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Decentralized Optimization

min f (x) = Zﬁ-(x)
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s.t. xl- = x; V (i,j) neighbors

Decentralization Iterative algorithm
» Local function: f; » Local computations
» Local copy of x: x; » Local communications (W)

sothat x; = x; (eventually)



Decentralized Gradient Descent (DGD)
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Decentralized Gradient Descent (DGD)

For each iteration k

i = z Wij x]k Consensus step

xftl = yl — aVf;(x¥) Local gradient step




Motivations: Decentralized Machine Learning

Notations Model training
* Model parameters x . z

min Error(x,d,; ) + regul (x
* Dataset{d;, € D} L (%, dic) gul (x)

Decentralization

» Part of the data D;
» Local function

fi(x) = z Error(x, d;)
k €D;
» Local copy of x

=) Motivations Big data — Privacy — Speed Up



Other applications

Sensor Network Multi-robot systems Micro-Grid

Sensor Node Network

Informatics—Wireless sensor network

Multi-Robot Systems Engineering
MIT, James McLurkin

ResearchGate, Planning and implementation
of bankable microgrids, Michael Stadler
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Decentralized Optimization

f,
m) Many challenges for better methods 5
Ti,/xl @ M'x
BUT
f; ‘ p
Analysis highly complex B;Cg O &,/x

» Design: long and complex process

» Performance bounds: complex and conservative

» Difficult algorithms comparisons

» Difficult parameters tuning
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function MyDecentralizedAlgo ()

N = 10; number
x0 = init (N);
x = x0;

for i=l:niter
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X = update (x,N)

end
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@ Objective

Q

function
N = 10;

end

MyDecentralizedAlgo ()

x0 = init (N);
x = x0;
for i=l:niter

X = update (x,N) ;

Exact worst-case

performance

~

v

Iterations

Impact for decentralized optimization

» Access to accurate performance of methods

» Easy comparison and tuning of algorithms
» Rapid exploration of new algorithms.
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Idea: Worst-cases are solutions to optimization problems

max  perf(f, x°, .., x*) ig]'f(xK) — f(x)

f,x9,..x
With  f € class of functions
{Infinite-DimensionalJ X0 initial condition
problem xk from the algorithm analyzed

Using SDP
reformulation

PEP can be solved exactly for a wide class of f;‘(’)slzzg
centralized first-order algorithms. (PESTO)

[Taylorl7]
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

max perf(f, x°, ..., x) ig]'f(xK) — f(x)

f; xO;-")xKJ
With  f € class of functions
Llnfinite-DimensionalJ X0 initial condition
problem xk from the algorithm analyzed
Using SDP G € class of graphs
reformulation T

PEP can be solved exactly for a wide class of f;‘;slzzg
centralized first-order algorithms. (PESTO)

[Taylorl7]

mm) No formulation for communication networks

20



PEP for DGD: network given a priori



PEP for DGD: network given a priori

. Jnax, perf(f, x°, ..., x%)
y0, "_,yK—l
With  f c class of functions
X0 initial condition
W) given network matrix

Iterates from DGD -

Foralli=1..N,
Forallk =0..K —1

kK _ K
Vi _zwijxj
J

x =y - aVfi(x)



PEP for DGD: network given a priori

. Jnax, perf(f, x°, ..., x%)
y0, "_’yK—l
With  f c class of functions
X0 initial condition
W) given network matrix

Iterates from DGD -

Foralli=1..N,
Forallk=0..K —1

kK _ K
Vi —zWinj
J

x =y - aVfi(x)

=) Exact Formulation




PEP for DGD: class of networks

0 K
. x%r,l..al.jc(K,G perf(f, x°, .., x")
y0, .., yK-1
With  f € class of functions
Xo initial condition
W(G) Any symmetric doubly stochastic matrix

with given range of eigenvalues [17, 17]

ok _ ok
Vi —ZWU Xj Foralli =1..N,
j

Iterates from DGD - Forallk=0..K — 1

=y - aVfi(x)
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PEP for DGD: class of networks

