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Abstract: We establish that in distributed optimization, the prevalent strategy of minimizing
the second-largest eigenvalue modulus (SLEM) of the averaging matrix for selecting commu-
nication weights, while optimal for existing theoretical performance bounds, is generally not
optimal regarding the exact worst-case performance of the algorithms. This exact performance
can be computed using the Performance Estimation Problem (PEP) approach. We thus rely
on PEP to formulate an optimization problem that determines the optimal communication
weights for a distributed optimization algorithm deployed on a speci�ed undirected graph. Our
results show that the optimal weights can outperform the weights minimizing the second-largest
eigenvalue modulus (SLEM) of the averaging matrix. This suggests that the SLEM is not the best
characterization of weighted network performance for decentralized optimization. Additionally,
we explore and compare alternative heuristics for weight selection in distributed optimization.
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1. INTRODUCTION

We seek to identify the best communication weights to use
in decentralized optimization algorithms, by leveraging the
Performance Estimation Problem framework (PEP) from
Colla and Hendrickx (2023).

In decentralized optimization, one considers a set of agents
V = {1, . . . , n}, connected by a set E of m communica-
tion links via the network G(V, E). The agents seek to
collaboratively minimize the average of their private local
functions fi : Rd → R:

minimize
x ∈ Rd

f(x) =
1

n

n∑
i=1

fi(x).

Each agent i holds a local copy xi of the decision vari-
able to perform local computations. The agents exchange
local information with their neighbors in G to gradually
come to an agreement on the minimizer x∗ of the global
function f . These exchanges often take the form of an
average consensus on some quantity, e.g., on the xi. The
consensus step can be represented using multiplication by
an averaging matrixW ∈ Rn×n, for whichWij = 0 if there
is no communication link between i and j. In this work,
we focus on the case where the communication network is
undirected, which corresponds to a symmetric matrix W .
All the assumptions for W are summarized below

Assumption 1. (Averaging matrix). The averaging matrix
W = [Wij ] ∈ Rn×n satis�es

(1) WT = W , (Symmetry)
(2) W1 = 1 and 1TW = 1T , (Averaging Consensus)
(3) W ∈ T , (Topology)

where T = {W : Wij = 0 if (i, j) /∈ E and i ̸= j}.
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If, in addition to (2), the matrix W is non-negative, we
say that W is doubly-stochastic. While it is a common
assumption in the literature, we choose not to use it
because most decentralized convergence results do in fact
not use the non-negativity assumption. Moreover, non-
negativity is not necessary for the convergence of a pure
consensus protocol, as shown in Xiao and Boyd (2004).

An example of a well-known distributed optimization algo-
rithm is DIGing, from Nedic et al. (2016). The algorithm
uses a gradient tracking variable ski and can be written,
for each agent i ∈ V, as

xk+1
i =

∑
j

Wij x
k
j − αski , (1)

sk+1
i =

∑
j

Wij s
k
j +∇fi(x

k+1
i )−∇fi(x

k
i ), (2)

where α > 0 is a constant step-size.

In general, the performance of a decentralized optimization
method is largely impacted by the averaging matrixW , see
for example the survey Nedi¢ et al. (2018). While the zero
elements are imposed by the network topology, the values
of the non-zero elements can be freely chosen, and could
be carefully determined to obtain e�cient algorithms, as
for any other parameter of a method.

Almost all theoretical performance guarantees from the
literature of decentralized optimization algorithms depend
on the second-largest singular value of W (after one),
denoted λ, or some equivalent measure, because it is easy
to use in the proofs and characterizes well the network
behavior in terms of consensus. By Assumption 1,W1 = 1
and therefore, λ can be computed as

λ = ∥W − 11T /n∥2.
Decentralized algorithms require λ < 1, otherwise, the
agents never converge to a common point, see Xiao and



Boyd (2004). This requirement is not guaranteed by As-
sumption 1 but is implicit since we are looking for averag-
ing matrices that enable fast convergence for distributed
optimization algorithms, thus ruling out matrices that
prevent convergence. When λ < 1 and Assumption 1 hold,
the eigenvalues of the symmetric matrix W are as follows

1 = λ1(W ) ≤ λ2(W ) ≤ · · · ≤ λn(W ).

In this case, λ also corresponds to the Second-Largest
Eigenvalue Modulus (SLEM) of W ,

λ = max
{
|λ2(W )|, |λn(W )|

}
.

