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Automatic computation of the worst-case performance of any
decentralized optimization method.

function MyDecentralizedAlgo()
N = 10; % number of agents A

x0 = init(N); % initial points - Exact worst-case
X = x0;
performance
for k=1:niter
% any local computations -
% any local communications

x = update(x,N);
end [terations

end

Better understanding, tuning and comparison of methods,
Rapid exploration of new methods.

Performance Estimation Problem (PEP)

Computing worst-case performances as optimization problems

sup  P{fi}, {=}, W) P is a performance criterion,
{fy =y W e.g. f(ah) — f(z*).
s.t. fg S ? Fis a class of functions, e.g. F, ;.
xk < o, X, is a valid set for initial points.
" from method M, . . .
W e W W is a class of averaging matrices.

Discretization: optimize over {zF ¢*, f¥} such that these are con-
sistent with the above constraintswhere g° = V fi(2¥) and fF = fi(xF).

Replace f; ¢ F by appropriate interpolation constraints.
Non-linearity can be addressed using an SDP reformulation.

Exact results when a specific matrix W is given, i.e. W € {W,}.

() Easy PEP formulation with the Performance-Estimation-Toolbox.

Spectral classes of averaging matrices in PEP [1]

Consensus steps: y = > Wzt forallk, or Y = WX, where

Y and X are N x K matrices of variables:

-l K~ 1 K~

ry ... X Yi - .- Yy

X = : ; ; Y = s ;
1 K 1 K
Ty - TN Yy - YN

Wis a N x N symmetric stochastic matrix with eigenvalues In
A7, \T], except for Ay =1, l.e.

A< ANW) < (W) <N where A7, \" € [-1,1].
Decoupling the consensus part from disagreement part:
X=1X +X,, Y=1 +VY,,

1 —

where X = 1 X, Y = £1'Y are agents average vectors in R".

IfY = WX, with W symmetric, stochasticand A\(W) € (A7, AT|, then
XY and XY, are symmetric,

The agent average is preserved: X Relax constraint

AV XTX, < XTY, < AXTX, = WX in PeP

(YL _ )‘_XJ_)T(YL _ )\JFXL) < 0. and add these.
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Decentralized Optimization

Consider aset of agents {1,..., N}, holding each a local function f;
and working together to solve the following optimization problem:

min - f(z) —%ZNjf@'(x)a T\f/ W NC/

>

1 N ; Woy
min  — (), 3 f
X1y..., TN Nzl:f(x) [v W34 T\—AL/
1= > A R
st. z;=x; forall(i,7). " 2

Example of algorithm: The Distributed Gradient Descent (DGD):

N
. k k
Consensus Step: Yy, = Z Wi a3,
j=1
Local Gradient Step: it =y — aV fi(z)),

where a > 0 is a constant step-size and W € RY*" is an averaging
matrix. These could also vary at each iteration k.

Application to the analysis of algorithms [1]

DGD, K steps with a = —, W such that \;(W) € [-), )] for j =
2,..., N and f; convex with bounded subgradients.
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The PEP bound for DGD iIs

bound
presenting a large gap with re-
spect to the theory.
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Figure 1: Tightness analysis of the PEP

bound for 10 iterations DGD. (N = 3) tight for generalized® doubly-

stochastic matrices.

>k . .
allowing negative elements.

avallable for many perfor-
mance criterions.

useful for tuning the step-size.
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Figure 2: Tuning of « for 10 iterations of
DGD and )\ = 0.8, with different
performance criterions. (N = 3)

DIGIing with )\;(W) € [-A, )\ and f; L-smooth and u-strongly convex.
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Findings and observations

| o _' Tuning « in DIGing, based on
~_ the PEP bound, improves its
convergence rate guarantee
by orders of magnitude.
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Figure 3: Tuning of a for 10 iterations of

DIGIing and A = 0.9, In comparison with
the theoretical bound.


https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
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