0 K
. x%r,l.?ic(K,G perf(f, x°,..,x")
y0, .., yK-1
With  f € class of functions
Xo initial condition
W(G) Any symmetric doubly stochastic matrix

with given range of eigenvalues [17, 17]

Find constraints between y{‘ and x[‘

] ?
yi = fo Foralli=1..N,
J

Iterates from DGD - Forallk=0..K — 1

=y - aVfi(x)
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Constraints for consensus steps

> Search Space for x¥ and y;*

N
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a symmetric and doubly-stochastic matrix

(C2) W= lwy] is with a given range of eigenvalues [A~, 1]
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Constraints for consensus steps

» Search Spacefor X and Y

N
For each agent i=1..N
k _ Lk ,
(C1) Vi = ZW” X For each consensus step k=0..K—1
]=
compact notation Y = WX with Yik = ylk, Xik = xlk
(C2) W = [wy] is a symmetric and doubly-stochastic matrix

with a given range of eigenvalues [17, A%]
» Necessary constraints for describing (C1) and (C2)

X,Y: agents average vectors X1, Y, : centered matrices

X, =X—-1X", v, =Y —1YT
Y (1)
At xTx, (2)
0

(3)

X
A~ XIX, < X[y, <
Y= 27X, —2%X)) <
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Constraints for consensus steps

» Search Spacefor X and Y

N
For each agent i=1..N
k _ Lk ,
(C1) Vi = ZW” X For each consensus step k=0..K—1
]=
compact notation Y = WX with Yik = ylk, Xik = xlk
(C2) W = [wy] is a symmetric and doubly-stochastic matrix

with a given range of eigenvalues [17, A%]
» Necessary constraints for describing (C1) and (C2)

X,Y: agents average vectors X1, Y,: centered matrices

X, =X—-1X", v, =Y —1YT
Y (1)
At xTx, (2)
0

(3)

X
A~ XIX, < X[y, <
g Y= 27X, —2%X)) <

Simplificationwhen -4~ =2* =1: Y'Y, <22 XTX,
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Constraints for consensus steps

Summary of the constraints for consensus steps between Y and X

X=Y (1)
A" XIx, < X[y, < At xTx, (2)
Y, —2X)'Y,—-2"X) <0 (3)

Advantages of our constraints

v Independent of the algorithm

v’ Link different consensus steps that use the
same matrix

v’ Can be incorporated into SDP formulation
of PEP, which can be solved efficiently
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PEP for DGD: class of networks

max erf(f, xY, ..., xK
. gax, P (f )
yO, _",yK—l
With  f c class of functions
X0 initial condition
W(G) Any symmetric doubly stochastic matrix
with given range of eigenvalues [A7, A%]
-k — ok
Vi _ZWUxJ Foralli=1..N,
Iterates from DGD - j Forallk=0 K —1

=y - aVfi(x)



PEP for DGD: class of networks

0 K
f,x%r,lfljc(lf,ﬁ perf(f, x°, ..., x")
yO, ..., yK-1
With  f c class of functions
X0 initial condition

Iterates from DGD -

W(E) Any symmetric hastic matrix
_ i given igenvalues [A7, A1]

Vi = ij Xj Foralli =1...N,

J Forallk=0..K —1
x =y = aVfi(x)
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PEP for DGD: Spectral formulation

(Relaxation)

. max perf(f, xY, ..., x%)

y0, ..., yk1

With  f c class of functions

X0 initial condition

Foralli=1..N
" k K ,
Iterates from DGD { =y - aVfi(x) Forallk =0 .. K —1

—

Consensus steps X=Y (1)
Y =wx - XX < X[y 2t xIx, @
symmetric _ T

W' doubly stochastic Y, —A X)) ¥, —A"X) <0 (3)

AW) e aA-, A" —
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PEP for DGD: Spectral formulation

