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ABSTRACT SIMPLICITY OF LOCALLY COMPACT

KAC–MOODY GROUPS

TIMOTHÉE MARQUIS∗

Abstract. In this paper, we establish that complete Kac–Moody groups over
finite fields are abstractly simple. The proof makes an essential use of Mathieu–
Rousseau’s construction of complete Kac–Moody groups over fields. This con-
struction has the advantage that both real and imaginary root spaces of the
Lie algebra lift to root subgroups over arbitrary fields. A key point in our
proof is the fact, of independent interest, that both real and imaginary root
subgroups are contracted by conjugation of positive powers of suitable Weyl
group elements.

1. Introduction

Let A = (Aij)1≤i,j≤n be a generalised Cartan matrix and let G = GA denote
the associated Kac–Moody–Tits functor of simply connected type, as defined by
J. Tits ([Tit87]). The value of G over a field k is usually called a minimal Kac–

Moody group of type A over k. This terminology is justified by the existence
of larger groups associated with the same data, usually called maximal or com-

plete Kac–Moody groups, and which are completions of G(k) with respect to
some suitable topology. One of them, introduced in [RR06], and which we will

temporarily denote by ĜA(k), is a totally disconnected topological group. It is
moreover locally compact provided k is finite, and non-discrete (hence uncount-
able) as soon as A is not of finite type.

The question whether ĜA(k) is (abstractly) simple for A indecomposable and k
arbitrary is very natural and was explicitly addressed by J. Tits [Tit89]. Abstract

simplicity results for ĜA(k) over fields of characteristic 0 were first obtained in
an unpublished note by R. Moody ([Moo82]). Moody’s proof has been recently
generalised by G. Rousseau ([Rou12, Théorème 6.19]) who extended Moody’s
result to fields k of positive characteristic p that are not algebraic over Fp. The

abstract simplicity of ĜA(k) when k is a finite field was shown in [CER08] in some
important special cases, including groups of 2-spherical type over fields of order
at least 4, as well as some other hyperbolic types under additional restrictions on
the order of the ground field.

In this paper, we establish the abstract simplicity of complete Kac–Moody
groups ĜA(k) of indecomposable type over arbitrary finite fields, without any
restriction. Our proof relies on an approach which is completely different from
the one used in [CER08].

Theorem A. Let ĜA(Fq) be a complete Kac–Moody group over a finite field Fq,
with generalised Cartan matrix A. Assume that A is indecomposable of indefinite
type. Then ĜA(Fq) is abstractly simple.
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As it turns out, it does not matter which completion of GA(Fq) we are consid-
ering, see Theorem B and Remark 1 below.

After completion of this work, I was informed by Bertrand Rémy that, in a re-
cent joint work [CR13] with I. Capdeboscq, they obtained independently a special
case of this theorem, namely the abstract simplicity over finite fields of order at
least 4 and of characteristic p in case p is greater than M = maxi6=j |Aij|. Their
approach is similar to the one used in [CER08].

Note that the topological simplicity of ĜA(Fq) (that is, the absence of nontrivial
closed normal subgroups), which we will use in our proof of Theorem A, was
previously established by B. Rémy when q > 3 (see [Rém04, Theorem 2.A.1]); the
tiniest finite fields were later covered by P-E. Caprace and B. Rémy (see [CR09,
Proposition 11]).

Note also that for incomplete groups, abstract simplicity fails in general since
groups of affine type admit numerous congruence quotients. However, it has been
shown by P-E. Caprace and B. Rémy ([CR09]) that GA(Fq) is abstractly simple
provided A is indecomposable, q > n > 2 and A is not of affine type. They also
recently covered the rank 2 case for matrices A of the form A = ( 2 −m

−1 2 ) with
m > 4 (see [CR12, Theorem 2]).

As mentioned at the beginning of this introduction, different completions of
G(k) were considered in the literature, and therefore all deserve the name of
“complete Kac–Moody groups”. We now proceed to review them briefly.

Essentially three such completions have been constructed so far, from very
different points of view. The first construction, due to B. Rémy and M. Ronan
([RR06]), is the one we considered above. It is the completion of the image of
G(k) in the automorphism group Aut(X+) of its associated positive building X+,
where Aut(X+) is equipped with the compact-open topology. For the rest of this

paper, we will denote this group by Grr(k), so that Ĝ(k) = Grr(k) in our previous
notation. To avoid taking a quotient of G(k), a variant of this group has also been
considered by P-E. Caprace and B. Rémy ([CR09, Section 1.2]). This latter group,
here denoted Gcrr(k), contains G(k) as a dense subgroup and admits Grr(k) as a
quotient.

The second construction, due to L. Carbone and H. Garland ([CG03]), as-
sociates to a regular dominant integral weight λ the completion, here denoted
Gcgλ(k), of G(k) for the so-called weight topology.

The third construction, of which we will make an essential use, was first in-
troduced by O. Mathieu ([Mat88b, XVIII §2], [Mat88a], [Mat89, I and II]) and
further developed by G. Rousseau ([Rou12]). It is more algebraic and closer in
spirit to the construction of G. In fact, one gets a group functor over the category
of Z-algebras, which we will subsequently denote by Gpma. As noted in [Rou12,
3.20], this functor is a generalisation of the complete Kac–Moody group over C

constructed by S. Kumar ([Kum02, Section 6.1.6]). Note that in this case the

closure G(k) of G(k) in Gpma(k) need not be the whole of Gpma(k). However,
G(k) = Gpma(k) as soon as the characteristic of k is zero or greater than the
maximum M (in absolute value) of the non-diagonal entries of A (see [Rou12,
Proposition 6.11]).

These three constructions are strongly related, and hopefully equivalent. In
particular, they all possess refined Tits systems whose associated building is the
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positive building X+ of G(k) (with possibly different apartment systems). More-
over, there are natural continuous group homomorphisms G(k) → Gcgλ(k) and
Gcgλ(k) → Gcrr(k) extending the identity on G(k) (see [Rou12, 6.3]). Their com-
position φ : G(k) → Gcgλ(k) → Gcrr(k) is an isomorphism of topological groups
in many cases (see [Rou12, Théorème 6.12]) and conjecturally in all cases.

If G is either Gpma(k) or G(k) or Gcgλ(k) or Gcrr(k), we let Z ′(G) denote the
kernel of the G-action on X+. As mentioned in Remark 1 below, Theorem A
immediately implies the abstract simplicity of G/Z ′(G) whenever G is one of

G(k) or Gcgλ(k) or Gcrr(k) (and k is finite). As pointed out to me by Pierre-
Emmanuel Caprace, our arguments in fact also imply the abstract simplicity of
Gpma(k)/Z ′(Gpma(k)), even when G(k) 6= Gpma(k):

Theorem B. Assume that the generalised Cartan matrix A is indecomposable of
indefinite type. Then G

pma
A (Fq)/Z

′(Gpma
A (Fq)) is abstractly simple over any finite

field Fq.

