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Abstract. Let g be a locally finite split simple complex Lie algebra of type AJ , BJ , CJ or DJ and
h ⊆ g be a splitting Cartan subalgebra. Fix D ∈ der(g) with h ⊆ kerD (a diagonal derivation).

Then every unitary highest weight representation (ρλ, V
λ) of g extends to a representation ρ̃λ of the

semidirect product goCD and we say that ρ̃λ is a positive energy representation if the spectrum of
−iρ̃λ(D) is bounded from below. In the present note we characterise all pairs (λ,D) with λ bounded

for which this is the case.
If U1(H) is the unitary group of Schatten class 1 on an infinite dimensional real, complex or

quaternionic Hilbert space and λ is bounded, then we accordingly obtain a characterisation of those

highest weight representations πλ satisfying the positive energy condition with respect to the con-
tinuous R-action induced by D. In this context the representation πλ is norm continuous and our

results imply the remarkable result that, for positive energy representations, adding a suitable inner

derivation to D, we can achieve that the minimal eigenvalue of ρ̃λ(D) is 0 (minimal energy condition).
The corresponding pairs (λ,D) satisfying the minimal energy condition are rather easy to describe

explicitly.

1. Introduction

Locally finite split Lie algebras are natural infinite-dimensional generalisations of finite-dimensional
Lie algebras. More precisely, a Lie algebra g over a field K of characteristic zero is called split if it
has a root decomposition g = h +

∑
α∈∆ gα with respect to some maximal abelian subalgebra h. It is

moreover locally finite if every finite subset of g generates a finite-dimensional subalgebra. Such a Lie
algebra g possesses a generalised Levi decomposition (see [Stu99]), whose Levi factor is an h-invariant
semisimple Lie algebra. In turn, the infinite-dimensional locally finite split simple Lie algebras have
been classified (see [NS01]), and can be realised as subalgebras of the algebra gl(J,K) of J×J matrices
with only finitely many nonzero entries, for some infinite set J . They fall into four distinct families of
isomorphism classes, parametrised by the locally finite root systems of type AJ , BJ , CJ and DJ (see
[LN04]).

On the other hand, a locally finite split simple Lie algebra g is the directed union of its finite-
dimensional simple subalgebras ([Stu99, Section V]). Unitary highest weight representations for such
Lie algebras over K = C were studied in [Nee98]. By [Stu99, Section VIII], g carries an antilinear
involutive antiautomorphism X 7→ X∗ such that gR = {X ∈ g | X∗ = −X} is a compact real form,
that is, gR is a union of finite dimensional compact Lie algebras. A g-module V is then called unitary if
it carries a contravariant positive definite hermitian form 〈·, ·〉, in the sense that 〈X.v,w〉 = 〈v,X∗.w〉
for all v, w ∈ V , X ∈ g. A g-module V = V λ is called a highest weight module with highest weight
λ ∈ h∗ (with respect to some positive system ∆+ ⊆ ∆ of roots) if it is generated by some primitive
element, that is, by some h-weight vector v ∈ V with weight λ such that gα.v = {0} for all α ∈ ∆+.
Unitary highest weight modules V λ for g were classified in [Nee98], and correspond to dominant integral
weights λ. Moreover, if W ≤ GL(h∗) denotes the Weyl group of g, the set Pλ of h-weights on V λ is
given by Pλ = conv(W.λ) ∩ (λ+ Z[∆]) ([Nee98, Theorem I.11]).

In this paper, we characterise the unitary highest weight representations of g satisfying the fol-
lowing “positive energy condition”. As a subalgebra of some gl(J,C), the Lie algebra g inherits a
hermitian scalar product given by 〈X,Y 〉 = tr(XY ∗). A derivation D ∈ der(g) of g is skew-hermitian
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if 〈DX,Y 〉 = −〈X,DY 〉 for all X,Y ∈ g. A skew-hermitian derivation D of g is called graded if it
annihilates h, in which case D preserves the root spaces of g. Such a derivation is then described by a
character χ : Z[∆]→ R such that D(xα) = iχ(α)xα for all xα ∈ gα, α ∈ ∆. Any unitary highest weight
representation ρλ : g → End(V λ) of g may be extended to a representation ρ̃λ : g o CD → End(V λ)
by setting ρ̃λ(D)vµ = iχ(µ − λ)vµ for any µ ∈ Pλ and any weight vector vµ ∈ V λ of weight µ. The
representation ρ̃λ is called a positive energy representation if the spectrum of H := −iρ̃λ(D) is bounded
from below. We call H a Hamiltonian of the representation ρλ.

In view of the above description of Pλ, the positive energy condition can then be rewritten as

inf χ(W.λ− λ) > −∞.
Let J be an infinite set such that ∆ is of one of the types AJ , BJ , CJ or DJ . Then there exists some
basis (ej)j∈J of h (respectively a one-dimensional extension of h) indexed by J such that the set of
coroots ∆∨ = {α∨ | α ∈ ∆} (see [Stu99, Section I]) is contained in spanZ(ej)j∈J , while ∆ is contained
in the Z-span of the linearly independent system (εj)j∈J ⊆ h∗ defined by εj(ek) = δjk for all j, k ∈ J
(see [NS01, Section I and Theorem IV.6]).

We recall that the weight λ ∈ h∗ is called integral if λ(α∨) ∈ Z for all α ∈ ∆. This implies in
particular that λ is discrete, in the sense that {λj := λ(ej) | j ∈ J} is a discrete subset of R. We
moreover call λ bounded if supj∈J |λj | <∞. Finally, a character χ : Z[∆]→ R is said to be summable
if it is the restriction of a homomorphism χ̃ : spanZ(εj)j∈J → R satisfying∑

j∈J
|χ̃(εj)| <∞.

We can now state the main result of this paper, which provides a characterisation of the positive energy
highest weight representations of g with bounded highest weight.

Theorem A. Let (g, h) be a locally finite split simple Lie algebra with root system ∆ and Weyl group
W ≤ GL(h∗). Let λ ∈ h∗ be discrete and bounded. Then for a character χ : Z[∆] → R, the following
are equivalent:

(1) inf χ(W.λ− λ) > −∞.
(2) χ = χmin +χsum for some “minimal energy” character χmin, satisfying inf χmin(W.λ−λ) = 0,

and some summable character χsum.

We also provide a description of minimal energy characters (see Proposition 5.3 and Remark 5.9). In
[HN12, Corollary 3.2] a similar description of the minimal energy characters was obtained by Coxeter
geometry. A priori, these can be described much more easily than the “positive energy” characters
and the main point of the theorem is that it reduces the latter problem to the former. Note that,
as can be seen from Proposition 5.3, the cone of minimal energy characters contains many summable
characters, so that the decomposition χ = χmin + χsum is non-unique. The proof of Theorem A is
given in Section 6 below.