(Relaxation)
0 K
f’g}’?”);K perf(f, x°, ..., x")
yO0, ..., yK-1
With  f c class of functions

X0 initial condition

Foralli=1..N
" k K ,
Iterates from DGD { =y - aVfi(x) Forallk =0 .. K —1

—

Consensus steps X=Y (1)
Y =wx - XX < X[y 2t xIx, @
symmetric _ T

W' doubly stochastic YL —=27%) (Y, - /1+XJ-) <0 (3)

AW) € [A-,4F] =

|:> Upper bounds for the worst-case performance of DGD
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Theoretical guarantee for DGD
[NOR17]

After K steps of DGD with a =

==

,  forsolving mxin fx) = % fi(x)

With optimal solution x*

If
(i) f; convex for each i and (sub)gradients bounded by B;
(ii) Identical starting points: x) = x0 for each i, s.t. ||x® — x*||? < R?
(iii) Communication matrix W: symmetric, doubly stochastic,
A(W) € [—4,1] (exceptfor A, (W) = 1)
Then
f(xq,) — f(x*) <RB (h ;\%h + ﬁ(zlh_ A)) where Xgy = %Zkﬁzl’xlk



Theoretical guarantee for DGD

[NOR17]
After K steps of DGD with ,  forsolving mxin fx) = % fi(x)
With optimal solution x*
If
(i) f; for each i and (sub)gradients ;
(ii) : x) = x0 for each i, s.t.
(iii) Communication matrix W: ,
(except for A, (W) = 1)
Then
h™l+h 2h 1o 1 k
Xap) — f(x*) < RB + where  Xgy = =Xk = NiXi

» Same in our experiments, withR =1,B=1and h = 1.




DGD — Spectral worst-case
evolution with N
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f(xav) - f(x*)

DGD — Spectral worst-case vs
Theoretical bound

||~ Theoretical bound [NOR17]
—— Spectral worst-case bound

For K = 10 iterations, N = 3 agents.

Symmetric range of eigenvalues

A<A,W) << L,W) <A
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DGD — Spectral worst-case vs
Theoretical bound

| |—— Theoretical bound [NOR17] | Symmetric range of eigenvalues
—— Spectral worst-case bound

A<A,W) << L,W) <A

Related to algebraic connectivity o

f(xav) - f(x*)

A=1—-o0

1/3 1/3 1/3

1/3 1/3 1/3
1/3 1/3 1/3

For K = 10 iterations, N = 3 agents. 10



s the spectral formulation accurate ?

2 - - . - . 7 . - d ¢ c
il ——Theoretical bound [NOR17] || W, = [C d C]
il —+— Spectral worst-case bound | c ¢ d
| . Exact worst-case for matrix W ’ 14
14 | 1 withc=T,d:1_2C

= AW, = {1,—-1, -1}

f(xgp) — f(x7)

0.2

For K = 10 iterations, N = 3 agents and A(W) € [—A, 1]
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s the spectral formulation accurate ?

2 - - . - . -—— . - d ¢ c
- —— Theoretical bound [NOR17] || W, = [c d c]
il —— Spectral worst-case bound | c ¢ d
| -« Exact worst-case for matrix W ’ 14
14 | 1 withc=T,d:1_2C

= AW, = {1,—-1, -1}

f(xgp) — f(x7)

EXACT for spectrally

doubly-stochastic matrices

0.2

For K = 10 iterations, N = 3 agents and A(W) € [—A, 1]
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s the spectral formulation accurate ?

2 - - . - . -—— . - d ¢ c
- —— Theoretical bound [NOR17] || W, = [c d c]
il —— Spectral worst-case bound | c ¢ d
| -« Exact worst-case for matrix W ’ 14
14 | withc=T,d:1_2C

f(xgp) — f(x7)

= AW, = {1,—-1, -1}

EXACT for spectrally

doubly-stochastic matrices

0 0.1 02 03 04 05 06 07 08

For K = 10 iterations, N = 3 agents and A(W) € [—A, 1]

0.9 1
Observation:

W, =Ww=vx"
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s the spectral formulation accurate ?