Note that even the topological simplicity of G
pma
A (Fq)/Z

′(Gpma
A (Fq)) was not

previously known in full generality (see [Rou12, Lemme 6.14 and Proposition
6.16] for known results).

While the construction of Rémy–Ronan is more geometric in nature, the con-
struction of Mathieu–Rousseau is purely algebraic and hence a priori more suit-
able to establish algebraic properties of complete Kac–Moody groups. The present
paper is a good illustration of this idea, and we hope it provides a good motivation
for studying these “algebraic completions” further.

Remark 1. When the field k is finite, the several group homomorphisms G(k) →
Gcgλ(k) → Gcrr(k) → Grr(k) ≤ Aut(X+) are all surjective (see [Rou12, 6.3]), and

if G is either G(k) or Gcgλ(k) or Gcrr(k), the effective quotient of G by the kernel
Z ′(G) of its action on X+ coincides with Grr(k). If moreover the characteristic
p of k is greater than the maximum M (in absolute value) of the non-diagonal

entries of A, one has G(k) = Gpma(k), and thus in that case there is only one
simple group G/Z ′(G). Hence Theorem B is a consequence of Theorem A when
p > M . If p ≤ M , it is possible that the effective quotient of Gpma(k) inside
Aut(X+) properly contains Grr(k) (see Corollary F below). When this happens,
Theorem B thus asserts the abstract simplicity of a different group than the one
considered in Theorem A.

Finally, we notice that, although we assumed the Kac–Moody groups to be of
simply connected type to simplify the notations, the results remain valid for an
arbitrary Kac–Moody root datum (see Remark 6.3).

Along the proof of Theorems A and B, we establish other results of independent
interest, which we now proceed to describe.

Let k be an arbitrary field. Fix a realisation of the generalised Cartan matrix
A = (aij)1≤i,j≤n as in [Kac90, §1.1]. Let Q =

∑n
i=1 Zαi be the associated root

lattice, where α1, . . . , αn are the simple roots. Let also ∆ (respectively, ∆±) be
the set of roots (respectively, positive/negative roots), so that ∆ = ∆+ ⊔ ∆−.
Write also ∆re and ∆im (respectively, ∆re

+ and ∆im
+ ) for the set of (positive) real

and imaginary roots.
Recall that a subset Ψ of ∆ is closed if α + β ∈ Ψ whenever α, β ∈ Ψ and

α + β ∈ ∆. For a closed subset Ψ of ∆+, define the sub-group scheme Uma
Ψ of
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Gpma as in [Rou12, 3.1]. Set Uma+ = Uma
∆+

. One can then define root groups Uma
(α)

in Uma+ by setting Uma
(α) := Uma

{α} for α ∈ ∆re
+ and Uma

(α) := Uma
N∗α for α ∈ ∆im

+ , where

N∗ = N \ {0}.
We also let B+, U+, N and T denote, as in [Rou12, 1.6], the sub-functors of

G = GA such that over k, (B+(k) = U+(k)⋊T(k),N(k)) is the canonical positive
BN-pair attached to G(k), and N(k)/T(k) ∼= W , where W = W (A) is the Coxeter
group attached to A. We fix once for all a section W ∼= N(k)/T(k) → N(k) :
w 7→ w. Note that N can be viewed as a sub-functor of Gpma (see [Rou12, 3.12,
Remarque 1]).

Finally, given a topological group H and an element a ∈ H , we define the
contraction group conH(a), or simply con(a), as the set of elements g ∈ H

such that anga−n n→∞
→ 1. Note then that for any a ∈ G(k) ⊆ Gpma(k), one has

ϕ(conGpma(k)(a) ∩G(k)) ⊆ conGrr(k)(ϕ(a)), where we denote by ϕ the composition

G(k)
φ

→ Gcrr(k) → Grr(k).

Theorem C. Let k be an arbitrary field.

(1) Let ω ∈ W and let Ψ ⊆ ∆+ be a closed set of positive roots such that
ωΨ ⊆ ∆+. Then ωUma

Ψ ω −1 = Uma
ωΨ.

(2) Let ω ∈ W and α ∈ ∆+ be such that ωlα is positive and different from
α for all positive integers l. Then Uma

(α) ⊆ conGpma(k)(ω). In particular

ϕ(Uma
(α) ∩ G(k)) ⊆ conGrr(k)(ω).

(3) Assume that A is of indefinite type. Then there exists some ω ∈ W such
that Uma

(α) ⊆ conGpma(k)(ω) ∪ conGpma(k)(ω −1) for all α ∈ ∆+. Hence root

groups (associated to both real and imaginary roots) are contracted.

The proof of Theorem C can be found at the end of Section 4. The idea to prove
Theorem A once Theorem C is established is the following. We let a ∈ N(Fq)
be such that Uma

(α)(Fq) ⊆ conGpma(Fq)(a) ∪ conGpma(Fq)(a−1) for all α ∈ ∆+, as in

Theorem C (3). We deduce that Urr+(Fq) is contained in the subgroup generated
by the closures of conGrr(Fq)(a±1). Now, as the topological simplicity of Grr(Fq)
is known, it suffices to consider a dense normal subgroup K of Grr(Fq). We can
then conclude by invoking the following result of Caprace–Reid–Willis ([CRW13,
Theorem 1.1]):

Theorem 1.1. Let G be a totally disconnected locally compact group and let K
be a dense normal subgroup of G. Then K contains the closure in G of con(g) for
any g ∈ G.

The proof of Theorem B follows the exact same lines, except that in this case
the topological simplicity of the group is not known in full generality, and we need
one more argument to establish it.

We also point out that Theorem C has another application, concerning the
existence of non-closed contraction groups in complete Kac–Moody groups of non-
affine type. Recall that in simple algebraic groups over local fields, contraction
groups are always closed (they are in fact either trivial, or coincide with the
unipotent radical of some parabolic subgroup). In particular they are closed in a
complete Kac–Moody group G over a finite field as soon as the defining generalised
Cartan matrix A is of non-twisted affine type. It has been shown in [BRR08] that,
on the other hand, if A is indecomposable non spherical, non affine and of size at
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least 3, then the contraction group con(a) of some element a ∈ G must be non-
closed. The following result shows that this also holds when A is indecomposable
non spherical, non affine and of size 2.

Theorem D. Let A denote an n×n generalised Cartan matrix of indecomposable
indefinite type, let W = W (A) be the associated Weyl group, and let w = s1 . . . sn

denote the Coxeter element of W . Let also G be one the complete Kac–Moody
groups Grr

A (Fq) or G
pma
A (Fq) of simply connected type. Then the contraction group

conG(w) is not closed in G, unless maybe if G = Grr
A (Fq) and Uma

∆im
+

(Fq) ∩ G(Fq)

is contained in the kernel of ϕ.