The assumption that the highest weight λ be bounded in Theorem A is motivated by the study
of positive energy (projective) unitary representations of the corresponding Lie groups, which we now
briefly review. We then state a corollary of Theorem A in this context.

The restriction of the scalar product 〈·, ·〉 on the locally finite split simple Lie algebra g to its real
form gR defines an invariant scalar product on gR, in the sense that 〈[X,Y ], Z〉 = 〈X, [Y, Z]〉 for all
X,Y, Z ∈ gR. The Hilbert space completion of gR is then a so-called Hilbert–Lie algebra, that is, a real
Lie algebra and a real Hilbert space with compatibility of the two structures given by the invariance
of the scalar product. For instance, if g = sl(J,C) is the subalgebra of gl(J,C) of traceless matrices,
the corresponding completion is the space u2(H) of skew-symmetric Hilbert-Schmidt operators on the
complex Hilbert space H = `2(J,C).

By a theorem of Schue1 ([Sch61]), Hilbert–Lie algebras decompose into an orthogonal direct sum of
simple ideals (and center). Moreover, each simple infinite-dimensional Hilbert–Lie algebra is isomorphic

1In [Sch61], the complexifications of Hilbert–Lie algebras are called L∗-algebras.
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to u2(H), for some infinite-dimensional real, complex or quaternionic Hilbert space H. These are, in
turn, classified by the locally finite root systems (see [Nee12, Examples C.4,5,6]).

Going back to our example g = sl(J,C), we let ρλ : g → End(V λ) be, as before, a unitary highest
weight representation of g with highest weight λ. Then, under the assumption that λ is bounded,
the restriction of ρλ to gR extends to a continuous unitary representation ρλ : u1(H) → u(Hλ) with
‖ρλ‖ ≤ supj∈J |λj |, where u1(H) ⊆ u2(H) denotes the Banach space of skew-hermitian trace-class

operators onH andHλ is the Hilbert space completion of V λ (see [Nee98, Proposition III.7]). Moreover,
if λj ∈ Z for all j ∈ J , then ρλ exponentiates to a holomorphic representation

ρ̂λ : U1(H)→ U(Hλ)

from U1(H) = GL(H) ∩ (1 + u1(H)) to the unitary group U(Hλ).
Assume now that the Lie group G = U1(H) is endowed with a continuous R-action, given by a

homomorphism α : R→ Aut(G) : t 7→ αt. If U : R→ U(Hλ) : t 7→ Ut is a unitary representation of R
on Hλ, then the map

πλ : Goα R→ U(Hλ) : (g, t) 7→ ρλ(g)Ut

is called a covariant unitary representation of (G,R, α) if it defines a unitary representation on Hλ of
the semi-direct product Goα R. This representation is said to be of positive energy if the spectrum of
the corresponding Hamiltonian H := −i ddt |t=0Ut is bounded below.

In our setting, one can show2 that α must be of the form

(1.1) αt(g) = eitAge−itA

for some self-adjoint operator A ∈ B(H). A sufficient condition for ρλ to extend to a covariant
representation of (G,R, α) is the diagonalisability of A: in this case, choosing the orthonormal basis
(ej)j∈J of H so that Aej = djej for all j ∈ J , for some dj ∈ R, one gets a covariant representation πλ
as above by setting

Utvλ = vλ and Utvµ = eitχ(µ−λ)vµ

for any t ∈ R, µ ∈ Pλ and any µ-weight vector vµ ∈ Hλ, where χ : Z[∆]→ R is the character induced
by the assignment εj 7→ dj . Comparing this situation with Theorem A, we see that the decomposition
χ = χmin +χsum in this theorem corresponds to a decomposition A = Amin +Asum of A as a sum of two
commuting (simultaneously diagonalisable) operators Amin, Asum ∈ B(H) such that iAsum ∈ u1(H),
and such that Amin yields a minimal energy representation πλ, in the sense that the corresponding
Hamiltonian Hmin is non-negative (with eigenvalue 0 on the highest weight vector vλ). Writing αmin

and αsum for the R-actions on G induced by Amin and Asum respectively, this implies that αt differs
only from αmin

t by an inner automorphism αsum
t of G commuting with αt and αmin

t (t ∈ R): in this
case, we will say that the corresponding covariant representations of GoαR and Goαmin R are similar.
Thus Theorem A has the following corollary:

Corollary B. Let G = U1(H) be endowed with a continuous R-action α : R → Aut(G), given by
αt(g) = eitAge−itA for some self-adjoint operator A ∈ B(H). Assume that A is diagonalisable. Then
every positive energy covariant unitary representation πλ : G oα R → U(Hλ) of (G,R, α) as defined
above is similar to a minimal energy representation.

Finally, one can show that the highest weight representation ρ̂λ : U1(H) → U(Hλ) extends to a
projective unitary representation U2(H)→ PU(Hλ) of the Hilbert–Lie group

U2(H) = GL(H) ∩ (1 + u2(H)),

and hence to a unitary representation on Hλ of a central extension Û2(H) of U2(H), given at the
Lie algebra level by the cocycle ω(X,Y ) = iλ([X,Y ]) for X,Y ∈ u2(H), where we extend λ in a
natural way to a continuous linear functional on u1(H) which contains [X,Y ] (see [Nee15]). Since the
continuous R-action (1.1) on U2(H) lifts canonically to the central extension (by construction of this

2This follows from [Nee14b, Theorem 1.15] when G = U2(H), and [dlH72, Proposition 9 on p.48] ensures the

extendability from U1(H) to U2(H).
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central extension), the corresponding notion of positive energy for the associated projective covariant
unitary representations of U2(H) is also described by Corollary B.

The situation discussed in this paper is a model case in which a rather detailed analysis of the
positive energy condition can be carried out. For every triple (G,R, α), where G is a Lie group
and α : R → Aut(G) defines a continuous action, it is a challenging natural problem to determine
the irreducible positive energy representations (π,H) of the topological group G] := G oα R. As a
consequence of the Borchers–Arveson Theorem ([BR87, Theorem 3.2.46]), for any such representation,
the restriction ρ := π|G is irreducible (see [Nee14a, Theorem 2.5]) and the Hamiltonian of the extension
to G] is uniquely determined up to an additive constant determining the minimal energy level. Given
α, the set of irreducible positive energy representations of G] can therefore be considered as a subset

Ĝα of the set Ĝ of equivalence classes of irreducible unitary representations of G and one would like
to determine this subset as explicitly as possible. In this paper this task is carried out for the subset

Ĝhw of “highest weight representations” of G = U1(H) in the case where α is given by conjugation
with diagonal operators. Here Corollary B achieves in the Lie algebra context something similar as the
Borchers–Arveson Theorem which also reduces the study of positive energy representations to minimal
energy representations.

