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Abstract   The present study involves a novel computational technique, regarding simultaneous use 
of the pseudo particle method, Poisson integral method, and a special-purpose computer originally 
designed for molecular dynamics simulations (MDGRAPE-3). In the present calculations, the 
dynamics of two colliding vortex rings have been studied using the vortex method. The present 
acceleration technique allows the calculation of 107 vortex elements. The reconnection of the vortex 
rings was clearly observed, and the discretization error was nearly negligible. 
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1. INTRODUCTION 
 
Fast N-body solvers are essential to the vortex 
method calculation of turbulent flows. A direct 
calculation of the mutual interaction of N particles is 
proportional to N2. Due to this enormous calculation 
cost, the original purpose of vortex methods was not 
to perform a direct numerical simulation of the flow, 
but to somewhat mimic the dominant vortex 
dynamics using discrete vortex elements. 
     The use of fast algorithms made it possible to 
achieve a scaling of O(N) [1], and these algorithms 
have been successfully applied to vortex methods 
[2-4]. Furthermore, accurate viscous diffusion 
schemes were introduced, which enabled vortex 
methods to tackle flows with high viscosity 
accurately [5]. The combination of these two 
innovations led to a new paradigm, i.e. solving 
flows of moderate Reynolds numbers and fully 
resolving these flows. The vortex method was 
recognized as a discretization method rather than 
an attempt to model vortex dynamics, because the 

computational power that was necessary to prove 
these claims became available. 
     However, the high proportionality constant of 
the fast N-body solvers prevented them from 
matching the speed of grid based fast Poisson 
solvers. Since the mainstream methods in 
computational fluid dynamics use grid based fast 
Poisson solvers, it was still difficult for vortex 
methods to be considered as an alternative to 
conventional grid based methods. 
     The shortcomings of the fast N-body solvers 
can partly be circumvented by the use of hybrid 
methods, while the Lagrangian nature of the 
convection calculation is retained. The vortex-in-
cell is a typical hybrid method, and its accuracy 
and speed are quite close to that of the spectral 
method [6]. The particle-mesh method is another 
hybrid approach. Sbalzarini, et al [7] developed a 
particle-mesh library that calculates one vortex 
method iteration for 268 million particles in 85 
seconds using 128 processors. This is comparable 
to the performance of the state-of-the-art finite 
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difference methods using processors of comparable 
performance. 
     Another way to fill the gap between the N-body 
solver and fast Poisson solver is to use a hardware 
specialized for N-body calculations, such as the 
MDGRAPE-3 [8]. Ever since the GRAPE [9] was 
first introduced, these special purpose computers 
have constantly outperformed the general-purpose 
computers of the same price [8]. At this point, it is 
not yet evident which will prevail: Grid based fast 
Poisson solvers on parallel general purpose 
architecture, or fast N-body solvers on parallel 
special purpose processors. In my previous study, I 
have calculated the direct part of the FMM on the 
MDGRAPE-3 [10]. In the present study, the 
possibility of calculating the entire fast multipole 
method (FMM) on the MDGRAPE-3 will be 
investigate by using a combination of the pseudo 
particle method (PPM) [11] and Poisson integral 
method (PIM) [12]. 
     The collision of vortex rings has been chosen as 
a test case. The following characteristics of this 
flow allow the author to focus on the assessment of 
the present acceleration technique. The flow does 
not involve solid or periodic boundaries, thus causes 
minimum complication in the implementation of the 
FMM itself. Also, the initial condition is simple to 
generate for vortex methods. Furthermore, although 
the initial flow field is quite simple, the collision of 
the rings results in a highly turbulent state, and the 
mixing process is strongly affected by the 
Reynolds number. This allow the author to assess 
the ability of vortex methods to handle high 
Reynolds number flows by using a large number of 
particles, which becomes possible with the use of 
the present acceleration method. 
     At first the efficient implementation of the PPM 
[11] and PIM [12] on the MDGRAPE-3 has been 
discussed. Then these methods have been applied 
to the vortex method calculation of colliding 
vortex rings. The effect of spatial resolution at high 
Reynolds numbers is investigated by comparing 
the energy spectrum and decay rate of the kinetic 
energy. 
 