Finally, here is a last application of our results concerning isomorphism classes
of Kac–Moody groups and their completions. While over infinite fields, it is known
that two minimal Kac–Moody groups can be isomorphic only if their ground fields
are isomorphic and their underlying generalised Cartan matrices coincide up to
a row-column permutation (see [Cap09, Theorem A]), this fails to be true over
finite fields. Indeed, over a given finite field, two minimal Kac–Moody groups
associated with two different generalised Cartan matrices of size 2 can be isomor-
phic, as noticed in [Cap09, Lemma 4.3]. The following result shows that, however,
the corresponding Mathieu–Rousseau completions should not be expected to be
isomorphic as topological groups.

Theorem E. Let k = Fq be a finite field with char k 6= 2. Then there exist
minimal Kac–Moody groups G1 = GA1

(Fq) and G2 = GA2
(Fq) over Fq associated

to 2×2 generalised Cartan matrices A1, A2, such that G1 and G2 are isomorphic as
abstract groups, but their Mathieu–Rousseau completions Gpma

A1
(Fq) and G

pma
A2

(Fq)
are not isomorphic as topological groups.

This surprising result provides in particular the first known families of examples
over arbitrary finite fields (of characteristic at least 3) of minimal Kac–Moody
groups that are not dense in their Mathieu–Rousseau completion (up to now, the
only known such family was given over F2 in [Rou12, 6.10]).

Corollary F. Let k = Fq be a finite field with char k 6= 2. Let A = ( 2 −m
−n 2 ) be a

generalised Cartan matrix with m,n > 2 and assume that m ≡ n ≡ 2 (mod q−1).
Then the minimal Kac–Moody group GA(Fq) of simply connected type is not dense
in its Mathieu–Rousseau completion G

pma
A (Fq).

The proof of these statements will be given in Section 5.

The paper is organised as follows. We first fix some notations and provide an
outline of the construction of Mathieu–Rousseau completions in Section 2. We
next prove some preliminary results about the Coxeter group W and the set of
roots ∆ in Section 3. We then use these results to prove a more precise version
of Theorem C in Section 4. We establish its consequences in Section 5, and we
conclude the proof of Theorems A and B in Section 6.

Acknowledgement. I am very grateful to Pierre-Emmanuel Caprace for propos-
ing this problem to me in the first place, as well as for numerous helpful comments.
I would also like to thank the anonymous referee for his/her useful comments.
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2. Preliminaries

2.1. Notations. Throughout this paper, we write N∗ (resp. Z∗) for the set of
nonzero natural numbers (resp. nonzero integers).

For the rest of this paper, k denotes an arbitrary field and A = (aij)i,j∈I de-
notes a generalised Cartan matrix indexed by I = {1, . . . , n}. We fix a realisation
(h,Π,Π∨) of A as in [Kac90, §1.1]. We then keep all notations from the intro-
duction. In particular, ∆ is the corresponding set of roots and Π = {α1, . . . , αn}
(resp. Π∨ = {α∨

1 , . . . , α
∨
n}) the set of simple roots (resp. coroots). For α ∈ ∆, we

denote by ht(α) its height.
Recall the definition of the Tits functor G = GA and of its sub-functors B+,

U+, N and T. Again, Grr(k) denotes the Rémy–Ronan completion of G(k) and
Urr+(k) the completion in Grr(k) of U+(k), so that (Urr+(k) ⋊ T(k),N(k)) is a
BN-pair for Grr(k) (see [CR09, Proposition 1]). We will give more details about
the Mathieu–Rousseau completion Gpma(k) of G(k) in Section 2.2 below.

As before, W = W (A) ∼= N(k)/T(k) is the Coxeter group associated to A, with
generating set S = {s1, . . . , sn} such that si(αj) = αj − aijαi for all i, j ∈ I, and
we fix a section W ∼= N(k)/T(k) → N(k) : w 7→ w.

Finally, to avoid cumbersome notation, we will write con(a) for both contraction
groups conGpma(k)(a) and conGrr(k)(a), as k is fixed and as it will be always clear
in which group we are working.

2.2. The Mathieu–Rousseau completion. We now outline the construction
of the Mathieu–Rousseau completion of G and give its basic properties, as it will
play an important role in what follows. The general reference for this section is
[Rou12].

Some notations. Let Λ∨ be the free Z-module generated by Π∨, and let Λ be its
Z-dual, which we view as a Z-form of the dual h∗. In particular, Λ contains Π.
Then, as we are considering a Tits functor GA of simply connected type, the torus
T(k) = TΛ(k) = Homgr(Λ, k

×) is generated by {rh | r ∈ k×, h ∈ Π∨}, where

rh : Λ → k× : λ 7→ r〈λ,h〉.

Let g denote the Kac–Moody algebra of G with root space decomposition g =
h ⊕

⊕
α∈∆ gα, and let e1, . . . , en and f1, . . . , fn be the corresponding Chevalley

generators, so that gαi
= Cei and g−αi

= Cfi for all i ∈ I. Let also U denote
the Z-form of the enveloping algebra UC(g) of g introduced by J. Tits (see e.g.
[Rou12, Section 2]): this is a Z-bialgebra graded by Q :=

⊕
i∈I Zαi and containing

the elements e
(l)
i := el

i/l! and f
(l)
i := f l

i/l! (l ∈ N, i ∈ I). We write Uα for the
weight space corresponding to α ∈ Q. The W -action on ∆ induces a W -action on
UC(g) with si (i ∈ I) acting as

s∗
i = exp(ad ei) exp(ad fi) exp(ad ei) ∈ Aut(UC(g)).

This W -action preserves U , and given α ∈ ∆re such that α = wαi for some w ∈ W
and i ∈ I, the element eα = w∗ei is well defined (up to a choice of sign) and is a
Z-basis for gαZ := gα ∩ U . In particular, we may choose e−αi

:= fi as a basis for
g−αiZ. For a ring R, we also set gαR := gαZ ⊗Z R.

For a closed set Ψ ⊆ ∆, we define the Z-subalgebra U(Ψ) of U generated by all
Uα := UC(⊕n≥1gnα) ∩ U for α ∈ Ψ. If in addition Ψ ⊆ w(∆+) for some w ∈ W ,
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we may also define the completion ÛR(Ψ) of U(Ψ) over any ring R as

ÛR(Ψ) =
∏

α∈w.Q+

(U(Ψ)α ⊗Z R),

where Q+ :=
⊕

i∈I Nαi and U(Ψ)α = U(Ψ) ∩ Uα.

Pro-unipotent groups. The first step in the construction of Gpma is to define for
each closed set Ψ ⊆ ∆+ of positive roots the affine group scheme Uma

Ψ (which we
view as a group functor) whose algebra is the restricted dual

Z[Uma
Ψ ] :=

⊕

α∈NΨ

U(Ψ)∗
α

of U(Ψ). In other words,

Uma
Ψ (R) = HomZ-alg(Z[Uma

Ψ ], R) for any ring R.