One can even show that the representation of the centrally extended group Û2(H) extends to a

group Ûres containing a copy of the centraliser D of the diagonal operator diag((λj)j∈J) in U(H) (see
[Nee04, Theorem VII.18] for the AJ -case). Here D is a finite product

∏
m∈Z U(`2(Jm)) of full unitary

groups where the factors correspond to the subsets Jm := {j ∈ J | λj = m}. The corresponding

extension π̂ to Ûres is a unitary Lie group representation for which one would like to understand the
convex cone of all elements X ∈ ures in the Lie algebra for which the operator −idπ̂(X) is positive.
If X is diagonal, this problem is solved by Theorem A if we put χ(εj) := Xjj , but the general case
requires refined information on convex hulls of adjoint orbits (see [Nee10] for similar problems). We
plan to address this issue in a separate paper because it is of a functional analytic flavour, whereas
the present paper is purely algebraic.

Finally, this paper can be used as a basis for a similar study of positive energy highest weight
representations of affinisations of simple Hilbert–Lie algebras k, obtained as double extensions of
(twisted) loop algebras over k (in the same way as one obtains affine Kac–Moody algebras from finite-
dimensional simple Lie algebras): this is carried on in the papers [MN15a] and [MN15b].

Notation. Throughout this paper, we denote by N = {1, 2, . . . } the set of positive natural numbers.

2. Preliminaries

2.1. Locally finite root systems. Let J be an infinite set and let V := R(J) ⊆ V := RJ be the free
vector space over J , with canonical basis {ej | j ∈ J} and standard scalar product (ej , ek) = δjk. In
the dual space V ∗ ∼= RJ , we consider the linearly independent system {εj := e∗j | j ∈ J} defined by
εj(ek) = δjk.

Any infinite irreducible (possibly non-reduced) locally finite root system ∆ can be described inside
V ∗ for some suitable set J , and is of one of the following types ([LN04, §8]):

AJ := {εj − εk | j, k ∈ J, j 6= k},
BJ := {±εj ,±(εj ± εk) | j, k ∈ J, j 6= k},
CJ := {±2εj ,±(εj ± εk) | j, k ∈ J, j 6= k},
DJ := {±(εj ± εk) | j, k ∈ J, j 6= k},

BCJ := {±εj ,±2εj ,±(εj ± εk) | j, k ∈ J, j 6= k}.

For X ∈ {A,B,C,D,BC}, we will write ∆(XJ) for the above locally finite root system of type XJ .
Note that the root systems of type AJ , BJ , CJ and DJ are reduced, whereas ∆(BCJ) is non-reduced.

2.2. The Weyl group of ∆. Let SJ denote the symmetric group on J , which we view as a subgroup
of GL(V ) with w ∈ SJ acting as w(ej) := ew(j). Given a permutation w ∈ SJ with fixed-point set
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I ⊆ J , we call the set J \ I the support of w. We denote by S(J) ≤ SJ the subgroup of restricted

permutations, namely, the set of w ∈ SJ with finite support. Note that S(J) ≤ GL(V ) stabilises V ; we
will also view S(J) as a subgroup of GL(V ).

We next view {±1}J ⊂ RJ as a subgroup of GL(V ), acting by (componentwise) left multiplication:
σ(ej) = σjej for σ = (σj)j∈J ∈ {±1}J . Given some σ = (σj)j∈J ∈ {±1}J , we call the subset

I = {j ∈ J | σj = −1} of J the support of σ. We denote by {±1}(J) the set of all σ ∈ {±1}J with

finite support. Again, we may also view {±1}(J) as a subgroup of GL(V ). Finally, we let {±1}(J)
2

denote the index 2 subgroup of {±1}(J), whose elements have a support of even cardinality.
Let X ∈ {A,B,C,D,BC}. We denote by W = W (XJ) the Weyl group corresponding to ∆(XJ),

which we view as a subgroup of GL(V ) or GL(V ). We then have the following descriptions ([LN04,
§9]):

W (AJ) = S(J),

W (BJ) = W (CJ) = W (BCJ) = S(J) n {±1}(J),

W (DJ) = S(J) n {±1}(J)
2 .

2.3. The positive energy condition. Let X ∈ {A,B,C,D,BC} and set W = W (XJ). Fix some
tuples λ = (λj)j∈J ∈ RJ and χ = (dj)j∈J ∈ RJ .

Definition 2.1. We say that the triple (J, λ, χ) satisfies the positive energy condition (PEC) for W
if the set λ(W.χ− χ) is bounded from below. Here, we view λ as the linear functional

λ : V → R : ej 7→ λj ,

and W.χ − χ as a subset of V , by writing χ as χ =
∑
j∈J djej ∈ V . More precisely, recall from §2.2

that any element of W may be written as a product σw−1 for some σ ∈ {±1}(J) and some w ∈ S(J).
Then

σw−1.χ− χ =
∑
j∈J

(σw−1(j)djew−1(j) − djej) =
∑
j∈J

(σjdw(j) − dj)ej ∈ V.

Note that for any σ ∈ {±1}(J) and w ∈ S(J), we have

(2.1) λ(σw−1.χ− χ) =
∑
j∈J

λj(σjdw(j) − dj).

In particular, given two disjoint finite subsets {i1, i2, . . . , ik} and {j1, j2, . . . , jk} of J , the product w
of the k transpositions τ1, . . . , τk ∈ S(J), where τs interchanges is and js (s = 1, . . . , k), is an element
of S(J) and we have

(2.2) λ(w.χ− χ) = λ(w−1.χ− χ) =

k∑
s=1

(λjs − λis)(dis − djs).

We record for future reference the following so-called rearrangement inequality.

Lemma 2.2. Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two non-decreasing sequences of real
numbers. Let also (c1, . . . , cn) be a permutation of (b1, . . . , bn). Then

n∑
i=1

aibi ≥
n∑
i=1

aici ≥
n∑
i=1

aibn+1−i.

3. A few definitions and notations

Fix some set J , as well as two tuples λ = (λj)j∈J ∈ RJ and χ = (dj)j∈J ∈ RJ . We define the
functions

D : J → R : j 7→ dj and Λ: J → R : j 7→ λj .

We set
mmin = inf Λ(J) ∈ R ∪ {−∞} and mmax = sup Λ(J) ∈ R ∪ {∞}.
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We call the triple (J, λ, χ) nontrivial if λ is non-constant, so that mmin 6= mmax.
For each n ∈ R, we set

Jn := Λ−1(n),

so that J =
⋃
n Jn. Given some r ∈ R, we also define the sets

J>rn = {j ∈ Jn | dj > r} and J<rn = {j ∈ Jn | dj < r}.
Finally, we let Λ∞(J) denote the set of all m ∈ Λ(J) such that Jm is infinite, and we set

Λ∞(J) :=
(
Λ∞(J) ∪ {mmin,mmax}

)
∩ R.

