
CYCLICALLY REDUCED ELEMENTS IN COXETER GROUPS

TIMOTHÉE MARQUIS∗

Abstract. Let W be a Coxeter group. We provide a precise description of the
conjugacy classes in W , in the spirit of Matsumoto’s theorem. This extends to all
Coxeter groups an important result on finite Coxeter groups by M. Geck and G. Pfeiffer
from 1993. In particular, we describe the cyclically reduced elements of W , thereby
proving a conjecture of A. Cohen from 1994.

1. Introduction

Let (W,S) be a Coxeter system. By a classical result of J. Tits ([Tit69]), also known
as Matsumoto’s theorem (see [Mat64]), any given reduced expression of an element
w ∈W can be obtained from any other expression of w by performing a finite sequence
of braid relations and ss-cancellations (i.e. replacing a subword (s, s) for some s ∈ S
by the empty word). In particular, this yields a very simple and elegant solution to the
word problem in Coxeter groups.

The conjugacy problem for Coxeter groups was solved about 30 years later, by
D. Krammer in his thesis from 1994 (published in [Kra09]): there exists a cubic al-
gorithm deciding whether two words on the alphabet S determine conjugate elements
of W . However, Krammer’s solution does not provide a sequence of “elementary opera-
tions” to pass from one word to the other, as do the braid relations and ss-cancellations
in Matsumoto’s theorem.

In this paper, we address the following long-standing open question on Coxeter
groups: Is there an analogue of Matsumoto’s theorem for the conjugacy problem in
Coxeter groups?

A very natural elementary operation on words to consider for the conjugacy problem
is that of cyclic shift: by extension, we say that an element w′ ∈W is a cyclic shift of
some w ∈W if there is some reduced decomposition w = s1 . . . sd (si ∈ S) of w such that
either w′ = s2 . . . sds1 or w′ = sds1 . . . sd−1. Such operations are, however, not sufficient
to describe conjugacy classes in general, as for instance illustrated by the Coxeter group
W = 〈s, t | s2 = t2 = (st)3 = 1〉 of type A2, in which the simple reflections s and t
are conjugate, but cannot be obtained from one another through a sequence of cyclic
shifts. Nonetheless, in the terminology of [GP00, Chapter 3], the elements w := s and
w′ := t are elementarily strongly conjugate, meaning that `S(w) = `S(w′) and that
there exists some x ∈ W with w′ = x−1wx such that either `S(x−1w) = `S(x) + `S(w)
or `S(wx) = `S(w) + `S(x).

Motivated by the representation theory of Hecke algebras, M. Geck and G. Pfeiffer
proved in [GP93] that if W is finite, then for any conjugacy class O in W ,

(1) any w ∈ O can be transformed by cyclic shifts into an element w′ of minimal
length in O, and

(2) any two elements w,w′ of minimal length in O are strongly conjugate, i.e.
there exists a sequence w = w0, . . . , wn = w′ of elements of W such that wi−1 is
elementarily strongly conjugate to wi for each i = 1, . . . , n.
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Together with S. Kim, they later generalised this theorem (see [GKP00]) to the case
of δ-twisted conjugacy classes for some automorphism δ of (W,S), that is, when O is
replaced by Oδ = {δ(v)−1wv | v ∈ W} for some w ∈ W . The proofs in [GP93] and
[GKP00] involve a case-by-case analysis, with the help of a computer for the exceptional
types. In [HN12], X. He and S. Nie gave a uniform (and computer-free) geometric proof
of that theorem, which they later generalised, in [HN14], to the case of an affine Coxeter
group W . In addition, they showed (for W affine) that

(3) if O is straight, then any two elements w,w′ of minimal length in O are conjugate
by a sequence of cyclic shifts,

where O is straight if it contains a straight element w ∈ W , that is, such that
`S(wn) = n`S(w) for all n ∈ N (equivalently, every minimal length element of O is
straight, see Lemma 2.4). Note that the straight elements in an arbitrary Coxeter
group were characterised in [Mar14b, Theorem D]; these elements play an important
role in the study of affine Deligne-Lusztig varieties (see [He14]), and also exhibit very
useful dynamical properties (see e.g. [Mar14a] or [CH15]). Similar statements to (1)
and (2) above were further obtained for an arbitrary Coxeter group W , but when O
is replaced by some “partial” conjugacy class O = {v−1wv | v ∈ WI}, for some finite
standard parabolic subgroup WI ⊆ W (see [He07] and [Nie13]). Finally, we showed
in [Mar14b, Theorem A] that for a certain class of Coxeter groups that includes the
right-angled ones, (1) and (2) hold using only cyclic shifts.

In this paper, we prove the statements (1), (2) and (3) in full generality, namely,
for an arbitrary Coxeter group W . Moreover, we actually prove a much more precise
version of (2) by introducing a refined notion of “strong conjugation”, which we call
“tight conjugation” (see Definition 3.4) — in particular, if two elements are tightly
conjugate, then they are strongly conjugate; when W is finite, the two notions coincide.
Here is our main theorem.

Theorem A. Let (W,S) be a Coxeter system. Let O be a conjugacy class of W , and
let Omin be the set of minimal length elements of O. Then the following assertions hold:

(1) For any w ∈ O, there exists an element w′ ∈ Omin that can be obtained from w
by a sequence of cyclic shifts.

(2) If w,w′ ∈ Omin, then w and w′ are tightly conjugate.
(3) If O is straight, then any two elements w,w′ ∈ Omin are conjugate by a sequence

of cyclic shifts.

Note that the proof of Theorem A uses the results of [GKP00] (or [HN12]), but does
not rely on [HN14]. In particular, we give an alternative, shorter proof that affine
Coxeter groups satisfy Theorem A.

Recall that an element w ∈ W is cyclically reduced if `S(w′) = `S(w) for every
w′ ∈ W obtained from w by a sequence of cyclic shifts. Often, this terminology is
used instead for elements of minimal length in their conjugacy class. An important
reformulation of Theorem A(1) is that these two notions in fact coincide.

Corollary B. An element w ∈ W is cyclically reduced if and only if it is of minimal
length in its conjugacy class.

This proves a conjecture of A. Cohen (see [Coh94, Conjecture 2.18]).
The proof of Theorem A is of geometric nature, and uses the Davis complex X of

(W,S) — here, we assume that S is finite, a safe assumption for the study of Theorem A
(see Remark 6.1). This is a CAT(0) cellular complex on which W acts by cellular
isometries. For instance, if W is affine, then X is just the standard geometric realisation
of the Coxeter complex Σ of (W,S), and the CAT(0) metric d: X×X → R+ is the usual
Euclidean metric (see Example 2.7). For an element w ∈ W , the subset Min(w) ⊆ X
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of all x ∈ X such that d(x,wx) is minimal will play an important role; it will also be
crucial to investigate its combinatorial analogue CombiMin(w) (see §4), as highlighted
in Remark 5.7. As a byproduct of our proofs, we are able to relate these two notions of
“minimal displacement set” for w (see §7).

