

Automatic Performance Estimation for Decentralized Optimization

Sébastien Colla, Julien Hendrickx

EOS SeLMA seminars – 8th May 2022

Decentralized Optimization

$$\min_{x} f(x) = \sum_{i=1}^{N} f_i(x)$$

$$\sum_{i=1}^{N} f_i(x_i)$$

s.t. $x_i = x_i \quad \forall (i, j)$ neighbors

Decentralization

- \triangleright Local function: f_i
- \triangleright Local copy of x: x_i

Iterative algorithm

- > Local computations
- \triangleright Local communications (W) so that $x_i = x_j$ (eventually)

Decentralized Gradient Descent (DGD)

$$\min_{x_1,...,x_N} \sum_{i} f_i(x_i)$$

s.t. $x_i = x_j \ \forall (i,j)$ neighbors

Decentralization

 \triangleright Local function: f_i

 \triangleright Local copy of x: x_i

Decentralized Gradient Descent (DGD)

For each iteration *k*

$$y_i^k = \sum_j w_{ij} \ x_j^k$$
 Consensus step $x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k)$ Local gradient step

Motivations: Decentralized Machine Learning

Notations

- Model parameters x
- Data set $\{d \in \mathcal{D}\}$

Model training

$$\min_{x} \sum_{d \in D} \text{Error}(x, d) + \text{regul}(x)$$

Decentralization

- \triangleright Part of the data \mathcal{D}_i
- > Local function

$$f_i(x) = \sum_{d \in \mathcal{D}_i} \text{Error}(x, d)$$

 \triangleright Local copy of x

Other applications

Sensor Network

Informatics–Wireless sensor network

Multi-robot systems

Multi-Robot Systems Engineering
MIT , James McLurkin

Micro-Grid

ResearchGate, Planning and implementation of bankable microgrids, Michael Stadler

Decentralized Optimization

Many challenges for better methods

BUT

Analysis highly complex

> Performance bounds: complex and conservative

➤ Difficult algorithms comparisons

Difficult parameters tuning

Impact for decentralized optimization

- Access to accurate performance of methods
- > Simplified comparison and tuning of algorithms
- Rapid exploration of new algorithms.

Outline of the talk

Performance Estimation Problem (PEP)

• PEP for decentralized optimization

Analysis of Decentralized Algorithms

Idea: Worst-cases are solutions to optimization problems

$$\max_{f, x^0, \dots, x^K} \quad \operatorname{perf}(f, x^0, \dots, x^K) \stackrel{e.g.}{=} f(x^K) - f(x^*)$$
With $f \in \operatorname{class\ of\ functions}$

$$x^0 \quad \operatorname{initial\ condition}$$

$$x^k \quad \operatorname{from\ the\ algorithm\ analyzed}$$

Idea: Worst-cases are solutions to optimization problems

$$\max_{f, x^0, \dots, x^K} \quad \operatorname{perf}(f, x^0, \dots, x^K) \stackrel{e.g.}{=} f(x^K) - f(x^*)$$
 With $f \in \mathcal{F}_{\mu, L}$ class of functions
$$\|x^0 - x^*\| \leq R \quad \text{initial condition}$$

$$x^k = x^{k-1} - \alpha \nabla f(x^{k-1}) \quad \text{from the algorithm analyzed}$$

Original idea by

Yoel Drori, and Marc Teboulle (2014)

Further developments by

Adrien B. Taylor, Julien M. Hendrickx, and François Glineur (2017)

Idea: Worst-cases are solutions to optimization problems

$$\max_{f, x^0, ..., x^K} \text{ perf}(f, x^0, ..., x^K) \stackrel{e.g.}{=} f(x^K) - f(x^*)$$

$$\in$$

Infinite-Dimensional
$$\|x^0 - x^*\| \le R$$

$$x^{k} = x^{k-1} - \alpha \nabla f(x^{k-1})$$
 from the algorithm analyzed

class of functions

initial condition

PEP can be solved exactly for a wide class of centralized first-order algorithms.

[Taylor et al. 2017]

problem

Can be used for tuning, design and proofs.

