POSITIVE ENERGY REPRESENTATIONS OF DOUBLE EXTENSIONS
OF HILBERT LOOP ALGEBRAS

TIMOTHEE MARQUIS* AND KARL-HERMANN NEEB'

ABSTRACT. A real Lie algebra with a compatible Hilbert space structure (in the sense that the
scalar product is invariant) is called a Hilbert-Lie algebra. Such Lie algebras are natural infinite-
dimensional analogues of the compact Lie algebras; in particular, any infinite-dimensional simple
Hilbert-Lie algebra ¢ is of one of the four classical types Ay, By, Cy or Dj for some infinite set J.
Imitating the construction of affine Kac—-Moody algebras, one can then consider affinisations of ¢, that
is, double extensions of (twisted) loop algebras over £. Such an affinisation g of ¢ possesses a root
space decomposition with respect to some Cartan subalgebra h, whose corresponding root system
yields one of the seven locally affine root systems (LARS) of type A(1> B<1> C(l) D(l) B(2) 0(2)
or BCSQ>.

Let D € der(g) with h C kerD (a diagonal derivation of g). Then every highest weight representa-
tion (px, L(X\)) of g with highest weight A can be extended to a representation py of the semi-direct
product g x RD. In this paper, we characterise all pairs (A, D) for which the representation EA is of
positive energy, namely, for which the spectrum of the operator —ipy (D) is bounded from below.

1. INTRODUCTION

Let G be a Lie group with Lie algebra g, and let a: R — Aut(G) : t — «; define a continuous
R-action on G. Consider a unitary representation m: G* — U(H) of the topological group G* :=
G %, R on some Hilbert space H, and let dm: g x RD — u(H°) denote the corresponding derived
representation, where D := &|,_oL(a) € der(g) is the infinitesimal generator of a and where H*> :=
{veH|G* = H:gw m(g)vis smooth} is the space of m-smooth vectors. The representation (m,H)
is said to be of positive energy if the spectrum of the Hamiltonian H := —idn (D) is bounded from
below.

It is a challenging natural problem to determine the irreducible positive energy representations
(m,H) of G*. As a consequence of the Borchers—Arveson Theorem ([BR87, Thm. 3.2.46]), for any such
representation, the restriction p := 7|¢ is irreducible (see [Neeldal Thm. 2.5]), and the Hamiltonian H
of the extension of p to G¥ is determined by «a, up to an additive constant. The set of irreducible positive
energy representations of G* may thus be viewed as a subset éa of the set G of equivalence classes
of irreducible unitary representations of G, and one would like to describe this subset as explicitely
as possible. Note that this problem is essentially equivalent to determining for a Lie group G and
d € g all unitary representations (7, H) for which —idn(d) is bounded from below. Such questions are
largely motivated by representations arising naturally in quantum physics, where the spectrum of the
Hamiltonian (representing the energy) should be non-negative ([BR87]). For the class of semibounded
unitary representations such elements exist in a stable fashion, and this recently lead to a powerful
general theory because C*-techniques are now fully available. See [Neel6] for a recent survey on the
results and methods.

A prominent ¢ class of unitary representations which will be studied in this paper is provided by the
subset th C G of irreducible unitary “highest Welght representations” of G. In [MNT5], an explicit
description of the positive energy representations in th was obtained for a central extension of a
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Hilbert—Lie group G (that is, such that the Lie algebra of G is a Hilbert—Lie algebra), when « is given
by conjugation with diagonal operators. In this paper, we push this study further by considering
double extensions of Hilbert loop groups, that is, double extensions of loop groups over a Hilbert—
Lie group. Since the positive energy condition is expressed in terms of the derived representation
dr: g x RD — u(H>), we will formulate our results at the level of the corresponding Lie algebras,
namely, for double extensions of Hilbert loop algebras (respectively, locally affine Lie algebras). For the
construction of highest weight representations of double extensions of Hilbert loop groups, we refer to
[Neeldb].

From the algebraic perspective, the complexifications of the Lie algebras considered in this paper
are completions of so-called locally extended affine Lie algebras (LEALA) (see [MY06]). A LEALA
L possesses a root space decomposition £ = H & P,ca Lo With respect to some ad-diagonalisable
subalgebra H, whose corresponding root system A C H* is a locally extended affine root system
(LEARS) (see [Yos10]). An important class of LEALASs are the locally affine Lie algebras (LALA), in
which case A is a locally affine root system (LARS) ([Neel0],[MY15]). LALAs can be obtained as direct
limits of affine Kac-Moody algebras ([Neel0l Sect. 3]), and they possess highest weight representations
L(\) for suitable highest weights A € H* ([NeelO, Thm 4.10]). One may thus investigate the positive
energy condition for these representations. On the other hand, the explicit construction of Kac-Moody
algebras as double extensions of loop algebras over a (finite-dimensional) simple Lie algebra G can be
generalised to the LALA L, by replacing G with a locally finite split simple Lie algebra (see [Stu99]).

Since the main motivation for the study of positive energy representations comes from the group
level (in our setting, double extensions of Hilbert loop groups), it will be more appropriate to shift
from the algebraic to the analytic perspective, which can be done as follows. We consider the locally
finite split simple Lie algebra G over K = C. By [Stu99) Section VIII], there is an antilinear involutive
anti-automorphism X +— X* such that Gg := {X € G | X* = —X} is a compact real form of G,
namely, a direct limit of (finite-dimensional) compact Lie algebras. As a subspace of the space gl(J, C)
of J x J matrices with finitely many nonzero entries (for some suitable set J), G inherits a scalar
product (X,Y) = tr(XY™), whose restriction to Gg is invariant: ([X,Y],Z) = (X,[Y,Z]) for all
X,Y,Z € Gg. The Hilbert space completion ¢ of Gr is a so-called Hilbert—Lie algebra. One can then
construct (double extensions of) an “analytic” loop algebra over ¢ by replacing Fourier polynomials
with smooth functions. The resulting “affinisation” g of £ contains the (doubly extended) “algebraic”
loop algebra £ over G as a dense subalgebra. The highest weight module L(\) over £ is unitary (under
suitable assumptions on A, see [NeelO, Thm. 4.11]), and hence possesses an invariant scalar product.
In particular, its completion f(/\) becomes a highest weight module over g: this will be our setting for
our investigation of the positive energy condition.

We now present in more detail the main result of this paper. For a more thorough account of the
concepts presented below, we refer to [MN16, Sections 2 and 3] and the references therein.

A Hilbert-Lie algebra is a real Lie algebra ¢ admitting a real Hilbert space structure with invariant
scalar product. Any simple infinite-dimensional Hilbert—Lie algebra ¢ possesses a root space decompo-
sition with respect to some maximal abelian subalgebra t (a Cartan subalgebra), whose corresponding
root system A = A(E,t) C it* is a so-called locally finite root system, of one of the types Ay, By, Cy
or D for some infinite set J (see [NSOI] and [LN04]). Here and in the sequel, t* denotes the algebraic
dual of t (as opposed to its topological dual t').

Let ¢ € Aut() be an automorphism of the simple Hilbert—Lie algebra ¢ of finite order N, and let
tp be a maximal abelian subalgebra of £¢# := {a € £ | p(x) = z}. Then £ also possesses a root space

decomposition £¢c = (to)c@@aeAw ¢ with respect to ty, with corresponding root system A, = A(t, to).

The (p-twisted) Hilbert loop algebra over € is the Lie algebra L,(€) := {{ € C°(R,€) | {(t+ 2F) =

@ 1(&(t)) Vt € R}. We equip its complexification £, (€)c with the invariant positive definite hermitian
27

form (-,-) defined by (¢,m) = 5= [, (€(t), n(t))dt.
Let dero(L,(¢), (-, -)) denote the space of skew-symmetric derivations D of L (¢) that are diagonal,

in the sense that D(e™ @ £2) C e @ & for all n € Z and a € A,,. Define Dy € derg(L,(£), (-, ) by
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Dy (&) = ¢'. For any weight v € it}, let also D, be the derivation of &c defined by
D, (x4) :=iv(a*)z, forall z, € €2, a € Ay,

where o is the unique element of ity such that (h,af) = a(h) for all h € tg. Then D, restricts
to a skew-symmetric derivation of ¢, which we extend to a derivation in dero(L,(¥), (-, )) by setting
D, (¢)(t) :== D, (&(t)) for all € € L,(€) and ¢t € R. The space dery(Ly,(£), (-,-)) is then spanned by Dy
and all such D,, (see [MY15, Thm. 7.2 and Lemma 8.6]), and we set

D, := Do+ D, € dero(L,(8), (-,)).

