

Exploiting Agent Symmetries for Automatic Performance Analysis of Distributed Optimization Methods

Sébastien Colla, Julien Hendrickx

Mathematical Engineering Department, UCLouvain (Belgium)

EUROpt 2023

Distributed Optimization

$$\min_{x} f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$$

$$\min_{x_1, \dots, x_N} F_S(x_1, \dots, x_N) = \frac{1}{N} \sum_{i=1}^N f_i(x_i)$$

s.t. $x_i = x_j \ \forall (i, j)$ neighbors

Decentralization

- \triangleright Local function: f_i
- \triangleright Local copy of x: x_i

Iterative algorithm

- > Local computations
- > Local communications (W) so that $x_i = x_j$ (eventually)

Distributed Gradient Descent (DGD)

$$\min_{x_1,...,x_N} F_S(x_1,...,x_N) = \frac{1}{N} \sum_{i=1}^N f_i(x_i)$$

s.t. $x_i = x_j \quad \forall (i, j)$ neighbors

Decentralization

 \triangleright Local function: f_i

 \triangleright Local copy of x: x_i

Distributed Gradient Descent (DGD)

For each iteration k

$$y_i^k = \sum_j w_{ij} x_j^k$$
 Consensus step

$$x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k)$$
 Local gradient step

Motivations: Decentralized Machine Learning

Notations

- Model parameters x
- Data set $\{d \in \mathcal{D}\}$

Model training

$$\min_{x} \sum_{d \in D} \operatorname{Error}(x, d)$$

Decentralization

- \triangleright Part of the data \mathcal{D}_i
- > Local function

$$f_i(x) = \sum_{d \in \mathcal{D}_i} \text{Error}(x, d)$$

 \triangleright Local copy of x

Decentralized Optimization

Many challenges for better methods

BUT

Analysis highly complex

> Performance bounds: complex and conservative

Difficult algorithms comparisons

Difficult parameters tuning

Impact for decentralized optimization

- Access to accurate performance of methods
- > Easier comparison and tuning of algorithms
- Rapid exploration of new algorithms.

Overview

- Performance Estimation Problem (PEP) for distributed optimization
- Agents independent performance using symmetric solutions
- Subsets of interchangeable agents and the performance of the worst agent.

Performance Estimation Problem (PEP)

idea

Worst-cases are solutions to optimization problems

[Drori and Teboulle 2014]

Typical decentralized optimization result

PEP: compute a tight worst-case bound

Provided that

- The local functions are in a given class $f_i \in \mathcal{F}$
- The network (matrix) is in ${\mathcal W}$
- The initial iterates are in some set \mathcal{X}_0

Then after K iterations, some quality measure P of the estimate solutions always satisfy (...)

Performance Estimation Problem (PEP)

idea

Worst-cases are solutions to optimization problems

[Drori and Teboulle 2014]

Typical decentralized optimization result

Provided that

- The local functions are in a given class $f_i \in \mathcal{F}$
- The network (matrix) is in ${\mathcal W}$
- The initial iterates are in some set \mathcal{X}_0

Then after K iterations, some quality measure P of the estimate solutions *always satisfy* (...)

PEP: compute a tight worst-case bound

$$\begin{aligned} & \max \qquad P(f_i, \, x_i^0 \,, \dots, x_i^K) \\ & f_i, \, \mathbf{W}, x_i^k, \, y_i^k \\ & \text{s.t.} \qquad f_i \in \mathcal{F} \qquad \text{for } i = 1 \dots N \\ & \quad \mathbf{W} \in \mathcal{W} \\ & \quad x_i^0 \in \mathcal{X}_0 \\ & \quad y_i^k = \mathcal{W} x_i^k \\ & \quad x_i^0, \dots, x_i^K \\ & \quad x_i^0, \dots, y_i^{K-1} \end{aligned} \text{ satisfy the algorithm }$$

Performance Estimation Problem (PEP)

idea

Worst-cases are solutions to optimization problems

[Drori and Teboulle 2014]

Typical decentralized optimization result

Provided that

- The local functions are in a given class $f_i \in \mathcal{F}$
- The network (matrix) is in ${\mathcal W}$
- The initial iterates are in some set \mathcal{X}_0

Then after K iterations, some quality measure P of the estimate solutions always satisfy (...)

