CLOSED SETS OF REAL ROOTS IN KAC–MOODY ROOT SYSTEMS

PIERRE-EMMANUEL CAPRACE AND TIMOTHÉE MARQUIS

Abstract. In this note, we provide a complete description of the closed sets of real roots in a Kac–Moody root system.

1. Introduction

Let $A = (a_{ij})_{i,j \in I}$ be a generalised Cartan matrix, and let $g(A)$ be the associated Kac–Moody algebra (see [Kac90]). Like (finite-dimensional) semisimple complex Lie algebras, $g(A)$ possesses a root space decomposition $g(A) = h \oplus \bigoplus_{\alpha \in \Delta} g_\alpha$ with respect to the adjoint action of a Cartan subalgebra h, with associated set of roots $\Delta \subseteq h^*$ contained in the \mathbb{Z}-span of the set $\Pi = \{ \alpha_i \mid i \in I \}$ of simple roots, as well as a Weyl group $W \subseteq \text{GL}(h^*)$ stabilising Δ. However, as soon as A is not a Cartan matrix (i.e. as soon as $g(A)$ is infinite-dimensional), the set $\Delta_{re} := W.\Pi$ of real roots is properly contained in Δ. In some sense, the real roots of Δ are those that behave as the roots of a semisimple Lie algebra; in particular, $\dim g_\alpha = 1$ for all $\alpha \in \Delta_{re}$.

A subset $\Psi \subseteq \Delta$ is closed if $\alpha + \beta \in \Psi$ whenever $\alpha, \beta \in \Psi$ and $\alpha + \beta \in \Delta$. Note that, denoting by g_Ψ the subspace $g_\Psi := \bigoplus_{\alpha \in \Psi} g_\alpha$ of $g(A)$, a subset $\Psi \subseteq \Delta_{re}$ is closed if and only if $h \oplus g_\Psi$ is a subalgebra of $g(A)$; in particular, if $\Psi \subseteq \Delta_{re}$ is closed, the subalgebra generated by g_Ψ is contained in $h \oplus g_\Psi$. Closed sets of real roots in Kac–Moody root systems thus arise naturally, and the purpose of this note is to provide a complete description of these sets. Our main theorem is as follows. For each $\alpha \in \Delta_{re}$, let $\alpha^\vee \in h$ be the coroot of α, i.e. the unique element of $[g_\alpha, g_{-\alpha}]$ with $\langle \alpha, \alpha^\vee \rangle = 2$.

Main Theorem. Let $\Psi \subseteq \Delta_{re}$ be a closed set of real roots and let g be the subalgebra of $g(A)$ generated by g_Ψ. Set $\Psi_s := \{ \alpha \in \Psi \mid -\alpha \in \Psi \}$ and $\Psi_n := \Psi \setminus \Psi_s$. Set also $h_s := \sum_{\gamma \in \Psi_s} C\gamma^\vee$, $g_s := h_s \oplus g_{\Psi_s}$ and $g_n := g_{\Psi_n}$. Then

1. g_n is a subalgebra and g_n is an ideal of g. In particular, $g = h_s \oplus g_\Psi = g_s \ltimes g_n$.
2. g_n is nilpotent; it is the largest nilpotent ideal of g.
3. g_s is a semisimple finite-dimensional Lie algebra with Cartan subalgebra h_s and set of roots Ψ_s.

Note that the possible closed root subsystems Ψ_s in the statement of the Main Theorem were explicitly determined in [KV18] when A is an affine GCM.

