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Abstract. We establish a fixed point property for a certain class of locally
compact groups, including almost connected Lie groups and compact groups of
finite abelian width, which act by simplicial isometries on finite rank buildings
with measurable stabilisers of points. As an application, we deduce amongst
other things that all topological one-parameter subgroups of a real or complex
Kac–Moody group are obtained by exponentiating ad-locally finite elements of
the corresponding Lie algebra.

1. Introduction

Recall that a group H is said to satisfy property (FA) if every action, without
inversion, of H on a simplicial tree has a fixed point. In this paper, we investigate
some “higher rank” analog of this property, which we define in the class of locally
compact groups. More precisely, we say that a locally compact group G has
property (FB) if it satisfies the following property:

(FB) Every measurable action of G on a finite rank building stabilises a spherical
residue.

Here, we mean by an action of G on a building ∆ a type-preserving simplicial
isometric action on ∆. We call such an action measurable if the stabilisers in G
of the spherical residues of ∆ are Haar measurable. Note that continuous actions
are examples of measurable actions. In particular every action of a discrete group
is measurable. Thus in the special case of discrete groups, property (FB) is a
direct analog of property (FA), where trees are replaced by arbitrary finite rank
buildings.

In this paper, however, we will focus on a class of non-discrete groups. More
precisely, we prove the following theorem.
Theorem A. Let G be an almost connected locally compact group. If G has finite
abelian width, then it has property (FB).

Recall that a topological group G is almost connected if its group of compo-
nents G/G0 is compact. Also, a group G is said to have finite abelian width if
there exist finitely many abelian subgroups A1, . . . , AN of G such that

G = {a1 . . . aN | ai ∈ Ai}.
Since almost connected Lie groups have finite abelian width (see Remark 2.10

below), this implies in particular the following.
Corollary B. Every almost connected Lie group has property (FB).

In another direction, compact groups of finite abelian width (and conjecturally
all compact groups) also have property (FB).
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Corollary C. Every compact group of finite abelian width has property (FB).
In particular, compact p-adic analytic groups and profinite groups of polynomial
subgroup growth have property (FB).

The proofs of Corollaries B and C will be given at the end of Section 2.
Note that the “finite abelian width” hypothesis is not necessary in case the

building is a tree.
Theorem D. Let G be an almost connected locally compact group. Suppose that
G acts measurably by type-preserving simplicial isometries on a tree. Then G has
a global fixed point.

In fact, we conjecture that this hypothesis is also unnecessary in general.
Conjecture 1. Every almost connected locally compact group has property (FB).

More generally, we make the following conjecture, which would imply Conjec-
ture 1 (see section 3). Recall that an action of a group G on a metric space X is
locally elliptic if each g ∈ G has a fixed point.
Conjecture 2. Let G be a group acting by type-preserving simplicial isometries
on a building ∆. If the G-action on the Davis realization X of ∆ is locally elliptic,
then G has a global fixed point in X ∪ ∂X, where ∂X denotes the visual boundary
of X.

Note that this conjecture is equivalent to asserting that, under the same hy-
potheses, G fixes a point in the so-called combinatorial bordification of ∆, as
we will see in Section 3.

Before we state the corollaries to Theorem A concerning Kac–Moody theory,
we make some remarks about property (FB) itself.
Remark 1. The restriction to measurable actions in the statement of property
(FB) is essential, since even the most basic examples of locally compact groups
admit non-measurable actions on trees without fixed point. Indeed, if a group G is
the countable union of a strictly increasing sequence of subgroups, then by [Ser77,
6.1 Theorem 15] it possesses an action without fixed point on a tree (and the
stabilisers of points for this action are precisely the conjugates of the subgroups
in the given sequence). Note that we can assume this tree to be a building, since
we can glue rays at each endpoint of the tree without affecting the G-action.

We now construct such a sequence of proper subgroups forG in caseG = (R,+).
Let B be a basis of R over Q and let {xi | i ∈ N} ⊂ B be a countable family
of (pairwise distinct) basis elements. For each n ∈ N, let Vn denote the Q-sub-
vector space of R with basis B \ {xi | i ≥ n}. Then the additive groups of the Vn
yield the desired chain. Note that the existence of such a chain is equivalent to
the existence of a non-Lebesgue measurable subset of R (see Remark 2.4 below),
hence to the axiom of choice.

