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Abstract

A mathematical formulation for the 3D vortex method has been developed for calculation using a special-purpose computer
MDGRAPE-2 that was originally designed for molecular dynamics simulations. We made an assessment of this hardware for a few rep-
resentative problems and compared the results with and without it. It is found that the generation of appropriate function tables, which
are used to call libraries, embedded in MDGRAPE-2 is of primary importance in order to retain accuracy. The error arising from the
approximation is evaluated by calculating a pair of vortex rings impinging to themselves. Consequently, acceleration about 50 times
greater is achieved by MDGRAPE-2 while the error in the statistical quantities such as kinetic energy and enstrophy remain negligible.
� 2007 Elsevier Ltd. All rights reserved.

1. Introduction

N-Body simulations were devised in the 1950s and have
been widely used since the 1970s when digital computers
became powerful enough and affordable. Today it is con-
sidered to be an orthodox method for studying particle sys-
tems. The classical N-body problem simulates the evolution
of a system of N bodies, where the force exerted on each
body arises due to its interaction with all other bodies in
the system. N-Body algorithms have numerous applica-
tions in areas such as astrophysics, molecular dynamics,
plasma physics and computational fluid dynamics using
the vortex method. For each of these computational prob-
lems the calculation takes on a slightly different form but
each share common features. The simulation proceeds over
time steps, with each step computing the net force on every
body and thereby updating its position and other attri-
butes. The cost of a direct summation algorithm for force
calculation is O(N2), therefore calculation time grows rap-
idly as the number of bodies N increases.

There are two ways to reduce the force calculation cost
of an N-body simulation. One is to use fast algorithms such
as the tree code developed by Barnes and Hut [1] or the fast

multipole method (FMM) by Greengard and Rokhlin [2].
The tree code is an O(NlogN) algorithm based on a hierar-
chical octree representation of space in three dimensions. It
computes interactions between distant particles and
reduces the number of operations by means of a first-order
approximation. Many existing implementations of tree
code algorithms only use up to quadropole moments and
calculation costs rise quickly when high accuracy is
required. In the FMM, the long-range forces are approxi-
mated by multipole expansion truncated at a certain
degree, while the contributions from particles within
nearby regions are calculated directly in a usual manner
without approximation. Including higher order terms in
multipole approximations and/or increasing the size of a
nearby region can improve the computational accuracy.
However, either effort substantially increases the computa-
tion time. In particular, the computation of a high-order
term is very expensive.

The other way is to execute the N-body simulation with
special-purpose hardware such as MDGRAPE-2 devel-
oped by Susukita et al. [3]. MDGRAPE-2, one of the
GRAPE (Gravity Pipe, developed by Sugimoto et al. [5])
series machines, is a special-purpose computer designed
for force calculations between point-charge or point-mass
particles. Its performance is much higher than ordinary
computers. It can speed up force calculations about
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10–100 times when compared to general-purpose (defined
as ’host’ hereafter) computers of the same cost.

The vortex method solves time-dependent incompress-
ible flow problems by discretizing the vorticity into vortex
elements and following these elements in time. This results
in a volume mesh-free algorithm and saves significant time
in preprocessing when compared to the conventional
Navier–Stokes approach where grids need to be generated.
The vortex methods have been developed and applied for
the analysis of complicated, unsteady and vortical flows
related to a wide range of problems found in industry, as
it consists of a simple algorithm based on the physics of
flow. For details see [6,7].

The main difficulty with vortex methods as originally for-
mulated is that the cost of the evaluation of the velocity field
induced by N vortices is O(N2). This is expensive, particu-
larly in three dimensions where a large number of elements
are computed simultaneously. In the calculation of vortex
methods, the largest computational load occurs in the rou-
tine that calculates the Biot–Savart law and the stretching
term in the vorticity equation. In regions of high strain the
spatial resolution becomes worse because the distance of
each element becomes large. It is required to split vortex ele-
ments to keep the spatial resolution in the direction of the
vorticity vector of the element. The result is a N-body inter-
action calculation for millions of particles having calculation
cost of O(N2) with growing N. Nevertheless, these calcula-
tions have the same mathematical architecture as a multi-
body problem, thus permitting the use of special-purpose
computers in multibody problems, e.g., MDGRAPE-2.