Definition 3.1. We call (J, λ, χ) essentially bounded if for all m ∈ Λ(J), the following two conditions
are satisfied:

(1) If m 6= mmax, then D(Jm) is bounded below.
(2) If m 6= mmin, then D(Jm) is bounded above.

Definition 3.2. Given a subset I of J , we call r ∈ R an accumulation point for I if either r is an
accumulation point for D(I), or if D(I ′) = {r} for some infinite subset I ′ ⊆ I.

Definition 3.3. Assume that (J, λ, χ) is essentially bounded and nontrivial. Let m ∈ Λ∞(J).

(1) If m 6= mmin,mmax, then D(Jm) is bounded, and hence Jm possesses an accumulation point.
In this case, we let rmin

m and rmax
m respectively denote the minimal and maximal accumulation

points of Jm.
(2) If m = mmin, then D(Jm) is bounded below. If Jm has an accumulation point, we let rmin

m

denote the minimal one. Otherwise, we set rmin
m =∞.

(3) If m = mmax, then D(Jm) is bounded above. If Jm has an accumulation point, we let rmax
m

denote the maximal one. Otherwise, we set rmax
m = −∞.

The following lemma, which easily follows from the definitions, provides the geometric picture to
be kept in mind for the rest of this paper.

Lemma 3.4. Assume that (J, λ, χ) is essentially bounded and nontrivial. Let m ∈ Λ∞(J).

(1) If m 6= mmin,mmax, then for each ε > 0, there is some finite subset Iε ⊂ Jm such that

D(Jm \ Iε) ⊆ [rmin
m − ε, rmax

m + ε].

(2) If m = mmin and rmin
m 6=∞, then for each ε > 0, there is some finite subset Iε ⊂ Jm such that

D(Jm \ Iε) ⊆ [rmin
m − ε,∞[.

(3) If m = mmax and rmax
m 6= −∞, then for each ε > 0, there is some finite subset Iε ⊂ Jm such

that

D(Jm \ Iε) ⊆ ]−∞, rmax
m + ε].

Before proceeding with the study of the PEC, we need to introduce one more concept.

Definition 3.5. Given r ∈ R, we call a subset Ir of J of the form J<rn or J>rn summable (with respect
to (J, λ, χ)) if

Σ(Ir) :=
∑
j∈Ir

|dj − r| <∞.

4. Consequences of the PEC for W (AJ)

In this section, we fix some infinite set J and some tuples λ = (λj)j∈J ∈ RJ and χ = (dj)j∈J ∈ RJ ,
and we assume that (J, λ, χ) satisfies the PEC for W = W (AJ).

Lemma 4.1. Let m,n ∈ R with m < n.

(1) If J<rm and J>rn are both nonempty for some r ∈ R, then D(J<rm ) and D(J>rn ) are bounded.
(2) If Jm and Jn are both nonempty, then D(Jm) (resp. D(Jn)) is bounded below (resp. above).
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Proof. To prove (1), assume for a contradiction that D(J<rm ) is unbounded, and for each k ∈ N, let
jk ∈ J<rm such that djk < −k. Pick any j ∈ J>rn . Consider for each k ∈ N the transposition τk ∈ W
exchanging j and jk. It then follows from (2.2) that

λ(τk.χ− χ) = (λj − λjk)(djk − dj) = (n−m)(djk − dj) < −(n−m)(k + dj)

for all k ∈ N, contradicting the PEC for W . The proof that D(J>rn ) is bounded is similar.
We now turn to the proof of (2). Assume that Jm and Jn are nonempty. We prove that D(Jm) is

bounded below, the proof for D(Jn) being similar. Let r ∈ R be such that J>rn is nonempty. If J<rm is
empty, then inf D(Jm) ≥ r. If J<rm is nonempty, then D(J<rm ) is bounded by (1), and hence D(Jm) is
bounded below, as desired. �

Lemma 4.2. Let m,n ∈ R with m < n, and let r ∈ R. Assume that J>rn is infinite. Then J<tm is
finite for all t < r.

Proof. Assume for a contradiction that J<tm is infinite for some t < r. Let {i1, i2, . . . } (resp.
{j1, j2, . . . }) be an infinite countable subset of J<tm (resp. J>rn ). For each k ∈ N, let wk ∈ W be
the product of the k transpositions τ1, . . . , τk, where τs interchanges is and js (s ∈ N). It then follows
from (2.2) that

λ(wk.χ− χ) =

k∑
s=1

(λjs − λis)(dis − djs) = (n−m)

k∑
s=1

(dis − djs) < −(n−m)(r − t)k

for all k ∈ N, contradicting the PEC for W . �

Lemma 4.3. Let m,n ∈ R with m < n. Then there exists at most one r ∈ R such that J<rm and J>rn
are both infinite.

Proof. Assume that J<rm and J>rn are both infinite for two different values of r, say r1 < r2. Using
Lemma 4.2 with r = r2 and t = r1 then yields the desired contradiction. �

Lemma 4.4. If (J, λ, χ) satisfies the PEC for W (AJ), it is essentially bounded.

Proof. Let m ∈ Λ(J). If m /∈ Λ∞(J), then D(Jm) is finite, hence bounded, and there is nothing to
prove. Assume now that m ∈ Λ∞(J). If m 6= mmax, then there is some n ∈ Λ(J) such that m < n.
Since Jn 6= ∅, Lemma 4.1(2) implies that D(Jm) is bounded below, as desired. Similarly, if m 6= mmin,
so that there exists some n ∈ Λ(J) with m > n, Lemma 4.1(2) implies that D(Jm) is bounded above,
proving the claim. �

Proposition 4.5. Assume that (J, λ, χ) satisfies the PEC for W = W (AJ). Let m,n ∈ Λ∞(J) be
such that m < n. Then one of the following assertions holds.

(1) rmax
n < rmin

m . In this case, there is some r ∈ R such that J<rm and J>rn are both finite.

(2) rmax
n = rmin

m . In this case, J
<rmin

m
m and J

>rmax
n

n are both summable.

Proof. Note first that (J, λ, χ) is essentially bounded by Lemma 4.4 and nontrivial by hypothesis, so
that rmin

m and rmax
n are defined.

If m = mmin and rmin
m = ∞, so that D(Jm) is bounded below and Jm has no accumulation point,

then J<rm is finite for any r ∈ R. Since in addition D(Jn) is bounded above, so that J>rn is finite
for some large enough r, the statement (1) is satisfied. Similarly, if n = mmax and rmax

n = −∞, the
statement (1) is satisfied, and we may thus assume from now on that rmin

m , rmax
n ∈ R.

We distinguish three cases.
Case 1: rmax

n < rmin
m .