Remark also that for a nonzero x in V0, we may project this chain into R/xZ,
yielding an example of a compact group acting without fixed point on a tree.
Remark 2. In the context of almost connected locally compact groups, the notion
of Haar measurability generalises both Borel and universal measurability. Indeed,
since such a group G is compactly generated, it is in particular σ-compact. Hence
its Haar measure µ is σ-finite. Thus one can construct from µ a complete prob-
ability measure on G whose measurable sets coincide with the Haar measurable
sets. For this reason, we will only speak in this paper about Haar measurability.
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Remark 3. We finally remark that Conjecture 1 is not true in general for locally
compact groups that are not almost connected. Indeed, note first that any group
G equipped with the discrete topology is locally compact. Moreover, any action
of such a G on a building is automatically measurable. In particular if G does
not have property (FA), then it does not have property (FB) either. Therefore, as
far as property (FB) is concerned, one cannot hope to get any general statement
about locally compact groups without some non-discreteness assumption.

Note also that if a locally compact groupG is equipped with a non-spherical BN-
pair (B,N) such that B is open, then it acts measurably and strongly transitively
on the associated non-spherical building, and hence does not satisfy property
(FB). In particular, complete non-compact Kac–Moody groups over finite fields
give another class of (totally disconnected non-compact) locally compact groups
not satisfying property (FB). Indeed, we recall that such Kac–Moody groups are
equipped with the compact open topology with respect to their action on the
positive associated building. Hence stabilisers of chambers are open since the
action is simplicial. For basics on Kac–Moody groups and their completions, we
refer to [CR09] and [Rém02].

We now turn to the corollaries of Theorem A concerning Kac–Moody groups
over fields, as defined by Tits ([Tit87]). The key result, which readily follows from
Corollary B, gives a partial answer to a problem stated in [Cap09, page xi].

Theorem E. Any measurable homomorphism of an almost connected Lie group
into a Kac–Moody group has bounded image.

Here, we equip a Kac–Moody group with the σ-algebra generated by the finite
type parabolic subgroups of each sign; measurability in Lie groups (and more
generally, in locally compact groups) will always be understood as Haar measur-
ability. We recall that a subgroup of a Kac–Moody group is bounded if it is
contained in the intersection of two finite type parabolic subgroups of opposite
signs.

Let now k be either R or C. In the following statements, we consider adjoint
Kac-Moody groups G = G(k) over k, that is, images under the adjoint representa-
tion of Kac–Moody groups over k. In addition, we assume that they are generated
by their root subgroups.

Recall that such a G is naturally endowed with a topology, the so-called Kac–
Peterson topology, which turns it into a connected Hausdorff topological group
([PK83], [HKM12, Proposition 5.15]). A one-parameter subgroup of G is then
a continuous homomorphism from R to G. The set of all one-parameter subgroups
of G is denoted by Homc(R, G). As is well known, in case G is a Lie group, this
set can be given a Lie algebra structure so that it identifies with the Lie algebra
of G (see e.g. [HM07, Proposition 2.10]). In fact, by the solution to Hilbert’s fifth
problem (see [MZ55]), this construction extends to connected locally compact
groups as well. The following result opens the way for analogs to these classical
results within Kac–Moody theory.

Corollary F. Every one-parameter subgroup α of a real or complex Kac–Moody
group G is of the form α(t) = exp ad(tx) for some ad-locally finite x ∈ Lie(G).

We explain and prove this statement in section 4.



4 TIMOTHÉE MARQUIS

Since maximal bounded subgroups can be given a Lie group structure (see
Lemma 4.3 below), the automatic continuity of measurable homomorphisms be-
tween Lie groups (see e.g. [Kle89, Theorem 1]) extends as follows:

Corollary G. Every measurable homomorphism between real or complex Kac–
Moody groups is continuous.

Here by a measurable homomorphism between two real or complex Kac–
Moody groups, we mean a homomorphism φ : G1 → G2 between these groups
such that the preimage of an open set of G2 by the restriction of φ to any Lie
subgroup of G1 (that is, any closed subgroup of G1 with a Lie group structure) is
Haar measurable. Note that Borel homomorphisms are examples of measurable
homomorphisms in this sense.

Finally, as a last consequence of Theorem E, we get the following classification
of measurable isomorphisms between real or complex Kac–Moody groups.

Corollary H. Let α be a measurable isomorphism between real or complex Kac–
Moody groups. Then α is continuous and standard, that is, it induces an isomor-
phism of the corresponding twin root data.

Without using the assumption of measurability, this has been proved by Caprace
([Cap09]). For almost split Kac–Moody groups of 2-spherical type, the corre-
sponding result has been obtained by G. Hainke ([Hai12]). Note however that our
proof relying on Theorem A is substantially shorter.

We also refer to the end of Section 4 for detailed proofs of these corollaries.

Conventions. Throughout this paper, all buildings are assumed to have finite
rank. Unless otherwise stated, we see buildings as simplicial complexes.

Acknowledgments. I am very grateful to Pierre-Emmanuel Caprace for propos-
ing this problem to me in the first place, as well as for various helpful comments
and suggestions. I would also like to thank Tobias Hartnick and Ralf Köhl, as
well as the anonymous referee for their useful comments.

