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CAN AN ANISOTROPIC REDUCTIVE GROUP ADMIT A TITS SYSTEM?PIERRE-EMMANUEL CAPRACE* AND TIMOTHÉE MARQUISAbstrat. Seeking for a onverse to a well-known theorem by Borel�Tits, we address thequestion whether the group of rational points G(k) of an anisotropi redutive k-group mayadmit a split spherial BN-pair. We show that if k is a perfet �eld or a loal �eld, then suh aBN-pair must be virtually trivial. We also onsider arbitrary ompat groups and show that theonly abstrat BN-pairs they an admit are spherial, and even virtually trivial provided theyare split. 1. IntrodutionIn a seminal paper [5℄, Armand Borel and Jaques Tits established � amongst other things� that the group G(k) of k-rational points of a (onneted) redutive linear algebrai k-group
G always possesses a anonial BN-pair, where k is an arbitrary ground �eld. More preisely,they showed that if P is a minimal paraboli k-subgroup of G, and if N is the normalizer in Gof some maximal k-split torus ontained in P , then (P (k), N(k)) is a BN-pair for G(k). Thisresult onstitutes a ornerstone in understanding the abstrat group struture of the group of
k-rational points G(k). As an appliation, it yields for example the elebrated simpliity resultof Tits [20℄. Of ourse, the aforementioned BN-pair is trivial when G is anisotropi over k.(Abusing slightly the standard onventions, we shall say that G is anisotropi if it has no proper
k-paraboli subgroup, i.e. if P = G. As is well-known, this de�nition oinides with the standardone in ase G is semi-simple (see [4, 11.21℄)). In fat, the abstrat group struture of G(k) remainsintriguing and mysterious to a large extent in the anisotropi ase. In this ontext, we proposethe following.Conjeture (Converse to Borel�Tits). Let G be a redutive algebrai k-group whih is anisotropiover k. Then every split spherial BN-pair for G(k) is trivial.Reall that a BN-pair (B, N) for a group G is alled spherial if the assoiated Weyl group
W := N/T is �nite, where T := B ∩ N . It is said to be split if it is saturated (i.e. T =
⋂

w∈W wBw−1), and if there exists a nilpotent normal subgroup U ⊳B suh that B ∼= U ⋊T . Notethat if (B, N) is irreduible of rank at least 2, one an show that U is automatially nilpotent(see [19℄). The BN-pair for G(k) desribed above is always split in the above sense ([4, 14.19℄).Besides the natural searh for a onverse to Borel�Tits, a motivation to onsider the aboveonjeture is provided by the reent work of Peter Abramenko and Ken Brown [1℄, who onstrutedWeyl transitive ations on trees for ertain anisotropi groups over global funtion �elds. We referto [2, Ch. 6℄ for more details on the relations and distintions between BN-pairs, strong transitivityand Weyl transitivity.Our �rst ontribution onerns the speial ase when the ground �eld k is a loal �eld. The
k-anisotropy of G is then equivalent to the ompatness of G(k) (see [13℄). In fat, our �rst stepwill be to establish the following two results, whih onern arbitrary ompat topologial groups(not neessarily assoiated with algebrai groups).Theorem 1. Let G be a ompat group. Then every BN-pair for G is spherial.Theorem 2. Let G be a ompat group possessing a split spherial BN-pair (B, N). Then, theassoiated building is �nite. In other words, [G : B] < ∞.Date: August 2009.2000 Mathematis Subjet Classi�ation. 20E42, 20G15 (Primary); 22C05 (Seondary).*Supported by the Fund for Sienti� Researh�F.N.R.S., Belgium.1
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2 PIERRE-EMMANUEL CAPRACE* AND TIMOTHÉE MARQUISWe emphasize that the BN-pairs appearing in these statements are abstrat : The orrespondingsubgroups B and N are not supposed to be losed in G. Speializing to anisotropi groups overloal �elds, we dedue the following immediate orollary.Theorem 3. Let k be a loal �eld and G be a onneted semi-simple algebrai k-group whih isanisotropi over k. Then:(1) Every BN-pair for G(k) is spherial.(2) Every split spherial BN-pair (B, N) for G(k) is `virtually trivial', in the sense that B has�nite index in G(k).Finally, we onsider the ase of perfet ground �elds.Theorem 4. Let k be a perfet �eld and G be a redutive algebrai k-group whih is anisotropiover k. Then every split spherial BN-pair for G(k) is virtually trivial.Notie that Theorems 3 and 4 are logially independent, sine there exist loal �elds whih arenot perfet and vie-versa.It would be very interesting to sharpen the onlusion of Theorems 3 and 4, that is, to showthat the BN-pair must be trivial, and not only virtually trivial. However, we expet this to bequite di�ult, sine it is losely related to a onjeture due to Andrei Rapinhuk and Gopal Prasad(see [14℄), whih may be stated as follows: �Let G be a redutive k-group whih is anisotropi over
k. Then, every �nite quotient of G(k) is solvable.� As of today, this onjeture was on�rmedonly when G is the multipliative group of a �nite dimensional division algebra (see [15℄). We nowsketh informally how these two problems are related.On one side, if G(k) possesses a BN-pair with �nite assoiated building ∆, and if K :=
ker(G(k) y ∆) is the kernel of the orresponding ation, then G(k)/K is a �nite group whoseation on ∆ is faithful, and thus G(k)/K possesses a faithful BN-pair. But these groups havebeen lassi�ed: they are simple Chevalley groups, and in partiular are not solvable (up to twoexeptions). Thus, if the BN-pair for G(k) were nontrivial, there would exist (modulo the twoexeptions) a non-solvable �nite quotient of G(k).Conversely, suppose that G(k) possesses a nontrivial and non-solvable �nite quotient F ′ :=
G(k)/K. Let R � F ′ be the solvable radial of F ′, that is, its largest solvable normal subgroup.Going to the quotient F := F ′/R, we thus know that G(k) surjets onto a nontrivial �nitegroup with trivial solvable radial (namely, F ). Let now M be a minimal normal subgroup of
F . Then M is a diret produt of non-Abelian simple groups whih are pairwise isomorphi, say
M ∼= S1 × · · · × Sk with Si