One can then define root groups Uma
(α) in Uma+ := Uma

∆+
by setting Uma

(α) = Uα :=

Uma
{α} for α ∈ ∆re

+ and Uma
(α) := Uma

N∗α for α ∈ ∆im
+ . For α ∈ ∆re

+ , one can define

similarly the root group U−α = Uma
{−α} as above, with Ψ replaced by {−α}. In

other words, for each α ∈ ∆re, the real root group Uα is isomorphic to the additive
group scheme Ga by

xα : Ga(R)
∼
→ Uα(R) : r 7→ exp(reα)

for any ring R. Note that, identifying {Uα(R) | α ∈ ∆re} with the root group
datum of G(R), the element si ∈ N(R) lifting si ∈ W may then be chosen as

si = xαi
(1)x−αi

(1)xαi
(1) = exp(ei) exp(fi) exp(ei).

The group functor Uma
Ψ admits a nice description in terms of root groups, which

we now briefly review. For each x ∈ gαZ, α ∈ ∆+, G. Rousseau makes a choice
of an exponential sequence, namely of a sequence (x[n])n∈N where x[0] = 1,
x[1] = x, and x[n] ∈ Unα is such that x[n] −xn/n! has filtration less than n in UC(g)
for each n ∈ N, and which satisfies some additional compatibility condition with
the bialgebra structure on U (see [Rou12, Propositions 2.4 and 2.7]). Such an
exponential sequence for x is unique up to modifying each x[n], n ≥ 2, by an
element of gnαZ. For a ring R and an element λ ∈ R, one can then define the
twisted exponential

[exp]λx :=
∑

n≥0

λnx[n] ∈ ÛR(∆+).

Note that for α a real root, one can take the usual exponential. For each α ∈ ∆+,
let Bα be a Z-basis of gαZ. For α ∈ ∆re, we choose Bα = {eα}. Finally, for a
closed subset Ψ ⊆ ∆+, set BΨ =

⋃
α∈Ψ Bα. Here is the announced description of

Uma
Ψ :

Proposition 2.1 ([Rou12, Proposition 3.2]). Let Ψ ⊆ ∆+ be closed and let R

be a ring. Then Uma
Ψ (R) can be identified to the multiplicative subgroup of ÛR(Ψ)

consisting of the products ∏

x∈BΨ

[exp]λxx

for λx ∈ R, where the product is taken in any (arbitrary) chosen order on BΨ.
The expression of an element of Uma

Ψ (R) in the form of such a product is unique.
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A consequence of this proposition which we will use later on is the following
(see [Rou12, Lemme 3.3]).

Lemma 2.2. Let Ψ′ ⊆ Ψ ⊆ ∆+ be closed subsets of roots. Then Uma
Ψ′ is a closed

subgroup of Uma
Ψ . Moreover, if Ψ \ Ψ′ is closed as well, then there is a unique

decomposition Uma
Ψ = Uma

Ψ′ .Uma
Ψ\Ψ′.

Minimal parabolics. The next step in the construction of Gpma is to define, for
each i ∈ I, the minimal parabolic subgroup Bma+

i of type i as the semi-
direct product of Uma

∆+\{αi} with the unique connected affine algebraic group AΛ
i

associated to the Kac–Moody root datum ({1}, (2),Λ, {αi}, {α
∨
i }) (see [Spr98,

Theorem 10.1.1]). Note that AΛ
i contains T, Uαi

and U−αi
as closed subgroups

and is generated by them. To define this semi-direct product, it is thus sufficient
to describe for each ring R conjugation actions of T(R) = Homgr(Λ, R

×) and
Uα(R) = {exp(reα) | r ∈ R} on Uma

∆+\{αi}, for α ∈ {±αi}. For t ∈ T(R), this is
defined using Proposition 2.1 by

Int(t) · [exp]λx = [exp]t(γ)λx if x ∈ gγR.

For α ∈ {±αi}, we set

Int(exp(eα))(z) =
∑

m≥0

(ad(eα)m/m!)(z)

for all z ∈ Uma
∆+\{αi}(R), where Uma

∆+\{αi}(R) is viewed as a subset of either ÛR(∆+)

or ÛR(si(∆+)), depending on whether α = αi or α = −αi.
The following lemma will be crucial for us.

Lemma 2.3. For any α ∈ ∆+ and any w ∈ W such that wα ∈ ∆+, one has

wUma
(α)w

−1 = Uma
(wα).

Proof. For α a real root, this is [Rou12, 3.11]. In any case, this amounts to
showing that, whenever si ∈ W is such that si(α) ∈ ∆+, one has

si · ([exp]x) · si
−1 = [exp](s∗

ix)

for any homogenous x ∈ ⊕n≥1gnαR, with R an arbitrary ring. This last statement
readily follows from the definition of the semi-direct product defining Bma+

i . �

The group scheme Gpma. The Mathieu–Rousseau completion Gpma of G is
then defined as some amalgamated product of the minimal parabolics Bma+

i , i ∈ I
(see [Rou12, 3.6]). Over the field k, the identification of {Uα(k) | α ∈ ∆re} with the
root group datum of G(k) (as well as the identification of the tori T(k) of G(k) and
Gpma(k)) induces an injection of G(k) in Gpma(k) (see [Rou12, Proposition 3.13]).
The Borel subgroup Bma+(k) = T(k) ⋉ Uma+(k) and N(k) form a BN-pair for
Gpma(k) with associated building the positive building of G(k) (see [Rou12, 3.16]).

The topology on Gpma(k) is given as follows. For each n ∈ N, set Uma
n := Uma

Ψ(n),

where Ψ(n) = {α ∈ ∆+ | ht(α) ≥ n}.

Lemma 2.4 ([Rou12, 6.3.6]). Gpma(k) is a complete (Hausdorff) topological group
with basis of neighbourhoods of the identity the subgroups Uma

n (k), n ∈ N.
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Comparison with the Rémy–Ronan completion. Recall from the introduction the
continuous homomorphism ϕ : G(k) → Grr(k), where G(k) denotes the closure of
G(k) in Gpma(k). Write also U+(k) for the closure of U+(k) in Uma+(k).

Lemma 2.5 ([Rou12, 6.3.5]). Assume that the field k is finite. Then the restric-

tion of ϕ to U+(k) is surjective onto Urr+(k).

3. Coxeter groups and root systems

In this section, we prepare the ground for the proof of Theorem A by establishing
several results which concern the Coxeter group W and the set of roots ∆. Basics
on these two topics are covered in [AB08, Chapters 1–3] and [Kac90, Chapters
1–5], respectively.

Throughout this section, we let Σ = Σ(W,S) denote the Coxeter complex of W .
Also, we let C0 be the fundamental chamber of Σ. Finally, with the exception of
Lemma 3.1 below where no particular assumption on W is made, we will always
assume that W is infinite irreducible. Note that this is equivalent to saying that
A is indecomposable of non-finite type.

Lemma 3.1. Let w = s1 . . . sn be a Coxeter element of W . Let A = A1+A2 be the
unique decomposition of A as a sum of matrices A1, A2 such that A1 (respectively,
A2) is an upper (respectively, lower) triangular matrix with 1’s on the diagonal.
Then the matrix of w in the basis {α1, . . . , αn} of simple roots is −A−1

1 A2 =
In − A−1

1 A.

Proof. For a certain property P of two integer variables i, j (e.g. P(i, j) ≡ j ≤ i),
we introduce for short the Kronecker symbol δP(i,j) taking value 1 if P(i, j) is
satisfied and 0 otherwise.