2. Property (FB)

In this section, we establish the core of the argument for the proof of Theorem A
(see Theorem 2.6 below). We then deduce Corollary B and C.

Davis realization of a building. Recall from [Dav98] that any building ∆
admits a metric realization, here denoted byX := |∆|, which is a complete CAT(0)
cell complex. Moreover any group of type-preserving automorphisms of ∆ acts in
a canonical way by cellular isometries on X. Finally, the cell supporting any point
of X determines a unique spherical residue of ∆. In particular, an automorphism
of ∆ which fixes a point in X must stabilise the corresponding spherical residue
in ∆.

The Bruhat–Tits fixed point theorem. Let G be a group acting by isometries
on a complete CAT(0) space X. Then G has a fixed point in X if and only if
its orbits in X are bounded. Indeed, if G fixes a point then it stabilises the
spheres centered at that point. The converse follows from the Bruhat–Tits fixed
point theorem (see for example [AB08, Theorem 11.23]). We now state an easy
application of this fact.
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We say that G is a bounded product of finitely many subgroups U1, . . . , Un,
or that it is boundedly generated by these subgroups, which we write G =
U1 . . . Un, if each element g ∈ G can be written as g = u1 . . . un for some elements
ui ∈ Ui, 1 ≤ i ≤ n. If G is boundedly generated by abelian subgroups, we say
that it has finite abelian width.

Lemma 2.1. The group G fixes a point in X as soon as one of the following
holds:

(1) G is a bounded product of subgroups each fixing a point in X.
(2) There exists a finite-index subgroup of G fixing a point in X.

Proof. Suppose G = U1 . . . Un for some subgroups Ui ≤ G with bounded orbits
in X. Then each Ui maps a bounded set onto a bounded set. A straightforward
induction now proves the first case. To prove the second case, let H < G be a
finite index subgroup of G with bounded orbits in X. Write G = ∐n

i=1 giH for
some gi ∈ G. Then each x ∈ X is mapped by G onto the finite union ⋃n

i=1 gi(Hx)
of bounded subsets, which is again bounded. �

Actions on CAT(0) spaces. Let G be a group acting by isometries on a CAT(0)
space X. For every g ∈ G, we let

|g| := inf{d(x, g · x) | x ∈ X} ∈ [0,∞)
denote its translation length and we set

Min(g) := {x ∈ X | d(x, g · x) = |g|}.
An element g ∈ G is said to be elliptic if it fixes some point. For a subgroup
H ≤ G, we also write

Min(H) :=
⋂
h∈H

Min(h)

and we say that the H-action on X is locally elliptic if each h ∈ H is elliptic.
For the convenience of the reader, we record the following result from [CL10,

Theorem 1.1], which we will use in the course of the proof of Theorem A.

Lemma 2.2. Let X be a complete CAT(0) space of finite geometric dimension
and {Xα}α∈A be a filtering family of closed convex non-empty subspaces. Then
either the intersection ⋂

α∈AXα is non-empty, or the intersection of the visual
boundaries ⋂

α∈A ∂Xα is a non-empty subset of ∂X of intrinsic radius at most
π/2.

Recall that a family of subsets F of a given set is called filtering if for all E,F ∈
F there exists D ∈ F such that D ⊆ E∩F . We point out that Davis realizations of
buildings of finite rank (and closed convex subcomplexes) are examples of complete
CAT(0) spaces of finite geometric dimension (see [Kle99]), since these are finite
dimensional CAT(0) cell complexes.

Combinatorial bordification of a building. We now recall some terminology
introduced in [CL11]. Let ∆ be a building with Davis realization X, and let
G = Aut0(∆) be its group of type-preserving simplicial isometries. Let Ressph(∆)
denote the set of spherical residues of ∆. Note that, identifying a point of X with
its support, the G-actions on X and Ressph(∆) coincide.

The set Ressph(∆) can be turned into a metric space using the so-called root-
distance ([CL11, 1.2]), whose restriction on the set of chambers coincide with
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the gallery distance. By looking at the projections of any given spherical residue
R onto all σ ∈ Ressph(∆), one gets a map

πRes : Ressph(∆)→
∏

σ∈Ressph(∆)
St(σ) : R 7→ (σ 7→ projσ(R)),

where St(σ) denotes the star of σ, that is, the set of all residues containing σ
in their boundaries. Endow the above product with the product topology, where
each star is a discrete set of residues. The combinatorial bordification of ∆,
denoted Csph(∆), is then defined as the closure of the image of πRes:

Csph(∆) = πRes(Ressph(∆))

(see [CL11, Section 2.1]). In the sequel, we will also write Ressph(X) for Ressph(∆)
and Csph(X) for Csph(∆).