The derivation D,, defines a 2-cocycle wp, (z,y) := (D, (x),y) on L,(£), and extends to a derivation

D,(z,z) := (0,D,(x)) of the corresponding central extension R @, L,(€¢). We call the resulting
double extension

8= L5086 = (R G, Lo() x5, R
the v-slanted and p-twisted affinisation of the Hilbert-Lie algebra €. The Lie algebra g admits a
root space decomposition gc = (t§)c @ éae&, 9o With respect to its maximal abelian subalgebra
6 =R @ty @R, with corresponding root system

~

A, = A(g, t5) C {0} x ity x Z Ci(t5)".
Note that
g% .= Cc + spang{af | a € Ay} +Cda @ Oa
a€l,
is a LALA, where ¢ := (4,0,0) € it§ C gc and d := (0,0, —7) € it§ C gc ([Neeldb, Ex. 2.5]). The set
(Ap)e :={(0,a,n) € Ay | a #0} C {0} x Ay, X Z

of compact roots is then a LARS. The LARS were classified in [Yosl0], and those of infinite rank
fall into 7 distinct families of isomorphism classes, parametrised by the types X.(Jl) and YJ(Q) for X €
{A,B,C,D} and Y € {B,C,BC}, for some infinite set J. The type XL(]U can be realised as the
root system of the unslanted and untwisted affinisation E?d(ﬁ) of some Hilbert—Lie algebra £ with root

system of type X ;. The type Y}z) can similarly be realised as the root system of some unslanted

and Yy -twisted affinisation of a suitable Hilbert—Lie algebra £, for some automorphism vy of order

2 whose description can be found in [Neeldbl §2.2] (see also [MNI6l Section 6]). We call the three

automorphisms 1y, as well as the 7 affinisations of a Hilbert—Lie algebra described above standard.
Let A € i(t§)*, which we write as A = (A, A%, \y) where

Aei=Me) €R, A=)y, €it) and Ag:= A(d) €R.

Assume that A, # 0 and that ) is integral, in the sense that A only takes integer values on the coroots ¢,
a €A, (see ﬁ below). Then g admits an irreducible integrable unitary highest weight representation

~

px: g — End(L(N))

with highest weight A, whose set of weights is given by P, = Conv(f\/\;.)\) N+ Z[&W]), where

17\/\5 = W(g,t5) denotes the Weyl group of g with respect to t§ (see [Neel(, Thm. 4.10 and 4.11]).
Let v/ € i), and extend the derivation D, of L,(¢) to a skew-symmetric derivation of g by
D,/ (t§) := {0}. Then D, is encoded by the character

X =xv: Z[A,] = R:(0,a,n) — n+ v/ (af)
satisfying D,/ (x4) = ix(@)zq for all 24 € go, @ € ﬁg,. One can now extend p) to a representation

Pan: 8 X RD, — End(L()\))
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of the semi-direct product g x RD,,, where py , (D,/)vy, = ix(y — A)vy for all v € Py and v, € L))
of weight . The representation py  is thus of positive energy if and only if

My, = inf Spec(H,) = inf x(Py — A) = inf x (W4.A — A) > —o0,

where H,» := —ipx ,(D,/) is the corresponding Hamiltonian.

We first characterise the positive energy highest weight representations of g when g is standard. In
this case, there is an orthonormal basis {e; | j € J} of ity such that the linearly independent system
{ej | j € J} Cit; defined by (e;, ex) = &, contains the root system A, in its Z-span (see §2.1] below).
Write a character x: i(t§)* — R as x = (xe, X°, Xa) Where

Xe :=x((1,0,0)) € R, x’:=x

iy and  xa:=x((0,0,1)) € R.
We call x = (xe, X, xa) summable if x. = xq = 0 and x° € £(J), that is, djed IX°(€5)| < oo.

Theorem A. Let (g,t5) be a standard affinisation of a simple Hilbert-Lie algebra, with Weyl group
W =W(g,t). Let A= (A, A2, \g) € i(t5)* be an integral weight with \. # 0. Then for any character
X = (Xe, X%, xa): i(t)* — R with A.xa > 0, the following are equivalent:

(1) inf (x(WA = X)) > —o0.

(2) X = Xmin + Xsum for some minimal energy character Xmin, satisfying inf (Xmin (W)x — )\)) =0,
and some summable character Xsum-

In addition, we give an explicit description of the set of characters y of minimal energy (see Sec-
tion[6). An alternative description of this set is given in [HNI4, Thm. 3.5]. Note that the assumption
AcXa > 0 in Theorem [A]is only necessary to avoid degenerate cases, which are dealt with in §3.1} The
proof of Theorem [A|relies on the earlier work [MNI5], which provides a similar characterisation of the
positive energy condition for highest weight representations of Hilbert—Lie algebras.

To characterise the positive energy highest weight representations of g = EA:; (£) arbitrary, we use
the main results of [MN16], which allows to reduce the problem to the “standard” case.

Corollary B. The statement of Theorem |A| holds for arbitrary affinisations g = E;({’) of a simple
Hilbert—Lie algebra .

A more precise statement of Corollary [B|is given in Theorem below: the key point here is that
the explicit form of the isomorphism from g to one of the (slanted) standard affinisations of € provided
by [MNI6, Thm. A] also allows for an explicit description of the minimal energy sets in this more
general setting.

2. PRELIMINARIES

Notation. In this paper, we denote by N = {1,2,...} the set of positive natural numbers.

2.1. Locally affine root systems. The general reference for this paragraph is [MN16, §2.3 and §3.5]
(and the references therein).

Let J be an infinite set. Let Vi, := R(Y) C V := RY be the free vector space over J, with canonical
basis {e; | j € J} and standard scalar product given by (e;,er) = d;,. Note that we may extend
{-,-) to a bilinear form on Vi, x V. In the dual space (Vi,)* = R of Vg,, we consider the linearly
independent system {e; | j € J} defined by €;(ex) = d;x, and we denote by (-,-) the standard scalar
product on

Vin := spang{e; [ j € J} € (Vin)®

for which (ej,€x) = d;5, for all j, k € J.
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Any infinite irreducible locally finite root system A can be realised inside (VZ,(-,-)) for some
suitable set J, and is of one of the following types:

Aj={ej—ex | j ke d, j#k},
By = {te;,£(¢; L er) | j,k € J, j #k},
Cy:={£2¢;,t(e; tex) | j, k€ J, j#k},
Dy={%(e; £ ex) | .k € J, j#k},
BCj = {+tej, £2¢;,x(¢; L €x) | 4,k € J, j # k}.
Set
Vi=RxVxXR, Vin:=RxVi xR, V" :=Rx (Va)*xR and V& :=RxV{ xR,
where we identify V* with the dual of Vg, by setting
Az, hyt) = Aoz 4+ A°(R) 4+ Agt for all A = (Ao, A%, A\g) € V* and (2, h, t) € Vin.

In other words, the superscript x (resp. its absence) indicates that we are considering triples (z, h, t)
with h of the form h = > . ;hje; (resp. h = . ;hje;) for some h; € R, and the subscript fin
indicates that we in addition assume that only finitely many h; are nonzero.

Any infinite irreducible reduced locally affine root system can be realised inside

Vi, X Z~ {0} x Vg, x Z C Vg,
for some suitable set J, and is of one of the following types:
X=X, xZ for X € {A,B,C, D},
BY = (By x 2Z) U ({¢; | j € J} x (2Z + 1)),
CP = (C;x22)U (Dy x (2Z + 1)),
BCY .= (By x 2Z) U (BCy x (2Z + 1)).
Let A C IA/ﬁ*n be one of the above locally affine root systems Xgl) or XL(,2), where A C Vi is the
corresponding locally finite root system of type X ;. Thus A C {0} x A x Z. We set
Ao={a€eA]|(0,a0) €A}

Then Ay = A, unless A is of type BC§2), in which case Ag is a root subsystem of A of type Bj.
The assignment €; — e;, j € J, induces an R-linear map #: (Van)* — V : p ~ p¥ (which is the
identity if one identifies (Vgn)* with R7). For any a € A, we let

2
&= Ozﬂ € Van
(a, )

denote the coroot of . We will also view « as a linear functional on V' (and not just on V4, ) by setting
a(h) == (a* h) forallhecV.

Finally, denoting by x: Viin X V — R the bilinear form defined by

k((z1, h1,t1), (22, ha,t2)) = (h1, ha) — z1ta — 29t1,
we can extend the map #: (Vgn)* — V to an R-linear map

g0 V= Vo= (pe, 1% pa) = pF = (—pa, (1), —pe)

characterised by the property that

w((z,h,t)) = K((z, h,t), ut)  for all (2, h,t) € Vin.
The coroot of (a,n) € A is given by

(avn)v =
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Remark 2.1. As announced in the introduction, we will use the main results of [MNI6] to charac-
terise the positive energy highest weight representations of arbitrary affinisations of simple Hilbert—Lie
algebras. We wish to attract the attention of the reader to the fact that the choices of parametrisation
of these affinisations that we made in the present paper slightly differ from the choices made in [MN16],
and this in two respects (these choices being better suited for each of the papers). We now explain
these differences in more detail and relate the notation introduced so far to the context of affinisations
of simple Hilbert—Lie algebras.

Consider, as in [MN16], §3.1], a simple Hilbert—Lie algebra ¢, an automorphism ¢ € Aut(£) of finite
order N, and a maximal abelian subalgebra to of £€#. For N € N, we denote by

Loy () ={ € CF(R,E) | £(t + FF) = 07 (£(1) Vt € R}

the p-twisted loop algebra over £, whose elements are periodic smooth functions of period 2w N, /N.
In the present paper, we made the choice N = N, that is, we consider 27-periodic functions. This
is the first difference with [MN16], where the choice N = 1 is made. However, these two choices yield
isomorphic objects: explicit isomorphisms were provided in [MN16, Remark 4.3].

