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Goal

Automatic computation of theworst-case performance of any
decentralized optimization method.

IBetter understanding, tuning and comparison of methods,
IRapid exploration of newmethods.

Performance Estimation Problem (PEP)

Computing worst-case performances as optimization problems

sup
{fi},{xki },W

P
(
{fi}, {xki },W

)
s.t. fi ∈ F ,

x0 ∈ X0,

xk frommethodM,

W ∈ W .

•P is a performance criterion,
e.g. f (xK)− f (x∗).

•F is a class of functions, e.g. Fµ,L.
•X0 is a valid set for initial points.
•W is a class of averaging matrices.

Discretization: optimize over {xki , gki , f k
i } such that these are con-

sistentwith theabove constraintswhere gki = ∇fi(x
k
i ) and fk

i = fi(x
k
i ).

Replace fi ∈ F by appropriate interpolation constraints.
Non-linearity can be addressed using an SDP reformulation.

I Exact results when a specific matrixW is given, i.e. W ∈ {We}.

Easy PEP formulation with the Performance-Estimation-Toolbox.

Spectral classes of averaging matrices in PEP [1]

Consensus steps: yki =
∑N

j=1Wijx
k
j for all k, or Y = WX , where

•Y and X are N ×K matrices of variables:

X =

x11 . . . xK1
... ...
x1N . . . xKN

 , Y =

y11 . . . yK1
... ...
y1N . . . yKN


•W is a N × N symmetric stochastic matrix with eigenvalues in
[λ−, λ+], except for λ1 = 1, i.e.

λ− ≤ λN(W ) ≤ · · · ≤ λ2(W ) ≤ λ+ where λ−, λ+ ∈ [−1, 1].

Decoupling the consensus part from disagreement part:
X = 1XT

+X⊥, Y = 1Y T
+ Y⊥,

where X = 1
N1

TX , Y = 1
N1

TY are agents average vectors in RK .

Necessary constraints for consensus steps

If Y = WX , withW symmetric, stochastic and λ(W ) ∈ [λ−, λ+], then

i XTY and XT
⊥Y⊥ are symmetric,

ii The agent average is preserved: X = Y

iii λ−XT
⊥X⊥ ≼ XT

⊥Y⊥ ≼ λ+XT
⊥X⊥,

iv (Y⊥ − λ−X⊥)
T (Y⊥ − λ+X⊥) ≼ 0.


Relax constraint
Y = WX in PEP
and add these.

Decentralized Optimization

Consider a set of agents {1, . . . , N}, holding each a local function fi
andworking together to solve the followingoptimizationproblem:

min
x ∈ Rd

f (x) =
1

N

N∑
i=1

fi(x),

⇕

min
x1, . . . , xN

1

N

N∑
i=1

fi(xi),

s.t. xi = xj for all (i, j).
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Example of algorithm: The Distributed Gradient Descent (DGD):

Consensus Step: yki =
N∑
j=1

Wij x
k
j ,

Local Gradient Step: xk+1i = yki − α∇fi(x
k
i ),

where α > 0 is a constant step-size and W ∈ RN×N is an averaging
matrix. These could also vary at each iteration k.

Application to the analysis of algorithms [1]

IDGD, K steps with α = 1√
K
, W such that λj(W ) ∈ [−λ, λ] for j =

2, . . . , N and fi convex with bounded subgradients.
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Figure 1: Tightness analysis of the PEP
bound for 10 iterations DGD. (N = 3)
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Figure 2: Tuning of α for 10 iterations of
DGD and λ = 0.8, with different
performance criterions. (N = 3)

Findings and observations
The PEP bound for DGD is

•presenting a large gap with re-
spect to the theory.

• Independent of N .

• tight for generalized∗ doubly-
stochastic matrices.

∗allowing negative elements.

•available for many perfor-
mance criterions.

•useful for tuning the step-size.

We can answer a large
diversity of (new) questions !

IDIGingwith λj(W ) ∈ [−λ, λ] and fi L-smooth and µ-strongly convex.
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Figure 3: Tuning of α for 10 iterations of
DIGing and λ = 0.9, in comparison with
the theoretical bound.

Findings and observations

•Tuning α in DIGing, based on
the PEP bound, improves its
convergence rate guarantee
by orders of magnitude.

• Improvement scales with N .
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