Our long-term objective is to solve high Reynolds num-
ber turbulent flows for engineering problems via a reason-
able computational effort. The use of the 3D vortex
method is attractive because of its simple formulation and
flexibility in moving and/or deforming boundary problems.
The long computation time due to the above-mentioned
O(N2) problem may be reduced when we apply a special-
purpose computer.

The purpose of the present paper is, therefore, to
address a few issues that hindrance the application of
MDGRAPE-2 to the vortex method. First, because of
the simple architecture, it is required to generate an opti-
mum function table when the embedded libraries are called
from the main routine. Second, the cross-product calcula-
tion which is not considered in the original command set
must be handled in a proper manner, which is treated in
some previous works, e.g. [8–11]. These points are dis-
cussed one after another in the subsequent sections after
an introduction to the basic mathematical formulae.

2. Basic equations

We are studying the three-dimensional incompressible
flow of a viscous fluid. The evolution equation for vorticity is

Dx
Dt
¼ ðx � rÞuþ mr2x ð1Þ

where x is the vorticity defined as x = $ · u, u is the veloc-
ity of the vortex element, (xÆ$)u is called the stretching
term and represents the rate of change of vorticity by
deformation of vortex lines and the term m$2x represents
the change of vorticity by viscous diffusion. The velocity
field in a three-dimensional problem is,

uðxÞ ¼ � 1

4p

Z ðx� x0Þ � xðx0Þ
jx� x0j3

dV ðx0Þ ð2Þ

where x, and x 0 are the positions of vortex elements and dV

is the volume of the element. Using the model [12] as a cut-
off function, the Biot–Savart law is formulated as follows:

ui ¼ �
1

4p

XN

j¼1

r2
ij þ ð5=2Þr2

j

r2
ij þ r2

j

� �5=2
rij � cj ð3Þ

where rij = ri � rj, rj and cj are the distances of the position
vector, core radius and strength of element. The stretching
term of Eq. (1) can be discretized as follows:

dx
dt
¼ ðx � rÞu ð4Þ

If we put vortex strength ci = xid
3xi in Eq. (4), then it

becomes

dci

dt
¼ ðci � rÞui ð5Þ

Hence, the vortex strength of an individual element is ex-
pressed by Eq. (3) in a discretized formulation as

dci

dt
¼ 1

4p

X
j¼1

�
jrijj2 þ ð5=2Þr2

j

ðjrijj2 þ r2
j Þ

5=2
ci � cj

(

þ3
jrijj2 þ ð7=2Þr2

j

ðjrijj2 þ r2
j Þ

7=2
ðci � rijÞðrij � cjÞ

)
ð6Þ

where all notations carry the same meaning as in Eq. (3).

3. Mathematical formulations

MDGRAPE-2 is a special-purpose hardware for the cal-
culation of force or potential between point-mass or point-
charge particles that was originally designed for molecular
dynamics simulation. The calculation of interactions
between particles as represented by potential and force
are carried out in MDGRAPE-2. In case of calculating
the potential,

Ui ¼
XN

j¼1

bijgðwÞ ¼
XN

j¼1

bijgðaijðjrijj2 þ �2
ijÞÞ ð7Þ

and the force calculations

f i ¼
XN

j¼1

bijgðwÞrij ¼
XN

j¼1

bijgðaijðjrijj2 þ �2
ijÞÞrij ð8Þ

are treated similarly, where g(w) is an arbitrary function
equivalent to an intermolecular force, and aij, bij, �ij are
arbitrary coefficients which are settled down for every
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model. To apply these libraries to the calculation of a vor-
tex method, Biot–Savart law in Eq. (2) is expressed as
follows:

ui ¼
XN

j¼1

BjgðAjðjrijj2 þ �2
ijÞÞrij ð9Þ

where Aj, Bj are arbitrary constants. To implement Eqs. (3)
and (4), it is required to take special treatment to the cross-
product calculation in MDGRAPE-2 which is similar to
[8–11] as follows.