Let now N € {1, N, }, and let Dy(§) = &' be the standard derivation of £, y(£). Assume that the
corresponding affinisation

g=gnN = (R EBUJDO ,C%N(E)) ><150 R
of ¢ is standard, with set of compact roots A= A(g, t§)c Ci(t5)* with respect to the Cartan subalgebra
GL=RetyeR

of one of the types Af,l), B‘(,l), C((Jl), DF,l), BF,2), CSQ) and BC’((,Q) described above (see [MNT6| §3.4 and
§3.5]). Set ¢ = (i,0,0) € it; and d = (0,0, —i) € it¢.

The second difference is purely notational, and concerns the identification of the Cartan sullalgebra
t5 of g (or rather, of it§ C g¢) with the space of triples R x ity x R: the description of A inside
spang{¢; | j € J} x Z (which is the same in both papers) yields identifications

(2.1) Vi ~ity and VP 3ts (2, h,t) > ze+ h+ td,

where Vﬁ(? denotes the Hilbert space completion of Vg, and IA/ﬁ(IQI) =R x Vﬁ(fl) x R. The R-linear map
#: (Van)* — V then coincides with the map f§: ity — ity defined in IMN16l, §2.3 and §3.1], while its
extension #: V* — V coincides with the map f#: i(t5)* — it¢ defined in [MNI6, §7.2]. Similarly, the
bilinear form x on Vi (or rather, its extension to ‘A/ﬁ(?) coincides with the restriction to it§ of the
hermitian extension of the bilinear form « defined in [MN16], §3.4]. Finally, note that, following [MN16|

§3.4], the root (a,n) € A of the affinisation g1 of ¢ satisfies
(a,n)(h) = a(h) for heity, (a,n)(c)=0 and (a,n)(d)=n/N,.
Hence the reparametrisation provided by [MNI16, Remark 4.3] of (a, ) as a root of gy, yields that
(a,n)(z,h,t) = (0,a,n)(z,h,t) = a(h) +nt for all (z,h,t) € Vin,
in accordance with our identification of V* with the dual of ‘7ﬁn.

2.2. The Weyl group of A. Let S 7 denote the set of bijections of J, which we view as a subgroup of
GL(V) with w € Sy acting as w(e;) := e,(;). The support of a permutation w € Sy with fixed-point
set I C J is the set J\ I. We denote by S¢;) € S; the subgroup of permutations of S; with finite
support, and we view it as a subgroup of either GL(V') or GL(Vay).

We also let {£1}/ C R” act linearly on V = R’ by componentwise left multiplication: o(e;) = oje;
for o = (0;)jes € {£1}’. The support of an element o = (0;);c; € {£1}” istheset {j € J | o; = —1}.
We denote by {£1}(/) (resp. {il}g‘])) the set of elements of {£1}/ with finite (resp. finite and even)
support, and we again view {£1}(/) and {:I:l}é‘]) as subgroups of either GL(V') or GL(Vhy).
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We recall from [MN15] §2.2] that for X € {A, B,C, D, BC}, the Weyl group W(X) of type X
admits the following description:

W(A;) = Sy,
W(B;) = W(Cy) = W(BC;) = {+1}\/) x 5,
W(Dy) = {1357 % S,

We denote by W = W(Aq) the Weyl group corresponding to Ay, viewed as a subgroup of either
GL(V) or GL(Vﬁn) Thus W = W(X,) if A is of f type Xgl) or X(Q) (see .D Similarly, we denote
by W = W( ) the Weyl group correspondlng to A where X = Xf,l) or X; (%) s the type of A and we
view W as a subgroup of either GL( ) or GL(Vﬁn).

The group W is generated by the set of reflections {r(a,n) | (a,n) € &, o # 0}, where

(2.2) Plam) (2 hot) = (2, t) = (a(h) +nt) (525, &,0)  for all (2,h,t) € V.,

We view W as a subgroup of )//\7, using the identification
W= <T(a’0) | a € A0> CW.

For each x € Vj,, we define the linear automorphism 7, = 7(x) of 1% (resp. of ‘7ﬁn) by

(2.3) Tz (2, ht) = (z + (z,h) + Kz, o) Jh+tx t) for all (z,h,t) €V

2
Then 7,7y, = Tzy4a, for all z1,22 € Viy. Moreover, 7(q,0)7(a,n) = Tna for all a € A and n € Z.
Since for any o € A there exists some 3 € Ag such that r«, 0y = 7(3,0) (as can be seen from a quick
inspection of the locally affine root systems), we thus get a semi-direct decomposition

W =7(T) x W C GL(V),

where 7 is the additive subgroup of Vi, generated by {nd | (a,n) € 3} (see [HN14, §3.4] or else

[MNT6, §3.6]). Set Q := €D,c;Ze; C Vin. For W= W(X) of type X, one can then describe the
corresponding lattice T = T (X) C @Q of type X as follows (see [HN14, Proposition 3.12]):

A(1 {anejeQ| ZnJ—O}

jeJ jeJ
7BY) = TDWY) =T(C?) {Zn]e] €Ql Y ne 2z}
JjeJ jeJ
T(BY) {Zn]ej €Q|nj €22V eJ}
jeJ

T =T(BCY) =Q =2,

Thus any element @ € W can be uniquely written as a product W = 70w for some = € T, some
o € {£1}Y) and some w € S(jy. For z = 3. _;nje; € T, we call the subset {j € J | n; # 0} of J the
support of x.

jeJ

Remark 2.2. The Weyl group w may also be viewed, as in the introduction, as a subgroup of GL(‘A/*)
using the bijection §: V* — V, or in other words, by requiring that

(0.p)* = w.p* for all @ € W and pe vt
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2.3. The positive energy condition. In the sequel, we fix some
A=, A% N) ERXR xRaV* and x = (xe, X% xa) ER xR/ x R =V,
and we write
N = (Nj)jes =D _Njej €RT & (Viw)* and  x° = (dj)jes =Y _dje; €R7 =V,
JjeJ JjeJ

Definition 2.3. We say that the triple (J, A, x) satisfies the positive energy condition (PEC) for w
if the set /\(W X — ) is bounded from below. We moreover say that (J, A, x) is of minimal energy for
Wlfmf()\(WX X)) = 0, that is, 1f)\(wx x) > 0 for all @€ W.

Note that w.x — x € Vﬁn for any w € W so that A(w.y — x) is defined. Indeed, writing & = T,w
for some x € T and w € W, we have

W.x — X = Tow.(Xes X% Xd) — (Xes X% Xa)

= To (medjw(ej),xcl) - (szdjei’x‘i>

jeJ jeJ
2.4 Xd\T,T
( ) = (Xc + Zdj<w(ej)vx> + d<2 >7Zdjw(ej) + de7Xd) - (Xcvzdjej7Xd>
JjeJ jeJ JjeJ
= (Zdj<w ej) +Xd$,0> € Vﬁn.
jeJ JjeJ

Remark 2.4. Any character x: Z[ﬁ] — R can be identified with an element of V by requiring that

M) = £, x) o all j € Z[A].
With this identification, and since the Weyl group W preserves the bilinear form (see [MN16l, §3.6]),
we deduce for all @ € W that

XWX = A) = k(DN = N x) = w(@ ox —x, \F) = M@ Ly — ).
In particular, the conditions inf (X(W.A — )\)) > —oo and inf (X(W.A - )\)) = 0 are respectively

equivalent to the conditions inf ()\ (WX — x)) > —oo and inf ()\(W.X - X)) = 0. Thus the notions of
positive energy and minimal energy introduced in Definition [2.3]indeed coincide with the corresponding
notions from the introduction.

Let @ € W. Write @ = 7,ow™! for some z = Z cynje; € T, some o = (0;)jcs € {£1}/) and
some w € Sy (see . It then follows from that

Aw.x — x) = Arzow™ " x = x)

Xa{®, T
:/\(Zdj<aw1(j)ew1(j),x>+ <2 >’Zdj(0w1(j>6w1(j)—€j)+><d%0)

jeJ jeJ
2.5 Acxd
( ) = —‘,—)\ Za‘j 4 e], +Xd)\ +Zdw(J Uje] w(j))
JjeJ JjeJ
Ac
A Y e Y + Y e )
jeJ jEJ jeJ jeJ

2.4. PEC for locally finite root systems. The concept of PEC for a triple (J, A, x) extends the
concept of PEC for the triple (J, \?, x") introduced in [MNT5], §2.3]. We recall that the triple (J, A%, x°)
is said to satisfy the PEC for W if \°(W.x? — x") is bounded from below. A complete characterisation
of such triples (with some suitable finiteness assumption on "), analoguous to the one we give in this
paper, was provided in [MN15]. We now briefly review this characterisation, as it will be the starting
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point of our study of the PEC for triples (J, A, x): if (J, A, ) satisfies the PEC for W, then (J, A%, x°)
satisfies the PEC for W.

Let A, x be as in We first recall some notation and terminology from [MN15| Section 3]. Define
the functions

D:J—=R:j—d; and A: J—=>R:j— A,
as well as the sets J,, := A~!(n) for each n € R. For r € R, we also set
Johi={jeJ,|dj>r} and J5T:={j€J,|d; <r}.
Definition 2.5. We call \° finite if the subset A(J) of R is finite.
Definition 2.6. Let r,n € R. A subset I C J of the form J;" or J<" is said to be summable if
> jerldj —r| <oo.

Definition 2.7. Let I C J. We call r € R an accumulation point for I if either r is an accumulation
point for D(I), or if D(I') = {r} for some infinite subset I' C I.