For any spherical residue x ∈ Ressph(∆) and any sequence (Rn)n∈N of spheri-
cal residues converging to some ξ ∈ Csph(∆), define the combinatorial sector
Q(x, ξ) pointing towards ξ and based at x as

Q(x, ξ) :=
⋃
k≥0

⋂
n≥k

Conv(x,Rn),

where Conv(x,Rn) denotes the convex hull in Ressph(∆) of the pair of residues
{x,Rn}. This definition turns out to be indeed independent of the sequence (Rn)
converging to ξ. Moreover, each such sector is contained in some apartment of ∆
(see [CL11, Section 2.3]).

Finally, we recall from [CL11, Section 5.1] that one can associate to every
point ξ in the visual boundary ∂X of X a transversal building ∆ξ of dimension
strictly smaller than dimX, on which the stabiliser Gξ of ξ acts by type-preserving
simplicial isometries.

Almost connected locally compact groups. Before we can proceed with the
proof of the results announced in the introduction, we need one more technical
result.

Lemma 2.3. Let G be an almost connected locally compact group. Then every
measurable subgroup H of G of positive measure has finite index in G.

Proof. Since G is compactly generated, it is in particular σ-compact. So there
exists a compact subset K ⊆ G such that H ∩ K has positive (finite) measure.
Then by [HR79, Corollary 20.17], there is an open neighbourhood U of the identity
such that U ⊆ (H ∩K)(H ∩K)−1 ⊆ H, so that H is open. Hence H contains the
connected component G0 of G. Since moreover G/G0 is compact and the natural
projection π : G → G/G0 is open, π(H) has finite index in G/G0, whence the
lemma. �

Remark 2.4. Note that Lemma 2.3 ensures that, given an almost connected
locally compact group G, the G-actions on trees without fixed point constructed
by Serre as in the introduction (see Remark 1) are not measurable. Indeed, if G
is the countable union of a strictly increasing sequence of subgroups, then one of
them must be non-measurable. For otherwise one of them would have positive
measure by σ-additivity, and hence would have finite index in G by Lemma 2.3,
a contradiction.



A FIXED POINT THEOREM FOR LIE GROUPS ACTING ON BUILDINGS 7

We also record for future reference the following structure result for connected
locally compact groups, which follows from the solution to Hilbert’s fifth problem
(see [MZ55, Theorem 4.6]).

Lemma 2.5. Let G be a connected locally compact group. Then there is a compact
normal subgroup N of G such that G/N is a connected Lie group.

The key result needed for the proof of Theorem A is now the following.

Theorem 2.6. Let G be either a compact abelian group or the group (R,+). Then
G has property (FB).

Proof. Let ∆ be a finite rank building on which G acts measurably. We prove
that G stabilises some spherical residue of ∆ by induction on the dimension of
∆. If ∆ has zero dimension, then it is spherical and there is nothing to prove.
Assume now that ∆ has positive dimension. Let X denote its Davis realization.
We first need to know that each element of G fixes some point of X.
Claim 1: The action of G on X is locally elliptic.
This follows from [CM11, Theorem 2.5] in case G is compact, and from [CM11,
Proof of Theorem 2.5, Claim 7] in case G = R since R is divisible abelian.
For a subset F ⊂ G, let XF denote the set of F -fixed points in X. Note that each
XF = ⋂

g∈F Min(g) is a closed convex subset of X.
Claim 2: For each finite subset F ⊂ G, the set XF is non-empty.
Indeed, by Claim 1, each set X{g} for some g ∈ G is non-empty. Let F ⊂ G be
finite and suppose that XF is non-empty. Let g ∈ G and x ∈ Min(g). Since G
is abelian, g stabilises XF and therefore fixes the projection of x on XF , so that
XF∪{g} is still non-empty (see for example [CM11, Proof of Theorem 2.5, Claim
4]). The claim then follows by a straightforward induction.
Since the subsets XF of X for finite F ⊂ G form a filtering family of non-empty
closed convex subsets of X by Claim 2, it follows from Lemma 2.2 that either⋂
XF is non-empty, where the intersection runs over all finite F ⊂ G, in which

case the induction step stands proven, or the corresponding intersection of the
visual boundaries ⋂

