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Distributed Optimization

min
𝑥1,…,𝑥𝑁

𝐹𝑠 𝑥1, … , 𝑥𝑁 =
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑖 𝑥𝑖

s.t. 𝑥𝑖 = 𝑥𝑗 ∀ 𝑖, 𝑗 neighbors

Iterative algorithm

➢ Local function: 𝑓𝑖
➢ Local copy of 𝑥: 𝑥𝑖

Decentralization

➢ Local computations
➢ Local communications (W)

so that  𝑥𝑖 = 𝑥𝑗 (eventually)

min
𝑥

𝑓 𝑥
1

2

3

4

𝑓1
𝑓2

𝑓3
𝑓4

𝑤12

𝑤23

𝑤34

𝑤24

𝑥1

𝑥3

𝑥2

𝑥4

=
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑖 𝑥
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Distributed Gradient Descent (DGD)

➢ Local function: 𝑓𝑖
➢ Local copy of 𝑥: 𝑥𝑖

Decentralization

1
2

3

4

𝑓1
𝑓2

𝑓3
𝑓4

𝑤12

𝑤23

𝑤34

𝑤24

𝑥1

𝑥3

𝑥2

𝑥4

Distributed Gradient Descent (DGD)

𝑥𝑖
𝑘+1 = 𝑦𝑖

𝑘 − 𝛼∇𝑓𝑖(𝑥𝑖
𝑘)

𝑦𝑖
𝑘 =෍

𝑗

𝑤𝑖𝑗 𝑥𝑗
𝑘

Local gradient step

Consensus step

For each iteration 𝑘

min
𝑥1,…,𝑥𝑁

𝐹𝑠 𝑥1, … , 𝑥𝑁 =
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑖 𝑥𝑖

s.t. 𝑥𝑖 = 𝑥𝑗 ∀ 𝑖, 𝑗 neighbors



Motivations: Decentralized Machine Learning

Motivations Big data – Privacy – Speed Up  

𝑥1 𝑥2

𝑥3 𝑥4

𝑥5

𝑓1 𝑓2

𝑓3 𝑓4

𝑓5

min
𝑥

෍

𝑑∈𝐷

Error(𝑥, 𝑑)

Notations
• Model parameters 𝑥
• Data set 𝑑 ∈ 𝒟

Decentralization

➢Part of the data 𝒟𝑖

➢ Local function

𝑓𝑖(𝑥) = ෍

𝑑 ∈ 𝒟𝑖

Error(𝑥, 𝑑)

➢ Local copy of 𝑥

Model training
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Decentralized Optimization

➢ Performance bounds: complex and conservative

➢ Difficult algorithms comparisons

➢ Difficult parameters tuning

Analysis highly complex

Many challenges for better methods

BUT

1 2

3
4

𝑓1

𝑓3 𝑓4

𝑥1

𝑥3

𝑥2

𝑥4

𝑓2

5

optimization

communication



Objective
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Exact worst-case
performance

Iterations

Er
ro

r

function MyDecentralizedAlgo()
N = 10; % number of agents
x0 = init(N);  % initial points 
x = x0;

for k=1:niter
% any local computations
% any local communications
x = update(x,N);

end
end

Impact for decentralized optimization

➢ Access to accurate performance of methods

➢ Easier comparison and tuning of algorithms

➢ Rapid exploration of new algorithms.



Overview

• Performance Estimation Problem (PEP) for 
distributed optimization

• Agents independent performance using 
symmetric solutions

• Subsets of interchangeable agents and the 
performance of the worst agent.
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Performance Estimation Problem (PEP)

8

Worst-cases are solutions to optimization problems

idea

Provided that

• The local functions are in a given class fi ∈ ℱ

• The network (matrix) is in 𝒲

• The initial iterates are in some set 𝒳0

Then after K iterations, some quality measure 𝑃 of the 
estimate solutions always satisfy (…)

PEP : compute a tight worst-case boundTypical decentralized optimization result

[Drori and Teboulle 2014]

https://arxiv.org/pdf/1512.07516.pdf


Performance Estimation Problem (PEP)

