∈ Fµ,L for
all i, we consider two equivalence classes of agents V1 and V2 such that

fi ∈ Fµ1,L for all i ∈ V1 and fi ∈ Fµ2,L for all i ∈ V2.

These two classes of agents manipulate functions with two different condition numbers κ1 = L
µ1

and κ2 = L
µ2

.
Figure 4 shows the situation where L = 1, µ1 = 0.01 and µ2 = 0.1, for different sizes of classes V1 and V2. We
observe that the guarantees for EXTRA only depend on the relative composition of each class V1 and V2 but
not on the total number of agents n. This observation has been confirmed by solving the compact PEPs for n

tending to ∞, as described at the end of Section 5. In Figure 4, when 20% of the agents pass from the class V1
to the class V2, the worst-case guarantee is improved by a constant factor 0.9. This improving factor can be
linked to the worst-case guarantees obtained with uniform value for κ in the local functions (κ = 100 or κ = 10
for all the agents) and motivates the following conjecture:

Sebastien Colla & Julien M. Hendrickx 27

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 4 Evolution with the number of agents n of the worst-case average distance to optimum Ex

for 15 iterations of EXTRA with two equivalence classes of agents V1 and V2 using each a different
condition number for their function class. The agents in V1 hold 1-smooth and 0.01-strongly convex
local functions (κ1 = 100) and the agents in V2 hold 1-smooth and 0.1-strongly convex local functions
(κ2 = 10). The guarantees are independent of the total number of agents n and only depend on the
proportion of agents in each class. In this experiment, the range of eigenvalues for the averaging matrix
is [−0.5, 0.5].

▷ Conjecture 1. Let Eκ1,κ2
x (t, θ) be the performance guarantee after t iterations of EXTRA with θn agents with

local functions in Fµ1,L and (1 − θ)n agents with local functions in Fµ2,L, for θ ∈ [0, 1]. Let Eκ1
x (t) and Eκ2

x (t)
be the worst-case errors of t iterations of the EXTRA algorithm with uniform conditioning for all the local
functions, respectively with κ1 = L

µ1
and κ2 = L

µ2
. By definition, we have

Eκ1
x (t) = Eκ1,κ2

x (t, 1) and Eκ2
x (t) = Eκ1,κ2

x (t, 0)

We conjecture that the performance Eκ1,κ2
x (t, θ) can be expressed in function of Eκ1

x (t) and Eκ2
x (t) as

Eκ1,κ2
x (t, θ) =

(
Eκ1

x (t)
)θ(

Eκ2
x (t)

)1−θ for all t > 0, κ1, κ2 > 0 and θ ∈ [0, 1] .

In addition to the values of κ1, κ2 and θ shown in Figure 4, this conjecture has been verified for different other
values of κ1, κ2 and θ. It can also be extended to any number of agent equivalence classes, associated with
different values of κ. For example, we have verified it with 3 classes of agents. This results in much tighter bounds
in cases where only a few agents in the system hold ill-conditioned local functions. As future direction, this also
allows exploring situations where the agents hold totally different types of local functions, e.g. strongly-convex
(µ > 0) and weakly-convex (µ < 0) functions, or smooth and non-smooth functions. This conjecture would have
been difficult to guess without the PEP tool and the compact formulation developed in this paper, which shows
its usefulness.

6.4 On the numerical resolution of the compact SDP PEP formulation
In this case study, we used Matlab to model and solve the SDP PEP problems. In particular, we used the
YALMIP toolbox for modeling and the Mosek solver for solving. Our code is available on GitHub (https://
github.com/sebcolla/Performance-Estimation-Problems-for-distributed-optimization). The Mosek
solver, like most of the other existing ones, relies on the interior-point method and the existence of a Slater
point in the feasible set of the problem. Some equality constraints in our problems may prevent the existence of
a Slater point, hence leading the solver to find solutions of low numerical quality. Indeed, the compact PEP
formulation, described in Sections 4 and 5, and detailed in Appendix A, contains equality constraints that
impose rank deflection of the matrix variables of the resulting SDP, see for example, the optimality constraints,
or the average preserving condition for consensus steps (Propositions 14 and 13 in Appendix A). This may be
problematic for the numerical conditioning of the problem, and thus the numerical quality of its solution. We

https://github.com/sebcolla/Performance-Estimation-Problems-for-distributed-optimization
https://github.com/sebcolla/Performance-Estimation-Problems-for-distributed-optimization

28 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

have verified the accuracy of the worst-case value given by the compact PEP formulation for n ≤ 5, and always
observed a relative error of less than 1%. However, the worst-case solutions (i.e. functions and iterates) can be
very high-dimensional.

In the agent-dependent PEP formulations, all the problematic equality constraints can easily be removed, by
exploiting them to reduce the size of the SDP. This allows the problem and its solution to be well-conditioned.
However, such dimensionality reductions are more involved in our new compact PEP SDP formulations. We hope
that existing toolboxes and solvers will be extended to automatically reduce the SDP size by exploiting equality
constraints. Therefore, for now, if one wishes to evaluate the performance of a distributed optimization algorithm
in settings for which we know the result will be independent of n by Theorem 7, we recommend solving the
agent-dependent formulation with n = 2 because the current solvers will perform better on this version of the
problem. Moreover, formulating such an agent-dependent PEP is more intuitive and is made user-friendly by
the toolboxes helping in building and solving PEP, i.e. PESTO in Matlab [31] and PEPit in Python [8]. By
Corollary 7.1, the obtained results for n = 2 agents will be valid for any n ≥ 2, including for n → ∞.

7 Conclusion

In this paper, we have harnessed agent symmetries to develop compact SDP PEP formulations for computing
the worst-case performance of decentralized optimization algorithms. When all the agents are equivalent, we
have characterized the situations where the performance is totally independent of the number of agents, which
allows analyzing and computing the performance in the fundamental case with only two agents. Such situations
include many common settings for the performance evaluation of distributed optimization algorithms. We have
also shown that in the worst-case scenario, when all agents are equivalent, their local sequences of iterates are
rotations of each other and their local functions are identical up to a change of variables. Moreover, this new
compact PEP formulation also allows analyzing advanced performance settings with several equivalence classes
of agents, enabling tighter analysis and deeper understanding of the algorithm performance, as we demonstrated
with EXTRA. We believe that the different contributions of this paper can significantly help the research in the
field of distributed optimization by simplifying the analysis and understanding of the performance of distributed
algorithms.