Let B = (bij) denote the matrix of w in the basis {α1, . . . , αn}. Thus, bij is the
coefficient of αi in the expression of s1 . . . snαj as a linear combination of the simple
roots, which we will write for short as [s1 . . . snαj]i. Thus bij = [s1 . . . snαj]i =
[si . . . snαj ]i. Note that

si+1 . . . snαj =
n∑

k=i+1

[si+1 . . . snαj ]kαk + δj≤iαj =
n∑

k=i+1

bkjαk + δj≤iαj .

Whence

bij = [si(
n∑

k=i+1

bkjαk + δj≤iαj)]i = −
n∑

k=i+1

aikbkj − δj≤iaij + δi=j

= (−
n∑

k=1

(A1)ikbkj + bij) + (δj>iaij − aij) + δi=j

= −
n∑

k=1

(A1)ikbkj + bij − aij +
n∑

k=1

(A1)ik(In)kj.

Thus A = −A1B + A1, so that B = −A−1
1 A2, as desired. �

For ω ∈ W and α ∈ ∆+, define the function fω
α : Z → {±1} : k 7→ sign(ωkα),

where sign(∆±) = ±1.

Lemma 3.2. Let ω ∈ W be such that ℓ(ωl) = |l|ℓ(ω) for all l ∈ Z. Then fω
α is

monotonic for all α ∈ ∆+.
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Proof. Let ω ∈ W be such that ℓ(ωl) = |l|ℓ(ω) for all l ∈ Z and let ω = t1t2 . . . tk
be a reduced expression for ω, where tj ∈ S for all j ∈ {1, . . . , k}. Let α ∈ ∆+

and assume that fω
α is not constant. Then α is a real root because W.∆im

+ = ∆im
+ .

Let kα ∈ Z∗ be minimal (in absolute value) so that fω
α (kα) = −1. We deal with

the case when kα > 0; the same proof applies for kα < 0 by replacing ω with its
inverse. We have to show that ωlα ∈ ∆− if and only if l ≥ kα.

Let β := ωkα−1α. Thus β ∈ ∆re
+ and ωβ ∈ ∆re

− . It follows that there is some
i ∈ {1, . . . , k} such that β = tktk−1 . . . ti+1αti

. In other words, β is one of the
n positive roots whose wall ∂β in the Coxeter complex Σ of W separates the
fundamental chamber C0 from ω−1C0. We want to show that ωlβ ∈ ∆− if and
only if l ≥ 1.

Assume first for a contradiction that there is some l ≥ 1 such that ωl+1β ∈ ∆+,
that is, ωl+1β contains C0. Since ωl+1β contains ωl+1C0 but not ωlC0, its wall
ωl+1∂β separates ωlC0 from ωl+1C0 and C0. In particular, any gallery from C0 to
ωl+1C0 going through ωlC0 cannot be minimal. This contradicts the assumption
that ℓ(ωl) = |l|ℓ(ω) for all l ∈ Z since this implies that the product of l+ 1 copies
of t1 . . . tk is a reduced expression for ωl+1.

Assume next for a contradiction that there is some l ≥ 1 such that ω−lβ ∈ ∆−.
Then as before, ω−l∂β separates ω−lC0 from ω−l−1C0 and C0. Again, this implies
that any gallery from C0 to ω−l−1C0 going through ω−lC0 cannot be minimal,
yielding the desired contradiction. �

Corollary 3.3. Let w = s1 . . . sn be a Coxeter element of W . Then fw
α is mono-

tonic for all α ∈ ∆+.

Proof. As ℓ(wl) = |l|ℓ(w) for all l ∈ Z by the main result of [Spe09], this readily
follows from Lemma 3.2. �

Lemma 3.4. Assume that A is of indefinite type. Let w = s1 . . . sn be a Coxeter
element of W , and let α ∈ ∆+. Then wlα 6= α for all nonzero integer l.

Proof. Assume for a contradiction that wkα = α for some k ∈ N∗. It then follows
from Corollary 3.3 that wiα ∈ ∆+ for all i ∈ {0, . . . , k − 1}. Viewing w as an
automorphism of the root lattice, we get that

(w − Id)(wk−1 + · · · + w + Id)α = 0.

Moreover, β := (wk−1 + · · · + w + Id)α is a sum of positive roots, and hence
can be viewed as a nonzero vector of Rn with nonnegative entries. Recall from
Lemma 3.1 that w is represented by the matrix −A−1

1 A2. Thus, multiplying
the above equality by −A1, we get that Aβ = 0. Since A is indecomposable of
indefinite type, this gives the desired contradiction by [Kac90, Theorem 4.3]. �

Lemma 3.5. Let ω ∈ W and α ∈ ∆+ be such that ωlα 6= α for all positive integer
l. Then | ht(ωlα)| goes to infinity as l goes to infinity.

Proof. If | ht(ωlα)| were bounded as l goes to infinity, the set of roots {ωlα | l ∈
N} would be finite, and so there would exist an l ∈ N∗ such that ωlα = α, a
contradiction. �

Lemma 3.6. Assume that A is of indefinite type. Let w = s1 . . . sn be a Coxeter
element of W , and let α ∈ ∆+. Then there exists some ǫ ∈ {±} such that
wǫlα ∈ ∆+ for all l ∈ N. Moreover, ht(wǫlα) goes to infinity as l goes to infinity.
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Proof. The existence of ǫ readily follows from Corollary 3.3, while the second
statement is a consequence of Lemmas 3.4 and 3.5. �

4. Contraction groups

In this section, we make use of the results proven so far to establish, under
suitable hypotheses, that the subgroups Uma+(k) of Gpma(k) and Urr+(k) of Grr(k)
are contracted. Throughout this section, W is assumed to be infinite irreducible,
and we fix some Coxeter element w = s1 . . . sn of W .

Lemma 4.1. Let Ψ1 ⊆ Ψ2 ⊆ · · · ⊆ ∆+ be an increasing sequence of closed subsets
of ∆+ and set Ψ =

⋃∞
i=1 Ψi. Then the corresponding increasing union of subgroups⋃∞

i=1 U
ma
Ψi

(k) is dense in Uma
Ψ (k).

Proof. This readily follows from Proposition 2.1. �

Proposition 4.2. Let Ψ ⊆ ∆+ be closed. Let ω ∈ W be such that ωΨ ⊆ ∆+.
Then ωUma

Ψ ω −1 = Uma
ωΨ.

Proof. For a positive root α ∈ ∆+, consider the root group Uma
(α) as in Section 2.2.

Let also Ψ and ω be as in the statement of the lemma. By Lemma 2.3, we know
that

ω〈Uma
(α) | α ∈ Ψ〉ω −1 = 〈Uma

(ωα) | α ∈ Ψ〉.