All known theoretical performance guarantees improve
when λ decreases. Therefore, the classical theoretical ap-
proach for selecting the weights in distributed optimization
is to choose those leading to the smallest possible λ for the
given network topology, which results in the smallest error
guarantee.

Contributions

In this paper, we formulate an optimization problem that
computes the optimal communication weights for a given
distributed optimization algorithm, a given network topol-
ogy, and other given settings. The formulation relies on
the Performance Estimation Problem framework (PEP)
Taylor et al. (2017b) which allows to numerically com-
pute the exact worst-case performance of an optimization
algorithm, and which has been extended to distributed
optimization in Colla and Hendrickx (2023). The resulting
weight-tuning problem has no guarantee to be smooth nor
convex, but we can obtain good estimates of the solution
via a zero-order method. We show that in many settings,
the optimal weights are di�erent from those minimizing λ
and allow, for example, to decrease the convergence time
by up to 4 for the DIGing algorithm Nedic et al. (2016).
It seems that all the eigenvalues, as well as their sign, are
important to determine the performance of a decentral-
ized optimization method. This indicates that the second-
largest eigenvalue modulus λ (SLEM) is not the best de-
terminant of weighted network performance in distributed
optimization methods. We also explore di�erent weights
heuristics and compare them with the optimal ones, to
�nd a better characterization of network performance in
distributed optimization methods.

2. WEIGHTS HEURISTICS

We review possible heuristics to set the communication
weights in distributed optimization, for which we will
analyze the resulting performance in Section 5.

Let B ∈ Rn×m be the oriented incidence matrix of the
network G, de�ned as

Bie =


1 if edge e starts from node i,

−1 if edge e ends at node i,

0 otherwise.

Since the edges are undirected, any orientation can be
chosen for each edge. The matrix B allows de�ning an
averaging matrix W satisfying Assumption 1, for any
choice of the edge weights

W = I −Bdiag(w)BT , (3)

where w ∈ Rm is the vector of weights for the m edges in
E and diag(w) ∈ Rm×m is a diagonal matrix with w on
the diagonal.

Common choices for the averaging matrix W in decentral-
ized optimization are those developed for the pure linear
averaging consensus protocols,

xk+1 = Wxk, (4)

and are listed below.

Minimum-λ weights. In Xiao and Boyd (2004), the au-
thors have proved that the per-step convergence factor for
the averaging consensus (4) is given by λ = ∥W−11T /n∥2,
and therefore, that the fastest averaging matrix for the
consensus, denoted Wλ∗ , is obtained by minimizing λ,

Wλ∗ = I −Bdiag(wλ∗)BT , (5)

where wλ∗ = argmin
w∈Rm

∥I −Bdiag(w)BT − 11T /n∥2.

While computing Wλ∗ requires global knowledge of the
network, some papers have explored ways to compute it in
a decentralized way, e.g. Boyd et al. (2006).

Uniform edge weights. When we choose all the weights
to be equal to q ∈ R, then we have w = q1 and

Wq = I − qBBT .

According to Xiao and Boyd (2004), the value of q mini-
mizing the convergence factor, given by λ, is given by

qλ∗ =
2

λ2(L) + λn(L)
, (6)

where L = BBT is the Laplacian matrix of the graph G
and its eigenvalues λi(L) are labelled in ascending order.
When the network G is connected, the resulting averaging
matrix guarantees the convergence of the averaging con-
sensus (4), i.e. λ < 1.

Maximum-degree weights. Another uniform edge weight
that always yields asymptotic average consensus is

qd = 1/(dmax + 1), (7)

where dmax is the maximal degree in G, which can easily
be computed in a decentralized manner.

Metropolis weights. The Metropolis weights only use
local-degree information so that each node can set up
its weights without knowing global information on the
network. They are de�ned, for each edge e = (i, j) ∈ E, as

we =
1

max{di, dj}+ 1
,

where di is the degree of node i, without counting the
node itself. The averaging matrix calculated from (3) with
Metropolis weights is denoted WM and guarantees the
convergence of the averaging consensus (4). These weights
are derived from the Metropolis�Hastings algorithm, when
employed for the simulation of a Markov chain with
uniform equilibrium distribution, see Boyd et al. (2004).

Lazy Metropolis weights. A popular variation of Metropo-
lis weights, introduced by Olshevsky (2015), is de�ned as

Wlazy−M =
1

2
(I +WM ).

This averaging matrix is diagonally dominant and has thus
non-negative eigenvalues, which can be useful for proofs.