8

Worst-cases are solutions to optimization problems

idea

Provided that

• The local functions are in a given class fi ∈ ℱ

• The network (matrix) is in 𝒲

• The initial iterates are in some set 𝒳0

Then after K iterations, some quality measure 𝑃 of the 
estimate solutions always satisfy (…)

max 𝑃(𝑓𝑖 , 𝑥𝑖
0 , … , 𝑥𝑖

𝐾)

𝑓i ∈ ℱ

𝑥𝑖
0 ∈ 𝒳0

𝑓𝑖 , W, 𝑥𝑖
𝑘 , 𝑦𝑖

𝑘

W ∈ 𝒲

s.t.

satisfy the algorithm
𝑦𝑖
0, … , 𝑦𝑖

𝐾−1
𝑥𝑖
0, … , 𝑥𝑖

𝐾

PEP : compute a tight worst-case boundTypical decentralized optimization result

for 𝑖 = 1…𝑁

[Drori and Teboulle 2014]

𝑦𝑖
𝑘 = 𝑊𝑥𝑖

𝑘

https://arxiv.org/pdf/1512.07516.pdf


Performance Estimation Problem (PEP)
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Worst-cases are solutions to optimization problems

idea

Provided that

• The local functions are in a given class fi ∈ ℱ

• The network (matrix) is in 𝒲

• The initial iterates are in some set 𝒳0

Then after K iterations, some quality measure 𝑃 of the 
estimate solutions always satisfy (…)

max 𝑃(𝑓𝑖 , 𝑥𝑖
0 , … , 𝑥𝑖

𝐾)

𝑓i ∈ ℱ

𝑥𝑖
0 ∈ 𝒳0

𝑓𝑖 , W, 𝑥𝑖
𝑘 , 𝑦𝑖

𝑘

W ∈ 𝒲

s.t.

satisfy the algorithm
𝑦𝑖
0, … , 𝑦𝑖

𝐾−1
𝑥𝑖
0, … , 𝑥𝑖

𝐾

PEP : compute a tight worst-case boundTypical decentralized optimization result

for 𝑖 = 1…𝑁

[Drori and Teboulle 2014]

𝑦𝑖
𝑘 = 𝑊𝑥𝑖

𝑘

Problems:
- Infinite dimensional sets
- Highly nonlinear

https://arxiv.org/pdf/1512.07516.pdf


Finite dimensional reformulation

Finite dimension 𝑦𝑖
𝑘 , 𝑥𝑖

𝑘 , 𝑔𝑖
𝑘 , 𝑓𝑖

𝑘

𝑥

𝑓

𝑥0 𝑥1 𝑥2 𝑥3 𝑥

𝑓

𝑥0 𝑥1 𝑥2 𝑥3

Interpolation conditions on

𝑥𝑖
𝑘, 𝑔𝑖

𝑘 , 𝑓𝑖
𝑘

𝑘=1…𝐾

⇔
There is 𝑓𝑖 ∈ ℱ s.t.

𝑓𝑖
𝑘 = 𝑓𝑖 𝑥𝑖

𝑘 and 𝑔𝑖
𝑘 = ∇𝑓𝑖(𝑥𝑖

𝑘)

Interpolation conditions for many classical function classes [Taylor et al. 2017]

e.g. 𝐿-smooth and 𝜇-strongly convex, convex bounded gradient,… 

Class of functions

9

https://arxiv.org/pdf/1512.07516.pdf


Finite dimensional reformulation

Finite dimension 𝑦𝑖
𝑘 , 𝑥𝑖

𝑘 , 𝑔𝑖
𝑘 , 𝑓𝑖

𝑘

Interpolation conditions on

𝑥𝑖
𝑘, 𝑔𝑖

𝑘 , 𝑓𝑖
𝑘

𝑘=0…𝐾

⇔
There is 𝑓𝑖 ∈ ℱ s.t.

𝑓𝑖
𝑘 = 𝑓𝑖 𝑥𝑖

𝑘 and 𝑔𝑖
𝑘 = ∇𝑓𝑖(𝑥𝑖

𝑘)

Class of functions

Class of network matrices

Interpolation conditions on

𝑥𝑖
𝑘, 𝑦𝑖

𝑘
𝑘=0…𝐾−1

⇔
There is 𝑊 ∈ 𝒲 s.t.

