W UCLouvain viCteam fan

Exploiting Agent Symmetries for Automatic Performance
Analysis of Distributed Optimization Methods

Sébastien Colla, Julien Hendrickx
Mathematical Engineering Department, UCLouvain (Belgium)

EUROpt 2023
[unc,:;i:nll;i\fDece.n[t Lallz.edj?lglu() A Exact Worst—case
x0 = init (N) ; Initial int
- o | @ " performance
for i=l:niter # # &
ar cal computations:

and local communicati
x = update (x,N) ;

Iterations

Distributed Optimization

1 N
mxin flx) = N2i=1fi (x)
L]

N
min F,(x{, .., Xy) = — fi(xi)
X1, XN N i=1

s.t. x; = x; V (i,) neighbors

Decentralization

» Local function: f;
» Local copy of x: x;

f2
&f/,ﬁ O—= Me
f3 W4

Iterative algorithm

» Local computations
» Local communications (W)
so that x; = x; (eventually)

Distributed Gradient Descent (DGD)

N
min F,(xq,..,xy) = — fi(x;)
X1, XN N i=1

f2
fi L
_ ‘\/ o _/
s.t. x; = x; V (i,j) neighbors X1 e X2
W23

Decentralization £ W24

> Local function: f; ‘ fa

> Local copy of x: x; U e ° N

X3 -

Distributed Gradient Descent (DGD)

For each iteration k

v = Z Wij X]k Consensus step

xftl = yl — aVfi(x{) Local gradient step

Motivations: Decentralized Machine Learning

Notations Model training

* Model parameters x _ .]

 Dataset{d € D} min z rror(x, d)
deD

Decentralization

» Part of the data D;
» Local function

fi(x) = Z Error(x, d)
d eD;
» Local copy of x

=) Motivations Big data — Privacy — Speed Up

Decentralized Optimization

m) Many challenges for better methods
BUT

Analysis highly complex

optlmlzatlon

communlcatlon

» Performance bounds: complex and conservative

» Difficult algorithms comparisons ?

» Difficult parameters tuning e

—o

@ Objective

-

function MyDecentralizedAlgo()
N =10; % number of agents
x0 = init(N); % initial points
X = X0;

for k=1:niter
% any local computations
% any local communications
x = update(x,N);

end

_

~N

Exact worst-case

performance

Ilterations

v

Impact for decentralized optimization

» Access to accurate performance of methods

» Easier comparison and tuning of algorithms

» Rapid exploration of new algorithms.

Overview

* Performance Estimation Problem (PEP) for
distributed optimization

e Agents independent performance using
symmetric solutions

* Subsets of interchangeable agents and the
performance of the worst agent.

Performance Estimation Problem (PEP)

idea

Worst-cases are solutions to optimization problems

[Drori and Teboulle 2014]

Typical decentralized optimization result PEP : compute a tight worst-case bound

Provided that

e Thelocal functions are in a given class f; € F
* The network (matrix) is in W

* Theinitial iterates are in some set X,

Then after K iterations, some quality measure P of the
estimate solutions always satisfy (...)

https://arxiv.org/pdf/1512.07516.pdf

Performance Estimation Problem (PEP)

idea

Worst-cases are solutions to optimization problems

Typical decentralized optimization result

Provided that

e Thelocal functions are in a given class f; € F
* The network (matrix) is in W

* Theinitial iterates are in some set X,

Then after K iterations, some quality measure P of the
estimate solutions always satisfy (...)

[Drori and Teboulle 2014]

PEP : compute a tight worst-case bound

max P(f;, x?, .., xX)

fi W, xf,
s.t. Li€F fori=1..N
Wew
x) € X,
yi’; = Wx{

K . .
Xiv = Xi satisfy the algorithm
0 K-1
Vi)Y

https://arxiv.org/pdf/1512.07516.pdf

Performance Estimation Problem (PEP)

idea

Worst-cases are solutions to optimization problems

Typical decentralized optimization result

Provided that

e Thelocal functions are in a given class f; € F
* The network (matrix) is in W

* Theinitial iterates are in some set X,

Then after K iterations, some quality measure P of the
estimate solutions always satisfy (...)