Passing to the closures, it follows from Lemma 4.1 that ωUma
Ψ ω −1 = Uma

ωΨ, as
desired. �

Lemma 4.3. Let Ψ ⊆ ∆+ be the set of positive roots α such that wlα ∈ ∆+ for
all l ∈ N. Then both Ψ and ∆+ \ Ψ are closed. In particular, one has a unique
decomposition Uma+ = Uma

Ψ .Uma
∆+\Ψ.

Proof. Clearly, Ψ is closed. Let now α, β ∈ ∆+ \ Ψ be such that α + β ∈ ∆.
Thus there exist some positive integers l1, l2 such that wl1α ∈ ∆− and wl2β ∈ ∆−.
Then wl(α + β) ∈ ∆− for all l ≥ max{l1, l2} by Corollary 3.3 and hence α + β ∈
∆+ \ Ψ. Thus ∆+ \ Ψ is closed, as desired. The second statement follows from
Lemma 2.2. �

Remark 4.4. Let Ψ ⊆ ∆+ be as in Lemma 4.3. Put an arbitrary order on
∆+. This yields enumerations Ψ = {β1, β2, . . . } and ∆+ \ Ψ = {α1, α2, . . . }. For
each i ∈ N∗, we let Ψi (respectively, Φi) denote the closure in ∆+ of {β1, . . . , βi}
(respectively, of {α1, . . . , αi}). It follows from Lemma 4.3 that Ψ =

⋃∞
i=1 Ψi and

that ∆+ \ Ψ =
⋃∞

i=1 Φi.

Lemma 4.5. Fix i ∈ N∗, and let Ψi,Φi ⊆ ∆+ be as in Remark 4.4. Assume
that A is of indefinite type. Then there exists a sequence of positive integers
(nl)l∈N going to infinity as l goes to infinity, such that w lUma

Ψi
w−l ⊆ Uma

nl
and

w−lUma
Φi
w l ⊆ Uma

nl
for all l ∈ N.

Proof. Let αj, βj ∈ ∆+ be as in Remark 4.4. By Lemma 3.6 together with
Corollary 3.3, one can find for each j ∈ {1, . . . , i} sequences of positive integers
(mj

l )l∈N and (nj
l )l∈N going to infinity as l goes to infinity, such that ht(w−lαj) ≥ mj

l

and ht(wlβj) ≥ nj
l for all l ∈ N. For each l ∈ N, set nl = min{ml

j , n
l
j | 1 ≤ j ≤ i}.

Then the sequence (nl)l∈N goes to infinity as l goes to infinity. Moreover, ht(α) ≥
nl for all α ∈ w−lΦi and ht(β) ≥ nl for all β ∈ wlΨi. The conclusion then follows
from Proposition 4.2. �
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Theorem 4.6. Let a = w ∈ G(k) ⊆ Gpma(k), and let Ψ,Ψi,Φi be as in Re-
mark 4.4. Assume that A is of indefinite type. Then the following hold.

(1) Uma
Ψi

(k) ⊆ con(a) and Uma
Φi

(k) ⊆ con(a−1) for all i ∈ N∗.

(2) Uma
Ψ (k) ⊆ con(a) and Uma

∆+\Ψ(k) ⊆ con(a−1).

(3) Uma+(k) ⊆ 〈con(a) ∪ con(a−1)〉.

Proof. The first statement follows from Lemma 4.5. The second statement is a
consequence of the first together with Lemma 4.1. The third statement follows
from the second together with Lemma 4.3. �

Recall from Lemma 2.5 that ϕ(U+(k)) = Urr+(k) whenever k is finite.

Lemma 4.7. Let a = w ∈ G(k) ⊆ Grr(k). Assume that A is of indefinite type
and that ϕ(U+(k)) = Urr+(k) (e.g. k finite). Then Urr+(k) ⊆ 〈con(a)∪con(a−1)〉.

Proof. We know from Theorem 4.6 (3) that U+(k) ⊆ 〈con(a) ∪ con(a−1)〉. Ap-
plying ϕ then yields the desired inclusion since ϕ(con(a±1)) ⊆ con(ϕ(a)±1) =

con(a±1) by continuity of ϕ. �

Proof of Theorem C. The first statement is Proposition 4.2 and the third
follows from Theorem 4.6 (1). The second statement is a consequence of the first
together with Lemmas 2.4 and 3.5. �

5. Consequences of Theorem C

Before we give the proof of Theorems A and B in the next section, we examine
the consequences, stated in the introduction, of Theorem C. More precisely, we
will make use of the following lemma. Recall from [Wil12, Section 3] the definition
of the nub of an automorphism α of a totally disconnected locally compact group
G. It possesses many equivalent definitions (see [Wil12, Theorem 4.12]), and given
an element a ∈ G (viewed as a conjugation automorphism), it can be characterised

as nub(a) = con(a) ∩ con(a−1) (see [Wil12, Remark 3.3 (b) and (d)]).

Lemma 5.1. Let G = G
pma
A (Fq) be a complete Kac–Moody group of simply con-

nected type over a finite field Fq, with indecomposable generalised Cartan matrix
A of indefinite type. Let U im+ = Uma

∆im
+

(Fq) denote its positive imaginary subgroup,

let w ∈ W = W (A) denote a Coxeter element of W , and set a := w ∈ N(Fq).
Then

U im+ ⊆ nub(a) = con(a) ∩ con(a−1).

Proof. Notice that Lemma 4.5 remains valid if one replaces Ψ by its (closed)
subset ∆im

+ and w by w−1. As in the proof of the second statement of Theorem 4.6,
Lemma 4.1 then allows to conclude. �

To establish Theorem D, we need one more technical lemma regarding con-
traction groups, whose proof is an adaptation of the proof of Proposition 2.1 in
[Wan84].

Lemma 5.2. Let G be a locally compact group, let a be an element of G, and let
Q be a compact subset of G such that Q ⊆ con(a). Then Q is uniformly contracted
by a, that is, for every open neighbourhood U of the identity one has anQa−n ⊂ U
for all large enough n.
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Proof. Fix an open neighbourhood U of the identity, and let V be a compact
neighbourhood of the identity such that V 2 ⊂ U . By hypothesis, for all x ∈ Q
there exists an Nx such that anxa−n ∈ V for all n ≥ Nx. In other words,

Q ⊂
⋃

N≥0

⋂

n≥N

a−nV an.

Note that the sets CN =
⋂

n≥N a
−nV an form an ascending chain of compact sets.

It follows from Baire theorem that Q∩CN has nonempty interior in Q for a large
enough N .

By compactness of Q, one then finds a finite subset F of Q such that

Q ⊂ F.CN .