In the pure consensus (4), the decrease of the consensus
error ∥xk − x1∥ is dominated by λ because the in�uence
of all the other smaller eigenvalues (in absolute value)
vanishes more rapidly, and the in�uence of λ1 = 1 is zero
because the error vector is orthogonal to the associated
eigenvector 1. In decentralized optimization, the consensus
is perturbed by local gradient updates, which prevent the
vanishing of smaller eigenvalues of the averaging matrix.
Therefore, all the eigenvalues may in�uence the conver-
gence speed of decentralized optimization algorithms. This
motivates us to consider weight heuristics based on all the
eigenvalues of the averaging matrices, and that we consider
potentially relevant in decentralized optimization.

Minimum-∥W∥Σ weights. The nuclear norm of a sym-
metric matrix W is de�ned as

∥W∥Σ =
∑

|λi(W )|,
and the weighted nuclear norm is given by

∥W∥γ,Σ =
∑

γi|λi(W )|,
where γ = [γ1, . . . , γn], with γi ≥ 0 a non-negative weight
assigned to λi. Both norms are used as convex surrogates
for the matrix rank in problems involving rank minimiza-
tion. The weights minimizing ∥W∥γ,Σ can be relevant in
distributed optimization because it generalizes the weights
minimizing λ, by taking into account all the other eigenval-
ues, which may play a role in the algorithm convergence.
We denote the corresponding averaging matrix as Wγ,Σ∗

and de�ne it formally as

Wγ,Σ∗ = I −Bdiag(wγ,Σ∗)BT ,

where wγ,Σ∗ = argmin
w∈Rm

∥I −Bdiag(w)BT ∥γ,Σ,

which can be computed by solving an equivalent SDP,
described in Alizadeh (1995).

Minimum-Rtot weights. The total e�ective resistance of
a weighted graph, denoted Rtot, can be de�ned based on
the eigenvalues of the associated averaging matrix W :

Rtot(W ) = n

n∑
i=2

1

1− λi(W )
. (8)

The initial interpretation and de�nition of Rtot is related
to the total electrical resistance of a resistor network with
conductances given by the edges. Ghosh et al. (2008)
provide many useful interpretations of the total e�ective
resistance. For example, Rtot is related to the average com-
mute time in the Markov Chain derived from the weighted
graph. Hence, the averaging matrix WR∗

tot
minimizing the

total e�ective resistance would consist in the graph leading
to the smallest average commute time:

WR∗
tot

= I −Bdiag(wR∗
tot
)BT , (9)

where wR∗
tot

= argmin
w∈Rm

Rtot(I −Bdiag(w)BT )

s.t.
∑

e adjacent to i

we ≤ 1− ϵ for all i,

where ϵ ∈ [0, 1) is the smallest accepted value for the
diagonal elements of the averaging matrix. Using results
from Ghosh et al. (2008), the solution to problem (9) can
be computed by solving an equivalent SDP.

Least mean-square deviation weights. Xiao et al. (2007)
formulate a convex problem to compute the symmetric av-
eraging weights that minimize the mean-square deviation

from the mean produced by the average consensus with
additive noise. This extension of the averaging iteration
(4) adds a noise at each node and each step:

xk+1 = Wxk + vk, (10)

where vk = [vk1 . . . v
k
n]

T , and vki are independent random
variables, identically distributed, with zero mean and unit
variance. Due to the noise, the agent values xi are not
converging to the average, but the quality of the consensus
can be evaluated using the mean-square deviation from the
average x = xT1/n:

δk = E
n∑

i=1

(xk
i − x)2

According to Xiao et al. (2007), δk converges to a steady
state mean-square deviation which depends on the eigen-
values of W as

δss(W ) = lim
k→∞

δk =

n∑
i=2

1

1− λi(W )2
.

The averaging matrix Wδ∗ minimizing the steady state
mean-square deviation is therefore given by

Wδ∗ = I −Bdiag(wδ∗)B
T ,

where wδ∗ = argmin
w∈Rm

δss(I −Bdiag(w)BT ) (11)

Xiao et al. (2007) show that problem (11) is convex
and details how to evaluate the function δss, as well as
its gradient and hessian, such that it can be minimized
using standard optimization methods. Choosing Wδ∗ for
distributed optimization may be relevant since, distributed
optimization algorithms are similar to the noisy consensus
(10), where additive noise is replaced by a local update
based on local gradients information, that may not be
i.i.d., of zero mean or unit variance.

