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Decentralized Optimization
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 Local function: ௜

 Local copy of : ௜

Decentralization
 Local computations 
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Decentralized Gradient Descent (DGD)
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 Local function: ௜
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Decentralized Gradient Descent (DGD)
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Local gradient step

Consensus step

For each iteration 



Motivations: Decentralized Machine Learning

Motivations Big data – Privacy – Speed Up  
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Notations
• Model parameters 
• Data set 

Decentralization
Part of the data 
 Local function

௜

ௗ ∈ 𝒟೔

 Local copy of 

Model training
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Other applications

Sensor Network

Informatics–Wireless sensor network

Multi-robot systems

Multi-Robot Systems Engineering
MIT , James McLurkin

Micro-Grid

ResearchGate, Planning and implementation 
of bankable microgrids, Michael Stadler
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Decentralized Optimization

 Performance bounds: complex and conservative

 Difficult algorithms comparisons

 Difficult parameters tuning

Analysis highly complex

Many challenges for better methods
BUT
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Impact for decentralized optimization
 Access to accurate performance of methods
 Easier comparison and tuning of algorithms
 Rapid exploration of new algorithms.

Objective
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Exact worst-case
performance

Iterations

Er
ro

r

function MyDecentralizedAlgo()
N = 10; % number of agents
x0 = init(N);  % initial points 
x = x0;

for k=1:niter
% any local computations
% any local communications
x = update(x,N);

end
end



Outline of the talk

• Performance Estimation Problem (PEP)

• PEP for decentralized optimization

• Analysis of Decentralized Algorithms
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

With

௞

଴ initial condition
from the algorithm analyzed

బ ಼

e.g.
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

బ ಼

e.g.

With

௞ ୩ିଵ ௞ିଵ

଴ ∗ initial condition

from the algorithm analyzed

class of functionsఓ,௅

Original idea by Yoel Drori, and Marc Teboulle (2014) 

Further developments by Adrien B. Taylor, Julien M. Hendrickx, 
and François Glineur (2017)
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Performance Estimation Problem (PEP)

PEP can be solved exactly for a wide class of 
centralized first-order algorithms.

Idea: Worst-cases are solutions to optimization problems

Existing 
toolbox
(PESTO)

Infinite-Dimensional 
problem

[Taylor et al. 2017]

బ ಼

e.g.

With

௞ ୩ିଵ ௞ିଵ

଴ ∗ initial condition

from the algorithm analyzed

class of functions

Can be used for tuning, design and proofs.

ఓ,௅
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Finite dimensional PEP

Finite dimension

𝑥଴ 𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥଴ 𝑥ଵ 𝑥ଶ 𝑥ଷ

Interpolation conditions on There is s.t.

and 

Interpolation conditions for many classical function classes
[Taylor et al. 2017]
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SDP formulation of PEP
PEP constraints may be quadratic and non-convex

SDP reformulation

Gram Matrix

Variables

PEP

With

constraints linear in and 
Interpolation

Initial
Algorithm

Efficient resolution
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Outline of the talk

• Performance Estimation Problem (PEP)

• PEP for decentralized optimization

• Analysis of Decentralized Algorithms
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

௜With
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How to represent a class of 
communication network matrices ?

(𝑖 = 1 … 𝑁)



PEP for DGD: network given a priori
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PEP for DGD: class of networks

௜With
଴ initial condition
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with given range of eigenvalues ି ା
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PEP for DGD: class of networks
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Consensus steps in PEP

௜௞ ௜
௞compact notation with ௜௞ ௜
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For each agent , 
For each consensus step (C1)

௜௝ is
a symmetric and doubly-stochastic matrix  
with a given range of eigenvalues ି ା(C2)

 Necessary constraints for describing (C1) and (C2)
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 Independent of the algorithm

 Link different consensus steps that use the 
same matrix

 Can be incorporated into SDP formulation 
of PEP, which can be solved efficiently

Summary of the constraints for consensus steps  

Advantages of our constraints
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Consensus steps in PEP
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PEP for DGD: class of networks
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Any symmetric doubly stochastic matrix
with given range of eigenvalues ି ା
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PEP for DGD: Spectral formulation
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For all , 
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Consensus steps

(Relaxation)

Upper bounds for the worst-case performance of DGD
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Notations
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Our tool for automatic performance estimation
Apply to any decentralized method using consensus
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Agent-independent (spectral) formulation

 Exact formulation

 Spectral formulation

exact worst-case performance,
specific to a given matrix 

upper bound on worst-case performance, 
valid for an entire spectral class of network matrices

Available 
in PESTO

Agent-dependent formulations



Agent-Independent formulation
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Outline of the talk

• Performance Estimation Problem (PEP)

• PEP for decentralized optimization

• Analysis of Decentralized Algorithms
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steps of DGD with

Results of PEP for DGD

Settings
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௜wherePerformance criterion:
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with optimal solution ∗

 Convex local functions ௜ with bounded subgradients

 Identical starting points s.t.

 Symmetric doubly-stochastic network matrix W

 Constant step-size: ଵ

௄

s.t. (except for ଵ )
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DGD Algorithm ௜
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DGD – Spectral worst-case 
evolution with N

N (Number of agents) 
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DGD – Spectral worst-case vs 
Theoretical bound
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For iterations, agents and 

௡ ଶ

Symmetric range of eigenvalues

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

1 0 0
0 1 0
0 0 1

disconnectedcomplete

[NOR17] A. Nedic, A. Olshevsky, and M. G. Rabbat,
“Network topology and communication computation
tradeoffs in decentralized optimization”, 2017.
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𝑓
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Tightness Analysis
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EXACT for spectrally
doubly-stochastic matrices
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Worst-case matrix estimation
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Tightness Analysis
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ଵ

with ଵ

ே
்

For any N:



DGD – Spectral worst-case 
evolution with alpha

For iterations and 
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DGD – Spectral worst-case 
evolution with alpha

For iterations and 
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Results of PEP for DIGing

Settings

௜
௄ ∗ ଶே

௜ୀଵ

Performance criterion:

௜

ே

௜ୀଵ௫
with optimal solution ∗
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 Initial: 
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Results of PEP for DIGing

Spectral PEP formulation

 Independent of the number of agents N

 Exact for spectrally doubly-stochastic matrices

ଵ with ଵ

ே
்

ଵ

 Same worst-case matrix than DGD
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[NOS16] A. Nedic, A. Olshevsky, and W. Shi, “Achieving 
geometric convergence for distributed optimization over 
time-varying graphs,” SIAM Journal on Optimization, 2016.

Results of PEP for DIGing
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36Computed for .
[NOS16] A. Nedic, A. Olshevsky, and W. Shi, “Achieving 
geometric convergence for distributed optimization over 
time-varying graphs,” SIAM Journal on Optimization, 2016.

For and 

Results of PEP for DIGing
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Algorithms comparison
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Conclusion

Numerical tool for automatic performance computation
of decentralized optimization methods

SPECTRAL formulation EXACT formulation

Spectral class of matrices Given network matrix W

Relaxation of PEP ALWAYS exact

PEP idea: worst-cases are solutions of optimization problems

 Independent of N
 Tight when negative weights are allowed
 Improve on the literature bounds 

For DGD and DIGing:

Toolbox
PESTO

Sébastien Colla

 Other class of networks (any suggestion?)
 Agent-independent PEP formulation

Future works

38

We can answer a large diversity of (new) questions
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