P.-E.C. is a F.R.S.-FNRS senior research associate.
T.M. is a F.R.S.-FNRS post-doctoral researcher.
2. Preliminaries

2.1. Kac–Moody algebras. The general reference for this section is [Kac90, Chapters 1–5].

Let $A = (a_{ij})_{i,j \in I}$ be a generalised Cartan matrix with indexing set I, and let $(\mathfrak{h}, \Pi, \Pi')$ be a realisation of A in the sense of [Kac90, §1.1], with set of simple roots $\Pi = \{\alpha_i \mid i \in I\}$ and set of simple coroots $\Pi' = \{\alpha_i' \mid i \in I\}$. Let $\mathfrak{g}(A)$ be the corresponding Kac–Moody algebra (see [Kac90, §1.2-1.3]). Then $\mathfrak{g}(A)$ admits a root space decomposition

$$\mathfrak{g}(A) = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_\alpha$$

with respect to the adjoint action of the Cartan subalgebra \mathfrak{h}, with associated set of roots $\Delta \subseteq \mathfrak{h}^*$. Set $Q := \bigoplus_{i \in I} Z\alpha_i \subseteq \mathfrak{h}^*$ and $Q_+ := \bigoplus_{i \in I} N\alpha_i \subseteq Q$. Then $\Delta \subseteq Q_+ \cup -Q_+$, and we let $\Delta_+ := \Delta \cap Q_+$ (resp. $\Delta_- := \Delta \setminus \Delta_+$) denote the set of positive (resp. negative) roots. The height of a root $\alpha = \sum_{i \in I} n_i \alpha_i \in Q$ is the integer $\text{ht}(\alpha) := \sum_{i \in I} n_i$. Thus a root is positive if and only if it has positive height. We also introduce a partial order \leq on Q defined by

$$\alpha \leq \beta \iff \beta - \alpha \in Q_+.$$

The Weyl group of $\mathfrak{g}(A)$ is the subgroup \mathcal{W} of $\text{GL}(\mathfrak{h}^*)$ generated by the fundamental reflections

$$r_i = r_{\alpha_i} : \mathfrak{h}^* \to \mathfrak{h}^* : \alpha \mapsto \alpha - \langle \alpha, \alpha_i' \rangle \alpha_i$$

for $i \in I$. Alternatively, \mathcal{W} can be identified with the subgroup of $\text{GL}(\mathfrak{h})$ generated by the reflections $r_i : \mathfrak{h} \to \mathfrak{h} : h \mapsto h - \langle \alpha_i, h \rangle \alpha_i$. Then \mathcal{W} stabilises Δ, and we let $\Delta^\text{re} := \mathcal{W} \Pi$ (resp. $\Delta^\text{re}_+ := \Delta^\text{re} \cap \Delta_+$) denote the set of (resp. positive) real roots. For each $\alpha \in \Delta^\text{re}$, say $\alpha = w_0 \alpha_i$ for some $w \in \mathcal{W}$ and $i \in I$, the element $\alpha' := w_0 \alpha_i'$ only depends on α, and is called the coroot of α. One can then also define the reflection $r_\alpha \in \mathcal{W}$ associated to α as

$$r_\alpha = wr_i w^{-1} : \mathfrak{h}^* \to \mathfrak{h}^* : \beta \mapsto \beta - \langle \beta, \alpha' \rangle \alpha.$$

Let $\Psi \subseteq \Delta$ be a subset of roots. We call Ψ closed if $\alpha + \beta \in \Psi$ whenever $\alpha, \beta \in \Psi$ and $\alpha + \beta \in \Delta$. The closure $\bar{\Psi}$ of Ψ is the smallest closed subset of Δ containing Ψ. A subset $\Psi' \subseteq \bar{\Psi}$ is an ideal in Ψ if $\alpha + \beta \in \Psi'$ whenever $\alpha \in \Psi$, $\beta \in \Psi'$ and $\alpha + \beta \in \Delta$. The set Ψ is prenilpotent if there exist some $w, w' \in \mathcal{W}$ such that $w \Psi \subseteq \Delta_+$ and $w' \Psi \subseteq \Delta_-; \text{ in that case, } \Psi \text{ is finite and contained in } \Delta^\text{re}. \text{ If } \Psi \text{ is both prenilpotent and closed, it is called nilpotent. We further call } \Psi \text{ pro-nilpotent if it is a directed union of nilpotent subsets.}$

