Decentralized Estimation in Open Multi-Agent Systems

Sébastien Colla, Charles Monnoyer de Galland and Julien M. Hendrickx

European Control Conference

June 30, 2021

Starlink

Ad-hoc and sensor networks

Multi-robot system

Flock of birds

Under some assumption on the network,

 $\lim_{t \to \infty} y(t) = y^* \qquad \text{For some desirable } y^*$

e.g. for consensus: $y^* \in \text{span}\{1\}$

Under some assumption on the network,

 $\lim_{t\to\infty} y(t) = y^* \qquad \text{For some desirable } y^*$

e.g. for consensus: $y^* \in \text{span}\{1\}$

Under some assumption on the network,

 $\lim_{t \to \infty} y(t) = y^* \qquad \text{For some desirable } y^*$

e.g. for consensus: $y^* \in \text{span}\{1\}$

Open Multi-Agent systems

Many multi-agent systems are **open by nature**

Open Multi-Agent systems

Challenging design and analysis:

- Variable dimension
- Variable objective
- > No more convergence

Problem Statement

Each agent has a **noisy measurement** of $\boldsymbol{\mu}$: $z_i \sim \mathcal{N}(\boldsymbol{\mu}, \sigma^2)$ (iid.)

GOAL: Estimating μ

 $y_i(t) \to \mu$

Replacement assumption \rightarrow constant size system n

 λ_r replacement rate

Communications:

Random, pairwise, asynchronous, symmetric

 λ_c communication rate

Agents have: Bounded memory No identifier Identical algorithms

Outline

1. Performance Limitations

- 2. Gossip averaging algorithm
- 3. Symmetric Push-Sum

Performance Limitations

Best possible way for agent *i* to estimate μ :

 $y_i^{best}(t) = \text{average} \{z_k \mid k \text{ has influenced } i \text{ at time } t\}$

Ideal : requires a growing memory + identifiers

Lower bound on the expected performance of any algorithm:

Performance metric:

$$MSE(t) = \frac{1}{n} \sum_{i=1}^{n} (y_i(t) - \mu)^2$$

 $\mathbb{E}[MSE(t)] \ge \mathbb{E}[MSE_{best}(t)]$

Outline

- 1. Performance Limitations
- 2. Gossip averaging algorithm
- 3. Symmetric Push-Sum

Initialization: $x_i = z_i$ Interaction i - j: $x_i^+ = x_j^+$

Estimate of μ :

$$x_i^+ = x_j^+ = \frac{x_i + x_j}{2}$$
$$y_i(t) = x_i(t)$$

Initialization: $x_i = z_i$ Interaction i - j: $x_i^+ = x_j^+ = \frac{x_i + x_j}{2}$ Estimate of μ : $y_i(t) = x_i(t)$

Initialization:

Interaction i - j: Estimate of μ :

$$x_i^+ = x_j^+ = \frac{x_i + x_j}{2}$$
$$y_i(t) = x_i(t)$$

 $\chi_i = Z_i$

Closed: all
$$x_i$$
 converge to $\overline{x} = \frac{1}{n} \sum_{k=1}^n z_k$

Initialization:

Interaction i - j: Estimate of μ :

$$x_i^+ = z_i^+$$
$$x_i^+ = \frac{x_i + x_j}{2}$$
$$y_i(t) = x_i(t)$$

- 7.

Closed: all x_i converge to $\bar{x} = \frac{1}{n} \sum_{k=1}^n z_k$ Replacement of j by n + 1: All x_i re-converge to $\frac{n-1}{n} \bar{x} + \frac{1}{n} z_{n+1}$

Initialization:

Interaction i - j: Estimate of μ :

$$x_i^+ = z_i^+$$
$$x_i^+ = \frac{x_i + x_j}{2}$$
$$y_i(t) = x_i(t)$$

 $\mathbf{v} - \mathbf{z}$

Closed: all
$$x_i$$
 converge to $\bar{x} = \frac{1}{n} \sum_{k=1}^n z_k$
Replacement of j by $n + 1$:
All x_i re-converge to $\frac{n-1}{n} \bar{x} + \frac{1}{n} z_{n+1}$
 $\frac{n-1}{n^2} \sum_{k=1}^n z_k + \frac{1}{n} z_{n+1} \neq \frac{1}{n+1} \sum_{k=1}^{n+1} z_k$
New agent has more weight

Performance of the gossip algorithm

The gossip algorithm: a baseline

Theoretical evolution of an open multi-agent system subjectto gossip algorithm exists[J.M. Hendirkx, S. Martin 2017]

Baseline algorithm with theoretical guarantees

Issues with the gossip algorithm

- 1. Not equal weight for all agents
 - \rightarrow Large squared bias
- 2. Disruptions due to replacements
 - \rightarrow Large Variance