∼= S for all i ∈ {1, . . . , k}. By the lassi�ation of �nite simple groups,
S is very likely to be a Chevalley group. Suh a group possesses a root datum, and thus alsoa nontrivial BN-pair whose assoiated (�nite) building is in bijetion with S/B. Repeating thisonstrution for eah Si, we then get a �nite building ∆ = ∆1×· · ·×∆k on whih M = S1×· · ·×Skats strongly transitively. Finally, the ation of Aut(M) on the set of p-Sylow subgroups of M(where p = chark) indues an ation of Aut(M) on ∆ making the diagram

F
α

−−−−−−→ Aut(M)

ι

x









y

M −−−−−−−→strongly tr. Aut(∆)ommutative, where α(f) denotes the onjugation by f for all f ∈ F . In partiular, we get astrongly transitive ation of F , and thus also of G(k), on the �nite building ∆. This yields anontrivial and virtually trivial BN-pair for G(k).General onventions. All algebrai groups onsidered here are supposed to be a�ne, all topo-logial groups are assumed Hausdor� and all BN-pairs have �nite rank.Aknowledgement. We are very grateful to the anonymous referee for his/her useful detailedomments.



CAN AN ANISOTROPIC REDUCTIVE GROUP ADMIT A TITS SYSTEM? 32. Proof of Theorem 12.1. Heuristi sketh. Let G be a ompat group and let (B, N) be a BN-pair for G. Also, let
∆ be the assoiated building. We onsider the Davis realization of ∆, noted |∆|CAT(0) in thispaper, and whih is a omplete CAT(0) spae, as well as a simpliial omplex, on whih G ats bysimpliial isometries. The key step in the proof of Theorem 1 is then to establish that this ationis ellipti (Theorem 2.5 below). To do so, we use a result of Martin Bridson stating that suh anation is always semi-simple, and we then argue by ontradition, assuming that G possesses anelement with no �xed point. Suh an element would then generate a subgroup Q of G whih atsby translations on |∆|CAT(0). Moreover, the struture of simpliial omplex of |∆|CAT(0) impliesthat the set of translation lengths of the elements of Q is disrete at 0. The ontradition nowomes from divisibility properties of ompat and proyli groups, whih we apply to Q.2.2. Proyli groups. Let G be a pro�nite group. Reall that G is said to be proyli if thereexists a g ∈ G suh that the subgroup generated by g is dense in G, that is, G = 〈g〉. Moreover Gis said to be pro-p for some prime p if every �nite Hausdor� quotient of G is a p-group.The following basi properties of proyli groups an be found in [16, 2.7℄. The symbol Pdenotes the set of all primes.Proposition 2.1. Let G be a proyli group. Then,(i) G is the diret produt G =

∏

p∈P
Gp of its p-Sylow subgroups, and eah Gp is a pro-pproyli group.(ii) G is, in a unique way, a quotient of Ẑ :=

