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Abstract. In this paper we study the Lie theoretic properties of a class of topological groups which

carry a Banach manifold structure but whose multiplication is not smooth. If G and N are Banach–
Lie groups and π : G → Aut(N) is a homomorphism defining a continuous action of G on N , then

H := NoπG is a Banach manifold with a topological group structure for which the left multiplication
maps are smooth, but the right multiplication maps need not to be. We show that these groups share

surprisingly many properties with Banach–Lie groups: (a) for every regulated function ξ : [0, 1] → h

the initial value problem γ̇(t) = γ(t)ξ(t), γ(0) = 1H , has a solution and the corresponding evolution
map from curves in h to curves in H is continuous; (b) every C1-curve γ with γ(0) = 1 and γ′(0) = x

satisfies limn→∞ γ(t/n)n = exp(tx); (c) the Trotter formula holds for C1 one-parameter groups in

H; (d) the subgroup N∞ of elements with smooth G-orbit maps in N carries a natural Fréchet–Lie
group structure for which the G-action is smooth; (e) the resulting Fréchet–Lie group H∞ := N∞oG
is also regular in the sense of (a).

1. Introduction

The theory of infinite dimensional Lie groups can be developed very naturally in the context of Lie
groups modelled on locally convex spaces, so called locally convex Lie groups. For more details on this
theory, we recommend the survey article [Nee06] or the forthcoming monograph [GN]. The theory of
locally convex Lie groups has, however, certain drawbacks, the most serious one being that the Inverse
and Implicit Function Theorem fail beyond the class of Banach manifolds. In some situations one can
still use the Nash–Moser Theorem, but this theorem is difficult to apply because its assumptions are
often hard to verify.

It is for this reason that, early on in infinite dimensional Lie theory, people have tried to “ap-
proximate” Fréchet–Lie groups by certain Banach manifolds to work in a context where the analytic
tools, such as existence of solutions of ODEs and inverse function results, can be applied, and then
perform a passage to the Fréchet limit, which often is a projective limit of topological groups. The
most prominent situation where this strategy has been applied with great success is the analysis of dif-
feomorphism groups of compact smooth manifolds M . The group Diff(M) of smooth diffeomorphisms
carries the structure of a Fréchet–Lie group, but the usual construction of charts also applies to the
groups Diffk(M) of Ck-diffeomorphisms for any k ≥ 1. This provides the structure of a Ck-manifold

structure on each of the topological groups Diffk(M), but neither multiplication nor inversion are
smooth. Only the right multiplications are smooth maps. This kind of “weak Lie group structure” is
usually dealt with in the context of ILB (inverse limit of Banach) Lie groups, which play an important
role in geometric analysis (cf. [AK98], [EM99]). The Lie theory of these groups has been developed
by H. Omori and his collaborators in a series of papers culminating in [MOKY85] (see also Omori’s
monograph [Omo97]).

Another context where Lie theory leaves its natural “smooth context” is in the theory of group
representations. There one studies representations π : G → GL(V ) of a Lie group G on a Fréchet
space V , for which the action of G on V is continuous, but not in general smooth. This seemingly
weak requirement is dictated by the applications where smoothness of the action of G on V would
be much too strong. This phenomenon is well-known from the theory of one-parameter semigroups
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on Banach spaces, where norm continuity is much too strong and strong continuity is the natural
regularity assumption. Applying Lie theoretic methods to continuous representations can be a difficult
task, but recently some quite effective tools to overcome these difficulties have been developed (see in
particular [NS13]). To apply these tools, one has to assume that the addition in the Lie algebra L(G)
of the Lie group G under consideration is compatible with the topological group structure in the sense
that G has the Trotter property, i.e., for every x1, x2 ∈ L(G),

expG(t(x1 + x2)) = lim
n→∞

(
expG

( t
n
x1

)
expG

( t
n
x2

))n
holds uniformly on compact subsets of R. All locally exponential Lie groups (i.e., groups for which
the exponential function is a local diffeomorphism in 0) have this property, and this includes in par-
ticular all Banach–Lie groups ([Nee06]). Beyond the Banach context, the Trotter property is often
hard to verify, but in [NS13] this is done for diffeomorphism groups of compact manifolds and the
Virasoro group. These examples already show that the Trotter property is much weaker than the local
exponentiality of the group, and even more so, than the local convergence of the Baker–Campbell–
Dynkin–Hausdorff series in a 0-neighbourhood of the Lie algebra. Much of this has recently been
facilitated by H. Glöckner’s new regularity results [Glö15] which provide also solutions to differential
equations of the form γ̇(t) = γ(t)ξ(t), where ξ is not necessarily continuous. So ξ could also be a
Riemannian step function, or a uniform limit of step functions, i.e., a regulated function. Recently
M. Hanusch succeeded in showing that the strong Trotter property, i.e., that every C1-curve γ with
γ(0) = 1 and γ′(0) = x satisfies limn→∞ γ(t/n)n = exp(tx), follows from the local µ-convexity of G
([Ha18]). This is a continuity requirement on the multiplication expressed in terms of seminorms and
local charts which is intimately related to regularity properties of the Lie group ([Ha17]).

In the present paper we pursue a more detailed analysis of a class of Banach manifolds which
carry a topological group structure but which are not Lie groups, namely semidirect products H :=
N oπ G, where both N and G are Banach–Lie groups, but the homomorphism π : G→ Aut(N) only
defines a continuous action π∧ : G × N → N, (g, n) 7→ π(g)n. Then H is a topological group and a
smooth Banach manifold. The multiplication on H, however, is in general not smooth as the right
multiplication maps

ρn2,g2 : H → H, (n1, g1) 7→ (n1, g1)(n2, g2) = (n1 · π(g1)n2, g1g2)

are, in general, only continuous. On the other hand, the left multiplication maps are smooth. Following
the terminology of [KMR15], we call such a topological group, with a Banach manifold structure and
smooth left multiplication maps, a (left) half-Lie group. The semidirect products H = N oπ G as
above constitute an important class of examples of half-Lie groups because they are still rather well-
behaved but they also display many of the pathologies of half-Lie groups that are not Lie groups. Here
already the case G = R is very interesting. Another interesting class of examples arises for the group
N = Ck(M,K), M a compact smooth manifold, K a Banach–Lie group and k ∈ N0, where the action
of G on N comes from a smooth action of G on M . The aim of this paper is to understand to which
extent the Lie theoretic properties of Banach–Lie groups survive in the framework of these half-Lie
groups.

We now describe our main results in more detail. The first problem to investigate is the existence
of an exponential function expH : h → H on the tangent space h := T1H = T1N × T1G of H at the
identity, that is, of a map expH : h → H such that for each x ∈ h, the curve γx : I = [0, 1] → H
defined by γx(t) := expH(tx) is a C1 solution to the initial value problem (IVP)

γ′x(t) = γx(t).x, γx(0) = 1H ,

where we denoted for each h ∈ H by h → Th(H), x 7→ h.x := T1(λh)x the action of the tangent map
of λh : H → H, g 7→ hg at the identity on h. More generally, for each continuous curve γ ∈ C0(I, h),
one may ask whether there exists a solution η ∈ C1(I,H) to the IVP

(1.1) η′(t) = η(t).γ(t), η(0) = 1H .
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If a solution to (1.1) exists, then it is unique (see [Nee06, §II.3]), yielding an evolution map

EvolH : C0(I, h)→ C1(I,H), γ 7→ η.

