AROUND THE LIE CORRESPONDENCE FOR COMPLETE KAC-MOODY
GROUPS AND GABBER-KAC SIMPLICITY

TIMOTHEE MARQUIS*

ABSTRACT. Let k be a field and A be a generalised Cartan matrix, and let & 4 (k) be the corresponding
minimal Kac-Moody group of simply connected type over k. Consider the completion Qiima(k) of
® 4 (k) introduced by O. Mathieu and G. Rousseau, and let 4** (k) denote the unipotent radical
of the positive Borel subgroup of Qiima(k). In this paper, we exhibit some functorial dependence of
the groups ngm"'(k) and 657%(k) on their Lie algebra. We also produce a large class of examples
of minimal Kac—-Moody groups & 4(k) that are not dense in their Mathieu—Rousseau completion
Qﬁzma(k). In addition, we explain how the problematic of providing a unified theory of complete
Kac-Moody groups is related to the problem of Gabber-Kac simplicity of &% %(k), asking whether
every normal subgroup of %™ (k) that is contained in LJ.TX”Jr (k) must be trivial. We contribute to this
problem by giving the first counter-examples to Gabber—Kac simplicity. We further present several
motivations for the study of this problem, as well as several applications of our functoriality theorem,
with contributions to the question of (non-)linearity of lem'*'(k), and to the isomorphism problem
for complete Kac—Moody groups over finite fields. For k finite, we also make some observations on
the structure of }J.?a"'(k) in the light of some important concepts from the theory of pro-p groups.

1. INTRODUCTION

The main theme of this paper is the correspondence between the properties of a complete Kac—
Moody group and its Lie algebra over an arbitrary field, with a special emphasis on the case of finite
ground fields.

Let A = (a;j)i jer be a generalised Cartan matrix (GCM) and let g = g(A) be the associated Kac—
Moody algebra ([Kac90]). Let also &4 denote the corresponding Tits functor of simply connected
type, as defined by J. Tits ([Tit87]). Given a field k, the value of &4 over k is called a minimal
Kac—Moody group. This terminology is justified by the existence of larggr groups, called mazimal or
complete Kac—Moody groups, which can be constructed as completions & 4(k) of & 4(k) with respect
to some suitable topology. For instance, the completion of the affine Kac-Moody group SL,, (k[t, t~1])
of type A,_1 is the maximal Kac-Moody group SL, (k((t))).

Roughly speaking, a minimal Kac-Moody group & 4 (k) is obtained by “exponentiating” the real root
spaces of the Kac-Moody algebra g, while completions & (k) of & 4(k) are obtained by exponentiating
both real and imaginary root spaces of g. As a result, it becomes easier to make computations in & a(k)
rather than in B4(k) (see e.g. [CRI4, Remark 2.8]). Another motivation to consider maximal Kac—
Moody groups rather than minimal ones is the fact that, when k is a finite field, the groups & a(k)
form a prominent family of simple, compactly generated totally disconnected locally compact groups.
Such groups have received considerable attention in the past years (see [CRW17] for a current state of
the art).

Unlike minimal Kac-Moody groups, whose definition is somehow “canonical” (in the sense that
the Tits functor &4 over the category of fields is uniquely determined by a small number of axioms
generalising in a natural way properties of semi-simple algebraic groups), maximal Kac-Moody groups
have been constructed in the literature using different approaches. There are essentially three such
constructions of completions of a minimal Kac-Moody group & 4(k), which we now briefly review.
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The first approach is geometric. The Rémy-Ronan completion &) (k) of & 4(k) ([RRO6]) is the
completion of the image of (k) in the automorphism group Aut(X,) of its associated positive
building, where Aut(X.) is equipped with the topology of uniform convergence on bounded sets. A
slight variant of this construction was introduced by P-E. Caprace and B. Rémy ([CR09, §1.2]): the
resulting group B4 7 (k) admits & 4(k) as a dense subgroup and &’ (k) as a quotient.

The second approach is representation-theoretic. The Carbone-Garland completion GSff)‘(k) with
dominant integral weight A (JCGO3|) is the completion of the image of & 4(k) in the automorphism
group Aut(Lg(A)) of an irreducible A-highest-weight module Li(X) over k. Again, as for &7 (k),
this construction can be slightly modified to produce a group &% (k) containing & 4(k) as a dense
subgroup, rather than a quotient of & 4(k) ([Roul6l 6.2]).

The third approach is algebraic. It is closer in spirit to the construction of the Tits functor & 4, and
produces a (topological) group functor over the category of Z-algebras, denoted &%, such that & 4 (k)
canonically embeds in &%"“(k) for any field k. The group &% (k) was first introduced by O. Mathieu
([Mat88]) and further developed by G. Rousseau ([Roul6]), and will be called the Mathieu—Rousseau
completion of & 4(k). Over k = C, the group &% (k) coincides with the maximal Kac-Moody group
constructed by S. Kumar ([Kum02| §6.1.6]).

The Mathieu—Rousseau completion of & 4(k), which will be used in this paper, is better suited to
the study of finer algebraic properties of Kac—Moody groups, as for instance illustrated in [Mar14] and
[CR14]. The reason for this is that the relation between &%™“(k) and its Kac-Moody algebra g is
more transparent than for the other completions. Our first theorem further illustrates this statement.

Let g=bH® (—BaeA(A) go. be the root decomposition of g with respect to its Cartan subalgebra b,
with corresponding set of roots A(A) (resp. of positive roots Ay (A), of positive real roots A(A)).
Let gz denote the standard Z-form of g introduced by J. Tits (|Tit87, §4]) and set gi := gz ®z k.
Set also n*(A) := @ en, (4) 8o and nf(A) :== (n*(A4) N gz) ®z k. Finally, let $7°" (k) denote the
unipotent radical of the positive Borel subgroup of %™ (k): the Lie algebra corresponding to 4’3" (k)
is then some completion of nif(A). Our first theorem exhibits some “functorial dependence” of the
group U** (k) on its Lie algebra.

Theorem A. Let k be a field, and let A = (a;j)ijer and B = (bij)ijer be two GCM such that
|bij| < laij| for alli,j e I. Then the following assertions hold:

(i) There exists a surjective Lie algebra morphism m: nt(A) - nt(B).
(ii) 7 gives rise to a surjective, continuous and open group homomorphism

7o U (k) > UBT (k).

A more precise version of Theorem [Alis given in below (see Theorem 3.6]).

Now that we have introduced the three constructions of maximal Kac-Moody groups that can
be found in the literature, a very natural question arises: how do these constructions compare to
one another? Or, more optimistically stated: do the geometric, representation-theoretic and algebraic
completions of & 4(k) yield isomorphic topological groups? Surprisingly, the answer to this question
is yes in many cases, and conjecturally yes in almost all cases. However, when the field has positive
characteristic p smaller than M4 := max;.; |a;;|, things become more subtle.

One obstruction to an affirmative answer in all cases is the fact that the closure & 4(k) of & 4 (k) in
its Mathieu-Rousseau completion &5 (k) might be proper: in [Marl4], we gave for each finite field &
an infinite family of GCM A such that & 4(k) # &% (k) (see also [Roul6l §6.10] for an example over
k = Fs). Here, we exhibit a much wider class of examples.

Proposition B. Let k = F, be a finite field, and let A = (a;;); jer be o GCM. Assume that there exist
indices 1,7 € I such that |a;j| = ¢+ 1 and |aj;| = 2. Then & 4(k) is not dense in &4 (k).

We give two completely different proofs of this theorem. The first relies on Theorem [A] The second
is more constructive, and provides another perspective on this non-density phenomenon. The proof of
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Proposition [B| can be found in §4| below. Note that & (k) = &5 (k) as soon as the characteristic of
k is zero or bigger than M4 (see [Roul6), 6.11]).

On the other hand, G. Rousseau proved that there always exist continuous group homomorphisms
G4 (k) > Y (k) and 8" (k) — &7 (k), which are moreover isomorphisms as soon as char k = 0 and
A is symmetrisable (see [Roul6, 6.3 and 6.7]). When £ is finite, these homomorphisms are surjective,
but the question of their injectivity is open.

Assume that & 4(k) = &5"*(k) and denote by ¢: &5""(k) — &7 (k) the composition of the two
above homomorphisms. The kernel of ¢ then coincides with Z/, n &}*"(k), where Z’; denotes the
kernel of the &%""(k)-action on its associated building X,. The injectivity of ¢ thus amounts to
Z'y n U3 (k) being trivial or, equivalently, to the statement that every normal subgroup of &%"*(k)
that is contained in Y}*" (k) must be trivial. If this is the case, we call 5" (k) simple in the sense
of the Gabber-Kac theorem, or simply GK-simple. This terminology is motivated by its Lie algebra
counterpart, stating that, at least in the symmetrisable case, every (graded) ideal of the Kac-Moody
algebra g that is contained in n*(A) must be trivial: this is an equivalent formulation of the Gabber—
Kac theorenﬂ ([Kac90, Theorem 9.11]). When chark = 0 and A is symmetrisable, &% (k) is known
to be GK-simple (see [Roul6l, Remarque 6.9.1]). However, in the other cases, the following problem is
widely open:

Problem 1 (GK-simplicity problem). Let A be a GCM and let k be a field. Determine when & (k)
1s GK-simple.

To give a feeling for the difficulty of Problem |1} note that in characteristic zero (say k = C), the GK-
simplicity of &%"“(k) is equivalent to the Gabber—Kac theorem for g, (see [Marl8, Remark 8.104(1)]);
when A is not symmetrisable, this latter problem remains, decades after it was first considered, com-
pletely open. As a second application of Theorem we give the first (negative) contribution to
Problem [ over finite fields.

Proposition C. Let k = F, be a finite field. Consider the GCM A = (2, ~3*) with m,n > 2 and

—-n 2
mn > 4. Assume that m =n =2 (modq — 1). If char k = 2, we moreover assume that at least one of

m and n is odd. Then &5""(k) and & o(k) are not GK-simple, that is, Z'y n Ui;f(k) # {1}.

The proof of Proposition [C] is given in §d] (see Proposition [1.9). Note that the above counter-
examples to GK-simplicity all occur for chark < M 4; the hope is that for chark > M4, Problem
has a positive answer.

To illustrate why the Lie correspondence is better behaved when char k > M 4, we make the following
observations on the pro-p group $7*" (k) (for k a finite field of characteristic p) in the light of some
important pro-p group concepts, such as the Zassenhaus—Jennings—Lazard (ZJL) series (also known
as the series of dimension subgroups, see [DASMS99, §11.1]). Given a pro-p group G with ZJL series
(Dn)n>1, the space L = (‘Dnzl D,,/Dy, 41 has the structure of a graded Lie algebra over F,, called the
ZJL Lie algebra of G (see [DASMS99, page 280]).

Proposition D. Let A be a GCM and let k be a finite field of characteristic p > My. Then the
following assertions hold:

(1) The ZJL series of W3 (k) coincides with its lower central series.
(2) The ZJL Lie algebra of Wy (k) is isomorphic to n; (A), viewed as a Lie algebra over F,,.

The proof of Proposition [D]is given in §7] below.

We now present a few more functoriality results, as well as results that are either applications of
Theorem [A] or provide motivations for the study of Problem [1| (or both) — besides the motivation to
clarify the relations between the different completions of & 4(k), and hence to provide a unified theory
of complete Kac—-Moody groups.

For each positive real root v € A’ (A), we let e, be a Z-basis element of g, N gz, and we let e; = eq,,
i € I, be the Chevalley generators of n*(A).

IHere, we define a Kac-Moody algebra using the Serre relations, as in [Kac90, §5.12]
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Theorem E. Let k be a field, B a GCM, and let {§; | i € I} be a linearly independent finite subset of
AT (B) such that B; — p; ¢ A(B) for alli,j e I. Then the following assertions hold:
(1) The matriz A := (B;(B))ijer is @ GCM and the map m: nt(A) —» nt(B) :e; — eg, is a Lie
algebra morphism.
(2) 7 gives rise to a continuous group homomorphism

R T (k) — 4R (k)

whose kernel is normal in &% (k). In particular, if 85" (k) is GK-simple, then 7 is injective.
(3) The restriction of @ to " (k) n & 4(k) extends to continuous group homomorphisms

Ga(k) = &p(k) and G4(k) — &p(k)
with kernels contained in Z'y.

Here, we view & 4 (k) and & (k) as subgroups of their Mathieu-Rousseau completion (with the induced
topology). Note that, in contrast to Theorem [Ef the surjective map 7: U3*" (k) — 45" (k) provided
by Theorem [A| can typically not be extended to the whole group &3 (k) (or even to & 4(k)) as soon
as A # B: this is a consequence of the simplicity results for these groups (see [Moo82], [Marl4] and
[Roul6l, §6.13]). A more precise version of Theorem [E[is given in below (see Theorem [3.10).

As a third instance of functoriality properties of Kac-Moody groups, we also establish that every
symmetrisable Kac-Moody group & 4(k) can be embedded into some simply laced Kac-Moody group
®p(k), that is, such that the off-diagonal entries of B are either 0 or —1. It is known that any
symmetrisable GCM A admits a simply laced cover, which is a simply laced GCM B for which there
is an embedding g(A4) — g(B) (see [HKL15 §2.4]).

Theorem F. Let k be a field and A be a GCM. Let B be a simply laced cover of A, and consider the
associated embedding w: g(A) — g(B). Then m gives rise to continuous group homomorphisms

Ga(k) = &p(k) and G4(k) — Sp(k)
with kernels contained in Z/.

Note that the embeddings of the minimal Kac-Moody groups (modulo center) provided by Theorem
preserve the corresponding twin BN-pairs and hence induce embeddings of the corresponding twin
buildings. As pointed out to us by B. Miihlherr, similar embeddings can be obtained with a totally
different approach (not relying on the Lie algebra), using the techniques developed in [Mith99] (see
also [Miih02]). A more precise version of Theorem [F|is given in below (see Theorem .

As a second motivation for the study of Problem [1] (besides Theorem [Ef(2)), as well as a third
application of Theorem we present a contribution to the linearity question of ilg””(k) for k a
finite field. The long-standing question whether &}** (k) is linear over some field &’ is still open (see
[CR14, §4.2]). Caprace and Stulemeijer [CS15] proved that, within the class of non-discrete, compactly
generated, topologically simple totally disconnected locally compact groups G (of which the simple
Kac-Moody groups &4"%(k)/Z!, for k a finite field are examples), the existence of a linear open
subgroup U of G (in the sense that U has a continuous faithful finite-dimensional linear representation
over a local field) is equivalent to the linearity of G itself (even more: G is in that case a simple
algebraic group over a local field). The following theorem extends this result in the Kac-Moody
setting, and addresses the above-mentioned linearity problem for continuous representations over local
fields, provided the group &%"*(k) is GK-simple (actually, an a priori much weaker version of the
GK-simplicity of &% (k) would be sufficient in this case, see Remark [5.3| below).