∏

p∈P
Zp. If G is pro-p for some p ∈ P, then it isa quotient of Zp.2.3. Divisible groups. Reall that an element g ∈ G is said to be n-divisible for some n ∈ Nif there exists an h ∈ G suh that hn = g. We say that g is divisible if it is n-divisible for eah

n ≥ 1. The group G is alled n-divisible (respetively divisible) when all its elements are.Now, every prime q di�erent from p is invertible in Zp sine its p-adi valuation is zero. Hene,the additive group Zp is q-divisible for eah q ∈ P \ {p}. In partiular, Proposition 2.1 shows thatif a proyli group G has trivial q-Sylow subgroups, then G is q-divisible.We onlude this paragraph by stating the following haraterization of divisibility for ompatgroups (see [12, Corollaire 2℄).Proposition 2.2. Let G be a ompat topologial group. Then, G is divisible if and only if it isonneted.2.4. Semi-simple ations on CAT(0) spaes. Let G be a group ating on a metri spae (X, d).For every g ∈ G, we de�ne the translation length of g by |g| := inf{d(x, g · x) | x ∈ X} ∈ [0,∞)and the minimal set of g by Min(g) := {x ∈ X | d(x, g · x) = |g|}. An element g ∈ G is said tobe semi-simple when Min(g) is nonempty. In that ase, we say that g is ellipti if it �xes somepoint, that is, if |g| = 0; otherwise, if |g| > 0, we all g hyperboli.A geodesi line (respetively, geodesi segment) in X is an isometry f : R → X (respe-tively, f : [0; 1] → X); by abuse of language, we will identify f with its image in X .The following lemma follows from Proposition 2.4 in [6℄.Lemma 2.3. Let (X, d) be a omplete CAT(0) metri spae, and let C be a losed onvex nonemptysubset of X. Then:(i) For every x ∈ X, there is a unique y ∈ C suh that d(x, y) = d(x, C), where d(x, C) :=
infz∈C d(x, z). We all y the projetion of x on C and we write y = projC x.(ii) For all x1, x2 ∈ X, we have d(projC x1, projC x2) ≤ d(x1, x2).Suppose now that (X, d) is a ell omplex. We then say that G ats by ellular isometrieson X if it preserves the metri, as well as the ell deomposition of X .The following result is due to Martin Bridson [7℄.Proposition 2.4. Let X be a loally Eulidean CAT(0) ell omplex with �nitely many isometrytypes of ells, and G be a group ating on X by ellular isometries. Then every element of G issemi-simple. Moreover, inf{|g| 6= 0 | g ∈ G} > 0.



4 PIERRE-EMMANUEL CAPRACE* AND TIMOTHÉE MARQUISWe now establish the following result, whih is the key ingredient for the proof of Theorem 1:Theorem 2.5. Let X be a loally Eulidean CAT(0) ell omplex with �nitely many isometrytypes of ells, and G be a ompat group ating on X by ellular isometries (not neessarilyontinuously). Then every element of G is ellipti.Proof. Suppose for a ontradition there exists a g ∈ G without �xed point. Proposition 2.4 thenimplies that g is hyperboli. Let Q = 〈g〉 be the losure of the subgroup generated by g in G. So,
Q is ompat.Claim 1: Q is Abelian.This is lear sine it ontains a dense Abelian (in fat yli) subgroup.Claim 2: For every h ∈ Q, the minimal set Min(h) is a losed onvex subset of X whih is stabilizedby Q.This follows from [6, Proposition II.6.2℄.Claim 3: For every h ∈ Q and every nonempty losed onvex subset C of X stabilized by Q, theset C ∩ Min(h) is nonempty.Note �rst thatMin(h) is nonempty by Proposition 2.4. Let x ∈ Min(h) and onsider the projetions
y := projC x and z := projC hx provided by Lemma 2.3. Sine hC = C, we then obtain

d(x, y) = inf
c∈C

d(x, c) = inf
c∈C

d(hx, hc) = inf
c∈C

d(hx, c) = d(hx, z).Hene d(hx, hy) = d(x, y) = d(hx, z), and so z = hy = projC hx by uniqueness of projetions.Sine in addition d(y, z) ≤ d(x, hx) = |h| by Lemma 2.3, we �nally get d(y, hy) = |h| and therefore
y ∈ C ∩ Min(h).Claim 4: For all h1, h2 ∈ Q, the set Min(h1) ∩ Min(h2) is nonempty.As Min(h1) and Min(h2) are nonempty by Proposition 2.4, the laim follows from Claims 2 and 3.Claim 5: Let h ∈ Q and let C be a nonempty losed onvex subset of X stabilized by Q. We maythus onsider the ation of h on C. Denote by |h|C the translation length of h for this ation.Then, h is semi-simple in C and |h| = |h|C .Claim 3 yields that if x ∈ Min(h), then y := projC x ∈ Min(h). Sine Min(h) is nonempty byProposition 2.4, the laim follows.Claim 6: For every h ∈ Q and n ≥ 1, we have |hn| = n|h|.By Claim 4, we may hoose an x ∈ Min(h) ∩ Min(hn). Note that h is ellipti (respetivelyhyperboli) if and only if hn is so (see [6, II.6.7 and II.6.8℄). In partiular, if h is hyperboli, then
x belongs to some h-axis, whih is also an hn-axis. In any ase, we obtain d(x, hnx) = nd(x, hx),whene |hn| = d(x, hnx) = nd(x, hx) = n|h|.Claim 7: Every divisible element of Q is ellipti.Let h ∈ Q be divisible and suppose for a ontradition it is not ellipti. Then h is hyperboliby Proposition 2.4. For eah natural number n ≥ 1, hoose an hn ∈ Q suh that hn