Corollary C. Let w ∈ W . Then Min(w) ⊆ CombiMin(w), and CombiMin(w) is at
bounded Hausdorff distance from Min(w).

Note that, while Min(w) is always connected (in the CAT(0) sense), its combinatorial
analogue CombiMin(w) need not be (gallery-)connected, and this is precisely the reason
why cyclic shifts are not sufficient to describe the conjugacy classes in W , and why one
needs to also consider “tight conjugations” (see Remark 4.6).

We conclude the introduction with a short roadmap to the proof of Theorem A. Let
w ∈ W , and let O (resp. Omin) denote its conjugacy class (resp. the set of elements
of minimal length in O). Let Ch(Σ) be the set of chambers of the Coxeter complex Σ
(Ch(Σ) can be W -equivariantly identified with the set of vertices {v | v ∈ W} of the
Cayley graph of (W,S)).

The first step is to view the elements of O and Omin geometrically, as chambers of Σ:
we consider the map πw : Ch(Σ) → W : v 7→ v−1wv, which satisfies πw(Ch(Σ)) = O
and π−1

w (Omin) = CombiMin(w). The second step is to interpret the operations of
cyclic shifts and tight conjugations geometrically, at the level of Ch(Σ), by defining two
“elementary geometric operations”, say of type (I) and (II), allowing to pass from one
chamber C ∈ Ch(Σ) to another chamber D ∈ Ch(Σ), in such a way that passing from C
to D with an operation of type (I) implies that one can pass from πw(C) to πw(D) using
cyclic shifts, and passing from C to D with an operation of type (II) implies that one
can pass from πw(C) to πw(D) using tight conjugations; this strategy is implemented
in Sections 4 and 5, and makes use of the analogue of Theorem A for twisted conjugacy
classes in finite Coxeter groups established in [GKP00] and [HN12]. Theorem A then
amounts to showing that one can pass from the chamber C0 := {1W } (representing
πw(C0) = w) to any other chamber C by a sequence of geometric operations of type (I)
and (II) (see Section 6). This geometric formulation of the problem allows one to take
advantage of the tools provided by CAT(0) geometry, and of the specific properties of
Davis complexes described in §2.4–2.6. Finally, note that the analogue of Theorem A
for untwisted conjugacy classes in finite Coxeter groups, first established in [GP93], is
also used to prove Theorem A when w has finite order.

2. Preliminaries

2.1. Basic definitions. Basics on Coxeter groups and complexes can be found in
[AB08, Chapters 1–3]. The notions introduced below are illustrated on Figure 1 (see
Example 2.2).

Throughout this paper, (W,S) denotes a Coxeter system of finite rank (see Re-
mark 6.1). We let Σ = Σ(W,S) be the associated Coxeter complex, with set of
roots (or half-spaces) Φ. Let also C0 := {1W } be the fundamental chamber of Σ,
and Π := {αs | s ∈ S} be the corresponding set of simple roots (i.e. the roots contain-
ing C0 and whose wall is a wall of C0). Write Ch(Σ) := {wC0 | w ∈ W} for the set of
chambers of Σ. We will often identify a chamber subcomplex A of Σ with its underlying
set Ch(A) ⊆ Ch(Σ) of chambers.

Two chambers D,E ∈ Ch(Σ) are s-adjacent for some s ∈ S if they are s-adjacent
in the Cayley graph Cay(W,S). A gallery Γ between two chambers D,E ∈ Ch(Σ) is
a sequence of chambers D = D0, D1, . . . , Dr = E such that, for each i ∈ {1, . . . , r}, the
chamber Di−1 is (distinct from and) si-adjacent to Di for some si ∈ S. The sequence
(s1, . . . , sr) ∈ Sr is the type of Γ, and `(Γ) := r the length of Γ. The gallery Γ is
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Fig. 1. Coxeter complex of type Ã2

minimal if it is a gallery of minimal length between C and D; in this case, we set
dCh(C,D) := `(Γ) and call it the chamber distance between C and D. We let

Γ(C,D) := {E ∈ Ch(Σ) | dCh(C,D) = dCh(C,E) + dCh(E,D)}
denote the set of chambers on a minimal gallery from C to D. If C = vC0 and D = wvC0
for some v, w ∈W , there is a bijective correspondence between minimal galleries Γ from
C to D and reduced expressions (on the alphabet S) for v−1wv, mapping the gallery
Γ to its type. In particular, if we again denote by ` : W → N the word length on W
with respect to S, then `(v−1wv) coincides with `(Γ), or else with the number of walls
crossed by Γ (i.e. the number of walls separating C from D).

To each simplex σ of Σ, one associates its corresponding residue Rσ, which is the set
of chambers of Σ containing σ. A wall of Rσ is a wall of Σ containing σ. For a subset
I ⊆ S, we let WI := 〈I〉 ⊆ W denote the standard parabolic subgroup of type
I. The parabolic subgroups of W are then the conjugates of the standard parabolic
subgroups, or equivalently, the stabilisers in W of some simplex (resp. residue) of Σ.
The simplex σ (resp. the residue Rσ) is spherical if its stabiliser Pσ in W is finite; it is
standard if Pσ is a standard parabolic subgroup (equivalently, if σ is a face of C0, resp.
if C0 ∈ Rσ). Thus, if σ is a face of vC0 for some v ∈ W , then Pσ = vWIv

−1 for some
subset I ⊆ S. For any w ∈W , there is a smallest parabolic subgroup Pc(w) containing
w, called the parabolic closure of w.

For each I ⊆ S, we set ΠI := {αs | s ∈ I}. Let NI be the stabiliser in W of ΠI .
Note that the conjugation action of any nI ∈ NI on WI induces an automorphism of WI

preserving I (called a diagram automorphism). We write NW (WI) for the normaliser
of WI in W , and we call I spherical if WI is finite. The following lemma follows from
[Lus77, Lemma 5.2].

Lemma 2.1. Let I ⊆ S. Then NW (WI) = WI oNI . Moreover,
(2.1) `(wInI) = `(wI) + `(nI) for all wI ∈WI and nI ∈ NI .

Example 2.2. For the benefit of the reader unfamiliar with Coxeter groups and com-
plexes, we illustrate the above notions on an example. Consider the (affine) Coxeter
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group W = W (Ã2) of type Ã2, with standard generating set S = {s, t, u} and presen-
tation W = 〈s, t, u | s2 = t2 = u2 = 1 = (st)3 = (su)3 = (tu)3〉.

The Coxeter complex Σ = Σ(W,S) is then the simplicial complex associated to
the tesselation of the Euclidean plane by congruent equilateral triangles (see Figure 1).
Fixing a fundamental chamber (i.e. a triangle) C0, the generators s, t, u act as orthogonal
reflections across the walls (i.e. lines) delimiting C0 (see the dashed lines on Figure 1).
The W -action on Σ is then simply transitive of the set Ch(Σ) of chambers. The roots
αs, αt, αu are the half-spaces respectively delimited by the walls of s, t, u (i.e. the lines
fixed by s, t, u) and containing C0.