If, moreover, EvolH is continuous, then the group H is called C0-regular. For instance, Banach–Lie
groups are C0-regular (see [Glö15, Theorem C]).

In [Glö15], H. Glöckner further defined a concept of R-regularity (which implies C0-regularity), by
replacing the space C0(I, h) in the above definition with the space R(I, h) of regulated functions, that
is, of functions in L∞(I, h) that are uniform limits of step functions (see §2.10 below for more details
and the precise meaning of the IVP (1.1) in this context). H. Glöckner then proves that Banach–Lie
groups are R-regular, and derives various important consequences.

Our first result implies in particular that the half-Lie group H := N oπ G possesses a (continuous)
exponential map expH : h→ H (see §4.1):

Theorem A. Let G,N be Banach–Lie groups, and let π : G → Aut(N) define a continuous action.
Then the half-Lie group H := N oπ G is R-regular.

A second natural problem is to understand whether h admits a Lie algebra structure, and whether
such a structure can be, as in the classical case, reconstructed from the space Hom1(R, H) of C1

one-parameter subgroups of H. We recall that for any Banach–Lie group Γ with Lie algebra L(Γ) and
exponential function expΓ : L(Γ)→ Γ, the Lie algebra structure on L(Γ) can be obtained by using the

identification Hom1(R,Γ)
≈−→ L(Γ), γ 7→ γ′(0), and the fact that Γ has the Trotter property, i.e., for

all γ1, γ2 ∈ Hom1(R,Γ),

lim
n→∞

(
γ1( tn )γ2( tn )

)n
= expΓ

(
t(γ′1(0) + γ′2(0))

)
holds uniformly in t on compact subsets of R, as well as the commutator property, i.e., for all γ1, γ2 ∈
Hom1(R,Γ),

lim
n→∞

(
γ1(
√
t
n )γ2(

√
t
n )γ1(−

√
t
n )γ2(−

√
t
n )
)n2

= expΓ

(
t[γ′1(0), γ′2(0)]

)
holds uniformly in t on compact subsets of [0,∞[. Actually Γ has the strong Trotter property (which
implies both the Trotter and commutator properties within the class of locally convex Lie groups, see
[Glö15, Theorem H]), that is, for each C1-curve γ : I → Γ with γ(0) = 1Γ,

lim
n→∞

γ( tn )n = expΓ(tγ′(0))

uniformly in t on compact subsets of [0,∞[.
It turns out that the space h carries, in general, no natural Lie bracket, so that one cannot speak

of the “Lie algebra of H” (see §4.2). On the other hand, we show, as in [Glö15, Theorem I], that the
R-regularity of H implies that H has the strong Trotter property.

Theorem B. Let G,N be Banach–Lie groups, and let π : G → Aut(N) define a continuous action.
Then the half-Lie group H := N oπ G has the strong Trotter property.

In our setting, the strong Trotter property does not immediately imply the Trotter property, as for
two C1-curves γ1, γ2 : R → H, the curve γ(t) := γ1(t)γ2(t) need not be C1. Nevertheless, with some
extra work, we can show that H has the Trotter property as well.

Theorem C. Let G,N be Banach–Lie groups, and let π : G → Aut(N) define a continuous action.
Then the half-Lie group H := N oπ G has the Trotter property.

We actually prove a stronger result, generalising both Theorems B and C (see Theorem 4.14 below for
a precise statement). As a surprising side result, we further show in §4.3 that, if N is abelian, then any
continuous one-parameter subgroup of H is conjugate to a smooth one-parameter subgroup, hence of
the form t 7→ g expH(tx)g−1 for some g ∈ H, x ∈ h.

In representation theory, an important technique consists in the passage from a continuous repre-
sentation on a Banach space to the subspace of smooth vectors, i.e., the elements with smooth orbit
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maps, on which the Lie algebra acts naturally. In this context, a third problem is to ask whether the
subgroup

N∞ := {n ∈ N | G→ N, g 7→ π(g)n is smooth}
of smooth elements of N for the action π carries a natural Lie group structure. Building on re-
sults from [Nee10], where the above question is shown to have a positive answer when N is a Ba-
nach space, we prove that N∞ has a Fréchet–Lie group structure for which the induced action
π∞ : G→ Aut(N∞), g 7→ π(g)|N∞ is smooth. This implies in particular the following (see §5.1).

Theorem D. Let G,N be Banach–Lie groups and π : G→ Aut(N) define a continuous action. Then
N∞ carries a natural Fréchet–Lie group structure for which the action π∞ is smooth. In particular,
the semidirect product H∞ := N∞ oπ∞ G is a Fréchet–Lie group.

Finally, we investigate in §5.2 the R-regularity of the Lie group H∞.

Theorem E. Let G,N be Banach–Lie groups, and let π : G → Aut(N) define a continuous action.
Then H∞ := N∞ oπ∞ G is R-regular with a smooth evolution map. In particular, H∞ has the strong
Trotter and commutator properties.

Acknowledgement. The authors thank Helge Glöckner for enlightening discussions on the topic of
measurable regularity properties. They also thank the referees for helpful remarks and for pointing
out some references.

2. Preliminaries

Notation. Throughout this paper, N = {1, 2, . . . } denotes the set of positive integers, and N0 :=
N ∪ {0} the set of nonnegative integers.

We first recall the basic concepts pertaining to infinite-dimensional Lie groups modelled on locally
convex spaces, and their measurable regularity properties. The main references for this section are
[Glö15] and [Nee06].

2.1. Lebesgue spaces ([Glö15, 1.7–1.13, 1.25, 1.31]). Let I = [a, b] ⊆ R for some a < b, which we
view as a measure space for the (restriction of) the Lebesgue measure on R. Let E be a real Fréchet
space, which we view as a measurable space with respect to its σ-algebra of Borel sets. We write P (E)
for the set of all continuous seminorms q : E → [0,∞[.

We let L1(I, E) denote the space of all measurable functions γ : I → E with separable image (i.e.
γ(I) has a dense countable subset) such that

||γ||L1,q :=

∫
I

q(γ(s))ds <∞ for all q ∈ P (E).

Similarly, we let L∞(I, E) denote the space of all measurable functions γ : I → E with separable and
bounded image, so that

||γ||L∞,q := ||q ◦ γ||L∞ = ess sup(q ◦ γ) <∞ for all q ∈ P (E).

For p ∈ {1,∞}, we equip Lp(I, E) with the (non-Hausdorff) locally convex vector topology defined by
the seminorms || · ||Lp,q for q ∈ P (E).

Let L∞rc(I, E) be the space of all measurable maps γ : I → E with relatively compact image. We
endow L∞rc(I, E) ⊆ L∞(I, E) with the topology induced by L∞(I, E). Finally, let R(I, E) be the
space of functions γ : I → E that are the uniform limit of a sequence of step functions. We recall
that γ : I → E is a step function if there exists a partition a = t0 < t1 < · · · < tn = b of I such that
γ|]tj−1,tj [ is constant for all j ∈ {1, . . . , n}. A function γ ∈ R(I, E) is called regulated, and we endow
R(I, E) ⊆ L∞rc(I, E) with the topology induced by L∞(I, E).