n = h. Inpartiular, all hn are hyperboli. Moreover, |hn
n| = n|hn| by Claim 6. Therefore, we obtain asequene (hn) of elements of Q suh that |hn| = |h|/n > 0, ontraditing the seond part ofProposition 2.4.We now establish the desired ontradition to the hyperboliity of g. First note that theomponent group P := Q/Q0 of Q is a pro�nite group. In fat, it is even proyli, sine thesubgroup generated by the projetion of g in P is dense in P , the natural mapping π : Q → Q/Q0being ontinuous. In partiular, it follows from Proposition 2.1 that P is the produt of its p-Sylowsubgroups Pp. Moreover, eah Pp is a pro-p group and is therefore q-divisible for every q ∈ P\{p}.For eah p ∈ P, let Qp be the subgroup of Q whih is the pre-image of Pp under π.Claim 8: If h, a, d ∈ Q with ha = dn for some n ≥ 1 and a is ellipti, then |h| = n|d|.



CAN AN ANISOTROPIC REDUCTIVE GROUP ADMIT A TITS SYSTEM? 5Write C := Min(h) ∩ Min(a). Then C is nonempty by Claim 4. Sine dn stabilizes C, Claim 5implies that it is semi-simple in C with translation length |dn|C = |dn|. Thus, |dn|C = |dn| = n|d|by Claim 6. Note also that ha is semi-simple in C with translation length |ha|C = |h|. Therefore,
|h| = |ha|C = |dn|C = n|d|, as desired.Claim 9: Let h ∈ Q be hyperboli. Suppose that hai = dni

i for all i ≥ 1, where ai, di ∈ Q, eah aiis ellipti and where ni ≥ 1. Then the set {ni | i ≥ 1} is bounded.Indeed, by Claim 8, the sequene (di) of elements of Q is suh that |di| = |h|/ni > 0. The laimnow follows from the seond part of Proposition 2.4.Claim 10: Let p ∈ P. Then all elements of Qp are ellipti.Suppose for a ontradition there exists an h ∈ Qp whih is not ellipti, and is thus hyperboliby Proposition 2.4. Let q ∈ P \ {p}. Sine Pp = π(Qp) is q-divisible, there exists an hq ∈ Q suhthat hq
qQ

0 = hQ0. Let a ∈ Q0 suh that ha = hq
q. By Proposition 2.2, sine Q0 is ompat andonneted, it is divisible, and so a is ellipti by Claim 7. Sine the set of natural prime numbersdistint from p is unbounded, the desired ontradition now omes from Claim 9.Let now gQ0 = (gp)p∈P be the deomposition of π(g) in P =

∏

p∈P
Pp (that is, eah gp ∈ Pp).Let q ∈ P, and hoose an aq ∈ Qp suh that π(aq) = g−1

q . Then π(gaq) has no omponent in the
q-Sylow of P , and is therefore q-divisible in P . Hene, there exist an hq ∈ Q and an a ∈ Q0 suhthat gaqa = hq

q. By Claim 10, we know that aq is ellipti. But so is a, and hene the produt
a′ := aqa is also ellipti by Claim 4. Sine q is an arbitrary prime, Claim 9 again yields the desiredontradition. �2.5. The Davis realization of a building. We reall from [10℄ that any building ∆ admits ametri realization, denoted by |∆|CAT(0), whih is a loally Eulidean CAT(0) ell omplex with�nitely many types of ells. Moreover any group of type-preserving automorphisms of ∆ atsin a anonial way by ellular isometries on |∆|CAT(0). Finally, the ell supporting any point of
|∆|CAT(0) determines a unique spherial residue of ∆. In partiular, an automorphism of ∆ whih�xes a point in |∆|CAT(0) must stabilize the orresponding spherial residue in ∆.Here is a reformulation of Theorem 1.Theorem 2.6. Let G be a ompat group ating strongly transitively by type-preserving automor-phisms on a thik building ∆. Then, ∆ is spherial.Proof. Let (W, S) be the Coxeter system assoiated to ∆, and let Σ be the fundamental apartmentof ∆. Then, the ation of the stabilizer in G of Σ an be identi�ed with the ation of W on thisapartment ([21, 2.8℄).Claim 1: |Σ|CAT(0) is a losed onvex subset of |∆|CAT(0).A basi fat about buildings is the existene, for eah pair (Σ, C) onsisting of an apartment
Σ and of a hamber C ∈ Σ, of a retration of ∆ onto Σ entered at C, that is, of a simpliialmap ρ = ρΣ,C : ∆ → Σ preserving minimal galleries from C and suh that ρ|Σ = id|Σ. Theindued mapping ρ : |∆|CAT(0) → |Σ|CAT(0) then maps every geodesi segment of |∆|CAT(0) ontoa pieewise geodesi segment of |Σ|CAT(0) of same length. In partiular, the mapping ρ is distanedereasing (see [10, Lemme 11.2℄). Hene, if x and y are two points in |Σ|CAT(0), then the geodesisegment from x to y is entirely ontained in |Σ|CAT(0) sine its image by ρ is also a geodesi from xto y. This proves that |Σ|CAT(0) is onvex. To see it is losed, it su�es to note that it is ompleteas a metri spae sine it is preisely the Davis realization of the building Σ.Claim 2: If g ∈ G is ellipti in X = |∆|CAT(0) and stabilizes |Σ|CAT(0), then g is also ellipti in
|Σ|CAT(0).This follows from Claim 5 in the proof of Theorem 2.5.Theorem 2.5 now implies that the indued ation of W on |Σ|CAT(0) is ellipti, that is, every
w ∈ W is ellipti. Notie that the W -ation on |Σ|CAT(0) is proper, sine by onstrution, it isellular and the stabilizer of every point is a spherial (in partiular �nite) paraboli subgroup of
W . Realling now that every in�nite �nitely generated Coxeter group ontains elements of in�nite



