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Abstract— We present a new decentralized estimation algo-
rithm that operates in open multi-agent systems which are
subject to arrivals and departures of agents. The algorithm
averages the data of all the agents that are or have been in the
system in order to estimate, in a decentralized manner, the mean
of the data distribution. The main challenge of this problem
is to correctly incorporate the information from new agents
without (i) forgetting the information of the agents having left
the system and (ii) being impacted by the perturbations inherent
to an arrival or a departure. This work establishes empirical
performance limitations for this problem in Open Multi-Agent
Systems and proposes a new algorithm (SPS) that approaches
the performance limitations (within 1%) in most cases.

I. INTRODUCTION

We consider open multi-agent systems, i.e. systems where
the agents may leave or join the system freely during its op-
eration. This open character may be inherent to the situation,
e.g. when the agents are moving or when there is a kind of
birth process in the system. It is also relevant in large systems
where the arrival and departure of agents may become
unavoidable. Finally, one may desire openness of the system
to ensure robustness against possible failures. Theoretical
analyses of open multi-agent systems are relatively recent. In
[1], [2], the authors have analyzed the behavior of the gossip
averaging algorithm in open system; in [3] the performance
limitations for the consensus problem on the average of
the agents currently present in the open systems; in [4] the
maximum consensus and in [5], [6] the dynamic consensus
on the average and the median of time-varying signals, in
open systems.

In this work, we focus on a new decentralized estimation
problem for open multi-agent systems. We suppose that every
agent holds a noisy measurement of a mean µ, and the goal
of the system is to estimate µ, in a decentralized manner.
In this context, the open character of the system will at
the same time be beneficial, because each new agent brings
a new measurement allowing for potentially more accurate
estimates, and challenging, because each arrival and depar-
ture creates a perturbation, and the information from former
agents should not be forgotten by the system.
In the context of sensor networks, this estimation problem
corresponds to a multi-agent system where each entering
agent gets a noisy measurement of a value, e.g. a state of the

S. Colla, C. Monnoyer de Galland and J. M. Hendrickx are with
the ICTEAM institute, UCLouvain, Louvain-la-Neuve, Belgium. S. Colla
and C. Monnoyer de Galland are supported by the French Com-
munity of Belgium through a FRIA fellowship (F.R.S.-FNRS). J. M.
Hendrickx is supported by the “RevealFlight” Concerted Research Ac-
tion (ARC) of the Federation Wallonie-Bruxelles and by the Incentive
Grant for Scientific Research (MIS) “Learning from Pairwise Compar-
isons” of the F.R.S.-FNRS. Email addresses: { sebastien.colla,
charles.monnoyer, julien.hendrickx } @uclouvain.be

environment, that it cannot access once it is inside the system,
and the agents would like to estimate accurately this external
value. In the context of opinion dynamics, our problem
corresponds to estimating the average public opinion in a
population where the open system is composed of random
people from that population, who can enter and leave.

This new estimation problem can be posed when the sys-
tem is subject to arrivals and departures of agents. We focus
here on the simpler situation where arrivals and departures
are synchronized, such that the system size remains constant
at any time and where the current agents perform all-to-all
pairwise communications.

II. PROBLEM STATEMENT AND ASSUMPTIONS

a) The system: for simplicity, we consider an open
multi-agent system only subject to replacements of agents
during its operation. This means that the departure of an
agent is immediately followed by the arrival of a new one.
The agents present in the system at time t are described by
the set of indices N (t). The size of the system, denoted
n = |N (t)|, is constant due to the replacement assumption.

b) The agents: agents are assumed identical. They have
a bounded memory, and are capable of local computation
and pairwise communications. They all execute the same
algorithm. Each agent i ∈ N (t) holds an initial value zi
(also called initial measurement) independently drawn from
an identical distribution of constant mean µ and variance σ2;
an estimated solution yi(t); and potentially some additional
internal variables.

c) The goal: the goal of each agent is to estimate as
accurately as possible the distribution mean µ:

yi(t)→ µ, for all i ∈ N (t).
d) The quality metric: the quality metric used to quan-

tify the accuracy and the success of an algorithm in achieving
this goal is the mean squared error criterion (MSE) computed
between the agents estimates yi(t) and the value of interest
µ. It is defined as:

MSE(t) =
1

n

∑
i∈N (t)

(yi(t)− µ)
2
.

