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Decentralized Optimization
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Decentralization Iterative algorithm
» Local function: f; » Local computations
» Local copy of x: x; » Local communications (W)

sothat x; = x; (eventually)



Decentralized Gradient Descent (DGD)
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Decentralized Gradient Descent (DGD)

For each iteration k

v = Z Wij X]k Consensus step

xftl = yl — aVfi(x{) Local gradient step




Motivations: Decentralized Machine Learning

Notations Model training
* Model parameters x . z

min Error(x,d) + regul (x
 Dataset{d € D} x L (x, d) gul (x)

Decentralization

» Part of the data D;
» Local function

fi(x) = z Error(x, d)
d eD;
» Local copy of x

=) Motivations Big data — Privacy — Speed Up



Other applications

Sensor Network Multi-robot systems Micro-Grid

Sensor Node Network

Informatics—Wireless sensor network
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Multi-Robot Systems Engineering
MIT , James McLurkin

ResearchGate, Planning and implementation
of bankable microgrids, Michael Stadler



Decentralized Optimization

m) Many challenges for better methods
BUT

Analysis highly complex

optlmlzatlon

communlcatlon

» Performance bounds: complex and conservative

» Difficult algorithms comparisons ?

» Difficult parameters tuning e

—o




@ Objective

-

function MyDecentralizedAlgo()
N =10; % number of agents
X0 = init(N); % initial points
X =x0;

for k=1:niter
% any local computations
% any local communications
x = update(x,N);

end

\_

For convex functions

~N

Exact worst-case

performance

Iterations

v

Impact for decentralized optimization

» Access to accurate performance of methods

» Simplified comparison and tuning of algorithms

» Rapid exploration of new algorithms.



Outline of the talk

* Performance Estimation Problem (PEP)
* PEP for decentralized optimization

* Analysis of Decentralized Algorithms



Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

max _ perf(f, x°, ..., x) ig]"(x’{) — f(x")

f; xOJ-";xK
With  f € class of functions
x° initial condition
xk from the algorithm analyzed



Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

max _ perf(f, x°, ..., x) ig]"(xK) — f(x")

f; xoi---;xK

With c F class of functions

u,L
Ix% —x*|| <R initial condition

xf = x"1 — qVf(x¥=1) from the algorithm analyzed

Original idea by Yoel Drori, and Marc Teboulle (2014)

Further developments by  Adrien B. Taylor, Julien M. Hendrickx,
and Francois Glineur (2017)
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

max _ perf(f, x°, ..., x) ig]'"(xK) — f(x")

f; xoi-";xK
with [ S FuL class of functions
[Infinite-Dimensional} |x° —x*|| <R initial condition
roblem :
P xf = xK"1 — qVf (x*~1) from the algorithm analyzed

\ :

PEP can be solved exactly for a wide class of f:flzzg
centralized first-order algorithms. (PESTO)

[Taylor et al. 2017]

‘ Can be used for tuning, design and proofs.

11


https://github.com/AdrienTaylor/Performance-Estimation-Toolbox
https://arxiv.org/pdf/1512.07516.pdf
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Finite dimensional PEP

Finite dimension {x*, g%, fF*=1.x
Interpolation conditions on Thereis f € F s.t.
{x*, g%, f*}= AR k k Kk
9 ik=1..k f* = f(x*)and gk = Vf(x¥)
f f 1
W 4
- *
0 5l X2 53 ” X x:O xll Jcl2 9Ic3 : X

Interpolation conditions for many classical function classes

Taylor et al. 2017
e.g., forF,, J= fi t+9i (XJ xi) +§”xj —xi”Z for all (i, j) [Taylor et a ]


https://arxiv.org/pdf/1512.07516.pdf

SDP formulation of PEP

PEP constraints may be quadratic and non-convex

SDP reformulation
Variables F=[f°.. fFK]
G =PTP P=[x°.. xX g°..g%]