Given a measurable map γ : I → E, we write [γ] for the equivalence class of measurable maps
γ1 : I → E such that γ(s) = γ1(s) for almost all s ∈ I. (When no confusion is possible, we will
also simply write γ for its equivalence class [γ].) We then define L1(I, E) (resp. L∞(I, E), L∞rc(I, E),
R(I, E)) as the space of equivalence classes [γ] with γ in L1(I, E) (resp. L∞(I, E), L∞rc(I, E), R(I, E)).
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For p ∈ {1,∞}, we equip Lp(I, E) with the locally convex vector topology defined by the seminorms
||[γ]||Lp,q := ||γ||Lp,q for q ∈ P (E), and we give L∞rc(I, E) and R(I, E) the induced topology, coming
from the inclusions R(I, E) ⊆ L∞rc(I, E) ⊆ L∞(I, E). Note that R(I, E) admits a basis of open
0-neighbourhoods consisting of the sets

R(I, V ) := {α ∈ R(I, E) | α(I) ⊆ V },

where V runs through a basis of open 0-neighbourhoods in E.
Finally, note that the map C(I, E)→ L∞(I, E), γ 7→ [γ] is injective; we will equip the space C(I, E)

of continuous functions with the induced topology, given in this case by the seminorms ||γ||L∞,q =
supt∈I q(γ(t)) for q ∈ P (E).

2.2. Integration ([Glö15, 1.16–1.28]). Let E be a real locally convex space, E′ be its topological dual
(that is, the space of all continuous linear functionals E → R), and let γ : I = [a, b]→ E be a function
such that λ ◦ γ ∈ L1(I,R) for each λ ∈ E′. We define the weak integral of γ, if it exists, as the unique
element w ∈ E such that

λ(w) =

∫
I

λ(γ(t))dt for all λ ∈ E′,

and we write
∫ b
a
γ(t)dt =

∫
I
γ(t)dt := w.

As usual, a map η : I → E is called differentiable at t ∈ I if the limit η′(t) := lims→t
η(s)−η(t)

s−t exists
in E. We have the following version of the Fundamental Theorem of Calculus:

Lemma 2.1. Let E be a Fréchet space, I = [a, b] ⊆ R and γ ∈ L1(I, E). Then the weak integrals
needed to define

η : I → E, s 7→
∫ s

a

γ(t)dt

exist, and η is a continuous function which is differentiable almost everywhere, with η′ = [γ].

2.3. Differentiation ([Glö15, 1.49–1.52]). Let E and F be real locally convex spaces, U ⊆ E be an
open set and f : U → F be a map. The derivative of f at x ∈ U in the direction y ∈ E is defined as
the limit

df(x, y) := (Dyf)(x) :=
d

dt

∣∣∣
t=0

f(x+ ty) = lim
t→0

1

t
(f(x+ ty)− f(x)),

whenever it exists. We say that f is C0 if it is continuous. We say that f is C1 if f is continuous, the
derivatives df(x, y) exist in F for all (x, y) ∈ U × E, and df : U × E → F is continuous. Recursively,
we say, for some integer k ≥ 1, that f is Ck if f is C1 and df : U ×E → F is Ck−1. Equivalently, f is
Ck if and only if it is continuous and, for all positive integers j ≤ k, the iterated directional derivatives

djf(x, y1, . . . , yj) := (Dyj . . . Dy1f)(x)

exist for all x ∈ U and y1, . . . , yj ∈ E, and the map djf : U ×Ej → F is continuous. We call f smooth
or C∞ if it is Ck for all k ∈ N.

We record for future reference the following results.

Lemma 2.2 ([Glö15, 2.1]). Let E1, E2, F be Fréchet spaces, and let f : E1 ×E2 → F be a continuous
map such that f(x, ·) : E2 → F is linear for all x ∈ E1. Let η : I = [0, 1] → E1 be a continuous
function and γ ∈ R(I, E2). Then f ◦ (η, γ) ∈ R(I, F ).

Lemma 2.3. Let E1, E2, F be Fréchet spaces and let V ⊆ E1 be open. Let f : V × E2 → F be a
smooth map such that f(v, ·) : E2 → F is linear for all v ∈ V . Then

f̃ : V ×R(I, E2)→ R(I, F ), (x, γ) 7→ f(x, γ(·))

is smooth.

Proof. This follows from [Glö15, 2.2], since the natural injection V ↪→ C(I, V ) is smooth. �
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2.4. Manifolds ([Glö15, 1.53], [Nee06, Chapter I]). Since composition of smooth maps are smooth,
one can define a smooth manifold M modelled on a real locally convex space E (or just E-manifold)
by replacing the modelling space Rn by E in the classical definitions of manifolds (see [Nee06]). If E
is a Banach (resp. Fréchet) space, then M is called a Banach (resp. Fréchet) manifold.

As usual, TM =
⋃̇
x∈MTxM then denotes the tangent bundle of M and TxM ∼= E the tangent space

of M at x ∈M . Likewise, for a smooth map f : M → N between smooth manifolds, Tf : TM → TN
(resp. Txf : TxM → Tf(x)N) is the corresponding tangent map (resp. tangent map at x ∈M). If U is
an open subset of a locally convex space E, we identify TU with U×E. For a smooth map f : M → E
from a smooth manifold M to a locally convex space E, we then write df : TM → E for the second
component of Tf : TM → E × E. Note that §2.3 also yields a notion of Ck-maps between smooth
manifolds for each k ∈ N ∪ {∞}.

2.5. Lie groups ([Nee06, Chapters II–IV]). A (locally convex) Lie group G is a group with a smooth
manifold structure modelled on a locally convex space, for which the group operations (multiplication
and inversion) are smooth. We write 1G (or simply 1 if no confusion is possible) for the identity
element of G, and λg : G → G, x 7→ gx and ρg : G → G, x 7→ xg for the left and right multiplication
maps. For g ∈ G, we also write Int(g) : G→ G, x 7→ gxg−1 for the conjugation map.

For each x ∈ T1G, there is a unique left invariant vector field xl : G → TG with xl(1) = x,
defined by xl(g) := T1(λg)x. The Lie bracket on the space of left invariant vector fields then induces a
continuous Lie bracket on g := T1(G), characterised by [x, y]l = [xl, yl] for x, y ∈ g. We let L denote the
functor from the category of locally convex Lie groups to the category of locally convex topological Lie
algebras, which associates to a group G its Lie algebra L(G) := (g, [·, ·]) and to a Lie group morphism
ϕ : G1 → G2 the corresponding tangent map at the identity L(ϕ) = T1(ϕ) : L(G1)→ L(G2). If g is a
Banach (resp. Fréchet) space, then G is called a Banach (resp. Fréchet) Lie group.

The left multiplication and conjugation maps on G induce smooth maps

G× g→ TG, (g, x) 7→ g.x := T1(λg)x and Ad: G× g→ g, (g, x) 7→ Ad(g)x := L(Int(g))x.

Note that the adjoint action Ad of G on g is by topological isomorphisms.
A map expG : g→ G is called an exponential function if for any x ∈ g, the curve γx(t) := expG(tx)

is a C1 one-parameter subgroup with γ′x(0) := T0(γx)(1) = x. If G has an exponential function, then
it is unique.