Finite dimensional PEP

Finite dimension

$$\{x^k, g^k, f^k\}_{k=1...K}$$

Interpolation conditions on $\{x^k, g^k, f^k\}_{k=1}$

 \Leftrightarrow

There is $f \in \mathcal{F}$ s.t. $f^k = f(x^k)$ and $g^k = \nabla f(x^k)$

Interpolation conditions for many classical function classes

e.g., for
$$\mathcal{F}_{\mu}$$
, $f_{j} \geq f_{i} + g_{i}^{T}(x_{j} - x_{i}) + \frac{\mu}{2} \|x_{j} - x_{i}\|^{2}$ for all (i, j)

[Taylor et al. 2017]

SDP formulation of PEP

PEP constraints may be quadratic and non-convex

SDP reformulation

$$F = [f^{0} \dots f^{K}]$$
 $G = P^{T}P \qquad P = [x^{0} \dots x^{K} g^{0} \dots g^{K}]$

Gram Matrix

PEP

$$\max_{F,G}$$
 perf(F, G)

Efficient resolution

With

$$G \geq 0$$

Interpolation

Initial constraints in term of G and F

Algorithm

Outline of the talk

Performance Estimation Problem (PEP)

PEP for decentralized optimization

Analysis of Decentralized Algorithms

Idea: Worst-cases are solutions to optimization problems

$$\max_{f_i, x_i^0, \dots, x_i^K, W} \operatorname{perf}(f_i, x_i^0, \dots, x_i^K)$$

$$\operatorname{With} \quad f_i \in \operatorname{class of functions}$$

$$x_i^0 \quad \operatorname{initial condition}$$

$$x_i^k \quad \operatorname{from the algorithm analyzed}$$

$$W \in \operatorname{class of network matrices}$$

How to represent a class of communication network matrices?

PEP for DGD: network given a priori

$$\max_{\substack{f_i, x_i^0, \dots, x_i^K, W \\ y_i^0, \dots, y_i^{K-1}}} \operatorname{perf}(f_i, x_i^0, \dots, x_i^K)$$

$$\operatorname{With} \quad f_i \in \operatorname{class of functions}$$

$$x^0 \quad \operatorname{initial condition}$$

$$W \quad \operatorname{given network matrix}$$

Iterates from DGD
$$\begin{cases} y_i^k = \sum_j w_{ij} \ x_j^k \\ x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k) \end{cases}$$
 For all $i=1\dots N$, For all $k=0\dots K-1$

Exact Formulation

PEP for DGD: class of networks

$$\max_{\substack{f_i, x_i^0, \dots, x_i^K, W \\ y_i^0, \dots, y_i^{K-1}}} \operatorname{perf}(f_i, x_i^0, \dots, x_i^K)$$

$$\operatorname{With} \quad f_i \in \operatorname{class of functions}$$

$$x^0 \quad \operatorname{initial condition}$$

$$W \quad \operatorname{Any symmetric doubly stochastic matrix}$$

$$\operatorname{with given range of eigenvalues} \left[\lambda^-, \lambda^+\right]$$

Find constraints between y_i^k and x_i^k

Iterates from DGD
$$\begin{cases} y_i^k = \sum_j w_{ij} x_j^k \\ x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k) \end{cases}$$
 For all $i = 1 \dots N$, For all $k = 0 \dots K - 1$

PEP for DGD: class of networks

Find constraints between y_i^k and x_i^k

Iterates from DGD
$$\begin{cases} y_i^k = \underbrace{\sum_j w_{ij}} x_j^k \\ x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k) \end{cases}$$
 For all $i = 1 \dots N$, For all $k = 0 \dots K - 1$

Consensus steps in PEP

Search Space for X and Y

(C1)
$$y_i^k = \sum_{j=1}^N w_{ij} \ x_j^k$$
 For each agent $i = 1 \dots N$, For each consensus step $k = 0 \dots K - 1$

compact notation

$$Y = WX$$

with
$$Y_{ik} = y_i^k$$
, $X_{ik} = x_i^k$.

(C2)
$$W = [w_{ij}]$$
 is a symmetric and doubly-stochastic matrix with a given range of eigenvalues $[\lambda^-, \lambda^+]$

Necessary constraints for describing (C1) and (C2)

$$\bar{X}$$
, \bar{Y} : agents average vectors

$$X_{\perp}$$
, Y_{\perp} : centered matrices

$$X_{\perp} = X - \mathbf{1}\bar{X}^T$$
, $Y_{\perp} = Y - \mathbf{1}\bar{Y}^T$

$$\bar{X} = \bar{Y}$$
 (1)

$$\lambda^{-} X_{\perp}^{T} X_{\perp} \leqslant X_{\perp}^{T} Y_{\perp} \leqslant \lambda^{+} X_{\perp}^{T} X_{\perp}$$
 (2)

$$\begin{cases} \lambda^{-} X_{\perp}^{T} X_{\perp} \leq X_{\perp}^{T} Y_{\perp} \leq \lambda^{+} X_{\perp}^{T} X_{\perp} \\ (Y_{\perp} - \lambda^{-} X_{\perp})^{T} (Y_{\perp} - \lambda^{+} X_{\perp}) \leq 0 \end{cases}$$
 (2)