2 T T T T T 7 T T T d C C
ol —— Theoretical bound [NOR17] | Wi=lc d c
—a— Spectral worst-case bound c ¢ d
1871 Exact worst-case for matrix W1
~ _ _ . 1+A _
w147 —— Exact worst-case for stochastic matrices| | with ¢ = —3 f d=1-2c
\—/
k.I\ 12/ |
~ 1k - = A(Wl) — {1; _/L _/1}
3 ar T
=
\—/
—

0.6

0.44

o2

M — —""""-_
A

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

For K = 10 iterations, N = 3 agents and A(W) € [—A, 1] "



s the spectral formulation accurate ?

2 T T T T T 7 T T T d C C
gL — Theoretical bound [NOR17] | Wi=1lc d c
—a— Spectral worst-case bound c c d
L Exact worst-case for matrix W,
- : 1414 g _
& 147 —— Exact worst-case for stochastic matrices| - with ¢ = — d=1-2c
k.I\ 12/ |
SRl A = (-4
= 08 wﬁ"“
\—/
S fﬂf’d‘
5 Mf“‘*“ﬁ ""/
' ke, | ACCURATE for ot
G5 stochastic matrices

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1

For K = 10 iterations, N = 3 agents and A(W) € [—A, 1] 4



DGD: Step-Size tuning

——Theoretical bound
—— Spectral bound
-='h=1

f(xav) - f(x*)

-
(o]
[}

-1
10 h

For K = 10 iterations, N = 3 agents withA = 0.8 and a = 3
VK
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DGD: Step-Size tuning

——Theoretical bound
—— Spectral bound
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For K = 10 iterations, N = 3 agents withA = 0.8 and a = 3
VK



DGD: Step-Size tuning

——Theoretical bound
—— Spectral bound
-='h=1

f(xav) - f(x*)

For K = 10 iterations, N = 3 agents withA = 0.8 and a = 3
VK
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unction

Conclusion

Automatic tool for accurate performance estimation of
decentralized optimization methods

MyDecentralizedAlgo ()
N = 10; ber f agents

Worst-case
performance

x = x0;

I[terations

PEP idea: worst-cases are solutions of optimization problems

v
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fun

end

ction MyDecentralizedAlgo ()

Conclusion

Automatic tool for accurate performance estimation of
decentralized optimization methods

N = 10; umber
x0 = init (N); Ini

Worst-case
performance

and local communications
x = update (x,N);

end

Initial point "
— x0;: Y
X x0; @ —
]
for i=l:niter [l
any local computations b

I[terations

PEP idea: worst-cases are solutions of optimization problems

SPECTRAL formulation EXACT formulation

Spectral class of matrices Given network matrix W

Relaxation of PEP ALWAYS exact

v
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fun

end

1iction MyDecentralizedAlgo ()

Conclusion

Automatic tool for accurate performance estimation of
decentralized optimization methods

N = 10;

Worst-case
performance

and local communications

x = update (x,N);
end

I[terations

PEP idea: worst-cases are solutions of optimization problems

SPECTRAL formulation EXACT formulation

Spectral class of matrices Given network matrix W

r Relaxation of PEP ALWAYS exact

For DGD: v’ Independent of N
v’ Tight with potential negative weights
v’ Accurate with nonnegative weights
v Improve on the literature bound

v
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Conclusion

Automatic tool for accurate performance estimation of
decentralized optimization methods

function MyDecentralizedAlgo ()
N = 10; ber f jents

" £ ‘agent _ Worst-case
«=w0; - performance

I[terations

PEP idea: worst-cases are solutions of optimization problems

Future works

O Implementation of the formulation in PESTO toolbox (in progress)

[ Strong theoretical understanding of our formulation

1 Analyze other decentralized algorithms using our tool
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