PEP: compute a tight worst-case bound

$$\begin{aligned} &\max \qquad P(f_i, x_i^0, \dots, x_i^K) \\ &f_i, \mathbf{W}, x_i^k, y_i^k \\ &\text{s.t.} \qquad f_i \in \mathcal{F} \qquad \text{for } i = 1 \dots N \\ &\mathbf{W} \in \mathcal{W} \\ &x_i^0 \in \mathcal{X}_0 \\ &y_i^k = \mathbf{W} x_i^k \\ &x_i^0, \dots, x_i^K \\ &x_i^0, \dots, y_i^{K-1} \end{aligned} \text{ satisfy the algorithm }$$

Problems:

- Infinite dimensional sets
- Highly nonlinear

Finite dimensional reformulation

Finite dimension

 y_i^k , x_i^k , g_i^k , f_i^k

Class of functions

Interpolation conditions on

$$\{x_i^k, g_i^k, f_i^k\}_{k=1...K}$$

Interpolation conditions for many classical function classes

[Taylor et al. 2017]

e.g. L-smooth and μ -strongly convex, convex bounded gradient,...

Finite dimensional reformulation

Finite dimension

$$y_i^k$$
, x_i^k , g_i^k , f_i^k

Class of functions

Interpolation conditions on

$$\{x_i^k, g_i^k, f_i^k\}_{k=0...K}$$

$$\Leftrightarrow f_i^k = f_i(x_i^k) \text{ and } g_i^k = \nabla f_i(x_i^k)$$

Class of network matrices

Interpolation conditions on

$$\{x_i^k, y_i^k\}_{k=0...K-1}$$

There is
$$W \in \mathcal{W}$$
 s.t. $y_i^k = W x_i^k$

[Colla 2023]

Common class

 $\mathcal{W}(\lambda^-, \lambda^+)$: symmetric, doubly stochastic, and $\lambda(W) \in [\lambda^-, \lambda^+]$

necessary conditions available (relaxed PEP)

PEP for Distributed Optimization

$$\max_{y_i^k, x_i^k, g_i^k, f_i^k} P(y_i^k, x_i^k, g_i^k, f_i^k)$$
s.t. $f_i \in \mathcal{F}$

$$W \in \mathcal{W}$$

$$y_i^k = W x_i^k$$

$$x_i^0 \in \mathcal{X}_0$$

$$x_i^0, \dots, x_i^K$$

$$y_i^0, \dots, y_i^{K-1}$$
 satisfy the algorithm

PEP for Distributed Optimization

$$\max_{y_i^k, x_i^k, g_i^k, f_i^k} P(y_i^k, x_i^k, g_i^k, f_i^k)$$

$$\text{s.t.} \quad f_i \in \mathcal{F}$$

$$W \in \mathcal{W}$$

$$y_i^k = W x_i^k$$

$$x_i^0 \in \mathcal{X}_0$$

$$x_i^0, \dots, x_i^K$$

$$y_i^0, \dots, y_i^{K-1}$$
 satisfy the algorithm

PEP constraints may be quadratic and non-convex in y_i^k , x_i^k , or g_i^k

e.g.
$$\frac{1}{N} \sum_{i=1}^{N} ||x_i^0 - x^*||^2 \le 1$$

Change of variable: Gram Matrix

Variables

Function values and Gram Matrix of scalar products

$$F = [f_1 \dots f_N]$$

where
$$f_i = [f_i^0 \dots f_i^K]$$

Gram Matrix

$$G = P^T P$$

$$P = [P_1 \dots P_N]$$

$$P = [P_1 ... P_N] P_i = [y_i^0 ... y_i^{K-1} x_i^0 ... x_i^K g_i^0 ... g_i^K]$$

$$G = P^T P = \begin{bmatrix} P_1^T P_1 & \cdots & P_1^T P_N \\ \vdots & \ddots & \vdots \\ P_N^T P_1 & \cdots & P_1^T P_1 \end{bmatrix} = \begin{bmatrix} G_{11} & \cdots & G_{1N} \\ \vdots & \ddots & \vdots \\ G_{N1} & \cdots & G_{11} \end{bmatrix}$$