[Drori and Teboulle 2014]

PEP : compute a tight worst-case bound

max P(fi, x7, ., x1)
k .k
fi W, x;7, y;
s.t. i€F fori=1..N
W ew
k _ k
yi =Wx;
0 K , .
x(i)' ---’xli{_1 satisfy the algorithm
yi , ""yi
Problems:

- Infinite dimensional sets
- Highly nonlinear

https://arxiv.org/pdf/1512.07516.pdf

Finite dimensional reformulation

Finite dimension yE, x¥, gk, f¥

Class of functions
Interpolation conditions on Thereis f; € F s.t.

(<, g 1), S fF = () and gk = V()
f1 f 1t
\ #
- »

Interpolation conditions for many classical function classes [Taylor et al. 2017]

e.g. L-smooth and u-strongly convex, convex bounded gradient,...

https://arxiv.org/pdf/1512.07516.pdf

Finite dimensional reformulation

Finite dimension yE, x¥, gk, f¥

Class of functions
Interpolation conditions on Thereis f; € F s.t.

&
EHATLN i S £ = fi(xf) and g = V£,(xF)

Class of network matrices

Interpolation conditions on Thereis W € W s.t.
k .k k _ k
{xi ' Vi }k=0...K—1 yi =Wx;
Common class
W(A~, A1) : symmetric, doubly stochastic, and A(W) € [A7,A1]

m) necessary conditions available (relaxed PEP)

[Colla 2023]
10

https://arxiv.org/pdf/1512.07516.pdf

PEP for Distributed Optimization

k k k k
max Py, xih9i,fi)
k .k k k
Vi X, 9ifi

s.t. fi€F
wWew
yi£ = Wx{
x) € X,
%0, ..., xK

_q1 satisfy the algorithm
Vi ¥ y e s

Interpolation conditions

PEP for Distributed Optimization

k k k k
max Py, xih9i,fi)
k .k k k
Vi X, 9ifi

nterpolation conditions
Wew P
k _ K
yi = Wx;
0 k-1 satisfy the algorithm
yi) nes ’yi

PEP constraints may be quadratic and non-convex in v, x¥, or g¥

e.g. lzN ||x-0 —x"
N Ly

L Linear in the scalar product between the x? and x*

‘<1

11

Change of variable: Gram Matrix

Variables Function values and Gram Matrix of scalar products

F=lf1.fnl where f; = [fl-o iK]

Gram Matrix

_ pT _ _

G=PTpP P=[P..Py] P=y? e yf a0 xf g gf]
P1TP1 P1TPN Gi1 - Gy

G = PTpP= : 2= l ‘
P1€P1 P1TP1 Gyr o Grq

Change of variable: Gram Matrix

Variables Function values and Gram Matrix of scalar products

F=lf1.fnl where f; = [fl-o flK]

Gram Matrix

_ pT _ _

G=PTpP P=[P..Py] P=y? e yf a0 xf g gf]
P1TP1 P1TPN Gi1 - Gy

G = PTpP= : 2= l ‘
P1€P1 P1TP1 Gnq G11

PEP I;I,%X perf(F, G)

s.t. G=0

Interpolation
Initial constraints linearin G and F
Algorithm

Change of variable: Gram Matrix

Variables Function values and Gram Matrix of scalar products
F=1f1. fal where f; = [fl-o flK]
Gram Matrix
— pT — _ 0 K-1 ..0 K 0 K
P1TP1 P1TPN Gi1 - Gy
G = PTP = S ; =Is ‘
P1€P1 P1TP1 Gnr o G1g
Note
PEP I;I,%X perf(F’ G) o yE xF g¥, f¥ can be recovered if G > 0
S.t. G =0 » dimension independent formulation (d = rank G)