Simplification of (2) and (3) when
$$-\lambda^- = \lambda^+ = \lambda$$
: $Y_{\perp}^T Y_{\perp} \leq \lambda^2 X_{\perp}^T X_{\perp}$

Consensus steps in PEP

Summary of the constraints for consensus steps Y = WX

$$\bar{X} = \bar{Y}$$
 (1)

$$\lambda^{-} X_{\perp}^{T} X_{\perp} \leq X_{\perp}^{T} Y_{\perp} \leq \lambda^{+} X_{\perp}^{T} X_{\perp} \tag{2}$$

$$\lambda^{-} X_{\perp}^{T} X_{\perp} \leqslant X_{\perp}^{T} Y_{\perp} \leqslant \lambda^{+} X_{\perp}^{T} X_{\perp}$$

$$(Y_{\perp} - \lambda^{-} X_{\perp})^{T} (Y_{\perp} - \lambda^{+} X_{\perp}) \leqslant 0$$
(3)

Advantages of our constraints

- **Independent** of the algorithm
- ✓ Link different consensus steps that use the same matrix
- ✓ Can be incorporated into SDP formulation of PEP, which can be solved efficiently

PEP for DGD: class of networks

$$\max_{f_i, x^0, \dots, x^K, W} \text{perf}(f_i, x^0, \dots, x^K)$$

$$y^0, \dots, y^{K-1}$$

$$\text{With } f_i \in \text{class of functions}$$

$$x^0 \quad \text{initial condition}$$

$$W \quad \text{Any symmetric doubly stochastic matrix}$$

$$\text{with given range of eigenvalues } [\lambda^-, \lambda^+]$$

Iterates from DGD
$$\begin{cases} y_i^k = \sum_j w_{ij} \, x_j^k & \text{For all } i=1\dots N, \\ x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k) & \text{For all } k=0\dots K-1 \end{cases}$$

PEP for DGD: Spectral formulation

(Relaxation)

$$\max_{\substack{f_i, x^0, \dots, x^K \\ y^0, \dots, y^{K-1}}} \operatorname{perf}(f_i, x^0, \dots, x^K)$$

$$\text{With } f_i \in \operatorname{class of functions}$$

$$x^0 \quad \operatorname{initial condition}$$

Iterates from DGD
$$\left\{x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k)\right\}$$
 For all $i = 1 \dots N$, For all $k = 0 \dots K - 1$

$$Y = WX$$

symmetric
 W doubly stochastic
 $\lambda(W) \in [\lambda^-, \lambda^+]$

$$\overline{X} = \overline{Y}$$

$$\lambda^{-} X_{\perp}^{T} X_{\perp} \leqslant X_{\perp}^{T} Y_{\perp} \leqslant \lambda^{+} X_{\perp}^{T} X_{\perp}$$

$$(Y_{\perp} - \lambda^{-} X_{\perp})^{T} (Y_{\perp} - \lambda^{+} X_{\perp}) \leqslant 0$$

Notations $X_{ik} = x_i^k$ $Y_{ik} = y_i^k$

Upper bounds for the worst-case performance of DGD

Our tool for automatic performance estimation

Apply to any decentralized method using consensus

$$y = Wx$$

Exact formulation
 exact worst-case performance,
 specific to a given matrix W

Spectral formulation
upper bound on worst-case performance,
valid for an entire spectral class of network matrices

Note: In both cases, the size of the PEP problem **depends** on the number of iterations **K** and the number of agents **N**.

Outline of the talk

Performance Estimation Problem (PEP)

PEP for decentralized optimization

Analysis of Decentralized Algorithms

Results of PEP for DGD

Problem

$$\min_{x} f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x) \quad \text{with optimal solution } x^*$$

$$x_i^{k+1} = \sum_{j=1}^N w_{ij} x_j^k - \alpha \nabla f_i(x_i^k)$$

Settings

K steps of DGD with

- Constant step-size: $\alpha = \frac{1}{\sqrt{K}}$
- Convex local functions f_i with bounded subgradients
- Identical starting points s.t. $||x^0 x^*||^2 \le 1$
- Symmetric doubly-stochastic network matrix W s.t. $\lambda(W) \in [-\lambda, \lambda]$ (except for $\lambda_1(W) = 1$)

Performance criterion:
$$f(x_{av}) - f(x^*)$$
 where $x_{av} = \frac{1}{K} \sum_{k=1}^{K} \sum_{i=1}^{K} x_i^k$