Theorem G. Let A be an indecomposable GCM of non-finite type and let k be a finite field. Assume
that &5 (k) is GK-simple and set G := &5"*(k)/Z!y. Then the following assertions are equivalent:

(1) Ewery compact open subgroup of G is just-infinite (i.e. possesses only finite proper quotients).
2) Ut (k) is linear over a local field.

A
(3) G is a simple algebraic group over a local field.
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(4) The matriz A is of affine type.

The proof of Theorem |G| relies on the paper [CS15] (which already contains the implications (2)<(3)
and (3)=(1)), and is given in §5| below.

As a third motivation for the study of Problem|[I] we also present a contribution to the isomorphism
problem for complete Kac—-Moody groups over finite fields. The isomorphism problem for minimal
Kac—Moody groups has been addressed by P-E. Caprace ([Cap09, Theorem A]). When k is a finite
field, the group & 4(k) turns out to contain, in general, very little information about A (see [Cap09}
Lemma 4.3]). The situation for &%"“(k) is completely different (see [Mari4l, Theorem EJ), and we
expect it to be possible to recover A from &%"“(k) in all cases. This difference between & 4(k) and
&1 (k) is in fact related to the non-density of &4 (k) in &% (k) (see the proof of Proposition [B).

Given a GCM A = (aij)i jer and a subset J C I, we define the GCM A|; := (as5)i jes-

Proposition H. Let k, k' be finite fields, and let A = (ai;)i jer and B = (b;j)i jes be GCM. Assume
that p = chark > Ma, Mp and that all rank 2 subgroups of &% (k) and &% (k') are GK-simple.
If a: &N (k)/Z!y — & (K')/Z}; is an isomorphism of topological groups, then k = k', and there
exist an inner automorphism ~y of & (k')/Z} and a bijection o: I — J such that
(1) ya(U** (k) =upet (k') for all distinct i,j € I.

Alg gy ) BI_{_oo),a(zj)) )
(2) Blioiy.oy € {(a, 5 )s (ay, 9°)} for all distinct i,j € 1.

The proof of Proposition [Hf can be found in §6| below. Note that if &)™ (k) is of rank 2 and if « lifts
to an isomorphism a: &5 (k) — &5"(k’), then the conclusion of the theorem holds without any
GK-simplicity assumption (see Remark below).

Acknowledgement. 1 am very grateful to Pierre-Emmanuel Caprace for triggering the research pre-
sented in this paper, as well as for his useful comments. I would also like to thank the anonymous
referee for his/her detailed comments.

2. PRELIMINARIES
Throughout this paper, N denotes the set of nonnegative integers.

2.1. Generalised Cartan matrices. An integral matrix A = (a;;); jer indexed by some finite set I
is called a generalised Cartan matrix (GCM) if it satisfies the following conditions:

(C1) as; =2forallie I,

(C2) a;; <0 forall 4,5 € I with ¢ # j;

(C3) ai; = 0 if and only if a;; = 0.
Given two GCM A = (aij)i,jej and B = (bij)i,jeJ, we write B < Aif J c I and |bm| < |CLij| for all
i,j € J.
2.2. Kac—Moody algebras. The general reference for this paragraph is [Kac90, Chapters 1-5] (see
also [Marl18|, Part IT]).

Let A = (asj)ijer be a GCM and let (h,II = {c; | i€ I},IIY = {a; | i € I}) denote a realisation of
A, as in [Kac90, §1.1]. Define §(A) to be the complex Lie algebra with generators e;, f; (i € I) and b,
and with the following defining relations:

lei, /5] = —dijoy (i, € 1),
[h,R] = 0 (h,h" € ),
[h76i] = <Oéi,h>€¢, (iEIa he h)?

[haf’b] = _<alvh>fl (1617 heh)
Denote by at = at(A) (respectively, n~ = i~ (A)) the subalgebra of §(A) generated by e;, i € I
(respectively, f;, ¢ € I). Then a' (respectively, i~) is freely generated by e;, i € I (respectively, f;,
i € I), and one has a decomposition

g(A)=n"@h@nt (direct sum of vector spaces).
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Moreover, there is a unique maximal ideal i’ of §(A) intersecting b trivially. It decomposes as
i'={nn)@@( nat) (direct sum of ideals),
and contains the ideal i of §g(A) generated by the elements
xh = ad(e;) tlile; e it and T = ad(f;) el e a=
for all i,j € I with ¢ # j. The Kac—Moody algebra with GCM A is then the complex Lie algebra

g(4) == a(4)/i.
We keep the same notation for the images of e;, f;, h in g(A). The subalgebra b of g(A) is called its
Cartan subalgebra. The elements e;, f; (i € I) are called the Chevalley generators of g(A). They
respectively generate the images n™ = n"(A4) and n= =n"(A4) of A" and A~ in g(A4). The derived
Kac—Moody algebra g4 := [g(A), g(A)] is generated by the Chevalley generators of g(A).

Let Q = Q(A) := Y ,.; Za; denote the free abelian group generated by the simple roots a1, ..., a,,
and set Q4 = Q4 (A) := > ,,.;Nay and Q_ = Q_(A) := —Q4. Then g(A) admits a Q-gradation. More
precisely,

g(A)Zﬂ_®h@ﬂ+= C_D 9. ®h D @ o,
aeQ_\{0} a€Q4\{0}
where for a € Q;\{0} (respectively, a € Q_\{0}), the root space g, is the linear span of all elements
of the form [e;,, ..., e; ] (respectively, [fi,,. .., fi.]) such that a;, +- - +a;, = « (respectively, = —a).
Here we follow the standard notation

[z1,Ta,...,xs] := ad(z1) ad(x2) ... ad(xs—1)(zs).
The set of roots of g(A) is A = A(A) := {a € Q\{0} | ga # {0}}. It decomposes as A = Ay U A_,

where Ay = Ay (A) := A n Q4 is the set of positive/negative roots. The subgroup W = W (A) of
GL(Q) generated by the reflections
S; ¢t Q—>QIOéj = Oy — A0

for ¢ € I stabilises A. The W-orbit W.{a; | i € I} € A is called the set of real roots and is
denoted A™ = A™(A). Its complement A™ = A™(A) := A\A™ is the set of imaginary roots. We
furthermore set A’ = A£(A) := A™nA} and A* = A (A) := A™nAL. Givena = ), nja; € Q,
we call ht(a) := Y. _;n; € Z the height of a. The group W also acts linearly on Qv = QY (A) :=
Dier Zag' by

i€l
si(ajv) = CVJ\/ — ajiaiv.

Given areal root a = wa; (w € W, i € I), we define the coroot of a as o := wayy’ € QV. Alternatively,

aV is the unique element of [gq, g—q] with a(a¥) = 2.

2.3. Integral enveloping algebra. The general references for this paragraph are [Tit87] and [Roul6l
Section 2] (see also [Marl8| Chapter 7]).

Let A = (asj)i,jer be a GCM, and consider the corresponding derived Kac-Moody algebra g = ga.
For an element u of the enveloping algebra Uc(g) of g and an s € N, we write

u® = (adu)® = l(adu)s and (7:) = %u(u— 1)...(u—s+1).

Tk s!
Let Ut, U~ and U° be the Z-subalgebras of Uc(g) respectively generated by the elements egs) (iel,
seN), f¥ (iel, seN)and (") (he X, ;Zay, s € N). Then the Z-subalgebra U = U(A) of
Uc(g) generated by UT, U~ and U° is a Z-form of Uc(g), called the integral enveloping algebra of
g. It has the structure of a co-invertible Z-bialgebra with respect to the coproduct V, co-unit €, and
co-inverse 7, whose restrictions to U = UT(A) are respectively given by
Vel(-m) = Z egk) ®ez(-l), eegm) =0form>0 and Tel(-m) = (—1)me(-m).

7
k+l=m
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The Z-algebra U inherits from Uc(g) a natural filtration, as well as a Q-gradation U = @ aeQ U,. We
set gz := gnU and nj =nt(A) :=nT nU. For a € Q4, we also set (n} )y := nj N g,. For a field
k, we similarly write gy := gz ®z k, n{ = nf(A) :=n] @z k and (n] )y 1= (n})a @z k, as well as
U, =URz k.

A set of roots ¥ € A is called closed if for all a, 3 e ¥: a+ € A, = a+ [ € V. For a closed
set U € A, we let U(¥) denote the Z-subalgebra of YT generated by all U* := Ug(Bnz18na) NUT for
«a € U. Given a field k, we define the completion Z/Alk(\Il) of U(T) over k with respect to the @4 -gradation
as
Up() = ] U(®)a®zk),

agQ 4

A~

where U(V), = U(P) nU,. For ¥ = At  we also write ﬁ,j = U (4) = Up(AT), as well as
Z/{J = U(A+)a
For each ¢ € I, the element

sf = exp(ad e;) exp(ad f;) exp(ad e;) € Aut(U)

satisfies s¥(Ua) = Uy, (o) for all a € Q. We denote by W* = W*(A) the subgroup of Aut(l/) generated

i

by the s¥, i € I. There is a surjective group homomorphism
w: WS> W:sfos;

such that for any w* € W* and any i € I, the pair E, := {w*e;, —w*e;} only depends on the root
a = my(w*)a; € A™, that is, it is the same for any decomposition a = my (v*)a;. Moreover, for any
w € W and any reduced decomposition w = s;, 8, ... s;, for w, the element w* := s¥ s¥ ...sf € W*
only depends on w, and not on the choice of the reduced decomposition for w. For each o € A™, we
make some choice of an element e, € F, (with e,, := ¢; and e_,, := f; for i € I), so that e, = w¥e;
for some w* € W* and i € I with o = my (w*)a;. Then {e,} is a Z-basis for g, N U, and we set

s* :=exp(ade,) exp(ade o) exp(adey) = w*s¥(w*) ™' e W*.

i
Lemma 2.1. The group W acts on U by bialgebras morphisms.

Proof. Let ue U and ¢ € I. Since the coproduct V is an algebra morphism, we have
Vit = V(Y (ade) ™) (ad ) (ad ) "u)
ni,n2,n3z=0

Z (ade; @1+ 1®ade;) ™ (ad i ®1+1®@ad £;)") (ade; @ 1 + 1 ®@ad e;) ")V ()

ni,n2,n3=0

D1 ((ade)™ (ad £;)) (ad e;) ") @ (ad e;) ) (ad ;)" (ad €;) ")) V (u)

T1,72,7320
81,82,8320

(s ® 7))V (w),

and hence Vs} = (s} ® sf)V. Since clearly es} = € for all i € I, the lemma follows. O

2.4. Minimal Kac—Moody groups. The general references for this paragraph are [Tit87] and
[Rém02, Chapter 9] (see also [Marl8, Chapter 7]).

Given a GCM A = (a4j)i, jer, we denote by & 4 the corresponding Tits functor of simply connected
type. As a group functor over the category of fields, it is characterised by a small number of properties;
one of them ensures that the complex group & 4(C) admits an adjoint action by automorphisms on the
corresponding derived Kac—-Moody algebra g = g4. Minimal Kac—Moody groups are by definition
the groups obtained by evaluating such Tits functors over a field k.

The minimal Kac-Moody group & 4(k) can be constructed by generators and relations, as follows.
For each real root a € A, we let U, denote the affine group scheme over Z with Lie algebra g, n gz =
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Ze,, and we denote by z,: G, = U, the isomorphism from the additive group scheme G, to U,
determined by the choice of e, € E,, as a Z-basis element, that is,

To: Go(k) = (k,+) > Uy(k) : 7 — exp(rey) for any field k.
A pair of roots {«, 5} € A is called prenilpotent if there exist some w, w’ € W such that {wa, ws} €
AT and {w'a,w’f} € A, In this case, the interval
[, B]n := (Na + NB) n A™®
is finite. One then defines a group functor Gt4, called the Steinberg functor associated to A, such

that for any field k, the group Sta(k) is the quotient of the free product of the real root groups
U,(k), v € A, by the relations

(2.1)  [za(r H z( C’aﬂrlsj for any 7, s € k and any prenilpotent pair {«, 8} € A",

where v = i + j§ runs through o, B[n:= [a, B]n\{, 8} in some prescribed order, and where the Ciajﬁ
are integral constants (that can be computed) depending on «, 8 and on the chosen order on ]a, [y
(see [Rém02, 9.2.2]). The canonical homomorphisms U., (k) — St (k) turn out to be injective, and we
may thus identify each U, (k) with its image in &t4(k). There is a W*-action on Gt (k), defined for
any w* € W* r ek and v € A™ by
w*(z(r)) = w*(exp(re,)) := exp(rw*ey) = Ty (er),
where w := Ty (w*) € W and where € € {£1} corresponds to the choice e, = ew*e, € E,,. For any
1€ I and r € k™, we define the element
8i(r) 1= wa, (N)a—a, (r” aa, (1)

of Gta(k) and we set 5; := 3;(1).
The second step of the construction is to define the split torus scheme T = ¥ 4. Let A be the free
Z-module whose Z-dual AY is freely generated by {a) | i€ I}. In particular, {a; | i € I} € A, where

we view each simple root a; as a linear functional on »,,.; Ca. For any field k, we set

T(k) := Homg, (A, k¥) = (kX )lf‘.
The torus ¥ (k) is then generated by the elements
P A o EX N e (\) = P
for r € k* and i € I. There is a W-action on ¥(k), defined for any 4,j € I and r € k* by
s;(r¥i ) = rsi iaf) = poj —agiad

For any field k, the minimal Kac—-Moody group & (k) of simply connected type is now
defined as the quotient of the free product Gty (k) * T(k) by the following relations, where i € I, r € k
and t € T(k):

)
(2.3) s
(2.4) Fi(r7Y) =5 - for r # 0,
(2.5) 5iou-3 " =sf(u) forueU,(k), yeA™.
We let Ut (k) = Uj (k) denote the subgroup of & 4(k) generated by all U, (k) with o € AT¢. The

normaliser of Ut (k) in & 4(k) is the standard Borel subgroup B (k) = T(k) x U™ (k). The center
Za(k) of &4(k) is given by

(2.6) Zak) = () 9B (kg = {teT(k) | tai) =1 Vie I}.
geB A (k)
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We let M(k) = MNa(k) denote the subgroup of & 4 (k) generated by T(k) and by the elements §; for i € I.
Then the assignment 3; — s; for ¢ € I induces an isomorphism N(k)/T(k) = W, and (Bt (k),N(k)) is
a BN-pair for & 4(k).