It then follows from Lemma 3.4 that J<rm and J>rn are both finite for any r ∈ R with rmax
n < r < rmin

m .
Hence (1) is satisfied in this case.
Case 2: rmax

n = rmin
m .
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Set r = rmax
n = rmin

m . We now prove that J<rm and J>rn must be both summable, so that (2) is

satisfied. By Lemma 3.4, the sets J
<r−1/k
m and J

>r+1/k
n are finite for each k ∈ N, so that J<rm =⋃

k∈N J
<r−1/k
m and J>rn =

⋃
k∈N J

>r+1/k
n are at most countable.

If J<rm and J>rn are both finite, there is nothing to prove. Assume now that at least one of J<rm and
J>rn is infinite, say J<rm (the other case being similar). Write J<rm = {i1, i2, . . . }. We distinguish two
cases.

Assume first that J>rn is infinite. Write J>rn = {j1, j2, . . . }. For each k ∈ N, let wk ∈ W be the
product of the transpositions τ1, . . . , τk, where τs is the transposition exchanging is and js (s ∈ N). It
then follows from (2.2) that

λ(wk.χ− χ) =

k∑
s=1

(λis − λjs)(djs − dis) = (m− n)

k∑
s=1

(djs − dis).

In particular,

inf
k∈N
{λ(wk.χ− χ)} = −(n−m)

∞∑
s=1

(djs − r + r − dis) = −(n−m)(Σ(J>rn ) + Σ(J<rm )).

Hence J<rm and J>rn must be both summable, as desired.
Assume next that J>rn is finite. In particular J>rn is summable, and it thus remains to show that

J<rm is also summable. Fix some ε > 0 and some sequence (εs)s∈N of positive real numbers such
that

∑
s∈N εs < ε. Since r is an accumulation point for Jn, there is some infinite countable subset

{j1, j2, . . . } ⊆ Jn such that djs ≥ max(dis , r − εs) for each s ∈ N. For each k ∈ N, let wk ∈ W be the
product of the transpositions τ1, . . . , τk, where τs is the transposition exchanging is and js (s ∈ N). It
then follows from (2.2) that

λ(wk.χ− χ) =

k∑
s=1

(λis − λjs)(djs − dis) = (m− n)

k∑
s=1

(djs − dis).

In particular,

inf
k∈N
{λ(wk.χ− χ)} = −(n−m)

∞∑
s=1

(djs − r + r − dis) ≤ −(n−m)(−ε+ Σ(J<rm )).

Hence J<rm must be summable, as desired.

Case 3: rmax
n > rmin

m .
Let r ∈ R be such that rmin

m < r < rmax
n . Since rmin

m is an accumulation point for Jm, the set J<rm is
infinite. Similarly, since rmax

n is an accumulation point for Jn, the set J>rn is infinite. Since there are
infinitely many r ∈ R with rmin

m < r < rmax
n , Lemma 4.3 then yields a contradiction in this case. This

concludes the proof of the proposition. �

5. Characterisation of the PEC for λ bounded and discrete

In this section, we let J denote some infinite set and λ = (λj)j∈J and χ = (dj)j∈J some elements
of RJ . In order to characterise the PEC for the triple (J, λ, χ), we will need to make some finiteness
assumption on λ.

Definition 5.1. We call λ bounded (resp. discrete) if the subset Λ(J) of R is bounded (resp. discrete).

Definition 5.2. Given a set J and a tuple λ = (λj)j∈J ∈ RJ , we define the following cones in RJ :

Cmin(λ,AJ) =
{

(dj)j∈J ∈ RJ
∣∣ ∀i, j ∈ J : λi < λj =⇒ di ≥ dj

}
,

Cmin(λ,BJ) =
{

(dj)j∈J ∈ RJ
∣∣ ∀j ∈ J : λjdj ≤ 0 and ∀i, j ∈ J : |λi| < |λj | =⇒ |di| ≤ |dj |

}
.

We also define the vector subspace `1(J) =
{

(dj)j∈J ∈ RJ
∣∣ ∑

j∈J |dj | <∞
}

of RJ .
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Proposition 5.3. Let X ∈ {A,B} and set W = W (XJ). For a triple (J, λ, χ), the following are
equivalent:

(1) inf λ(W.χ− χ) = 0, i.e., λ(w.χ− χ) ≥ 0 for all w ∈W .
(2) χ ∈ Cmin(λ,XJ).

Proof. We first deal with the case X = A. If χ /∈ Cmin(λ,AJ), then there exist some i, j ∈ J with
λi < λj and di < dj . Denoting by w ∈W the transposition exchanging i and j, we deduce from (2.2)
that

λ(w.χ− χ) = (λj − λi)(di − dj) < 0,

so that inf λ(W.χ− χ) < 0.
Assume conversely that χ ∈ Cmin(λ,AJ) and let w ∈ W = S(J). Let I be some finite subset of J

containing the support of w. By assumption, we may then write I = {i1, . . . , ik} so that

λi1 ≤ · · · ≤ λik and di1 ≥ · · · ≥ dik .
Together with (2.1), the rearrangement inequality then implies that

λ(w−1.χ− χ) =
k∑
s=1

λis(dw(is) − dis) ≥
k∑
s=1

λis(dis − dis) = 0.

Hence inf λ(W.χ− χ) = 0, as desired.
We next deal with the case X = B. If χ /∈ Cmin(λ,BJ), then either there exists some j ∈ J such

that λjdj > 0, or else λkdk ≤ 0 for all k ∈ J and there exist some i, j ∈ J with |λi| < |λj | and

|di| > |dj |. In the first case, denoting by σ ∈ W the element of {±1}(J) with support {j}, we deduce
from (2.1) that

λ(σ.χ− χ) = −2λjdj < 0.

In the second case, denoting by w ∈ S(J) the transposition exchanging i and j, and by σ = (σk)k∈J an

element of {±1}(J) with support in {i, j} satisfying σiλidj = −|λidj | and σjλjdi = −|λjdi|, we deduce
from (2.1) that

λ(σw−1.χ− χ) = λi(σidj − di) + λj(σjdi − dj) = (|λi| − |λj |)(|di| − |dj |) < 0.

In both cases, we deduce that inf λ(W.χ− χ) < 0.
Assume conversely that χ ∈ Cmin(λ,BJ) and let w ∈ S(J) and σ = (σj)j∈J ∈ {±1}(J). Let I

be some finite subset of J containing the supports of w and σ. By assumption, we may then write
I = {i1, . . . , ik} so that

|λi1 | ≤ · · · ≤ |λik | and |di1 | ≤ · · · ≤ |dik |.
Since moreover λisdis = −|λisdis | for all s = 1, . . . , k, we deduce from (2.1) and the rearrangement
inequality that

λ(σw−1.χ− χ) =

k∑
s=1

λis(σisdw(is) − dis) ≥
k∑
s=1

|λis |(−|dw(is)|+ |dis |) ≥
k∑
s=1

|λis |(−|dis |+ |dis |) = 0.