Definition 2.8 ([MN15| Definition 5.2]). For a set J and a tuple \° = ();)je; € R”, we define the
following cones in R”:

Cuin(\0, A)) = {(d))jes R |Visjed: N <\ = d; >d,;},

Canin(\, By) = {(dj)jes € R’ |Vjed: N\jd; <0 and Vi,jeJ: [N <|)\| = |di| <d;l}.
We also define the vector subspace ¢1(J) := {(d;);e; € R | > jesldj| < oo} of R7.

We next recall the characterisation of triples (J, A%, x°) of minimal energy.

Proposition 2.9 ([MN15, Proposition 5.3]). Let X € {A, B} and set W = W(X ;). For a triple
(J, A%, x%), the following assertions are equivalent:

(1) inf A°OW.x° —xY) =0.
(2) X° € Cuin(A°, X ).

Note that for X € {C, D, BC}, if we denote by Cpin(\°, X ;) the set of tuples x° € R” for which
inf (A\°OW(X).x° — x")) = 0, then the inclusions

W(A;) SW(Dy) CW(By) = W(Cy) =W(BCy)
of Weyl groups imply that
Cinin(A?, BCy) = Crain(A°, C5) = Cruin(A°, By) € Crain(A°, Dy) € Crin (X%, A).
Finally, we recall the characterisation of triples (J, A\, x°) of positive energy.

Theorem 2.10 ([MN15, Thms 5.10 and 5.12]). Let J be a set, and let \° = (X\;)jes and X° = (d;) es
be elements of R7. Assume that \° is finite. Then for X € {A, B}, the following assertions are
equivalent:

(1) (J,A% x°) satisfies the PEC for W(X ).

(2) X° € Cuin(N0, X 5) + £2(J).

Lemma 2.11 ([MNI5, Lemma 5.8]). Let X € {B,C,D,BC}, and assume that \° is finite. Then
(J, A9, X%) satisfies the PEC for W(X ) if and only if it satisfies the PEC for W(By).
3. REDUCTION STEPS

For the rest of this paper, A = (A, A%, \q) and x = (xc, X%, xa) will always denote elements of
R x RY x R as in §2.3 In order to characterise the PEC for (J, A, ), we will need to make some
finiteness assumption on .

Definition 3.1. We call A Z-discrete if A\ # 0 and if the set of cosets {i—i +Z|je€ J} is finite.
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A more illuminating formulation of this Z-discreteness assumption will be given in below (see
Remark |3 - Note that the case A\, = 0 can be easily dealt with (see - below). On the other
hand, if we want A to correspond to some highest weight of an integrable highest welght module as
in Theorem |A] then we need A to be integral with respect to A in the sense that A((a,n)Y) € Z for
all (a,n) € A. The following lemma then shows that, for representation theoretic purposes, we may
safely assume A to be Z-discrete.

Lemma 3.2. Assume that A. # 0 and that X is integral with respect to A. Then X is Z-discrete.

Proof. Let i,j € J with ¢ # j, and for each n € Z, set 7, := (0,¢; — ¢j,n) € ‘A/f;‘n Then ~,, € A for

infinitely many values of n € Z. Since v,/ = (—n, e; —e;,0), the integrality condition on A implies that
Av)=-n e+ Xi— N €L

for at least two distinct values of n € Z, so that A\, € Q. Write A\, = m/p for some nonzero m,p € Z.

Then

:\\T—er—i- ~ZCZL+~7C Z for all 4,5 € J.

Fixing some ¢g € J, we deduce that

%‘+Ze{§ﬁg +247Z]s=0,1,...,m—1} forallje.J.

Hence the set of cosets {i—i +7Z | jedJ } is finite, so that A is Z-discrete, as desired. 0
We begin our study of the PEC for the triple (J, A, x) by some reduction steps.

3.1. The case A.xq = 0. In this paragraph, we investigate the PEC for the triple (J, A, x) in case
/\ch = 0.

Lemma 3.3. Assume that A\c = x4 = 0. Then (J, A, x) satisfies the PECforW\ if and only if (J, A%, x%)
satisfies the PEC for W.

Proof. This readily follows from ([2.5) in Section U

Lemma 3.4. Assume that Ao = 0 but xq # 0. Then (J,\, x) satisfies the PEC for w if and only if
one of the following holds:
(1) W= W(Agl)) and \° is constant.
(2) W V/V(Agl)) and \° = 0.
Proof. Assume that (J, A, x) satisfies the PEC for 17\/\, and set c =w =11in 1' Then
{Xdznj/\j | D njej € T}
jedJ jeJ
must be bounded from below. This is easily seen to imply (1) or (2), depending on the type of w.
The converse is an easy consequence of ([2.5)). O
Lemma 3.5. Assume that xq = 0 but Ao # 0. Then (J, A\, x) satisfies the PEC for w if and only if
one of the following holds:
(1) W= VV\(A(JU) and x° is constant.
2) W # W(AWM) and x° =o0.
Proof. Assume that (J,\, x) satisfies the PEC for 17\/\, and set c =w =1 in 1) Then
{)\Candj | anej € T}
jeJ jeJ

must be bounded from below. This is easily seen to imply (1) or (2), depending on the type of w.
The converse is an easy consequence of ([2.5)). O
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3.2. The case A\.xq # 0. In view of we may now assume that A.xg # 0. We begin with two
simple observations.

Lemma 3.6. Assume that (J, A, x) satisfies the PEC for W and that Aexd 0. Then Aoxq > 0.

Proof. Fix some ¢,j € J with 4 # j, and for each n € N, consider the element x, = 2n(e; —e;) € T.
Setting 0 = w =1 and = = x,, in (2.5, the PEC then implies that

{A exan® + 2Xo(d; — dj)n + 2xa(Ns — Aj)n | n € N}
must be bounded from below, yielding the claim. O
Lemma 3.7. Assume that A.xq > 0. Then the following are equivalent:

(1) (J, A, x) satisfies the PEC for W.
(2) (J, Asts Xst) := (J, (1, ﬁ—i, ), (0 X 1)) satisfies the PEC' for W.

) E7
More precisely, inf )\(W\.X — X) = AcXq - inf Agg (W\-Xst — Xst)-
Proof. This readily follows from ([2.5)). O

Thus, in order to investigate the PEC for (J, A, x), we may safely make the following normalisation.

Convention 3.8. From now on, unless otherwise stated, we assume that A\, = x4 = 1 and that
Ad = Xe = 0, so that
A=(1,A%0) and x=(0,x",1).

Given @ € W, which we write as @ = T,ow™! for some z = >
some o = (0;);es € {£1})] we can now rewrite (2.5)) as

R 1
AM@x =x) =3 Doni Y moidug) + Y nd + > A(idug) — dy)

jegmiej € T, some w € S and

jeJ jeJ jedJ JjeJ
(3.1) . . )
152((7’Lj+>\j+0'jdw(j)) 7(>\j+dj) )
jeJ

3.3. Translation invariance. We introduce the following notation. Given x € R, we set
[2] .= |z + 3] and (z):=x—[z] €[-1,12).
In other words, [z] is the closest integer to z, with the choice [z] = [#] if € § + Z. Given a tuple
m = (m;)jcs € R7, we then define the tuples
[m] = (Im])ses €2 CRY and (m) = ((my))jes € [-3, 1)’ C R,
We also set
Am = (LA =m,0) and ym = (0,x° +m,1).

Lemma 3.9. Let m = (m;);es € 77 . Ifﬁ s of type BSZ), we moreover assume that m; € 27 for all
j€J. Then inf)\(W.X — X) = inf A\, (W~Xm — Xm)- In particular, the following are equivalent:

(1) (J, A\, x) satisfies the PEC for W.

(2) (J, Ams Xm) satisfies the PEC for W.
Proof. Given o € {#1}(/) and w € S(y such that ocw™! € W, we will prove that

inf A “lx—x)=inf A 1 Xm —
xHelT (TmO"LU X X) muelT m(ngw Xm Xm)a

yielding the claim. Let o = (0;);cs € {£1}Y) and w € S be as above, and let z = djesnie €T.
Set

¥ =24 (Tu) M) — M)
jeJ
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One easily checks that z’ € 7. Moreover, (3.1 implies that

_ 1
Am(7e0w ™! Xm — Xm) = 3 > ((”j — M+ Tw) M) + A + Twiydu))” — (A + dj)Q)
jed

Mrwow™ x = x).

We deduce that
inf Am (720w ™' xm — Xm) > inf Mrzow ™ty — x).
Inf Am(7200™ Xm — Xm) 2 Inf A(Tzow™"x —x)

The same argument with (J; A, x) replaced by (J, Am, Xm) and m replaced by —m yields the inequality
in the other direction, as desired. O

Remark 3.10. Note that for m = [\°] € Z7, the passage from (J,\,X) to (J, Am, Xm) amounts to
replace A\ by A2 —[\°] = (\%) and x° by x°+[A°]. On the other hand, if A’ = (A\°), then ) is Z-discrete
if and only if A\ is finite.

4. CONSEQUENCES OF THE PEC FOR W(Af,l)) AND W(C((,l))

Proposition 4.1. Assume that \ is Z-discrete and that \° = (A\Y). Assume moreover that (J,\,x)
satisfies the PEC for W(Af,l)). Then the following hold:

(1) D(J) is bounded.

(2) If rmin and rmax respectively denote the minimal and mazimal accumulation points of J, then

Tmax — Tmin S 1.