2.5. Mathieu—Rousseau completions. The general reference for this paragraph is [Roul6] (see also
[Marls8, §8.5]).

Let A = (aij)i jer be a GCM. For each closed set ¥ € A (A) of positive roots, we let UF* denote
the affine group scheme (viewed as a group functor) whose algebra is the restricted dual Z[UF] :=
@aene UP)% of U(V). One can then define real and imaginary root groups ) = ilél) in

pet o= g
by setting Ll(,) 1= U713 for o € A and U, 1= UP? , for ave Al

The Mathieu—-Rousseau completion &% of the Tits functor &4 is a group functor, with the
following properties. It contains the split torus scheme ¥ 4, as well as the group functors SJT” and Oy
as subfunctors. Over a field &, the identification of the real root groups U, (k) (o € AT) of & 4 (k) with
the corresponding real root groups o) (k) in 4" (k) produces injections of U (k) in 47" (k) and of
G 4(k) in &5 (k). Again, the normaliser of {7*" (k) in 5™ (k) is the standard Borel subgroup
Bt (k) = T(k) x WPt (k), and (B™F (k),N(k)) is a BN-pair for &5 (k).

The group &% (k) is a Hausdorff topological group, with basis of neighbourhoods of the identity
the normal subgroups {*(k) (n € N) of 43+ (k) defined by

U = Uy, =g, where U(n) = {a € A* | ht(a) = n}.

It is topologically generated by ®4(k), together with the imaginary root groups ) (k), a € Al
Unlike the minimal Kac-Moody group & 4(k), the Mathieu-Rousseau completion &5 (k) of & 4(k)
is thus obtained by not only “exponentiating” the real root spaces of the derived Kac—Moody algebra
g, but also the imaginary root spaces.

The group functor {7*" admits a more tractable description in terms of root groups, which we now
briefly review. We call an element = € n; homogeneous if z € (n}), for some o € A. In this case,
we call deg(z) := a the degree of z. Given an homogeneous element z € n} with deg(z) = «, we call
a sequence (z1"),ey an exponential sequence for z if it satisfies the following conditions:

(ES1) [ =1, 21 = 2, and 2" € U,,,, for all n e N.
(ES2) [l — 2™ has filtration less than n in Uc(g(A)) for all n > 0.
(ES3) V(zl") = Dktlen M @ 2l and e(2!™) = 0 for all n > 0.

For a field k£ and an element A € k, one can then define the twisted exponential

[exp] Az := Z Anglnl e Z:\{,:r

nz=0

Note that an exponential sequence (:E["])neN for x always exists and is essentially unique, in the
following sense (see [Roul6l §2.9] or [Marl8, Proposition 8.50]): if (z{™),cy is another exponential
sequence for x with associated twisted exponential {exp}z, then for any given choice of exponential
sequences (yl™),,en for the homogeneous elements of @, =2 Oraz, there exist (uniquely determined)
elements x,, € gmaz (M = 2) such that

{exp}x = [exp]x - H [exp]@m-

mz2

In particular, when o € AIF, one has zl = 2™ = 27 /n! for all n € N. The element [exp]\z satisfies
e([exp]Az) = 1 and is group-like, that is, V[exp]\z = [exp]\z®[exp]Az. It is moreover invertible in
Uy", with inverse 7[exp]Az =, o Nerzlnd,
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Remark 2.2. As we will see, it is also convenient to allow x € g,z in the definition of an exponential
sequence to be zero, in which case one has to specify «, so as to make sense of (ES1). In other words,
the sequence (z[™),cy is an exponential sequence for & = 0 viewed as an element of goyz if it satisfies
the conditions (ES1)-(ES3) for that . Of course, in that case, one should rather call >} -, M @ rm
for r in some ring k the twisted exponential of x associated to (x[”])neN and to r, and one should replace
the notation [exp](rz) by some other notation, such as [exp](r,x) (keeping the notation [exp](z) for
Zn>0 zn] ).

By the above uniqueness statement, the exponential sequences (zl"),en for z = 0 € goz (o € AL)
can be described as follows. Fix a choice of exponential sequences for the homogeneous elements of
®r>2 Oraz; in particular, for y = 0 viewed as a homogeneous element of g,.z (r = 2), one could
take [exp]y := 1. Then there exist (uniquely determined) =, € graz (r = 2) such that [exp](z) :=
Dins0 zll = [ I,>2[exp](z,); conversely, any such product defines an exponential sequence for x = 0 €
Jaz-

For each o € Ay, let B, be a Z-basis of (n}),. For a € AT, we choose B, = {en}. For a closed
subset ¥ € A, we then call By = By(A) := |J,cqp Bo a standard Z-basis of n} n U(¥). The
announced description of Ll;f”” is provided by the following proposition.

Proposition 2.3 (J[Roul6l Proposition 3.2]). Let ¥ € A, be closed and let k be a field. Then the
following hold:
(1) 4g*(k) can be identified to the multiplicative subgroup of U (V) consisting of all group-like
elements of Us () of constant term 1.
(2) Let By be a standard Z-basis of w} nU(¥), and choose for each x € By an exponential sequence.
Then U (k) < Uy, (V) consists of the products

H [exp] A\
reBy

for \; € k, where the product is taken in any (arbitrary) chosen order on By. The expression
of an element of (k) in the form of such a product is unique.

In this paper, we will always identify 7% (k) with a subset of U;", as in Proposition [2.3(1). The
conjugation action of the torus T(k) on 7% (k) is then given by

(2.7) t([explz)t™" = [exp]t(a)r for all t € T(k) and z € (n])a, a € Ay.

Givenie I, A€ k and « € {£q;}, we also have a conjugation action of exp Ae, on ﬂgi\{a}(k) given by

(2.8) exp(Aeq)uexp(—Aey) = Z (ad Aeg)™u  for all ue YR (a3 (K).

n=0

Lemma 2.4. Leti€ I, and let x € nj be an homogeneous element of degree o € Ay\{c;}. Then for
any choice of exponential sequence (x1™) e for x, the sequence (s;“x[”])neN is an exponential sequence
for s¥z, and we have

5i(lexp]z)5; ! = [exp](sfx) € UL (k)
for the corresponding twisted exponentials.
Proof. We first prove that (s;"x[”])neN is an exponential sequence for sfx. Since s} preserves the
natural gradation and filtration on U = U(A) and maps U t0 Uy, (o) (1 € N), the axioms (ES1) and

(ES2) are clearly satisfied. Since moreover s} acts on U by bialgebra morphisms by Lemma the
axiom (ES3) is also satisfied, as desired. The second statement of the lemma follows from (2.8). O
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2.6. Gabber—Kac kernel and non-density. The general reference for this paragraph is [Roul6l
Section 6] (see also [Marl8, §8.5-§8.6]).

Let A = (aij)ijer be a GCM and k be a field. The minimal Kac-Moody group &4 (k) acts
strongly transitively by simplicial automorphisms on its positive building X, associated to the BN-
pair (BT (k), (k) of & 4(k). (For general background on buildings and BN-pairs, we refer the reader
to [ABO8|, Chapter 6]).

The Rémy—Ronan completion &7 (k) of & 4(k) (see [RR06]) is the completion of the image of
® 4 (k) in the automorphism group Aut(X;) of X, where Aut(X,) is equipped with the topology
of uniform convergence on bounded sets. The BN-pair (B™%t(k),0M(k)) of the Mathieu—Rousseau
completion &5 (k) of & 4(k) yields the same building X ; (possibly with a larger apartment system).
The kernel of the action of &% (k) on X is given by

Zy= ] ¢B" (kg
gEBL (k)

and decomposes as Z/y = Z - (Zy n U} (k)), where Z4 = Z4(k) is the center of & 4 (k). We call the
intersection Z/; n U3 (k) the Gabber-Kac kernel of &5""(k), for reasons that will become clear
in below. It can also be described as

Zh n Ut (k) = ﬂ wlU ™y~

ued 7t (k)

where UMt := U4 (k) is the imaginary subgroup of Ut (k). Note that if A is of indefinite type
+

and k is of characteristic zero or is finite, the quotient &% (k)/Z, is simple (see [Marl4] and [Roul6]

Thm.6.19]).

Unlike the Rémy—Ronan completion, the Mathieu—Rousseau completion &5"“(k) of & (k) is, in
general, not the completion of & 4(k) (in its own topology). Note however that & 4(k) is dense in
5" (k) as soon as the characteristic of k is either zero or bigger than

My = max |a|.
1#£]

We denote by U (k) (respectively, & 4(k)) the completion of U (k) (respectively, & 4 (k)) in &2 (k).
The completions & 4 (k) and &'} (k) of & 4(k) are strongly related: there is a continuous homomorphism

pa: Bak) - &Y (k)

with kernel Z/y n & 4(k) = Z4 - (Z'y A ﬁ(k)), which is moreover surjective if k is finite.

2.7. GK-simplicity. The general reference for this paragraph is [Roul6, 6.5] (see also [Marl8| §8.6]).
Let A = (ai;)i jer be a GCM and k be a field. By a theorem of Gabber-Kac (see [Kac90, Propo-
sition 1.7 and Theorem 9.11]), every ideal of the derived Kac-Moody algebra g = g4 intersecting
the Cartan subalgebra b trivially is reduced to {0} (at least when A is symmetrisable). Equivalently,
every graded sub-g-module of g that is contained in n* is reduced to {0}. The Lie algebra gy, is called
simple in the sense of the Gabber—Kac theorem, or simply GK-simple if every graded sub-Ui-module
of gi, that is contained in nj is reduced to {0}. Similarly, the Kac-Moody group &%""(k) is called
GK-simple if every normal subgroup of &% (k) that is contained in U’}** (k) is reduced to {1}.

It is easy to see that the Lie algebra gy is GK-simple if and only if for all § € Aifrn, any homogeneous
element x € g of degree § such that (ad f;)(®z = 0 for all i € I and s € N must be zero. By the
Gabber—Kac theorem, gj is GK-simple when A is symmetrisable and char k = 0. When chark = p > 0,
this is not true anymore: for instance, the affine Kac-Moody algebra g = sl,,(k) ® k[t,t71] is
not GK-simple as soon as p divides m. Note, however, that the corresponding Kac-Moody group
& (k) = SL,,, (k((t)) is GK-simple (see [Roul6, Exemple 6.8]).
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Note that 85" (k) is GK-simple if and only if its Gabber-Kac kernel Z’y n $77** (k) is trivial, that
is, if and only if Z/, = Z4. If g; is GK-simple and k is infinite, then &%"*(k) is GK-simple by [Roul6,
Remarque 6.9.1]. In particular, &% (k) is GK-simple as soon as A is symmetrisable and chark = 0.

3. FUNCTORIALITY

In this section, given two GCM A and B, we define a family of Lie algebra maps n*(4) — n™(B),
which we call Z-regular, and which give rise to continuous group homomorphisms U5 (k) — L3** (k)
over any field k. We then give concrete examples of such maps, respectively yielding surjective and
injective exponentials, as in Theorems [A] and [E] Finally, we show how Theorem [F] can be deduced
using the same lines of proof.

3.1. The exponential of a Z-regular map.

Definition 3.1. Let A = (ai;)ijer and B be two GCM. We call a map 7: nt(4) - n*(B) Z-
regular if it is a Lie algebra morphism such that for each i € I, there is some 3; € A'(B) with
m(e;) € (n)(B))g,- In this case, we denote by 7: Q(A) — Q(B) the Z-linear map defined by
f(OLl) = ﬂz Viel.
Theorem 3.2. Let k be a field, and let A = (a;j); jer and B be two GCM. Let w: n(A) — n*t(B) be
Z-reqular. Then there is a continuous group homomorphism
Rop (k) o 50 (k)

such that for any nonzero homogeneous x € n'Z"(A) and any choice of exponential sequence for x, there
is a choice of exponential sequence (m(z)!") en for m(x) such that

(3.1) 7([exp]Ax) = Z N (@) for all X e k.
neN

Proof. By assumption, there exist for each ¢ € I some real root ; € A'*(B) and some \; € Z such
that

m(e;) = Nieg, foralliel.
Since eg;) € UT(B) for all n € N, the map Uc(nT(4)) — Uc(n*(B)) lifting m at the level of the
corresponding enveloping algebras restricts to an algebra morphism

i UT(A) > UT(B).
Since W (B) acts on U™ (B) by bialgebra morphisms (see Lemma , we get
VB (egm)) = )\TVBeg;n) =\ Z e(ﬁi) ®eéfi) =(m ®m) 2 elm ® el(s) = (m ®7r1)VAe§m)
r+s=m r+s=m

for all i € I and m € N, where Vx denotes the coproduct on UT(X), X = A, B. Hence Vgnm; =
(m1 ® 1)V 4. Similarly, denoting by ex the co-unit on U*(X), we have egm; = €4, and hence 71 is a
bialgebra morphism.

Note also that m; preserves the natural gradations on YT (A) and U*(B), in the sense that

(3.2) m (U (A)) € U;(a)(B) for all @ € Q4 (A).
In particular, the map
UT(A) @z k > UT(B)®z k
obtained from m; by extension of scalars can be further extended to a bialgebra morphism
w1 Ut (A) - Uy (B)
between the corresponding completions. Finally, since 7o preserves the group-like elements of constant
term 1, it restricts to a group homomorphism

R T (k) — U (k)
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by Proposition [2.3(1).
Let now = € n}(A) be homogeneous of degree o € A, (A), and choose an exponential sequence

(zl"),,eny for . Then y := w(x) € n} (B) is homogeneous of degree () € Q1 (B). We claim that the
sequence (yl™),ex defined by

(3.3) ylh = (2" forallme N

is an exponential sequence for y (viewed as an element of degree T(«) if y = 0, cf. Remark , SO
that
(3.4) ([exp]Az) = > A"m(2)t" for all A€ k.

neN
Indeed, y[°1 = 1 and y[' = y by the corresponding properties for 2. Since 7, (U, (A)) S M;ﬂ(a)( ) for
all n € N, we also have y["l e ur )( ) for all n, so that the condition (ES1) is satisfied. Similarly,

7(a
Yt — ) = (2 — 7y (2) ) = 1y (2] = 2()

has filtration less than n in Uc(g(B)), because m preserves the natural filtrations, yielding (ES2).
Finally, (ES3) readily follows from the corresponding property for  and the fact that m; is a bialgebra
morphism.

Note that (3.2) and (3.4)), together with Proposition [2.3(2), imply that
(3.5) R(UG) (k) S Uy (k) for all a e Ay (A),

where il (o (B) := {1} if T(a) ¢ Ay (B) (see also Remark . Since ht(7(a)) — oo as ht(a) — oo,
a € A4 (A), we deduce in particular that 7 is continuous. This concludes the proof of the theorem. [

Definition 3.3. For a Z-regular map 7: nT(A) — n*(B), we have just proved that the unique
continuous map 7: U7 (k) —> LB (k) defined on the (topological) generators [exp]Az of U™ (k)
by the formulas and (3.4) (where X € k, z € n}(A) is a homogeneous element, and [exp]\z =
Dins0 Nzln] o twisted exponential) is a group homomorphism, which we call the exponential of .