References
1 Nizar Bousselmi, Julien M. Hendrickx, and François Glineur. Interpolation conditions for linear operators and

applications to performance estimation problems. arXiv preprint arXiv:2302.08781, 2023.
2 Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical

learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1–122,
01 2011.

3 Sebastien Colla and Julien M. Hendrickx. Automated worst-case performance analysis of decentralized gradient
descent. In 2021 60th IEEE Conference on Decision and Control (CDC), pages 2627–2633, 2021.

4 Sebastien Colla and Julien M. Hendrickx. Automated performance estimation for decentralized optimization via
network size independent problems. In 2022 IEEE 61st Conference on Decision and Control (CDC), pages 5192–5199,
2022.

5 Sebastien Colla and Julien M. Hendrickx. Automatic performance estimation for decentralized optimization. IEEE
Transactions on Automatic Control, pages 1–15, 2023.

6 Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex minimization: A novel
approach. Mathematical Programming, 145, 06 2012.

7 John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed optimization: Convergence
analysis and network scaling. IEEE Transactions on Automatic Control, 57(3):592–606, 2012.

8 Baptiste Goujaud, Céline Moucer, François Glineur, Julien Hendrickx, Adrien Taylor, and Aymeric Dieuleveut.
PEPit: computer-assisted worst-case analyses of first-order optimization methods in Python. arXiv preprint
arXiv:2201.04040, 2022.

9 Hanley and Chi-Kwong Li. Generalized doubly stochastic matrices and linear preservers. Linear and Multilinear
Algebra, 53:1–11, 01 2005.

10 Dušan Jakovetić. A unification and generalization of exact distributed first-order methods. IEEE Transactions on
Signal and Information Processing over Networks, 5(1):31–46, 2018.

11 Dmitry Kovalev, Adil Salim, and Peter Richtárik. Optimal and practical algorithms for smooth and strongly convex
decentralized optimization. Advances in Neural Information Processing Systems, 33:18342–18352, 2020.

Sebastien Colla & Julien M. Hendrickx 29

12 Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization algorithms via integral
quadratic constraints. SIAM Journal on Optimization, 26, 08 2014.

13 Huan Li, Cong Fang, Wotao Yin, and Zhouchen Lin. Decentralized accelerated gradient methods with increasing
penalty parameters. IEEE transactions on Signal Processing, 68:4855–4870, 2020.

14 Huan Li and Zhouchen Lin. Revisiting extra for smooth distributed optimization. SIAM Journal on Optimization,
30(3):1795–1821, 2020.

15 Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method with network independent step-sizes and
separated convergence rates. IEEE Transactions on Signal Processing, PP, 04 2017.

16 Qing Ling, Yaohua Liu, Wei Shi, and Zhi Tian. Weighted admm for fast decentralized network optimization. IEEE
Transactions on Signal Processing, 64(22):5930–5942, 2016.

17 Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed optimization over
time-varying graphs. SIAM Journal on Optimization, 27, 07 2016.

18 Angelia Nedić, Alex Olshevsky, Wei Shi, and César A Uribe. Geometrically convergent distributed optimization
with uncoordinated step-sizes. In 2017 American Control Conference (ACC), pages 3950–3955. IEEE, 2017.

19 Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE
Transactions on Automatic Control, 54:48 – 61, 02 2009.

20 A. Nedić, A. Olshevsky, and M. G. Rabbat. Network topology and communication-computation tradeoffs in
decentralized optimization. Proceedings of the IEEE, 106(5):953–976, 2018.

21 Guannan Qu and Na Li. Accelerated distributed nesterov gradient descent. IEEE Transactions on Automatic
Control, 65(6):2566–2581, 2020.

22 Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal algorithms for
smooth and strongly convex distributed optimization in networks. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 3027–3036. PMLR, 06–11 Aug 2017.

23 Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal convergence rates
for convex distributed optimization in networks. Journal of Machine Learning Research, 20(159):1–31, 2019.

24 Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized consensus
optimization. SIAM Journal on Optimization, 25, 04 2014.

25 Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. A proximal gradient algorithm for decentralized composite
optimization. IEEE Transactions on Signal Processing, 63(22):6013–6023, 2015.

26 Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence of the admm in decentralized
consensus optimization. Signal Processing, IEEE Transactions on, 62, 07 2013.

27 Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Optimal gradient tracking for decentralized optimization, 2021.
28 Akhil Sundararajan, Bryan Van Scoy, and Laurent Lessard. Analysis and design of first-order distributed optimization

algorithms over time-varying graphs. IEEE Transactions on Control of Network Systems, 7:1597–1608, 2020.
29 A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact worst-case performance of first-order methods for composite

convex optimization. SIAM Journal on Optimization, 27, 12 2015.
30 A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex interpolation and exact worst-case

performance of first-order methods. Mathematical Programming, 161, 02 2015.
31 A. B. Taylor, J. M. Hendrickx, and F. Glineur. Performance estimation toolbox (PESTO): Automated worst-case

analysis of first-order optimization methods. In IEEE 56th Annual Conference on Decision and Control (CDC),
pages 1278–1283, 2017.

32 César A Uribe, Soomin Lee, Alexander Gasnikov, and Angelia Nedić. A dual approach for optimal algorithms in
distributed optimization over networks. In 2020 Information Theory and Applications Workshop (ITA), pages 1–37.
IEEE, 2020.

33 Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters, 53(1), 2004.
34 Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. Accelerated primal-dual algorithms for distributed smooth

convex optimization over networks. In International Conference on Artificial Intelligence and Statistics, pages
2381–2391. PMLR, 2020.