𝑦𝑖
𝑘 = 𝑊𝑥𝑖

𝑘

𝒲 𝜆−, 𝜆+ ∶ symmetric, doubly stochastic, and 𝜆 𝑊 ∈ 𝜆−, 𝜆+

Common class 

necessary conditions available (relaxed PEP)
[Colla 2023]
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max 𝑃(𝑦𝑖
𝑘 , 𝑥𝑖

𝑘 , 𝑔𝑖
𝑘 , 𝑓𝑖

𝑘 )

𝑓i ∈ ℱ

𝑥𝑖
0 ∈ 𝒳0

W ∈ 𝒲

s.t.

satisfy the algorithm
𝑦𝑖
0, … , 𝑦𝑖

𝐾−1

𝑥𝑖
0, … , 𝑥𝑖

𝐾

𝑦𝑖
𝑘 , 𝑥𝑖

𝑘 , 𝑔𝑖
𝑘 , 𝑓𝑖

𝑘

Interpolation conditions

PEP for Distributed Optimization

𝑦𝑖
𝑘 = 𝑊𝑥𝑖

𝑘
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max 𝑃(𝑦𝑖
𝑘 , 𝑥𝑖

𝑘 , 𝑔𝑖
𝑘 , 𝑓𝑖

𝑘 )

𝑓i ∈ ℱ

𝑥𝑖
0 ∈ 𝒳0

W ∈ 𝒲

s.t.