To each codimension 1 face of C0 (i.e. edge of C0, say contained in the wall of x ∈ S),
one attributes its type x ∈ S. One then extends this labelling to all edges by requiring
the W -action to be type-preserving. Two distinct chambers are then x-adjacent if they
share a common edge of type x. Together with these x-adjacency relations, Ch(Σ) then
coincides with the Cayley graph of (W,S).

One can reconstruct Σ group-theoretically by attaching to each face of C0 its sta-
biliser in W : the chamber C0 (together with its faces) is isomorphic to the poset of
standard parabolic subgroups, ordered by the opposite of the inclusion relation (indeed,
StabW (C0) = W∅ = {1}, the stabiliser of the edge of C0 labelled x ∈ S is W{x}, the
stabiliser of the vertex of C0 at the intersection of the edges labelled x and y is W{x,y},
and the stabiliser of the empty simplex is W ). Using the W -action, Σ can thus be
defined as the poset {wWI | w ∈ W, I ⊆ S}, ordered by the opposite of the inclusion
relation (the W -action being by left translation).

An example of 0-dimensional simplex (i.e. vertex) σ, as well as the corresponding
residue Rσ, are pictured on Figure 1. Since D = ustuC0 ∈ Rσ, the stabiliser of Rσ is
the parabolic subgroup Pσ = (ustu)W{s,t}(ustu)−1.

Finally, note that the element w := sutsutu commutes with u, and hence w ∈
NW (WI) for I = {u}. The decomposition w = wInI with wI ∈ WI and nI ∈ NI

provided by Lemma 2.1 is then given by wI = u and nI = sutsut.

2.2. Straight elements. An element w ∈W is called straight if `(wn) = n`(w) for all
n ∈ N. We record for future reference the following basic properties of straight elements.

Lemma 2.3 ([Mar14b, Lemma 4.1]). Let w ∈ W be straight. Then w is of minimal
length in its conjugacy class. Moreover, if w ∈ NW (WI) for some spherical subset
I ⊆ S, then w ∈ NI .

Lemma 2.4 ([Mar14b, Lemma 4.2]). Let v, w ∈ W be such that `(v−1wv) = `(w).
Then w is straight if and only if v−1wv is straight.

2.3. Projections. The general reference for this section is [MPW15, Chapter 21].
Given a chamber D ∈ Ch(Σ) and a residue R, there is a unique chamber E ∈ R
at minimal distance from D, called the projection of D on R, and denoted projR(D).
Alternatively, projR(D) is the unique chamber E of R such that D and E lie on the
same side of every wall of R. In particular, one has the following gate property:

dCh(D,E) = dCh(D,projR(D)) + dCh(projR(D), E) for any chamber E ∈ R.
As projR : Ch(Σ) → R maps galleries to galleries, it does not increase the chamber
distance. Two residues R,R′ are parallel if the projection map projR |R′ : R′ → R
is bijective (in which case projR′ |R : R → R′ is its inverse). Equivalently, R and R′

are parallel if and only if they have the same walls if and only if they have the same
stabiliser in W . In that case, dCh(D,projR(D)) is independent of the choice of chamber
D ∈ R′. Finally, if R ⊆ R′, then projR(D) = projR(projR′(D)) for all D ∈ Ch(Σ).

Example 2.5. Keeping the notations of Example 2.2, the projection of C0 on the
residue Rσ is the chamber D. Let now τ1 be the common edge shared by C0 and uC0,
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and let τ2 be the common edge shared by wC0 and uwC0 (also denoted v2C0 on Figure 1,
where v := sut). Then the residues Rτ1 = {C0, uC0} and Rτ2 = {wC0, uwC0} have the
same walls (i.e. the wall m of u), and are therefore parallel. The bijection between Rτ1
and Rτ2 induced by the projections identifies C0 with uwC0 and uC0 with wC0.
Example 2.6. Let R be a residue, and assume that R and wR are parallel for some
w ∈ W . Then w normalises StabW (R). If, moreover, R is spherical and standard, so
that StabW (R) = WI for some spherical subset I ⊆ S, then w = wInI for some wI ∈WI

and nI ∈ NI by Lemma 2.1. By definition of NI , we then have projwR(C0) = nIC0.
2.4. Davis complex. The general reference for this section is [Dav98]. We briefly recall
the construction of the Davis complex X of (W,S), which is a complete, uniquely
geodesic metric realisation of Σ. Let Σ(1) be the flag complex of Σ, that is, Σ(1) is the
simplicial complex with vertices the simplices of Σ and simplices the flags of simplices
of Σ. Let also Σs

(1) denote the subcomplex of Σ(1) with vertices the spherical simplices
of Σ. Then X is the geometric realisation of Σs

(1) (hence a cellular subcomplex of
the barycentric subdivision of the geometric realisation of Σ), together with a suitably
defined CAT(0) metric d: X ×X → R+ extending the canonical Euclidean metrics on
its cells. Each (open) cell σ of X corresponds to a unique spherical simplex wWI of Σ
— namely, σ is (the realisation of) the union of all flags of spherical simplices whose
upper bound is wWI — and the W -action on the spherical simplices of Σ induces a
cellular isometric W -action on X.

For each x ∈ X, there is a unique (open) cell supp(x) containing x, called the support
of x. In particular, StabW (x) = StabW (supp(x)) is a spherical (i.e. finite) parabolic
subgroup of W . In this paper, we shall identify the roots, walls and chambers of Σ with
the corresponding closed subsets of X. In particular, a chamber D ∈ Ch(Σ) ≈ Ch(X)
will be identified with the set of x ∈ X whose support corresponds either to D or to a
(spherical) face of D.
Example 2.7. Keeping the notations of Example 2.2, the Davis complex X of (W,S)
coincides with the geometric realisation of Σ (i.e. the tesselated Euclidean plane pic-
tured on Figure 1), together with the Euclidean metric d (note that, in this example,
all nonempty simplices of Σ are spherical). The open cells of dimension 0, 1, 2 are, re-
spectively, the vertices, the edges without endpoints, and the open triangles, and these
form a partition of X.
2.5. Actions on CAT(0)-spaces. Basics on CAT(0) spaces can be found in [BH99].
Consider the W -action on X. For an element w ∈W , we let