Gram Matrix

PEP max  perf(F, G) m) Efficient resolution

With G=0
Interpolation
Initial constraints in term of G and F
Algorithm

13



Outline of the talk

* PEP for decentralized optimization



Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

max perf(f;, x7, ..., xX)
i x?, xf, W
With  f; c class of functions
le initial condition
x{‘ from the algorithm analyzed
W € class of network matrices
' How to represent a class of

communication network matrices ?
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PEP for DGD: network given a priori

max perf(f;, x{, ..., x{)
fi xf’ x{{W
Ve Vi
With  f; c class of functions
xY initial condition
/4 given network matrix
_ Z S
terates £ DGD Y Foralli=1..N,
erates from - _ _
- . . Forallk =0..K —1
X — yl a fl(x )

=) Exact Formulation
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PEP for DGD: class of networks

max perf(f;, x;, ..., x)
fi xlp,...,xf,W
Vi Vi
With  f; c class of functions
x? initial condition
W Any symmetric doubly stochastic matrix

with given range of eigenvalues [17,A7]

Find constraints between yl-k and xlk

?
— k
B ZXJ Foralli =1..N,

Iterates from DGD - e ) Forallk=0.. K —1
= YL aVfi(x;)
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PEP for DGD:

class of networks

max_ perf(f;, x{, ..., x{)
fi; xl ;---;xi ;W
Vir e Vit
With  f; c class of functions

xY initial condition

w Any symmetric chastic matrix
_ i given jgenvalues [A7,17]

Find constraints between yl-k and xlk

- ?

K NN\A \.k
Yi = 'XJ Foralli =1..N,
Iterates from DGD - j Forallk=0 . K —1

k+1

_YL

avf;(xf)
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Consensus steps in PEP

» Search Space for X and Y

N
K Lk For each agent i=1..N,
(C1) Vi = Z Wij %) For each consensus step k=0..K—-1
compact notation Y =WX with Yik = ylk, Xik =

a symmetric and doubly-stochastic matrix

(C2) W= lwyl is with a given range of eigenvalues [A7, A7]

» Necessary constraints for describing (C1) and (C2)

X,Y: agents average vectors X,,Y,: centered matrices )
X, =X-1XT, v,=Y—1Y"

Y (1)
At xTx, (2)
0 (3)

Simplification of (2) and (3) when -2~ =2A* =1 YEYJ_ < A2 XIXJ_

X
A" XTX, < X[Y, <
(YL = A X)), —2"X)) <

19



Consensus steps in PEP

Summary of the constraints for consensus steps ¥ = WX

Y (1)
At XTx, (2)
0 (3)

><|
I

A XTx, < XTy,
(Y, -2 X)) (Y, —2X))

A //\

Advantages of our constraints

v Independent of the algorithm

v' Link different consensus steps that use the
same matrix

v’ Can be incorporated into SDP formulation
of PEP, which can be solved efficiently

20



PEP fo

r DGD: class of networks

max perf(f;, x°, ..., x%)
fi x0,.
yO, .",yK 1
With  f; c class of functions
xY initial condition

Iterates from DGD -

W Any symmetric doubly-stothastic matrix

_ —with given ramge-ef.eigenvalues [A7, A*]

K k
. = e X, .
Vi ij A Foralli =1...N,

J Forallk=0..K—1
k+1 — yl “sz(xzk)
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PEP for DGD: Spectral formulation

(Relaxation)
0 K
max perf(f;, x°, ..., x
fi, xo,...,xK (fl )
yO, . yK—l
With  f; c class of functions
xY initial condition

Foralli =1..N,

Iterates from DGD { Xt =y = aVfi(xf) Forallk =0 . K — 1

—

Consensus steps Y=V Notation;
v=wx N A~ XJ’I:XJ_ < X YJ_ < A+ XJ'I:XJ_ )Y(ik = ylk
symmetric - T ot =y

W' doubly stochastic Y, —-2X) ¥ —-AX,) <0

AW) e, at]  —

‘ Upper bounds for the worst-case performance of DGD
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Our tool for automatic
performance estimation

Apply to any decentralized method using consensus

y = Wx
» Exact formulation )
exact worst-case performance,
. e . . in PESTO
specific to a given matrix W