Since F is finite and contained in con(a), we know that anFa−n ⊂ V for all large
enough n. Moreover, by construction, anCNa

−n ⊂ V for n ≥ N , and hence

anQa−n = (anFa−n).(anCNa
−n) ⊂ V 2 ⊂ U

for all large enough n, as desired. �

Proof of Theorem D. Let A denote an n × n generalised Cartan matrix of
indecomposable indefinite type, let W = W (A) be the associated Weyl group,
and let w = s1 . . . sn denote a Coxeter element of W . Set a := w ∈ N(Fq). It
then follows from Lemma 5.1 that

Uma+
im := Uma

∆im
+

(Fq) ⊆ con(a) in G
pma
A (Fq)

and that

U rr+
im := ϕ(Uma

∆im
+

(Fq) ∩ U+(Fq)) ⊆ con(a) in Grr
A (Fq).

Since Uma+
im is closed in Uma+(Fq) which is compact (see [Rou12, 6.3]), both

the groups Uma+
im and U rr+

im are compact. Moreover, they are normalised by a by
Proposition 4.2. Hence they cannot be contracted by a because of Lemma 5.2,
since by assumption U rr+

im is nontrivial. In particular, con(a) 6= con(a) and hence
con(a) cannot be closed.

Note that one could also directly use the fact that con(a) is closed if and only
if nub(a) = {1} (see [Wil12, Remark 3.3 (b)]) together with Lemma 5.1. We
preferred however to present a more elementary proof as well, as Lemma 5.2 will
be used anyway in the proof of Theorem E below. �

To prove Theorem E, we need two additional technical lemmas. The first lemma
is an adaptation of [Cap09, Lemma 4.3].

Lemma 5.3. Let k be a finite field of order q, and consider the generalised Cartan
matrices A = ( 2 −m

−n 2 ) and A′ = ( 2 −m′

−n′ 2 ) such that m,m′, n, n′ ≥ 2. Assume
moreover that m ≡ m′ (mod q − 1) and n ≡ n′ (mod q − 1). Then the minimal
Kac–Moody groups GA(k) and GA′(k) of simply connected type are isomorphic.

Proof. As the Weyl groups of A and A′ are isomorphic (to the infinite dihedral
group), one can identify the corresponding sets of real roots. Moreover, as noted in
the proof of [Cap09, Lemma 4.3], the commutation relations between root groups
corresponding to prenilpotent pairs of roots are trivial in GA(k) (resp. GA′(k)).
In particular, one can identify the Steinberg functors of GA and GA′.

Recall from Section 2.2 (and in the notations of that section) that the torus
TΛ(k) of GA(k) is generated by {rα∨

i | r ∈ k×, i = 1, 2}, and similarly for the torus
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TΛ′(k) of GA′(k). This yields identifications of TΛ(k) and TΛ′(k). As rm = rm′

and rn = rn′

for all r ∈ k, it then follows from the above identifications that
GA(k) and GA′(k) admit the same Steinberg type presentation (see [Tit87, §3.6]),
as desired. �

Lemma 5.4. Let k be an arbitrary field with char k 6= 2. Let G = Gpma(k) be the
Mathieu–Rousseau completion associated with a 2 × 2 generalised Cartan matrix
A = ( 2 −m

−m 2 ) for some m,n > 2. Then the imaginary subgroup U im+ = Uma
∆im

+

(k)

of G is not contained in the kernel Z ′(G) of the action of G on its associated
building.

Proof. Let p denote the characteristic of k. Thus p = 0 or p ≥ 3. Assume for a
contradiction that U im+ is contained in Z ′(G).

Note first that U im+ =
⋂

w∈W wUma+(k)w −1. Indeed, as ∆im
+ is W -stable, the

inclusion ⊆ is clear from Proposition 2.1 and Lemma 2.3. Assume now for a
contradiction that there is some u ∈

⋂
w∈W wUma+(k)w −1 that is not in U im+.

Write u as a product u =
∏

x∈B∆+
[exp]λxx as in Proposition 2.1, and let Φu be

the set of positive real roots β such that λx 6= 0 for x ∈ Bβ . Thus Φu is nonempty.
Choose β ∈ Φu and v ∈ W such that −vβ is a simple root and vβ ′ ∈ ∆+ for all
β ′ ∈ Φu \ {β}. Then by Lemma 2.3, the element v conjugates u outside Uma+(k),
yielding the desired contradiction.

As Z ′(G) = Z(G).(Z ′(G) ∩ Uma+(k)) and as Z ′(G) ∩ Uma+(k) is normal in G
by [Rou12, Proposition 6.4], where Z(G) denotes the center of G, we deduce that
U im+ = Z ′(G) ∩ Uma+(k) is normal in G.

Recall the notations from Section 2.2. In particular, e1, e2 and f1, f2 denote the
Chevalley generators of the Kac–Moody algebra g with generalised Cartan matrix
A, and α1, α2 (resp. α∨

1 , α
∨
2 ) are the corresponding simple roots (resp. coroots).

Recall also the definition of the Z-form U of UC(g), as well as the Lie algebras
gZ = g∩ U and gk = gZ ⊗Z k. Finally, for each real root γ ∈ ∆re, choose as before
a Z-basis element eγ of gγZ.

We will show that there exist an imaginary root δ ∈ ∆im
+ , a simple root αi,

and a nonzero element x ∈ gδk such that δ − αi ∈ ∆re
+ and ad(fi)x is nonzero in

gk. Recalling from Section 2.2 the definition of the semi-direct product Bma+
i =

AΛ
i ⋉Uma

∆+\{αi}, this will imply that the root group U−αi
(k) conjugates the imaginary

root group Uma
( δ)(k) outside U im+, so that U im+ cannot be normal in G, yielding

the desired contradiction.
Assume first that m is not a multiple of p. As m,n ≥ 3, we know that δ :=

α1 +α2 is an imaginary root (see [Kac90, Lemma 5.3]) and that x := [e1, e2] ∈ gZ

is nonzero. Moreover, ad(f1)x = me2 is nonzero in gk since m is not a multiple of
p, as desired.

Assume next that m is a multiple of p. Set γ := s1(α2) = α2 + mα1 ∈ ∆re
+ .

Then again δ := α2 + γ ∈ ∆im
+ since 〈δ, α∨

1 〉 = 0 and 〈δ, α∨
2 〉 = 4 − mn < 0. Set

x := [e2, eγ] ∈ gZ. Note that ad(f2)eγ = 0 since γ − α2 = mα1 /∈ ∆. As p 6= 2, we
deduce that ad(f2)x = (2 −mn)eγ is nonzero in gk, as desired. �

Proof of Theorem E. It follows from Lemma 5.3 that the minimal Kac–Moody
group G1 = GA1

(Fq) over Fq of simply connected type with generalised Cartan
matrix A1 = ( 2 −2

−2 2 ) (hence of affine type) is isomorphic to any minimal Kac–
Moody group G2 = GA2

(Fq) over Fq of simply connected type with generalised
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Cartan matrix A2 = ( 2 −m
−n 2 ) for some m,n > 2 (hence of indefinite type) with

m ≡ n ≡ 2 (mod q − 1). We fix such a group G2.