Assume now thatG is a Banach Lie group. ThenG has a smooth exponential function expG : g→ G,
and expG maps some open (convex) 0-neighbourhood VG in g diffeomorphically onto some open subset
UG of G. If WG ⊆ VG is an open (convex) 0-neighbourhood in g such that

{expG(x) expG(y) | x, y ∈WG} ⊆ VG,
then one can define on WG the local multiplication

∗ : WG ×WG → g, (x, y) 7→ x ∗ y := exp−1
G (expG(x) expG(y)),

which is a smooth map satisfying tx ∗ sx = (t+ s)x for all x ∈WG and s, t ∈ R with |s|, |t|, |s+ t| ≤ 1
([Nee06, Example IV.2.4]).

Given some k ∈ N ∪ {∞} with k ≥ 1, some locally convex spaces E,F , some open subset U ⊆ E
and some Ck-map f : UG × U → F , we will use the exponential chart (UG, exp−1

G ) of G to define the
k-th derivative dk1f : UG × gk × U → F of f in the first coordinate by setting

d1
1f(g, x, v) := d1f(g, x, v) := d(fv)(g, x) =

d

dt

∣∣∣
t=0

f(g expG(tx), v) for all g ∈ UG, x ∈ g and v ∈ U

where fv : UG → F, g 7→ f(g, v) and, recursively, ds+1
1 f = d1(ds1f) for all s ∈ {1, . . . , k − 1}. In other

words, for all g ∈ UG, x1, . . . , xk ∈ g and v ∈ U ,

(2.1) dk1f(g, x1, . . . , xk, v) =
d

dt1

∣∣∣
t1=0

. . .
d

dtk

∣∣∣
tk=0

f(g expG(t1x1) . . . expG(tkxk), v).

Note that ds1f is a Ck−s-map for all s ∈ {1, . . . , k}. For a Ck-map h : UG → F , we also define
dkh := dk1h : UG × gk → F as above by viewing h as a map h : UG × {0} → F .



HALF-LIE GROUPS 7

2.6. Half-Lie groups. In this paper, we will consider the following generalisation of a Lie group (see
also Section 3 below). Let E be a locally convex space, and let G be a smooth manifold modelled on
E. We call G a (left) half-Lie group modelled on E if G admits a topological group structure (with
respect to the manifold topology) such that all left multiplication maps λg : G→ G are smooth.

2.7. Local Lie groups ([Nee06, II.1.10]). Given a group G with multiplication m : G × G → G
and identity 1G, a quadruple (U,DU ,m, 1G) consisting of a symmetric subset U = U−1 ⊆ G with
1G ∈ U and of a subset DU ⊆ U × U with ((U × {1G}) ∪ ({1G} × U) ⊆ DU and m(DU ) ⊆ U is a
so-called local group. If (U,DU ,m, 1G) is such a local group and, in addition, U has a smooth manifold
structure, DU is open, and the local multiplication and inversion maps DU → U, (x, y) 7→ m(x, y) and
U → U, x 7→ x−1 are smooth, then (U,DU ,m, 1G) (or simply U) is called a local Lie group.

2.8. Absolutely continuous maps ([Glö15, 3.6–3.20, 4.2]). Let I = [a, b] ⊆ R for some a < b and
let E be a Fréchet space. Define ACR(I, E) ⊆ C(I, E) as the space of continuous functions η : I → E
for which there exists [γ] ∈ R(I, E) such that

η(s) = η(a) +

∫ s

a

γ(t)dt for all s ∈ I.

Then [γ] = η′ is unique by Lemma 2.1, and the map

ACR(I, E)→ E ×R(I, E), η 7→ (η(a), η′)

is an isomorphism, which we use to define on ACR(I, E) a locally convex vector topology. The inclusion
map ACR(I, E) ↪→ C(I, E) is then continuous, and for any open subset V ⊆ E, the set

ACR(I, V ) := {η ∈ ACR(I, E) | η(I) ⊆ V }
is open in ACR(I, E).

More generally, given a smooth manifold M modelled on E, one can define ACR(I,M) as the set
of all continuous functions η : I → M for which there is a partition a = t0 < t1 < · · · < tn = b of I
such that, for each j ∈ {1, . . . , n}, there exists a chart ϕj : Uj → Vj ⊆ E of M with η([tj−1, tj ]) ⊆ Uj
and ϕj ◦ γ|[tj−1,tj ] ∈ ACR([tj−1, tj ], E).

If G is a Fréchet–Lie group, then ACR(I,G) is a group under pointwise multiplication, and there is
a unique Lie group structure on ACR(I,G) such that

ACR(I, U) := {η ∈ ACR(I,G) | η(I) ⊆ U}
is open in ACR(I,G) and

ACR(I, ϕ) : ACR(I, U)→ ACR(I, V ), η 7→ ϕ ◦ η
is a diffeomorphism for each chart ϕ : U → V of G such that 1G ∈ U and U = U−1.

2.9. Logarithmic derivative ([Glö15, 5.1–5.11]). Let E be a Fréchet space. Let G be either a half-
Lie group or a local Lie group modelled on E. Write g := T1(G). Let I = [a, b] ⊆ R for some a < b
and let η ∈ ACR(I,G). We define the (left) logarithmic derivative δ(η) ∈ R(I, g) of η as follows.

Let a = t0 < t1 < · · · < tn = b be a partition of I such that, for each j ∈ {1, . . . , n}, there exists a
chart ϕj : Uj → Vj ⊆ E of G with η([tj−1, tj ]) ⊆ Uj . Then

ηj := ϕj ◦ η|[tj−1,tj ] ∈ ACR([tj−1, tj ], E)

for all j ∈ {1, . . . , n}, and one can thus consider η′j ∈ R(I, E), which we write as η′j = [γj ] for some
γj ∈ R(I, E). Define

γ : I → TG

via γ(t) := T (ϕj)
−1(ηj(t), γj(t)) if t ∈ [tj−1, tj [ with j ∈ {1, . . . , n} and γ(b) := T (ϕn)−1(ηn(b), γn(b)).

We then set

δ(η) := [ω` ◦ γ] ∈ R(I, g),

where

ω` : TG→ g, v ∈ TgG 7→ g−1.v := Tg(λg−1)v ∈ T1G.
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Note that if G and H are smooth Fréchet–Lie groups and f : G → H is a smooth homomorphism,
then f ◦ η ∈ ACR(I,H) for each η ∈ ACR(I,G) and

(2.2) δ(f ◦ η) = L(f) ◦ δ(η),

where L(f) ◦ δ(η) := [L(f) ◦ γ] if δ(η) = [γ] (see [Glö15, 5.2(b)]).

2.10. R-regularity ([Glö15, 5.14–5.26]). Let I = [a, b] ⊆ R for some a < b and let E be a Fréchet
space. Let also V ⊆ E be open, and let g : I × V → E be a map. A continuous function η : I → E is
called an ACR-Carathéodory solution to y′ = g(t, y) if η(I) ⊆ V , the map t 7→ g(t, η(t)) is in R(I, E),
and

η(t2)− η(t1) =

∫ t2

t1

g(s, η(s))ds for all t1, t2 ∈ I.

Consider next a smooth manifold M modelled on E, and let (t0, y0) ∈ I ×M and f : I ×M → TM
be a map. Then η ∈ ACR(I,M) is an ACR-Carathéodory solution to the initial value problem (IVP)

y′ = f(t, y), y(t0) = y0

if η(t0) = y0 and for each t ∈ I, there exists ε > 0 such that η(I∩]t − ε, t + ε[) ⊆ U for some chart
ϕ : U → V ⊆ E of M and ϕ ◦ η|I∩]t−ε,t+ε[ is an ACR-Carathéodory solution to y′ = g(t, y) with

g : R× V → E, (t, y) 7→ dϕ(f(t, ϕ−1(y))).