» Spectral formulation
Available

upper bound on worst-case performance, in PESTO
valid for an entire spectral class of network matrices

Note: In both cases, the size of the PEP problem depends on the
number of iterations K and the number of agents N.



https://github.com/AdrienTaylor/Performance-Estimation-Toolbox
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Outline of the talk

* Analysis of Decentralized Algorithms



Results of PEP for DGD

Problem _ 1~V
min f(x) = Nz fi(x) with optimal solution x*
X i=1

. N
DGD Algorithm  xk+t = Z wij X — aVf;(xf)

l L]
J=1

Settings of DGD with
= Constant step-size:

. local functions f; with

Identical starting points s.t.
u network matrix W

s.t. (except for A, (W) = 1)

1 1
Performance criterion: where Xg, = }Zkﬁzixzk




DGD — Spectral worst-case

evolution with N

0.8 . ; .
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S— [ % —® & (- & =
0.55 % ¢ e & P& —@ @ @
—O—&—
0.5 ; ¢
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N (Number of agents)

For K = 5 iterations and A(W) € [—A, 1]
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DGD — Spectral worst-case vs
Theoretical bound

4 T T T T T T T T T
—Theoretical bound [NOR17] ,[,NOR17] A. Nedic, A. Olshevsky, _ano! M. G. Rabb_at,
35| J Network topology and communication computation
e SpeCtral worst-case bound tradeoffs in decentralized optimization”, 2017.

Symmetric range of eigenvalues

A< A W) <<, (W) <A

f(xav) - f(x*)

1/3 1/3 1/3 100
1/3 1/3 1/3 [0 1 0]
1/3 1/3 1/3 0 0 1
complete disconnected

For K = 10 iterations, N = 3 agents and A(W) € [—A, 1]
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https://arxiv.org/pdf/1709.08765.pdf
https://arxiv.org/pdf/1709.08765.pdf

Tightness Analysis

4

FBL — Theoretical bound [NOR17]
—— Spectral worst-case bound

1.6 ,
-« Exact worst-case for matrix W1

14 r

f(xav) — f(x*)

0.2

For any N:
W, =T+ A - 1)
with IT = %11T

» A(W,) = {1,-1, -1}

EXACT for spectrally

doubly-stochastic matrices

For K = 10 iterations, N = 3 agents and A(W) € [—A, 1]

28




Tightness Analysis

f(xav) — f(x*)

I e r————— For any N:

18t — Theoretical bound [NOR17] |
—a— Spectral worst-case bound

L] —. E)F:act worst-case for matrix W1 ] Wl =11+ Agn _ I)
14T —— Exact worst-case for stochastic matrices| With II = N 11T
1.2} .

1 / : w» A(W,) ={1,-1,-1}
08 |
0.6 f efﬂ?ffﬂf;/
0.4‘M g CLOSE for doubly-
02| stochastic matrices

0

0 0.1 02 03 04 05 06 07 08 09 1

A

For K = 10 iterations, N = 3 agents and A(W) € [—A, 1]
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Results of PEP for DIGing

Problem 1| N
min f(x) = _z fi(x) with optimal solution x*
X N £ai-q

i i

. . N
DIGing Algorithm ;.1 _ z wy; xK — as
j=1

gradient tracking N
technique Sik+1 = z Wi S]k + Vfi(x{Hl) - Vfi(xlk)
1
Settings = f are and
= |nitial: and
= network matrix W
s.t. (except for Ay (W) = 1)

Performance criterion:



Results of PEP for DIGing

Spectral PEP formulation

» Independent of the number of agents N

» Same worst-case matrix than DGD
W, = 1+ A>Tl — I) with TI =%11T

» AW, ={1,-1,...,—A)

» Exact for spectrally doubly-stochastic matrices



Results of PEP for DIGing

1.001 | | . ; .
—eo—spectral PEP bound —a=10"*
- = =theoretical bound [NOS16]| |——a = 2.6 x 104