35 Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient methods for multi-agent
optimization under uncoordinated constant stepsizes. In 2015 54th IEEE Conference on Decision and Control
(CDC), pages 2055–2060. IEEE, 2015.

30 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

A Explicit expressions of the compact PEP components

A.1 When all agents are equivalent
Theorem 7 characterizes the settings in which we can formulate the performance computation of a distributed
optimization algorithm as an SDP PEP which is totally independent of the number of agents n. In particular,
we need all the agents to be equivalent (Assumption 1), so we can work with a fully symmetric solution (F s, Gs)
(Corollary 6.1), composed of small repeating blocks fA, GA, and GB. The resulting agent-dependent PEP,
expressed with blocks fA, GA, and GB has a size independent of the number of agents n, but the value of n can
still appear in the PEP and impact its solution, as any other parameter of the problem. Using suited changes of
variables, we can obtain a PEP formulation that is fully independent of n, under the condition stated in part 2 of
Theorem 7. In this appendix, we show how we can explicitly build this agent-independent PEP formulation for
many usual settings. For that purpose, we pass through the main components of a PEP, that we have introduced
in Section 2, and detail how they can be written with the blocks fA, GA, and GB and which changes of variable
get rid of n.

Firstly, the SDP condition Gs ⪰ 0 can be expressed with GA, and GB using Lemma 7.1. Then, Lemma 7.2
makes it independent of n, by introducing a new block GC = 1

n (GA + (n − 1)GB). Similarly to this result, the
agent-independent formulation of other PEP components relies on the blocks GA (25) and GC (28) of the Gram
matrices. We link these two matrices by defining the difference block GD:

GD = GA − GC . (48)

We summarize below how these three blocks, related to the symmetrized Gram Gs by definition, can be expressed
based on the blocks of any Gram matrix solution G (21):

GA = 1
n

n∑
i=1

Gii, GC = 1
n2

n∑
i=1

n∑
j=1

Gij and GD = 1
n2

n∑
i=1

n∑
j=1

(Gii − Gij). (49)

Using these three blocks, we can easily write many expressions in PEP, independently of n. However, only two of
them should be variables of the resulting compact SDP PEP, as the third one could always be obtained using
(48). In this appendix, we call agent-independently Gram-representable the expressions that can be written fA,
GA, GC , and GD, without any dependence on the number of agents n.
▷ Definition 12 (Agent-independently Gram-representable). Let fA be the block of the symmetrized function values
vector, as defined in (24), GA, GC , and GD the symmetric blocks defined in (49). We say that an expression, such
as a constraint or an objective, is agent-independently Gram-representable if it can be expressed using a finite
set of linear or LMI constraints or expressions involving only fA, GA, GC , and GD, without any dependence on
the number of agents n.

The formulation of single-agent constraints (Definition 11) into agent-independently Gram-representable
constraints will rely on relations (33) and (34), involving fA and GA. The formulation of scale-invariant expressions
(Definition 10) into agent-independently Gram-representable expressions will rely on relations (30), (31), (32),
involving respectively fA, GA, and GC . We also define a useful relation involving GD, which encapsulates a
combination of relations (31) and (32). This new relation allows expressing the average over the n agents of the
scalar products of two centered variables related to the same agents:

1
n

n∑
i=1

(xi − x)T (yi − y) = 1
n2

n∑
i=1

n∑
j=1

(xT
i yi − xT

i yj) = 1
n2

n∑
i=1

n∑
j=1

eT
x (Gii − Gij)ey = eT

x (GD)ey, (50)

where xi and yj are any variables of agent i and j and x = 1
n

∑n
j=1 xi and y = 1

n

∑n
j=1 yi are their agent averages.

The last equality in (50) follows from the definition of GD (49). Moreover, ex, ey ∈ Rp denote coefficient vectors
for variables x and y. As a reminder, a coefficient vector ex contains linear coefficients selecting the correct
combination of columns in Pi ∈ Rd×p (20) to obtain vector xi ∈ Rd, i.e. Piex = xi, for any i = 1, . . . , n. This
notation allows, for example, to write xT

i xi as xT
i xi = eT

x P T
i Piex = eT

x Giiex.
In what follows, we will exploit all these relations, to write all the components of a PEP, independently of n.

The following proposition treats the interpolation constraints of a PEP.
▷ Proposition 11 (Function interpolation constraints). Let F be a set of functions for which there exist linearly
Gram-representable interpolation constraints. In a PEP for a distributed optimization method, with fully
symmetrized solutions (F s, Gs) (24)-(25), the constraints fi ∈ F , for all i ∈ V can be expressed using a set of
interpolation constraints that are agent-independently Gram-representable and that only involves fA and GA.

Sebastien Colla & Julien M. Hendrickx 31

Proof. Each constraint fi ∈ F can be written with a set of Gram-representable interpolation constraints involving
function values of agent i and scalar products between quantities (i.e. points and gradients) related to agent i.
These are thus single-agent constraints that are all identical when we restrict to agent-symmetric PEP solution
(F s, Gs) (24)-(25). Therefore, they can all be expressed with fA and GA using (33) and (34). ◀

▷ Remark. For example, when F is the set of convex functions, we have,

fi ∈ F ⇔ fk
i ≥ f l

i + (gl
i)T (xk

i − xl
i) ∀k, l ⇔ eT

fk fA ≥ eT
f lfA + eT

gl(GA)(exk − exl),

where fk
i = fi(xk

i), gl
i = ∇fi(xl

i) and efk , ef l , egl , exk and exl are appropriate vectors of coefficients. This is
obtained by applying relation (33) for fi(xk

i) and fi(xl
i) and relation (34) for the scalar product between gl

i and
(xk

i − xl
i).