Gossip - Issue 1: too much weight for new agents

 \rightarrow Idea: give decreasing weights to incoming agents

Symmetric Push-Sum: add a weight for each agent

1L

1L

Gossip - Issue 1: too much weight for new agents

 \rightarrow Idea: give decreasing weights to incoming agents

Symmetric Push-Sum: add a weight for each agent

Gossip - Issue 1: too much weight for new agents

 \rightarrow Idea: give decreasing weights to incoming agents

Symmetric Push-Sum: add a weight for each agent

 x_i : quantity, w_i : volume $y_i = \frac{x_i}{w_i}$: estimate

Communication:

Mix their 'content' and share it equally

$$x_i^+ = x_j^+ = \frac{x_i + x_j}{2}$$

$$w_i^+ = w_j^+ = \frac{w_i + w_j}{2}$$

14

Gossip - Issue 1: too much weight for new agents

 \rightarrow Idea: give decreasing weights to incoming agents

Symmetric Push-Sum: add a weight for each agent

 x_i : quantity, w_i : volume $y_i = \frac{x_i}{w_i}$: estimate

Communication:

Mix their 'content' and share it equally

$$x_i^+ = x_j^+ = \frac{x_i + x_j}{2}$$

$$w_i^+ = w_j^+ = \frac{w_i + w_j}{2}$$

Gossip - Issue 1: too much weight for new agents

 \rightarrow Idea: give decreasing weights to incoming agents

Symmetric Push-Sum: add a weight for each agent

 x_i : quantity, w_i : volume $y_i = \frac{x_i}{w_i}$: estimate

Communication:

Mix their 'content' and share it equally

$$x_i^+ = x_j^+ = \frac{x_i + x_j}{2}$$
$$w_i + w_i$$

$$w_i^+ = w_j^+ = \frac{w_i + w_j}{2}$$

Gossip - Issue 1: too much weight for new agents

 \rightarrow Idea: give decreasing weights to incoming agents

Symmetric Push-Sum: add a weight for each agent

 x_i : quantity, w_i : volume $y_i = \frac{x_i}{w_i}$: estimate

Communication:

Mix their 'content' and share it equally

2

$$x_{i}^{+} = x_{j}^{+} = \frac{x_{i} + x_{j}}{2}$$
$$w_{i}^{+} = w_{j}^{+} = \frac{w_{i} + w_{j}}{2}$$

14

Gossip - Issue 1: too much weight for new agents

 \rightarrow Idea: give decreasing weights to incoming agents

Symmetric Push-Sum: add a weight for each agent

Gossip - Issue 1: too much weight for new agents

 \rightarrow Idea: give decreasing weights to incoming agents

Symmetric Push-Sum: add a weight for each agent

Past agent:

1L

Replacement:

Which volume should we choose for the first new agent n + 1?

First new agent n + 1

We suppose for other agents

Goal: Compute the external average

$$\implies w_{n+1}(0) = \frac{n-1}{n}$$

16

Replacement:

Which volume should we choose for the first new agent n + 1?

First new agent n + 1

We suppose for other agents

Goal: Compute the external average

Effect of the weights ?

Weighted average

$$y_i \rightarrow \bar{z}_{ext} = \frac{1}{n+1} \sum_{k=1}^{n+1} z_k$$

$$\implies w_{n+1}(0) = \frac{n-1}{n}$$

16

Symmetric Push-Sum: Summary

Symmetric Push-Sum algorithm (SPS):

Initialization:choose $w_i(0)$ $x_i = w_i(0) z_i$ Interaction i - j: $w_i^+ = w_j^+ = \frac{w_i + w_j}{2}$ $x_i^+ = x_j^+ = \frac{x_i + x_j}{2}$ Estimate of μ : $y_i(t) = \frac{x_i(t)}{w_i(t)}$

How to choose $w_i(0)$?

$$w_i(0) = 1$$
$$w_{n+k}(0) = \left(\frac{n-1}{n}\right)^k$$

for the *n* initial agents

for the k^{th} arriving agent

Supposing **convergence** occurs between each replacement, (i.e. replacements are very infrequent)

these **decreasing weights** ensures that

$$y_i(t) \rightarrow \frac{1}{n+k} \sum_{i=1}^{n+k} z_i$$

between each replacement

SPS: performance with infrequent replacements

SPS: performance with frequent replacements

Symmetric Push-Sum with difference tracking

Conclusion

- External averaging problem: in the context of open multiagent systems for decentralized estimation.
- > Challenging problem with **limitations**.
- Well known gossip averaging algorithm does not answer challenges properly.
- Symmetric Push-Sum shows very good results to these challenges.

Open problems

Develop **theoretical guarantees**

Consider separate arrivals and departures