3.2. Surjective Z-regular maps.

Lemma 3.4. Let A = (aij)ijer be a GCM, and let g(A) = g(A)/i be the associated Kac—Moody
algebra. Then i decomposes as a direct sum of ideals i = it @1i~, where iT C 0t is generated, as an

ideal of the Lie algebra 2%, by the elements x”, i,7€l.

Proof. Let it denote the ideal of i generated by the elements z?j, i,j € I. We claim that [ fi, 1::;] =0
for all 4,5,k € I. If k # 4, this is clear. For k = i, this follows from the formula
[fi, (ad ei)™e;] = m(m — 1 — |ag;])(ad e;) ™ te,

obtained by an easy induction on m > 0. This implies that i* is in fact an ideal in §(A), and similarly
for i~. In particular, i = i* @i™, as desired. O

Lemma 3.5. Let A = (a;j)i jer and B = (b;j)i jes be two GCM such that B < A. Then the assignment
e; —e; ifi € J and e; — 0 otherwise defines a surjective Lie algebra morphism

Tap: ny(A) > ny(B)

such that m(g(A)a) = g(B)a for all o € Q4 (B) = X,,c;Na; € Q4 (A) = X},c; Nay. In particular, map
18 Z-regular and

AL(B) S AL(A).

Proof. The assignment e; — e; if i € J and e; — 0 otherwise defines a surjective Lie algebra morphism
ap: ny(A) — i, (B), which by hypothesis maps the ideal it (A) inside the ideal it (B). In particular,
7ap factors through a surjective Lie algebra morphism 7m4p: ny(A) — ny(B) by Lemma Since
g(A), is spanned by all iterated brackets [e;,,...,e;.] with o, + -+ + a;, = a (@ € Q4+(4)) and
similarly for g(B)a, the other claims follow. O
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Theorem 3.6. Let k be a field. Let A and B be two GCM such that B < A. Let map: ni(A) — ny(B)
be the corresponding Z-reqular map, as in Lemmal3.5 Then the following hold:

(1) The exponential Tap: Wyt (k) — AR (k) of map is surjective, continuous and open.

(2) For any closed set of roots ¥4 € AL(A),

Ty (k) = U5 na, 3y (k)-
In particular, 7(4U3 y(k)) = Llfa)(k) for all « € At (A), where ilfa)(k:) = {1} if a ¢ AT(B).

(a

Proof. Recall that, for any closed set of roots W4 & A, (A), the subgroup g (k) of U3** (k) is
topologically generated by the twisted exponentials [exp]Az for A € k and = € n} (A) a homogeneous
element of degree in W 4 (and similarly for subgroups of t3** (k)). The surjectivity of 74 as well as the
second statement of the theorem thus readily follow from . In particular, 74U, (k) = UBS, (k)
for all n € N, and hence w45 is also open, as desired. O

Corollary 3.7. Let k be a field. Let A and B be two GCM such that B < A. Then the map
Tap: WP (k) - Wpt (k) restricts to group homomorphisms
Ui(k) > Ux(k) and Uj(k) — U (k).

Proof. By Lemma we may identify Ay (B) with a subset of Ay (A). Since a root « is real if and
only if 2ar is not a root by [Kac90, Propositions 5.1 and 5.5], we deduce that AT (A)nAL(B) € AY¥(B).
It then follows from Theoremwtha‘u TAB (ﬂ&)(k‘)) c U (k) for any a € A(A), and hence that 745
restricts to a map U} (k) — Ug (k). The corresponding statement for the completions follows from the
continuity of T4p5. O

Remark 3.8. Let A = (a;;):,jer and B = (b;;)i jer be two GCM such that B < A. Then the restriction
Ut (k) — Uf(k) of #ap provided by Corollary is, in general, not surjective anymore. Indeed,
assume for instance that the matrices A and B are symmetric, and for X € {A, B}, let (-,-)x denote
the bilinear form on Q4 (X) introduced in [Kac90, §2.1]. Thus, given o = >}, ; njo; € Q4 (A) = Q(B)
with support J := {i € I | n; # 0}, we have
(3.6) (a,)a = Z ninja;; = Qan - Z ningla;;| < 227112 — Z n;n;lbi;| = (o, ) B.

i,J€1 el i#] el 1£]
Moreover, if a € Ay (X), then a € A'(X) if and only if (o, @) x = 2, while @ € A'™(X) if and only
if (a,a)x < 0 (see [Kac90, Propositions 3.9 and 5.2]). In particular, if a;; # b;; for some ¢, in the
support J of the real root o € AF(A), then o ¢ Ay (B), because (a,a)a < (o, a)p by . Hence
in that case the real root group 11@ y(k) is in the kernel of T4p. For instance, if A = (=, "5") and
B = (2 3") with b < a, then 745(U2(k)) = {1} for all @ € A'*(A)\{a1,az}. Thus, in that case,
Tap(UJ (k)) is the subgroup of U7 (k) generated by the real root groups U (k) and UZ (k) associated
to the simple roots.

3.3. Injective Z-regular maps.

Lemma 3.9. Let B be a GCM, and let {5; | i € I} be a finite subset of ATF(B) such that 5;—5; ¢ A(B)
for alli,j € I. Then the matriz A := (B;(8;"))i jer is a GCM. Moreover, the assignment e; — eg,,
fi = e_g, for allie I defines a Lie algebra morphism m: ga — 9B.

Proof. Let 7 be the Lie algebra morphism from the free complex Lie algebra on the generators
{ei, fi |i € I} to gp defined by the assignment e; — eg,, fi — e—g, for all i € I. Since 5, — 8; ¢ A(B)
for all 4,5 € I, we deduce from [Kac90, Corollary 3.6] that 3;(5;) < 0, so that A is indeed a GCM.
Moreover,

[eg,,e—p,] =0 foralli,jel withi#j.
Similarly, since s;(8; — 8;) = (18;(8;7)| + 1)B8: + 8; ¢ A(B), we have

(adeyp,) PN e, 5 =0 foralld,jel withi#j.
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Finally, the elements 8 = [e_g,,eg,] of gp (i € I) satisfy
[8,8;1=0 and [B8,exp,]=£B;(B)e+s,

for all 4, j € I. Hence all the defining relations of g4 = [g(A4), g(A)] (see §2.2)) lie in the kernel of 7, so
that 7 factors through a Lie algebra morphism 7: g4 — g5. O

Theorem 3.10. Let k be a field, B a GCM, and let {B; | i € I} be a linearly independent finite subset
of A (B) such that B; — 3; ¢ A(B) for alli,je I. Let A:= (3;(8,))ijer be the corresponding GCM,
and consider the Z-regular map 7: nt(A) —» n"(B) : e; — ep,. Then the following holds:
(1) The kernel of the exponential 7t: 3" (k) — UE* (k) of 7 is a normal subgroup of &% (k).
In particular, if %" (k) is GK-simple, then T is injective.
(2) The restriction of & to UJ (k) extends to continuous group homomorphisms
Ga(k) > &p(k) and a(k) — @73(16)

with kernels respectively contained in Z4(k) and Za(k) - (Z)y N ﬁ(k:)) Here, we view & 4(k)
and G (k) as subgroups of & (k) and &' (k) respectively, with the induced topology.

Proof. By Lemma [3.9] the Z-regular map 7 extends to a Lie algebra morphism
ga—gpieimeg, fire_g,.

Since eS_L"B)i e U(B) for all i € I and n € N, this then yields a Z-algebra morphism U(A) — U(B), which

in turn extends to a k-algebra morphism
VI Z/{k(A) — Z/lk(B)
Note that the Z-linear map
T Q(A) > Q(B) 1 oy = B
induced by 7 is injective because the (; are linearly independent. Set K := ker7, where 7 is the
exponential of 7 (see Definition .
Choose a Z-basis B of n} (A), as well as exponential sequences for the elements of B. Choose also

exponential sequences for the elements m(z) € n}(B), z € B, as in Theorem so that for any
Y = 1, [exp]Aaz € U F (k) we have

#(y) = [ [ [expram(@) € LT (k).

zeB
Thus, if y € K, then for any i € I the component of [ [, [exp]\,7(x) € Z/A{l:r of degree [3; must be zero.
Since 7 is injective and w(e;) = eg, # 0, this implies that A, = 0. Hence K < ﬂ’gi\{m‘id}(k).
For each real root o and each r € k>, we set
s*(r) := exp(adre,) exp(adr™te_,) exp(ad req) € Aut(Uy),

so that s* = s*(1) (cf. §2.3)). For any i € I and r € k*, any homogeneous z € n; (4) of degree a # o;
and any choice of exponential sequence (z1™),ex for z, we deduce from (2.8) that

%(gi(r)([exp]as)gi(r)_l) = 7?< Z Sk (r)x["]) = Z m (szl (r)a:[”])

nz=0 nz=0
= Z s, (r)m (x["]) = s (r) (7([exp]z)).
nz=0

In particular, 3;(r)K 3;(r)~! € K for any i € I and r € k*. Since the torus T(k) is generated by
{37'5:(r) |ie I, rek*}

7

(see §2.4), we deduce that M4 (k) < 5" (k) normalises K. As &5"(k) is generated by {7** (k) and
MNa(k), we conclude that K is a normal subgroup of GY™“(k), proving (1).



16 TIMOTHEE MARQUIS

We now turn to the proof of (2). Let X € {A, B}, and let Ix denote the indexing set of X. Given
w € W(X) and a reduced decomposition w = s;, s, ... s;, for w, we write

& k% & * ~ Ny ~
w* i=s7 s ...s7 €WF and W= 5,5, ...5;, € Nx(k) S Gtx (k).

We recall that w* depends only on w. Similarly, the coset @ T x (k) is uniquely determined by w. The
relations (2.3]) and (2.5)) in & x (k) respectively imply that

(3.7) W-t-wt =w(t) foranyteTx(k)

and

(3.8) Weu-wt=w*(u) for any u e Stx (k).

Moreover, in view of the relations , the torus Tx (k) is generated by the elements
(3.9) r =371%,(rt) forall e kX and i€ Ix.

For each positive real root v € A (X), we fix some w, € W(X) and some i, € Ix such that
v = wya;, (with the choice w,, = 1if v = a;), and we choose the basis elements e, € £, ande_, € E_,
so that e, = w¥e; and e_, = wXf; . To lighten the notation, we will also write w; := wg, € W(B)
and o; :=ig, for all j € 14, so that

Bi = wia,, and eyp, = w;“ei% forallie I4.
Defining for all v € A%(X) the reflection
sy : Q(X) = Q(X) : A= A=A "),
we then have s, = wys; w;' € W(X). We will also view s, as acting on the coroot lattice Q¥ (X) =
5y QV(X) > QV(X) :h—>h—L{y,hyy".
We define the map

7 Ta(k) *< % Uy(k)> = &p(k) : 2ia,(r) = z1p,(r), {

el s EETEGY)
yeATe(A) 05

Tiy(r) o F(WyZa, (1)T]
on the free product of T 4(k) with all real root groups U, (k), and we prove that 7 factors through a
group homomorphism & 4(k) — &g (k). Note first that

(810)  FGi(r) = F(@a, (N7, (1 aa, (1) = 25, (e_s, (0 Dap, (r) = w? (3, (1))
for all r € kX and i € I4. In particular, we deduce from (3.8) that

(3.11) 7(31) = w}(3,,) = 03, w; ' € Np(k) forallie l,.

Hence for any v € A¥ and r € k, we have

(3.12) F (@4 (1) = (@20, (N)i) = @015, (M)(@D) " = wl*(22p, (),
where

v v
for some prescribed reduced decomposition w, = s;, ...s;, of w, € W(A). Finally, using (3.7), (3.8),
(3.9) and (3.10), we see that the restriction of T to T4(k) is given for all r € k* and i € I4 by

(3.13) () =7GE7E(rY) = wF (3, 8, (7)) = @ - - @7 = wi(r®ei) = 7% = P
We are now ready to prove that the image by 7 of the relations (2.1)), (2.2)), (2.3)), (2.4) and (2.5)
defining & 4 (k) are still satisfied in & g(k). Observe first that 7 and 7 coincide on U (k). Indeed, this

follows from (3.12)) and the fact that for any v € A*(A) and any r € k,

Fres,, = wit(zp, ().

In particular, the image by 7 of the relations (2.1) are satisfied in &p5(k) for any prenilpotent pair
{a, B} < AT(A) of positive real roots (and hence also of negative real roots by symmetry). Let now

Wy = wj, (85, ) - w) (55, ) € MNp(k) and wi* := sgil ...sgik e W*(B)

7(z,(r)) = T(expre,) = exprm(e,) = exprmi(wie; ) = exprw
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{a, B} € A™(A) be a prenilpotent pair of roots of opposite sign, say a € Af(A) and § € A™(A). Then
there exists some w € W such that {wa, wB} € ATF(A). Up to modifying e, and e,z by their opposite,
we may then assume that we, = e, and weg = e,5 (note that {o, 5} # {wa, wf} € AF(A)). Hence
WWa€;, = €we and we may thus assume, up to modifying w,q, that wwaw;1 = w. Set

W = W (W)

[za(r Hmv Caﬁ ‘

in &4 (k) for some r, s € k, where v = i + j/3 runs, as in (2.1)), through the interval ]a, S[n. For each
v €la, B[, let €4 € {£1} be such that e,,, = e;w*e,. Note that w(]a,ﬁ[N) =]wa, wPB[n. We have

[ua(r): T (5)] = 0 ([2a(r), 23() thwl) [Trun(er 057

Consider the relation

so that CZ’;-“’wﬂ = emHﬁC’ij for all 4, 5. It then follows from that
T([zalr), 25(s)]) = F((W*) " ([#wa (1), 2ws($)]) = (™) T F([2wa(r), Tws(s)])
=wm%mwm%wm=“*%qu””“w>

= (w™) 1~<1_[scw7 e, C; Brzsj)> = (w™ (1_[:57 CQBTZSJ >

= 7r(1_[ac7 Co‘ﬂrzsj )
so that the relatio are indeed satisfied.