|w| := inf{d(x,wx) | x ∈ X} ∈ [0,+∞)
denote its translation length, and we set

Min(w) := {x ∈ X | d(x,wx) = |w|} ⊆ X.
By a classical result of M. Bridson ([Bri99]), Min(w) is a nonempty closed convex subset
of X for all w ∈ W (in particular, the infimum defining |w| is always attained). More
precisely, if w has finite order, then |w| = 0 and Min(w) is the fixed-point set of w (see
e.g. [AB08, Theorem 11.23]). If w has infinite order, then |w| > 0 (otherwise, w would
fix a point x, and hence would belong to the finite parabolic subgroup StabW (x)) and
Min(w) is the union of all w-axes, where a w-axis is a geodesic line stabilised by w (on
which w then acts as a translation).
Example 2.8. Keeping the notations of Examples 2.2 and 2.7, the element v := sut
is a glide reflection, i.e. the composition of a translation with axis Lv (depicted on
Figure 1) with a flip around that axis. In particular, Lv is the unique v-invariant line,
and hence Min(v) = Lv. On the other hand, Min(v2) = X, that is, v2 is a translation
across the whole plane.
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2.6. Walls. Given x, y ∈ X, we let [x, y] denote the unique geodesic segment between
x and y. If [x, y] intersects a wall m of X in at least two points, then it is entirely
contained in m (see [Nos11, Lemma 2.2.6]). Let w ∈ W be of infinite order. A w-axis
L is transverse to a wall m if it intersects m in a single point (in which case the two
components of L\m lie on different sides of m, see [Nos11, Lemma 2.3.1]); in that case,
any w-axis is transverse to m, and m is called w-essential. Note that, given any two
points x, y ∈ L, there are only finitely many w-essential walls intersecting [x, y] ⊆ L.
In particular, for any x ∈ L, there exists a (nonempty) open geodesic segment σ ⊆ L
containing x in its closure and contained in some (open) cell supp(σ) (i.e. σ does not
intersect any w-essential wall).

3. Tight conjugation

We start by recalling the conjugation operations introduced in [GP93] (see Defini-
tions 3.1 and 3.3), and then introduce a refinement of these notions, which we call
“tight conjugation” (see Definition 3.4). We also relate the operation of “cyclic shift”
mentioned in the introduction (see Definition 3.2) to these operations.

Definition 3.1 ([GP93]). Let w,w′ ∈ W and s ∈ S. We write w s→ w′ if w′ = sws
and `(w′) ≤ `(w). We write w → w′ if there is a sequence w = w0, w1, . . . , wn = w′ of
elements of W such that, for each i, wi−1

si→ wi for some si ∈ S.

Definition 3.2. Let w,w′ ∈ W . We say that w′ is a cyclic shift of w if there is a
reduced decomposition w = s1 . . . sd (si ∈ S) of w such that either w′ = s2 . . . sds1 or
w′ = sds1 . . . sd−1 (that is, if a decomposition for w′ can be obtained from a reduced
decomposition of w by either moving the first letter at the end or the last letter at the
beginning).

Definition 3.3 ([GP93]). Two elements w,w′ ∈W are called elementarily strongly
conjugate if `(w′) = `(w), and there exists some x ∈ W with w′ = x−1wx such that
either `(x−1w) = `(x) + `(w) or `(wx) = `(w) + `(x); we then write w x∼ w′. We further
call w,w′ ∈ W strongly conjugate if there is a sequence w = w0, . . . , wn = w′ of
elements of W such that wi−1 is elementarily strongly conjugate to wi for each i; we
then write w ∼ w′.

Definition 3.4. Two elements w,w′ ∈W are called elementarily tightly conjugate
if `(w) = `(w′) and one of the following holds:

(1) there exists some s ∈ S such that w s→ w′.
(2) there exists some spherical subset I ⊆ S such that w ∈ NW (WI), and some

x ∈WI such that w x∼ w′.
We further call w,w′ ∈W tightly conjugate if there is a sequence w = w0, . . . , wn = w′

of elements of W such that wi−1 is elementarily tightly conjugate to wi for each i; we
then write w ≈t w′.

We now show that Definitions 3.1 and 3.2 yield equivalent concepts, and that “tight
conjugation” is indeed a refinement of “strong conjugation” (but of course the two
notions coincide if W is finite).

Lemma 3.5. Let w,w′ ∈W . Then the following assertions hold.
(1) w → w′ ⇐⇒ w′ can be obtained from w by a sequence of cyclic shifts.
(2) w ≈t w′ =⇒ w ∼ w′.
(3) If `(w) = `(w′), then w → w′ =⇒ w ≈t w′.

Proof. (1) For the forward implication, it is sufficient to show that if w s→ sws for
some s ∈ S, then either sws = w (no cyclic shift made) or sws is a cyclic shift of w.
We may thus assume that sws 6= w and `(sws) ≤ `(w). Then either `(sw) < `(w) or
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`(ws) < `(w) (see the condition (F) in [AB08, page 79]), and hence sws is a cyclic shift
of w by the exchange condition ([AB08, Condition (E) page 79]). The converse is clear.

(2) It is sufficient to show that if w s→ sws with `(w) = `(sws) for some s ∈ S,
then either w = sws (so that w 1∼ sws) or w s∼ sws. Assume that `(sws) = `(w), and
that `(sw) < `(w) and `(ws) < `(w) for some s ∈ S, and let us show that sws = w.
As `(sw) < `(w), the exchange condition implies that w has a reduced decomposition
w = s1 . . . sn with s1 = s. Similarly, as `(ws) < `(w), the exchange condition implies
that there is some i ∈ {1, . . . , n} such that w = s1 . . . ŝi . . . sns, where ŝi indicates the
omission of si. If i 6= 1, then `(sws) = `(s2 . . . ŝi . . . sn) = `(w) − 2, a contradiction.
Thus i = 1 and sws = ss2 . . . sn = w, as desired.

(3) This holds by definition of tight conjugation. �

Definition 3.6. For w,w′ ∈W , we write w →≈t w′ if there is some w′′ ∈W such that
w → w′′ and w′′ ≈t w′.

4. The complex CombiMin(w)

In this section, we establish some basic properties of the combinatorial analogue
CombiMin(w) of Min(w) for an element w ∈ W , and show how it is related to the
conjugation operation → from Definition 3.1.

Definition 4.1. For w ∈W , set
CombiMin(w) := {D ∈ Ch(X) | dCh(D,wD) is minimal}.

Alternatively, CombiMin(w) is the set of chambers D = vC0 (v ∈W ) such that v−1wv
is of minimal length in the conjugacy class of w. In other words, CombiMin(w) coincides
with the inverse image under the map

πw : Ch(X)→W : vC0 7→ v−1wv

of the set of conjugates of w of minimal length.

Definition 4.2. Let w ∈ W . A chamber subcomplex A of X is called w-convex if
Γ(D,wεD) ⊆ A for any chamber D of A and any ε ∈ {±1}.

Lemma 4.3. Let w ∈W . Then CombiMin(w) is w-convex.