6 PIERRE-EMMANUEL CAPRACE* AND TIMOTHÉE MARQUISorder (in fat, so do all �nitely generated in�nite linear groups by a lassial result of Shur [17℄;in the speial ase of Coxeter groups, a diret argument may be found in [2, Proposition 2.74℄),we dedue that W is �nite. In other words ∆ is spherial. �3. Proof of Theorem 23.1. Heuristi sketh. Let G be a ompat group possessing a split spherial BN-pair, and let
∆ be the assoiated building. We �rst establish Theorem 2 when G ats ontinuously on ∆. Inthat ase, 2-transitive ations (whih are losely related to strongly transitive ations) of G onsubspaes X of ∆ are easily seen to be possible only for �nite X . The seond step is then to showthat the ation of G on ∆ has to be ontinuous. This uses the fat that buildings arising fromsplit spherial BN-pairs are Moufang (see Proposition 3.3 below).3.2. Continuous ations on buildings. Reall that a topologial spae X is said to satisfy the
T1 separation axiom when all its singletons are losed. The following is probably well-known.Lemma 3.1. Let G be a ompat group. If G admits a ontinuous 2-transitive ation on a T1topologial spae X, then X is �nite.Proof. De�ne Y := {(x, y) ∈ X × X | x 6= y} ⊂ X × X , and �x x, y ∈ X with x 6= y. Sine themapping αx : G → X : g 7→ g · x is ontinuous, so is αx × αy : G → X × X : g 7→ (g · x, g · y). By
2-transitivity, we get Y = (αx × αy)(G), and so Y is ompat.Note also that the mapping f : X × X → X × X : (a, b) 7→ (x, b) is ontinuous. Setting
Z := X \ {x}, we then get Z ×{x} = f−1({(x, x)})∩Y , so that Z ×{x} is losed in Y , and heneompat. It follows that Z is ompat, being the image of Z × {x} by the projetion on the �rstfator X × X → X , whih is of ourse ontinuous.In partiular, Z is losed, and hene {x} is open. It follows that X is disrete, and therefore�nite sine X = αx(G) is ompat. �Let ∆ be a building of type (W, S), and denote by Ch ∆ the set of its hambers. Considerthe hamber system Γ of ∆, whih is the labelled graph with vertex set Ch ∆ and with an edgelabelled by s ∈ S for eah pair of s-adjaent hambers of ∆ (see [8, Ch.I Appendix D℄). Let J ⊂ S.A J-gallery in Γ between two hambers x and y of ∆ is a sequene (x = x0, x1, . . . , xl = y) ofhambers of ∆ suh that for eah i ∈ {1, . . . , l}, there exists an s ∈ J suh that xi−1 is s-adjaentto xi. The natural number l is alled the length of the gallery. A minimal gallery is a gallery ofminimal length. The distane in ∆ between two hambers x, y ∈ Ch ∆ is the length of a minimalgallery joining x to y. The diameter of Γ is the supremum (in N∪{∞}) of the distanes betweenits verties.Let J ⊂ S. The J-residue R = RJ(x) of some hamber x ∈ Ch ∆ is the set of hambers of ∆whih are onneted to x by a J-gallery. When J has ardinality 1, we all R a panel.In this paper, we will say that a group G ats ontinuously on ∆ if the stabilizers of theresidues of ∆ are losed in G. Note that we an of ourse restrit our attention to the maximalproper residues, the others being obtained as intersetions of those.Lemma 3.2. Let G be a ompat group ating ontinuously and strongly transitively by type-preserving automorphisms on a spherial thik building ∆. Then ∆ is �nite.Proof. The stabilizer H in G of a panel P of ∆ is a losed and thus ompat subgroup of G.Claim 1: H ats 2-transitively on P .Indeed, let C be a hamber of P and let B := StabG(C) ⊂ H . We �rst show that B, and thusalso H , is transitive on the set C = P \ {C}. Let C1, C2 ∈ C and let Σ1 (respetively, Σ2) be anapartment ontaining C and C1 (respetively, C and C2). By strong transitivity, B is transitiveon the set of apartments ontaining C, and so there exists a b ∈ B suh that bΣ1 = Σ2. Hene
bC1 = C2. It now remains to show that H is transitive on P . But if C1, C2 ∈ P , then sine ∆ isthik, we may hoose a hamber C in P di�erent from C1, C2. The stabilizer B′ of C in G is thenontained in H and is transitive on P \ {C} by the previous argument.