Change of variable: Gram Matrix

Variables

Function values and Gram Matrix of scalar products

$$F = [f_1 \dots f_N]$$

where
$$f_i = [f_i^0 \dots f_i^K]$$

Gram Matrix

$$G = P^T P$$

$$P = [P_1 \dots P_N]$$

$$P = [P_1 ... P_N] P_i = [y_i^0 ... y_i^{K-1} x_i^0 ... x_i^K g_i^0 ... g_i^K]$$

$$G = P^T P = \begin{bmatrix} P_1^T P_1 & \cdots & P_1^T P_N \\ \vdots & \ddots & \vdots \\ P_N^T P_1 & \cdots & P_1^T P_1 \end{bmatrix} = \begin{bmatrix} G_{11} & \cdots & G_{1N} \\ \vdots & \ddots & \vdots \\ G_{N1} & \cdots & G_{11} \end{bmatrix}$$

PEP

$$\max_{F, G} perf(F, G)$$

$$G \geqslant 0$$

Interpolation Initial Algorithm

constraints linear in G and F

Change of variable: Gram Matrix

Variables

Function values and Gram Matrix of scalar products

$$F = [f_1 \dots f_N]$$

where
$$f_i = [f_i^0 \dots f_i^K]$$

Gram Matrix

$$G = P^T P$$

$$P = [P_1 \dots P_N]$$

$$P = [P_1 ... P_N] P_i = [y_i^0 ... y_i^{K-1} x_i^0 ... x_i^K g_i^0 ... g_i^K]$$

$$G = P^T P = \begin{bmatrix} P_1^T P_1 & \cdots & P_1^T P_N \\ \vdots & \ddots & \vdots \\ P_N^T P_1 & \cdots & P_1^T P_1 \end{bmatrix} = \begin{bmatrix} G_{11} & \cdots & G_{1N} \\ \vdots & \ddots & \vdots \\ G_{N1} & \cdots & G_{11} \end{bmatrix}$$

PEP

s.t.

- $\max_{F,G} \text{ perf}(F,G)$ $G \geqslant 0$ Note $y_i^k, x_i^k, g_i^k, f_i^k \text{ can be recovered if } G \geqslant 0$ dimension independent formulation $(d = \operatorname{rank} G)$

Interpolation Initial Algorithm

constraints linear in G and F

Agent Independent Performance

DGD – K = 5 iterations $\lambda(W) \in [-\lambda, \lambda]$

Questions

- Can we build an equivalent PEP formulation computing agent-independent bound (by construction)?
- When does this independence occur?

Agents are Interchangeable

Assumption

- > no agent plays a specific role in the algorithm, the performance measure or the initial conditions.
- any permutation of agents lead to the same worstcase performance