The measurements zi of the agents are random variables and
the sequence of events is not fully deterministic, as explained
below. Therefore, this metric is also a random variable and
we will generally evaluate its expectation: E[MSE(t)].

e) The communications: they occur in the system ac-
cording to a Poisson clock of global rate nλc. Whenever
a communication occurs, two randomly uniformly and in-
dependently selected agents i, j ∈ N (t) (possibly twice
the same agent) exchange information with each other. In
a nutshell, communications are said to be asynchronous,
pairwise, symmetric and random.



f) The replacements: they occur in the system accord-
ing to a Poisson clock of global rate nλr. A replacement
consists of the departure of one randomly and uniformly
chosen agent from the system, instantaneously followed by
the arrival of a new agent into the system. The value of λr
is therefore the individual replacement rate. Also, a former
agent cannot come back into the system.

III. OPTIMAL ALGORITHM - EMPIRICAL LOWER BOUND

Since the measurements z are i.i.d. drawn from a distribu-
tion with mean µ, the best way to estimate µ at time t through
a linear unbiased estimator is to compute the average of the
initial measurements zk of all agents k that have ever been in
the system until time t. Let us call this average the external
average of the system.

z̄ext(t) =
1

|∪s≤tN (s)|
∑

k∈∪s≤tN (s)

zk (1)

The expected performance achieved by this external av-
erage provides therefore a lower bound on the expected
performance of any algorithm that generates linear unbiased
estimators of µ. This lower bound is not tight since every
agent cannot always be able to compute this external average.
Indeed, an agent cannot always know all the other current and
previous agents. The acquaintance of an agent depends on
the sequence of events (communications and replacements)
that occur in the system. Intuitively, the best thing an agent i
can do for estimating µ is to average the initial measurements
zk of all agents k it knows, i.e. the measurements of all the
agents it has been in contact (directly or indirectly) since its
arrival into the system.

Implementing such an algorithm within our framework
is challenging, and could be impossible. A direct
implementation based on the definition would indeed require
the agents to use unique identifiers and a growing memory,
which contradicts our assumptions. Nevertheless, the results
of this algorithm will serve as a lower performance bound.
Indeed, it can be proven (see [7], Chap. 2) that it provides
the smallest expected mean squared error among all the
algorithms within our framework that generate linear and
unbiased estimates of µ. Therefore, we will refer to this
algorithm as the optimal algorithm. Analytical performance
lower bound expressions were obtained in [7], Chap. 2,
by bounding the expected performance of this optimal
algorithm. These resulting theoretical lower bounds are very
conservative. Hence, we will use here an empirical lower
bound, obtained by averaging the performance of various
executions of the optimal algorithm on the specific system
configuration we are considering.

A first attempt to solve our problem is to directly apply
the well-known gossip averaging, which would recover the
best estimate of µ in a closed system. Indeed, in a closed
system, the set of agents is fixed and the gossip converges
exponentially to the average of their initial measurements
[8]. But in open systems, Fig. 2 shows that the expected
performance of the gossip algorithm is far from the empirical
lower bound in many situations, especially when the system

is small. The analysis pursued in [7], Chap. 3 shows that
these poor performances are explained by the algorithm
giving too much weight to new arriving agents and tending
to forget information from former agents. In the asymptotic
situation where the replacements are so infrequent that the
system has time to converge between each of them, i.e. when
λr → 0, we can show that the expected weight of each
former agent in the system estimates decreases with a factor
n−1
n at each replacement. This forgetting rate is thus more

important for small systems, which explains the observations
in Fig. 2a.

Hence, our idea is to decrease the weights of the arriving
agents in a way that compensates for this forgetting rate.
It makes sense to assign less and less weights to the new
agents for which the initial estimate always contains the same
amount of information, coming from their initial measure-
ment of µ, while the estimates of the agents in the system
gather progressively more and more information about µ.