DGD – Spectral worst-case evolution with N

For K = 5 iterations and $\lambda(W) \in [-\lambda, \lambda]$

DGD – Spectral worst-case vs Theoretical bound

For K = 10 iterations, N = 3 agents and $\lambda(W) \in [-\lambda, \lambda]$

Tightness Analysis

For K = 10 iterations, N = 3 agents and $\lambda(W) \in [-\lambda, \lambda]$

Tightness Analysis

For K = 10 iterations, N = 3 agents and $\lambda(W) \in [-\lambda, \lambda]$

Problem

$$\min_{x} f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$$
 with optimal solution x^*

DIGing Algorithm

gradient tracking technique

$$x_i^{k+1} = \sum_{j=1}^{N} w_{ij} x_j^k - \alpha s_i^k$$

$$s_i^{k+1} = \sum_{j=1}^{N} w_{ij} s_j^k + \nabla f_i(x_i^{k+1}) - \nabla f_i(x_i^k)$$

Settings • f_i are L-smooth and μ -strongly convex

■ Initial:
$$\frac{1}{N} \sum_{i=1}^{N} \|x_i^0 - x^*\|^2 \le 1$$
 and $\frac{1}{N} \sum_{i=1}^{N} \|s_i^0 - \overline{\nabla f_i^0}\|^2 \le 1$

Symmetric doubly-stochastic network matrix W

s.t.
$$\lambda(W) \in [-\lambda, \lambda]$$
 (except for $\lambda_1(W) = 1$)

Performance criterion:
$$\frac{1}{N} \sum_{i=1}^{N} ||x_i^K - x^*||^2$$

Spectral PEP formulation

- Independent of the number of agents N
- Same worst-case matrix than DGD

$$W_1 = \Pi + \lambda(\Pi - I)$$
 with $\Pi = \frac{1}{N} \mathbf{1} \mathbf{1}^T$

- \rightarrow $\lambda(W_1) = \{1, -\lambda, ..., -\lambda\}$
- > Exact for spectrally doubly-stochastic matrices

For $\mu=0.1,\ L=1$ and $\lambda(W)\in[-0.9,0.9]$ Computed for N=2.

[NOS16] A. Nedic, A. Olshevsky, and W. Shi, "Achieving geometric convergence for distributed optimization over time-varying graphs," SIAM Journal on Optimization, 2016.

For $\mu = 0.1$, L = 1 and $\lambda(W) \in [-0.9, 0.9]$ Computed for N = 2.

[NOS16] A. Nedic, A. Olshevsky, and W. Shi, "Achieving geometric convergence for distributed optimization over time-varying graphs," SIAM Journal on Optimization, 2016.

Results of PEP for Acc-DNGD

Problem

$$\min_{x} f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$$
 with optimal solution x^*

Acc-DNGD algorithm

A decentralized version of the Nesterov gradient descent

Time varying step-size

$$\eta_k = \frac{\eta}{(k+k_0)^{\beta}}$$

Convergence guarantee for smooth functions [QL2020]

$$f(\bar{x}^K) - f(x^*) \le \mathcal{O}\left(\frac{1}{k^{2-\beta}}\right)$$
 for $\beta \in (0.6, 2)$

Conjecture [QL2020]

This guarantee also holds for $\beta \in [0, 0.6]$,

in particular: $\mathcal{O}\left(\frac{1}{k^2}\right)$

Results of PEP for Acc-DNGD

Convergence guarantee
$$f(\bar{x}^K) - f(x^*) \le \mathcal{O}\left(\frac{1}{k^{2-\beta}}\right)$$
 for $\beta \in (0.6, 2)$

Conjecture [QL2020]:

the guarantee also holds for $\beta \in [0, 0.6]$

Computed for N = 2.

Conclusion

Numerical tool for automatic performance computation of decentralized optimization methods

PEP idea: worst-cases are solutions of optimization problems

SPECTRAL formulation	EXACT formulation
Spectral class of matrices	Given network matrix W
Relaxation of PEP	ALWAYS exact

- For DGD and DIGing: ✓ Independent of N
 - ✓ Tight when negative weights are allowed
 - Improve on the literature bound

Future works

Other class of networks (any suggestion?) Proof for the DIGing convergence rate Agent-independent PEP formulation

References

[CH21] S. Colla, J. M. Hendrickx, "Automatic Performance Estimation for Decentralized Optimization", preprint 2022.

[Taylor et al.] A. B. Taylor, J. M. Hendrickx, F. Glineur, "Exact worst-case performance of first-order methods for composite convex optimization," SIAM Journal on Optimization, 2015

[NOR17] A. Nedic, A. Olshevsky, and M. G. Rabbat, "Network topology and communication computation tradeoffs in decentralized optimization", 2017.

[NOS16] A. Nedic, A. Olshevsky, and W. Shi, "Achieving geometric convergence for distributed optimization over time-varying graphs," SIAM Journal on Optimization, 2016.