Assume now that I = [0, 1] ⊆ R. If G is a half-Lie group modelled on E, with Lie algebra g := T1G,
then G is called R-semiregular if for each γ ∈ R(I, g), there exists η ∈ ACR(I,G) such that

(2.3) δ(η) = γ and η(0) = 1G.

If it exists, then EvolG(γ) := η is uniquely determined. Note that, writing γ = [ζ] for some ζ ∈ R(I, g),
the map η ∈ ACR(I,G) satisfies (2.3) if and only if it is an ACR-Carathéodory solution to the IVP

y′ = f(t, y), y(0) = 1G

with f : I × G → TG, (t, y) 7→ y.ζ(t) := T (λy)ζ(t). We moreover say that G is R-regular1 if it is
R-semiregular and the evolution map

EvolG : R(I, g)→ ACR(I,G)

is continuous. Note that if G is R-semiregular, then it has an exponential function expG : g→ G given
by

(2.4) expG(v) := evolG(cv) for all v ∈ g,

where cv : I → g, t 7→ v is the constant function and

evolG : R(I, g)→ G, γ 7→ EvolG(γ)(1).

If G is a local Lie group modelled on E, with Lie algebra g := T1G, we call G locally R-semiregular if
there exists an open 0-neighbourhood Ω ⊆ R(I, g) such that for each γ ∈ Ω, there exists η ∈ ACR(I,G)
such that

δ(η) = γ and η(0) = 1G.

If it exists, then EvolG(γ) := η is uniquely determined. If, moreover, G has a global chart, then G is
called locally R-regular if it is locally R-semiregular and Ω can be chosen such that

EvolG : Ω→ ACR(I,G)

is continuous.
We record for future reference the following results.

Lemma 2.4 ([Glö15, 5.20]). Set I = [0, 1] ⊆ R, and let G be an R-regular Fréchet–Lie group with Lie
algebra g. Then the evolution map EvolG : R(I, g)→ ACR(I,G) is smooth if and only if it is smooth
as a map R(I, g)→ C(I,G).

1Note that our notion of R-regularity is weaker than the one in [Glö15, 5.16]: R-regular in loc. cit. means R-regular

with a smooth evolution map in this paper.
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Lemma 2.5 ([Glö15, 5.25]). Let G be a Fréchet–Lie group. Then

(1) G is R-semiregular if and only if G is locally R-semiregular;
(2) G is R-regular with a smooth evolution map if and only if G is locally R-regular with a smooth

evolution map.

Lemma 2.6 ([Glö15, Theorems A and C]). Every Banach–Lie group is R-regular, with a smooth
evolution map.

Lemma 2.7. Let G,N be Banach Lie groups with respective Lie algebras g, n, and let f : G → N be
a Lie group morphism. Then for any α ∈ R(I, g), we have

f ◦ EvolG(α) = EvolN (L(f) ◦ α).

Proof. This readily follows from (2.2) in §2.9. �

3. Half-Lie groups

In this section, we introduce in more detail the main protagonists of this paper, namely the half-Lie
groups.

3.1. Definition and examples.

Definition 3.1. Let E be a locally convex space and G be a smooth manifold modelled on E. We
recall from §2.6 that G is called a (left) half-Lie group modelled on E if G admits a topological group
structure (with respect to the manifold topology) such that all left multiplication maps λg : G→ G are
smooth. In this paper, we will only consider half-Lie groups modelled on Banach spaces, and simply
call them half-Lie groups.

Remark 3.2. Note that one may replace left multiplication maps by right multiplication maps in
Definition 3.1, to obtain a concept of right half-Lie group. If G is a right half-Lie group, one can also
define the concepts presented in §2.9 and §2.10, using right logarithmic derivatives. Of course, if m
denotes the multiplication in G, then the group Gop obtained by equipping G with the multiplication
mop(g, h) := m(h, g) instead of m is a (left) half-Lie group.

There are several sources of examples of interest of half-Lie groups, and we now list some of them.

Example 3.3. Let G,N be Banach–Lie groups, and let π : G→ Aut(N) be a continuous automorphic
action of G on N , in the sense that the map

G×N → N, (g, n) 7→ π(g)n

is continuous. Consider the topological group H := N oπ G, with multiplication

(n1, g1)(n2, g2) = (n1 · π(g1)n2, g1g2) ∀n1, n2 ∈ N, g1, g2 ∈ G.
Then all left multiplication maps λn,g : H → H are smooth, whereas the right multiplication maps
ρn,g : H → H are in general only continuous. In particular, H is a half-Lie group.

Example 3.4. Extended mapping groups H := N oπ G are concrete classes of Example 3.3: here
N = Ck(M,K) is the Banach–Lie group of Ck-maps (k ∈ N) from the compact smooth manifold M
to some Banach–Lie group K, and G is a Banach–Lie group acting smoothly on M , which yields a
continuous action by (π(g)f)(s) := f(g−1s). An important special case arises for M = S1 on which
the circle group G = T acts by rigid rotations (loop groups).

Example 3.5. A second particular case of Example 3.3 is the following: let G be a Banach–Lie group
(e.g. G = R) and consider a continuous representation π : G → GL(X) of G on some Banach space
X. Then the affine group H = X oπ G is a half-Lie group.

Example 3.6. A third particular case of Example 3.3 is the following: let G be a Banach–Lie group
and let π : G → Aut(A) be a continous automorphic action of G on a unital Banach algebra A
(see [BR87]). Then the induced action of G on the group A× of units of A yields a half-Lie group
H = A× oπ G.
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Example 3.7. Let M be a compact manifold and r ∈ N. Then the group H := Diffr(M) of Cr-
diffeomorphisms of M is a right half-Lie group (see [Omo97, §VI.2]).

Example 3.8. Let M be a compact smooth manifold or Rd, and k ∈ N with k > 1
2 dim(M)+1. Then

the group of Sobolev Hk-diffeomorphisms of M is a right half-Lie group. Such groups are important
because they can be equipped with right-invariant Hk-Sobolev Riemannian metrics, turning them into
strong Riemannian Hilbert manifolds (see e.g. [BV17]).

Example 3.9. Set I = [0, 1] ⊆ R, and let G be a Fréchet–Lie group with Lie algebra g. Replacing the
space of regulated functions R(I, g) by the Lebesgue space Lp(I, g) for p ∈ N∪{∞} (resp. by Ck(I, g)
for k ∈ N0 ∪{∞}) in §2.10 yields a concept of Lp- (resp. Ck-) semiregularity for G (see [Glö15, 5.16]).
For E ∈ {R,Lp, Ck}, let EvolG : E(I, g)→ ACE(I,G) denote the corresponding evolution map.

Assume that G is E-semiregular with continuous evolution map EvolG. Then

EvolG : E(I, g)→ ACE(I,G)∗ := {η ∈ ACE(I,G) | η(0) = 1G}

is bijective. Keeping the locally convex space structure on H := E(I, g) and transporting on H the
(pointwise) group multiplication from ACE(I,G)∗ then turns H into a right half-Lie group (see [Glö15,
5.34, 5.38(e)]).