Proof. Let ε ∈ {±1} and D ∈ CombiMin(w). Let E ∈ Γ(D,wεD), and let Γ1 (resp.
Γ2) be a minimal gallery from D to E (resp. from E to wεD), so that `(Γ1) + `(Γ2) =
dCh(D,wεD). Then the concatenation of Γ2 with wεΓ1 is a gallery from E to wεE, and
hence dCh(E,wεE) ≤ dCh(D,wεD), yielding the claim. �

Lemma 4.4. Let w ∈W be straight, and let R be a spherical residue with StabW (R) =
StabW (wR). Let C,D ∈ R ∩ CombiMin(w). Then πw(C) = πw(D).

Proof. Let u, v ∈ W be such that C = uC0 and D = vC0, and let us show that
u−1wu = v−1wv. Note that w is of minimal length in its conjugacy class by Lemma 2.3.
Hence w0 := u−1wu is straight by Lemma 2.4 (because uC0 ∈ CombiMin(w)). On the
other hand, writing StabW (R) = uWIu

−1 for some spherical subset I ⊆ S, the hypothe-
ses imply that w0 ∈ NW (WI). From Lemma 2.3, we then deduce that w0 ∈ NI . In par-
ticular, w0C0 = projw0R0(C0) and hence dCh(C0, w0C0) = dCh(E,projw0R0(E)) for all
E ∈ R0 := u−1R (see Example 2.6). Finally, since E := u−1vC0 ∈ R0 ∩ CombiMin(w0)
by assumption, we have dCh(E,w0E) = dCh(C0, w0C0) and hence w0E = projw0R0(E).
Since v−1uw0R0 = w0R0 (because u−1v ∈ WI = StabW (R0) and w0 ∈ NW (WI)), we
conclude that
w0E = projw0R0(u−1vC0) = u−1v projv−1uw0R0(C0) = u−1v projw0R0(C0) = u−1vw0C0,

that is, w0u−1v = u−1vw0, or else v−1wv = v−1uw0u−1v = w0 = u−1wu, as desired. �
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Lemma 4.5. Let w ∈ W . Let C,D ∈ Ch(X) be two chambers connected by a gallery
Γ ⊆ CombiMin(w). Then πw(C)→ πw(D).

Proof. Let u, v ∈ W be such that C = uC0 and D = vC0, and let us show that
u−1wu → v−1wv. Reasoning inductively on `(Γ), we may assume that uC0, vC0 are
adjacent, say v = us for some s ∈ S. As uC0, vC0 ∈ CombiMin(w), we have `(u−1wu) =
`(v−1wv), and hence u−1wu

s→ v−1wv, as desired. �

Remark 4.6. Let w ∈ W be of minimal length in its conjugacy class (i.e. C0 ∈
CombiMin(w)). Lemma 4.5 implies that if CombiMin(w) is gallery-connected, then
every conjugate w′ of w with `(w′) = `(w) can be obtained from w by a sequence of
cyclic shifts (in particular, Theorem A(2) holds for w). The necessity of introducing
“tight conjugations” as well comes from the fact that CombiMin(w) need not be gallery-
connected, as for instance illustrated by the Coxeter group W = 〈s, t | s2 = t2 = (st)3 =
1〉 of type A2, with w = s.

5. The complex C w

In this section, we define for each w ∈W a chamber subcomplex C w of X such that
for any chamber D = vC0 of C w (v ∈ W ), the conjugate πw(D) = v−1wv of w can be
obtained from w through a sequence of cyclic shifts and tight conjugations.

Definition 5.1. Let w ∈ W . Consider the following conditions, which a chamber
subcomplex A of X may or may not satisfy.
(CM0) C0 ∈ Ch(A).
(CM1) If C ∈ Ch(A) and D ∈ Γ(C,wεC) for some ε ∈ {±1} and dCh(C,D) = 1, then

D ∈ Ch(A).
(CM2) If R is a spherical residue such that StabW (R) = StabW (wR) and R∩Ch(A) 6=

∅, then R ∩ CombiMin(w) ⊆ A.
We let C w (resp. C w

1 ) denote the smallest chamber subcomplex of X satisfying (CM0),
(CM1) and (CM2) (resp. satisfying (CM0) and (CM1)).

Lemma 5.2. Let w ∈ W be of minimal length in its conjugacy class. Then C w ⊆
CombiMin(w).

Proof. We have to check that CombiMin(w) satisfies (CM0), (CM1) and (CM2). But
(CM0) holds by assumption, (CM1) by Lemma 4.3, and (CM2) is clear. �

Lemma 5.3. Let w ∈W , and let C,D ∈ Ch(X) be such that D ∈ Γ(C,wεC) for some
ε ∈ {±1} and dCh(C,D) = 1. Then πw(C)→ πw(D). If, moreover, C ∈ CombiMin(w),
then πw(C) ≈t πw(D).

Proof. Let u ∈ W be such that C = uC0. Let Γ be a minimal gallery from uC0 to
wεuC0 containing D, and let (s1, . . . , sd) be its type, so that D = us1C0 and u−1wεu =
s1 . . . sd. Then πw(C) = u−1wu is either s1 . . . sd or sd . . . s1, and hence πw(C) s1→
πw(D) = s1πw(C)s1, yielding the first claim. The second claim then follows from
Lemma 3.5(3). �

The following lemma is an adaptation of [Mar14b, Proposition 3.4].

Lemma 5.4. Let w ∈ W be of infinite order. Then C w
1 ∩ Min(w) is nonempty. In

particular, there exists w′ ∈W such that w → w′ and Min(w′) ∩ C0 6= ∅.

Proof. For each u ∈ W , consider the continuous function fu : X → R : x 7→ d(x, ux).
Note that if vC0 ∈ Ch(C w

1 ), then w → v−1wv by Lemma 5.3, and hence `(v−1wv) ≤
`(w). In particular, the set {v−1wv | vC0 ∈ Ch(C w

1 )} is finite. Since C0 is compact, we
deduce that the set {fv−1wv(y) | y ∈ C0, vC0 ∈ Ch(C w

1 )} contains its infimum a. Let
y ∈ C0 and v ∈ W with vC0 ∈ Ch(C w

1 ) be such that fv−1wv(y) = a. Then fw attains
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its infimum over C w
1 at x := vy ∈ vC0, for if z ∈ C w

1 , then choosing uC0 ∈ Ch(C w
1 )

(u ∈W ) containing z, we have

fw(z) = d(z, wz) = d(u−1z, u−1wu.u−1z) = fu−1wu(u−1z) ≥ a = fv−1wv(v−1x) = fw(x).

We claim that d(z, wz) = d(x,wx) for some z ∈ [x,wx]\{x,wx}, so that x ∈ Min(w)
(see e.g. [BH99, Proposition II.1.4(2)]), yielding the first assertion of the lemma. Indeed,
let D ∈ Ch(C w

1 ) with x ∈ D and such that dCh(D,wD) is minimal for these properties.
By [Mar14b, Lemma 3.1], there exists a minimal gallery Γ = (D = D0, D1, . . . , Dk =
wD) from D to wD containing the geodesic segment [x,wx].