∂XF is a non-empty subset of ∂X. We may thus assume that
the group G fixes some ξ ∈ ∂X. We now prove that G already fixes a point in X.
Let Xξ denote the transversal building to X associated to ξ. Thus, G acts on Xξ.
Claim 3: Let H be a subgroup of G. Suppose H fixes some point ζ ∈ Csph(X). Let
x ∈ Ressph(X). Then every element of H fixes pointwise a subsector of Q(x, ζ).
Indeed, let h ∈ H. Then Claim 1 yields a spherical residue xh ∈ Ressph(X) which is
fixed by h. It follows from [CL11, Lemma 4.4] that h fixes the combinatorial sector
Q(xh, ζ) pointwise. Since by [CL11, Proposition 2.30] there is some zh ∈ Ressph(X)
such that Q(zh, ζ) ⊂ Q(x, ζ) ∩Q(xh, ζ), the conclusion follows.
Claim 4: The action of G on Xξ is measurable.
Indeed, we have to check that the stabiliser H in G of a spherical residue of
Xξ is measurable. Since Ressph(Xξ) ⊆ Csph(Xξ) can be identified with a subset
of Csph(X) by [CL11, Theorem 5.5], we may assume that H is the stabiliser in
G of a point ζ ∈ Csph(X). Let x ∈ Ressph(X), and for each spherical residue
y ∈ Q(x, ζ), let Hy denote the pointwise fixator in G of the combinatorial sector
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Q(y, ζ). Note that in fact Hy ≤ H for all y. It follows from Claim 3 that H is the
union of all such Hy. Since Q(x, ζ) lies in some apartment and since apartments
possess only countably many spherical residues, this union is countable. Thus,
it is sufficient to check that the pointwise fixator in G of a combinatorial sector
Q(y, ζ) is measurable. Since this fixator is the (again countable) intersection of
the stabilisers of the spherical residues in Q(y, ζ), the claim follows since such
stabilisers are measurable by hypothesis.
It follows from Claim 4 and the induction hypothesis that G stabilises some spher-
ical residue ζ ∈ Ressph(Xξ) ⊆ Csph(Xξ). Again, we may identify Csph(Xξ) with a
subset of Csph(X), so that G stabilises some point in Csph(X), again denoted by ζ.
Then as before, Claim 3 implies that G is covered by countably many stabilisers
of points of X. Since these are measurable, one of them, say Gx for some x ∈ X,
must have positive measure by σ-additivity. Then Gx has finite index in G by
Lemma 2.3. We can now complete the induction step using Lemma 2.1. �

Corollary 2.7. Let G be an almost connected locally compact group acting mea-
surably on a finite rank building ∆ with Davis realization X. Assume that G fixes
a point in the combinatorial bordification of ∆. Then H already fixes a point in
X.
Proof. This is what we have just established using Lemma 2.3 to conclude the
proof of Theorem 2.6. �

The following result is probably well known; since we could not find it explicitly
stated in the published literature, we include it here with a complete proof.
Theorem 2.8. Let G be a connected Lie group. Then G is a bounded product of
one-parameter subgroups.
Proof. Note first that G decomposes as a product of a maximal connected com-
pact subgroup and of finitely many one-parameter subgroups (see for example
[Bor95]). We may thus assume that G is compact connected. Let x1, . . . , xn be
a basis of the Lie algebra Lie(G), and for each i ∈ {1, . . . , n}, let Ui = exp(Rxi)
be the closure in G of the one-parameter subgroup associated to xi. Since G is
compact, each Ui is compact and hence so is the bounded product A = U1 . . . Un.
In particular, A is closed. Since G is connected, it is generated by A, so that
G = ⋃

n≥1A
n. Now, by Baire’s theorem, there exists an n ∈ N such that An

has non-empty interior, and so A2n contains an open neighbourhood U of the
identity in G. Since G is compact, there is a finite subset F ⊂ G such that
G = FU . Then F ⊂ Ak for some k ∈ N and so G = A2n+k. Finally, note that
each Ui is a connected compact abelian Lie group, hence a torus (see for example
[HM98, Proposition 2.42 (ii)]). Since clearly each torus is a bounded product of
one-parameter subgroups, the conclusion follows. �

Remark 2.9. Note that the argument above in fact yields the following: A com-
pact group that is generated by finitely many abelian subgroups has finite abelian
width.
Remark 2.10. It follows from Theorem 2.8 that any almost connected Lie group
G has finite abelian width. Indeed, since the connected component of the identity
of a Lie group is open, G is virtually connected. The claim then follows since G0

has finite abelian width by Theorem 2.8.
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Proof of Corollary B. Let G be an almost connected Lie group. Then G
is virtually connected since G0 is open. By Lemma 2.1 we may thus assume
that G is connected. Then by Theorem 2.8, it is a bounded product of one-
parameter subgroups. The conclusion then follows from Theorem 2.6, together
with Lemma 2.1. �

Proof of Corollary C. The first statement is an immediate consequence of
Theorem 2.6 together with Lemma 2.1. Then, since compact p-adic analytic
groups are finitely generated by [DdSMS99, Corollary 8.34], they have property
(FB) by Remark 2.9. Finally, profinite groups of polynomial subgroup growth
also have finite abelian width by the main result of [Pyb02]. �

3. Some remarks and the proof of Theorem A concluded

In this section, we explain why Conjecture 2 implies Conjecture 1. Since Con-
jecture 2 is known in case the building is a tree by a result of Tits, this will imply
Theorem D. The same argument yields the proof of Theorem A, except that in
this case Conjecture 2 is not available and we use the assumption of finite abelian
width instead.