Hence inf λ(W.χ− χ) = 0, as desired. �

Lemma 5.4. Let X ∈ {A,B}. Assume that λ is bounded and that χ ∈ `1(J). Then (J, λ, χ) satisfies
the PEC for W (XJ).

Proof. Write λ = (λj)j∈J and χ = (dj)j∈J , so that C :=
∑
j∈J |dj | <∞. Set M := supj∈J |λj | <∞.

Then for all σ = (σj)j∈J ∈ {±1}(J) and w ∈ S(J), we have

λ(σw−1.χ− χ) =
∑
j∈J

λj(σjdw(j) − dj) ≥ −M
∑
j∈J

(|dw(j)|+ |dj |) = −2MC.

Since σ and w were arbitrary, this proves the claim. �

Lemma 5.5. Let X ∈ {A,B}. Assume that λ is bounded. Then for all χ′ ∈ `1(J), the triple (J, λ, χ)
satisfies the PEC for W (XJ) if and only if the triple (J, λ, χ+ χ′) satisfies the PEC for W (XJ).
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Proof. Set W = W (XJ), and assume that (J, λ, χ) satisfies the PEC for W . Since

inf λ
(
W.(χ+ χ′)− (χ+ χ′)

)
≥ inf λ(W.χ− χ) + inf λ(W.χ′ − χ′),

the triple (J, λ, χ+ χ′) then satisfies the PEC for W by Lemma 5.4. Replacing χ by χ+ χ′ and χ′ by
−χ′, the converse follows. �

Note that, up to now, we only refered to the locally finite root systems of type AJ and BJ . We now
prove that these are indeed the only cases to be considered.

Lemma 5.6. Assume that (J, λ, χ) satisfies the PEC for W (BJ) or W (DJ). Then∑
j∈J+

|λjdj | <∞, where J+ := {j ∈ J | λjdj > 0}.

Proof. Note first that since W (DJ) = S(J)n{±1}(J)
2 ≤W (BJ), the PEC for W (BJ) implies the PEC

for W (DJ). We may thus assume that (J, λ, χ) satisfies the PEC for W (DJ). If J+ is finite, there is
nothing to prove. Assume now that J+ is infinite. For each finite subset I ⊂ J+ of even cardinality,

let σI ∈ {±1}(J)
2 with support I. Then

inf λ(W (DJ).χ− χ) ≤ λ(σI .χ− χ) = −2
∑
i∈I

λidi = −2
∑
i∈I
|λidi|.

Since
∑
j∈J+ |λjdj | is the supremum of all sums

∑
i∈I |λidi| with I a finite subset of J+ of even

cardinality, the claim follows. �

Lemma 5.7. Assume that (J, λ, χ) satisfies the PEC for W (DJ). Let m,n ∈ Λ(J) with |m| < |n|.
Then D(Jm) is bounded.

Proof. Assume for a contradiction that D(Jm) is unbounded, and choose some infinite countable set
{i0, i1, . . . } ⊆ Jm such that |dis | ≥ s for all s ∈ N. Let also j ∈ Jn. Fix some s ∈ N, and let w ∈ S(J)

be the transposition exchanging j and is. Let also σ = (σj)j∈J ∈ {±1}(J)
2 with support in {j, i0, is}

be such that mσisdj = −|mdj | and nσjdis = −|ndis |. It then follows from (2.1) that

λ(σw−1.χ− χ) = m(σi0di0 − di0) +m(σisdj − dis) + n(σjdis − dj)
≤ 2|mdi0 |+ |m| · (−|dj |+ |dis |) + |n| · (−|dis |+ |dj |)
= 2|mdi0 | − (|n| − |m|)(|dis | − |dj |)
≤ 2|mdi0 | − (|n| − |m|)(s− |dj |).

Hence

inf λ(W (DJ).χ− χ) ≤ 2|mdi0 | − (|n| − |m|)(s− |dj |).
As s ∈ N was arbitrary, this contradicts the PEC for W (DJ), as desired. �

Lemma 5.8. Let X ∈ {B,C,D,BC}, and assume that λ is bounded and discrete. Then (J, λ, χ)
satisfies the PEC for W (XJ) if and only if it satisfies the PEC for W (BJ).

Proof. For X = B,C,BC, there is nothing to prove. Since W (DJ) ≤ W (BJ), it is also clear that
the PEC for W (BJ) implies the PEC for W (DJ). Assume now that (J, λ, χ) satisfies the PEC for

W (DJ) = S(J) n {±1}(J)
2 , and let us prove that it also satisfies the PEC for W (BJ) = S(J) n {±1}(J).

If Λ(J) = {m} is a one-element set and (J, λ, χ) satisfies the PEC for W (DJ), then

inf λ(W (DJ).χ− χ) = inf
|F | even

{
− 2m

∑
j∈F

dj

}
> −∞

implies

inf λ(W (BJ).χ− χ) = inf
F

{
− 2m

∑
j∈F

dj

}
> −∞,

where the above infima are taken over finite subsets F of J . We therefore assume that |Λ(J)| ≥ 2.
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We distinguish two cases. Assume first that J has no accumulation point. Since Λ(J) is finite, there
exists some m ∈ Λ∞(J). Thus D(Jm) is unbounded. Lemma 5.7 then implies that |m| ≥ |n| for all
n ∈ Λ(J). Similarly, if n ∈ Λ∞(J), then D(Jn) is unbounded and hence |n| = |m|. In other words,
Λ∞(J) ⊆ {±m} and |m| = max{|mmin|, |mmax|}. Thus either Λ∞(J) = {m} ⊆ {mmin,mmax} with
|m| = maxj∈J |λj |, or else m 6= 0 and Λ∞(J) = {±m} = {mmin,mmax}.

Since (J, λ, χ) is essentially bounded by Lemma 4.4 and |Λ(J)| ≥ 2, the sets D(Jmmax
) and D(Jmmin

)
are respectively bounded above and below. As J has no accumulation point, this implies that the sets
J>0
mmax

and J<0
mmin

are finite. Note also that the set

S = {j ∈ J | λj 6= mmin,mmax}

is finite because Λ∞(J) ⊆ {mmin,mmax} and Λ(J) is finite. In particular, the tuple χ′ = (d′j)j∈J
defined by

d′j =

{
dj if j ∈ S ∪ J>0

mmax
∪ J<0

mmin
,

0 otherwise

belongs to `1(J). Thus by Lemma 5.5, we may replace without loss of generality χ by χ−χ′. In other
words, we may assume that

D(Jmmin
) ⊆ [0,∞), D(Jmmax

) ⊆ (−∞, 0], and D(Jn) = {0} for all n 6= mmin,mmax.

If Jmmin (resp. Jmmax) is finite, we may, by a similar argument, assume that D(Jmmin) = {0} (resp.
D(Jmmax

) = {0}). On the other hand, if Jmmin
(resp. Jmmax

) is infinite, then D(Jmmin
) (resp.