The calculation of the cross product rij · cj is considered.

rij ¼ ðxij; yij; zijÞ; cj ¼ ðcx
j ; c

y
j ; c

z
jÞ ð10Þ

The total moment isX
j

rij � cj ¼
X

j

ðyijc
z
j � zijc

y
j ; zijc

x
j � xijc

z
j; xijc

y
j � yijc

x
jÞ

ð11Þ
The cross product is considered with regard to the sum of
the following three tensor products.X

j

rij � cx
j ¼

X
j

ðxijc
x
j ; yijc

x
j ; zijc

x
jÞ ð12Þ

X
j

rij � cy
j ¼

X
j

ðxijc
y
j ; yijc

y
j ; zijc

y
jÞ ð13Þ

X
j

rij � cz
j ¼

X
j

ðxijc
z
j; yijc

z
j; zijc

z
jÞ ð14Þ

It should be noted that only non-diagonal components of
Eqs. (12)–(14) are required for the calculation of a moment
of Eq. (11).

From Eq. (3), the Biot–Savart law reduces according to
Eq. (9) as

ui ¼ �
1

4p

X
j

1

r3
j

g1ðwÞðrij � cjÞ ð15Þ

where g1(w) is a function for velocity calculation defined as

g1ðwÞ ¼
wþ 5=2

ðwþ 1Þ5=2
; w ¼ ðjrijj=rjÞ2 ð16Þ

The stretching term appearing in Eq. (6) can be divided
into two parts. We define here the first and second terms
of the right hand side of Eq. (6) as stx and tx, respectively,
as follows.

First part:

stx ¼ � 1

4p

X
j

jrijj2 þ ð5=2Þr2
j

ðjrijj2 þ r2
j Þ

5=2
ci � cj

¼ � 1

4p

X
j

g1ðwÞðci � cjÞ
1

r3
j

¼ � 1

4p

X
j

g1ðwÞðcy
i c

z
j � cz

ic
y
j ; c

z
ic

x
j � cx

i c
z
j; c

x
i c

y
j � cy

i c
x
jÞ

1

r3
j

ð17Þ

where g1(w) is defined as above Eq. (16) which is summa-
rized in Table 1.

Second part:

tx ¼ 3

4p

X
j

jrijj2 þ ð7=2Þr2
j

ðjrijj2 þ r2
j Þ

7=2
ðci � rijÞðrij � cjÞ

¼ 3

4p

X
j

g2ðwÞðci � rijÞðrij � cjÞ
1

r5
j

¼ 3

4p

X
j

g2ðwÞðci � rijÞðyijc
z
j � zijc

y
j ; zijc

x
j � xijc

z
j; xijc

y
j � yijc

x
jÞ

1

r5
j

ð18Þ

where g2(w) is a function for the stretching term calculation
summarized in Table 1 and defined as

g2ðwÞ ¼
wþ 7=2

ðwþ 1Þ7=2
ð19Þ

From Eq. (18), we can write for cx
j as follows:

Ii ¼
X

j

g2ðwÞðci � rijÞðcx
j=r

5
j Þ � rij

¼ ðci � riÞ
X

j

g2ðwÞðcx
j=r

5
j Þ � rij� cx

i

X
j

g2ðwÞðxjc
x
j=r

5
j Þ � rij

(

þ cy
i

X
j

g2ðwÞðyjc
x
j=r

5
j Þ � rijþ cz

i

X
j

g2ðwÞðzjc
x
j=r

5
j Þ � rij

)

¼ ðci � riÞS�ðcx
i T1þ cy

i T2þ cz
i T3Þ ð20Þ

with

S ¼
X

j

g2ðwÞ
cx

j

r5
j
� rij

T1 ¼
X

j

g2ðwÞ
xjcx

j

r5
j
� rij

T2 ¼
X

j

g2ðwÞ
yjc

x
j

r5
j
� rij

T3 ¼
X

j

g2ðwÞ
zjcx

j

r5
j
� rij

Similar formulations can be readily obtained for the other
two components, cy

j and cz
j.