Example 3.10. The authors of the paper [KMR15] (in which the terminology half-Lie group is
introduced) construct extensions of certain groups of diffeomorphisms of Rn, which are right half-Lie
groups.

3.2. Some notation. In this paper, we will focus on the study of the class of examples presented in
Example 3.3. In the sequel, unless otherwise stated, G and N will denote Banach Lie groups, and
π : G→ Aut(N) a continuous action of G on N by automorphisms, in the sense that the action map

π∧ : G×N → N, (g, n) 7→ π∧(g, n) := π(g)n

is continuous. We set g := L(G) and n := L(N), and we let h := T1H = n×g denote the tangent space
at the identity of the half-Lie group H := N oπ G. For each n ∈ N , we denote by

πn : G→ N, g 7→ π(g)n

the orbit map for π. We also define the derived action and orbit maps

π̇∧ : G× n→ n, (g, v) 7→ L(π(g))v and π̇v : G→ n, g 7→ L(π(g))v

for each v ∈ n. For each k ∈ N ∪ {∞}, we let

Nk := {n ∈ N | πn is a Ck-map}

denote the space of Ck-elements for the action π, and

nk := {v ∈ n | π̇v is a Ck-map}

the space of Ck-vectors for the linear action π̇ : G → GL(n), g 7→ π̇∧(g, ·). Note that for any k ∈ N,
one can define a linear map (cf. [Nee10, Section 4])

dπ̇ : g→ Hom(nk+1, nk), dπ̇(x)v := dπ̇v(1G, x) =
d

dt

∣∣∣
t=0

π̇(expG(tx))v.

Finally, we recall from Lemma 2.6 that G and N are R-regular, with smooth evolution maps

EvolG : R(I, g)→ ACR(I,G) and EvolN : R(I, n)→ ACR(I,N),

where I := [0, 1] ⊆ R.

4. R-regularity of H and consequences

We use, throughout this section, the notation of §3.2. We establish in this section the R-regularity
of the half-Lie group H = N oπ G, and deduce some consequences, notably Trotter formulas for H.
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4.1. R-regularity of H. We start with a few preparation lemmas.

Lemma 4.1. Let Γ be a Banach–Lie group and let (αn)n∈N be a sequence of functions in L∞rc(I,Γ)
converging uniformly to some α ∈ L∞rc(I,Γ). Let Kα (resp. Kαn) denote the closure of α(I) (resp.
αn(I)) in Γ. Then KΓ := Kα ∪

⋃
n∈NKαn is a compact subset of Γ.

Proof. Note first that Banach–Lie groups are first countable and hence metrisable by the Birkhoff–
Kakutani Theorem. We equip Γ with a metric dΓ : Γ × Γ → R compatible with the topology. Let U
be an open cover of KΓ. Then U is also an open cover of each of the compact subsets Kα and Kαn .
Let (Ui)1≤i≤n be a finite subcover of Kα. Then U :=

⋃n
i=1 Ui contains an ε-neighbourhood of Kα for

some ε > 0. Since (αn)n∈N converges uniformly to α, there is some N ∈ N such that

dΓ(αn(t), α(t)) < ε for all t ∈ I and n ≥ N .

In particular, Kα ∪
⋃
n≥N Kαn ⊆ U . Completing (Ui)1≤i≤n with a finite subcover of the compact set⋃N−1

n=1 Kαn then yields the desired finite subcover of KΓ. �

Lemma 4.2. Let V be an open 0-neighbourhood in n such that expV := expN |V : V → expN (V ) is
a diffeomorphism. Let UG ⊆ G and V1 ⊆ V be identity neighbourhoods such that π(UG) expN (V1) ⊆
expN (V ). Then

(expV )−1(π(g) expN (v)) = π̇(g)v for all g ∈ UG and v ∈ V1.

Proof. Fix some g ∈ UG and v ∈ V1, and consider for t ∈ [0, 1] the functions

L(t) := (expV )−1(π(g) expN (tv)) and R(t) := π̇(g)tv.

Note first that π(g) expN (tv) ∈ expN (V ) for all t ∈ [0, 1], so that L(t) is well-defined. Moreover,
since π(g) expN (tv) = expN (π̇(g)tv) by naturality of the exponential function, we have L(t) = R(t)
whenever R(t) ∈ V , which occurs for all sufficiently small values of t (say for t ∈ [0, ε] for some ε > 0),
as π̇(g) acts continuously on n. On the other hand, for all s, t ∈ [0, 1] with s + t ∈ [0, 1], we have the
relations L(s+ t) = L(s) + L(t) (see [Nee06, Example IV.2.4(a)]) and R(s+ t) = R(s) +R(t). Hence
L(t) and R(t) are (locally) smooth one-parameter subgroups of the Banach–Lie algebra (n,+), which
coincide for t ∈ [0, ε], and hence also for all t ∈ [0, 1]. In particular, L(1) = R(1), as desired. �

Lemma 4.3. The linear action π̇∧ : G× n→ n, (g, v) 7→ π̇(g)v is continuous.

Proof. Let V, V1 and UG be as in Lemma 4.2. For each v ∈ n, consider the maps

πexpN (v) : G→ N, g 7→ π(g) expN (v) and π̇v : G→ n, g 7→ π̇(g)v.

Then πexpN (v) is continuous by hypothesis, and hence π̇v = (expV )−1 ◦ πexpN (v) is also continuous on
UG for all v ∈ V1 by Lemma 4.2. From the relation π̇v ◦ λg = π̇(g) ◦ π̇v and the fact that π̇v(g) is
continuous linear in v for each g ∈ G, we then deduce that π̇v is continuous on G for all v ∈ n. Since
G is metrisable, this implies together with [Nee10, Lemma 5.2] that π̇∧ is continuous, as desired. �

Theorem 4.4. Let G,N be Banach–Lie groups, and let π : G→ Aut(N) be a continuous action. Then
H := N oπ G is R-regular, i.e. for any [γ] ∈ R(I, h) there exists a unique γ̃ = EvolH(γ) ∈ ACR(I,H)
with

(4.1) δ(γ̃) = [γ] and γ̃(0) = 1H ,

and the map EvolH : R(I, h)→ ACR(I,H) is continuous.

Proof. For regulated functions α : I → n and β : I → g, we define the map

fα,β : I → n, t 7→ π̇(EvolG(β)(t))α(t).

Fix some equivalence class [γ] ∈ R(I, h) = R(I, n) × R(I, g), which we write as [γ] = ([α], [β]) for
some regulated functions α : I → n and β : I → g.

Recall first that the IVP

(4.2) δ(β̃) = [β], β̃(0) = 1G
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has a unique solution β̃ := EvolG(β) ∈ ACR(I,G) and that the map EvolG : R(I, g) → ACR(I,G) is
smooth, hence continuous.
• Claim 1: If the sequences (αn)n∈N ⊆ R(I, n) and (βn)n∈N ⊆ R(I, g) converge uniformly to α and β,
respectively, as n→∞, then fαn,βn(t)→ fα,β(t) as n→∞, uniformly in t.

Indeed, fix some ε > 0. Let Kα (resp. Kαn) denote the closure of α(I) (resp. αn(I)) in n and set
Kβ := EvolG(β)(I) and Kβn := EvolG(βn)(I). Note that Kβ and each Kβn is compact in G since EvolG
takes values in a space of continuous functions. Lemma 4.1 then implies that Kn := Kα ∪

⋃
n∈NKαn

and KG := Kβ ∪
⋃
n∈NKβn are compact, and hence K := KG × Kn is a compact subset of G × n.