Interpolation
Initial constraints linearin G and F
Algorithm

SDP mm) Efficient resolution

f(xav) - f(X*)

Agent Independent Performance

0.8 ——————— u
—A=1 A=06 —e—X1=02 DGD — K = 5 iterations
—eo—A=08 —e— =04 A=0 }\(W) = [_}\,)\]
L 2 L 4 L 2 @ *—0—0 9@ L
071 I
06¢ ° ® ® oo o o o o @
05| : : . : '
2 5 10 15 20
N (Number of agents)
Questions

e Can we build an equivalent PEP formulation computing
agent-independent bound (by construction) ?

* When does this independence occur ?

13

Agents are Interchangeable

Assumption

» no agent plays a specific role in the algorithm, the
performance measure or the initial conditions.

» any permutation of agents lead to the same worst-
case performance

@ @ QU @

W ew Permutation of W ew
agents 2and 3

® C e

worst-case value : worst-case value :
wce(1,2,3,4) = P we(1,3,2,4) =P

Agents are Interchangeable

o e SO

W e Ww Permutation of Wew
agents 2and 3

¢ & o

Worst-case value Worst-case value
wc(1,2,3,4) =P wc(1,3,2,4) = P
PEP solution PEP solution
Fn1 = [f1 f2 13 f4] Fn2 = [f1 f3 1> f4]
— pT T
GH1 — PH1PH1 GHZ = PHZPHZ

PH1=[P1P2P3P4] Pn2=[P1P3P2P4]

Agents are Interchangeable

o e SO

W e Ww = Permutation of Wew
agents 2 and 3

¢ & o

Worst-case value Worst-case value
wc(1,2,3,4) =P wc(1,3,2,4) =P
PEP solution PEP solution
Fn1 = [f1 f2 13 f4] Fn2 = [f1 f3 1> f4]
Gn, = Pr1, Pn, G, = PL Py,
PH1=[P1P2P3P4] Pn2=[P1P3P2P4]

PEP objective is » Sqution%(Fn1 + Fnz) ; %(Gnl + an)
linear in G and F has the same worst-case P

Average permuted PEP solutions

Fn, = [f1 f2 f5l
Fn, = [f1 f3 f2]
Fn, = [f2 f1 f3l
Fn, = [f2 f5 fil
Fu, = fs f1 f2]
Fu, = fs f2 fil

avg

F* = |fa fa fal

(N -1 © 1w
with fa ==, Zﬁzﬁzﬁ
i=1 i=1

avg

F5 and G® are valid PEP solution
with the same worst-case value

Gnlnglpnl PH1=[P1P2P3]
G112=Pr7[12PH2 PH2=[P1P3P2]
Gngnggpn3 PH3:[P2P1P3]
Gr[4=Pr7[14PH4 PH4:[P2P3P1]
GH5=P§5PH5 Pn5=[P3P1P2]
GH6=P§6PH6 PH6:[P3P2P1]
Gy, - Gg
s - []
Gg - G,

N
th ¢, = DN,
wl A~ , Z ii
N! e

(N =2)! =
Op =} ZZGU:

i=1 j+#i

N
1
= G
i=1

1
N(N —1)

i=1 j+#i

Agent-Symmetric PEP solution

Proposition (Existence of an agents-symmetric solution of a PEP).