IV. SYMMETRIC PUSH-SUM (SPS)

In order to assign a different weight to each agent and to
control the importance of the new agents entering the system,
we have adapted the push-sum algorithm [9], [10] to our
problem framework. In this push-sum algorithm, in addition
to its measurement zi, each agent i ∈ N (t) also holds two
internal time-varying variables xi(t) and wi(t). The value
xi(t) represents the aggregation of information held by i
and the time-varying weight wi(t) represents the volume of
information that i holds within its variable xi so that, at any
time, the estimate of µ of i is given by the ratio between
these two variables yi(t) = xi(t)

wi(t)
.

In our case, the purpose of the weights is different from
their initial design motivation in the classical push-sum.
Initially, the push-sum algorithm introduced weights for
handling asymmetric communications for the averaging con-
sensus problem in closed multi-agent systems, see e.g. [9] or
[10]. The weights were introduced for balancing the volume
of information held by each agent in the system, which is
not preserved when the communications are asymmetric. Our
variant is said to be symmetric since we consider symmetric
communications and hence it uses the weights for another
purpose: controlling the importance of new agents in the
system.

At each symmetric communication between two agents
i, j ∈ N (t), both of their variables x and w are updated
with their average:

x+i = x+j =
xi + xj

2
, w+

i = w+
j =

wi + wj
2

.

This means that the estimates of the agents are updated with
the weighted average of their estimates:

y+i = y+j =
xi + xj
wi + wj

=
wiyi + wjyj
wi + wj

.

The initial estimate of any agent i is its own measurement zi
of µ. Therefore, its initial weight represents the importance
that its own measurement will have into the system estimates,
until a replacement occurs. The key aspect of this variation of



the push-sum algorithm is therefore the choice of the initial
weights of the new agents. They should decrease at a rate of
n−1
n to ensure that all the agents, even the past ones, have

the same importance in the system estimates.
Let us summarize our algorithm properly. For simplicity,

let us assume an indexing of agents such that the initial set
of agents in the system (at time t = 0) is N (0) = {1, . . . , n}
and such that the rth agent to arrive into the system during
its operation has index n+ r.
Symmetric push-sum algorithm (SPS):
• Initialization of each agent (before it enters the system):

xi(0) = wi(0)zi for all i

wi(0) =

{
1 for i = 1, . . . , n(
n−1
n

)i−n
for i = n+ 1, . . .

(2)

• Interaction between agents i, j ∈ N (t):

x+i = x+j =
xi + xj

2
, w+

i = w+
j =

wi + wj
2

.

• Estimate of agent i ∈ N (t): yi(t) = xi(t)
wi(t)

.

This algorithm requires the agents to know the system
size n and their own arrival order i in order to set up
their initial weight according to SPS (2). The former can
be estimated by counting process as in [11] [12], while
schemes to approximate the latter through max consensus
[4] are presented in [7], Chap. 4.

One can show (see [7], Chap. 4) that in the asymptotic
situation where the replacements are so infrequent that the
system has time to converge between each of them, i.e.
when λr → 0, SPS algorithm allows converging to the
exact external average z̄ext (1) between each replacement.
Determining the expected performance of the algorithm in
non-asymptotic situations remains an open question, but
these performances are explored numerically in the following
section.

V. NUMERICAL EXPERIMENTS AND EXTENSION

Fig. 1 shows the time evolution of the expected mean
square error E[MSE] for a representative system configu-
ration for the SPS, the gossip, the optimal algorithm and
the difference tracking extension of SPS, explained at the
end of the section. For each algorithm, the curve appears to
have two distinct regimes: a transient regime, where E[MSE]
decreases, and a steady-state one where it is constant. The
duration of the transient regime is identical for both the
optimal and the gossip algorithm but the gossip decreases
less during that time and it thus stabilizes above the optimal
algorithm. The steady-state expected performance of the
optimal algorithm is still different from zero since the new
agents cannot be directly aware of all the information in the
system. It can also happen that all the agents are replaced
without having the opportunity to transmit information to
new incoming agents.
The transient state of the SPS algorithm is longer but it
leads to a steady-state performance that is very close to the
empirical lower bound.