Let ε > 0 and i ≥ 0 be such that [x,wx] ∩ B(x, ε) ⊆ Di (where B(x, ε) := {y ∈
X | d(x, y) ≤ ε}). In particular, D0, . . . , Di contain x. Moreover, D0, . . . , Di ∈ Ch(C w

1 ):
indeed, D0 ∈ Ch(C w

1 ) by assumption, and if Dj ∈ Ch(C w
1 ) for some j ∈ {0, . . . , i− 1},

then dCh(Dj , wDj) ≥ dCh(D,wD) = k by the minimality assumption on D, so that
(Dj , Dj+1, . . . , Dk, wD1, . . . , wDj) is a minimal gallery from Dj to wDj , and hence
Dj+1 ∈ Ch(C w

1 ) by (CM1).
Let now z ∈ Di ∩ [x,wx] with z /∈ {x,wx}. Then fw(z) ≥ fw(x), that is, d(z, wz) ≥

d(x,wx), and since d(z, wz) ≤ d(z, wx) + d(wx,wz) = d(x,wx), the claim follows.
For the second assertion of the lemma, let x ∈ C w

1 ∩Min(w), and let u ∈W be such
that uC0 ∈ Ch(C w

1 ) and x ∈ uC0. As noticed at the beginning of the proof, we have
w → u−1wu. We may thus choose w′ := u−1wu, as Min(w′) = u−1 Min(w) and hence
u−1x ∈ Min(w′) ∩ C0. �

Lemma 5.5. Let w ∈ W and let C ∈ Ch(X) be such that C ∈ R for some spherical
residue R with StabW (R) = StabW (wR). Let D ∈ Ch(X) be such that D ∈ R ∩
CombiMin(w). Then πw(C) →≈t πw(D). If, moreover, C ∈ CombiMin(w), then
πw(C) ≈t πw(D).

Proof. Let u, v ∈ W be such that C = uC0 and D = vC0. As u−1R is a standard
spherical residue, there is some spherical subset I ⊆ S such that StabW (u−1R) = WI .
By assumption, u−1wu normalises WI , and hence there exist by Lemma 2.1 some wI ∈
WI and nI ∈ NI such that u−1wu = nIwI . Moreover, as vC0 ∈ R, there is some x ∈WI

such that v = ux. Let δ : WI → WI denote the diagram automorphism of WI defined
by δ(z) := n−1

I znI . Then

v−1wv = x−1nIwIx = nI · δ(x)−1wIx.

Note that the element δ(x)−1wIx is of minimal length in its δ-twisted conjugacy
class Oδ(wI) := {δ(z)−1wIz | z ∈ WI}: otherwise, we find some z ∈ WI such that
`(δ(xz)−1wIxz) < `(δ(x)−1wIx). We then deduce from (2.1) in Lemma 2.1 that

`((vz)−1wvz) = `(nI · δ(xz)−1wIxz) < `(nI · δ(x)−1wIx) = `(v−1wv),

contradicting our assumption that v−1wv is of minimal length in its conjugacy class
(i.e. vC0 ∈ CombiMin(w)).

By [HN12, Theorem 3.1] applied to the Coxeter system (WI , I) and to the automor-
phism δ of WI , we can find some w′I ∈ WI of minimal length in Oδ(wI) such that
wI →δ w

′
I and w′I ∼δ δ(x)−1wIx, where →δ and ∼δ are the analogues of → and ∼

in WI for δ-twisted conjugacy classes (i.e. one can transform wI into w′I by a se-
quence of elementary operations of the form z 7→ δ(s)−1zs (z ∈ WI and s ∈ I) where
`(δ(s)−1zs) ≤ `(z), and one can transform w′I into δ(x)−1wIx by a sequence of elemen-
tary operations of the form z 7→ δ(y)−1zy (z, y ∈ WI) where `(δ(y)−1zy) = `(z) and
either `(δ(y)−1z) = `(y) + `(z) or `(zy) = `(z) + `(y)).

Using again (2.1) and the fact that nI · δ(y)−1zy = y−1nIzy for all y, z ∈ WI , we
deduce that

nI · wI → nI · w′I ≈t nI · δ(x)−1wIx,
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that is, u−1wu = nIwI →≈t nI · δ(x)−1wIx = x−1nIwIx = v−1wv, proving the first
claim. The second claim then follows from Lemma 3.5(3). �

Proposition 5.6. Let w ∈W . If C ∈ Ch(C w) ∩ CombiMin(w), then w →≈t πw(C).

Proof. Note that w = πw(C0). By definition of C w, the chamber C can be obtained
from the chamber C0 after performing a finite sequence of steps of one of the following
two types:

(I) going from a chamber C ∈ Ch(C w) to a chamber D ∈ Γ(C,wεC) for some
ε ∈ {±1}, and with dCh(C,D) = 1.

(II) going from a chamber C ∈ R ∩ Ch(C w) for some spherical residue R with
StabW (R) = StabW (wR) to a chamber D ∈ R ∩ CombiMin(w).

Hence the proposition follows from a straightforward induction on the number of steps
of type (I) and (II) needed to go from C0 to C, by using Lemmas 5.3 and 5.5. �

Remark 5.7. Let w ∈ W . If CombiMin(w) ⊆ C w, then Proposition 5.6 implies
that w →≈t u for any u of minimal length in the conjugacy class of w, thus proving
Theorem A(1,2) in that case. This idea will be implemented in the next section to
complete the proof of Theorem A.

6. The conjugacy problem in (W,S)

This section is devoted to the proof of Theorem A.

Remark 6.1. Note that, in order to prove Theorem A, there is no loss of generality
in assuming that (W,S) has finite rank (i.e. that S is finite), justifying our standing
assumption from the beginning of §2.1. Indeed, if w,w′ ∈ W are conjugate, say w′ =
v−1wv for some v ∈W , then there is some finite subset J ⊆ S such that w,w′, v ∈WJ ,
and it is thus sufficient to show that w and w′ are related by a suitable sequence of
elementary operations inside the finite rank Coxeter system (WJ , J).

Proposition 6.2. Let w ∈ W be of infinite order. Let L be a w-axis, and let σ ⊆ L
be a nonempty open geodesic segment that is contained in some open cell supp(σ).
Let R be the spherical residue corresponding to supp(σ). Let D be a chamber. Then
dCh(C,wC) ≤ dCh(D,wD), where C := projR(D).

In particular, if D ∈ CombiMin(w), then projR(D) ∈ CombiMin(w).

Proof. Without loss of generality, we may assume that C = C0: indeed, write C =
vC0 for some v ∈ W . Then L′ := v−1L is an axis for w′ := v−1wv containing the
nonempty open geodesic segment σ′ := v−1σ, and R′ := v−1R is the spherical residue
corresponding to the cell supp(σ′) := v−1 supp(σ) supporting σ′. Moreover, setting
D′ := v−1D, we have projR′(D′) = v−1 projR(D) = v−1C = C0. As dCh(C,wC) =
dCh(C0, w′C0) and dCh(D,wD) = dCh(D′, w′D′), the claim follows.