We next check (2.2). Let t = 7% € (k) for some 7 € k* and some j € I4, and let s € k and
i € I4. We then deduce from (3.13]) and the relations (2.2)), (3.7) and (3.8) in &5 (k) that
Rt a(5) - £71) = 1w} (2a,, ()1 = wf (0 g, (s)r )
= w¥ (xaai (r<wiocai,ﬂjv>s)) = 7 (Ta, (r<ﬂi7ﬂ}/>s))
= T (2a, (t(ai)s)).
To check 1' let again t = re € T a(k) for some 1 € k* and some j € I4, and let i € [4. We then
deduce from (3.11)), (3.13) and the relations (2.3) in (k) that
R(EA3Y) = wi (3o, H3Y) = w*(rsqwzlﬁ;)
L pwise, w8 e B _ By BB BY
— %(ra} —{Bi,B; Yo ) - %(rsia])
= 7(si(1)).
Since (2.4) and (2.5)) are an immediate consequence of the definition of 7, we conclude that 7 factors
through a group homomorphism
T (k) - Bp(k),
which is continuous because it coincides with the continuous group homomorphism 7 on Ui(k). In
particular, it extends to a continuous group homomorphism 7: B4 (k) - G (k) coinciding with 7 on
UT (k). It thus remains to show that ker ¥ € Z4(k) and ker ¥ € 7y n B a(k) = Z4(k) - (2 n UZ (k).
Note that #(Uj (k)) = 7#(Uj (k)) € U (k). Similarly, (3.11) and (3.13) respectively imply that

%(UIA(k)) - ‘ﬂB(k) and 7~T(‘3:A(k)) - SB(]{I)
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Let g € ker 7. The Bruhat decomposition
_ AT o
®Ga(k) = Uwewm% (k)ywB ™ (k)
for & 4(k) implies that g = by@Wby for some w € W(A) and some by, by € BT (k). Hence

7(g) = T(b)T ()7 (b2) = 1,

so that the Bruhat decomposition for & z(k) implies that 7(w) = 1. We claim that for any reduced
decomposition w = s;, ... s;, with k& = 1, the element w™ := sg, ...sg, € W (B) is nontrivial. Indeed,
for any i € I, and A € Q(A), we have

7(si(A) = T(A) =X 0B = T(A) — (F(A), BB = s, (T(A)).-

In particular, T(w(\)) = w™(7T(A)) for all A € Q(A). Since T is injective, the claim follows.
This shows that w € T4(k), and hence that ker @ € B7 (k). Therefore,

ker¥C () hBT(R)hT = Za(k).
}LE@A(k)

The same argument (using the Bruhat decompositions in &%™*(k) and &%"*(k)) yields ker * < 7,
as desired. This concludes the proof of the theorem. O

Remark 3.11. Note that the map 7: &4(k) » &p(k) provided by Theorem maps Z4 (k) into

Zp(k). Indeed, recall from (2.6) that Z4(k) = {t € Ta(k) | t(ey;) = 1 Vj € I} (and similarly for
Zp(k)). Hence, if we write ¢ € Ta(k) as a product t = [ [, ;¢ for some r; € k*, then t € Z4(k) if
and only if [ [,; rfaﬁap =1 for all j € I (and similarly for t € Tp(k), with «; replaced by ;). Since
{aj,a ) =By, B;) for all i, j € I, the claim then follows from (3.13)).

In particular, 7 induces a continuous injective group homomorphism
Ga(k)/Za(k) —> &p(k)/Zp(k).

Example 3.12. Let k£ be a field and let a € N with a > 2. We define recursively the sequence
(@n)nen by ao := a and an+1 = an(a? — 3). For each n € N, consider the GCM 4,, = (_in —3"). By
Theorem [3.6] the assignment e; — e;, i = 1,2, defines surjective group homomorphisms

Tt UROE (k) — Wt (k).

An+1

Similarly, by Theorem the assignment e; — eg,, ¢ = 1,2, where 8; = sj2 and 2 = spa, defines
group homomorphisms

it AT (B) — W3 (K),

n+1
which are moreover injective if the corresponding Kac—Moody groups are GK-simple. Indeed, this
follows from the fact that

Bi(By) = (s109, 8207 ) = anay + az,ay +anay) = 3a, —ad = —a, 1,

and similarly for 82(8y). Thus, we get two projective systems

C R (k) S R (k) T S R () s W (h)

T () A () B S0 () L 3 ()
The projective limit of the first system should be, in some sense to be made precise, the group ﬂ%j* (k)
associated to the matrix A,, = (% =) and with corresponding Lie algebra n*(A,) = a* freely
generated by eg, es (see also [KM95, Remark on page 55]). The projective limit of the second system

is trivial.
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Remark 3.13. If B is a GCM of affine type, then every subsystem {3; | ¢ € I} € A(B) as in
Theorem @l yields a GCM A = (Bi(B}))i.jer all whose factors are of finite or affine type. For
instance, the case a = 2 in Example [3.12] together with Theorem show that for the affine matrix
B = (- 2 , 52), the Kac-Moody group ®p(k)/Zp(k) embeds properly into itself. Note that, at the
algebralc level, ®5(k) = SLa(k[t,t 1]) and the maps k[t,t 1] — k[t,t 1] : t = t™ (m > 2) provide
examples of such embeddings.

By constrast, as soon as B is of indefinite type, Example shows that there exist GCM A =
( 2, 7") with m, n arbitrarily large such that & 4(k)/Za(k) embeds into &p(k)/Zp(k).

n

3.4. Simply laced covers. A GCM A is called simply laced if every off-diagonal entry of A is either
0 or —1. Equivalently, A is simply laced if its Dynkin diagram D(A) is a graph with only simple
(unoriented, unlabelled) edges (see [Kac90, §4.7]).

Let A = (ai;);jer be a symmetrisable GCM. A simply laced cover of A is a simply-laced GCM B
whose Dynkin diagram D(B) has n; vertices a; 1), ..., n,) for each simple root a; € A(A) (where
the n; are some positive integers), and such that each a(;,y is connected in D(B) to exactly |aj;| of
the vertices a(j 1), ..., Qjn,) for j # 4, and to none of the other vertices ; ;). Such simply laced
covers B of A always exist, but are in general non-unique (if one restricts to those of minimal rank).
For more details about simply laced covers, we refer to [HKL15, §2.4].

Given a simply laced cover B of A as above, we write the indexing set J of B as the set of couples

J={@,j)]i€el, 1 <j<n;}.

In particular, we denote by e(; ;) and e_(; j) := f(; ;) the Chevalley generators of gp, by s(; ;) the
simple reflections generating W(B), and so on. For a field k, and elements i € I and r € k, we also set
for short

H Tiag (1) €Bp(k), 3i,(r):= x(iﬁ.)(r)x_(i#)(r H 3,5 (r) € Bp(k),
as well as
=156 eWB), 3uyi=3u,(1)eNp(k) and sf ) :=]]sh,; e W*(B).
=1 j=1

Note that each of the above four products (indexed by j) consists of pairwise commuting factors. For
1 € I, we also set

N Mg Uz

€t(i,) = 2 e+(ij) € 8B, Qi) " Z (i.j) € Q(B) and a(viy,) = 2 a(vm-) € QY (B).

j=1 j=1 j=1
Then for all ¢,j € I and m e {1,...,n,},
Qg m) s Qi) = @i
The following lemma is extracted from [HKLI5| §2.4]; we give here a more detailed proof.

Lemma 3.14. Let A = (aij)i jer be a symmetrisable GCM, and let B be a simply laced cover of A
as above. Then the assignment ein, > €+, for i € I defines an injective Lie algebra morphism
T: gA > 0B-
Proof. We proceed as in the proof of Lemma Let 7 be the Lie algebra morphism from the free
complex Lie algebra on the generators {e+,, |i € I'} to gp defined by the assignment e+, = e (; .y for
i€ l. Since ;) — ag,.y ¢ A(B) for all 4, j € I, we have

leqi,),e—(,)] =0 foralld,j eI with i # j.
Similarly,

Qix aij| + 1 r T
(ad esi,) M er ) = > ( i )(adei(i,l)) e (adesing) ies ) =0
Ty...,Tn,

riteetrn, =lag [ +1 ¢
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for all 4, j € I with ¢ # j. Indeed, each homogeneous component of (ad ei(if))'“ij'“ei(j’,) has degree of
the form o := (0 m+3.,% 7s0(;5)) for some m € {1,...,n;} and some r, € Nwith 3}, 7, = |ag|+1.
On the other hand, since

8(i,) Qi) = (i) ANd 83 )Q(m) = Q(jm) — Z< A(jm)» Q.50 Uis) = Qm) T O]
for some a;) € P Nay;,¢) of height |a;;|, we have

s,y = (o m + ap) — Z TsQis) = E(ajm + o)
s=1
for some a’m € D01 Zav; s of height —1. Hence s(; .y (and thus also o) cannot be a root, yielding
the claim.
Finally, the elements a( 5= = [e—(i,.); €(i,y] of g (i € I) satisfy

[a(vi7,)7a(vj7,)] =0 and [a(vi7,)7ei(j7.)] = Z [a(vi7.),ei(j,m)] = Z taijes(jm) = tages(,)
m=1 m=1

for all 4, j € I. Hence all the defining relations of g4 = [g(A4), g(A)] (see lie in the kernel of 7, so
that 7 factors through a Lie algebra morphism 7: g4 — gp.

For the injectivity, note that ker 7 intersects the Cartan subalgebra of g 4 trivially. Hence ker m = {0}
by the Gabber—Kac theorem (see , as desired. O

The proof of the following theorem follows the lines of the proof of Theorems [3.2] and 3.10] We
prefer, however, to repeat the arguments, as a common treatment of these results would necessitate
very cumbersome notation.

Theorem 3.15. Let k be a field and A = (a;j)i jer be a symmetrisable GCM. Let B be o simply laced
cover of A, and let m: ga — gp be the embedding provided by Lemma[3.1]. Then the following holds:

(1) There exists a continuous group homomorphism 7: U3 (k) — UE** (k) such that for all
rek,iel andye AT (A)\{as},
T(Za, (1)) = x(iy)(r) and  7(S; - 2 (7) -§i_1) = 33, (24 (1)) - E(;}).
(2) The restriction of @ to UJ (k) extends to continuous group homomorphisms
Ga(k) = Sp(k) and &a(k) - &p(k)

with kernels respectively contained in Z4(k) and Z4(k) - (Z)y n ﬁ(k)) Here, we view & 4(k)
and G (k) as subgroups of &5 (k) and &' (k) respectively, with the induced topology.

Proof. For i€ I and a multi-index m = (mq,...,my,) € N we write
|m| = Z:lmj and 6;"(2.) = 1_[163_7?;3) e U(B).
j= j

Note that the e ; ;) pairwise commute (for i fixed). Since for any i € I and n € N,
s (Z D)= S eu)
=1 |m|=n

and since w(3},.; Zoy') < 21612 a; iy, the map Uc(ga) — Uc(gp) lifting 7 at the level of the
corresponding enveloplng algebras rebtrlctb to an algebra morphism

m: U(A) - U(B).
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Moreover, for any < € [ and n € N,

VBm( (n )) VBe Z VBe )) Z Z Z e(T) Z e(r) (f?.)

|m|=n r+s=n|r|=r|s|=s r+s=n
n
= (m ®7T1)VA€Z(» ).

Since clearly egm = €4, we deduce that the restriction of w1 to U™ (A) is a bialgebra morphism.
Note also that m; preserves the N-gradations on Ut (A) and U1 (B) induced by ht: @, — N. In
particular, the map

U*(A) ®Z k —>Z/{+(B) ®Zk

obtained from m; by extension of scalars can be further extended to a bialgebra morphism
mo: U (A) = U (B)

between the corresponding completions. Finally, since 7o preserves the group-like elements of constant
term 1, it restricts to a group homomorphism

R T (k) — 4R (k)

by Proposition (1), which is moreover continuous because 7y preserves the N-gradations on Z:{\,: (4)
and Ut (B).
Let now ¢ € I and r € k. By definition,

T(2a,(r)) = 7r2< Z r”el(.n)> = 2 r"eg?) = Z Z r”egn H expre(; jy = :r(i’_)(r).
j=1

nz0 nz=0 nz0 |m|=n

Moreover, since for any u € U(A),

m(ewades)@)=m( Y T 0l )= 2 ¥ ¥ T e mwed,

nz0r+s=n nz0r+s=n|pr|=r|s|=s

= (ﬁ exp ad e+(i,j)) (m1(w)),

j=1
so that
mi(siu) = s{; ymi(u),
we deduce from the relations that for any v € AT (A)\{w},

(3 24(r) - 57Y) _W(Zr > D rtm(siel) = et ymi(el)

n=0 n=0 n=0
= 5?@.)7’%(17’7(7“)) = S(i,) - 7(x(r)) - E(Z}).
This concludes the proof of (1).
We now turn to the proof of (2). Let X € {A, B}, and let Ix denote the indexing set of X. Given
w € W(X) and a reduced decomposition w = s;, 84, - .. s;,, for w, we write
(3.14) w* i=sfsk . ..sf eW* and @ :=75;,3,...5;, € Nx(k) € Gtx (k).

1 72 1k

For each positive real root v € AY(X), we fix some w, € W(X) and some i, € Ix such that
v = wyay, (with the choice w, = 1 if v = «;), and we choose the basis elements e, € E, and
e_y € E_, so that e, = w,’y“ei7 and e_, = w,’;fiv.

We define the map

re o (3 5(r)

Taqy(r) o F(ByTra,, (DT

7o Ta(k) ('yeAﬁ(A) Uv(k)> = 8p(k): Tra,(r) = 243, (r), {
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on the free product of T 4(k) with all real root groups U, (k), and we prove that 7 factors through a
group homomorphism & 4(k) — &p(k). Note first that

(315)  FE) = Fa, (N0, (70, (1) = 0 ()7 (i (1) = 5o (1)
for all r € k> and i € I4. In particular,

(3.16) 7(5;) = 3(;,) € Np(k) forallie 4.