3. WORST-CASE PERFORMANCE EVALUATION

To evaluate the quality of an averaging matrix W for
a given decentralized algorithm, we compute the worst-
case performance it provides. For this purpose, we rely on
the Performance Estimation Problem framework (PEP)
that was initially developed for centralized optimization
by Taylor et al. (2017b) and extended to decentralized
optimization by Colla and Hendrickx (2023). To obtain
a tight bound on the performance of an algorithm A,
the conceptual idea is to search for instances of local
functions and starting points for all agents, allowed by
the setting considered, producing the largest error after a
given number K of iterations of the algorithm. This idea
can be formulated as a real optimization problem that
maximizes the error measure P of the algorithm result,
over all possible functions and initial point allowed:

ES(W,α) = max
x∗,{x0

i
,fi}i∈V

P (fi, x
0
i , . . . , x

K
i , x∗) (12)

s.t. xk
i from algorithm A k=1,...,K

i∈V (algorithm)

fi ∈ F , i ∈ V (class of functions)

x0
i satis�es I (initial condition)

(e.g. ∥x0
i − x∗∥ ≤ 1, i ∈ V)

1

n

n∑
i=1

∇fi(x
∗) = 0, (optimality condition)

where α is the step-size parameter of the algorithm and S
is the performance evaluation setting which speci�es the



graph of agents, the algorithm, the number of steps, the
performance criterion, the class of function, and the initial
conditions: S = (G,A,K, P,F , I).
The worst-case performance function ES(W,α) is always
speci�c to a given setting S, but it may sometimes be
ignored in the notation E(W,α). Problem (12) can be
solved exactly via an SDP reformulation, relying on a
discretization of the functions and the use of interpolation
constraints appropriate to the given function class F , see
Taylor et al. (2017a). We can use any of the common
classes of functions such as µ-strongly convex and L-
smooth functions. Moreover, the performance measure P
and the initial conditions I can be any expression that
is linear in the local function values and quadratic in
the iterates and gradient values, see Colla and Hendrickx
(2023) for more details.

The PEP framework (12) allows trying the di�erent weight
heuristics from Section 2 on di�erent graphs and algo-
rithms, and to compare their resulting worst-case perfor-
mance. Furthermore, it also allows for seeking the weights
leading to the best performance.

4. WEIGHTS MINIMIZING THE WORST-CASE
PERFORMANCE

To �nd the best averaging matrix to use for a setting
S, we can �nd the matrix W ∗, along with a step-size
α∗, minimizing the performance function ES(W,α) of the
algorithm, de�ned in (12),

(W ∗, α∗) = argmin
W∈Rn×n

α≥0

ES(W,α) (13)

s.t. W = WT , W1 = 1, W ∈ T .

λ(W ) = ∥W − 11T /n∥2 < 1.

Constraint λ(W ) < 1 is necessary for the convergence of
decentralized algorithms. Matrices that do not satisfy it
should, in principle, lead to larger values of ES , when the
number K of iterations is large enough. To ensure the
condition is met, even for small K, we interpret ES as
∞ when it does not hold. Therefore, Problem (13) can be
written without constraints, using (3),

(w∗, α∗) = argmin
w∈Rm

α≥0

ES(I −Bdiag(w)BT , α), (14)

with step-size α ∈ R and edge weights vector w ∈ Rm

as variables, and where we interpret ES(W,α) as ∞
whenever ∥W − 11T /n∥2 ≥ 1. This problem is a priori
non-convex and non-smooth. While this is di�cult to
prove, it could be smooth or convex for some settings. A
simple way of solving Problem (13) is using a zero-order
method, that only relies on function evaluations to identify
a minimizer. In this work, we use the pattern search
method from Matlab, which is described and analyzed
in Audet and Dennis Jr (2002). Their analysis showed
that even if the objective function is discontinuous or
extended-valued, the method �nds a limit point with some
minimizing properties. Moreover, if the function is strictly
di�erentiable at this limit point, then it corresponds to
a local minimum. We have, of course, no guarantee to
converge to a global minimizer in the non-convex case.
There are other possible approaches to solve (13):

• Problem (13) corresponds to a min-max problem. The
SDP reformulation of the inner maximization (12) can
be dualized, so that it can be combined with the outer
minimization. The resulting problem is a quadrati-
cally constrained quadratic program (QCQP), which
is known to be NP-hard in general. However, there
are solvers, such as Gurobi, that �nd globally optimal
solutions to non-convex QCQPs in �nite time.

• One could try to solve Problem (13) using �rst-
order methods, which would allow converging to a
local minimum. The generalized gradient of function
E(W,α) can be computed via an SDP sensitivity
analysis, see Bonnans and Shapiro (2013). Indeed,
as explained in Colla and Hendrickx (2023), Problem
(12) can be reformulated in an SDP.