worst-case value : wc(1,2,3,4) = P

worst-case value : wc(1,3,2,4) = P

Agents are Interchangeable

Worst-case value

$$wc(1,2,3,4) = P$$

PEP solution

$$F_{\Pi_{1}} = [f_{1} f_{2} f_{3} f_{4}]$$

$$G_{\Pi_{1}} = P_{\Pi_{1}}^{T} P_{\Pi_{1}}$$

$$P_{\Pi_{1}} = [P_{1} P_{2} P_{3} P_{4}]$$

Worst-case value

$$wc(1,3,2,4) = P$$

PEP solution

$$F_{\Pi_2} = [f_1 f_3 f_2 f_4]$$

$$G_{\Pi_2} = P_{\Pi_2}^T P_{\Pi_2}$$

$$P_{\Pi_2} = [P_1 P_3 P_2 P_4]$$

Agents are Interchangeable

Worst-case value

$$wc(1,2,3,4) = P$$

PEP solution

$$F_{\Pi_{1}} = [f_{1} f_{2} f_{3} f_{4}]$$

$$G_{\Pi_{1}} = P_{\Pi_{1}}^{T} P_{\Pi_{1}}$$

$$P_{\Pi_{1}} = [P_{1} P_{2} P_{3} P_{4}]$$

Worst-case value

$$wc(1,3,2,4) = P$$

PEP solution

$$F_{\Pi_2} = [f_1 f_3 f_2 f_4]$$

$$G_{\Pi_2} = P_{\Pi_2}^T P_{\Pi_2}$$

$$P_{\Pi_2} = [P_1 P_3 P_2 P_4]$$

PEP objective is linear in G and F

Solution $\frac{1}{2}(F_{\Pi_1} + F_{\Pi_2})$; $\frac{1}{2}(G_{\Pi_1} + G_{\Pi_2})$ has the **same worst-case** P

Average permuted PEP solutions

$$F_{\Pi_{1}} = [f_{1} f_{2} f_{3}]$$

$$F_{\Pi_{2}} = [f_{1} f_{3} f_{2}]$$

$$F_{\Pi_{3}} = [f_{2} f_{1} f_{3}]$$

$$F_{\Pi_{4}} = [f_{2} f_{3} f_{1}]$$

$$F_{\Pi_{5}} = [f_{3} f_{1} f_{2}]$$

$$F_{\Pi_{6}} = [f_{3} f_{2} f_{1}]$$
avg

$$F^{s} = [f_{A} f_{A} f_{A}]$$

with
$$f_A = \frac{(N-1)!}{N!} \sum_{i=1}^{N} f_i = \frac{1}{N} \sum_{i=1}^{N} f_i$$

 F^s and G^s are valid PEP solution with the same worst-case value

$$G_{\Pi_{1}} = P_{\Pi_{1}}^{T} P_{\Pi_{1}} \qquad P_{\Pi_{1}} = [P_{1} P_{2} P_{3}]$$

$$G_{\Pi_{2}} = P_{\Pi_{2}}^{T} P_{\Pi_{2}} \qquad P_{\Pi_{2}} = [P_{1} P_{3} P_{2}]$$

$$G_{\Pi_{3}} = P_{\Pi_{3}}^{T} P_{\Pi_{3}} \qquad P_{\Pi_{3}} = [P_{2} P_{1} P_{3}]$$

$$G_{\Pi_{4}} = P_{\Pi_{4}}^{T} P_{\Pi_{4}} \qquad P_{\Pi_{4}} = [P_{2} P_{3} P_{1}]$$

$$G_{\Pi_{5}} = P_{\Pi_{5}}^{T} P_{\Pi_{5}} \qquad P_{\Pi_{5}} = [P_{3} P_{1} P_{2}]$$

$$Avg = \begin{bmatrix} G_{A} & \cdots & G_{B} \\ \vdots & \ddots & \vdots \\ G_{A} & \cdots & G_{B} \end{bmatrix}$$

$$G^{S} = \begin{bmatrix} G_{A} & \cdots & G_{B} \\ \vdots & \ddots & \vdots \\ G_{A} & \cdots & G_{B} \end{bmatrix}$$

with
$$G_A = \frac{(N-1)!}{N!} \sum_{i=1}^N G_{ii} = \frac{1}{N} \sum_{i=1}^N G_{ii}$$

$$G_B = \frac{(N-2)!}{N!} \sum_{i=1}^N \sum_{j \neq i}^N G_{ij} = \frac{1}{N(N-1)} \sum_{i=1}^N \sum_{j \neq i}^N G_{ij}$$

Agent-Symmetric PEP solution

Proposition (Existence of an agents-symmetric solution of a PEP).