 
 

2. NUMERICAL METHODS 
 
2.1. Vortex Method   The vortex method describes 

the flow field by the superposition of particles 
with a smooth distribution of vorticity [13]. 
From this vorticity, the velocity of vortex 
elements is calculated by the Biot-Savart 
equation. The vortex elements are then convected 
according to this velocity, and at the same time, 
the vorticity is updated according to the stretching 
and diffusion term of the vorticity equation. Only 
final discretized form of each equation has been 
shown here. 
     The discretized form of the Biot-Savart equation 
with the high order algebraic cutoff function by 
Winckelmans, et al [14] can be written as: 
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The subscript i stand for the target elements, while 
j stands for the source elements, thus rij = xi-xj is 
the distance vector. " is the vortex strength and ! is 
the core radius of the vortex element. Using the 
same high order algebraic function as above, the 
stretching term becomes [14]: 
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For the calculation of the diffusion term, the core 
spreading method [15] has been used, which uses 
the relation: 
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The radial basis function interpolation [16] is used 
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every ten time steps to ensure the convergence of 
the core spreading method [17]. The convection is 
solved by updating the position of vortex elements 
according to their velocity: 
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In summary, the vortex method sequentially solves 
Equations 1-4. The MDGRAPE-3 and FMM are 
used to calculate Equations 1 and 2. 
 
2.2. MDGRAPE-3   The MDGRAPE-3 is a 
special-purpose computer exclusively designed for 
molecular dynamics simulations. A typical 
MDGRAPE-3 system consists of a general-purpose 
computer and a special-purpose hardware connected 
via a PCI board. The MDGRAPE chips can only 
handle two types of calculations. The Coulomb 
potential: 
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and the Coulomb force: 
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Where g( ) is an arbitrary function, which must be 
defined prior to the calculation. a and bj are 
constants, which can be used for scaling. The 
direct form of the Biot-Savart Equation 1 and the 
stretching term (2) can be calculated by using a 
combination of (5) and (6). 
     The function g( ) for an arbitrary value a|rij|2 is 
calculated by interpolation, from values that are 
tabulated prior to the execution of the main 
program. If the interparticle distance is such that 
a|rij|2 falls out of this tabulated domain, the 
MDGRAPE assumes g( ) is zero. The number of 
tabulated points is constant, thus defining the table 
in a large domain would result in larger spacing 
between the tabulated points, and therefore larger 
interpolation error. Contrary, defining the table in a 
small domain would yield a higher possibility of 
the interparticle spacing falling outside the 
tabulated domain, which also causes error. 

     The three critical issues regarding the 
implementation of the MDGRAPE on vortex 
methods are the efficient calculation of the Biot-
Savart and stretching equation, the optimization of 
the table domain, and the minimization of the 
round-off error caused by the partially single 
precision calculation in the MDGRAPE. These 
problems were investigated by Sheel, et al [18] for 
the preceeding but similar machine; MDGRAPE-2. 
The only difference between the MDGRAPE-2 and 
MDGRAPE-3 is that the latter can simultaneously 
calculate along with the host machine, but can only 
handle a small number of source particles at once 
[8]. However, these differences do not have any 
effect on the above-mentioned critical issues, and 
the findings of Sheel, et al [18] can be directly 
used for the MDGRAPE-3. 
 
