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Decentralized Optimization
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Iterative algorithm
 Local function: 

 Local copy of : 

Decentralization
 Local computations 
 Local communications (W)
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Decentralized Gradient Descent (DGD)
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Decentralized Gradient Descent (DGD)
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Local gradient step

Consensus step

For each iteration 



Motivations: Decentralized Machine Learning

Motivations Big data – Privacy – Speed Up  
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Notations
• Model parameters 
• Data set 

Decentralization
Part of the data 
 Local function



ௗ ∈ 𝒟

 Local copy of 

Model training
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Other applications

Sensor Network

Informatics–Wireless sensor network

Multi-robot systems

Multi-Robot Systems Engineering
MIT , James McLurkin

Micro-Grid

ResearchGate, Planning and implementation 
of bankable microgrids, Michael Stadler
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Decentralized Optimization

 Performance bounds: complex and conservative

 Difficult algorithms comparisons

 Difficult parameters tuning

Analysis highly complex

Many challenges for better methods
BUT
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Impact for decentralized optimization
 Access to accurate performance of methods
 Easier comparison and tuning of algorithms
 Rapid exploration of new algorithms.

Objective
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Exact worst-case
performance

Iterations

Er
ro

r

function MyDecentralizedAlgo()
N = 10; % number of agents
x0 = init(N);  % initial points 
x = x0;

for k=1:niter
% any local computations
% any local communications
x = update(x,N);

end
end



Outline of the talk

• Performance Estimation Problem (PEP)

• PEP for decentralized optimization

• Analysis of Decentralized Algorithms
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

With



 initial condition
from the algorithm analyzed
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

బ ಼

e.g.

With

 ୩ିଵ ିଵ

 ∗ initial condition

from the algorithm analyzed

class of functionsఓ,

Original idea by Yoel Drori, and Marc Teboulle (2014) 

Further developments by Adrien B. Taylor, Julien M. Hendrickx, 
and François Glineur (2017)
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Performance Estimation Problem (PEP)

PEP can be solved exactly for a wide class of 
centralized first-order algorithms.

Idea: Worst-cases are solutions to optimization problems

Existing 
toolbox
(PESTO)

Infinite-Dimensional 
problem

[Taylor et al. 2017]

బ ಼
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With

 ୩ିଵ ିଵ

 ∗ initial condition

from the algorithm analyzed

class of functions

Can be used for tuning, design and proofs.

ఓ,
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Finite dimensional PEP

Finite dimension

𝑥 𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥 𝑥ଵ 𝑥ଶ 𝑥ଷ

Interpolation conditions on There is s.t.

and 

Interpolation conditions for many classical function classes
[Taylor et al. 2017]
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SDP formulation of PEP
PEP constraints may be quadratic and non-convex

SDP reformulation

Gram Matrix

Variables

PEP

With

constraints linear in and 
Interpolation

Initial
Algorithm

Efficient resolution
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Outline of the talk

• Performance Estimation Problem (PEP)

• PEP for decentralized optimization

• Analysis of Decentralized Algorithms
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Performance Estimation Problem (PEP)

Idea: Worst-cases are solutions to optimization problems

With
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How to represent a class of 
communication network matrices ?

(𝑖 = 1 … 𝑁)



PEP for DGD: network given a priori
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Iterates from DGD
For all , 
For all 

Exact Formulation
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PEP for DGD: class of networks

With
 initial condition
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Iterates from DGD
For all , 
For all 

Any symmetric doubly stochastic matrix
with given range of eigenvalues ି ା

?
Find constraints between 
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Consensus steps in PEP

 
compact notation with  

.
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For each agent , 
For each consensus step (C1)

 is
a symmetric and doubly-stochastic matrix  
with a given range of eigenvalues ି ା(C2)

 Necessary constraints for describing (C1) and (C2)
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 Independent of the algorithm

 Link different consensus steps that use the 
same matrix

 Can be incorporated into SDP formulation 
of PEP, which can be solved efficiently

Summary of the constraints for consensus steps  

Advantages of our constraints
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PEP for DGD: class of networks
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Iterates from DGD
For all , 
For all 
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Any symmetric doubly stochastic matrix
with given range of eigenvalues ି ା
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PEP for DGD: Spectral formulation
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Iterates from DGD
For all , 
For all 

 ିଵ

Consensus steps

(Relaxation)

Upper bounds for the worst-case performance of DGD
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Notations
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Our tool for automatic performance estimation
Apply to any decentralized method using consensus
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Agent-independent (spectral) formulation

 Exact formulation

 Spectral formulation

exact worst-case performance,
specific to a given matrix 

upper bound on worst-case performance, 
valid for an entire spectral class of network matrices

Available 
in PESTO

Agent-dependent formulations



Agent-Independent formulation
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Outline of the talk

• Performance Estimation Problem (PEP)

• PEP for decentralized optimization

• Analysis of Decentralized Algorithms
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steps of DGD with

Results of PEP for DGD

Settings
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 Convex local functions  with bounded subgradients

 Identical starting points s.t.

 Symmetric doubly-stochastic network matrix W

 Constant step-size: ଵ
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DGD – Spectral worst-case 
evolution with N

N (Number of agents) 
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DGD – Spectral worst-case vs 
Theoretical bound
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Symmetric range of eigenvalues

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

1 0 0
0 1 0
0 0 1

disconnectedcomplete

[NOR17] A. Nedic, A. Olshevsky, and M. G. Rabbat,
“Network topology and communication computation
tradeoffs in decentralized optimization”, 2017.
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EXACT for spectrally
doubly-stochastic matrices
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Tightness Analysis
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DGD – Spectral worst-case 
evolution with alpha

For iterations and 
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DGD – Spectral worst-case 
evolution with alpha

For iterations and 
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Results of PEP for DIGing

Settings
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Results of PEP for DIGing

Spectral PEP formulation

 Independent of the number of agents N

 Exact for spectrally doubly-stochastic matrices

ଵ with ଵ

ே
்

ଵ

 Same worst-case matrix than DGD
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[NOS16] A. Nedic, A. Olshevsky, and W. Shi, “Achieving 
geometric convergence for distributed optimization over 
time-varying graphs,” SIAM Journal on Optimization, 2016.

Results of PEP for DIGing
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[NOS16] A. Nedic, A. Olshevsky, and W. Shi, “Achieving 
geometric convergence for distributed optimization over 
time-varying graphs,” SIAM Journal on Optimization, 2016.
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Results of PEP for DIGing
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Algorithms comparison
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Conclusion

Numerical tool for automatic performance computation
of decentralized optimization methods

SPECTRAL formulation EXACT formulation

Spectral class of matrices Given network matrix W

Relaxation of PEP ALWAYS exact

PEP idea: worst-cases are solutions of optimization problems

 Independent of N
 Tight when negative weights are allowed
 Improve on the literature bounds 

For DGD and DIGing:

Toolbox
PESTO

Sébastien Colla

 Other class of networks (any suggestion?)
 Agent-independent PEP formulation

Future works
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We can answer a large diversity of (new) questions
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