For this �rst analysis, we have decided to use a simple zero-
order method, which already provides interesting results,
as shown in the following section.

5. RESULTS

Using the pattern search method from Matlab, we solve
problem (14) for di�erent performance settings S. Fig. 1
compares the optimal weights with the heuristics weights
presented in Section 2. To obtain a fair comparison, we
tune the step-size α of the methods, for each heuristic. We
analyze averaging matrices for the following algorithms,
with a constant step-size α,

• DIGing Nedic et al. (2016), see (1) and (2),
• ATC-DIGing Nedi¢ et al. (2017),

• EXTRA Shi et al. (2014), with W̃ = I+W
2 ,

• Acc-DNGD Qu and Li (2020).

We have decided to analyze these algorithms because of
their signi�cance in the literature. As explained in Colla
and Hendrickx (2023), for DIGing and ATC-DIGing, we
can compute a bound on the linear convergence rate
using (12) by analyzing only K = 1 iteration of the
algorithm, with a performance criterion identical to the
initial condition. For the other algorithms (EXTRA and
Acc-DNGD), we compute the decrease after K = 5 steps.
We assume local functions to be µ-strongly convex and L-
smooth, so that all the above algorithms exhibit a linear
convergence. We consider 4 usual network topologies for
n nodes: complete, star, cycle, and grid. Details of these
topologies are given in the table header from Fig. 1. We
mainly focus on the situation with n = 9 nodes. This small
number of nodes gives us a better intuition of the results
and also avoids excessive computational load to solve the
tuning problem (14). To further reduce this computational
load, we have decided to give equal weights to equivalent
edges (see De�nition 1), so that the actual number of
variables in the problem is very low. This corresponds to a
restriction on the searching space of (14), which may lead
to suboptimal solutions if the problem is not convex in W .

De�nition 1. (Equivalent edges, Gross et al. (2018)).
Let G(V, E) be a graph and e1, e2 ∈ E two edges of the
graph. If there is an automorphism mapping e1 to e2, then
there is an equivalence relation between e1 and e2. The
equivalence classes of edges of G are called the edge orbits.

For example, the complete graph only has one orbit with
all the edges. This is also the case for the star graph and
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(n = 9)
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1
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EXTRA
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for K = 5.
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Acc-DNGD
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for K = 5.
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Fig. 1. These plots show the error criterion ES(W,α) on the vertical axis, for the optimal averaging matrix W ∗ in
comparison with di�erent averaging matrix heuristics from Section 2. The plots also show the eigenvalue distribution
of the matrices (except λ1 = 1) on the horizontal axis. Each marker corresponds to a di�erent eigenvalue, with
a size proportional to its multiplicity. To obtain a fair comparison between the averaging matrices, we tune the
step-size α of the methods for each of them. Each plot corresponds to a di�erent topology or a di�erent algorithm.
The local functions are µ-strongly convex and L smooth.

the cycle graph. Therefore, we only have one constant
edge weight to optimize for these topologies. The grid
graph with 9 nodes, shown in Fig. 1, has 2 edge orbits:
one with the outer edges and the other with the inner
edge. For larger grid graphs, each of these orbits divides
in two so that we have 4 edge orbits. We may expect better
optimal values for the tuning problem (14) when allowing
all the weights to be di�erent, however, we have observed
on small networks (n = 3, 4, 5), that this is not the case for
the algorithms considered and that we still obtain equal
weights for equivalent edges, even when not imposed in
advanced. Moreover, all the weights heuristics presented
in Section 2 satisfy this equivalent weight property.

5.1 Weights minimizing λ (SLEM) are not optimal

As shown in Fig. 1, the averaging matrixWλ∗ (5), minimiz-
ing λ (SLEM) for the given graph G, does not provide the
best convergence guarantees for the tested decentralized
algorithms, even with a step-size α speci�cally optimized
for these weights. This observation is counter-intuitive be-
cause small λ values correspond to well-connected graphs
and because Wλ∗ is optimal for pure consensus steps
(4). All known theoretical performance bounds in decen-
tralized optimization depend on λ, and improve when
λ decreases, however, our results show that for a given
topology, minimizing λ does in general not optimize worst-
case performance. This suggests that λmay not be the best
characterization of the network performance in distributed
optimization methods. Even for the complete graph, where



a reasonable person would guess thatWλ∗ = 11T

n would be
optimal, we can obtain improvement on the performance
by choosing W ∗ with a di�erent unique eigenvalue.