(3) If Tmax — T'min = 17 then
Z (dj - Tmax) <oo and Z (Tmin - dj) < 00,

jedt jeJ-
where Jy :={j € J | dj > rmax} and J_ :={j € J | dj < "min}-

Proof. (1) Note first that, by assumption, A(J) is finite and contained in [—3,1). In particular, to
prove that D(J) is bounded, it is sufficient to prove that D(.J,,) is bounded for each m € R, where
o = A~Y(m). If J,, is finite, there is nothing to prove. Assume now that .J,, is infinite, and write it

as a disjoint union J,, = I_1 Uy UI; of three infinite subsets. Define the tuple m = (m;),cs € 7”7 by

[k ifjel (k=-1,0,1),
M= 0 otherwise.

Since (J, Am, Xm ) satisfies the PEC for W(Asl)) by Lemma the triple (J, \~m, x°+m) satisfies the
PEC for W(Aj). In particular, since m is not an extremal value of the set {\; —m; | j € J} and since
Aj —mj = m for all j € Iy, we deduce from [MNI5, Lemma 4.4] that D(Iy) is bounded. Repeating this
argument with Iy and I permuted yields that each of the three sets D(I), k = —1,0, 1, is bounded,
and hence that D(J,,) is bounded, as desired. This proves (1).

(2) Since D(J) is bounded, the minimal and maximal accumulation points ryi, and 7.y of J indeed
exist. Moreover, since A(J) is finite, there exist some m,n € R such that rp.y is an accumulation
point for J,,, and iy, is an accumulation point for J,,. In particular, m,n € A(J), so that

1 1

For short, we set 7, := rmax and r, := ry,. Fix some ¢ > 0, and choose some (disjoint) infinite
countable subsets I,, = {i1,42,...} C J, and I,, = {41, j2, ...} C J, such that

Sl —dil < and Yyl <

seN seN
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For each k € N, let wy € S(y) be the product of the transpositions 75, s = 1,..., k, exchanging i, and
Js- We also set

k
:Zezg e;.) € T(AY).

We deduce from (3.1]) that for each k € N,

k k
Mrowy ' x =X) =k+ > (dj, —di)+ > i, =)+ > (A, — i — i)
s=1 s=1 s=1
k k
=3 (4N, =N +dy, —di) =Y (1+m—n)(1+d;, —di,)
s=1 s=1
k
=k(l+m—-n)1+r,—rm)+ 1 +m—n) Z( (dis_rm))
s=1

<k(l+m-n)14+r, —7m)+2(14+m—n).

Since k € N was arbitrary, the PEC for W(Asl)) then implies that
I+m-—n)(14r, —ry)>0.

Since 1 +m — n > 0 by assumption, we deduce that r,, — r, < 1, yielding (2).

(3) Finally, assume that rmax — rmin = 1. We prove that ) jedy (dj — rmax) < 00, the proof for
J_ being similar. If J is finite, there is nothing to prove. Assume now that J is infinite. Let
I, = {i1,42,...} be an arbitrary infinite countable subset of J, so that

di, — Tmax >0 forall s e N.
Let € > 0 be such that
[Ai —Aj| <1—€ foralli,jelJ,
and choose some infinite countable subset I_ = {ji, j2,...} € J \ I such that

Z |Tm1n - Wy

seN

< €.

Defining the elements xy, wy for k£ € N as above, we deduce from the equality mnax — min = 1 that

k
Arewi b =x) = > (L+ X, = N +dj, —di,)

s=1
k k
(1 + )‘is - )\JS)(djs - 7Amin) + Z (1 + Ais — )‘js)(rmax — dis)
s=1 s=1
k k
S22|Tmin Z 1+AZ<7 ]s)'|disirmax|
s=1 s=1

Since k € N was arbitrary, we deduce that
37 ()~ Fmax) <2 — e Linf AW(AT).x — x)
Jely

for any infinite countable subset I, of J,, yielding the corresponding assertion for I, replaced by J.
This concludes the proof of (3). O
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For a tuple v = (v;)jcs € R/, we set
v| := (Jvj])jes € RY.

Proposition 4.2. Assume that \° = (\°) and that (J, \, x) satisfies the PEC for W(Cgl)). Letm € R.
Then the following hold:

(1) If |m| < 1/2, then T2 and T Y% are summable.
(2) If |/m| = 1/2, then J' and J35~1 are summable.

(3) (J, =X, [(x®)]) satisfies the PEC for W(A}).

(4) Xje, [Nidj| < oo, where Jy :={j € J | A\;d; > 0}.

Proof. (1) Assume that |m| < 1/2. Fix some € > 0 such that |m| < 1/2—e. Let I be any finite subset
of JM? (resp. Jiflﬂ), so that |d;| > 1/2 for all j € I. Let o = (0),es € {£1}) with support in
I be such that mo;(d;) <0 for all j € I. Then, for all i € I,

(m+0;d;)" = (m+0;(d;))" = (Jm| = [(d)])* = (Im| = {d;)])>.

Consider also the element x = >, nje; € T(CSI)) defined by n; = —[m + o0;d;] for all j € I. We
then deduce from (3.1)) that

1

Mrox =x) = 5 2 (0 +m+0,d) = (m+d;)?)
JeI

;ng; (<m+ ajd;)” = (m+ dj)z)

1
< 522 ((Iml = [dD? = (im| - |d;1)?)
jel
1
= =5 > (Il = 1)) (1d;] + ()] = 2fml).
Jjel
Note that |d;|+|(d;)| > 1 for all j € I, and hence |d;|+ |(d;)| —2|m| > 2¢ for all j € I. Since moreover
|dj| = (dj)] = (ld;] = 1/2) + (1/2 = [{d;)]) > 0 for all j € I,
we deduce that
(4.1) Mraox =) € =€ 3 (5] = [(d3)]) < =Y (1d;] = 1/2).
Jjel Jel
Since the finite subset I of J;,;'/? (resp. J,fflﬂ) was arbitrary, the PEC for W(C’y)) implies that
pall (resp. anfl/z) is summable, proving (1).
(2) Assume next that |m| = 1/2. Let I be any finite subset of J.;! (resp. J5~!), so that |d;| > 1
for all j € I. Defining o and x as above, we again get that

1
ATeox = x) < =5 D (Id;] = [dy)) (1] + [(d;)] = 2Im]).
jel
Since |d;| — [(d;)| > 1/2 and |d;| + [(d;)| — 2|m| = |d;| + |{(d;)| —1 > 0 for all j € I, we deduce that
1 1
(1.2 Mrox =) <~ 37 (1 4 )]~ 1) <~ 37 (1~ D).
Jjel jeI

Since the finite subset I of J;> (resp. J;5~') was arbitrary, the PEC for )7\/\(031)) implies that J>!
(resp. J571) is summable, proving (2).

(3) We now prove that (J, —|A%],[(x")]) satisfies the PEC for W(A;). Let w € S(;), and let I be a
finite subset of J containing the support of w. Let ¢ = (0;) et € {£1}) with support in I be such
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that A;joj(dy(;)) < 0 for all j € I. Consider also the element x = > . nje; € ’T(C!(,l)) defined by
nj = —[\j + 0jdy(;)] for all j € I. As before, we deduce from (3.1) that

_ 1
)\(maw 1.X — X) = 5 Z ((nj + )\j + Ujdw(j))2 - ()\j + dj)2)
jel

1
=3 > (<)‘j +05dug)” — O+ dj)2)
jeI

< ;Z (W 1w ))? = (] = 151)?)
= Il ()] = Kdwi))) + %Z(Kdm—Idjl)(ldj|+|<dj>|—2|Aj|)~
jerl jerl

Since [(d;)| — |d;| = 0 for |d;| < 1/2, while |d;| + [{d;)| — 2|A;| > 0 for |d;| > 1/2, we deduce that
(i) = 1d;1) (Idj| + [{d;)| = 21A;]) <0 for all j €1,
and hence
(4.3) Mreow™ x = x) < D A1 ()] = [(duwi)]) = =21 (w1 OO = 1))
jel

As w € S(j) = W(A;) was arbitrary, this proves that (J, —|A°],[(x")]) satisfies the PEC for W(A;),
yielding (3).

(4) Finally, let I be an arbitrary finite subset of .J, and consider the element o = (0;) ey € {£1}(/)

with support I. Then
Mox —x) =Y Nilojdy —dj) = =2> " Ndj = =2 |\;dy.
jeJ jel jel
Hence >, 7 [\;d;| < —5-inf A\W(C).x — x) for any finite subset I C .J,, proving (4). This concludes
the proof of the proposition. O

5. MINIMAL ENERGY SETS

We first characterise the triples (J, A, x) of minimal energy for W7 where as before A = (1,\°,0)
and x = (0,x°,1) for some tuples \°, x° € R7. Although, for the purpose of proving Theorem [A] we
will only need to describe such triples for the types Agl) and CSI), we also provide, for the sake of
completeness, explicit descriptions for the other types.