Assume thus that C = C0; in particular, R is standard. Let I ⊆ S be such that
StabW (R) = WI . Let us show that
(6.1) `(w) = dCh(C0, wC0) ≤ dCh(D,wD).
Note that the walls of R coincide with the walls containing σ, or else with the walls
containing L. In particular, w stabilises this set of walls, so that the residues R and
wR are parallel, and w ∈ NW (WI). Write w = nIwI for some wI ∈ WI and nI ∈ NI ,
so that `(w) = `(nI) + `(wI) (see Lemma 2.1). Thus the chambers C0 and nIC0 lie on
the same side of any wall of R.

Let n ∈ N∗ be such that wn = nnI (i.e. for each r ∈ N, there is some wr ∈WI such that
wr = nrIwr; since WI is finite, we find some r, s ∈ N∗ with r < s such that wr = ws, and
one can take n := s− r). Let Γ be a gallery from D to wnD obtained by concatenating
minimal galleries Γi from wi−1D to wiD for i = 1, . . . , n. Thus `(Γ) = n dCh(D,wD).
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Since D,C0, nIC0 lie on the same side of any wall of R (equivalently, of wR), we have
projwR(D) = nIC0, and hence

projR(w−1D) = w−1 projwR(D) = w−1nIC0 = w−1
I C0.

In particular, for each i ∈ {1, . . . , n}, the number of walls of R (or equivalently, of wiR)
crossed by Γi is
dCh(projwiR(wi−1D), projwiR(wiD)) = dCh(projR(w−1D),projR(D)) = dCh(C0, wIC0).
As `(Γ) is also the number of times Γ crosses a wall, and as D and wnD = nnID lie on
the same side of any wall of R, we deduce that

n dCh(D,wD) = `(Γ) ≥ dCh(D,wnD) + n dCh(C0, wIC0).
In particular,

(6.2) `(w) = `(nI) + dCh(C0, wIC0) ≤ `(nI) + dCh(D,wD)− dCh(D,wnD)
n

.

Finally, note that L is also an nI -axis, as nIx = nIwIx = wx ∈ L for any x ∈ L. As
C0 and nIC0 are not separated by any wall containing L (that is, by any wall of R), it
follows from [Mar14b, Lemma 4.3] that nI is straight. Hence

n`(nI) = dCh(C0, n
n
IC0) = dCh(C0, w

nC0).
Moreover, nnI = wn is straight as well, hence of minimal length in its conjugacy class by
Lemma 2.3. In particular, dCh(C0, wnC0) ≤ dCh(D,wnD). Therefore, dCh(D,wnD) ≥
n`(nI), and (6.1) follows from (6.2). �

Proposition 6.3. Let w ∈W be of infinite order, and let u be of minimal length in the
conjugacy class of w. Then w →≈t u. If, moreover, w is straight, then w → u.

Proof. By Lemma 5.4, we find some w1, u1 ∈ W with w → w1 and u→ u1, such that
there exist some xw ∈ Min(w1)∩C0 and some xu ∈ Min(u1)∩C0. Note that u1 is still of
minimal length in its conjugacy class and u1 → u; similarly, if w is straight, then w1 is
still straight by Lemma 2.4. In view of Lemma 3.5(3), there is thus no loss of generality
in assuming that w = w1 and u = u1.

Let v ∈ W be such that u = v−1wv. In particular, vC0 ∈ CombiMin(w). Moreover,
Z := [xw, vxu] ⊆ Min(w) as Min(w) is convex. Let ΓZ(C0, vC0) be the set of chambers
of Γ(C0, vC0) intersecting Z nontrivially (note that there always exists a minimal gallery
from C0 to vC0 containing Z, see [Mar14b, Lemma 3.1]).
Claim: Let D ∈ ΓZ(C0, vC0) ∩ Ch(C w) with D 6= vC0. Then there exists some E ∈
ΓZ(C0, vC0) ∩ Ch(C w) with dCh(E, vC0) < dCh(D, vC0). If, moreover, w is straight,
then πw(D)→ πw(E).

Indeed, let xD ∈ D∩Z, and let D = D0, D1, . . . , Dk = vC0 be a minimal gallery from
D to vC0 containing [xD, vxu] (k ≥ 1). Let x ∈ (D0∩D1)∩ [xD, vxu]. Let also L be the
w-axis through x, and let σ ⊆ L be a nonempty open geodesic segment containing x in
its closure and contained in some (open) cell supp(σ). Let Rx (resp. Rσ) be the spherical
residue consisting of all chambers containing x (resp. σ). In particular, Rσ ⊆ Rx and
D ∈ Rx. Let D′ := projRσ(D), E = projRx(vC0) and E′ := projRσ(vC0) = projRσ(E)
(see Figure 2). Note that E ∈ ΓZ(C0, vC0), because dCh(vC0, D) = dCh(vC0, E) +
dCh(E,D) by the gate property. Moreover, D 6= E, for otherwise dCh(vC0, D1) =
dCh(vC0, D) + 1, a contradiction. In particular, dCh(E, vC0) < dCh(D, vC0).

Let now ΓD = (D = D′0, D
′
1, . . . , D

′
l = D′) be a minimal gallery from D to D′. We

claim that ΓD ⊆ C w. Indeed, assume for a contradiction that there is some i ∈ {1, . . . , l}
such that D′i−1 ∈ Ch(C w) but D′i /∈ Ch(C w). Let m be the wall separating D′i−1
from D′i. Note that x ∈ D′i−1 ∩ D′i. Hence if L is transverse to m, then we find
some ε ∈ {±1} such that D′i−1 and wεD′i−1 lie on different sides of m. Hence in that
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Fig. 2. Proof of Proposition 6.3

case, D′i ∈ Γ(D′i−1, w
εD′i−1), so that D′i ∈ Ch(C w) by (CM1), a contradiction (this is

illustrated for i = 2 on Figure 2). Thus m contains L. In particular, m contains σ, and
hence m is a wall of Rσ. But by definition of D′, the minimal gallery ΓD does not cross
any wall of Rσ, a contradiction. This proves that ΓD ⊆ C w, and hence in particular
that D′ ∈ Ch(C w).

We next claim that E′ ∈ Ch(C w). Indeed, note that the walls of Rσ coincide with
the walls containing L. In particular, w stabilises this set of walls. In other words,
StabW (Rσ) = StabW (wRσ). On the other hand, since vC0 ∈ CombiMin(w) by as-
sumption, Proposition 6.2 implies that E′ ∈ CombiMin(w). Hence E′ ∈ Ch(C w) by
(CM2).

Finally, let ΓE be a minimal gallery from E′ to E. Then ΓE ⊆ C w, for exactly the
same reasons that ΓD ⊆ C w. In particular, E ∈ Ch(C w).