CAN AN ANISOTROPIC REDUCTIVE GROUP ADMIT A TITS SYSTEM? 7Now, identifying ∆ with ∆(G, B), so that H = B∪BsB for some generator s of the orrespond-ing Weyl group, we get a 2-transitive, ontinuous ation by left translation of the ompat group
H on the topologial spae H/B. Moreover, this spae is T1 sine B is losed in G by hypothesis.Lemma 3.1 then implies that P is �nite. In other words, as P was arbitrary, the building ∆ isloally �nite, that is, every panel is �nite. The following observation now allows us to onlude:Claim 2: Every loally �nite spherial building is �nite.Indeed, let Γ = Ch ∆ be the graph whose verties are the hambers of ∆, and suh that twohambers of ∆ are adjaent if they share a ommon panel. Sine ∆ is loally �nite, so is Γ. Hene,�xing a vertex x ∈ Γ, eah ball in Γ entered at x with radius n (n ∈ N) possesses a �nite numberof verties. Moreover, as ∆ is spherial, the diameter of ∆ is �nite ([8, Ch.IV, 3℄), and hene thediameter of Γ is also �nite. Thus Γ is ontained in suh a ball, and is therefore �nite. �3.3. Moufang buildings. Let ∆ = ∆(G, B) be the building assoiated to a split spherial BN-pair (B = T ⋉ U, N) of type (W, S). It is well-known (see the main result of [11℄) that theexistene of a splitting for the above BN-pair is equivalent to the fat that the building ∆ enjoysthe Moufang property, as de�ned in [21, Chapter 11℄.Two hambers x, y ∈ Ch ∆ are alled opposite if they are at maximal distane in the hambersystem of ∆. Similarly, one an de�ne opposite residues (see for instane [2, 5.7℄). The set ofhambers (respetively, residues) of ∆ whih are opposite to a given hamber C (respetively,residue R) will be denoted by Cop (respetively, Rop).Proposition 3.3. Let P = BWJB be a proper standard paraboli subgroup of ∆ = ∆(G, B) forsome proper subset J of S, let C be the fundamental hamber (i.e. the unique hamber �xed by
B) and let R be the unique J-residue ontaining C. De�ne the subgroup V :=

⋂

p∈P pUp−1 of G.Then V ats simply transitively on Rop.Proof. Let Σ be an apartment ontaining C. By [21, 9.11℄, there exists a minimal galery γR′ , onefor eah residue R′ ∈ Rop, beginning at C and ending at a hamber C′ in R′ suh that the typeof γR′ is independent of the hoie of R′ and C = projR C′. Let R′ ∈ Rop be the unique residueof Σ opposite R and let C′ be the last hamber of γR′ . Let also α be a root of Σ ontaining Cbut not C′. By [21, 8.21℄, R ∩ Σ ⊂ α. By [21, 9.7℄, therefore, R is �xed pointwise by the rootgroup Uα. Sine P maps R to itself, we have C ∈ R ⊂ αp and hene p−1Uαp ⊂ U for all p ∈ P bythe de�nition of root subgroups (see [21, 11.1℄) and the fat that the `radial' U does not dependon the hoie of the apartment Σ (see [21, Proposition 11.11(iii)℄). Thus Uα ⊂ V . Now, as in [2,7.67℄, one shows that the subgroup of V generated by all Uα's of the latter form ats transitivelyon the set {γR′′ | R′′ ∈ Rop}, and hene also on Rop.Suppose h ∈ V maps R′ ∈ Rop to itself. Then h ats trivially on R. Sine the restrition of
projR′ to R is a bijetion from R to R′ (by [21, 9.11℄ again), it follows that h ats trivially on R′.By [21, 9.8℄, therefore, h �xes two opposite hambers of Σ and hene h �xes Σ. By [21, 9.7℄ again,we onlude that h = 1. �In partiular, we have the following (ompare [8, Ch.IV, 5℄).Lemma 3.4. Let C be the fundamental hamber of ∆. Then U ats simply transitively on Cop.Equivalently, U ats simply transitively on the set of apartments ontaining C.Lemma 3.5. Let P = BWJB be a proper standard paraboli subgroup of ∆ = ∆(G, B) forsome proper subset J of S, let C be the fundamental hamber and let R be the unique J-residueontaining C. Then there exist two hambers in Cop whih are opposite to one another. Inpartiular, |Rop| ≥ 2.Proof. The �rst assertion holds by [2, Proposition 4.104℄ and the seond follows sine no properresidue ontains two opposite hambers. �We are now ready to omplete the proof of Theorem 2.Theorem 3.6. Let G be a ompat topologial group possessing a spherial split BN-pair (B =
T ⋉ U, N). Then the assoiated building is �nite.