The above terminology is motivated by its Lie algebra counterpart: consider the subspace $\mathfrak{g}_\Psi := \bigoplus_{\alpha \in \Psi} \mathfrak{g}_\alpha$ for each $\Psi \subseteq \Delta$. If Ψ is closed, then $\mathfrak{h} \oplus \mathfrak{g}_\Psi$ is a subalgebra. If, moreover, $\Psi \cap -\Psi = \emptyset$ and Ψ' is an ideal in Ψ, then $\mathfrak{g}_{\Psi'}$ is an ideal in \mathfrak{g}_Ψ. If Ψ is nilpotent, then \mathfrak{g}_Ψ is a nilpotent subalgebra. This remains valid for pro-nilpotent sets of roots.

Lemma 1. Let $\Psi \subseteq \Delta$ be a pro-nilpotent set of roots. Then \mathfrak{g}_Ψ is a nilpotent subalgebra.
Proof. By definition, \(g_\Psi \) is a directed union of nilpotent subalgebras \(g_{\Psi_n} \), associated to nilpotent sets of roots \(\Psi_n \subseteq \Psi \). Since there is a uniform bound on the nilpotency class of these subalgebras by [Cap07, Theorem 1.1], the claim follows. \(\square \)

2.2. Davis complexes. The general reference for this section is [AB08] (see also [Nos11]).

The pair \((\mathcal{W}, S := \{r_i \mid i \in I\})\) is a Coxeter system, and we let \(\Sigma = \Sigma(\mathcal{W}, S) \) denote the corresponding Davis complex. Thus \(\Sigma \) is a CAT(0) cell complex whose underlying 1-skeleton \(\Sigma^{(1)} \) is the Cayley graph of \((\mathcal{W}, S)\). Moreover, the \(\mathcal{W} \)-action on \(\Sigma \) is by cellular isometries, is proper, and induces on \(\Sigma^{(1)} \) the canonical \(\mathcal{W} \)-action on its Cayley graph. The vertices of \(\Sigma^{(1)} \) (which we identify with the elements of \(\mathcal{W} \)) are called the chambers of \(\Sigma \), and their set is denoted \(\text{Ch}(\Sigma) \). The vertex \(1_\mathcal{W} \) is called the fundamental chamber of \(\Sigma \), and is denoted \(C_0 \). Two chambers of \(\Sigma \) are adjacent if they are adjacent in the Cayley graph of \((\mathcal{W}, S)\). A gallery is a sequence \(\Gamma = (x_0, x_1, \ldots, x_d) \) of chambers such that \(x_{i-1} \) and \(x_i \) are distinct adjacent chambers for each \(i = 1, \ldots, d \). The integer \(d \in \mathbb{N} \) is the length of \(\Gamma \), and \(\Gamma \) is called minimal if it is a gallery of minimal length between \(x_0 \) and \(x_d \). In that case, \(d \) is called the chamber distance between \(x_0 \) and \(x_d \), denoted \(d_{\text{Ch}}(x_0, x_d) \). If \(X \) is a nonempty subset of \(\text{Ch}(\Sigma) \) and \(x \in \text{Ch}(\Sigma) \), we also set \(d_{\text{Ch}}(x, X) := \min_{x' \in X} d_{\text{Ch}}(x, x') \).

Given two distinct adjacent chambers \(x, x' \in \text{Ch}(\Sigma) \), any chamber of \(\Sigma \) is either closer to \(x \) or to \(x' \) (for the chamber distance). This yields a partition of \(\text{Ch}(\Sigma) \) into two subsets, which are the underlying chamber sets of two closed convex subcomplexes of \(\Sigma \), called half-spaces. If \(x = C_0 \) and \(x' = sC_0 \) for some \(s \in S \), we let \(H(\alpha_s) \) denote the corresponding half-space containing \(C_0 \) and \(H(-\alpha_s) \) the other half-space. If \(x = wC_0 \) and \(x' = w' \) for \(w, w' \in \mathcal{W} \) and \(s, s' \in S \), the corresponding half-spaces \(H(\pm \alpha) = wH(\pm \alpha_\alpha) \) depend only on \(\alpha = w\alpha_s \). The map