satisfy the algorithm
𝑦𝑖
0, … , 𝑦𝑖

𝐾−1

𝑥𝑖
0, … , 𝑥𝑖

𝐾

𝑦𝑖
𝑘 , 𝑥𝑖

𝑘 , 𝑔𝑖
𝑘 , 𝑓𝑖

𝑘

Interpolation conditions

PEP for Distributed Optimization

𝑦𝑖
𝑘 = 𝑊𝑥𝑖

𝑘

PEP constraints may be quadratic and non-convex in 𝑦𝑖
𝑘 , 𝑥𝑖

𝑘 , or 𝑔𝑖
𝑘

𝑒. 𝑔.
1

𝑁
෍

𝑖=1

𝑁

𝑥𝑖
0 − 𝑥∗

2
≤ 1

Linear in the scalar product between the 𝑥𝑖
0 and 𝑥∗



Change of variable: Gram Matrix

𝐺 = 𝑃𝑇𝑃 𝑃𝑖 = 𝑦𝑖
0… 𝑦𝑖

𝐾−1 𝑥𝑖
0… 𝑥𝑖

𝐾 𝑔𝑖
0…𝑔𝑖

𝐾

𝐹 = 𝑓1…𝑓𝑁

Gram Matrix

Variables

𝑓𝑖 = 𝑓𝑖
0…𝑓𝑖

𝐾

𝑃 = 𝑃1…𝑃𝑁

12

Function values and Gram Matrix of scalar products

where

𝐺 = 𝑃𝑇𝑃 =
𝑃1
𝑇𝑃1 ⋯ 𝑃1

𝑇𝑃𝑁
⋮ ⋱ ⋮

𝑃𝑁
𝑇𝑃1 ⋯ 𝑃1

𝑇𝑃1

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑁1 ⋯ 𝐺11



Change of variable: Gram Matrix

𝐺 = 𝑃𝑇𝑃 𝑃𝑖 = 𝑦𝑖
0… 𝑦𝑖

𝐾−1 𝑥𝑖
0… 𝑥𝑖

𝐾 𝑔𝑖
0…𝑔𝑖

𝐾

𝐹 = 𝑓1…𝑓𝑁

Gram Matrix

Variables

Initial

𝑓𝑖 = 𝑓𝑖
0…𝑓𝑖

𝐾

𝑃 = 𝑃1…𝑃𝑁

12

Function values and Gram Matrix of scalar products

where

𝐺 = 𝑃𝑇𝑃 =
𝑃1
𝑇𝑃1 ⋯ 𝑃1

𝑇𝑃𝑁
⋮ ⋱ ⋮

𝑃𝑁
𝑇𝑃1 ⋯ 𝑃1

𝑇𝑃1

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑁1 ⋯ 𝐺11

max
𝐹, 𝐺

perf(F, G)PEP

s.t. 𝐺 ≽ 0

constraints linear in 𝐺 and 𝐹
Interpolation

Algorithm



Change of variable: Gram Matrix

𝐺 = 𝑃𝑇𝑃 𝑃𝑖 = 𝑦𝑖
0… 𝑦𝑖

𝐾−1 𝑥𝑖
0… 𝑥𝑖

𝐾 𝑔𝑖
0…𝑔𝑖

𝐾

𝐹 = 𝑓1…𝑓𝑁

Gram Matrix

Variables

Initial

𝑓𝑖 = 𝑓𝑖
0…𝑓𝑖

𝐾

𝑃 = 𝑃1…𝑃𝑁

12

Function values and Gram Matrix of scalar products

where

𝐺 = 𝑃𝑇𝑃 =
𝑃1
𝑇𝑃1 ⋯ 𝑃1

𝑇𝑃𝑁
⋮ ⋱ ⋮

𝑃𝑁
𝑇𝑃1 ⋯ 𝑃1

𝑇𝑃1

=
𝐺11 ⋯ 𝐺1𝑁
⋮ ⋱ ⋮

𝐺𝑁1 ⋯ 𝐺11

max
𝐹, 𝐺

perf(F, G)PEP

s.t. 𝐺 ≽ 0

constraints linear in 𝐺 and 𝐹
Interpolation

Algorithm

• 𝑦𝑖
𝑘 , 𝑥𝑖

𝑘 , 𝑔𝑖
𝑘 , 𝑓𝑖

𝑘 can be recovered if 𝐺 ≽ 0

• dimension independent formulation (𝑑 = rank 𝐺)

Note

Efficient resolutionSDP



Agent Independent Performance

Questions

• Can we build an equivalent PEP formulation computing 
agent-independent bound (by construction) ?

• When does this independence occur ?

13

DGD – K = 5 iterations 
λ W ∈ −λ, λ

N (Number of agents) 

𝑓
𝑥
𝑎
𝑣
−
𝑓
𝑥
∗



Agents are Interchangeable
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➢ no agent plays a specific role in the algorithm, the 
performance measure or the initial conditions.

➢ any permutation of agents lead to the same worst-
case performance

1
2

3

4

𝑊 ∈ 𝒲

1
3

2

4

𝑊 ∈ 𝒲Permutation of 
agents 2 and 3

worst-case value : 
𝑤𝑐 1,2,3,4 = 𝑃

worst-case value : 
𝑤𝑐 1,3,2,4 = 𝑃

Assumption



Agents are Interchangeable
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1
2

3
4

𝑊 ∈ 𝒲

1
3

2
4

𝑊 ∈ 𝒲
Permutation of 
agents 2 and 3

𝑤𝑐 1,2,3,4 = 𝑃 𝑤𝑐 1,3,2,4 = 𝑃

PEP solution

𝐺Π1 = 𝑃Π1
𝑇 𝑃Π1

𝐹Π1 = 𝑓1 𝑓2 𝑓3 𝑓4

𝑃Π1 = 𝑃1 𝑃2 𝑃3 𝑃4

𝐹Π2 = 𝑓1 𝑓3 𝑓2 𝑓4

Worst-case value Worst-case value 

𝑃Π2 = 𝑃1 𝑃3 𝑃2 𝑃4

PEP solution

𝐺Π2 = 𝑃Π2
𝑇 𝑃Π2



Agents are Interchangeable
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1
2

3
4

𝑊 ∈ 𝒲

1
3

2
4

𝑊 ∈ 𝒲
Permutation of 
agents 2 and 3

𝑤𝑐 1,2,3,4 = 𝑃 𝑤𝑐 1,3,2,4 = 𝑃

PEP solution

𝐺Π1 = 𝑃Π1
𝑇 𝑃Π1

𝐹Π1 = 𝑓1 𝑓2 𝑓3 𝑓4

𝑃Π1 = 𝑃1 𝑃2 𝑃3 𝑃4

𝐹Π2 = 𝑓1 𝑓3 𝑓2 𝑓4

Worst-case value Worst-case value 

𝑃Π2 = 𝑃1 𝑃3 𝑃2 𝑃4

PEP solution

𝐺Π2 = 𝑃Π2
𝑇 𝑃Π2

Solution 
1

2
𝐹Π1 + 𝐹Π2 ;