Hence for any v € AY and r € k, we have

(BI7)  Fwan (1) = F(@yan, (1)) = B0, ) (@) = wl* (@a, (),
where

15,7; g(zl, Yoo g(ih_) € ‘ﬁB(k) and w,’;* = S?i1,~) c

S(in,) E WH(B)

for some prescribed reduced decomposition w, = s;, ...s;, of wy, € W(A). Finally, using (3.15) and
the relations (2.4) in & (k), we see that the restriction of 7 to T 4(k) is given for all r € kX and i € 4
by

(3.18)  F(r*) =F(E'E(0T) = 5,3 1‘[ iy 1_[7“ (i) = PO,

We are now ready to prove that the image by 7 of the relations , , , and 1

defining & 4(k) are still satisfied in &p(k). Observe first that 7 and 7T 001n01de on Uy (k;) by (3.16
and the first statement of the theorem. In particular, the image by 7 of the relations are satisfied
in (k) for any prenilpotent pair {o, 5} € AL*(A) of positive real roots (and hence also of negative
real roots by symmetry). Let now {«, 5} € A*(A) be a prenilpotent pair of roots of opposite sign,
say a € AT°(A) and B € A™(A). Then there exists some w € W such that {wa, wfs} € A (A). Up to
modifying e, and e,g by their opposite, we may then assume that we, = eyo and weg = e, (note
that {«, 8} # {wo, wp} € AP(A)). Hence wwae;, = eyq and we may thus assume, up to modifying
Wa, that wyew; ! = w. Set

W™ = ()
Consider the relation
[za(r Hmv C’“'Br’sj

in 6 4(k) for some r, s € k, where v = i + jf runs, as in , ), through the interval ], f[n. For each
v €la, B[, let €4 € {£1} be such that e, = e;w*e,. Note that w(]a,B[N) =]wa, wPB[n. We have

[Zwa(r), Tws(s)] = w* ([za(r), z4(s (Hmv Caﬂrzsj > = waw(evcfjﬁrisj)a

so that C’Z‘;a’wﬁ = emﬂﬁC for all 7, j. It then follows from that
A([2a(r),2s(s)]) = F((W*) 7 ([Bwa(r), 2wp(s)])) = (™) 7 ([2wa(r), Tus(s)])
= (™) R ([ () () = () %(me Caa)

= (w™) 1~(me e, C! ﬂrzsj)) = (w" (wa (CoPris?) )
_ﬁ(nzy ciris)).

so that the relations (2.1)) are indeed satisfied.
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We next check (2.2). Let t = 7% € (k) for some 7 € k* and some j € I4, and let s € k and
i € 4. We then deduce from (3.18]) and the relations (2.2)) in (k) that

T4

F(t o, (s) t ) =Gy (s)r "G = H (G (i my (8)r6) = H (3. my (rOEm G )

m=1 m=1
= [T #am) (r¥7s) = 2. (t(e)s)

m=1
— F(2a, (H(a)s)):

To check (2.3)), let again t = r® € T4(k) for some 7 € k* and some j € I4, and let i € I4. We then
deduce from (3.16)), (3.18) and the relations (2.3)) in (k) that

~r~ ~—1 ~ af y~—1 ) s ylafs
F(Eit1) = 5,003 = 506 (1700) = (00

— 00 Dnim1 OGm) @G0l m) = o) T8,
= F(r Twe) = F (o))
= 7(s:(t)).

Since (2.4) and (2.5]) are an immediate consequence of the definition of 7, we conclude that 7 factors
through a group homomorphism

T GBa(k) - 6p(k),
which is continuous because it coincides with the continuous group homomorphism 7 on UX(k). In
particular, it extends to a continuous group homomorphism 7: & 4(k) — &g (k) coinciding with 7 on
ﬁ(kz) It thus remains to show that ker ¥ € Z4(k) and ker 7 € Z/y n G 4(k) = Za(k) - (Zy 0 ﬁ(k))
Note that #(U} (k) = #(U% (k)) € U# (k). Similarly, and respectively imply that
%(UIA(k)) - ‘IIB(k) and 7~T(‘3:A(k')) - SB(k)

Let g € ker 7. The Bruhat decomposition

_ IR o
G 4(k) = Uwew (B (R)B (k)
for & 4(k) implies that g = by@Wby for some w € W(A) and some by, by € BT (k). Hence
(g) = ®(b)T(W)7 (b2) = 1,

so that the Bruhat decomposition for & z(k) implies that 7(w) = 1. We claim that for any reduced
decomposition w = s;, ...s; with k& > 1, the element w™ := s . 8(ix,) € W(B) is nontrivial.
Indeed, define the Z-linear map

i1,) -

T QV(A) > QV(B):af m oo,

Then for any 7,7 € 14, we have
869 (T(@))) = 56,(ai.) = Ay = 25 LQam)s bW my = Oy — @iy = Tsi(a)
m=1
and hence 7(s;(h)) = 5(;.)(7(h)) for any i € I and h € Q¥ (A). In particular, T(w(h)) = w™(7(h)) for
all h e QY (A). Since T is injective, the claim follows.
This shows that @ € T 4(k), and hence that ker # € BT (k). Therefore,

ker¥C () hBT(R)h™h = Za(k).
hE@A(k)

The same argument (using the Bruhat decompositions in &%"*(k) and &"*(k)) yields ker¥ € Z/,,
as desired. This concludes the proof of the theorem. O
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Remark 3.16. Proceeding exactly as in Remark we see that the map T: &4(k) —» &p(k)
provided by Theorem maps Z4 (k) into Zg(k) by (3.18)), and hence induces a continuous injective
group homomorphism

Ba(k)/Za(k) — &p(k)/Z5(k).

4. NON-DENSITY AND GABBER-KAC SIMPLICITY
This section is devoted to the proof of Propositions [B] and [C]

Proposition 4.1. Let k be a field and let B be a GCM. Assume that Uf (k) is not dense in 5** (k).
Then U (k) is not dense in 3" (k) for all GCM A such that B < A.

Proof. By Corollary the surjective map Tap: W% (k) — U5 (k) provided by Theorem [3.6
restricts to a group homomorphism U} (k) — U (k). Thus, if US (k) were dense in U3 (k), we
would conclude that

U5 (k) 2 Ran(UF (k) = Rap (U5 (k) = W5 (),
and hence that Uig(k) = (5% (k), yielding the desired contradiction. O

Lemma 4.2. Let k be a field and A be a GCM. Then Uj (k) is dense in U3 (k) if and only if the
minimal Kac—Moody group & s(k) is dense in its Mathieu-Rousseau completion &5 (k).

Proof. This follows from the fact that &% (k) is generated by {7*" (k) and & 4 (k) and that U} (k) =
U (k) N S 4(k) (see [Roulf, 3.16)). O

The following lemma is a slight generalisation of [Marl4, Lemma 5.4].

Lemma 4.3. Let k be a field, and let A = (2, ~") be a GCM such that mn > 4. If chark = 2, we
moreover assume that at least one of m and n is odd and > 3. Then the imaginary subgroup U™t of
Ut (k) is not contained in Z',.

Proof. Assume for a contradiction that U™ is contained in Z.
Note first that

(4.1) Ut = () awpet (kyat
weWw
where @ is as in (3.14]) (see also [Marl8| Definition 7.58]): indeed, the inclusion € readily follows
from Lemma and the fact that W stabilises A" (see [Kac90, Theorem 5.4]). Conversely, if
g € P (k)\U"™*, then by Proposition [2.3(2) we can write g as a product g = | Lies, . [exp]Azz for
‘ +

some A, € k such that A\, # 0 for some y with deg(y) € AY. In particular, by Lemma we find
some v € W such that ¥gd~! = z,,(r)h for some i € I, some nonzero r € k, and some h € U3 (k).
Hence wgw ! ¢ U (k) for w := s;v € W, proving the reverse inclusion.

As Z' = Za - (2 n U3 (Kk)) and as Z/; n 7" (k) is normal in &5 (k) by [Roul6l Proposition
6.4], we deduce that U™+ = Z', ~ {77*" (k) is a normal subgroup of &% (k). We now exhibit some
imaginary root 6 € AX", some simple root «;, and some element z € (n,j)(; such that § — a; € AL®
and such that ad(f;)x is nonzero in nj. This will show that the element exp(f;) € Y(_a,) (k) S
&% (k) conjugates the element [exp]e € g (k) S U™ outside U™ (see ), yielding the
desired contradiction.

Set p = char k. By hypothesis, mn > 4. Up to interchanging m and n, we may then assume that
n = 3. If p = 2, we may moreover assume that n is odd. Set 8 := si1(a2) = as + ma; € AY and

v = s2(a1) = a1 + nag € A, so that

ey ={Ba) =2—mn, (y,a5)=n, {Bay)=m, and (y,8)=n(3—mn)
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Assume first that p does not divide 2 — mn or that p = 0. Set § := a; +~. Then § € A" because
5(y) = 4—mn < 0 and §(ay) = 0 (see [Kac90, Lemma 5.3]). Set also = := [e1,e,] € nf. Since
v — a1 =nag ¢ A, we deduce that

[flax] :<Py’ai/>'e’)’ = (Z_mn)'e’Y ¢0 in n]j;_a

as desired.
Assume next that p divides 2 — mn. Since n is odd if p = 2, this implies that p does not divide
n(3 —mn). Set § := s1(8 +7v) = ag + s1(7). Note that if m > 2, then

(1(0),07)=m+2—mn<2-2m <0 and {(s1(0),a5)=2—mn+n<2—-n<0,
while if m =1, so that n > 5, then
(8281(0), 7> ={s1(0), 00 + s>y =5—n <0 and {s251(9), a5 ) =—{s1(9), a5 ) =—-2<0.

Hence § € A™ by [Kac90, Theorem 5.4]. Set x := [es,e,] € n}, where 7/ = s1(y) € AT. Since
vy—B8=—(m—1)a; + (n—1)as ¢ A and hence also 7' — as = s1(7 — 8) ¢ A, we deduce that

ool = (7,08 e = (3 B¥) e = n(3—mn) - ey £0 innf,

as desired. g
We record the following more precise version of [Marl4, Theorem E]J.

Proposition 4.4. Let k = F, be a finite field. Consider the GCM Ay = ( % 3?) and Ay = ( 2, ")
with m,n = 2 and mn > 4. Assume that m =n =2 (modq — 1). If chark = 2, we moreover assume
that at least one of m and n is odd. Then the minimal Kac—Moody groups & a,(F,) and & 4,(F,)
are isomorphic as abstract groups, but the simple quotients ®iTa(Fq)/Zf41 and ®Q?Q(Fq)/Z142 of the
corresponding Mathieu—Rousseau completions are not isomorphic as topological groups.

Proof. The proof of [Mari4, Theorem E] on p. 725 of loc. cit. applies verbatim, with the same
notation [note: that proof uses Lemma 5.3 in [Marl4]; for the convenience of the reader, we provide
below (see Lemma a more detailed proof of that lemma]. The only difference is that [Marl4l
Lemma 5.4], which is used to conclude the proof, must be replaced by its generalisation, Lemma
above (hence the extra assumption in characteristic 2). O
Lemma 4.5. Let k = F, be a finite field. Consider the GCM A = (% ~3") and B = (_2n, _;”’)
with m,m';n,n' = 2. Assume moreover that m = m’ (modq — 1) and n =n' (modq — 1). Then the
minimal Kac—Moody groups & 4(k) and & g(k) are isomorphic as abstract groups, and the corresponding
Rémy-Ronan completions & (F,) and &5 (F,) are isomorphic as topological groups.

Proof. We can identify the Weyl groups W(A) and W(B) (both isomorphic to the infinite dihedral
group), and hence also the corresponding sets of real roots A™(A) and A"¢(B). Moreover, since A and
B do not have any —1 entry, it follows from [Mor88, §3] that the commutation relations are all
trivial, and hence one can identify the Steinberg functors Gt4 and Gtg. Let us fix this identification
Sty = Stp as follows (we add a superscript A or B to the usual notations, to distinguish between
the objects related to the GCM A or B). For X € {4, B}, each real root a € A'*(X) can be uniquely
written as o = wqq; for some w, € W(X) and i € I = {1,2}. We then choose the sign of ef, in the

double basis EX by setting

X kX X kX
e, '=whe; and el :=w,f,

where w? is as in (see also [Marl8, Definition 7.58]), and we define the corresponding parametri-
sations a??_fa: k — U3, : r = exp(retq) of the real root groups accordingly. The identification
Sty = Gty is now obtained by mapping r4 to 22 for each a € A™(A) = A™(B).

Similarly, identifying the coroots associated to A and B, we obtain an identification of the tori
Ta(k) 5 Tp(k) mapping r* € T(k) (r € kX, i € I) to the corresponding element of T(k). This
yields an isomorphism ¢: Sty(k) * Ta(k) — Stp(k) » Tp(k), and to see it induces an isomorphism
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&4 (k) —> 6p(k), we only have to show that the relations (2.2)—(2.5) are the same in Sta (k) * Ta(k)
and Gtp(k) = Tp(k).

For the relations , this is clear by construction. For the relations and , this follows
from the fact that

(4.2) P =™ and " =1"  forall r € k.
Finally, for the relations {i let i € I, a € A™ and r € k, and let us check that 3; - 22 (r) - §i_1 -
(s*x2(r))~" is mapped to 3; - zZ(r) - 371 - (s¥2B(r))~! under ¢, or else that

(4.3) p(siay(r)) = sfad(r).

We may assume that o € AY (the case o € A® being symmetric). Let X € {A,B}. If a = ay,
then s¥z2 (r) = 2, (r), yielding in that case. Assume now that o € AP\{«;}. By definition,
X (r) = exp(reX) = exp(r-w;‘jejx) = w,’;xiﬂ (r) for some j € I (determined by ). If £(s;w,) = (wy)+1
(where £: W — N is the word length on W = W (X) with respect to the generating set {si,s5}), then
stwk = (siwa)* = wk,, and hence sfz (r) = ¥, (r), yielding in that case. Finally, suppose

U(siwy) = l(wy) — 1. Then wk = s¥ - (s;wq)*, and hence s¥z (r) = (s¥)? - 25 ,(r). On the other

% A Six

hand, by [Marl8, Proposition 4.18(6)], we have
(577 -0 (1) = 22, (1)) = X, (1)),

It thus remains to check that (—1)$*? yields the same element of k, regardless of whether a is viewed
as a root of A?(A) or of AY(B). But if & = «; is a simple root, this follows from 7 and in general,
this follows from an easy induction on £(w, ) using the fact that (s;a, @) = (o, o )—{a, a} ) {a;, ).

We have thus shown that ¢ induces an isomorphism ¢: & 4(k) — &g (k). On the other hand, note
that ¢ identifies the (positive) BN-pairs of ®4(k) and &g (k) (see §2.6)), and hence also induces an
isomorphism of topological groups between the corresponding Rémy-Ronan completions, yielding the
lemma. 0

Finally, we prove a slight generalisation of [Mari4l Corollary F].
Lemma 4.6. Let k =T, be a finite field. Consider the GOM A = (2, =) withm,n > 2 and mn > 4.

—-n 2
Assume that m =n =2 (modq — 1). If chark = 2, we moreover assume that at least one of m and n

is odd. Then UJ (F,) is not dense in U} (F,).

Proof. Set A; = (2, 2) and Ay = A. For i = 1,2, we also set G; := & 4,(F,), G; := &N (),
and Z; := Z), . Tt follows from Proposition that G; and G2 are isomorphic as abstract groups,
whereas G, /Z7 and Go /Z% are not isomorphic as topological groups. Note also that the Rémy-Ronan
completions & (F,) of G1 and &) (F,) of G2 are isomorphic as topological groups by Lemma
Finally, we may assume without loss of generality that G is dense in @1, for otherwise Ujl (Fy) would
not be dense in ﬂfl‘”(IFq) by Lemma so that the conclusion of the lemma would immediately
follow from Proposition

Assume now for a contradiction that U;{ (F,) is dense in LLTX‘IJF(IFQ). Then G9 is dense in éQ by
Lemma Hence the continuous surjective group homomorphisms @y, : @Z - & (Fy), i = 1,2,
induce isomorphisms ~ ~

G/ 7 = &7 (F,) = &7, (F,) = Ca/ 2

of topological groups, yielding the desired contradiction. O

Theorem 4.7. Let k =F, be a finite field, and let A = (ai;)i jer be a GCM. Assume that there exist
indices i,j € I such that |a;j| = q+ 1 and |aj;| = 2. Then Uj (k) is not dense in U3 (k).