2.3. PPM on MDGRAPE-3   It is possible to 
calculate the direct summation of Equation 1 and 2 
on the MDGRAPE-3. However, the translation of 
the multipole expansion and local expansion 
cannot be calculated on the MDGRAPE-3 since 
Equations 5 and 6 cannot separate the distance 
vector into an angle and distance, which is critical 
for evaluating the spherical harmonics. Therefore, 
only the direct summation is accelerated using the 
MDGRAPE-3, which causes an imbalance in the 
work load between the multipole to local 
translation and direct summation. The end result of 
this is that the optimum box level becomes much 
lower and the acceleration rate of the FMM 
decreases. 
     It is possible to calculate both hot-spots of the 
FMM if it can be converted the multipole to local 
translation into a N-body problem. This requires 
the use of two independent methods, the PPM by 
Makino [11] and the PIM by Anderson [12]. Instead 
of calculating the multipole and local expansions at 
the center of the boxes, these methods calculate the 
physical properties of interest at quadrature points 
placed on a spherical shell surrounding the boxes. 
In contrast to the original FMM, which uses 
five different equations for the expansions and 
translations, these methods use only two. One for 
the multipole expansion and translation: 
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and another for local expansion and translation: 
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q is the physical property of interest which 
represents the potential for Anderson’s method, or 
source strength for Makino’s method. The index i 
represents the value after the translation and j 
represents the value before. K is the number of 
quadrature points on the sphere surrounding the 
box, so the index i runs from 1 to K, and rs is the 
radius of this sphere. #ij is the angle between the 
position vector of source and target particles. 
Given that xi = (ri,$i,#i) and xj = (%j,&j,'j), cos !ij 
can be written as: 
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When these equations will apply to the vortex 
method calculation, the potential in the Anderson’s 
method is given by: 
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While the source strength in Makino’s method is 
the strength of the vortex element !. The only 
difference between the PPM and PIM is the 
physical property of interest q. The PPM transmits 
all information in the form of the vortex strength ! 
and calculates Equation 10 at the final stage (local 

to particle translation). Contrary, the PIM calculates 
Equation 10 at the beginning and transmits the 
potential thereafter. In either case the time 
consuming multipole to local translation is in the 
form of either Equation 8 and still cannot be 
calculated on the MDGRAPE-3. The MDGRAPE-3 
can handle Equation 10, so if the PPM is used for 
the upward pass and PIM for the downward pass, 
the multipole to local translation can be calculated 
on the MDGRAPE-3. For brevity, this method will 
refer to simply as the pseudo-particle method 
(PPM). 
     A schematic of the flow of calculation for the 
PMM is shown in Figure 1. The first figure from 
the left shows the FMM box structure at the 
highest box level, containing randomly distributed 
particles. The second figure shows the quadrature 
points, which are distributed on a spherical shell 
surrounding the boxes. The third figure shows the 
same, but for larger boxes. The light gray boxes in 
the third and fourth figure represent the boxes that 
interact with the dark gray box. The fifth figure 
shows the FMM box structure at the optimum level 
along with the particles. The figures are a two-
dimensional representation of a three-dimensional 
calculation. The flow of calculation goes from left 
to right. The equations that are calculated in each 
step are as follows. The numbers correspond to 
those shown in Figure 1. 
 
1. Equation 10 is calculated for the quadrature 

points on the circumscribing sphere 
2. Makino’s method (Equation 7) is used to 

translate the vortex strength onto the larger 
spheres 

3. Equation 10 is calculated for the quadrature 
points on the non-neighboring spheres 

 
 
 

! "# $ % & '  
 

Figure 1. Flow of the PPM calculation. 
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4. Anderson’s method (Equation 8) is used to 
translate the potential onto the smaller 
spheres 

5. Equation 10 is calculated for the quadrature 
points on the remaining non-neighboring 
spheres 

6. Solve a system of equations given by 
Equation 10 to change the potential back 
into vortex strength. Then, calculate Equation 
1 to obtain the velocity of all particles in the 
corresponding box 

7. Calculate the remaining induced velocity 
using Equation 1 for all particles in the light 
gray box in the last figure. 