1

2
𝐺Π1 + 𝐺Π2PEP objective is 

linear in G and F has the same worst-case 𝑷



Average permuted PEP solutions
𝐺Π1 = 𝑃Π1

𝑇 𝑃Π1𝐹Π1 = 𝑓1 𝑓2 𝑓3 𝑃Π1 = 𝑃1 𝑃2 𝑃3

𝐹Π2 = 𝑓1 𝑓3 𝑓2

𝐹Π3 = 𝑓2 𝑓1 𝑓3

𝐹Π4 = 𝑓2 𝑓3 𝑓1

𝐹Π5 = 𝑓3 𝑓1 𝑓2

𝐹Π6 = 𝑓3 𝑓2 𝑓1avg

𝐺Π2 = 𝑃Π2
𝑇 𝑃Π2 𝑃Π2 = 𝑃1 𝑃3 𝑃2

𝐺Π3 = 𝑃Π3
𝑇 𝑃Π3 𝑃Π3 = 𝑃2 𝑃1 𝑃3

𝐺Π4 = 𝑃Π4
𝑇 𝑃Π4 𝑃Π4 = 𝑃2 𝑃3 𝑃1

𝐺Π5 = 𝑃Π5
𝑇 𝑃Π5 𝑃Π5 = 𝑃3 𝑃1 𝑃2

𝐺Π6 = 𝑃Π6
𝑇 𝑃Π6 𝑃Π6 = 𝑃3 𝑃2 𝑃1avg

with 𝐺𝐴 =
𝑁 − 1 !

𝑁!
෍

𝑖=1

𝑁

𝐺𝑖𝑖 =
1

𝑁
෍

𝑖=1

𝑁

𝐺𝑖𝑖

𝐺𝑠 =
𝐺𝐴 ⋯ 𝐺𝐵
⋮ ⋱ ⋮
𝐺𝐵 ⋯ 𝐺𝐴

𝐺𝐵 =
𝑁 − 2 !

𝑁!
෍

𝑖=1

𝑁

෍

𝑗≠𝑖

𝑁

𝐺𝑖𝑗 =
1

𝑁(𝑁 − 1)
෍

𝑖=1

𝑁

෍

𝑗≠𝑖

𝑁

𝐺𝑖𝑗

with 𝑓𝐴 =
𝑁 − 1 !

𝑁!
෍

𝑖=1

𝑁

𝑓𝑖 =
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑖

𝐹𝑠 = 𝑓𝐴 𝑓𝐴 𝑓𝐴

𝑭𝒔 and 𝑮𝒔 are valid PEP solution 
with the same worst-case value
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Proposition (Existence of an agents-symmetric solution of a PEP).

Let 𝐹 and 𝐺 be solution of an agent dependent PEP formulation for
distributed optimization. If all the 𝑵 agents are interchangeable in the PEP,
then the symmetrized solution 𝑭𝒔 and 𝑮𝒔 provides another valid solution
for the PEP, with the same worst-case value:

Agent-Symmetric PEP solution

𝐹𝑠 =
1

𝑁!
෍

Π

𝐹Π = 𝑓𝐴
𝑇 …𝑓𝐴

𝑇
with 𝑓𝐴 =

1

𝑁
෍

𝑖=1

𝑁

𝑓𝑖

with 𝐺𝐴 =
1

𝑁
෍

𝑖=1

𝑁

𝐺𝑖𝑖 ,𝐺𝑠 =
𝐺𝐴 ⋯ 𝐺𝐵
⋮ ⋱ ⋮
𝐺𝐵 ⋯ 𝐺𝐴

𝐺𝐵 =
1

𝑁(𝑁 − 1)
෍

𝑖=1

𝑁

෍

𝑗≠𝑖

𝑁

𝐺𝑖𝑗

PEP 𝐹𝑠, 𝐺𝑠 can be written using only 𝑓𝐴, 𝐺𝐴and 𝐺𝐵 as variables

Size depends on 𝑁 Size independent of 𝑁
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Agent Independent Performance