Definition 5.1. For a tuple A\° = (\;);e; € R/ with A% = (A\%), we define the following convex subsets
of R7. We set

CoinW, AN =R- 14+ {(d))jes €R? |VjeJ: |dj| <3 and VijeJ: N <A = d>d;},

where 1 € R” is the constant function 1. We also let Ciyin(A°, 051)) denote the set of (d;)jcs € R’
satisfying the following four conditions:

(Cl) VjeJ: |)\]‘<% - |d]‘§%

(C2) VieJ: |\|=1 = |dj| <1

(C4) Vi,jeJ: [Nl <IN = [da)| < [(dj)l-

The following lemma, which contains some observations that will be used in the sequel, is an easy
exercise.
Lemma 5.2. Let a,b,xz € R.
1) If -1 <a, b< 1, then (a£0)*> (Ja| — |b])%.
(2) fflff| <3 then \wl = [{z)].
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(3) If 5 < |z < 1, then |z| + |(z)| =
(4) If [z[ = 1, then |z] — [(z)] > 1

Proposition 5.3. Assume that \° = (A\°). Then the following are equivalent:

(1) inf)\(VV\(Cgl)).X —x) =0.
(2) x° € Cmin(A°,CSM).

Proof. (1)=(2): Assume first that ian(W(CSl)).X — x) = 0. We have to prove that x° = (d;);es
satisfies the four conditions (C1)—(C4) from Definition Since W(By) C W(CL(,D), it follows from
Propositionthat X% € Cmin(A% By), so that (C3) is satisfied. To check (C1), let j € J be such that
|Aj| < 1/2 and assume for a contradiction that |d;| > 1/2. Fix some € > 0 such that |\;| < 1/2 —e€. It
then follows from (4.1)) that

Areo.x = x) < —e(ld;| = 1/2) <0

for some suitable o € {£1}(/) and = € T(Cgl)) with support in I := {j}, contradicting (1). Similarly,
to check (C2), let j € J be such that |\;| = 1/2 and assume for a contradiction that |d;| > 1. It then
follows from (4.2)) that

1
Mrzox — x) < —Z(Idjl -1)<0

for some suitable o € {£1}(/) and z € T(Csl)) with support in I := {j}, again contradicting (1).
Finally, to check (C4), let 4,5 € J with i # j and let w € S ;) be the transposition exchanging i and
j. It then follows from (4.3) that

Mrzow™ x = x) < [Nl - (1(da)] = duwi@)]) + N1 (1Kdg)] = Hewin)]) = (il = [N D({di)] = [(d;)])

for some suitable o € {£1}() and z € T(Cgl)) with support in I := {4, j}, yielding the claim.

(2)=(1): Assume next that x" € Cmin(AO,Cgl)). Let @ = r,ow™ ! € VV\(CSI)), for some w € Sy,
some 0 = (0;)jes € {£1}(Y) and some z = D jesnje; € 'T(C!(,l)). Let I be some finite subset of J
containing the supports of z, ¢ and w. It follows from that

N 1
Awx =x) =5 > ((”j + A+ 0idu()? = (A + dj)z)

Jel

z];(A j+ i) = O+ d;)?)

:;;(A F o)) — O +d;)?)

= ;;e; (Al = [dw ) = (g +d,)?) (Lemma [5.2(1))
;J61< ] = [dwiin)? = (2] = 1;1)?) by (C3).

On the other hand, the rearrangement inequality (see [MN15, Lemma 2.2]) and (C4) imply that

DIl (= [dwi)| + [(d5)]) = 0.

jeI
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Hence
A(@x—x)E%Z((’AJ‘\—W M) = (0] = 14,)2)

jerl

:,Z = [di[*) + 32 Al (= [{dup)] + s )
jer JeI

zfz — i)+ ST (|dg| = [4dy)])
JerI Jel

:fz )| = ;) ([d)] + |d;] = 212])-
jerl

Let now j € I. If |\;| < 1/2, then |d;| < 1/2 by (C1). On the other hand, if |\;| = 1/2, then |d;| <1
by (C2). Hence either |d;| < 1/2, in which case |[(d;)| —|d;| =0, or else 1/2 < |d;| < 1 and |\;| = 1/2,
in which case
[(di)| + [di| = 2171 = [(d;)| + |d;| =1 =0.
Thus (|(d;)| — |d;]) (|(d;}| + |d;| — 2|A;]) =0 for all j € I, so that
Aw.x —x) > 0.

Since W € W(C((,l)) was arbitrary, this concludes the proof of the proposition. O

To describe the triples (J; A, x) of minimal energy for W(Agl)), we could proceed as in the proof of
Proposition However, it will be easier to start from the description provided by [HN14], which we

now recall. .
By [HNI14, Thm 3.5(i)], the set W.A — X is contained in the cone —C), where

Cy = cone{y € A | A(%) > 0}.

Conversely, if v € AN CA, then —y € Ry(ry(A) — A) C cone{W)\ A} because 7, (A) = A — A(¥ )
This shows that cone{W A — A} = —C). In particular, the triple (J, A, x) is of minimal energy for W
if and only if

(5.1) A¥) >0 = ~(x) <0 forallye A.
Proposition 5.4. Assume that \° = (A\°). Then the following are equivalent:
(1) inf AW(AP).x = x) = 0.
(2) X € Coin (X2, AD).
Proof. Set W = W(Af,l)) and let A be the corresponding root system of type Af,l). Note that the

coroot of (0,¢; —ex,n) € A is given by (—n,e; —eg,0). By 1 , the first statement of the proposition
is thus equivalent to the condition

(5.2) Aj— A >n = dj —dp < —n for all distinct j,k € J and n € Z.

Since —= < Aj <3 L for all j € J by assumption, condition is empty for n > 1. For n = 0, we get
(5.3) Aj > A, = d; <dj for all distinct j, k € J.

Similarly, for n < —1, we get

(5.4) d;j —di <1 for all distinct j, k € J.

In turn, the conditions and are satisfied if and only if Y0 € Ciyin(A°, Af,l))7 as desired. O

We now describe the minimal energy sets for the other types.
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Definition 5.5. Let A” € RV with A’ = (\%). For X € {B"), DY B ¢? BC®}, we denote by
Cmin(\%, X) the set of tuples x° € R’ such that inf)\(W(X).X — X) = 0, where A = (1,\°,0) and
x = (0,x%1). Note that, in view of Propositions and this definition is coherent with the
corresponding notation for X € {Asl), Csl)}.

Lemma 5.6. Assume that \° = (\°). Then x° € Crin(AY, Dgl)) if and only if X° € Cnin(A\°, D) and
the following conditions hold:

(D1) For all distinct j,ke J : =1 <dj —di <1.

(D2) For all distinct j,k e J : =1 <d; +dj <2.

(D3) For all distinct j,k € J : dj +d, <1 or Aj =\, = —3.
Proof. The condition (5.1f) for the roots of the form v = (0, £(¢; +€), n) with j # k can be rewritten
as

(5.5) £ (N + M) >n = £(d;j +di) < —n for all distinct j,k € J and n € Z,

so that Cmin(AO,Dgl)) is characterised by the conditions 1) and l} For n = 0, the conditions
1) and 1) amount to x° € Cpnin(A°, D). Since —% <A< % for all j € J by assumption, the

condition (5.5 is empty for n > 1, and equivalent to (D2) and (D3) for n < —1. Finally, the condition
(5.2)) for n # 0 amounts to (D1). This concludes the proof of the lemma. O

For an explicit description of the set Cpin (A, D), we refer to [MN15, Remark 5.9].

Lemma 5.7. Assume that \° = (\°). Then x" € Cmin(AO,Bgl)) if and only if one of the following
holds:

(1) \j=-1/2and0<d; <1 foralljeJ.

(2) There is some i € J with A\; # —%, X° € Cin(A\°, By), and (D1)-(D3) hold.
Proof. The condition (5.1)) for the roots of the form v = (0, e;,n) is equivalent to

(5.6) tAj>n = +d; <—n forallj€Jandne€Z,
so that Cpin(\°, B.(Jl)) is characterised by the conditions 1 , ll and 1) For n = 0, these three
conditions amount to X € Ciin(A?, By). As we saw in the proof of Lemma the conditions (5.2))

and (5.5) for n # 0 are equivalent to the conditions (D1)~(D3). Finally, since —1 < X; < 1 for all
j € J by assumption, the condition (5.6)) is empty for n > 1, and, for n < —1, it is equivalent to

(5.7) |d;] <1 forall jeJ.

Assume first that there is some i € J such that \; # —3. Then for any j € J the conditions (D1)-

(D3) imply that —1 < d; £d; < 1 and hence that —2 < 2d; < 2, so that holds. Thus, in
that case, x° € Cmin(AO,Bgl)) if and only if (2) holds. Assume next that A\; = —1/2 for all j € J.
Then x° € Chnin(A\°, By) implies that d; > 0 for all j € J, while implies that d; < 1 for all
j € J. Conversely, if (1) holds, then it is easy to check that x° € Cppin(A\Y, Bs) and that the conditions
(D1)-(D3) and hold, as desired. O

Lemma 5.8. Assume that \° = (\°). Then
Conin(\0, BCY) = Coatn N0, €Y and - Crain(A°, CP) = Couin (A0, BIY).