Choosing the optimal averaging matrix W ∗ (in green in
Fig. 1), instead of Wλ∗ (in red) improves the iterates con-
vergence rate ρ of DIGing and ATC-DIGing by up to 5%
and their corresponding convergence time τ = 1/ log(1/p)
is up to 4 times smaller, when choosing the best possible
step-size for each matrix, as we do in Fig. 1. For EXTRA
and Acc-DNGD, their worst-case performance after 5 iter-
ations is improved by up to 18%. We have observed that
the optimal weights W ∗ allows the algorithms to work
better with larger step-sizes α, which may partly explain
their improved performance.

We observe that the sign of the eigenvalues of the averaging
matrix and their distribution are related to the result-
ing performance. Indeed, in many cases (DIGing, ATC-
DIGing, Acc-DNGD), the optimal averaging matrices have
a smaller range of eigenvalues |λ2 − λn|, with the leftmost
(negative) eigenvalue λn signi�cantly larger than that of
Wλ∗ , while the rightmost (positive) eigenvalue λ2 is only
slightly larger, which can barely be seen on the plots
from Fig. 1. Matrix Wλ∗ always have λn = −λ2 but by
taking advantage of non-symmetric range of eigenvalues,
W ∗ reach smaller |λ2 − λn|. For EXTRA, things are sur-
prisingly di�erent, the optimal averaging matrix W ∗ has
a larger range of eigenvalues, the smallest of which is close
to -1. This should be investigated to see if the phenomenon
persists for larger numbers K of iterations.

5.2 Weights heuristics analysis

As shown in Fig. 1, none of the heuristics from Section 2
achieves optimal weights performance. However, some of
them come close in certain contexts, while others never
seem to perform well. For example, The lazy-Metropolis
weights Wlazy−M (in black) do not perform very well in
the settings we tested, because it gives averaging matrices
with too large positive eigenvalues. Its eigenvalues are
concentrated in a smaller range but always have the largest
(positive) eigenvalue among all the tested matrices. The
standard Metropolis weights WM present better results,
while it can still be far from the optimal weights in some
cases. Surprisingly,WM often beatsWλ∗ , especially for the
grid topology.

For clarity, Fig. 1 omits the performance of the two
heuristics for uniform edge weights (6) and (7). Their
respective performance is always worst or equal to those
of Wλ∗ and WM .

We observe that the averaging matrices that perform
similarly tend to have the same eigenvalue distribution
and have actually weights close to each other, even if
similar matrices are not guaranteed to be equal. Moreover,
when the performance of a heuristic weight approaches
the optimal performance, it also approaches the optimal
weight values. This would be consistent with the convexity
of problem (13) and the uniqueness of its optimal solution,
which cannot be guaranteed theoretically at this stage.

No heuristic strictly outperforms the others in all situ-
ations. For DIGing, ATC-DIGing, and Acc-DNGD, the
best heuristic seems to be Wδ∗ , which performs very well,

except for the star graph. By de�nition (11), Wδ∗ min-
imizes the steady-state mean square deviation δss of a
consensus with additive noise. In distributed optimization,
noise is replaced by all kinds of local updates, which take
local gradients into account. In terms of eigenvalues, Wδ∗

minimize δss =
∑n

i=2
1

1−λi(W )2 , which drives the matrix

to have small eigenvalues in absolute value and penalizes
more the large eigenvalues due to the square. This explains
why the eigenvalues of Wδ∗ often lie in a smaller range
around zero, than other matrices.

For EXTRA, the best heuristic seems to be WR∗
tot
, which

selects the weights leading to the smallest (negative)
eigenvalues to minimize Rtot, de�ned in (8). This strategy
does not appear to be good for other algorithms.

The observations made throughout this section have also
been validated on two random graphs, sampled from the
Erd®s�Rényi model G(n, p), one for n = 9 and p = 0.4 and
the other for n = 30 and p = 0.2.

6. CONCLUSION

We showed how to compute the optimal communication
weights for a distributed optimization algorithm over an
undirected network. Our analysis reveals that the weights
minimizing the second-largest eigenvalue modulus (SLEM)
of the averaging matrix are suboptimal. While the SLEM
characterizes well the convergence rate of a pure consensus
protocol, we showed that this is not the best determinant
for the performance of a weight matrix in distributed
optimization. While other heuristics give better results,
the best characterization of the network performance for
distributed optimization is still an open question and is
probably involving all the eigenvalues of the averaging
matrix.
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