Remark 3.1. Let G be either a compact group of finite abelian width or an
almost connected Lie group. Then in fact G satisfies a slightly stronger property
than property (FB), which is the following property (FB+):
(FB+) For each finite rank building ∆ with Davis realization X, for each subgroup

Q ≤ Aut0(X) having a global fixed point in X, any measurable action of
G on the CAT(0) subcomplex Min(Q) ≤ X by type-preserving cellular
isometries has a global fixed point.

Note that in case Q is trivial this is just property (FB). To see that G indeed
satisfies this property (FB+) when G is either compact abelian or the group
(R,+), remark first that Claim 1 and Claim 2 from the proof of Theorem 2.6
remain valid in this context, as well as Lemma 2.2. Moreover, setting Y :=
Min(Q) ⊆ X, we can identify the visual boundary ∂Y with a subset of ∂X. Then
Lemma 2.2 either yields the desired conclusion or yields a fixed point ξ ∈ ∂Y ⊆ ∂X
for the G-action. Then G acts on the closed convex subset Y1 := Min(Q) ⊆ Xξ

of the transversal building Xξ for the induced action of Q on Xξ. Moreover,
by [CL11, Lemma 4.4], each combinatorial sector Q(x, ζ) for some x ∈ Y and
some ζ ∈ Y1 ⊂ Csph(X) is entirely contained in Y . Then the proofs of Claim 3
and Claim 4 go through without any change and we may apply the induction
hypothesis to find a global fixed point for G on Y .

Finally, the case where G is a compact group of finite abelian width or an almost
connected Lie group follows from Lemma 2.1.

We summarize this in the following lemma.

Lemma 3.2. Compact groups of finite abelian width and almost connected Lie
groups have property (FB+).

The interest of this slightly more general fixed point property is that it allows
to construct new examples of groups with property (FB) starting from known
examples.
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Lemma 3.3. Let G be a locally compact group and let N / G be a closed normal
subgroup of G such that G/N has property (FB+). If N has property (FB), then
so has G.

Proof. Suppose G acts measurably on a building ∆ with Davis realization X.
By hypothesis, Y := Min(N) ⊆ X is non-empty and stabilised by G. Moreover,
the G-action on Y coincides with the induced G/N -action on Y , which is still
measurable. Thus G/N fixes a point in Y by hypothesis. The conclusion follows.

�

Proof that Conjecture 2 implies Conjecture 1. Let G be an almost con-
nected locally compact group acting measurably by type-preserving simplicial
isometries on a building ∆ with Davis realization X. Assume that Conjecture 2
holds. We have to prove that G fixes a point in X.

Claim 1: Let H be a group acting locally elliptically on X. Then H fixes a point
in the combinatorial bordification of X.

This follows from a straightforward induction on dimX using Conjecture 2 and
[CL11, Theorem 5.5].

Claim 2: Let H be an almost connected locally compact group acting measurably
and locally elliptically on X. Then H already fixes a point in X.

Since H fixes a point in the combinatorial bordification of X by Claim 1, the
claim follows from Corollary 2.7.

Let N be a compact normal subgroup of the connected component G0 of G
such that G0/N is a connected Lie group (see Lemma 2.5).

By [CM11, Theorem 2.5], we know that N acts locally elliptically on X, and
hence fixes a point in X by Claim 2. Consider now the induced action of the
connected Lie group G0/N on the fixed point set Min(N) of N in X. Since G0/N
has property (FB+) by Lemma 3.2, it fixes a point in Min(N). This shows that
G0 fixes a point of X.

In turn, one can consider the action of the compact group G/G0 on Min(G0) ⊆
X. This is a locally elliptic action by [CM11, Theorem 2.5], and hence the G-
action on X is locally elliptic. Thus Claim 2 yields the desired fixed point for the
G-action on X. �

Remark 3.4. Note that if, given a specific building ∆, we want to show that any
almost connected locally compact group G acting measurably by type-preserving
simplicial isometries on ∆ has a global fixed point, it is sufficient to check that
Conjecture 2 holds for group actions on ∆, as well as on the “iterated transversal
buildings” of ∆ (see the proof of Claim 1 above). Here, we mean by “iterated
transversal buildings” of ∆ either the transversal buildings to ∆, or the transversal
buildings to these transversal buildings, and so on.

In particular, if Conjecture 2 holds for group actions on trees, then so does
Theorem D. More generally, remark that if ∆ is of type (W,S), then the type
of an “iterated transversal building” of ∆ is a subgroup of W . So, for example,
if Conjecture 2 holds for group actions on Euclidean (respectively, right-angled)
buildings, then Conjecture 1 also holds for the same class of buildings.
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Proof of Theorem D. As mentioned in Remark 3.4 above, this follows from the
fact that Conjecture 2 is true when the building is a tree (see for example [Ser77,
6.5 Exercise 2]). �

Proof of Theorem A. Let G be an almost connected locally compact group
of finite abelian width. Thus G is a bounded product of abelian subgroups,
which we may assume to be closed, hence also locally compact. Therefore, by
Lemma 2.1 (1), it is sufficient to prove the theorem when G is abelian, which we
assume henceforth.