Proof. Consider the GCM B = ( 2 ") with m = ¢+ 1 and n = 2. Then U} (k) is not dense
in 42" (k) by Lemma Since B < ( 2 %) or B < ( 2 "), the conclusion then follows from

a; aij

Proposition [£.1} O
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We now give a completely different proof of Theorem [£.7, which provides another perspective on
this non-density phenomenon.

Proposition 4.8. Let k = F, be a finite field, and let A = (a;j)i jer be a GCM. Fiz distinct i,j € I,
and let g € T (k) S U be one of the twisted exponentials [exp][e;, e;] or [exp](ad e;)@e;.

(1) If laij| = g, then g ¢ [W*T (k), U3 " (k)]. o

(2) If moreover |a;;| = g+ 1 and |aj;| =2, then g ¢ U¥ (k).

Proof. As usual, we realise U;*" (k) inside ﬁ,j Assume that |a;;| > ¢. We claim that for any element
h=2eq, ha €V = [LT (), 3" (k)], where hy € UT ®z k for all a € @4, the homogeneous
components g, yo; and hgq; +o, are either both zero or both nonzero.

Set

U=0Q+\{ma; +na;eQs |0<m<q, 0<Sn<1} and LA{\; = H (UJ@ZIC)ELA{;.
acw
Note that Z:{\\if is an ideal of the k-algebra Z,l\,: . To prove the claim, we will compute modulo Z:{\\if .
Any element of 4’}** (k) is congruent modulo Uy to an element of the form

q
gx = exp Ae; - 1—[ [exp]As(ade;)®e; = exp Ae; - (1 +2())) mod U
s=0

for some tuple A := (X, Ao, ..., ;) € k%2, where

q
z(A) := Z As(ade;)®e;.
s=0

Using the identity (see for instance [Marl3l Lemma 4.9])

s+t

q
exppes - 2(3) - exp(—pie:) = (expad per)r(d) = 31 Y w( t
s=01t=0

)(ad ei) e,

and the fact that

([exp]Xs(ad ei)(s)ej) =1 As(ade;)®e; mod ﬁ\;,r,

we may now compute, for two tuples A and p in k92 as above, that

[92, gu] = expAe; - (1 +z(Q)) -exppe; - (1 +z(p)) - (1 —x(Q)) - exp(=Ae;) - (1 — z(p)) - exp(—pe;)

=1+ (expad Ae;)z(A) + (expad(A + p)e;)(x(p) — x(A)) — (expad pe;)z(w)

Cs(A, ) - (ad ei)(s)ej mod Z/A{\f,r

q
=1+

s=1
for some polynomials Cs € k[, Ao, ..., Aq, 1y o, - - - 5 4g] Satisfying
C1(A, p) = Ao — pAo = Ao — pfho = Cy(A, p).

Here we used the fact that (‘tl) =0in k unlesst=0ort =gq.
Let now h =3, .o, ha € V. Then h is congruent modulo LA{[I," to a (finite) product of elements of
the form [gy, g,.] as above, say

h=]Tloy 001 =1+ Y (loa 9] — 1) mod U3

for some tuples A", p” in k92, The above discussion then implies that there is some c € k such that

haita; = cleiej] and  hga,qa; = clade;)Ve;,
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proving our claim. This shows in particular that g ¢ V' +LA{$ . Since 1 +ﬁ$ contains the open subgroup
vi2(k), so that VL% (k) €V + Z/Al\i,", we deduce that g ¢ V, proving (1).
Assume now that |a;;| = ¢+ 1 and |aj;| > 2. In particular, the only real roots not in ¥ are the
simple roots a; and «; (see [Kac90, Chapter 5]). Assume for a contradiction that g € ﬁ(k) Then

g = exp(Ae;) exp(pe;) mod V +a$

for some A\, p € k. Since V +Z/Al\£,r cl1 +Z/A{;2, where 0;2 = Hht(a)>2 UF®z k) S Z/A{,j, the components

of degree a; and «; of exp(Xe;) exp(ue;) must be zero, so that A = = 0. Hence g € V +Z/Al\'1," But
this contradicts the first part of the proof, yielding (2). O

As pointed out to us by Pierre-Emmanuel Caprace, the methods of this section can also be used to
show that Kac-Moody groups G%"*(k) (or even & 4(k)) are in general not GK-simple if char k < M.

Proposition 4.9. Let k = F, be a finite field. Consider the GOM A = ( 2, ~") with m,n > 2 and
mn > 4. Assume that m =n =2 (modgq — 1). If chark = 2, we moreover assume that at least one of

m and n is odd. Then &5""(k) and & 4(k) are not GK-simple, that is, Z'y N U7X(k) # {1}.

Proof. Consider the (affine) GCM B = ( 2%, 3?). Note first that the hypotheses of Lemma are
satisfied. Hence, as noted in the proof of this lemma, there is an isomorphism of the Rémy-Ronan
completions & (k) of &4(k) and & (k) of &p(k) preserving the corresponding BN-pair structures.
In particular, the Rémy-Ronan completions U} (k) © &7 (k) of Uj (k) and Uy ™" (k) € &7 (k) of
Uf (k) are isomorphic.

Assume for a contradiction that Z/y nUJ (k) = {1}. Then the surjective homomorphism ¢ 4: U¥ (k) —
U T (k) (see is an isomorphism, so that U} (k) = U} (k) = UL (k). On the other hand, it
follows from [Rie70] (and the fact that &' (k) = PSLa(k((t))) that Uy ™" (k) is just-infinite: every
proper quotient of Uy ¥ (k) is finite. But Corollary provides a map map: Uj (k) — Ug (k) with
nontrivial kernel: in fact, ker w4 g is even infinite, as it contains all real root groups in U :{ (k) associated
to positive real roots a = zay + yag with z,y > 2 (i.e., by [Kac90, Exercises 5.25-5.27], the element
«a is a positive real root in both AT(A) and A'(B) if and only if nz? — mnay + my* € {m,n} and
|z —y| = 1, which is easily seen to have no positive integral solutions (x,y) other than (z,y) = (1,2) if
n=2and (z,y) = (2,1) if m = 2. One then concludes as in Remark [3.8). Moreover, w45 has infinite
image, as map(U} (k)) contains the subgroup of U (k) generated by the simple root groups. Hence

Ut (k) cannot be just-infinite, a contradiction. O

5. NON-LINEARITY

This section is devoted to the proof of Theorem [G] For earlier contributions to the linearity problem
for the group 7" (k) over a finite field k, we refer to [CRI4} §4.2] (see also [CSTH]).

We recall that a GCM A = (a;;); jer is called indecomposable if, up to a permutation of the index
set I, it does not admit any nontrivial block-diagonal decomposition A = (‘?)1 122 ). Indecomposable
GCM are either of finite, affine or indefinite type (see [Kac90, Chapter 4]). If A is of indefinite type
and all proper submatrices of A (corresponding to proper subdiagrams of the Dynkin diagram of A)
are of finite type, then A is moreover said to be of compact hyperbolic type.

Lemma 5.1. Let A be a GCM of compact hyperbolic type. Then there exists some B < A such that
B is of affine type.

Proof. We use the notation of [Kac90, §4.8] for the parametrisation of affine GCM. If A is of rank 2,
then one can take for B the GCM of affine type Agl) or AgQ) . If the Dynkin diagram of A is a cycle of

length £+ 1 for some ¢ > 2, then one can take for B the GCM of affine type Aél). Assume now that the
Dynkin diagram of A is not a cycle and that A is of rank at least 3. Then A must correspond to one of
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the 7 Dynkin diagrams H'3), HSL HE) HE) HS HE) and HE) from [CCCF10, Section 7]. One
can then respectively choose B to be affine of type Df), Ggl), Dig), Ggl), Dig), Df) and Ggl). d

Using the results of [CS15], we can now prove our non-linearity theorem.

Theorem 5.2. Let A be an indecomposable GCM of non-finite type and let k be a finite field. Assume
that &5 (k) is GK-simple and set G := &5"(k)/Z!y. Then the following assertions are equivalent:
(1) Every compact open subgroup of G is just-infinite (i.e. possesses only finite proper quotients).
(2) ilm‘”'( ) is linear over a local field.
(3) G is a simple algebraic group over a local field.
(4) The matriz A is of affine type.

Proof. Note that the GK-simplicity assumption on &%"*(k) allows to view &}*" (k) (rather than a
quotient of 7*" (k)) as a subgroup of the simple group G.

The implications (4) = (3) = (2) are clear. Since G is a non-discrete, compactly generated, topo-
logically simple, totally disconnected locally compact group (see, for instance, [CRW17, Appendix A])
and since $7*F (k) is an open compact subgroup of G, the implication (2) = (3) follows from [CS15]
Corollary 1.4], while the implication (3) = (1) follows from [CS15, Theorem 2.6]. We are thus left
with the proof of (1) = (4).

Assume thus that $07%" (k) is just-infinite, and suppose for a contradiction that A is of indefinite
type. Assume first that A = (a;;)i jer has a proper submatrix (a;;); jes of non-finite type. Consider
the closed sets of positive roots

Uy:i=A(A) n@PNa; and Tp;i=AL(A\D,.
JjedJ
Note that Wy ; is an ideal in A, (A), in the sense that a + 3 € Wp; for all a € A, (A) and B € ¥y,
such that o + 8 € AL (A). It then follows from [Roul6l Lemme 3.3(c)] that M,I,I\J( ) is normal in

U** (k) and that
I () (k) = L (k)

is infinite, contradicting (1).

We may thus assume that A is of compact hyperbolic type. By Lemma there exists a matrix
B of affine type such that B < A. It then follows from Theorem that there is a surjective map
Tap: Wr*t (k) — LB (k). This again yields an infinite quotient

LR () K = U (k)

of U3 (k) for K := ker 7 4p, in contradiction with (1). This concludes the proof of the theorem. [

Remark 5.3. Note that up to replacing Ut (k) by Wy (k)/Z where Z := Z'y n s7*F (k) in the
statement of Theorem [5.2 the GK-simplicity assumption on &%"*(k) can be substantially weakened.
Indeed, the only issue that may arise in the above proof of Theorem |5 E if we replace {77*" (k) by its
quotient Uy** (k)/Z is that for A of compact hyperbolic type, the implication (1) = (4) would require
to ensure that the map
WA (k)/Z — U (k)/Fap(2)

induced by 74p has still infinite image. In other words, we need to know that KZ is not open in
Ut (k) where K := ker T4p, which is a priori much weaker than the GK-simplicity assumption

Z = {1}.
6. ON THE ISOMORPHISM PROBLEM

This section is devoted to the proof of Proposition [Hl Let A = (a;5); jer be a GCM, and let k be a
field. Set v (W}°F(k)) := Wt (k), and for each n > 1, define recursively

Yot (LT (R)) = [ (k) 7o (U5 (R))],
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that is, v,11(U7F (k)) is the closure in U3 (k) of the commutator subgroup [7*F (), v, (U2 (k))].

Remark 6.1. If k£ is a finite field of characteristic p > My, then U3** (k) is a finitely generated
pro-p group by [CRI4, §2.2]. It then follows from [DASMS99, Exercise 1.17] that (v, (%" (k)))

coincides with the lower central series of L77*" (k).

n=1

The proof of the following proposition is an adaptation of the proof of [Roul6l Proposition 6.11]
(see also [CR14, §2.2]).

Proposition 6.2. Let A = (a;j)i jer be a GCM and let k be a field. Assume that chark = 0 or that
chark > M. Then v, (WR*" (k) = W4 (k) for alln > 1.

Proof. To lighten the notation, we set U™** = (3" (k) and U} = W% (k). Given some n > 1, it
follows from [Roul6l, proof of Proposition 6.11] that

Ume c [Umet, umel-ume, forallm = n 4 1.

Indeed, in the notation of loc. cit., G. Rousseau proves that for any given g € U;'¢, there exists some
i € I and some h € U, such that g = [expe;, h] mod UJ¢,, yielding the claim. By definition of
the topology on U™t we deduce that U4 < [U™a+, Ume] for all n > 1. Since the reverse inclusion
holds as well by [Roul6, Lemme 3.3], so that

Uy = [Umaet, Uma] foralln>1,
the proposition follows from an easy induction on n. O

Remark 6.3. If k = IF, is finite and such that |a,;;| > ¢ for some i, j € I, Proposition shows that
the conclusion of Proposmon E 6.2 does not hold anymore, i.e. 72 (Ll""““(k)) is properly contained in
A (k).

We now apply the above observations to the study of the isomorphism problem for Mathieu—
Rousseau completions of Kac-Moody groups over finite fields. We first record some known facts
about complete Kac—Moody groups allowing to recognise specific subgroups from the topological group
structure.

For this, we will need to define Kac—Moody groups in a slightly more general context, namely by
considering arbitrary Kac-Moody root data (see for instance [Roul6, §1.1] or [Marl8| §7.3]).

To simplify the notation, we have so far considered Kac—Moody root data D of simply connected
type, as we are mainly interested in the structure of the subgroup L[Z””, which only depends on the
GCM A and not on a specific choice of D. For D = (I, A, A, (¢;)ier, (hi)ier) arbitrary with associated
GCM A = (aij)i,jer, we denote by &™* the Mathieu-Rousseau completion of the Tits functor &p of
type D (see [Roul6, §3.19]), and by Z’ the kernel of the action of 7" on its associated building.

The additional information provided by D is encoded in the torus scheme Tp. We denote as
before by B3t = Tp x 7" the standard Borel subgroup of 7. Given a subset J S I, we let

4% (J) denote the standard parabolic subgroup of 82" of type J (see [Roul6l §3.10]). We also set
D(J) = (J,A|J,A, (Ci)ie], (hi)ie]) where A|J = (aij)iJ'EJ and A+(J) = A+ N ®jEJ Za
Lemma 6.4. Let D be a Kac-Moody root datum with associated GCM A = (a;j)i jer and let k be a
finite field of characteristic p. Then the following hold:

(1) If 5" (k) contains an open pro-q subgroup for some prime q, then ¢ = p.