For i = 1, 2 set Ĝi := G
pma
Ai

(Fq) and let Z ′
i denote the kernel of the action of Ĝi

on its associated building. Assume for a contradiction that there is an isomorphism
ψ : Ĝ1 → Ĝ2 of topological groups. As noticed in [Rou12, Remarque 6.20 (4)],

the quotient Ĝ1/Z
′
1 is a simple algebraic group over the local field Fq((t)). In

particular, all the contraction groups of Ĝ1/Z
′
1 are closed. Moreover, ψ(Z ′

1) is

the unique maximal proper normal subgroup of Ĝ2, and it is compact. It follows
that ψ(Z ′

1) = Z ′
2, for otherwise by Tits’ lemma (see [AB08, Lemma 6.61]), the

group Ĝ2 would be compact, a contradiction. Hence ψ induces an isomorphism of
topological groups between Ĝ1/Z

′
1 and Ĝ2/Z

′
2, so that in particular all contraction

groups of Ĝ2/Z
′
2 are closed. Let π : Ĝ2 → Ĝ2/Z

′
2 denote the canonical projection,

and let a be any element of Ĝ2. Then

π(con(a)) ⊆ π(con(a)) ⊆ con(π(a)) = con(π(a)).

It follows from Lemma 5.1 that the subgroup U im+ := Uma
∆im

+

(Fq) of Uma
∆+

(Fq) in Ĝ2

is such that
π(U im+) ⊆ π(con(a)) ⊆ con(π(a))

for a suitably chosen a ∈ Ĝ2 normalising U im+. Thus Lemma 5.2 implies that
π(U im+) = {1}, that is, U im+ ⊆ Z ′

2. This contradicts Lemma 5.4, as desired. �

Proof of Corollary F. Let k = Fq with char k 6= 2, and let the generalised
Cartan matrix A be as in the statement of Corollary F. As we saw in the proof
of Theorem E above, the minimal Kac–Moody group G2 = GA2

(Fq) (where we
set A2 = A) is then isomorphic to the minimal Kac–Moody group G1 = GA1

(Fq)
over Fq of simply connected type with generalised Cartan matrix A1 = ( 2 −2

−2 2 ),

whereas the quotients Ĝ1/Z
′
1 and Ĝ2/Z

′
2 cannot be isomorphic as topological

groups, where as before Ĝi := G
pma
Ai

(Fq) and Z ′
i is the kernel of the action of

Ĝi on its associated building (i = 1, 2).
Note that the isomorphism between G1 andG2 is the one provided by Lemma 5.3,

and it maps the twin BN-pair of G1 to that of G2. In particular, the Rémy–
Ronan completions Grr

A1
(Fq) of G1 and Grr

A2
(Fq) of G2 are isomorphic as topolog-

ical groups.
Moreover, as char k > 2, we know from [Rou12, Proposition 6.11] that G1 is

dense in Ĝ1. Assume now for a contradiction that G2 is dense in Ĝ2. Then
the surjective continuous homomorphisms ϕi : Ĝi → Grr

Ai
(Fq) (i = 1, 2) induce

isomorphisms of topological groups

Ĝ1/Z
′
1

∼= Grr
A1

(Fq) ∼= Grr
A2

(Fq) ∼= Ĝ2/Z
′
2,

yielding the desired contradiction. �

6. Proof of Theorems A and B

We now let k = Fq be a finite field, A be an indecomposable generalised Cartan
matrix of indefinite type, and we let G be one of the complete Kac–Moody groups
Grr

A (Fq) or Gpma
A (Fq). We also set U+ := Urr+(Fq) or U+ := Uma+(Fq) accordingly.

Then G is a locally compact totally disconnected topological group, and U+ is
a compact open subgroup of G. Indeed, for Grr

A (Fq), this follows from [CR09,
Proposition 1]; Gpma

A (Fq) is locally compact because Uma+(Fq) is compact open



16 T. MARQUIS

by [Rou12, 6.3], and it is totally disconnected because its filtration by the Uma
n (Fq)

is separated.
As mentioned in the introduction we first need to establish the topological

simplicity of Gpma
A (Fq) in full generality.

Proposition 6.1. Assume that the generalised Cartan matrix A is indecomposable
of indefinite type. Then G

pma
A (Fq)/Z

′(Gpma
A (Fq)) is topologically simple over any

finite field Fq.

Proof. Set G := G
pma
A (Fq) and Z ′ := Z ′(Gpma

A (Fq)). It follows from [CM11,
Corollary 3.1] that G possesses a closed cocompact normal subgroup H containing
Z ′ and such that H/Z ′ is topologically simple. It thus remains to see that in fact
H = G. Let π : G → G/H denote the canonical projection. Let also w be a
Coxeter element of W , and set a := w ∈ N(Fq) ⊂ G. Since G/H is compact and
totally disconnected, its contraction groups are trivial (see e.g. the introduction
of [CRW13]). In particular,

π(con(a±1)) ⊆ con(π(a±1)) = {1},

and hence the closures of the contraction groups con(a) and con(a−1) are contained
in ker π = H . It follows from Theorem 4.6 that H contains Uma+(Fq). But G
normalises H and contains N(Fq), and hence H also contains all real root groups.
Therefore H = G, as desired. �

We can now give a common proof for Theorems A and B:

Theorem 6.2. Assume that the generalised Cartan matrix A is indecomposable
of indefinite type, and let G be one of the complete Kac–Moody groups Grr

A (Fq) or
G

pma
A (Fq). Then G/Z ′(G) is abstractly simple.

Proof. Set U+ := Urr+(Fq) or U+ := Uma+(Fq) so that U+ ≤ G. Let K be a
nontrivial normal subgroup of G/Z ′(G). Since G/Z ′(G) is topologically simple
(see [CR09, Proposition 11] for Grr

A (Fq) and Proposition 6.1 for G
pma
A (Fq)), K

must be dense in G. Since G is locally compact and totally disconnected, it
then follows from Theorem 4.6 and Lemma 4.7, together with Theorem 1.1, that
K contains U+. Since U+ is open, K is open as well, and hence closed in G.
Therefore K = G, as desired. �

Remark 6.3. We remark that, although we made the assumption that the Kac–
Moody group G(k) be of simply connected type (to get simplified statements),
this of course does not have any impact on the simplicity results, and one might
as well consider an arbitrary Kac–Moody root datum D and the Kac–Moody
group GD(k). The essential difference is that, in general, GD(k) is not generated
by its root subgroups anymore, and one then has to consider a subquotient of
Gpma(k) (or else Grr(k)). More precisely, let G be either Gpma(k) or Grr(k),
let U+ be the corresponding subgroup Uma+(k) or Urr+(k), and let G(1) be the
subgroup of G generated by U+ and by all root groups of G(k). Then G(1) is
normal in G (and G = T(k).G(1)), and what we proved is the abstract simplicity
of G(1)/(Z

′(G) ∩G(1)).
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Birkhäuser Boston Inc., Boston, MA, 1998.
[Tit87] Jacques Tits, Uniqueness and presentation of Kac–Moody groups over fields, J. Alge-

bra 105 (1987), no. 2, 542–573.
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