To solve Eq. (15), it is necessary to call the library in Eq.
(8), embedded in MDGRAPE-2, three times to compute
the cross-product in a three-dimensional problem. Simi-
larly, to solve Eq. (17), it is required to call the library in
Eq. (7) three times. Finally, for the Eq. (18), it is required
to call library in Eq. (8) for ðcx

j ; c
y
j ; c

z
jÞ � 4, i.e., 12 times

according to Eq. (20). The values shown in Table 1 were

Table 1
Function and coefficients

g(w)[w = (rij/rj)
2] Aj Bj �ij

g1ðwÞ ¼ wþ5=2

ðwþ1Þ5=2
1
r2

j

cj

r3
j

0

g2ðwÞ ¼ wþ7=2

ðwþ1Þ7=2
1
r2

j

cj

r5
j

0
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substituted for function g(w) and constants Aj, Bj, �ij are
defined for each calculation.

4. Function table

The hardware of MDGRAPE-2 is a board, which is
mounted on a PCI-slot of a PC. The main program runs
on the host PC, while the force calculation is done on the
board via subroutine calls. Due to hardware specifications
the subroutine runs partly with single precision, hence spe-
cial care is necessary for floating-point operations. The
important issue here is to rewrite the function table in
MDGRAPE-2 that determines the formula of Eqs. (3)
and (6) so that the range of the function table contains
all elements inside the computational domain. This is con-
sidered to be the primary importance of this paper.

A function evaluator (FE) unit, a unit of pipeline of
MDGRAPE-2 chip, evaluates bjg(w). It is composed of
two 32-bit floating-point multipliers, one 32-bit function
evaluator, and one 32-bit floating-point comparator. The
FE evaluates g(w) by 4th order polynomial interpolation as

gðwÞ ¼ c0 þ wðc1 þ wðc2 þ wðc3 þ wc4ÞÞÞ ð21Þ

where c0, c1, c2, c3, c4 are arbitrary constants stored in the
RAM on the board.

The basic concept on calculation of an arbitrary func-
tion by the FE unit is as follows:

A whole range [xmin, xmax) is divided into 210 segments.
Assuming that an input x belongs to the (k + 1)th segment,
i.e., x 2 [xk, xk+1), the function f(x) is approximated by a
polynomial of degree 4;

f ðxÞ ’
X4

i¼0

cðkÞi ðDxÞi ð22Þ

where Dx is defined as the difference of x from the center of
the segment xc;

Dx ¼ x� xc ð23Þ

xc ¼
xk þ xkþ1

2
ð24Þ

The coefficients cðkÞi are constants in each segment. For de-
tails see in Susukita et al. [3] and Narumi [4].

The cut-off function is used in the vortex method calcu-
lation. It has the same shape between all particle interac-
tions. It is important to produce an optimum function
table in order to calculate the cut-off function considering
the computational domain where the vortex elements are
distributed. The function g(w) is created prior to calcula-
tion and read during calculation. The domain of the func-
tion g(w) is set to wmin 6 w 6 wmax where (wmax/wmin) 6 232

according to hardware specifications. In the vortex method
calculation, this domain tends to become large when com-
pared to the case of MD simulations. To secure accurate
calculations, it is important to know the domain correctly
prior to calculation. The net relative accuracy in the
MDGRAPE-2 chip is set to 10�7, since this accuracy is

usually satisfactory in MD simulations. In the calculation
of the Biot–Savart law, it is checked by the accuracy of
an arbitrary function g(w) and it is 10�7 which has been
evaluated by 4th order polynomial interpolation as of
Eq. (21).

The table range is different for different problems. It is
necessary to generate a new function table for a new prob-
lem. The preparation of the function table operation takes
only a few minutes, which does not affect the performance
of the entire calculations. To simulate high Reynolds num-
ber flows using vortex method, it is required to incorporate
large number of vortex elements for small-scale structures.
There is no connection between the number of elements
and the range of function table. The range is the key factor
in maintaining the accuracy and the single precision calcu-
lation of MDGRAPE-2 board, which does not have any
influence on the calculation of high Reynolds number
flows.