D(Jmmax
)) is unbounded by hypothesis, and hence mmin ≤ 0 (resp. mmax ≥ 0) by Lemma 5.6.

If Λ∞(J) = {m} with |m| = maxj∈J |λj |, we may thus assume that mD(Jm) ⊆ (−∞, 0] and
that D(Jn) = {0} for all n 6= m. If Λ∞(J) = {±m} = {mmin,mmax} is a 2-element set, we may
similarly assume that ±mD(J±m) ⊆ (−∞, 0] and that D(Jn) = {0} for all n 6= ±m. In both cases,
χ ∈ Cmin(λ,BJ). Hence (J, λ, χ) satisfies the PEC for W (BJ) by Proposition 5.3.

We next assume that J has some accumulation point r ∈ R. Set M = supj∈J |λj |. Let ε > 0 and let

S be an infinite subset of J such that D(S) ⊆ [r − ε, r + ε]. Let σ = (σj)j∈J ∈ {±1}(J) and w ∈ S(J),
and let I be some finite subset of J containing the supports of σ and w. Pick any i ∈ S \ I, and let

τ = (τj)j∈J ∈ {±1}(J) with support contained in {i} be such that τσ ∈ {±1}(J)
2 . It then follows from

(2.1) that

λ(σw−1.χ− χ) =
∑
j∈J

λj(σjdw(j) − dj) =
∑
j∈J

λj(τjσjdw(j) − dj)− λi(τidi − di)

≥ λ(τσw−1.χ− χ)− 2M(|r|+ ε).

Hence

inf λ(W (BJ).χ− χ) ≥ inf λ(W (DJ).χ− χ)− 2M(|r|+ ε).

This concludes the proof of the lemma. �

Remark 5.9. For each X ∈ {A,B,C,D,BC}, let Cmin(λ,XJ) denote the set of χ ∈ RJ such that
inf λ(W (XJ).χ− χ) = 0. Note that, by Proposition 5.3, this is consistent with Definition 5.2.

For X ∈ {C,BC}, we have W (XJ) = W (BJ), and hence Cmin(λ,XJ) = Cmin(λ,BJ). In order to
determine Cmin(λ,DJ), we associate to each χ = (dj)j∈J ∈ RJ the (possibly empty) set

Imin
λ,χ :=

{
i ∈ J

∣∣ |λi| = inf
j∈J
|λj | and |di| = inf

j∈J
|dj |
}
.

Note that Cmin(λ,BJ) ⊆ Cmin(λ,DJ) because W (DJ) ≤W (BJ). One can then check, as in the proof
of Proposition 5.3 (or directly from [HN12, Corollary 3.2]), that χ ∈ Cmin(λ,DJ) if and only if either
χ ∈ Cmin(λ,BJ), or else σiχ ∈ Cmin(λ,BJ) for some i ∈ Imin

λ,χ , where σi ∈ {±1}(J) has support {i}. As

this fact will not be needed in our characterisation of the positive energy condition (see Lemma 5.8),
we leave it as an exercise.

We first characterise the PEC for W (AJ).
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Theorem 5.10. Let J be a set, and let λ = (λj)j∈J and χ = (dj)j∈J be elements of RJ . Assume that
λ is discrete and bounded. Then the following are equivalent:

(1) (J, λ, χ) satisfies the PEC for W (AJ).
(2) χ ∈ Cmin(λ,AJ) + `1(J).

Proof. The implication (2) =⇒ (1) readily follows from Proposition 5.3 and Lemma 5.5. Assume
now that (J, λ, χ) satisfies the PEC for W (AJ), and let us prove that, up to substracting from χ some
element of `1(J), one has χ ∈ Cmin(λ,AJ). Since χ ∈ Cmin(λ,AJ) if λ is constant, we may assume
that (J, λ, χ) is nontrivial, that is, mmin 6= mmax. Moreover, note that (J, λ, χ) is essentially bounded
by Lemma 4.4.

By assumption, Λ(J) is finite. Write Λ∞(J) = Λ∞(J) ∪ {mmin,mmax} = {n0, n1, . . . , nk} so that

mmin = n0 < n1 < · · · < nk = mmax

for some k ≥ 1. Proposition 4.5 then implies that

rmin
n0
≥ rmax

n1
≥ rmin

n1
≥ · · · ≥ rmax

nk−1
≥ rmin

nk−1
≥ rmax

nk
.

For each t ∈ {1, . . . , k}, we set

at =


1
2 (rmin

nt−1
+ rmax

nt
) if rmin

nt−1
, rmax
nt
∈ R,

rmax
nt

+ 1 if t = 1, rmin
n0

=∞ and rmax
n1
∈ R,

rmin
nt−1
− 1 if t = k, rmax

nk
= −∞ and rmin

nk−1
∈ R,

0 if t = k = 1, rmin
n0

=∞ and rmax
n1

= −∞,

so that

rmin
n0
≥ a1 ≥ rmax

n1
≥ rmin

n1
≥ a2 ≥ · · · ≥ ak−1 ≥ rmax

nk−1
≥ rmin

nk−1
≥ ak ≥ rmax

nk
.

We also set a0 :=∞ and ak+1 := −∞. Fix some t ∈ {0, 1, . . . , k}. We claim that the tuple χt = (d′j)j∈J
defined by

d′j =


dj − at+1 if j ∈ Jnt and dj < at+1,

dj − at if j ∈ Jnt
and dj > at,

0 otherwise

is in `1(J).
Let I+ (resp. I−) denote the set of j ∈ Jnt such that dj > at (resp. dj < at+1). We have to show

that ∑
j∈I+

|dj − at| <∞ and
∑
j∈I−

|dj − at+1| <∞.

We prove this for I+, the proof for I− being similar. Since if t = 0, the set I+ is empty, we may assume
that t ∈ {1, . . . , k}. Moreover, since at ≥ rmax

nt
, the set I+ is finite as soon as at > rmax

nt
. Note that this

includes in particular the case where t = k and rmax
nk

= −∞, in which case D(Jnt) is bounded above

and Jnt
has no accumulation point, as well as the case where t = 1, rmin

n0
=∞ and rmax

n1
∈ R, in which

case at = rmax
nt

+ 1 > rmax
nt

. Hence we may also assume that at = rmax
nt
∈ R and that rmin

nt−1
∈ R. But

then rmin
nt−1

= at = rmax
nt

, and hence the conclusion follows from Proposition 4.5.

Thus
∑k
t=0 χt ∈ `1(J). Hence, up to replacing χ by χ−

∑k
t=0 χt, we may assume that

(5.1) D(Jnt
) ⊆ [at+1, at] for all t = 0, 1, . . . , k.

We next define the tuple χ′ = (d′j)j∈J by

d′j =

{
dj − at if λj ∈ Λ(J) \ Λ∞(J) and nt−1 < λj < nt,
0 otherwise.