0.998 ' ' ' '
0 5 10 15 20 25 30

Total number of iterations K

[NOS16] A. Nedic, A. Olshevsky, and W. Shi, “Achieving

Foru=0.1, L = 1and A(W) € [-0.9,0.9]
Computed fOI"N — 2 geometric convergence for distributed optimization over 39

time-varying graphs,” SIAM Journal on Optimization, 2016.


https://epubs.siam.org/doi/pdf/10.1137/16M1084316

Results of PEP for DIGing

1.001 —
)
o+
©
| -
)
O
c 1 2
)
o]0
| -
v .
E theoretical rate (for N =
o theoretical rate (for N = 10)
O theoretical rate (for N = 5)
theoretical rate (for N = 2)
spectral PEP rate (for any V)
099 b—— e
107 107 107 107

Step-size a

Foru=0.1, L = 1and A(W) € [-0.9,0.9] [NOS16] A. Nedic, A. Olshevsky, and W. Shi, “Achieving

geometric convergence for distributed optimization over
CompUted fOI" N - 2 time-varying graphs,” SIAM Journal on Optimization, 2016. 33


https://epubs.siam.org/doi/pdf/10.1137/16M1084316

Results of PEP for Acc-DNGD

Problem 1| N
min f(x) = _z fi(x) with optimal solution x*
X N £ai-q

Acc-DNGD algorithm A decentralized version of the Nesterov
gradient descent

[ime varying step-size Nk = 7
-— k —
(k + ko)P

Convergence guarantee for @) - F(x) <0 1 P e (06 2
smooth functions [QL2020] N (kz‘f”) p€(06,2)

Conjecture [QL2020] This guarantee also holds for 8 € [0, 0.6],
in particular: 0 (k—lz)

[QL2020] G. Qu and N. Li, “Accelerated distributed Nesterov
gradient descent,” IEEE Transactions on Automatic Control, 2020.



Results of PEP for Acc-DNGD

Conjecture [QL2020]:

Convergence guarantee f(x%) — f(x*) < 0(

the guarantee also holds for § € [0, 0.6]

1
kz__ﬁ) for B € (0.6,2)

perfectly connected
network (A = 0)

moderately well connected

network (A = 0.75)

10 ~- 10' ~< .
el - b -
- - -
—~ 10% > 10— e S //
Small initial step-size |= S
(n = 0.05) Lo
n - - tq ~ ‘\.
s ——3-0 ——03-06l - 8=0 3= 0.61 ~. '
= 1g2f|—e—a =01 G=1 102 t|—=—B=0.1 B=1 “a
B=03mmm=m@(L) =03 == =0(L) .
——3=05 —— =05 ~
10° = » , 102 .
10 10 10 100 10 10°
10" 10
e - =]
—~ 0% S 100F T~
Large initial step-size [T Ny
— 101 E 1D-1 3 ~ ~
o ~
(T] = 05) iy —e—f3-0 —=—3-061 G=0 3 =061
- 1[]-2-—.—1'3:{}.]. J)=1 \-‘ 10-2_—.—?:(]1 3=1 “~
. . B=03===0(k G=03===0(% ~
Used in the experiments e =05 i . | ——B-05 SR ..
. -3 n - 10_3 N L
in [QL2020] 10° 10° 102 10° 10! 102
K (total number of iterations) K (total mumber of iterations)
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Conclusion Egeat
Sébastien Colla

O
Numerical tool for automatic performance computation
PESTO

of decentralized optimization methods

PEP idea: worst-cases are solutions of optimization problems

SPECTRAL formulation EXACT formulation

Spectral class of matrices Given network matrix W

r Relaxation of PEP ALWAYS exact

For DGD and DIGing: v' Independent of N

v Tight when negative weights are allowed
v Improve on the literature bound

Future works

 Other class of networks (any suggestion?)
O Proof for the DIGing convergence rate
d Agent-independent PEP formulation
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https://github.com/AdrienTaylor/Performance-Estimation-Toolbox
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox
https://perso.uclouvain.be/sebastien.colla/
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