100 101 102

10-1

100

Fig. 1: Time evolution of the expected MSE of the symmetric
push-sum algorithm in comparison with the gossip averaging
algorithm, the SPS with difference tracking and the empirical
lower bound provided by the optimal algorithm (see section
III); for a specific open multi-agent system with n = 50,
λc = 0.2 and λr = 0.04. Expectations have been computed
empirically with 5000 realization simulations, by considering
a normal distribution with mean µ = 0 and variance σ2 = 1.

We now analyze the evolution of the steady-state perfor-
mance value of each algorithm for a variety of different sys-
tem configurations. To explore the different possible system
configurations, we fix the global communication rate in the
system: nλc and we only vary the system size n and the
individual replacement rate λr. We choose to set nλc = 10,
as it is the case in Fig. 1. With this parameter scaling, the
steady-state is reached before 500 seconds in most system
configurations. The transient state may still be longer than
500 seconds when the system size is very large and the
replacements are infrequent.

Fig. 2 shows the expected mean squared error achieved
by the symmetric push-sum algorithm, the gossip, and the
optimal algorithm after 500 seconds for different system
configurations. The figure only shows system configurations
that have (almost) reached their steady-state before 500
seconds. Fig. 2a therefore shows the evolution of the steady-
state performance of the algorithm with the system size n
and Fig. 2b shows the evolution with the rate ratio λc

λr
. This

rate ratio represents the expected number of communications
that occur in the system between two replacements.

We observe that the steady-state value of the expected
MSE for the SPS algorithm (in red) is always better than
the one of the gossip averaging algorithm (in black) and
approaches closely the empirical lower bound (in green) in
most system configurations.

A possible improvement for this SPS algorithm seems
therefore related to the speed at which it approaches the
lower bound. It can be relatively slow for large systems,
such as in Fig. 1. This can be explained by the perturbation
due to the arrival of a new agent, which is proportional to
its initial weight. This latter decreases with a rate of n−1

n ,
which is slower when n is large.

To solve this issue related to the perturbation introduced
by new agents, we can consider an extension for this SPS



algorithm: the difference tracking. When entering the system,
the new agent pretends to have the same values (for x and
w) as the first agent it meets. But the new agent keeps
track of the differences between its true initial values and
its pretended values to add them progressively into the
system. This allows the information from new agents to be
progressively taken into account without disturbing too much
the estimates of other agents. Details are presented in [7],
Chap. 6. Applying this extension to SPS allows obtaining
results that approach more quickly and as closely (within
1%) the performance limitations, as shown in Fig. 1.
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(a) Evolution with system size n, for λc
λr

= 5.
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(b) Evolution with rate ratio λc
λr

, for n = 20.

Fig. 2: Steady state expected mean squared error (after 500
seconds) of the symmetric push-sum algorithm in compari-
son with the one of the gossip averaging algorithm and the
optimal algorithm (empirical lower bound); for a variety of
different systems (with constant global communication rate
nλc = 10). Expectations have been computed empirically
with 500 realization simulations, by considering a normal
distribution with mean µ = 0 and variance σ2 = 1.

VI. CONCLUSION

We considered the problem of estimating the mean of a
distribution from which measurements are distributed over an
open multi-agent system, subject to replacements of agents.
We showed that the classical gossip led to relatively poor
performance, which could be explained by the dispropor-
tionate importance it gives to recently arrived agents. Our
new push-sum based algorithm SPS addresses this problem
by controlling the weight of the incoming agents: they are
set in a decreasing manner, with a rate of n−1

n . This allows
the SPS algorithm to have a better expected performance
than the gossip averaging and to approaches the empirical
lower bound, defined by the optimal algorithm. An important
remaining challenge for this work is to formally prove these
observations, by deducing a theoretical description of the
expected performance of SPS.
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