Let G0 denote the connected component of G. By Lemma 2.5 we know that
there exists some compact normal subgroup N of G0 such that G0/N is a con-
nected Lie group. Since by assumption G0 is abelian, we know by Lemma 3.2
that N and G0/N satisfy property (FB+), and hence that G0 has property (FB)
by Lemma 3.3. Finally, since G/G0 is compact abelian, the same argument yields
that G has property (FB), as desired. �

Remark 3.5. Note that, by the same argument as above, Conjecture 1 now
reduces to proving that compact groups have property (FB+). Since every com-
pact group is a product of its identity component with a totally disconnected
closed subgroup ([HM98, Thm.9.41]), Lemma 2.1 in turn reduces the problem to
compact connected and profinite groups. We now mention some consequences of
Lemma 3.2 in each of these two cases.

If G is compact connected, then there exists a family {Sj | j ∈ J} of simple
simply connected compact Lie groups such that G is a quotient of the product∏
j∈J Sj × Z0(G) by a closed central subgroup, where Z0(G) denotes the identity

component of the center of G (see [HM98, Theorem 9.24]). Thus, in that case,
Lemma 2.1 reduces the problem to compact connected groups of the form ∏

j∈J Sj.
Note that the simple simply connected compact Lie groups are classified and be-
long to countably many isomorphism classes. Index these classes by N. Then one
can write G as a countable product G = ∏

i∈N Ti, where Ti is the product of all Sj
belonging to the i-th isomorphism class. Moreover, each Ti has property (FB+).
Indeed, let S be a representative for the i-th class, so that Ti is isomorphic to a
product ∏

j∈I S of copies of S. By Theorem 2.8, the group S is boundedly gener-
ated by compact abelian subgroups A1, . . . , An. Hence Ti is boundedly generated
by the compact abelian subgroups ∏

j∈I A1, . . . ,
∏
j∈I An, whence the claim. Thus,

if only finitely many isomorphism classes appear in the product decomposition of
G, then G has property (FB+).

If G is a profinite group, then G is a closed subgroup of a product ∏
j∈J Sj

of finite groups. Suppose that G = ∏
j∈J Sj. Then, as in the case of compact

connected groups, we may express G as a countable product G = ∏
i∈N Ti, where

Ti is this time the product of all Sj of order i. Again, the same argument shows
that each Ti has property (FB+), since clearly a group of order i is boundedly
generated by i abelian subgroups. Finally, as noted in Corollary C, profinite
groups of polynomial subgroup growth also have finite abelian width and thus
property (FB+).

4. One-parameter subgroups of real Kac–Moody groups

In this section, we prove Theorem E and Corollaries F, G and H from the
introduction.
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Proof of Theorem E. Since a measurable homomorphism from an almost con-
nected Lie group H into a Kac–Moody group G yields measurable actions of H
on the associated positive and negative buildings of G, the result readily follows
from Corollary B. �

Let now k be either R or C, and let G = G(k) be a real or complex adjoint
Kac–Moody group of finite rank (see [Tit87]). The group G comes equipped with
a root group datum {Uα | α ∈ Φre} indexed by the real roots of G, and we assume
that these root groups generate G. Write I = {1, . . . , rk(G)}. Then, choosing a
root basis {αi | i ∈ I}, each subgroup of G of the form Xi := 〈U−αi

, Uαi
〉 is a copy

of SL(2, k), which we endow with its natural topology. We next endow G with
the so-called Kac–Peterson topology ([PK83]), which is the finest topology such
that for all n ∈ N and all i1, . . . , in ∈ I, the multiplication map

Xi1 × · · · ×Xin → G : (x1, . . . , xn) 7→ x1 . . . xn

is continuous, where each product Xi1 × · · · × Xin has the product topology.
This turns G into a connected Hausdorff topological group ([KP83, 4G, p.163],
[HKM12, Proposition 5.15, Remark 5.16]). Moreover, each Xi is closed in G, and
the induced topology from G coincides with the natural topology of SL(2, k). Note
however that G is not locally compact.

Lemma 4.1. The finite type parabolic subgroups of G of each sign are closed in
G. In particular, the σ-algebra on G generated by these parabolics is contained in
the Borel algebra of G.

Proof. Following [Rém02, 6.2.2], a finite type parabolic subgroup P of G has
a Levi decomposition P = L n U , with L the Levi factor and U the unipotent
radical of P . Note that L is closed in G since it is locally compact by [HKM12,
Remark 5.13]. Moreover, by a straightforward adaptation of the proof of [HKM12,
Proposition 5.11], the subgroup U is closed as well. Since P is the topological
product of L and U , the claim follows.