 
In a standard FMM 1 would be the particle to 
multipole translation, 2 the multipole to multipole 
translation, 3 the multipole to local translation, 4 
the local to local translation, 5 the multipole to 
local translation, 6 the local to particle translation, 
and 7 would be the direct summation. 
     The velocity calculation is performed for the 
direct summation, FMM, and PPM both with 
and without the MDGRAPE-3. N particles are 
randomly distributed in a box of [-,,,]3, and N is 
changed from 103 to 106. The order of multipole 
expansion in the FMM is set to p = 10 for all cases. 
For the PPM this corresponds to the use of 216 
quadrature points in the spherical-t structure. All 
calculations were performed on a Intel Core2Quad 
(2.4 GHz) machine. Programs were multithreaded 
and vectorized by the intel fortran compiler. The 
CPU-time is shown for the different methods in 
Figure 2. Direct, FMM, PPM, are the results of the 
direct summation, FMM, and PPM. Figure 2a 
shows the CPU-time of each method when it is 
entirely calculated on the host machine. Figure 2b 
shows the CPU-time when the MDGRAPE-3 is 
used. The CPU-time for lower N deviates from the 
scaling laws, (especially in Figure 2b) because the 
relative computational overhead of insignificant 
portions of the program is dominant in these 
circumstances. The following observations can be 
made for calculations with large N. 
     The direct summation is over 200 times faster 
when calculated on the MDGRAPE-3. The FMM 
is about 13 times faster and the PPM is about 48 
times faster when the MDGRAPE-3 is used. As 
shown in Figure 2a, the FMM is approximately 3 
times faster than the PPM. However, in Figure 2b 

the PPM is slightly faster than the FMM for large 
N. The PPM can calculate both the multipole to 
local translation and the direct summation on the 
MDGRAPE-3, and should have a computational 
cost proportional to N. This is a large advantage 
over the standard FMM, where only the direct 
summation can be calculated. 
     The L2 error for the different methods is shown 
in Figure 3. The direct calculation is used as 
reference. The large error at small N is caused by 
the truncation of the smoothing functions for non-
neighboring boxes at the optimum level. In the 
present calculations the core radius of the vortex 
elements are set to 2,N-1/3 so that the overlap ratio 
is close to 1 for all N. The truncation error is 
largest at N = 103 where the inter-particle spacing 
is large compared to the optimum box size. The 
error becomes large again when the optimum box 

 
 

(a) 
 

 
 

(b) 
 
Figure 2. CPU-time for direct summation, FMM, and PPM 
with and without MDGRAPE-3 (a) without MDGRAPE-3 (b) 
with MDGRAPE-3. 
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level changes, as shown near N ) 2 × 104 and N ) 
2 × 105 for the FMM in Figure 3a. 
 
 
 

3. VORTEX RING CALCULATION 
 
3.1. Calculation Condition   The initial radius 
of the vortex rings was R=1 while the cross-section 
radius was r = 0.05. The rings were inclined at an 
angle $ = 15 relative to the z-axis (Figure 4). The 
Reynolds number based on the ring circulation was 
Re* = */+ = 400. The initial condition had a 
Gaussian distribution of vorticity in the cross 
section, as observed in experiments [19]. The 
vortex elements were distributed up to 3"g, where 
"g is the standard deviation of the Gaussian 
distribution. This allows the diffusion to take 

place at the regions surrounding the vortex ring. 
Furthermore, the initial core radius of the vortex 
elements "0 was set to twice the inter-particle 
spacing, which guarantees the overlap of elements 
for long calculations. 
 