Algorithm description

The class of methods AD that we consider is defined in Definition 2 and may combine gradient evaluation,
consensus steps, and linear combinations of variables. In the latter, each agent defines the same linear combination
of its local variables. It should be the same combination for all the agents, otherwise, they are not equivalent,
and Assumption 1 does not hold. All the variables in the combinations are related to the same agent and can
therefore be squared and formulated in PEP using GA, as in (31). Alternatively, we can reduce the number of
variables in the blocks of the Gram matrix by using the linear combination to define a vector of coefficients in
terms of the others, as shown in Proposition 12:
▷ Proposition 12 (Linear combinations). Let Pi = [y1

i , . . . , yp
i] be the p variables of agent i. We consider any

linear combination of the variables, coordinated over all the agents i ∈ V

zi =
p∑

k=1
βkyk

i for all i, (51)

where βk are given coefficients and yk
i ∈ Rd are any local variables from agent i. Such a combination step can be

formulated in the PEP by defining the vector of coefficient ez based on the vectors ey1 , . . . , eyp .

ez =
p∑

k=1
βkeyk

This avoids adding zi as a new column of Pi.
Proof. By definition, we have zi = Piez and yk

i = Pieyk . Therefore, the linear equality (51) can be written as

Pi

(
ez −

p∑
k=1

βkeyk

)
= 0,

which allows defining ez based on the other vectors of coefficients ez =
∑p

k=1 βkeyk , without adding a new
column in Pi. ◀

Concerning the consensus steps, Theorem 7 applies to the set of averaging matrices W(λ−, λ+), defined in
Section 2. Necessary interpolation constraints for this set of matrices are given in (13), (14) and (15), from
Theorem 4 applied to the consensus subspace C. Proposition 13 below shows that these interpolation constraints
are agent-independently Gram-representable, by expressing them in terms of GC and GD. In principle, the
compact PEP formulation could apply to a general set of averaging matrices M for which there exist Gram-
representable interpolation constraints. Future work may include the description of other classes of averaging
matrices, in particular, the extension to non-symmetric stochastic matrices with a bound on their singular value.
▷ Proposition 13 (Averaging matrix interpolation constraints). The averaging matrix interpolation constraints (13),
(14) and (15), from Theorem 4 applied to the consensus subspace C, are agent-independently Gram-representable
and can be expressed using GC and GD ∈ Rp×p as:

(eX − eY)T GC(eX − eY) = 0, (52)

(eY − λ−eX)T GD(eY − λ+eX) ⪯ 0, (53)

eT
Y (GD)eX − eT

X(GD)eY = 0, (54)

where eX , eY ∈ Rp are matrices of coefficients such that PieX = Xi, PieY = Yi with Xi, Yi ∈ Rd×t the matrices
with iterates xk

i , yk
i ∈ Rd as columns.

32 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

Proof. Firstly, we express (13) as (52). Equation (13), when applied to the consensus subspace, means that the
agent average is preserved, i.e. X = Y , which can be written with scalar products as:(

1
n

n∑
i=1

(Xi − Yi)
)T
 1

n

n∑
j=1

(Xj − Yj)

 = 0,

where matrices Xi, Yi ∈ Rd×t contain the different consensus iterates xi, yi ∈ Rd of agent i as columns. Using
relation (32), applied to columns of Xi − Yi and Xj − Yj , this equation can be written as

1
n2

n∑
i=1

n∑
j=1

(Xi − Yi)T (Xj − Yj) = (eX − eY)T GC(eX − eY) = 0.

Secondly, we express (14) as (53). Equation (14) involve centered matrices X⊥, Y⊥ ∈ Rnd×t,

(Y⊥ − λ−X⊥)T (Y⊥ − λ+X⊥) ⪯ 0, (55)

We can write this product as a sum over the agents of products of centered variables, which then allows using
relation (50) to express it with GD. To this end, let us define Ui = Yi − λ−Xi, Vi = Yi − λ+Xi, and U, V their
corresponding agent average: U = 1

n

∑n
i=1 Ui, V = 1

n

∑n
i=1 Vi. Equation (55) can be written as

n∑
i=1

(Ui − U)T (Vi − V) ⪯ 0.

This can be reformulated using relation (50) applied to columns of Ui and Vi and dividing the equation by n:

1
n

n∑
i=1

(Ui − U)T (Vi − V) = eT
mGDeV = (eY − λ−eX)T GD(eY − λ+eX) ⪯ 0

Finally, the symmetry condition (15) can be expressed as (54) using a similar technique

XT
⊥Y⊥ − Y T

⊥ X⊥ =
n∑

i=1
(Xi − X)T (Yi − Y) −

n∑
i=1

(Yi − Y)T (Xi − X) = 0.

This can be reformulated using relation (50) applied to columns of Xi and Yi and dividing the equation by n:

eT
Y (GD)eX − eT

X(GD)eY = 0

◀

Points common to all agents (x∗, x, etc)

As explained in Section 3, to build our compact PEP formulation for distributed optimization, we divide the
agent-dependent PEP solutions into blocks of variables related to each agent, see (19) and (20), recalled below

F =
[
fT

1 . . . fT
n

]
, where fi =

[
fk

i

]
k∈I

∈ Rq is a vector with the q functions values of agent i,

P =
[
P1 . . . Pn

]
where Pi ∈ Rd×p contains the p vector variables related to agent i,

e.g. Pi =
[
yk

i xk
i gk

i

]
k∈I

, and the Gram matrix G ∈ Rnp×np is thus defined as

G = P T P =


P T

1 P1 P T
1 P2 . . .

P T
2 P1

. . .
... P T

n Pn

 =


G11 G12 . . .

G21
. . .

... Gnn

 .

The variables common to all agents, such as x∗ or xt, are copied into each agent block Pi and their definitions
are added as constraints of the problem, e.g.

xi = x = 1
n

n∑
j=1

xj for all i ∈ V, or 1
n

n∑
i=1

∇fi(x∗
i) = 0, with x∗

i = x∗
j = x∗ for all i, j ∈ V, (56)

Sebastien Colla & Julien M. Hendrickx 33

Such definition constraints are agent-independently Gram-representable, as shown in Propositions 14 and 15
below. If used in the problem, each agent i also holds the variables for its local function and gradient values
associated with this common point. For example, for x∗, we consider a new triplet (x∗

i , g∗
i , f∗

i) for each agent i,
which is taken into account in the interpolation constraints of its local function. These interpolation constraints
ensure that g∗

i and f∗
i correspond to a gradient vector and function value at x∗ that are consistent with the

given class of functions. Vectors x∗
i and g∗

i are columns of Pi and value f∗
i is an element of vector fi.