Let F and G be solution of an agent dependent PEP formulation for distributed optimization. If **all the** N **agents are interchangeable** in the PEP, then the symmetrized solution F^s and G^s provides another valid solution for the PEP, with the **same worst-case value**:

$$F^{S} = \frac{1}{N!} \sum_{\Pi} F_{\Pi} = [f_{A}^{T} \dots f_{A}^{T}]$$
 with $f_{A} = \frac{1}{N} \sum_{i=1}^{N} f_{i}$

$$G^{S} = \begin{bmatrix} G_{A} & \cdots & G_{B} \\ \vdots & \ddots & \vdots \\ G_{B} & \cdots & G_{A} \end{bmatrix} \quad \text{with } G_{A} = \frac{1}{N} \sum_{i=1}^{N} G_{ii}, \quad G_{B} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j \neq i}^{N} G_{ij}$$

PEP (F^s, G^s) can be written using only f_A , G_A and G_B as variables Size depends on N Size independent of N

Agent Independent Performance

 $(N \ge 2)$

If

✓ the algorithm and its performance evaluation settings are Gram-representable

SDP PEP ✓

can be expressed with scalar products of iterates and gradients

✓ The agents are interchangeable in the PEP

compact SDP PEP ✓

Problem size independent of N

✓ The compact PEP formulation can be expressed without any dependence on the number of agents N

agent-independent SDP PEP ✓

Then

- ➤ The worst-case performance in the given setting is independent of the number of agents *N*
- \triangleright General worst-case guarantee can simply be derived using N=2

Agent Independent Performance

 $(N \ge 2)$

If

✓ The compact PEP formulation can be expressed without any dependence on the number of agents N

agent-independent SDP PEP <

When is it satisfied?

→ Often

Satisfied (at least) by any PEP involving combinations of

- Same agent scalar product :
- Pair of agents average of the scalar products
- Agent average of the scalar products of two centered variables associated with the same agents

$$x_i^T y_i$$

$$\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} x_i^T y_j$$

$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^T (y_i - \bar{y})$$

Subsets of interchangeable agents

Assumption

- \succ the set of agents can be decomposed in distinct subsets $\mathcal{V}_1, \dots, \mathcal{V}_J$ containing interchangeable agents
- > any permutation of agents from the same subsets lead to the same worst-case performance

symmetrize the PEP for each subset of agents and write it in a compact form whose size only depends on the number of subsets *J*.

Example

One agent

All the others

$$\mathcal{V}_1 = \{1\}$$

$$\mathcal{V}_2 = \{2, \dots, N\}$$

Performance of the worst agent

Performance measure

$$\max_{i \in \{1,\dots,N\}} f(x_i^K) - f(x^*)$$

Distributed optimization problem

$$\min_{x} f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$$

PEP

$$\max f(x_1^K) - f(x^*)$$
F, G

Optimal PEP solution F^* , G^* gives a specific place to agent 1

 \longrightarrow Agent 1 cannot be permuted with the others in F^* , G^*

Sets of interchangeable agents

All the others

$$\mathcal{V}_1 = \{1\}$$

$$V_2 = \{2, ..., N\}$$

Performance evolution with N

step—size optimized for P_{av}

➤ Performance of the worst-agent scale sublinearly with N

Performance evolution with N

> Performance of the worst-agent scale sublinearly with N

Conclusion

PEP for distributed optimization

PEP idea: worst-cases are solutions of optimization problems

- Equivalent agent-compact PEP formulation
 - → Often independent of the number of agents

 Exploits agents symmetries and interchangeability in the PEP
- Subsets of interchangeable agents

Compact PEP formulation for many settings in distributed optimization \rightarrow e.g. performance of the worst agent (for any N)

Future works

☐ Leverage the *subsets of interchangeable agents* approach to analyze new settings (malicious agents, topology constraints, etc)

References

- [Colla 2023] S. Colla, J. M. Hendrickx, "Automatic Performance Estimation for Decentralized Optimization", IEEE Transactions on Automatic Control, 2023.
- [to appear] S. Colla, J. M. Hendrickx, "Exploiting Agent Symmetries for Performance Analysis of Distributed Optimization Methods", preprint to appear soon.