\[
\Delta^\mathcal{W} \rightarrow \{ \text{half-spaces of } \Sigma \} : \alpha \mapsto H(\alpha)
\]

is a \(\mathcal{W} \)-equivariant bijection mapping \(\Delta^\mathcal{W} \) onto the set of half-spaces of \(\Sigma \) containing \(C_0 \). The wall associated to \(\alpha \in \Delta^\mathcal{W} \) is the closed convex subset \(\partial \alpha := H(\alpha) \cap H(-\alpha) \) of \(\Sigma \), and coincides with the fixed-point set of the reflection \(r_\alpha \in \mathcal{W} \). A wall \(\partial \alpha \) separates two chambers \(x, x' \in \text{Ch}(\Sigma) \) if \(x \in H(\epsilon \alpha) \) and \(x' \in H(-\epsilon \alpha) \) for some \(\epsilon \in \{ \pm 1 \} \).

We conclude this preliminary section with a short dictionary between roots and half-spaces. Call two roots \(\alpha, \beta \in \Delta^\mathcal{W} \) nested if either \(H(\alpha) \subseteq H(\beta) \) or \(H(\beta) \subseteq H(\alpha) \).

Lemma 2. Let \(\alpha, \beta \in \Delta^\mathcal{W} \) with \(\alpha \neq \pm \beta \), and set \(m := \langle \alpha, \beta^\vee \rangle \) and \(n := \langle \beta, \alpha^\vee \rangle \).

1. \(\{ \alpha, \beta \} \) is not prenilpotent if and only if \(m, n < 0 \) and \(mn \geq 4 \)
2. \(\varrho_{\alpha, r_\beta} \subseteq \mathcal{W} \) is finite if and only if \(\partial \alpha \cap \partial \beta \neq \emptyset \) if and only if \(\{ \pm \alpha, \pm \beta \} \) does not contain any nested pair
3. A subset \(\Psi \subseteq \Delta^\mathcal{W} \) of roots is prenilpotent if and only if the subcomplexes \(\bigcap_{\alpha \in \Psi} H(\alpha) \) and \(\bigcap_{\alpha \in \Psi} H(-\alpha) \) of \(\Sigma \) both contain at least one chamber.

Proof. (1) The first equivalence is [AB08, Lemma 8.42(3)], and the second and third equivalences follow from [Mar13, Proposition 4.31(3)] (see also [Mar18, Exercise 7.42]).
(2) For the first equivalence, note that \(\langle r_\alpha, r_\beta \rangle \) fixes \(\partial \alpha \cap \partial \beta \). Hence if \(\partial \alpha \cap \partial \beta \neq \emptyset \), then \(\langle r_\alpha, r_\beta \rangle \) is finite (because the \(W \)-action on \(\Sigma \) is proper, hence has finite point stabilisers). Conversely, if \(\partial \alpha \cap \partial \beta = \emptyset \), then \(r_\alpha, r_\beta \) generate an infinite dihedral group. For the second equivalence, note that since half-spaces are convex, they are in particular arc-connected, and hence if \(\partial \alpha \cap \partial \beta = \emptyset \) then either \(\{ \alpha, \beta \} \) or \(\{ \alpha, -\beta \} \) is nested. Conversely, if \(\{ \pm \alpha, \pm \beta \} \) contains a nested pair, then \(\langle r_\alpha, r_\beta \rangle \subseteq W \) is an infinite dihedral group.