Let F and G be solution of an agent dependent PEP formulation for
distributed optimization. If all the N agents are interchangeable in the PEP,
then the symmetrized solution F* and G° provides another valid solution

for the PEP, with the same worst-case value:
N

1 1

P = U AT i fo=)
I1 i=1
GA GB N N N
1 1

S _ : ., c - —_ . - = .
N] o X e, o)

GB GA =1 =1 j#i

m) PEP(F®,G5) can be written using onIY fa, Ggand Gl? as variables

Size depends on N Size independent of N

Agent Independent Performance

(N = 2)
If
v’ the algorithm and its performance evaluation settings
5 P & SDP PEP v/
are Gram-representable
|—> can be expressed with scalar products of iterates and gradients
v The agents are interchangeable in the PEP compact SDP PEP v/

Problem size independent of N

v" The compact PEP formulation can be
expressed without any dependence on
the number of agents N

agent-independent SDP PEP vV

Then

» The worst-case performance in the given setting is independent
of the number of agents N

» General worst-case guarantee can simply be derived using N = 2

17

Agent Independent Performance
(N = 2)
If

v" The compact PEP formulation can be
expressed without any dependence on
the number of agents N

When is it satisfied ? - Often

agent-independent SDP PEP vV

Satisfied (at least) by any PEP involving combinations of

* Same agent scalar product : xiTyi
] N
* Pair of agents average of the scalar _Z Z xiT)’j
products N? i=1j=1

* Agent average of the scalar products of 1 N
two centered variables associated with NE(’“" -0y = ¥)
the same agents i=1

Subsets of interchangeable agents

Assumption

» the set of agents can be decomposed in distinct
subsets 1, ..., V; containing interchangeable agents

» any permutation of agents from the same subsets
lead to the same worst-case performance

symmetrize the PEP for each subset of agents and write it in a
compact form whose size only depends on the number of subsets J.

Example
One agent All the others
Y ={1} V, ={2,..,N}

Performance of the worst agent

Performance measure

ie{?,é.l..),(N} f(x{() — f(x") Distributed optimization problem
. I ke
min f() =) fi(®)
PEP max f(x£) — f(x*)
F,G

Optimal PEP solution F*, G* gives a specific place to agent 1
m=) Agent 1 cannot be permuted with the othersin F*,G*

Sets of interchangeable agents

One agent All the others
Vl ={1} VZ ={2, ,N}

20

Performance evolution with N

’]O1 r T T T T T T T T T

Performance

Py = f(fK) —f(x7)

step—size
optimized for P,,,

10_2_“_.___.__..__..__.__..__..__.___.__._Q

0 10 20 30 40 50 60 70 80 90 100

Number of agents N

» Performance of the worst-agent scale sublinearly with N

21
EXTRA — K = 15 iterations, A(W) € [—0.5,0.5]

Performance evolution with N

101 T T T T T T T T T

100:‘

step—sizes
optimized for P,
(diminishing with N)

Performance

10'1; !
; —‘—‘.'__.-_-.-]

i ol Pavzf(fK)_f(x*) T
(4

10_2_‘._.___.__..__..__.__..__..__.___.__._Q

step—size
optimized for P,

0 10 20 30 40 50 60 70 80 90 100

Number of agents N

» Performance of the worst-agent scale sublinearly with N

21
EXTRA — K = 15 iterations, A(W) € [—0.5,0.5]

Conclusion S

Sébastien Colla

Toolbox

* PEP for distributed optimization

PESTO 4
PEPit @ PEP idea: worst-cases are solutions of optimization problems

* Equivalent agent-compact PEP formulation

- Often independent of the number of agents
Exploits agents symmetries and interchangeability in the PEP

* Subsets of interchangeable agents

Compact PEP formulation for many settings in distributed optimization
- e.g. performance of the worst agent (for any N)

Future works

1 Leverage the subsets of interchangeable agents approach to
analyze new settings (malicious agents, topology constraints, etc)

https://perso.uclouvain.be/sebastien.colla/
https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

References

[Colla 2023] S. Colla, J. M. Hendrickx, “Automatic Performance Estimation for
Decentralized Optimization”, IEEE Transactions on Automatic Control,

2023.

[to appear] S. Colla, J. M. Hendrickx, “Exploiting Agent Symmetries for Performance
Analysis of Distributed Optimization Methods”, preprint to appear soon.