8 PIERRE-EMMANUEL CAPRACE* AND TIMOTHÉE MARQUISProof. Let ∆ = ∆(G, B) be the building assoiated to (B, N), and let (W, S) be the orrespondingCoxeter system.We start with some basi observations in the ase (W, S) is not irreduible. Suppose thus that Sdeomposes as S = S1∐S2 with s1s2 = s2s1 for all s1 ∈ S1 and s2 ∈ S2. Then W splits as a diretprodut W ∼= W1×W2, where Wi = 〈Si〉, and the building ∆ deomposes anonially as a produt
∆ = ∆1 × ∆2 of buildings of type (W1, S1) and (W2, S2) respetively (see [21, Proposition 7.33℄).In partiular, we obtain indued ations of G on both ∆1 and ∆2, whih are obviously stronglytransitive. The orresponding BN-pairs for G may be desribed as follows. Sine eah s ∈ S anbe written as a oset nT ∈ N/T = W , we may hoose, for i = 1, 2, a set N i of representatives in
N for the elements of Si. For eah i = 1, 2, onsider now the subgroup Ni of N generated by N iand T , and set Bi := 〈B ∪ N3−i〉 = BN3−iB ≤ G. Then (Bi, Ni) is a spherial BN-pair for G,and the assoiated building is nothing but ∆i = ∆(G, Bi).We laim that the BN-pair (Bi, Ni) is split. This follows readily from the aforementionedequivalene between splittings of BN-pairs and the Moufang property for the assoiated buildings.More preisely, onsider the group Ui =

⋂

g∈Bi
gUg−1 whih is the kernel of the U -ation on ∆3−i.Then Ui ats sharply transitively on the hambers of ∆i whih are opposite the standard hamber

C, whih by de�nition is the unique hamber �xed by Bi. Therefore we have Bi
∼= Ti ⋉ Ui, where

Ti =
⋂

w∈Wi
wBiw

−1, and Ui indues a splitting of the BN-pair (Bi, Ni) as laimed.This shows that the given split BN-pair for G yields various split BN-pairs for G orrespondingto the various irreduible omponents of ∆. Sine Ch ∆ is naturally in one-to-one orrespondenewith the Cartesian produt Ch ∆1 × · · · × Ch ∆n of the hamber sets of the various irreduibleomponents of ∆, the desired �niteness result readily follows provided we establish it for eahirreduible BN-pair (Bi, Ni) as above. In other words, there is no loss of generality in assumingthat the building ∆ is irreduible. We adopt heneforth this additional assumption.Let now P denote the set of maximal proper standard paraboli subgroups of G. Pik any
P ∈ P . Thus P is of the form P = BWJB for some maximal subset J ( S, where WJ = 〈J〉. Inpartiular, P is a maximal subgroup of G (see [2, Lemma 6.43(1)℄). De�ne the normal subgroup

V :=
⋂

p∈P

pUp−1
E Pof P . As V is ontained in U , it is also nilpotent. Moreover, V ats faithfully on ∆. Indeed, thekernel ker(G y ∆) of the ation of G on ∆ is obviously ontained in the stabilizer of the hambersof the fundamental apartment Σ, that is, in ⋂

w∈W wBw−1 = T , and so
V ∩ ker(G y ∆) ⊆ U ∩ T = {1}.Now, sine V is normal in P , we have P ⊆ NG(V ). Moreover, as the onjugation automorphism