Finally, for the third equivalence, note that \(\langle r_\alpha, r_\beta \rangle \) stabilises \(R := \overline{\{ \pm \alpha, \pm \beta \}} \), and that \(\langle r_\alpha, r_\beta \rangle \) is finite if and only if \(R \) is finite. In this case, \(R \) is a (reduced) root system of rank 2 in the sense of [Bou68, VI, §1.1], and hence of one of the types \(A_1 \times A_1, A_2, B_2 \) or \(G_2 \) by [Bou68, VI, §4.2 Théorème 3], as desired.

(3) \(\Psi \) is prenilpotent if and only if there exist \(v, w \in \mathcal{W} \) such that \(v \Psi \subseteq \Delta^r_+ \) (i.e. \(v^{-1}C_0 \subseteq \bigcap_{\alpha \in \Psi} H(\alpha) \)) and \(w \Psi \subseteq \Delta^r_- \) (i.e. \(w^{-1}C_0 \subseteq \bigcap_{\alpha \in \Psi} H(-\alpha) \)). \(\Box \)

3. Closed and prenilpotent sets of roots

We shall need the following lemma, which is a slight variation of [Cap06, Lemma 12].

Lemma 3. Let \(x \in \text{Ch}(\Sigma) \) be a chamber and \(\alpha \in \Delta^r \) be a root such that \(x \notin H(\alpha) \). Let \(y \in \text{Ch}(\Sigma) \) be a chamber contained in \(H(\alpha) \) and at minimal distance from \(x \), and let \(\beta \in \Delta^r \) be a root such that \(H(\beta) \) contains \(x \) but not \(y \), and that \(H(-\beta) \) contains a chamber adjacent to \(x \). Assume that \(\beta \neq -\alpha \). Then:

(i) \(\langle \alpha, \beta^\vee \rangle < 0 \).

(ii) \(x \notin H(r_\beta(\alpha)) \).

Proof. For the first assertion, we invoke [Cap06, Lemma 12] that we apply to the roots \(\phi := \alpha \) and \(\psi := \beta \). We deduce that \(r_\alpha(\beta) \neq \beta \) and that \(H(r_\alpha(\beta)) \supseteq H(\alpha) \cap H(\beta) \). If \(\langle r_\alpha, r_\beta \rangle \) is infinite, then \(\partial \alpha \cap \partial \beta = \emptyset \), and since \(\{ \alpha, \beta \} \) is not nested by construction, the pair \(\{ \alpha, -\beta \} \) is nested and \(\langle \alpha, \beta^\vee \rangle < 0 \) (see Lemma 2(1)). If \(\langle r_\alpha, r_\beta \rangle \) is finite, on the other hand, the root system generated by \(\alpha \) and \(\beta \) is an irreducible root system of rank 2 (see Lemma 2(2)). A quick case-by-case inspection of the rank 2 root systems of type \(A_2, B_2 \) and \(G_2 \) (see [Hum78, §9.3]) reveals that the condition \(H(r_\alpha(\beta)) \supseteq H(\alpha) \cap H(\beta) \) implies that the angle between the walls of \(\alpha \) and \(\beta \) (in the Euclidean plane spanned by \(\alpha, \beta \) and with scalar product \(\langle \cdot, \cdot \rangle \) such that \(\langle \alpha, \beta^\vee \rangle = 2(\alpha|\beta)/(\alpha|\alpha) \), see [Hum78, §9.1]) is acute. Thus the angle between the corresponding roots is obtuse, hence \(\langle \alpha, \beta^\vee \rangle < 0 \). This proves (i).