(2) Every mazimal pro-p subgroup of 81" (k) is conjugate to Uy (k).
(3) The normaliser of W}°* (k) in &5 (k) is the standard Borel subgroup B5*" (k).
(4) The subgroups of 1" (k) containing BH*" (k) are precisely the standard parabolic subgroups
f®p7nu( )
(5) For any subset J < I, one has a Levi decomposition B3+ (J) = QS%T;) }UNT\ A, () Moreover,
(N 5 (kg™ = (Zpy) 0 URY () (1) < LR\ a ) (R)-

gEPR (1)
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Proof. To prove (1), let V be an open pro-g subgroup of &7"*(k). Then V' := V n U}t (k) is open
in V, hence an open pro-q subgroup of {7** (k) (see e.g. [DASMS99, Proposition 1.11(i)]). Since
U** (k) is pro-p, the same argument implies that V' is pro-p, and hence ¢ = p.

The second statement follows from [Rém04] 1.B.2] (see also [CR14] Section 2]). The statements (3)
and (4) are standard (see e.g. [ABOS, Theorem 6.43]). The Levi decomposition in (5) follows from
[Roulé6l 3.10].

Let us now prove the identity in (5). Since YR AL () (k) is normal in P (J) (see the above Levi
decomposition) and since Z, Dy MUY )(k:) is the Gabber-Kac kernel of Qﬁg?j) (hence is conjugate
under any element of PR (J) = Bhiy) X YA A, () to an element of Ut (k)), the inclusion from
right to left is clear. Conversely, since the Gabber—Kac kernel Z’D( 50 ngi( J) (k) is the largest normal
subgroup of Qig?;) that is contained in UX¢ ;) (k), the image of ﬂgemg”u) g " (k)g~* under the
quotient map

YR (k) = ﬂma (k) X ﬂZi\M )(k) - uXiu)(k)
(see [Roul6l, Lemme 3.3(c)]) is contalned in Zp 5y 0 URY ) (K), as desired. O

To lighten the notation, we will write H/ZA = H/(H n Z',) for any subgroup H of &% (k).

Lemma 6.5. Let D, D’ be Kac-Moody root data with associated GCM A = (a;j)ijer and A’ =
(aj;)ijer, respectively. Let also k, k' be finite fields. If a: &5 (k)/Zp — &1 (K')/Zp is an iso-
morphism of topological groups, then k = k' and there exist an inner automorphism v of &5 (k")) Z},
and a bijection o: I — I' such that

ma-+ ! ma-+ / 7 - . P
(uAl{ (k)/Zp) = uA'|{c,( N a(m( V/Zp  for all distinct i,5 € 1.

Proof. By Lemma [6.4(1) and (2), there exists an inner automorphism y of &9'*(k’)/Z}, such
that ya maps LIZ”H( )/ Zh to Wit (K')/Z),. Then ya maps BRT(k)/Z) to BEAT(K')/Z5 by
Lemma 3). Hence Lemma (4) implies that ya maps maximal chains of standard parabolic
subgroups in &7 (k)/Z}, to maximal chains of standard parabolic subgroups in &7 (k')/Z,,. In
particular, |I| = |I’| and there exists a bijection o: I — I’ such that

Ya(B5* ({1})/Zp) = Bp({o(i)})/Zp for allie I.
Hence
ya(Bp ({i,51)/Zp) = B ({o (i), 0(j)})/Zp,  foralli,je I

It then follows from Lemma [6.4f5) that
Ya(URX T A, (i1 (B)/ZD) = URE A, (1o ()0 iy (K 2
and hence that
Y®RY (1.3 (K)/ZD) = UL (o0 (K)/ 2y foralld, je ]
because
WP =82 (k) W URA gy (K) forall J € 1,

and similarly for U5*. As YR j})( ) = ilm“” (k), it thus remains to prove that k = k'.

Since each panel of the building X, of &5 (k)/Z}, (respectively, X/, of &7 (k")/Z},) is of car-
dinality |k| + 1 (respectively, |k'| + 1)(see for instance [ABOS8, Chapter 7]), and since X, = X/

(as simplicial complexes) by the above discussion, we deduce that |k| = |k’| =: ¢, and hence that
k =T, ~ k'. This concludes the proof of the lemma. O

Remark 6.6. In the notation of Lemma if o lifts to an isomorphism a: &7 (k) — &7 (k)
and if &7"(k) is of rank 2 (that is, |I| = 2), then Lemma 1) and (2) implies that

ya(y T (k) = Wit (k)

for some inner automorphism ~ of &1 (k).
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Lemma 6.7. Let A = (ai;)ijer and B = (b;j)i jer be GCM indexed by I and let k be o finite field
with p = chark > Ma, Mp. Assume that the groups U3*" (k) and 5" (k) are isomorphic. Then the
following hold:

()th n dimg(A)q =tha) , dimg(B)qy for alln > 1.
()If—r—{ij},thenB (Qia”)mnB (2a_27‘1‘,)'

Qij

Proof. Let a: {}** (k) — UZ*F (k) be an isomorphism. Then o maps 4754 (k) to U4, (k) for each
n =1 by Proposition and hence induces isomorphisms of the quotients

Ao (R) /AU 0 (R) = U, (R) /g5, (R) - for alln > 1.

In turn, this yields 1som0rphlsms of the additive groups @y (a)—n nf(A)y = Dht(a)=n n/ (B)a by
[Roul6, Lemma 3.3(e)]. Hence (1) follows from the fact that if d,(A) = X, dimg(A)a, then
|k|?(4) is the cardinality of Dht(y=n M (Aa-

Assume now that I = {i,j}. For X € {4, B}, let i*(X) be the ideal of the free Lie algebra at(X)
generated by the Serre relations x:;(X) = ad(e;) t1¥ule; and x;(X) = ad(e;)!*Xsile;. For each

> 1, let also af (X) denote the subspace of elements of it (X) of total degree n, that is, the linear
span of all brackets of the form [e;,,...,e; ] (is € I). In particular, since it (X) is graded,

n(X)/it(X)=nl(X) foralln>1
as vector spaces, where if (X) :=i*(X) naf (X) and n} (X) := @py(a)=n " (X)a. The above discus-
sion now implies that
dimif (A4) = dima} (A) — dimn}!(A) = dimn} (B) — dimn! (B) = dimi} (B) for alln > 1.
If |a;j| = |aji| = m, then dimi} (A) = 0 for all n < m + 1, while dimi,_,(A) = 2. The corresponding
assertion for B then implies that |b;;| = |b;;| = m, proving (2) in this case.

Assume now that a;; # aj;, say m = |a;;| < |aj;| = m'. Then dimi}(A) =0 for all n < m +1,
while dim i}, ,(A) = 1. Again, the corresponding assertion for B implies that m = |b;;| < |b;;| or that
m = |bji| < |bij]. Say m = |b;;| < |bji| = m". For X € {A, B}, let i+(X) denote the ideal of at(X)
generated by xjj (X) = ad(e;)!™™e;. Assume for a contradiction that m’ # m”, say m’ < m” (the case
m’ > m” being similar). Then

dimiy, ,(A) = dim(i;(A) nay, 5(4) +1 = dim(ij;(B) n iy, o(B)) +1 =dimi, ,(B) +1,

yielding the desired contradiction. This concludes the proof of (2). g

Theorem 6.8. Let k, k' be finite fields, and let A = (ai;)i jer and B = (bij)i jes be GCM. Assume
that p = chark > Ma, Mp and that all rank 2 subgroups of &% (k) and &% (k') are GK-simple.

If a: &N (k)/Z!y — & (K')/Z}; is an isomorphism of topological groups, then k = k', and there
exist an inner automorphism ~y of & (k')/Z} and a bijection o: I — J such that

(1) ~ (ilffl‘?“ (k) = fgﬁj@) 0(2))(k') for all distinct i,5 € 1.

(2) Blio(iy,o() € {( api 2 ) (s 3 )} for all distinct i, j € I.

Proof. Since all rank 2 subgroups of &% (k) and &, (k") are GK-simple by assumption, (1) follows
from Lemma and (2) follows from Lemma O

Remark 6.9. In the notation of Theorem if o lifts to an isomorphism a: &5"(k) — &L (k')
and if &5""(k) is of rank 2, then the conclusion of Theorem holds without any GK-simplicity
assumption using Remark and Lemma

We conclude this section with two further observations on the isomorphism problem, using the
results from the previous sections.

Lemma 6.10. Let A = (ai;)ijer and B = (bij)ijer be GCM, and let k = Fy with chark = p. If
Ma < p and Mp > q, then " (k) and WZ*F (k) are not isomorphic.
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Proof. By Proposition the quotient of &'}** (k) by its commutator subgroup has cardinality g,
On the other hand, it follows from Proposition that the quotient of {}*" (k) by its commutator
subgroup has cardinality strictly larger than ¢!!. This proves the claim. O

Proposition 6.11. Let A = (a;;)i jer and B = (bi;)i jer be GCM with B < A, and let k be a finite
field with chark > Ma. If W3t (k) and W3** (k) are isomorphic, then B = A.

Proof. Since U3** (k) is a finitely generated residually finite prop-p group by [CRI4, §2.2], it is
Hopfian, in the sense that every surjective homomorphism from LLZWJF(I{) to itself is an isomorphism
(see Lemma below). Assume now for a contradiction that B # A. Then by Theorem there is
a surjective group homomorphism 7ap: U3t (k) — &5*" (k) with nontrivial kernel. Hence Uy** (k)
and 5" (k) cannot be isomorphic, for this would contradict the fact that $7*" (k) is Hopfian. O

The following lemma and its proof are a straightforward adaptation of [LS0I, Theorem 4.10].

Lemma 6.12. Let G be a finitely generated residually finite pro-p group. Then G is Hopfian, i.e.
every surjective homomorphism G — G is an isomorphism.

Proof. Let : G — G be a surjective homomorphism, and let K be the kernel of 8. Let n € N*. By
[DASMS99, Proposition 1.6 and Theorem 1.17], there are only finitely many subgroups of G of index
n, say My, ..., M,. Then the subgroups L; := 0=Y(M;) (i = 1,...,r) are pairwise distinct and of index
nin G. Thus {My,...,M,} = {L4,...,L,}. In particular,

K c hLi:hMi’
=1 =1

and since n was arbitrary, we deduce that K is contained in the intersection of all finite-index subgroups
of G. Since G is residually finite, this implies that K = {1}, as desired. d

Remark 6.13. Lemma [6.12]also holds when G is a finitely generated residually finite profinite group.
Indeed, the main result of [NSQOT] (which relies on the classification of finite simple groups) asserts that
finite-index subgroups of a finitely generated profinite group G are automatically open, and hence G
has only finitely many subgroups of index n for any given n € N* by [DdSMS99, Proposition 1.6]. The
proof of Lemma [6.12] thus also holds in that case.

7. ZASSENHAUS—JENNINGS—LAZARD SERIES

This section is devoted to the proof of Proposition The general reference for this section is
[DASMS99| Chapter 11].

Given a group G, as well as some positive natural number n, we write G" for the subgroup of G
generated by the elements of the form ¢g", g € G. We also let 7, (G) denote the lower central series of
G:

M(G) =G and 4,41(G) =[G,y (G)] foralln > 1.

[Here, we consider lower central series in the category of abstract groups; as noticed in Remark
when G is a finitely generated pro-p group, this coincides with the lower central series defined at the
beginning of §6]]

Let k = F, be a finite field of characteristic p, let A be a GCM, and set G := ${7** (k). Then G is
a prop-p group. Set I';, = v,(G), and let D,, = D,,(G) be the series of characteristic subgroups of G
defined by D7 := G and for n > 1,

D, = D;Z* . H [Diij]a
i+j=n
where n* := [n/p] is the least integer = such that pr > n. The series (Dy,)n31 is called the Zassenhaus—
Jennings—Lazard series of G. The subgroups D,, are also called the dimension subgroups of G.
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For each n > 1, the quotient L,, := D,,/D, 41 is an elementary abelian p-group. We view it as a
vector space over I, and write the group operation additively. Then

iy

n=1

is a graded Lie algebra over I, for the Lie bracket

(@, 7) := [2,y]Dis+j11 € Liyj,
where T = 2D; 1 € Ly and § = yDj1 € L; (see [DASMS99, p.280]). It is called the Zassenhaus—
Jennings—Lazard Lie algebra of G. Note that the p-operation

[p]: L, — Lm T =Dy — f[p] = mpri-&-l
extends to a p-operation on L, turning L into a restricted Lie algebra ([DASMS99, Theorem 12.8]).
Lemma 7.1. {7 (k)P < U0 (k) for alln > 1.

Proof. We realise as usual 47" (k) inside Z/l+ For each m > 1, we set

Uz, = ] Wfek)cif.

ht{a)=m
Let g € 47%(k). Then g = 1 + x for some z € &;’n, and hence
=04z =1+2P€l +Z/A{;Lp.
In particular, g” € U7 (k), as desired. O
Lemma 7.2. T, < D, < U"%(k) for alln > 1.
Proof. The first inclusion follows by induction on n, since I'y = G = D; and since if I';, € D,,, then
[y =[G, Tn] € [D1,Dn] € Dyy1.

Since [ (k), U7 (k)] < W% (k) for all 4,5 > 1 by [Roul6, Lemme 3.3], the second inclusion

follows from Lemma and the fact that (D,,),>1 is the fastest descending series with D; = G such
that Df < Dpi and [D,“D]] < Di+j for all Z,j > 1. O

Corollary 7.3. Assume that p > M. Then T, = D,, = "*(k) for alln > 1.

Proof. The equality I',, = 7*(k) follows from Remark and Proposition The lemma then
follows from Lemma m O

For each n > 1, set (n}),, (‘Bht(a):n (1 ). Then L, (W3 (k)) := dUme(k)/Ume (k) is isomorphic
to the additive group of (nj )n by [Roul6l Lemme 3.3(e)]. We view it as an Fj-vector space and write
the group operation additively. Set

o o]
L(u’g?,a-‘r @ lea-'r ’
which we endow with the graded Lie algebra structure given by the Lie bracket
(Ea y) = [SL’, y] ;rjraj+1(k)
for T = zU"% (k) € L; (07" (k) and g =y 7 (k) € Ly (et (k)).

Lemma 7.4. Let k be a finite field of characteristic p. The map n} — LW} (k)) mapping a
homogeneous element x € n;” with ht(deg(z)) = n to ([exp]z)U" (k) defines an isomorphism of Lie
algebras over .
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Proof. This readily follows from the fact that if 2,y € n; are homogeneous with ht(deg(z)) = i and
ht(deg(y)) = j, then

[[explz, [exply] = [exp][z,y] mod &7}% ., (k).

U
oroliar D ssume atp > A- en = ~n; as Lie algebras over .
Corollary 7.5. A that p > Ma. Then L = L7 (k) = n} as Lie algeb F,
Proof. This readily follows from Corollary [7.3 and Lemma [7.4] O
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