We equip G with a metric dG : G × G → R compatible with the topology. Since the linear action
π̇∧ : G × n → n, (g, v) 7→ π̇(g)v is continuous by Lemma 4.3, it is uniformly continuous on K by the
Heine–Cantor Theorem, and hence there exists some δ > 0 such that

∀g, h ∈ KG, v, w ∈ Kn : dG(g, h) < δ, ||v − w||n < δ =⇒ ||π̇(g)v − π̇(h)w||n < ε.

Note also that EvolG(βn) converges uniformly to EvolG(β) by continuity of EvolG, and hence there is
some N ∈ N such that

dG(EvolG(βn)(t),EvolG(β)(t)) < δ and ||αn(t)− α(t)||n < δ for all t ∈ I and n ≥ N ,

yielding the claim.
• Claim 2: fα,β ∈ R(I, n).

Indeed, assume first that α is continuous. Then fα,β is the composition of the continuous maps

I → G× n, t 7→ (EvolG(β)(t), α(t)) and G× n→ n, (g, v) 7→ π̇(g)v,

and is in particular continuous, hence uniformly continuous, hence regulated. In particular, if α is a
step function (hence piecewise continuous), then fα,β is also regulated. Finally, if α is regulated, then
it is a uniform limit of step functions, so that fα,β is a uniform limit of regulated functions by Claim 1,
and is therefore regulated as well.
• Claim 3: The half-Lie group H has an evolution map given by

EvolH : R(I, h)→ ACR(I,H), ([α], [β]) 7→ (EvolN (fα,β),EvolG(β)).

Indeed, a pair (α̃, β̃) ∈ ACR(I,H) = ACR(I,N) × ACR(I,G) is a solution of the IVP (4.1) if and
only if it is an ACR-Carathéodory solution to

y′ = f(t, y), y(0) = 1G

with f : I ×H → TH given for all t ∈ I, n ∈ N and g ∈ G by

f(t, n, g) := (n, g).γ(t) = T (λ(n,g))(α(t), β(t))

=
d

ds

∣∣∣
0
(n, g)(expN (sα(t)), expG(sβ(t)))

=
d

ds

∣∣∣
0

(
n · π(g) expN (sα(t)), g · expG(sβ(t))

)
=
(
n.π̇(g)α(t), g.β(t)

)
.

Hence (α̃, β̃) is a solution of (4.1) if and only if β̃ is a solution of the IVP (4.2), so that β̃ = EvolG(β),
and α̃ is a solution of the IVP

δ(α̃) = [fα,β ], α̃(0) = 1N ,

as claimed.
• Claim 4: The map EvolH is continuous.

Indeed, since EvolH is the composition of the maps

R(I, n)×R(I, g)→ R(I, n)×R(I, g), ([α], [β]) 7→ ([fα,β ], [β])

and

R(I, n)×R(I, g)→ ACR(I,N)×ACR(I,G), ([α], [β]) 7→ (EvolN (α),EvolG(β))
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by Claim 3, it suffices to show that the map R(I, n)×R(I, g)→ R(I, n), ([α], [β]) 7→ [fα,β ] is continuous,
which follows from Claim 1. �

Corollary 4.5. The half-Lie group H has a continuous exponential function

expH : n× g→ N oπ G, (v, x) 7→
(

evolN (fv,x), expG(x)
)
,

where

fv,x : I → n, t 7→ π̇(expG(tx))v.

Proof. This readily follows from (2.4) together with Claim 3 in the proof of Theorem 4.4. �

Remark 4.6. In the notation of (the proof of) Theorem 4.4, the map EvolH : R(I, h)→ ACR(I,H) is
Ck in some neighbourhood of ([α], [β]) if and only if the map R(I, n)×R(I, g)→ R(I, n), ([α], [β]) 7→
[fα,β ] is Ck in some neighbourhood of ([α], [β]) (this is because the logarithmic derivative in the Banach–
Lie groups G and N is a smooth inverse for the evolution map, see [Glö15, 5.29]). In particular, EvolH
is in general not a smooth map. For instance, if α = cv (v ∈ n) and β = cx (x ∈ g) are constant
functions, then fα,β = fv,x : I → n, t 7→ π̇(expG(tx))v will in general only be Ck in x provided that v
is a Ck-vector for π̇.

4.2. Trotter formulas for H. Now that the R-regularity of H is established, we investigate its
consequences on the structure of the space Hom1(R, H) of C1 one-parameter subgroups of H, and its
relations to the tangent space h = T1H of H at 1H . We start with an easy observation, which follows
from the existence of an exponential function for H.

Lemma 4.7. The map

Hom1(R, H)→ h, γ 7→ γ′(0) := T0(γ)(1)

is bijective, with inverse given by h→ Hom1(R, H), v 7→ [t 7→ expH(tv)].

Note that, since the multiplication in H is only continuous, one cannot a priori define a Lie al-
gebra structure on h = n × g using left invariant vector fields as in §2.5. Indeed, the Lie bracket
[(v1, x1), (v2, x2)] := ([v1, v2] + dπ̇(x1)v2−dπ̇(x2)v1, [x1, x2]) in n× g only makes sense in general when
v1, v2 are C1-vectors for π̇.

On the other hand, for a Lie group Γ with Lie algebra L(Γ) and smooth exponential function
expΓ : L(Γ)→ Γ, there may be an alternative approach to describe the Lie algebra structure on L(Γ),
namely when Γ has the Trotter property (resp. commutator property): in this case, one may define a
vector space structure (resp. a Lie bracket) on Hom1(R,Γ) by the Trotter formula (resp. commutator
formula), and then transport the obtained Lie algebra structure on Hom1(R,Γ) using the identification
Hom1(R,Γ) ≈ L(Γ). We recall that Γ is said to have the Trotter property if for all γ1, γ2 ∈ Hom1(R,Γ),

(4.3) lim
n→∞

(
γ1( tn )γ2( tn )

)n
= expΓ

(
t(γ′1(0) + γ′2(0))

)
uniformly in t on compact subsets of R, and the commutator property if for all γ1, γ2 ∈ Hom1(R,Γ),

(4.4) lim
n→∞

(
γ1(
√
t
n )γ2(

√
t
n )γ1(−

√
t
n )γ2(−

√
t
n )
)n2

= expΓ

(
t[γ′1(0), γ′2(0)]

)
uniformly in t on compact subsets of [0,∞[. Note that Γ has both the Trotter and commutator
properties as soon as Γ has the strong Trotter property, that is, as soon as for each C1-curve γ : I → Γ
with γ(0) = 1Γ,

(4.5) lim
n→∞

γ( tn )n = expΓ(tγ′(0))

uniformly in t on compact subsets of [0,∞[ (see [Glö15, Theorem H]).
It is now natural to investigate which of the above properties are satisfied in our context, namely

by the half-Lie group H. As suggested above, one cannot expect in general H to have the commutator
property without further assumption on the curves γ1, γ2 ∈ Hom1(R, H) involved in the commutator
formula (4.4). We illustrate this with the following example.
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Example 4.8. Fix some (λn)n∈N ∈ CN. Consider the Hilbert space V = `2(C), together with the
continuous linear R-action

π : R→ GL(V ), π(t)(xn)n∈N := (eiλntxn)n∈N.

