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Decentralized Optimization





Iterative algorithm
 Local function: 
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Decentralized Optimization
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Iterative algorithm
 Local function: 

 Local copy of : 
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Decentralized Gradient Descent (DGD)
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Decentralized Gradient Descent (DGD)
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Local gradient step

Consensus step

For each iteration 



Motivations: Decentralized Machine Learning

Motivations Big data – Privacy – Speed Up  
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 ∈ 𝒟

 Local copy of 

Model training

8



Other applications

Sensor Network

Informatics–Wireless sensor network

Multi-robot systems

Multi-Robot Systems Engineering
MIT , James McLurkin

Micro-Grid

ResearchGate, Planning and implementation 
of bankable microgrids, Michael Stadler
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Decentralized Optimization
Many challenges for better methods
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Decentralized Optimization

Analysis highly complex

Many challenges for better methods
BUT
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Decentralized Optimization

 Performance bounds: complex and conservative

Analysis highly complex

 Design: long and complex process

Many challenges for better methods
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Decentralized Optimization

 Performance bounds: complex and conservative

 Difficult algorithms comparisons

 Difficult parameters tuning

Analysis highly complex

 Design: long and complex process

Many challenges for better methods
BUT
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Impact for decentralized optimization
 Access to accurate performance of methods
 Easy comparison and tuning of algorithms
 Rapid exploration of new algorithms.
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems
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Performance Estimation Problem (PEP)

PEP can be solved exactly for a wide class of 
centralized first-order algorithms.

Idea: Worst-cases are solutions to optimization problems

Existing 
toolbox
(PESTO)

Infinite-Dimensional 
problem

[Taylor17]
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Using SDP 
reformulation
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Performance Estimation Problem (PEP)

PEP can be solved exactly for a wide class of 
centralized first-order algorithms.

Idea: Worst-cases are solutions to optimization problems

No formulation for communication networks

Existing 
toolbox
(PESTO)

Infinite-Dimensional 
problem

[Taylor17]

With



 initial condition
from the algorithm analyzed

బ ಼

e.g.

Using SDP 
reformulation
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PEP for DGD: network given a priori
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PEP for DGD: network given a priori
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PEP for DGD: class of networks
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Iterates from DGD
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For all 
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Any symmetric doubly stochastic matrix
with given range of eigenvalues ି ା
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PEP for DGD: class of networks
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For all , 
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Any symmetric doubly stochastic matrix
with given range of eigenvalues ି ା

?
Find constraints between 

 and 
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Constraints for consensus steps
 Search Space for 

 and 
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For each agent , 
For each consensus step (C1)

 is
a symmetric and doubly-stochastic matrix  
with a given range of eigenvalues ି ା(C2)
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ୄSimplification when −𝜆ି = 𝜆ା = 𝜆 :

Constraints for consensus steps



 Independent of the algorithm

 Link different consensus steps that use the 
same matrix

 Can be incorporated into SDP formulation 
of PEP, which can be solved efficiently

Summary of the constraints for consensus steps between Y and X

Advantages of our constraints
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Constraints for consensus steps
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PEP for DGD: Spectral formulation
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PEP for DGD: Spectral formulation
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Upper bounds for the worst-case performance of DGD
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Theoretical guarantee for DGD

After K steps of DGD with 
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Same settings in our experiments, with .

Performance measure



DGD – Spectral worst-case 
evolution with N
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DGD – Spectral worst-case vs 
Theoretical bound
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Related to algebraic connectivity
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EXACT for spectrally
doubly-stochastic matrices
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EXACT for spectrally
doubly-stochastic matrices
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ACCURATE for doubly-
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Automatic tool for accurate performance estimation of 
decentralized optimization methods

SPECTRAL formulation EXACT formulation

Spectral class of matrices Given network matrix W

Relaxation of PEP ALWAYS exact

PEP idea: worst-cases are solutions of optimization problems

Worst-case 
performance

Iterations
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 Independent of N
 Tight with potential negative weights
 Accurate with nonnegative weights
 Improve on the literature bound 

For DGD:



Conclusion
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Automatic tool for accurate performance estimation of 
decentralized optimization methods

PEP idea: worst-cases are solutions of optimization problems

Worst-case 
performance

Iterations

Pe
rf.

 Implementation of the formulation in PESTO toolbox (in progress)

 Strong theoretical understanding of our formulation

 Analyze other decentralized algorithms using our tool

Future works
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