Since the set of j ∈ J with λj ∈ Λ(J) \ Λ∞(J) is finite, χ′ ∈ `1(J). Moreover, it follows from (5.1)
that χ− χ′ ∈ Cmin(λ,AJ). This concludes the proof of the theorem. �
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Before characterising the PEC for W (BJ), we need one more lemma. For a tuple ν = (νj)j∈J ∈ RJ ,
we put

|ν| := (|νj |)j∈J ∈ RJ .

Lemma 5.11. Assume that (J, λ, χ) satisfies the PEC for W (BJ). Then (J,−|λ|, |χ|) satisfies the
PEC for W (AJ).

Proof. Let w ∈ S(J), and let I be some finite subset of J containing the support of w. Let σ =

(σj)j∈J ∈ {±1}(J) with support in I be such that λjσjdw(j) = −|λjdw(j)| for all j ∈ I. It then follows
from (2.1) that

−|λ|(w−1.|χ| − |χ|) = −
∑
j∈I
|λj | · (|dw(j)| − |dj |) ≥

∑
j∈I

λj(σjdw(j) − dj) = λ(σw−1.χ− χ).

Hence

inf
(
− |λ|(W (AJ).|χ| − |χ|)

)
≥ inf λ(W (BJ).χ− χ),

as desired. �

Theorem 5.12. Let J be a set, and let λ = (λj)j∈J and χ = (dj)j∈J be elements of RJ . Assume that
λ is discrete and bounded. Then the following are equivalent:

(1) (J, λ, χ) satisfies the PEC for W (BJ).
(2) χ ∈ Cmin(λ,BJ) + `1(J).

Proof. The implication (2) =⇒ (1) readily follows from Proposition 5.3 and Lemma 5.5. Assume
now that (J, λ, χ) satisfies the PEC for W (BJ) and let us prove that, up to substracting from χ some
element of `1(J), one has χ ∈ Cmin(λ,BJ).

Since (J,−|λ|, |χ|) satisfies the PEC for W (AJ) by Lemma 5.11, we know from Theorem 5.10 that

|χ| ∈ Cmin(−|λ|, AJ) + `1(J).

Let σ = (σj)j∈J ∈ {±1}J be such that σjdj ≥ 0 for all j ∈ J . In other words, |χ| = σχ. Hence
χ ∈ σCmin(−|λ|, AJ) + σ`1(J). Note that σ`1(J) = `1(J). Up to substracting from χ some element of
`1(J), we may thus assume without loss of generality that

(5.2) χ ∈ σCmin(−|λ|, AJ).

Note that we may in addition assume that (J, λ, χ) satisfies the PEC for W (BJ) by Lemma 5.5. We
deduce from (5.2) that |χ| ∈ Cmin(−|λ|, AJ), so that

(5.3) ∀i, j ∈ J : |λi| < |λj | =⇒ |di| ≤ |dj |.

On the other hand, Lemma 5.6 implies that∑
j∈J+

|dj | <∞, where J+ := {j ∈ J | λjdj > 0}.

In particular, the tuple χ′ = (d′j)j∈J defined by

d′j =

{
2dj if j ∈ J+,
0 otherwise

belongs to `1(J). Since χ − χ′ = σ′χ, where σ′ = (σ′j)j∈J ∈ {±1}J has support J+, the tuple
χ − χ′ still satisfies the condition (5.3), with dj replaced by dj − d′j for all j ∈ J . Therefore, up to

substracting χ′ ∈ `1(J) from χ, we may assume that λjdj ≤ 0 for all j ∈ J and that (5.3) holds, so
that χ ∈ Cmin(λ,BJ), as desired. �
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6. Proof of Theorem A

By [LN04], the root system ∆ of the locally finite split simple Lie algebra g over K = C is isomorphic
to one of the root systems ∆ = ∆(XJ) for X ∈ {A,B,C,D} described in §2.1, where the Cartan
subalgebra h (resp. a one-dimensional extension of h if X = A) is identified with VC := V ⊗R C =
spanC{ej | j ∈ J}. The identification of VC with h∗ (resp. a one-dimensional extension of h∗) induced
by the assignment ej 7→ εj (j ∈ J) yields in turn an identification of the Weyl group W ≤ GL(h∗) of
g with the Weyl group W (XJ) defined in §2.2.

Let λ ∈ h∗ be discrete and bounded. Then the restriction of λ to V is real valued, and λ is
determined by the tuple (λj)j∈J ∈ RJ defined by λj = λ(ej), j ∈ J . Identifying λ with this tuple, λ
is then discrete and bounded in the sense of Definition 5.1.

Similarly, the character χ : Z[∆]→ R is the restriction of a Z-linear map

χ̃ : spanZ{εj | j ∈ J} → R : εj 7→ dj ,

and is thus determined by the tuple (dj)j∈J ∈ RJ . Note that Z[∆] = spanZ{εj | j ∈ J} in all cases,
except for ∆ = ∆(AJ), in which case Z[∆] is the corank 1 submodule {

∑
j∈J xjεj |

∑
j∈J xj = 0}

of spanZ{εj | j ∈ J}. Hence, either χ̃ = χ, or else ∆ = ∆(AJ) and χ̃ is determined by χ up to a
constant. As W (AJ) = S(J), modifying χ̃ by a constant does not modify the value of the infimum of

χ̃(W (AJ).λ− λ). We may thus safely replace χ by χ̃, which we identify with the tuple (dj)j∈J ∈ RJ .

Finally, with the above identifications, we have for all σ ∈ {±1}(J) and w ∈ S(J) that

χ(σw.λ− λ) = χ
(∑
j∈J

λj(σw(j)εw(j) − εj)
)

=
∑
j∈J

λj(σw(j)dw(j) − dj) =
∑
j∈J

dj(σjλw−1(j) − λj)

= λ
(∑
j∈J

dj(σjew−1(j) − ej)
)

= λ
(
w−1σ.

∑
j∈J

djej −
∑
j∈J

djej

)
= λ((σw)−1.χ− χ),

and hence

inf χ(W.λ− λ) = inf λ(W.χ− χ).

In particular, the condition inf χ(W.λ − λ) > −∞ in the statement of Theorem A is equivalent to
requiring the triple (J, λ, χ) with λ = (λj)j∈J and χ = (dj)j∈J to satisfy the PEC for W = W (XJ) in
the sense of Definition 2.1.

For X = A, Theorem A thus sums up Proposition 5.3 and Theorem 5.10. Since Cmin(λ,BJ) ⊆
Cmin(λ,DJ) (see Remark 5.9) and since the PEC for W (BJ), W (CJ) and W (DJ) are equivalent
by Lemma 5.8, the conclusion of Theorem A for X ∈ {B,C,D} follows from Proposition 5.3 and
Theorem 5.12. �
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