Automatic Performance Estimation for Decentralized Optimization

Sebastien Colla, Julien M. Hendrickx

UCLouvain

ICTEAM, UCLouvain, Belgium

cteam

Decentralized Optimization

Consider a set of agents $\{1, \ldots, N\}$, holding each a local function f_i and working together to solve the following optimization problem:

Better understanding, tuning and comparison of methods, Rapid exploration of new methods.

Performance Estimation Problem (PEP)

Computing worst-case performances as optimization problems

 $\mathcal{P}ig(\{f_i\},\{x_i^k\},Wig)$ sup ${f_i}, {x_i^k}, W$ s.t. $f_i \in \mathcal{F}$, $x^0 \in \mathcal{X}_0,$ x^k from method \mathcal{M} , $W \in \mathcal{W}$.

- \mathcal{P} is a performance criterion, e.g. $f(x^K) - f(x^*)$.
- \mathcal{F} is a class of functions, e.g. $\mathcal{F}_{\mu,L}$.
- \mathcal{X}_0 is a valid set for initial points. $\bullet \mathcal{W}$ is a class of averaging matrices.

Discretization: optimize over $\{x_i^k, g_i^k, f_i^k\}$ such that these are consistent with the above constraints where $g_i^k = \nabla f_i(x_i^k)$ and $f_i^k = f_i(x_i^k)$.

Replace $f_i \in \mathcal{F}$ by appropriate **interpolation constraints**. Non-linearity can be addressed using an **SDP reformulation**.

s.t.
$$x_i = x_j$$
 for all (i, j) .

Example of algorithm: The Distributed Gradient Descent (DGD): $y_i^k = \sum W_{ij} x_j^k,$ Consensus Step: $x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k),$ Local Gradient Step:

where $\alpha > 0$ is a constant step-size and $W \in \mathbb{R}^{N \times N}$ is an averaging matrix. These could also vary at each iteration k.

Application to the analysis of algorithms [1]

DGD, K steps with $\alpha = \frac{1}{\sqrt{K}}$, W such that $\lambda_j(W) \in [-\lambda, \lambda]$ for j = 0 $2, \ldots, N$ and f_i convex with bounded subgradients.

Exact results when a specific matrix W is given, i.e. $W \in \{W_e\}$.

• Easy PEP formulation with the *Performance-Estimation-Toolbox*.

Spectral classes of averaging matrices in PEP [1]

Consensus steps: $y_i^k = \sum_{j=1}^N W_{ij} x_j^k$ for all k, or Y = WX, where

• Y and X are $N \times K$ matrices of variables:

$$X = \begin{bmatrix} x_1^1 \dots x_1^K \\ \vdots & \vdots \\ x_1^1 \dots x_N^K \end{bmatrix}, \quad Y = \begin{bmatrix} y_1^1 \dots y_1^K \\ \vdots & \vdots \\ y_1^1 \dots y_N^K \end{bmatrix}$$

• W is a $N \times N$ symmetric stochastic matrix with eigenvalues in $[\lambda^{-}, \lambda^{+}]$, except for $\lambda_{1} = 1$, i.e.

 $\lambda^{-} \leq \lambda_{N}(W) \leq \cdots \leq \lambda_{2}(W) \leq \lambda^{+}$ where $\lambda^{-}, \lambda^{+} \in [-1, 1]$.

Decoupling the consensus part from disagreement part:

 $X = \mathbf{1}\overline{X}^T + X_{\perp}, \quad Y = \mathbf{1}\overline{Y}^T + Y_{\perp},$ where $\overline{X} = \frac{1}{N} \mathbf{I}^T X$, $\overline{Y} = \frac{1}{N} \mathbf{I}^T Y$ are agents average vectors in \mathbb{R}^K .

Figure 1: Tightness analysis of the PEP bound for 10 iterations DGD. (N = 3)

presenting a large gap with re-

• tight for generalized* doublystochastic matrices.

*allowing negative elements.

 available for many performance criterions.

useful for tuning the step-size.

We can answer a large diversity of (new) questions !

Necessary constraints for consensus steps

If Y = WX, with W symmetric, stochastic and $\lambda(W) \in [\lambda^-, \lambda^+]$, then • $X^T Y$ and $X_{\perp}^T Y_{\perp}$ are symmetric, **Relax** constraint The agent average is preserved: $\overline{X} = \overline{Y}$ = WX in PEP $\textcircled{\ } \lambda^{-}X_{\perp}^{T}X_{\perp} \ \preceq \ X_{\perp}^{T}Y_{\perp} \ \preceq \ \lambda^{+}X_{\perp}^{T}X_{\perp},$ and add these. $(V_{\perp} - \lambda^{-} X_{\perp})^{T} (Y_{\perp} - \lambda^{+} X_{\perp}) \preceq 0.$

References

[1] S. Colla and J. M. Hendrickx. "Automatic Performance Estimation for Decentralized Optimization". In: preprint (2022).

performance criterions. (N = 3)

DGD and $\lambda = 0.8$, with different

DIGING with $\lambda_i(W) \in [-\lambda, \lambda]$ and $f_i L$ -smooth and μ -strongly convex.

DIGing and $\lambda = 0.9$, in comparison with

the theoretical bound.

Findings and observations

• Tuning α in DIGing, based on the PEP bound, improves its convergence rate guarantee by orders of magnitude.

• Improvement scales with N.