In order to examine the validity and the applicability of
our scheme, an inclined collision of two identical vortex
rings is simulated; the details of the computation are given
in a subsequent section. Fig. 1 shows the histogram of the
distance between vortex elements scattering over the com-
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Fig. 1. Typical distributions of vortex elements at (a) tC/R2 = 1 and
(b) tC/R2 = 15.
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putational domain. The results are extracted from the data
at non-dimensional time t* = 1 and 15. In the figures, the
abscissa w carries the same meaning as that defined in the
function table, cf. also in Eq. (16). It is seen from Fig. 1a
that the minimum and maximum distance in computa-
tional domain at time t* = 1 are 4.38 and 101.39, respec-
tively. These values vary as a function of time.
Consequently, it is followed from Fig. 1b that they are
2.17 and 82.91 at t* = 15. It is important that the range
of the function table is adjusted to this varying distance
between elements.

Based on the above observations, it appears the table
ranges have been defined carefully. We generated various
different function tables with different finite input ranges
in the host calculation. We then checked the output ranges
of those function tables by using MDGRAPE-2 and found
that all ranges are not satisfied with the computational
domain, which was determined in previous paragraph.
Fig. 2a and b represent the ranges and scaling errors of
two different types of function tables where the x-axis
stands for the range of the function g(w) and the y-axis

for induced velocity u. The ranges of these figures are
2�12

6 w 6 220 and 2�22
6 w 6 210, respectively. Finally,

in our calculation, the table has been produced within the
finite range of 2�12

6 w 6 220 which satisfies the computa-
tional domain of original calculation to obtain significant
accuracy. These figures also represent the error of the
induced velocity, which affects the convection of vortex ele-
ments and generates discrepancies within the calculation
without MDGRAPE-2.

5. Application

5.1. Computational algorithm

We considered inclined collisions according to [12].
Here, we assumed that the initial radius of the vortex rings
is R = 1 while the cross-section radius r = 0.05, see Fig. 3.
The Reynolds number based on the ring circulation is
ReC = 400, and the core radius r = 0.065. The rings are
inclined at an angle h = 15� relative to the z-axis. The total
number of elements used for the preliminary calculation
was N = 6 · 104, with the number of cross sections in the
circumference direction being 502, while 61 elements were
distributed in each cross-section. All elements were evenly
distributed.

In this calculation, the viscous diffusion was calculated
using the core-spreading method developed by Leonard
[13]. For convection of the particles, the second order accu-
rate Adams–Bashforth method was used in the calculation
of time advances.

The convection error is defined as the difference in the
position of the same particles between the host and
MDGRAPE-2 for the same time steps. Here error defined
as the distance d is as follows:

dðdifferenceÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxhost� xmdÞ2þðyhost� ymdÞ

2þðzhost� zmdÞ2
q

ð25Þ
where the suffices md and host represent with and without
the use of MDGRAPE-2, respectively.
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Fig. 2. Scaling error for function table in two different ranges: (a)
2�12

6 w 6 220 and (b) 2�22
6 w 6 210. s with MDGRAPE-2; – without

MDGRAPE-2.

Fig. 3. Initial condition for the computation of the collision of two vortex
rings. Here, R – radius of ring, r – radius of cross-section, S – distance
between two rings, h – inclined angle.
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The kinetic energy E and enstrophy X are evaluated
from the particle positions and strengths according to
[12], are defined as follows:

E ¼ 1

16p

X
i;j

2ðci � cjÞ
ðr2

ij þ r2
j Þ

1=2
þ
ðrij � ciÞðrij � cjÞ � r2

ijðci � cjÞ
ðr2

ij þ r2
j Þ

3=2

" #

ð26Þ

and

X ¼ 1

4p

X
i;j

5r4
j � r2

ijðr2
ij þ 3:5r2

j Þ
ðr2

ij þ r2
j Þ

7=2
ðci � cjÞ

"