To summarize, for any point xc common to all the agents in the problem, we need two elements in the PEP:
(i) the definition constraints for xc, e.g. (56),
(ii) the interpolation constraints for the new triplet (xc, gc, fc), if gc or fc used in the PEP.

The addition of a new triplet of points to consider in the interpolation constraints does not alter the result of
Proposition 17 and they can still be written as agent-independently Gram-representable constraints with fA and
GA. The definition constraints can be treated as any other constraint of the problem, e.g. the initial constraints,
and these constraints can thus be formulated independently of n if they can be written with scale-invariant
expressions (see Definition 10 and Theorem 7). Proposition 14 gives an agent-independent formulation for the
definition constraint of the optimal solution x∗ of the decentralized optimization problem (1).
▷ Proposition 14 (Optimality constraint). Let x∗ be an optimal point for the decentralized optimization problem
(1). The definition constraints for the common variable x∗ in a PEP restricted to fully symmetric solutions
(F s, Gs) (24)-(25), given by the system-level stationarity constraint

1
n

n∑
i=1

∇fi(x∗
i) = 0, with x∗

i = x∗
j = x∗ for all i, j ∈ V, (57)

is agent-independently Gram-representable and can be expressed as

eT
g∗(GC)eg∗ = 0 and eT

x∗(GD)ex∗ = 0,

where eg∗ , ex∗ ∈ Rp are vectors of coefficients such that Pieg∗ = g∗
i = ∇fi(x∗), and Piex∗ = x∗

i for all i = 1, . . . , n.
Proof. The first constraint in (57) guarantees that the optimal point x∗

i held by each agent satisfies the system-
level stationarity constraint 1

n

∑n
i=1 ∇fi(x∗

i) = 0. Then, the second set of constraints imposes that the local
optimal point x∗

i is the same for any agent i. Let g∗
i denote the gradient of function fi at the optimal point x∗

i .
We can formulate the stationarity constraint using only scalar products as(

1
n

n∑
i=1

g∗
i

)T(
1
n

n∑
j=1

g∗
j

)
= 1

n2

n∑
i=1

n∑
j=1

(g∗
i)T g∗

j = 0,

Using relation (32), applied to vectors g∗
i , g∗

j , we recover condition eT
g∗(GC)eg∗ = 0. For the second set of

constraints, we can impose them all with one constraint involving only scalar products:

1
2n

n∑
i=1

n∑
j=1

(x∗
i − x∗

j)T (x∗
i − x∗

j) = 1
n2

n∑
i=1

n∑
j=1

(x∗
i)T x∗

i − (x∗
j)T x∗

j = 0

which can be written, using relation (50), as

1
n2

n∑
i=1

n∑
j=1

(x∗
i)T x∗

i − (x∗
i)T x∗

j = 1
n2

n∑
i=1

n∑
j=1

(ex∗)T (Gii − Gij)(ex∗) = (ex∗)T (GD)(ex∗).

◀

▷ Remark. Without loss of generality, the optimal solution x∗ of problem (1) can be set to x∗ = 0. In that case,
the constraint x∗

i = x∗
j , written as eT

x∗(GD)ex∗ = 0, is not needed to define x∗ properly. Indeed, it is sufficient to
say that the coefficient vector is zero: ex∗ = 0. This improves the numerical conditioning of the resulting SDP
PEP.

Proposition 15 gives an agent-independent formulation for the definition constraint of the agent average
iterate xk. To simplify notation, we omit the k index for iterations.
▷ Proposition 15 (Agent average definition). We consider a PEP for distributed optimization, restricted to fully
symmetric solutions (F s, Gs) (24)-(25). The definition constraints for x

xi = x = 1
n

n∑
j=1

xj for all i ∈ V, (58)

34 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

are agent-independently Gram-representable, and can be written as

eT
x (GA)ex + eT

x GC(ex − 2ex) = 0,

where ex, ex ∈ Rp are vectors of coefficients such that Piex = xi, and Piex = xi for all i = 1, . . . , n.
Proof. We can formulate the set of constraints (58) with one constraint involving only scalar products of
variables:

1
n

n∑
i=1

(
xt

i − 1
n

n∑
j=1

xt
j

)T(
xt

i − 1
n

n∑
l=1

xt
l

)
= 0

This expression can be expanded to be written with GA and GC :

1
n

n∑
i=1

(xi)T (xi) + 1
n2

n∑
j=1

n∑
l=1

xT
j xl − 2

n2

n∑
i=1

n∑
j=1

xT
j xi = eT

x (GA)ex + eT
x GC(ex − 2ex) = 0,

where we used relation (31) for the first term and (32) for the other two. ◀

Initial conditions and performance measures

By combining terms of the form of (30), (31), (32), (33), (34), and (50), possibly involving common points
defined above, it is possible to express many initial conditions and performance measures in terms of fA, GA,
GC , and GD, without dependence on n. Examples of usual initial conditions and their reformulation are given in
Proposition 16 below. The proposition focuses on the initial conditions, but all the expressions involved in these
constraints can also be adapted as a performance measure, using the last point xt instead of the initial point x0.
▷ Proposition 16 (Initial conditions). Let x∗ ∈ Rd denote the optimal solution of the distributed optimization
problem (1), x0

i ∈ Rd the initial iterate of agent i, x0 the average initial iterate and R ∈ R a constant. Here is a
list of initial conditions that are agent-independently Gram-representable when restricted to agent-symmetric
solutions, together with their reformulations in terms of fA, GA, GC , and GD:

Initial condition Reformulation

1
n

n∑
i=1

∥x0
i − x∗∥2 ≤ R2, (ex0 − ex∗)T (GA)(ex0 − ex∗) ≤ R2,

or ∥x0
i − x∗∥2 ≤ R2 for all i = 1, . . . , n

1
n

n∑
i=1

∥∇fi(x0
i)∥2 ≤ R2, (eg0)T (GA)(eg0) ≤ R2,

or ∥∇fi(x0
i)∥2 ≤ R2 for all i = 1, . . . , n

1
n

n∑
i=1

∥x0
i − x0∥2 ≤ R2, (ex0)T GD(ex0) ≤ R2,

x0
i − x0

j = 0 for all i, j = 1, . . . , n (ex0)T GD(ex0) = 0,

1
n

n∑
i=1

(
fi(x0) − fi(x∗)

)
≤ R

(
ef(x0) − ef(x∗)

)T
fA

(
ef(x0) − ef(x∗)

)
≤ R

where ex0 , ex∗ , eg0 ∈ Rp and ef(x0), ef(x∗) ∈ Rq are vectors of coefficients such that Piex0 = x0
i , Piex∗ = x∗,

Pieg0 = ∇fi(x0
i), eT

f(x0)fi = fi(x0) and eT
f(x∗)fi = fi(x∗), for all i = 1, . . . , n.

Proof. To obtain the two first reformulations, we can use relation (31) applied respectively to vectors x0
i − x∗

and ∇fi(x0
i)

1
n

n∑
i=1

∥x0
i − x∗∥2 = 1

n

n∑
i=1

(x0
i − x∗)T (x0

i − x∗) = (ex0 − ex∗)T (GA)(ex0 − ex∗) ≤ R2.

1
n

n∑
i=1

∥∇fi(x0
i)∥2 = 1

n

n∑
i=1

(∇fi(x0
i))T (∇fi(x0

i)) = (eg0)T (GA)(eg0) ≤ R2.

Sebastien Colla & Julien M. Hendrickx 35

When considering the alternative uniform conditions for all agents, we obtain the same reformulations using
relation (34), applied respectively to vectors x0

i − x∗ and ∇fi(x0
i). For the third condition, we can directly use

relation (50) to obtain it. Then, the fourth condition is equivalent to

1
2n2

n∑
i=1

n∑
j=1

(x0
i − x0

j)T (x0
i − x0

j) = 1
n2

n∑
i=1

n∑
j=1

(x0
i)T x0

i − (x0
i)T x0

j = 0,

which can be written, using relation (50), as

1
n2

n∑
i=1

n∑
j=1

(x0
i)T x0

i − (x0
i)T x0

j = 1
n2

n∑
i=1

n∑
j=1

(ex0)T (Gii − Gij)(ex0) = (ex0)T (GD)(ex0).

Finally, the fifth and last condition can be reformulated with fA using relation (30) applied to 1
n

∑n
i=1 fi(x0)

and 1
n

∑n
i=1 fi(x∗). ◀

A.2 With multiple equivalence classes of agents
Let T be a partition of the agent set V into m equivalence classes of agents (see Definition 9). Considering the
PEP restricted to symmetrized agent-class solutions Gs

T and F s
T (37)-(38), we now detail how we can express all

the PEP elements in terms of fu
A, Gu

A, Gu
B , and Guv

E (u, v = 1 . . . , m), to be able to use this blocks as variable of
the compact SDP PEP formulation. For the SDP condition Gs ⪰ 0, we can be express it with Gu

A, Gu
B, and

Guv
E using Lemma 9.1. For the other PEP elements, we need to adapt the reformulation techniques (30), (31),

(32), (33), (34) and (50) to the situation where the agent set V is partitioned into m subsets of equivalent agents
T = {V1, . . . , Vm}. The terms that we can be expressed in terms of fu

A, Gu
A, Gu

B , and Guv
E are the following (for

any variables xi and yj related to agents i and j, including the case xi = yj):
The function value of a given agent j ∈ Vu

fj(xj) = 1
nu

∑
i∈Vu

fi(xi) = eT
f(x)f

u
A, for any j = 1, . . . , n, (59)

where the first equality holds because fi(xi) = fj(xj) for any i, j ∈ Vu, by definition of the symmetric
agent-class solution F s

T (37). This implies that

1
n

n∑
i=1

fi(xi) = 1
n

m∑
u=1

n∑
j∈Vu

fj(xj) = 1
n

m∑
u=1

nueT
f(x)f

u
A = eT

f(x)fA,T , (60)

where vector fA,T ∈ Rq is given by

fA,T = 1
n

m∑
u=1

nufu
A. (61)

The scalar product between two variables related to the same agent i ∈ Vu:

xT
i yi = 1

nu

n∑
j∈Vu

xT
j yj = eT

x Gu
Aey for any i = 1, . . . , n, (62)

where the first equality holds because xT
i yi = xT

j yj for any i, j ∈ Vu, by definition of the symmetric agent-class
solution Gs

T (38). This implies that

1
n

n∑
i=1

xT
i yi = 1

n

m∑
u=1

n∑
j∈Vu

xT
j yj = 1

n

m∑
u=1

nueT
x Gu

Aey = eT
x (GA,T)ey, (63)

where matrix GA,T ∈ Rp×p is given by

GA,T = 1
n

m∑
u=1

nuGu
A. (64)

36 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

The average over the n2 pairs of agents of the scalar products between two variables each related to any agent:

1
n2

n∑
i=1

n∑
j=1

xT
i yj = 1

n2

m∑
u=1

m∑
v=1

∑
i∈Vu

∑
j∈Vv

xT
i yj = 1

n2

m∑
u=1

∑
i∈Vu

∑
j∈Vu

xT
i yj + 1

n2

m∑
u=1

∑
v ̸=u

∑
i∈Vu

∑
j∈Vv

xT
i yj ,

1
n2

n∑
i=1

n∑
j=1

xT
i yj = eT

x

 1
n2

m∑
u=1

(
nuGu

A + nu(nu − 1)Gu
B

)
+ 1

n2

m∑
u=1

∑
v ̸=u

nunv Guv
E

ey = eT
x (GC,T)ey, (65)

where matrix GC,T ∈ Rp×p is the sum of all the p × p blocks of HT divided by n2:

GC,T = 1
n2

 m∑
u=1

nu(Gu
A + (nu − 1)Gu

B) +
m∑

u=1

∑
v ̸=u

nunv Guv
E

. (66)

The average over the n agents of the scalar products of two centered variables related to the same agents:

1
n

n∑
i=1

(xi − x)T (yi − y) = 1
n2

n∑
i=1

n∑
j=1

(xT
i yi − xT

i yj) = 1
n2

m∑
u=1

m∑
v=1

∑
i∈Vu

∑
j∈Vv

(xT
i yi − xT

i yj),

= eT
x

 1
n2

m∑
u=1

nu(nu − 1)(Gu
A − Gu

B) + 1
n2

m∑
u=1

∑
v ̸=u

nunv(Gu
A − Guv

E)

ey,

1
n

n∑
i=1

(xi − x)T (yi − y) = eT
x (GD,T)ey (67)

where x = 1
n

∑n
i=1 xi, y = 1

n

∑n
i=1 yi, and matrix GD,T ∈ Rp×p is given by

GD,T = 1
n2

 m∑
u=1

nu(nu − 1)(Gu
A − Gu

B) +
m∑

u=1

∑
v ̸=u

nunv(Gu
A − Guv

E)

 (68)

By definitions (64), (66) and (68), we have GA,T = GC,T + GD,T . Using relations (59), (60), (62), (63), (65) and
(67), we can easily adapt Propositions 11-16 to this general case with multiple equivalence classes of agents to
build all the PEP elements for distributed optimization only based on blocks fu

A, Gu
A, Gu

B , and Guv
E .

▷ Proposition 17 (Function interpolation constraints). Let Fu be a set of functions for which there exist linearly
Gram-representable interpolation constraints. When considering symmetric agent-class PEP solutions (F s

T − Gs
T)

(37)-(38), the set of interpolation constraints for Fu, applied independently to each agent of a given equivalence
class Vu, can be expressed with fu

A and Gu
A.

Proof. The constraint fi ∈ Fu for each i ∈ Vu can be written with a set of Gram-representable interpolation
constraints involving function values of agent i and scalar products between quantities (i.e. points and gradients)
related to agent i. These are thus single-agent constraints, that are identical for all i ∈ Vu when we restrict to
symmetrized agent-class solution (F s

T , Gs
T) (37)-(38). Therefore, they can all be expressed with fu

A and Gu
A using

(59) and (62). ◀

Algorithm description

The class of methods AD that we consider is defined in Definition 2 and may combine gradient evaluation,
consensus steps, and linear combinations of variables. In the latter, the agents from the same equivalence class
should define the same linear combinations of their local variables, otherwise they are not equivalent. Agents
from different equivalence classes may apply different combinations. This allows considering heterogeneity in
the algorithm parameters, for example, to analyze the effect of uncoordinated step-sizes. In any case, all the
variables in the combinations are related to the same agent and can therefore be squared and formulated in PEP
using Gu

A, as in (62).
Concerning the consensus steps, Theorem 9 applies to the set of averaging matrices W(λ−, λ+), defined in

Section 2. Necessary interpolation constraints for this set of matrices are given in (13), (14) and (15), from
Theorem 4 applied to the consensus subspace C. Proposition 13 below shows that these interpolation constraints
can be expressed in terms of GC,T (66) and GD,T (68), and so in terms of Gu

A, Gu
B , and Guv

E (u, v = 1, . . . , m).

Sebastien Colla & Julien M. Hendrickx 37

▷ Proposition 18 (Averaging matrix interpolation constraints). The averaging matrix interpolation constraints
(13), (14) and (15), from Theorem 4 applied to the consensus subspace C can be expressed with Gu

A, Gu
B, and

Guv
E (u, v = 1, . . . , m), as:

(eX − eY)T GC,T (eX − eY) = 0,

(eY − λ−eX)T GD,T (eY − λ+eX) ⪯ 0,

eT
Y (GD,T)eX − eT

X(GD,T)eY = 0,

where GC,T and GD,T are defined in (66) and (68) and eX , eY ∈ Rp are matrices of coefficients such that
PieX = Xi, PieY = Yi with Xi, Yi ∈ Rd×t the matrices with iterates xk

i , yk
i ∈ Rd as columns.

Proof. The proof is similar to the one of Proposition 13 but using relation (65) instead of (32) and (67) instead
of (50) ◀

Points common to all agents

As detailed in Appendix A.1 in the case where all agents are equivalent, for any point xc common to all the
agents in the problem, we need two elements in the PEP:

(i) the definition constraints for xc, e.g. (56),
(ii) the interpolation constraints for the new triplet (xc, gc, fc), if gc or fc used in the PEP.

The addition of a new triplet of points to consider in the interpolation constraints does not alter the result of
Proposition 11 and they can still be written with fu

A and Gu
A. The definition constraints can be treated as any

other constraint of the problem. When there are several equivalence classes of agents in PEP, this allows more
types of constraints to be expressed in the compact PEP formulation, and thus enlarges the type of common
points that can be defined in the problem. Optimal point x∗ and agent-average x can still be expressed in the
compact problem, as shown in Propositions 19 and 20.
▷ Proposition 19 (Optimality constraint). Let x∗ be an optimal point for the decentralized optimization problem
(1). The definition constraints for the common variable x∗ in a PEP restricted to symmetrized agent-class
solutions (F s

T , Gs
T) (37)-(38), given by the system-level stationarity constraint

1
n

n∑
i=1

∇fi(x∗
i) = 0, with x∗

i = x∗
j = x∗ for all i, j ∈ V,

can be expressed with Gu
A, Gu

B , and Guv
E (u, v = 1, . . . , m) as

eT
g∗(GC,T)eg∗ = 0 and eT

x∗(GD,T)ex∗ = 0,

where GC,T and GD,T are defined in (66) and (68) and eg∗ , ex∗ ∈ Rp are vectors of coefficients such that
Pieg∗ = g∗

i = ∇fi(x∗), and Piex∗ = x∗
i for all i = 1, . . . , n.