Proof. This readily follows from the fact that 17\/\(3052)) = 17\/\(051)) and W(Bgl)) = W(Cf)). O
Lemma 5.9. Let A = (1,A°,0) and x = (0,%x°, 1), and set Ay := (1, )‘70,0) and x2 := (0, X?O, 1). Then
inf A(W(BSQ)).X —x) =4-inf X\ (W(Cgl)).xg - X2)-

In particular, if A’ = (%), then Chpin(AY, B‘(,Q)) =2 Cmin(%o, Cgl)),
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Proof. Let W = S, x {£1}(Y), so that W(Cl(jl)) =W x 7(Q) and W(BSQ)) =W x 7(2Q). Then for
any z =), nje; € Q, any w € S¢y) and any 0 = (0)es € {£1}) | we get from 1' that

. 1
Arawow™ x =x) =5 ) ((2nj + A5+ 0jdu) = (N + da‘)g)
jeJ

d A dj\2
_ Aj wU)) (4 4)
zz<(nj+ o, Nyl
JjeJ
=4 da(meow X2 — X2),

yielding the claim. O

Using Lemmas and we can now restate the results of this section for general A =
(Ae; A% Aq) and x = (xe, X" xa) With Aexa # 0.

Definition 5.10. Let A = (A, A% Ag) € R x RY x R with A, # 0. For X = X" or X'? one of the
seven standard types from §2.1] we set

Conin(\, X) = {x = (xe: X" Xa) ERXR? xR [ Axa >0 and X +[2] e Cmm(<AO>,X)}.

Theorem 5.11. Let A = (A, A% A\g) € R x RV x R with A, # 0, and let X = X or X be one
of the seven standard types from §2.1. Then for any x = (Xe; X%, xa) € R x R7 x R with xq # 0, the
following assertions are equivalent:

(1) inf A\(W(X).x — x) = 0.

(2) x € Chmin(A, X).

6. CHARACTERISATION OF THE PEC FOR \ Z-DISCRETE

We are now in a position to prove an analogue of Theorem for triples (J, A, x).

Lemma 6.1. Let X € {AD CV}. Let A x° € RY and (x°)' € £1(J). Set A = (1,A%,0), x =
(0,x°,1) and X" = (0, (x°)",0). Then (J,\,x) satisfies the PEC for W\(X) if and only if (J,\,x +X')
satisfies the PEC for W(X).

Proof. Set W = 17\7()()7 and assume that (J, A, x) satisfies the PEC for W. Since
ian(W.(x +X) = (x+x)) = ian(W.x -x)+ ian(W.X’ -,

the triple (J, A, x +x’) then satisfies the PEC for w by Lemmaand [MN15], Lemma 5.4]. Replacing
X% by x° + (x°)" and (x°)" by —(x°)’, the converse follows. O

Theorem 6.2. Assume that \ is Z-discrete and that —% <A< % for all j € J. Then the following
are equivalent:

(1) (J, A\, x) satisfies the PEC for W(A(Jl)).

(2) X° € Conin (X2, AV + 21 ().

Proof. (2) = (1): If x° € Cmin()\o,Agl)) + 1(J), then (J,\,x) satisfies the PEC for W(Agl)) b,
Proposition [5.4] and Lemma

(1) = (2): Assume now that (J, A, x) satisfies the PEC for W(A(Jl)), and let us prove that, up to
substracting from XO some element of £1(.J), one has x° € Cppin(\°, Af,l)). Note that, by Lemma
replacing x° by x° — (x°)’ for some (x°)" € ¢1(J) does not affect the fact that (J, \, x) satisfies the
PEC for W(A(l))

Slnce (J, )\0, x°) satisfies the PEC for W(A ), it follows from Theorem“ 2.10| that, up to substractmg
from x° some element of ¢!(.J), we may assume that x° € Crin(A\°, A;). By Proposition the set
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D(J) is bounded, and if ryi, and rpax respectively denote the minimal and maximal accumulation

points of J, then ryax — rmin < 1. Set
ro— Tmin T Tmax cR.
2
Then, up to replacing x° by x* —7-1 € Cnin(A\’, A7), we may moreover assume that r = 0, so that
[Tmina 7‘max] g [_%a %}

Set Jy :={j€J|dj>1/2} and J_ :={j € J | dj < —1/2}. Then either |[Fyi|, |rmax| < 3, in which
case Jy and J_ are both finite, or else ryax — Tmin = 1, in which case

Z (dj — 3) = Z (dj — rmax) < oo and Z (=3 —dj) = Z (Pmin — dj) < 00

jETs jeTy jeg- jed_
by Proposition (3) In all cases, the tuple (x°) = (d})jes defined by

dj—1/2 ifdj>1/2,
dy=¢ dj+1/2  ifd; <—-1/2,

0 otherwise

belongs to £1(J). Note that x° — (x°)" € Ciuin(A, A;). Indeed, this follows from the fact that for all
1,7 € J:
Hence, up to replacing x° by x — (x°)’, we may assume that x° € [—3,1]7 N Cruin(A°, A;) C
Crin(A\°, A 1)) This concludes the proof of the theorem. O

Theorem 6.3. Assume that \ is Z-discrete and that \° = (\°). Then the following are equivalent:
(1) (J, A, x) satisfies the PEC for W(C’J ).
(2) X° € Conin(\%, CV) + £1(J).

Proof. (2) = (1): If x° € Cmin(AO7C§1)) + (1(J), then (J, A, x) satisfies the PEC for W(C&l)) by
Proposition [5.3] and Lemma

(1) = (2): Assume now that (J, A, x) satisfies the PEC for W(Csl)), and let us prove that, up to
substracting from X" some element of El( ), the four CODditiOnb (C1)—(C4) from Definition are
satisfied by x°. Note that, by Lemma replacing XY by x¥ — (x°) for some (x")" € £1(J) does not
affect the fact that (J A, X) satisfies the PEC for W( ! ))

Since ( =AY (¢ >|) satisfies the PEC for W(AJ) by Proposition 3), it follows from The-
orem [2.10] that, up to substracting from x° some element of ¢(J), we may assume that |(x°)| €

Crnin(— |)\ l, AJ) In other words, we may assume that

Vi,j e J: [Nl <Al = [{di)] < [(dj)l,

hence that (C4) is satisfied.
We next claim that the tuple (x°)" = (d});es defined by

d] |<d>| 1f|/\j|<1/2 and dj>1/2,
dy = ¢ dj+[(d)] if |\j| <1/2 and dj < —1/2,
0 otherwise

belongs to ¢! (.J). Indeed, this follows from Proposition (1) and the fact that for d; > 1/2, one has
|dj = )| = dj = {d;)| = (dj — 3) + (5 = [{d;)]) < 2(d; — 3),
while for d; < —1/2, one has
|dj + [(dj)l| = —dj — [{dj)| = (=d; — 3) + (5 = {d)]) < 2(=d; — 3).

Note moreover that
(dj — d})| = |(d;)| forall j € J,
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so that x? — (x°)’ still satisfies (C4). Hence, up to replacing x° by x° — (x°)’, we may assume that x°
satisfies (C1) and (C4).
Similarly, we claim that the tuple (x°) = (d})jers defined by

dj+|<dj>|f]. 1f|)\]|:1/2 anddj>1,
d;: d]—|<d]>|+]. 1f|)\]|:1/2 and dj<—].,

0 otherwise

belongs to ¢!(.J). Indeed, this follows from Proposition (2) and the fact that for d; > 1, one has
|dj + [{d)| =1 = dj — 1+ [{d;)| < 2(d; — 1),
while for d; < —1, one has
|dj = [{d)| +1] = =dj — 1+ [{d;)] < 2(~d; - 1).
Since moreover
(dy — )] = ()] forall j €7,

X% — (x°)’ still satisfies (C4). Since clearly x° — (x°) also still satisfies (C1), we may thus assume, up

to replacing x° by x° — (x°)’, that x satisfies (C1), (C2) and (C4).
Finally, it follows from Proposition [£.2(4) and the fact that A(.J) is finite that

> ldj| < o0,

JjeJy
where Jy := {j € J | A\jd; > 0}. Hence the tuple (x°) = (d});e. defined by

oo 2 A >0,
J 0 otherwise
belongs to ¢1(.J). Again, as
{dj — dj)| = [{d;)| for all j € J,

X% — (x0)’ still satisfies (C4). Since clearly x° — (x°)’ also still satisfies (C1) and (C2), we may then

assume, up to replacing x° by x° — (x°)’, that x° satisfies (C1), (C2), (C3) and (C4), and hence that
X' e C’min(/\o7 C’Sl)). This concludes the proof of the theorem. O

Proposition 6.4. Let X be one of the types Bgl), DSI), 052), and BC§2). Assume that \ is Z-discrete.
Then (J, A, x) satisfies the PEC for W(X) if and only if it satisfies the PEC for W(Cgl)).

Proof. From we deduce the following inclusions:
(6.1) WAs) € WD§) € WBY) = W(CF) c W(BCE) = W(ch).

It is thus sufficient to prove that the PEC for W\(D(Jl)) implies the PEC for VV\(CSI)).