For the second assertion, let \(x' \in \text{Ch}(\Sigma) \) be the unique chamber adjacent to \(x \) and contained in \(H(-\beta) \). If \(x \in H(r_\beta(\alpha)) \), then \(x' = r_\beta(x) \in r_\beta(H(r_\beta(\alpha))) = H(\alpha) \). Since \(x \notin H(\alpha) \) by hypothesis, it follows that the wall \(\partial \alpha \) separates \(x \) from \(x' \). Since \(x \) and \(x' \) are adjacent, we deduce that \(\beta = -\alpha \), contradicting the hypotheses. This proves (ii). \(\Box \)

Given a set of roots \(\Phi \subseteq \Delta \) and a subset \(\Psi \subseteq \Phi \), we set

\[
\Phi_{\geq \Psi} := \{ \phi \in \Phi \mid \phi \geq \psi \text{ for some } \psi \in \Psi \}.
\]
Lemma 4. Let $\Phi \subseteq \Delta^re$ be a closed set of roots and let $\Psi \subseteq \Phi$ be a non-empty finite subset. Assume that $\Phi \cap -\Phi = \emptyset$. Then $\bigcap_{\phi \in \Phi \cap \Psi} H(\phi)$ contains a chamber. In particular, $\bigcap_{\psi \in \Psi} H(\psi)$ contains a chamber.

Proof. For simplicity, we identify each half-space $H(\phi) (\phi \in \Delta^re)$ with its underlying set of chambers; we thus have to show that $\bigcap_{\phi \in \Phi \cap \Psi} H(\phi) \neq \emptyset$. For each set of roots $B \subseteq \Delta$, we set $B_\varepsilon = B \cap \Delta_\varepsilon$ for $\varepsilon \in \{+, -\}$.

Set $A = \Phi \cap \Psi$. Observe that the set A_ε is finite, since Ψ is finite by hypothesis. We shall proceed by induction on $|A_\varepsilon|$. In the base case $|A_\varepsilon| = 0$, we have $A \subseteq \Delta^re$, and each half-space $H(\phi)$ with $\phi \in A$ contains the fundamental chamber C_0. Thus $\bigcap_{\phi \in A} H(\phi)$ is nonempty in this case.

We assume henceforth that A_ε is non-empty. We set $\mathcal{X} = \bigcap_{\phi \in \Phi_+} H(\phi)$. In the special case where Φ_+ is empty, we adopt the convention that $\mathcal{X} = \bigcup_{\phi \in \Phi} H(\phi)$. Therefore $w\Phi_+ \subseteq \Delta_+$, and in particular $wA_+ \subseteq \Delta_+$. Moreover $wA \cap \Delta_+$ contains $w\psi$, since $C \in H(\psi)$. It follows that $|wA \cap \Delta_+| = |wA_+ \cap \Delta_+| < |wA_\varepsilon| = |A_\varepsilon|$. Set

$$B = wA = w(\Phi \cap \Psi) = w(\Phi \cap \Psi).$$

We have just seen that $|B_\varepsilon| < |A_\varepsilon|$. Hence the induction hypothesis ensures that $\bigcap_{\phi \in B_\varepsilon} H(\phi) \neq \emptyset$. Therefore, $\bigcap_{\phi \in A_\varepsilon} H(\phi) = w^{-1}(\bigcap_{\phi \in B_\varepsilon} H(\phi))$ is also non-empty, and we are done in this case.

Assume finally that for all $\psi \in A_\varepsilon$, we have $\mathcal{X} \subseteq H(-\psi)$. Choose $x \in \mathcal{X}$ and $\alpha \in A_\varepsilon$ such that $d_{\text{Ch}}(x, H(\alpha))$ is minimal. Choose also $y \in H(\alpha)$ such that $d_{\text{Ch}}(x, y) = d_{\text{Ch}}(x, H(\alpha))$. Let $x = x_0, x_1, \ldots, x_m = y$ be a minimal gallery from x to y, and let $\beta \in \Delta^re$ be the unique root such that $H(\beta)$ contains x_0 but not x_1.

We have $\beta \in \Phi_+$, since otherwise we would have $x_1 \in H(\phi)$ for all $\phi \in \Phi_+$, so that $x_1 \in \mathcal{X}$, contradicting the minimality condition in the definition of x. In particular, we have $\alpha \neq -\beta$ since $\Phi \cap -\Phi = \emptyset$.