Proof. The proof is similar to the one of Proposition 14 but using relation (65) instead of (32) and (67) instead
of (50). ◀

▷ Remark. Without loss of generality, the optimal solution x∗ of problem (1) can be set to x∗ = 0. In that case,
the constraint x∗

i = x∗
j , written as eT

x∗(GD,T)ex∗ = 0, is not needed to define x∗ properly. Indeed, it is sufficient
to say that the coefficient vector is zero: ex∗ = 0. This improves the numerical conditioning of the resulting SDP
PEP.
▷ Proposition 20 (Agent average definition). We consider a PEP for distributed optimization, restricted to
symmetrized agent-class solutions (F s

T , Gs
T) (37)-(38). The definition constraints for x

xi = x = 1
n

n∑
j=1

xj for all i ∈ V,

can be written with Gu
A, Gu

B , and Guv
E (u, v = 1, . . . , m) as

eT
x (GA,T)ex + eT

x GC,T (ex − 2ex) = 0,

where GA,T and GC,T are defined in (64) and (66), and ex, ex ∈ Rp are vectors of coefficients such that Piex = xi,
and Piex = xi for all i = 1, . . . , n.

38 Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods

Proof. The proof is similar to the one of Proposition 15 but using relation (63) instead of (31) and (65) instead
of (32). ◀

A point common to all agents, that can only be defined using different equivalence classes of agents, is the
iterate of a given agent xt

1, at which all the local functions are evaluated f1(xt
1), . . . , fn(xt

1). This can be used to
evaluate the performance of the worst agent, see Section 6.1. The definition of such a point is treated in the
following proposition.
▷ Proposition 21 (Specific agent definition). We consider a PEP for distributed optimization, restricted to
symmetrized agent-class solutions (F s

T , Gs
T) (37)-(38). Let V1 = {1} be one of the m equivalence classes of the

PEP. If x1 is a common variable used by all the agents in the PEP, its definition constraints are given by

xc,i = x1 for all i ∈ V (69)

and can be written with Gu
A and Guv

E (u, v = 1, . . . , m) as

eT
xc

(Gu
A)exc

+ eT
x (G1

A)ex − 2eT
xc

(Gu1
E)ex = 0, for all u = 2, . . . , m, (70)

where exc
, ex1 ∈ Rp are vectors of coefficients such that Piexc

= Xc,i, and Piex = xi for all i = 1, . . . , n.
Proof. Constraint (69) can be written as (xc,i − x1)2 = 0, which can be expanded as

xT
c,ixc,i + xT

1 x1 − 2xT
c,ix1 = 0 for all i ∈ V.

This constraint can be expressed as (70), by using relation (62) for the two first terms and definition of Guv
E (38)

for the third term. ◀

Initial conditions and performance measures

We adapt Proposition 16 to the case where there are multiple equivalence classes of agents in the PEP, in order
to present usual initial conditions and their reformulation. The proposition focuses on the initial conditions, but
all the expressions involved in these constraints can also be adapted as a performance measure, using the last
point xt instead of the initial point x0. Other initial conditions or performance measures could involve only one
of the equivalence classes of agents.
▷ Proposition 22 (Initial conditions). Let x∗ ∈ Rd denote the optimal solution of the distributed optimization
problem, x0

i ∈ Rd the initial iterate of agent i, x0 the average initial iterate and R ∈ R a constant. When the
PEP is restricted to symmetric agent-class solutions (F s

T , Gs
T) (37)-(38), here is a list of initial conditions that

can be expressed with fu
A, Gu

A, Gu
B , and Guv

E (for u, v = 1, . . . , m):

Initial condition Reformulation

∥x0
i − x∗∥2 ≤ R2 for all i = 1, . . . , n (ex0 − ex∗)T Gu

A(ex0 − ex∗) ≤ R2, for all u = 1, . . . , m

1
n

n∑
i=1

∥x0
i − x∗∥2 ≤ R2, (ex0 − ex∗)T GA,T (ex0 − ex∗) ≤ R2,

∥∇fi(x0
i)∥2 ≤ R2, for all i = 1, . . . , n (eg0)T (Gu

A)(eg0) ≤ R2, for all u = 1, . . . , m

1
n

n∑
i=1

∥∇fi(x0
i)∥2 ≤ R2, for all i = 1, . . . , n (eg0)T GA,T (eg0) ≤ R2,

1
n

n∑
i=1

∥x0
i − x0∥2 ≤ R2, (ex0)T GD,T (ex0) ≤ R2,

x0
i = x0

j for all i, j = 1, . . . , n (ex0)T GD,T (ex0) = 0,

1
n

n∑
i=1

(
fi(x0) − fi(x∗)

)
≤ R

(
ef(x0) − ef(x∗)

)T
fA,T

(
ef(x0) − ef(x∗)

)
≤ R

where fA,T , GA,T and GD,T are defined in (61), (64) and (68), and ex0 , ex∗ , eg0 ∈ Rp are vectors of coefficients
such that Piex0 = x0

i , Piex∗ = x∗ and Pieg0 = ∇fi(x0
i), for i = 1, . . . , n.

Proof. The proof is similar to the one of Proposition 16 but using relation (62) instead of (31), relation (67)
instead of (50) and relation (60) instead of (30). ◀

	Introduction
	Contributions and paper organization
	Related work
	Notations

	Agent-dependent performance estimation problem for distributed optimization
	Performance Estimation Problem (PEP) framework
	Representation of consensus steps in PEP

	Equivalence classes of agents in PEP
	Agent-independent PEP formulation when all agents are equivalent
	The PEP formulation restricted to fully symmetric solutions
	Impact of agent symmetry on the worst-case solution

	Compact PEP with multiple equivalence classes of agents
	The PEP formulation restricted to symmetric agent-class solutions

	Case study: the EXTRA algorithm
	Performance of the worst agent
	The 80-th percentile of the agent performance
	Performance under local functions heterogeneity
	On the numerical resolution of the compact SDP PEP formulation

	Conclusion
	Explicit expressions of the compact PEP components
	When all agents are equivalent
	With multiple equivalence classes of agents