Let us thus assume that (J, A, x) satisfies the PEC for V/\7(D(Jl)). In order to prove that it also satisfies
the PEC for W(C.(]D), we may assume by Lemma that A’ = (A\%). Moreover, the above inclusions
show that (J, A, x) satisfies the PEC for VV\(ASU). In particular, D(J) is bounded by Proposition [4.1(1).
Set C' = sup, ¢ ; |d;]-

Let w € W(C’y)), which we write as @ = 7,0w™! for some z = >jesnjej € @, some w € Sy
and some 0 = (0;)jes € {#£1}V). Let I C J be the reunion of the supports of z, w and o. Pick

any ig € J\ I, and let o' denote the element of {+1}(/) with support {io}. Then one may choose
2’ €{0,e;,} CQ and o’ € {1,0%} C {£1}(Y) such that

W = Tpppoc’w™ € W(Dsl)).
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Moreover, (3.1)) yields that

M.x —x) = : > (("j + A+ jdu)? = (N + dj)2>

24
Jjel
A, 1 2 2
2 M@ x =20 = 5 (L Pigl + i) + (Nig| + 1o )?)
> \N@'.x — x) — (3/2+ C)2.
Hence (J, A, x) satisfies the PEC for W(C’Sl)), as desired. O

0 0
Proposition 6.5. Let A = (1,A°,0) and x = (0,%x°, 1), and set \g := (1, )‘7,0) and x2 := (0,%,1).
Then (J, A, x) satisfies the PEC for W(Bf)) if and only if (J, A, x2) satisfies the PEC for W(ijl)).
Proof. This readily follows from Lemma [5.9] O

Using Lemmas and we can now restate the results of this section for general A =
Aes A% Ag) and X = (xe, X% xa) with Aexa # 0. Recall the definition of the cone Cpin(), X) in
this setting (Definition [5.10). We denote again by ¢!(J) the set of (x¢, X", xq) € R x R/ x R with
Xe = Xa =0 and x° € £1(J).

Theorem 6.6. Let A = (A, \°, \g) € R x R x R with \. # 0 be Z-discrete, and let X = Xgl) or

XSQ) be one of the seven standard types from . Then for any x = (Xe, X°, Xa) € R x RY x R with
Xd # 0, the following assertions are equivalent:

(1) (J, A, x) satisfies the PEC for W(X)
(2) Aexa >0 and x € Cmin(\, X) + £1(J).

Proof. For X = Agl), this follows from Theorem For X = C&l), this follows from Theorem For
X e {BSI), DE,I), 032)’ BCSQ)}, the implication (1)=-(2) follows from Theorem and Proposition
together with the fact that Cmin(A,Cgl)) C Cmin(A, X) as W\(X) C W\(Cgl)). Conversely, (2)=(1)

follows from Lemma Similarly, for X = BSQ), the implication (1)=-(2) follows from Theorem
and Proposition together with Lemma Conversely, (2)=-(1) follows from Lemma O

Proof of Theorem [A] Since ) is Z-discrete by Lemma [3.2] this follows from Theorem [6.6] O

7. POSITIVE ENERGY REPRESENTATIONS OF DOUBLE EXTENSIONS OF HILBERT LOOP ALGEBRAS

We conclude this paper with a more precise statement of Corollary [B] As announced in the intro-
duction, Corollary [Bf can be deduced from Theorem [A| by using the main results of [MN16]. However,
as noted in Remar the definition of loop algebras in this paper and in the paper [MN16] slightly
differ, and we now do the extra work required to pass from one convention to the other.

Let ¢ be a simple Hilbert-Lie algebra and ¢ € Aut() be an automorphism of £ of finite order N,,.
For N € N we set, as in Remark [2.1]

Lon () ={€ C¥(R,E) [ £(t + FF) = 07 (£(1) V¢ € R}

The convention in the present paper is thus to take N = N, while the convention in [MNI16| is to

take N = 1. Let ¢y be a maximal abelian subalgebra of €%, and for a weight v € it{, consider as in the
introduction the double extension

4 n(®) = (Rup, Lon(®) x5 R
of L, n(€), with Cartan subalgebra t§ := R @ to & R. We respectively denote by )7\/\; C GL(i(t5)*) and
£¢ C i(t§)* the Weyl group and root system of

g:= ﬁV,Nq, ()

with respect to t§.
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Let ¢ = (4,0,0) € it and d = (0,0, —i) € it§. Recall from Remark [2.1| the identification
?ﬁ(i) 5its : (2,h,t) = ze + h +td,

as well as its extension V = it/g. Since we are now working in it% instead of \7, we will write to avoid any
confusion y = [xe, X°, xa] for the element y.c + X" + xad = (ixe, X°, —ixa) of z'% and X = [Ac, A% \g]
for the weight \ € i(t§)* with A(c) = A¢, Mi, = A and A\(d) = 4.

Let v € it. By [MN16, Thm. A], one can choose the Cartan subalgebra to such that there exists
a weight p € it§ and an isomorphism 2;71({’) 5 EZT’ (£) from EA;J(E) to one of the seven (slanted)
standard affinisations of £ fixing the common Cartan subalgebra t§ pointwise. To distinguish between
these Cartan subalgebras, we will also write t§(¢) = t§ (resp. t§(¢) = t§) when t§ is viewed as a
subalgebra of E;yl(ﬁ) (resp. Zﬁﬁ” ().

On the other hand, by [MN16, Remark 4.3], there is for each N € N and ¢ € {p, ¢} an isomorphism
E(Z/IN € = Eg ~ (£) whose C-linear extension to the corresponding complexifications restricts to the
isomorphism

its = it o [z, h,t] = [Nz, h,t/N].

Here we use the same notation for the Cartan subalgebras of E;/lN(E) and /32 ~(8).
Let Ny € {1,2} denote the order of ¥, and set @ := N, /N,,. Composing the above isomorphisms
yields an isomorphism

% ~ ~QU+N
(7.1) g="L, N, (8) = Ly, “(e)
whose C-linear extension to the corresponding complexifications restricts to the isomorphism
(7.2) D it(e) it (1) : [z, ht] = [Qz.ht/Q).
Note that
(7.3) Wy = & WG C GL(it5(¢)).

Let now A, = [Ac, A% Ag] € it§(p)* be an integral weight for g with A. # 0. Let also v/ € it§(¢),
and consider as in the introduction the corresponding highest weight representation

~

P = Pr,x,: 88X RD, — End(L(),)),
where R
Xo: ZIA] = R: (a,n) = n+ v/ (af).
As in Remark we view the character x, as an element of i‘%: by [MN16l §7.2 Eq. (7.7)] we then
et
) X = [0, ()F = v, 1].
We recall that the representation p is of positive energy if and only if the set
E:=), (VV\;.X#, — Xs@)
is bounded from below. By , we can rewrite this set as
E = A\ (Wi xw — xv)
where
m:=Qu+ Nyp, Ap =X 001 =[\/Q,\°,QN\g] and xy = ®(x,) = [0, (V) — v4,1/Q).
Set
A= [LQ%,O], and x = [0,Q(()* —v*),1].
In view of Lemma and [MNT16] Proposition 7.4], we have in turn that

(7.4) E = 25 AW = %) = 25 Am (W) Xm = Xm),
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where V/\Z% is the (standard) Weyl group of Z?p , (8), hence one of the 7 Weyl groups W(X) for
X = X((,l) or X = X((}z) described in Note that

0 0
Am = [I,Qi—c —m,0] = [1,Q(§—C — v — Nyp),0] = )% . [%,)\0 — Ae(v + Nyp), 0]
and
Xm = [0,Q((V)F = %) + m, 1] = [0,Q((v')F + Nypi), 1] = Q- [0, (') + Ny, 1/Q).
The following theorem summarises the above discussion.

Theorem 7.1. Let g = 2;71% (&) be an arbitrary affinisation of a simple Hilbert—Lie algebra €. Let to
be a Cartan subalgebra of € such there is some p € ity and some standard (or trivial) automorphism
¥ € Aut(t) for which and hold. Let X = Xy) or X&Q) be the type of the root system of the
standard affinisation E?bva () of € and set Q := Ny /N,. Finally, let A, = [Ac, A%, A\g] € i(t5)* be an
integral weight for g with A\, # 0 and let v/ € i(t§)*. Set x, := [0, (") — v#,1]. Then the following
assertions are equivalent:

(1) The highest weight representation py : gxRD, — End(f(&,)) is of positive energy.

@sXe

(2) The set E:= A, (WZZ~X¢ — X@@) is bounded from below.
(3) The triple (J, [%, A0 — (v + NS(,,u),O}7 [O, (V)F + Nyut, 1/Q]) satisfies the PEC for )7V\(X)
(4)

min min) _
e Xo ) =

min

%)

4) xp = Xg‘in—kxfpum for some minimal energy character x

{0}, and some summable character 3™ € £*(J).
Moreover, inf E = 0 if and only if the triple (J, [%, A0 — (v + Ncpu),O}, [O, (V') + Ny, 1/Q]) is of

minimal energy for W(X)

, satisfying inf A, (W\;.X

Proof. The equivalence of (1), (2) and (3), as well as the last statement of the theorem readily follow
from the above discussion. The equivalence of (3) and (4) follows from Theorem and (7.4). Note
that [%, A= Xe(v+ Nyp), 0] is indeed Z-discrete: this can be seen as in the proof of Lemma More

precisely, set A\’ = (\j);es, v = (vj)jes and g = (u15);es. The integrality condition on A, implies that
Ao ((0,6; —€5,m)Y) = Ao((—n — (v — ), 6, —€;,0)) = —(n+v;i —vj))A\e + N — \; EZ
for infinitely many values of n € Z (see [MNT16], §3.4]). Hence A, is rational, say A, = m/p for some
nonzero integers m, p. Then
) A
() - () ez s 42
for all 4, j € J, and hence
(-v+Z|jet}
is finite. This implies in turn that
A .
{Q(2 —vj = Nopj) +Z | j € J}
is finite because @ is rational and {p; | j € J} is a finite subset of Q (in fact, y; is of the form
pj = —n;/N for some N € {N,,2N,} and some n; € {0,1,..., N — 1}, see [MN16} Section 6]). This
yields the claim. O
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