þ 3
ðr2

ijðr2
ij þ 4:5r2

j Þ þ 3:5r4
j iÞr2

j

ðr2
ij þ r2

j Þ
9=2

ðrij � ciÞðrij � cjÞ
#

ð27Þ

5.2. Numerical results

Fig. 4 shows the snapshots of vortex elements of two
colliding vortex rings in various time stages. The initial
setup in colliding ring simulations consists of two identical
vortex rings initially inclined at an angle h = 15�. In
Fig. 4a, the rings are initially placed at a non-dimensional
distance of s = 2.7 in the z-direction. Each vortex ring
approaches by self-induced velocity from this initial stage.
At t* = 3 in Fig. 4b, where t* = tC/R2 with C being the ini-
tial circulation, the first impact occurs and the two vortex

rings are stretched and deformed. As time progresses, con-
siderable differences appear in each stage. At t* = 8, the
arced-shape structure is formed and the downward stretch
is strong, cf. Fig. 4c.

Fig. 5 shows the calculation time against the number of
vortex elements with and without the use of MDGRAPE-
2. It is observed that the calculation time is reduced by a
factor of 50 for N�105. This acceleration rate is below
our expectations, but it can be improved by reducing the
number of calls to the MDGRAPE-2 library for cross-
product calculations. However, it is recommended that
high-speed algorithms such as tree code seek further
high-speed operations. The combined use of these algo-
rithms together with MDGRAPE-2 has already been
accomplished in molecular dynamics simulations, see [14–
17].

The present issue is to evaluate the overall error caused
by the use of MDGRAPE-2. We compared the final result
of the calculation in terms of the position of the particles
for the present test case. Fig. 6 represents the convection
error, cf. Eq. (19). In this figure, dmin, dmean and dmax stand
for the minimum, average and maximum values of d eval-
uated from all of the particles in the domain. It is observed
that d slightly increases for a larger number of elements.
This means that MDGRAPE-2 induces certain errors for
calculations with a large number of elements but the error

stays within a finite range. This error is caused by the influ-
ence of self-induced velocities from the initial position of
the particles.

The evolution of the kinetic energy of host and
MDGRAPE-2 compared with Winckelmans work are
shown in Fig. 7a. In the present calculations the flow is
incompressible and unbounded, so there are physically no
kinetic energy sources. The kinetic energy can be dissipated
by both viscosity and numerical errors. From the compar-
ison between the results obtained with the various time
steps, it has been observed that there is no significant differ-

Fig. 4. Snapshots of vortex elements at: (a) tC/R2 = 1, (b) tC/R2 = 3 and
(c) tC/R2 = 8.
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ence between host calculation and MDGRAPE-2. It is
shown in Fig. 7a for the time step Dt = 0.08, it is easily
observed that the agreement with the existing data of Winc-
kelmans and Leonard [12] is also satisfactory.

On the other hand, the slight difference in the decay of
enstrophy, Fig. 7b, is observed between the present compu-
tation and that by Winckelmans and Leonard [12], though
this is due to the difference in the treatment of viscous dif-
fusion schemes and has nothing to do with the accuracy of
MDGRAPE-2. Totsuka and Obi [18] have also observed a
similar tendency in the computation of two-dimensional
homogeneous isotropic turbulence where the decay of ens-
trophy is subject to the choice of diffusion approximation.
Nevertheless, the main target of this article is to discuss the
issues related to the use of MDGRAPE-2 in combination
with vortex method calculation and accuracy of different
viscous diffusion schemes does not have any influence on
the assessment and the accuracy of MDGRAPE-2. It is
highly considered to use different viscous diffusion schemes
for the realistic flow fields in subsequent work as a contin-
uation of present study.

6. Conclusions

A special-purpose computer MDGRAPE-2 for N-body
simulations was applied to the calculation of the vortex
method. The definition of the function table range plays
an essential role to achieve satisfactory accuracy in
MDGRAPE-2. The improvement in speed was 50 times
when compared with the calculation of a conventional
PC. Although there are still certain areas that can be
improved, further acceleration should be achievable with
the combination of a fast algorithm.
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