Notice that x is a chamber contained in $H(\beta)$ but not in $H(\alpha)$, whereas y is a chamber contained in $H(\alpha)$ but not $H(\beta)$. We now invoke Lemma 3. It follows that $\langle \alpha, \beta^\vee \rangle < 0$ and that $x \not\in H(\beta)$. Since β is a positive root, it follows that $r_\beta(\alpha) = \alpha - \langle \alpha, \beta^\vee \rangle \beta \geq \alpha \in A = \Phi \cap \Psi$. Moreover $r_\beta(\alpha) \in \{\alpha, -\beta\} \subseteq \Phi$. Hence $r_\beta(\alpha) \in A$. In particular, $r_\beta(\alpha) \in A_\varepsilon$, for otherwise $x \in \mathcal{X} \subseteq H(r_\beta(\alpha))$, a contradiction. We conclude that $r_\beta(\alpha) \in A_\varepsilon$. Now we observe that the gallery $x = x_0 = r_\beta(x_1), r_\beta(x_2), \ldots, r_\beta(x_m) = r_\beta(y)$ is of length $m - 1$ and joins x to a chamber in $H(r_\beta(\alpha))$. Since $r_\beta(\alpha)$ belongs to A_ε, this contradicts the minimality condition in the definition of α. Thus this final case does not occur, and the proof is complete. □
4. Nilpotent sets

Lemma 5. A subset $\Phi \subseteq \Delta^{re}$ is nilpotent if and only if it satisfies the following three conditions:

(i) Φ is closed.
(ii) Φ is finite.
(iii) $\Phi \cap -\Phi = \emptyset$.

Proof. Assume that $\Phi \subseteq \Delta^{re}$ satisfies the three conditions (i)–(iii). Applying Lemma 4 with $\Phi = \Psi$, we deduce that $\bigcap_{\phi \in \Phi} H(\phi)$ contains a chamber. Similarly, Lemma 4 applied to $-\Phi$ implies that $\bigcap_{\phi \in \Phi} H(-\phi)$ also contains a chamber. Hence Lemma 2(3) implies that Φ is nilpotent, as desired.

The converse assertion is clear by the definition of a nilpotent set of roots. \qed

5. On the closure of a finite set

Lemma 6. Let $\Phi \subseteq \Delta^{re}$ be a closed set of roots such that $\Phi \cap -\Phi = \emptyset$. For any finite subset $\Psi \subseteq \Phi$, the closure $\overline{\Psi}$ is finite.

Proof. Applying Lemma 4 to Ψ and $-\Psi$, we deduce that the intersections $\bigcap_{\psi \in \Psi} H(\psi)$ and $\bigcap_{\psi \in \Psi} H(-\psi)$ both contain a chamber. Hence Ψ is prenilpotent by Lemma 2(3). The closure of any prenilpotent set of real roots is nilpotent, hence finite by Lemma 5. \qed

6. Pro-nilpotent sets

Proposition 7. Let $\Phi \subseteq \Delta^{re}$ be a closed set of real roots such that $\Phi \cap -\Phi = \emptyset$. Then Φ is pro-nilpotent.

Proof. Let n be a positive integer and let $\Phi_{\leq n}$ denote the subset of those $\phi \in \Phi$ with $|ht(\phi)| \leq n$. Thus $\Phi_{\leq n}$ is finite for all n, and the sets $\Phi_{\leq n}$ are linearly ordered by inclusion. By Lemma 6, the closure $\overline{\Phi_{\leq n}}$ is finite, hence nilpotent by Lemma 5. Thus Φ is the union of an ascending chain of nilpotent subsets. \qed

7. Levi decomposition

Lemma 8. Let $\Psi \subseteq \Delta^{re}$ be a closed set of real roots. Set $\Psi_s := \{\alpha \in \Psi \mid -\alpha \in \Psi\}$ and $\Psi_n := \Psi \setminus \Psi_s$. Then Ψ_s is closed and Ψ_n is an ideal in Ψ.