✓ The agents are interchangeable in the PEP

✓ the algorithm and its performance evaluation settings 
are Gram-representable

can be expressed with scalar products of iterates and gradients

If

➢ The worst-case performance in the given setting is independent 
of the number of agents 𝑁

SDP PEP 

compact SDP PEP 

✓ The compact PEP formulation can be 
expressed without any dependence on 
the number of agents 𝑁

Problem size independent of N

agent-independent SDP PEP 

Then

➢ General worst-case guarantee can simply be derived using 𝑁 = 2

(𝑁 ≥ 2)
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Agent Independent Performance

If

✓ The compact PEP formulation can be 
expressed without any dependence on 
the number of agents 𝑁

agent-independent SDP PEP 

Satisfied (at least) by any PEP involving combinations of

• Same agent scalar product :

• Pair of agents average of the scalar 
products

1

𝑁2෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

𝑥𝑖
𝑇𝑦𝑗

𝑥𝑖
𝑇𝑦𝑖

1

𝑁
෍

𝑖=1

𝑁

𝑥𝑖 − ҧ𝑥 𝑇(𝑦𝑖 − ത𝑦)

When is it satisfied ? → Often

• Agent average of the scalar products of 
two centered variables associated with 
the same agents

(𝑁 ≥ 2)



Subsets of interchangeable agents
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symmetrize the PEP for each subset of agents and write it in a 
compact form whose size only depends on the number of subsets 𝑱.

➢ the set of agents can be decomposed in distinct 
subsets 𝒱1, … , 𝒱𝐽 containing interchangeable agents

➢ any permutation of agents from the same subsets 
lead to the same worst-case performance

Assumption

Example

𝒱1 = 1 𝒱2 = 2,… ,𝑁

One agent All the others



Performance of the worst agent
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𝒱1 = 1 𝒱2 = 2,… ,𝑁

One agent All the others

Sets of interchangeable agents

Performance measure

max
𝑖∈ 1,…,𝑁

𝑓 𝑥𝑖
𝐾 − 𝑓(𝑥∗)

PEP max 𝑓 𝑥1
𝐾 − 𝑓(𝑥∗)

𝐹, 𝐺

Optimal PEP solution 𝐹∗, 𝐺∗ gives a specific place to agent 1

Agent 1 cannot be permuted with the others in 𝐹∗, 𝐺∗

=
1

𝑁
෍

𝑖=1

𝑁

𝑓𝑖 𝑥min
𝑥

𝑓 𝑥

Distributed optimization problem



Performance evolution with N
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Pe
rf

o
rm

an
ce

Number of agents 𝑁

step−size
optimized for 𝑃𝑎𝑣

➢ Performance of the worst-agent scale sublinearly with 𝑁

𝑃𝑤𝑎 = max
𝑖

𝑓 𝑥𝑖
𝐾 − 𝑓(𝑥∗)

𝑃𝑎𝑣 = 𝑓 ҧ𝑥𝐾 − 𝑓(𝑥∗)

EXTRA – K = 15 iterations, λ W ∈ −0.5, 0.5
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𝑃𝑤𝑎 = max
𝑖

𝑓 𝑥𝑖
𝐾 − 𝑓(𝑥∗)

𝑃𝑎𝑣 = 𝑓 ҧ𝑥𝐾 − 𝑓(𝑥∗)
step−size

optimized for 𝑃𝑎𝑣

step−sizes
optimized for 𝑃𝑤𝑎

(diminishing with N)

EXTRA – K = 15 iterations, λ W ∈ −0.5, 0.5

Pe
rf

o
rm

an
ce

Number of agents 𝑁

➢ Performance of the worst-agent scale sublinearly with 𝑁
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• Subsets of interchangeable agents

PEP idea: worst-cases are solutions of optimization problems

• PEP for distributed optimization

Sébastien Colla

Toolbox
PESTO
PEPit

• Equivalent agent-compact PEP formulation
→ Often independent of the number of agents 

Exploits agents symmetries and interchangeability in the PEP

❑ Leverage the subsets of interchangeable agents approach to 
analyze new settings (malicious agents, topology constraints, etc)

Future works

Compact PEP formulation for many settings in distributed optimization
→ e.g. performance of the worst agent (for any 𝑁)

https://perso.uclouvain.be/sebastien.colla/
https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox
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