3.2. Movement of Vortex Elements   The 
collision of vortex rings is calculated using the 
second condition. The number of particles is 
changed for 105 , N , 107, while the Reynolds 
number is kept constant. The corresponding 
number of cross sections and number of elements 
per cross section are shown in Table 1. These 
numbers are determined by choosing a inter-
particle distance that yields the total number of 
elements closest to N ) 105, N ) 106, and N ) 107. 
     The movement of vortex elements for Case A is 
illustrated in Figure 5. The time t* = t*/R2 is used 
hereafter, which is normalized by the circulation 
and radius of the vortex ring. At (a) t*=15, the two 
rings collide and begin to merge. At (b) t* = 30, 
the two rings merge into one. At (c) t* = 45 the 
vortex rings reconnect and form two new rings. 

 
 
 

 
 

(a) 
 

 
 

(b) 
 
Figure 3. L2 error for direct summation, FMM, and PPM with 
and without MDGRAPE-3 (a) without MDGRAPE-3 (b) with 
MDGRAPE-3. 

 
 
 

 
 
Figure 4. Initial condition for the computation of two vortex 
rings. Here R-radius of ring, r-radius of cross-section, S-distance 
between two rings, $-inclined angle. 
 
 
 
TABLE 1. Breakdown of the Number of Elements. 
 

Case A B C 
Number of Rings 

N per Cross Section 
Cross Sections 

Total 

2 
190 
271 

102980 

2 
418 

1261 
1054196 

2 
910 
5677 

10332140 
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One of the key features of the present calculation is 
that the vortex reconnection can be clearly 
observed. These results are supported by the fact 
that the present method considers the diffusion in 
the region surrounding the rings and also uses an 
accurate spatial adaption technique to ensure the 
convergence of the diffusion scheme for longer 
calculations. The reconnection observed here is 
also similar to the VIC results of Cottet, et al [13] 
and experimental results by Kida, et al [20]. 
 
3.3. Effect of Spatial Resolution   The necessity 

of a large number of particles to reproduce the 
quantitative aspects of the flow will be shown here. 
The kinetic energy K = 1/2ui

2 is calculated from 
the velcoity of the vortex elements directly. The 
decay of kinetic energy is shown in Figure 6a to 
compare the results for different N. A quantitative 
difference between Case A and the other two is 
clearly observed. Thus, as the number of 
elements is increased from N ) 105 to N ) 107 the 
energy decay shows convergent behavior with 
respect to N. 
     The energy spectra are calculated from the 
velocity distribution along the z-axis at selected 
times. The energy spectrum is shown in Figure 6b. 
The transfer and dissipation of kinetic energy 
determines the shape of the energy spectrum. 
Therefore, the agreement of the energy spectra 
reflects the soundness of the transfer and dissipation 
calculation. It is seen from Figure 6b that the energy 
spectra match when N - 106. 
 
 
 

4. CONCLUSIONS 
 
The vortex method calculation is accelerated by 
the simultaneous use of the pseudo-particle 
method, Poisson integral method and a special 
purpose computer MDGRAPE-3. The direct 
summation is over 200 times faster when 
calculated on the MDGRAPE-3. The FMM is 
about 13 times faster and the PPM is about 48 
times faster when calculated on the MDGRAPE-3. 
The FMM is approximately 3 times faster than the 
PPM without the MDGRAPE-3. However, the 
PPM becomes faster than the FMM when it is 
calculated on the MDGRAPE-3. Consequently, 
PPM with MDGRAPE-3 is the fastest technique 
among others discussed above. 
     The collision of two vortex rings is selected as a 
test case. The reconnection of the vortex rings in 
the present calculation is similar to what is seen in 
experimental and DNS results. This is a result of 
the high precision of the stretching and diffusion 
calculations. The results of the calculations using 
more than 106 particles, not only reproduce the 
qualitative aspects of the reconnection, but also 
show nearly negligible discretization error. These 
features support the use of pure Lagrangian vortex 
methods in fairly complex 3-D flows. 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
 
Figure 5. Position of vortex elements for Case A (a) t*= 15
(b) t*= 30 (c) t*= 45. 
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Figure 6. Effect of spatial resolution on the decay of kinetic 
energy and the energy spectra (a) kinetic energy (b) energy 
spectra. 


