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Decentralized Gradient Descent (DGD)
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Motivations: Decentralized Machine Learning
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Other applications

Sensor Network

Informatics–Wireless sensor network

Multi-robot systems

Multi-Robot Systems Engineering
MIT , James McLurkin

Micro-Grid

ResearchGate, Planning and implementation 
of bankable microgrids, Michael Stadler
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Decentralized Optimization

 Performance bounds: complex and conservative

 Difficult algorithms comparisons

 Difficult parameters tuning

Analysis highly complex

 Design: long and complex process

Many challenges for better methods
BUT

1 2

3
4

𝑓ଵ

𝑓ଷ 𝑓ସ

𝑥ଵ

𝑥ଷ

𝑥ଶ

𝑥ସ

𝑓ଶ

13



Exact worst-case 
performance

Iterations

Pe
rf.

Objective

14



Impact for decentralized optimization
 Access to accurate performance of methods
 Easy comparison and tuning of algorithms
 Rapid exploration of new algorithms.
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems
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Performance Estimation Problem (PEP)

PEP can be solved exactly for a wide class of 
centralized first-order algorithms.
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Performance Estimation Problem (PEP)

PEP can be solved exactly for a wide class of 
centralized first-order algorithms.

Idea: Worst-cases are solutions to optimization problems

No formulation for communication networks
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PEP for DGD: network given a priori
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 Independent of the algorithm

 Link different consensus steps that use the 
same matrix

 Can be incorporated into SDP formulation 
of PEP, which can be solved efficiently

Summary of the constraints for consensus steps between Y and X

Advantages of our constraints
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PEP for DGD: Spectral formulation
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Theoretical guarantee for DGD

After K steps of DGD with ௛

௄
, for solving

Then

(i)   ௜ convex for each and (sub)gradients bounded by ;

(ii)  Identical starting points:   ௜
଴ ଴ for each , s.t. ଴ ∗ ଶ ଶ

(iii) Communication matrix W: symmetric, doubly stochastic,

If

(except for ଵ )

௔௩
∗

ିଵ

[NOR17]

௜௜௫

With optimal solution ∗

௔௩
ଵ

௄

ଵ

ே௞ ௜
௞

௜where

36



Theoretical guarantee for DGD

After K steps of DGD with ௛

௄
, for solving

Then

(i)   ௜ convex for each and (sub)gradients bounded by ;

(ii)  Identical starting points:   ௜
଴ ଴ for each , s.t. ଴ ∗ ଶ ଶ

(iii) Communication matrix W: symmetric, doubly stochastic,

If

(except for ଵ )

௔௩
∗

ିଵ

[NOR17]

௜௜௫

With optimal solution ∗

௔௩
ଵ

௄

ଵ

ே௞ ௜
௞

௜where

37

Same settings in our experiments, with .
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DGD – Spectral worst-case 
evolution with N
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DGD – Spectral worst-case vs 
Theoretical bound
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 Independent of N
 Tight with potential negative weights
 Accurate with nonnegative weights
 Improve on the literature bound 

For DGD:



Conclusion
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Automatic tool for accurate performance estimation of 
decentralized optimization methods

PEP idea: worst-cases are solutions of optimization problems

Worst-case 
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 Implementation of the formulation in PESTO toolbox (in progress)

 Strong theoretical understanding of our formulation

 Analyze other decentralized algorithms using our tool

Future works
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