If, moreover, w is straight (in particular, w is of minimal length in its conjugacy
class by Lemma 2.3), then ΓD,ΓE ⊆ C w ⊆ CombiMin(w) by Lemma 5.2, and hence
πw(D) → πw(D′) and πw(E′) → πw(E) by Lemma 4.5. As πw(D′) = πw(E′) by
Lemma 4.4, this proves the claim.

The claim readily implies that vC0 ∈ Ch(C w), so that w →≈t u by Proposition 5.6.
If, moreover, w is straight, then the claim implies that w = πw(C0)→ πw(vC0) = u, as
desired. �

Lemma 6.4. Let I, J ⊆ S be such that WI and WJ are conjugate. Then there is some
x ∈W with x−1Ix = J such that w ≈t x−1wx for all w ∈WI .

Proof. By [Kra09, Proposition 3.1.6], there exists some x ∈W such that x−1ΠI = ΠJ .
Hence by [Kra09, Theorem 3.1.3] (see also [Deo82, Proposition 5.5]), we find a sequence
I = I0, I1, . . . , Ik+1 = J of subsets of S and elements si ∈ S \ Ii (i = 0, . . . , k) such that
the following hold for each i ∈ {0, . . . , k}:

(1) In the Coxeter diagram of (W,S), the connected component Ki of Ii ∪ {si}
containing si is spherical. We set xi := wKi\{si}wKi , where for a spherical
subset T ⊆ S we denote by wT the longest element of WT .

(2) x−1
i ΠIi = ΠIi+1 .
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(3) Ii+1 = (Ii ∪ {si}) \ {ti} for some ti ∈ Ki.
(4) x = x0 . . . xk and `(x) =

∑k
j=0 `(xj).

(Note that xi is denoted ν(Ii, si) in [Kra09, Theorem 3.1.3].) Let w ∈ WI . Reasoning
inductively on k, it is sufficient to show that if J = (I ∪ {s}) \ {t} for some s ∈ S \ I
and some t ∈ K, where K is the connected component of I ∪ {s} containing s (K is
spherical), then w

x∼ x−1wx, where x := wK\{s}wK ∈ WK (note that w normalises
WK).

Set I ′ := I \ K, so that I ′ and K are not connected in I ′ ∪ K = I ∪ {s}. Write
w = w(I ′) · w(Ks) with w(I ′) ∈ WI′ and w(Ks) ∈ WKs , where we set for short Ks :=
K \ {s} = I \ I ′. We have to show that `(x−1w) = `(x) + `(w). Recall from [AB08,
Proposition 1.77] that for any spherical subset T ⊆ S and any v ∈ WT , we have
wT = w−1

T and `(wT v) = `(vwT ) = `(wT )− `(v). Hence,

`(x−1w) = `(w−1
K · w

−1
Ksw(Ks)) + `(w(I ′)) = `(wK)− `(w−1

Ksw(Ks)) + `(w(I ′))
= `(wK)− `(wKs) + `(w(Ks)) + `(w(I ′)) = `(wKswK) + `(w(Ks)w(I ′))
= `(x) + `(w),

as desired. �

Proposition 6.5. Let w ∈ W be of finite order, and let u be of minimal length in the
conjugacy class of w. Then w →≈t u.

Proof. By [Mar14b, Corollary C], there is some w1 ∈ W of minimal length in its
conjugacy class such that w → w1, and we may thus assume that w is of minimal
length in its conjugacy class. In particular, by [CF10, Proposition 4.2], w has standard
parabolic closure Pc(w) = WI (I ⊆ S), while u has standard parabolic closure Pc(u) =
WJ (J ⊆ S). As WI and WJ are conjugate, we find some w′ ∈WJ such that w ≈t w′ by
Lemma 6.4. On the other hand, by [HN12, Theorem 3.1(2)] applied in the finite Coxeter
group WJ , we have w′ ∼ u (and hence w′ ≈t u). Thus w ≈t w′ ≈t u, as desired. �

Here is a reformulation of Theorem A.

Theorem 6.6. Let w ∈W , and let u be of minimal length in the conjugacy class of w.
Then w →≈t u. If, moreover, w is straight, then w → u.

Proof. This sums up Propositions 6.3 and 6.5. �

7. Comparison of Min(w) and CombiMin(w)

This final section is devoted to the proof of Corollary C. We start with the analogue
of Proposition 6.2 for elements w ∈W of finite order.

Lemma 7.1. Let w ∈W be of finite order. Let x ∈ Min(w), and let R be the spherical
residue corresponding to x. Let D ∈ Ch(X). Then dCh(C,wC) ≤ dCh(D,wD), where
C := projR(D). In particular, if D ∈ CombiMin(w), then projR(D) ∈ CombiMin(w).

Proof. As wR = R, we have wC = projR(wD), so that the lemma follows from the
fact that projR does not increase the chamber distance. �

Proposition 7.2. Let w ∈W . Then Min(w) ⊆ CombiMin(w).

Proof. Let x ∈ Min(w). If w has finite order, then by Lemma 7.1, the projection
on the residue corresponding to x of any chamber D ∈ CombiMin(w) is a chamber
C ∈ CombiMin(w) containing x. Assume now that w has infinite order, and let L be
the w-axis through x. Let σ ⊆ L be a nonempty open geodesic segment containing
x in its closure and contained in some (open) cell. Then Proposition 6.2 yields some
chamber D ∈ CombiMin(w) containing σ, and hence also x. �
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Lemma 7.3. Let w ∈W . Then the centraliser CW (w) of w in W acts cocompactly on
both Min(w) and CombiMin(w).

Proof. The fact that C(w) := CW (w) acts cocompactly on Min(w) follows from [Rua01,
Theorem 3.2], and a straightforward adaptation of the proof of [Rua01, Theorem 3.2],
which we now provide, also shows that C(w) acts cocompactly on CombiMin(w).

Indeed, fix some D ∈ CombiMin(w), and assume for a contradiction that there is a
sequence of chambers (Dn)n∈N ⊆ CombiMin(w) such that dCh(Dn, C(w)D) ≥ n for all
n ∈ N. Write Dn = vnD for some vn ∈W . By hypothesis, we have dCh(D, v−1

n wvnD) =
dCh(Dn, wDn) = dCh(D,wD) for all n ∈ N. In particular, {v−1

n wvn | n ∈ N} is finite.
Hence, up to extracting a subsequence, we may assume that v−1

n wvn = v−1
0 wv0 for all

n ∈ N, that is, vnv−1
0 ∈ C(w) for all n ∈ N. But then

n ≤ dCh(Dn, C(w)D) ≤ dCh(Dn, vnv
−1
0 D) = dCh(D, v−1

0 D) = dCh(D0, D)

for all n ∈ N, a contradiction. �

Proof of Corollary C: Let w ∈W . Then Min(w) ⊆ CombiMin(w) by Proposition 7.2,
and CombiMin(w) is at bounded Hausdorff distance from Min(w) by Lemma 7.3. �
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