κg : G → G : x 7→ gxg−1 is ontinuous, we get NG(V ) ⊇ NG(V ) and so NG(V ) ⊇ P . Hene, bymaximality of P , we obtain that either NG(V ) = P or NG(V ) = G.Claim: NG(V ) = P for all P ∈ P.Assume for a ontradition that NG(V ) = G for some P ∈ P . In other words, V ⊳G. In partiular,the enter Z (V ) ⊆ V of V is also a normal subgroup of G. Moreover, V is nontrivial sine, byProposition 3.3, it ats transitively on Rop and sine |Rop| ≥ 2 by Lemma 3.5. As V is nilpotent,this implies that Z (V ) is also nontrivial.Now, using again the ontinuity of the onjugation automorphism κh (for h ∈ G), we see that
Z (V ) = ZG(V )∩ V is ontained in Z (V ) = ZG(V )∩ V . Moreover, as V ats faithfully on ∆, sodoes Z (V ). This implies in partiular that Z (V ), and thus also Z (V ), at nontrivially on ∆.Tits' transitivity Lemma (see [8, Lemma 6.61℄) then guarantees that the group Z (V ) is tran-sitive on the hambers of ∆. In fat, this ation is even simply transitive. Indeed, the stabilizersin Z (V ) of the hambers of ∆ are all onjugate by transitivity. They are thus all equal sine
Z (V ) is Abelian, and are therefore ontained in the kernel ker(G y ∆) of the ation of G on
∆. Sine Z (V ) ⊆ Z (V ), this implies that the ation of Z (V ) on Ch ∆ is free. But sine
Z (V ) ⊆ V ⊆ U ⊆ B, and as B stabilizes the fundamental hamber, it follows that Z (V ) atstrivially on ∆. This ontradition establishes the Claim.



CAN AN ANISOTROPIC REDUCTIVE GROUP ADMIT A TITS SYSTEM? 9Sine the normalizer of a losed subgroup is losed, we dedue from the Claim that every P ∈ Pis losed. But this means that G ats ontinuously on ∆, and so Lemma 3.2 ensures that ∆ is�nite, as desired. �4. Proof of Theorem 4Let k be a perfet �eld and let K = k be its algebrai losure. In what follows, we identify analgebrai k-group G with its group of K-rational points.The main tool for the proof of Theorem 4 is the following haraterization of anisotropy, dueto Borel and Tits (see [3℄).Proposition 4.1. Let G be a redutive algebrai k-group and let U be a unipotent k-subgroup of
G. If k is perfet, then there exists a paraboli k-subgroup P of G whose unipotent radial Ru(P )ontains U .In partiular, if G is anisotropi over k, then U must be trivial.Proof of Theorem 4. Suppose for a ontradition that the split spherial BN-pair (B, N) for theredutive k-group G is suh that B has in�nite index in G(k). Let ∆ = ∆(G(k), B) be theassoiated building, and let W be the orresponding (�nite) Weyl group. Also, denote by B theZariski losure of B in G.The Bruhat deomposition for G yields G =

∐

w∈W BwB. Sine G(k) is Zariski dense in G by[4, 18.3℄, we have
G = G(k) =

∐

w∈W

BwB ⊆
∐

w∈W

BwB.As G is onneted, it annot be written as a �nite union of losed subsets in a nontrivial way.Therefore, we dedue that BwB is dense in G for some w ∈ W . In partiular, so is BwB.Let now A := (B)0 be the identity omponent of B. Sine A has �nite index in B, it followsthat BwB is a �nite union of double osets modulo A. As before, this implies that some doubleoset of the form AzA is dense in G.Claim: B 6= G.Indeed, let U be the nilpotent normal subgroup of B arising from the splitting of the BN-pair,and suppose for a ontradition that B is dense in G. Then the Zariski losure U of U in G is anilpotent normal subgroup of B = G ([4, 2.1℄). Its identity omponent U
0 is thus ontained in theradial of G, whih oinides with the onneted enter Z (G)0 ([4, 11.21℄). Hene, sine U

0 has�nite index in U , we get
[U : U ∩ Z (G)] ≤ [U : U ∩ U

0
] = [UU

0
: U

0
] ≤ [U : U

0
] < ∞.Now, if u ∈ U∩Z (G), then u ats trivially on ∆ sine for any hamber gB, we have ugB = guB =

gB. As U ats simply transitively on Cop by Lemma 3.4, where C = 1GB is the fundamentalhamber of ∆, this implies that u = 1: otherwise, ∆ would ontain only one apartment, so that
[G(k) : B] < ∞, a ontradition. So U ∩ Z (G) = {1} and therefore U is �nite. Using againthe sharp transitivity of U on Cop, we dedue that ∆ is the reunion of �nitely many apartments,hene is �nite, ontraditing one more our initial hypothesis. The laim stands proven.In partiular A is a proper losed subgroup of G suh that AzA is dense in G for some z ∈ G.The main result of [9℄ now implies that A is not redutive, i.e. the unipotent radial Ru(A) isnontrivial. Moreover, sine B is ontained in G(k) and is dense in B, we know that B is de�nedon k ([4, AG.14.4℄). Hene, A is also k-de�ned ([4, 1.2℄), and so is Ru(A) sine k is perfet ([18,12.1.7(d)℄). Thus Ru(A) is a nontrivial unipotent k-subgroup of G. As we observed followingProposition 4.1, this ontradits the assumption that G is anisotropi over k. �
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