We remark that in the 2-spherical situation this is in fact an immediate conse-
quence of [HKM12, Theorem 1 and Proposition 3.20]. �

Remember that Corollary F is well-known for finite-dimensional Lie groups (see
e.g. [HM07, Proposition 2.10]).

Lemma 4.2. Let H be a Lie group. Then every α ∈ Homc(R, H) is of the form
α(t) = exp ad(tx) for some x ∈ Lie(H).

Denote by X = (X+, X−) the twin building associated to G.

Lemma 4.3. Let x+ and x− be spherical residues in X+ and X−, respectively.
Then the stabiliser Gx+,x− in G of these two residues is closed in G. Moreover, with
the induced topology, it has the structure of a finite-dimensional almost connected
Lie group H ∼= Gx+,x−, and every vector x ∈ Lie(H) can be identified with an
ad-locally finite vector of Lie(G).

Proof. It follows from [CM06, Proposition 3.6] that Gx+,x− possesses a Levi de-
composition Gx+,x− = L n U with Levi factor L and with unipotent radical U
associated to parallel residues in X+ and X− (see [CM06, 3.2.1]). We show that
L and U are both almost connected Lie groups, whence the structure of almost
connected Lie group on Gx+,x− .
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By [CM06, Lemma 3.3] together with [CM06, Corollary 3.5], the subgroup U
is also the unipotent radical associated to a pair of chambers in X+ and X−.
It follows by [CM06, Lemma 3.2] that U is a bounded product of finitely many
root groups, which carry the Lie group topology by [HKM12, Corollary 5.12]. In
particular, U is connected. Moreover, the Lie algebra of U is the direct sum of the
finitely many Lie algebras of the root groups which boundedly generate U , and is
therefore finite-dimensional. Hence U is a Lie group, as desired.

The Levi factor L is a Lie group because of [HKM12, Corollary 5.12 and Remark
5.13]. It is almost connected, since it decomposes as a product of a torus T
(homeomorphic to (k∗)rk(G)) with a subgroup generated by root groups.

The claim about ad-locally finiteness can be found in [KP87, Theorems 1 and
2]. �

Proof of Corollary F. Let α ∈ Homc(R, G). By Theorem E together with
Lemma 4.1, we know that α(R) is bounded in G. The conclusion then follows
from Lemmas 4.2 and 4.3. �

Proof of Corollary G. Let α : G1 → G2 be a measurable homomorphism be-
tween adjoint real or complex Kac–Moody groups G1, G2. Note first that by
Theorem E together with Lemmas 4.1 and 4.3, the image of any measurable ho-
momorphism β : SL(2, k) → G2 is contained in a Lie group. In particular such
a β must be continuous by [Kle89, Theorem 1]. It follows that for any copies
Xi1 , . . . , Xin of SL(2, k) in G1, the map α in the following commutative diagram
is continuous:

Xi1 × · · · ×Xin −−−→ G1

α

y yα
α(Xi1)× · · · × α(Xin) −−−→ G2.

Continuity of α then follows by definition of the Kac–Peterson topology. �

Proof of Corollary H. Let α : G1 → G2 be a measurable isomorphism between
adjoint real or complex Kac–Moody groups G1, G2. Recall from [CM06, Theorem
6.3] that α is standard whenever it maps bounded subgroups to bounded sub-
groups. Let thus H be a bounded subgroup of G1. Then H is contained in an
almost connected Lie group by Lemma 4.3. Thus α(H) is bounded by Theorem E
together with Lemma 4.1, as desired. �
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Bourbaki, Vol. 1, Soc. Math. France, Paris, 1995, pp. Exp. No. 33, 271–279.
MR 1605197

[Cap09] Pierre-Emmanuel Caprace, “Abstract” homomorphisms of split Kac–Moody groups,
Mem. Amer. Math. Soc. 198 (2009), no. 924, xvi+84. MR 2499773 (2010d:20057)

[CL10] Pierre-Emmanuel Caprace and Alexander Lytchak, At infinity of finite-dimensional
CAT(0) spaces, Math. Ann. 346 (2010), no. 1, 1–21. MR 2558883 (2011d:53075)

[CL11] Pierre-Emmanuel Caprace and Jean Lécureux, Combinatorial and group-theoretic
compactifications of buildings, Ann. Inst. Fourier, Grenoble 61 (2011), no. 2, 619–
672.



14 TIMOTHÉE MARQUIS
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(2002), no. 277, viii+348. MR 1909671 (2003d:20036)

[Ser77] Jean-Pierre Serre, Arbres, amalgames, SL2, Société Mathématique de France, Paris,
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