Proof. If $\alpha, \beta \in \Psi_s$ and $\alpha + \beta \in \Delta$, then $-\alpha, -\beta \in \Psi_s$ and hence $-(\alpha + \beta) \in \Psi$, that is, $\alpha + \beta \in \Psi_s$. This shows that Ψ_s is closed.

If now $\alpha \in \Psi$ and $\beta \in \Psi_n$ are such that $\alpha + \beta \in \Delta$, then $\alpha + \beta \in \Psi_n$. Otherwise, $-(\alpha + \beta) \in \Psi$, and hence $-\beta = -(\alpha + \beta) + \alpha \in \Psi$, contradicting the fact that $\beta \in \Psi_n$. This shows that Ψ_n is an ideal in Ψ. \qed

Lemma 9. Let $\Psi \subseteq \Delta^{re}$ be a closed set of real roots such that $\Psi = -\Psi$. Then Ψ is the root system of a finite-dimensional semisimple complex Lie algebra.
Proof. Let H be the reflection subgroup of \mathcal{W} generated by $R_\Psi := \{ r_\alpha \mid \alpha \in \Psi \}$. Then H is a Coxeter group in its own right (see [Deo89]). Moreover, the set M_Ψ of walls of $\Sigma(\mathcal{W}, S)$ corresponding to reflections in R_Ψ is stabilised by H. Indeed, if $\alpha, \beta \in \Psi$, we have to check that $r_\alpha(\beta) = \beta - \beta(\alpha^\vee)\alpha \in \Psi$. But as $\pm \alpha \in \Psi$, this follows from the fact that Ψ is closed. In particular, H is finite, for otherwise it would contain two reflections $r_\alpha, r_\beta \in R_\Psi$ generating an infinite dihedral group by [H`ee93, Prop. 8.1, p. 309], and hence Ψ would contain a non-prenilpotent pair of roots by Lemma 2(1,2), contradicting the fact that $\Psi \subseteq \Delta^{re}$ (see Lemma 2(1)). This shows that Ψ is a finite (reduced) root system in the sense of [Bou68, VI, §1.1], hence the root system of a finite-dimensional semisimple complex Lie algebra (see [Bou68, VI, §4.2 Théorème 3]), as desired. □

Theorem 10. Let $\Psi \subseteq \Delta^{re}$ be a closed set of real roots and let \mathfrak{g} be the subalgebra of $\mathfrak{g}(A)$ generated by \mathfrak{g}_Ψ. Set $\Psi_s := \{ \alpha \in \Psi \mid - \alpha \in \Psi \}$ and $\Psi_n := \Psi \setminus \Psi_s$. Set also $h_s := \sum_{\gamma \in \Psi_s} C_{\gamma^\vee}, g_s := h_s \oplus \mathfrak{g}_{\Psi_s}$ and $g_n := \mathfrak{g}_{\Psi_n}$. Then

(1) g_s is a subalgebra and g_n is an ideal of \mathfrak{g}. In particular, $\mathfrak{g} = g_s \ltimes g_n$.
(2) g_n is the unique maximal nilpotent ideal of g.
(3) g_s is a semisimple finite-dimensional Lie algebra with Cartan subalgebra h_s and set of roots Ψ_s.

Proof. (1) follows from Lemma 8 and (3) from Lemma 9. For (2), note that Ψ_n is a pro-nilpotent set of roots by Proposition 7, and hence g_n is nilpotent by Lemma 1. Finally, since g_s is semisimple, the image of any nilpotent ideal i of \mathfrak{g} under the quotient map $\mathfrak{g} \to g_s$ must be zero, that is, $i \subseteq g_n$. Therefore, g_n is the unique maximal nilpotent ideal of g, as desired. □

References

Université catholique de Louvain, IRMP, Chemin du Cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgique

E-mail address: pe.caprace@uclouvain.be

Université catholique de Louvain, IRMP, Chemin du Cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgique

E-mail address: timothee.marquis@uclouvain.be