Then V oπ R is a half-Lie group. Note that a vector v = (xn)n∈N ∈ V is a C1-vector for π if and
only if

∑
n∈N |λnxn|2 < ∞. Consider now the smooth one-parameter subgroups γ1(t) = (tv, 0) and

γ2(t) = (0, t) of V oπ R, where v = (xn)n∈N ∈ V . Then

γ(t) := γ1(t)γ2(t)γ1(t)−1γ2(t)−1 =
(
t · ((1− eiλnt)xn)n∈N, 0

)
,

and hence

γ(
√
t/m)m

2

=
(
m
√
t · ((1− eiλn

√
tm−1

)xn)n∈N, 0
)
.

Since for each n ∈ N,

lim
m→∞

m
√
t · (1− eiλn

√
tm−1

)xn = −iλnxnt,

we deduce that limm→∞ γ(
√
t/m)m

2

exists in V if and only if
∑
n∈N |λnxn|2 <∞, that is, if and only

if v is a C1-vector for π. In particular, if (λn)n∈N /∈ `∞(C), then there exists a v ∈ V \ V 1, so that for
the above choices of one-parameter subgroups γ1, γ2, the limit in (4.4) does not exist.

As noticed in [Glö15, Theorem I], the R-regularity of a Fréchet–Lie group implies the strong Trotter
formula. As it turns out, the proof of Theorem I in loc. cit. (see [Glö15, Section 12]) can be easily
adapted in the setting of half-Lie groups. Combined with Theorem 4.4, this will then imply that H
has the strong Trotter property (4.5).

Proposition 4.9. Let H be an R-regular half-Lie group. Then H has the strong Trotter property: for
all ζ ∈ C1(I,H) with ζ(0) = 1H ,

lim
n→∞

ζ(t/n)n = expH(tζ ′(0))

uniformly in t on compact subsets of [0,+∞[.

Proof. Let m ∈ N. For each n ≥ m, define

ζn : [0,m]→ H, t 7→ (ζ(t/n))n.

We have to prove that

ζn(t)
n→∞−→ expH(tζ ′(0)) uniformly in t ∈ [0,m].

In other words, fixing an open identity neighbourhood U in H, we have to show (cf. Remark 4.10
below) that

(4.6) (∃n0 ≥ m)(∀n ≥ n0)(∀t ∈ [0,m]) ζn(t) ∈ expH(tζ ′(0))U.

Consider the map evol : R(I, h)→ H,σ 7→ EvolH(σ)(1). For v ∈ h, consider also the constant curve

cv : I → h, s 7→ v.

Since the map h→ R(I, h), v 7→ cv is continuous, the set K := {ctζ′(0) | t ∈ [0,m]} is compact.

• Claim 1: There is an open 0-neighbourhood Q ⊆ R(I, h) such that evol(θ +Q) ⊆ evol(θ)U for every
θ ∈ K.

Indeed, consider the continuous function f : R(I, h) ×R(I, h) → H, (θ1, θ2) 7→ evol(θ1)−1 evol(θ2).
Since f−1(U) is open and contains the compact set ∆K := {(θ, θ) | θ ∈ K}, there exists some open 0-
neighbourhood Q ⊆ R(I, h) such that ∆K +(Q×Q) ⊆ f−1(U). In particular, f(∆K +({0}×Q)) ⊆ U ,
yielding the claim.

For n ≥ m and t ∈ [0,m], we consider the continuous curve αn,t : I → H, defined piecewise by

αn,t(s) := ζ(t/n)kζ((s− k/n)t) for s ∈ [k/n, (k + 1)/n], k = 0, . . . , n− 1.
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Then αn,t is piecewise C1, so that αn,t ∈ ACR(I,H) with βn,t := δ(αn,t) ∈ R(I, h) (here we make a
slight abuse of notation and identify the logarithmic derivative of a function with some representative
of the equivalence class it defines). Moreover,

ζn(t) = αn,t(1) = evol(βn,t)

and
βn,t(s) = tδ(ζ)((s− k/n)t) for s ∈]k/n, (k + 1)/n[, k = 0, . . . , n− 1.

• Claim 2: There exists some n0 ≥ m such that βn,t − ctζ′(0) ∈ Q for all n ≥ n0 and t ∈ [0,m].
Indeed, let ε > 0 be such that

Bε(0) := {τ ∈ R(I, h) | ||τ ||L∞ ≤ ε} ⊆ Q.
Since δ(ζ) : I → h is continuous, there is some ε ∈]0, 1] such that

||δ(ζ)(x)− δ(ζ)(0)||h ≤
ε

m
for all x ∈ [0, ε].

Let n0 ≥ m be such that m
n0
≤ ε, and let n ≥ n0. Then

(s− k
n )t ≤ m

n0
≤ ε for all t ∈ [0,m] and s ∈ [k/n, (k + 1)/n], k = 0, . . . , n− 1.

Hence

βn,t(·) = tδ(ζ)(0) + t
(
δ(ζ)((· − k/n)t)− δ(ζ)(0)

)
∈ tδ(ζ)(0) + tBε/m(0) ⊆ tδ(ζ)(0) +Bε(0)

for all n ≥ n0 and t ∈ [0,m]. Since δ(ζ)(0) = ζ ′(0), this implies that

βn,t − ctζ′(0) ∈ Bε(0) ⊆ Q
for all n ≥ n0 and t ∈ [0,m], as desired.

It follows from Claims 1 and 2 that for all n ≥ n0 and t ∈ [0,m],

ζn(t) = evol(βn,t) ∈ evol(ctζ′(0) +Q) ⊆ evol(ctζ′(0))U = expH(tζ ′(0))U,

proving (4.6). �

Remark 4.10. Given a topological group Γ and continuous curves γn, γ : R→ Γ (n ∈ N), the following
assertions are equivalent (see [GN, Lemma A.5.21]):

(1) limn→∞ γn(t)γ(t)−1 = 1Γ uniformly in t on compact subsets.
(2) limn→∞ γ(t)−1γn(t) = 1Γ uniformly in t on compact subsets.
(3) γn → γ as n→∞ in the compact open topology.

Corollary 4.11. Let G,N be Banach–Lie groups, and let π : G → Aut(N) be a continuous action.
Then H := N oπ G has the strong Trotter property.

Proof. This follows from Theorem 4.4 and Proposition 4.9. �

In contrast to the case of Lie groups, given γ1, γ2 ∈ Hom1(R, H), one cannot immediately apply
Corollary 4.11 to the curve γ(t) := γ1(t)γ2(t) in order to deduce the Trotter formula (4.3) in H, as γ
might not be C1. Nevertheless, with some extra work, one can prove a strengthening of (4.3) for H:
namely, the formula (4.3) holds in H for any C1-curves γ1, γ2 : I → H with γ1(0) = γ2(0) = 1H , under
some additional mild condition on (γ1, γ2) (which includes the case where γ1, γ2 ∈ Hom1(R, H)).

Definition 4.12. For i = 1, 2, let γi = (αi, βi) : I → H = NoπG be a C1-curve such that γi(0) = 1H .
We say that the couple (γ1, γ2) has the property (?) if

(?) There exists some C1-curve α3 : I → N with α3(0) = 1N such that the map

h : I → N, t 7→ π(β1(t))α3(t)

is C1 and such that α′3(0) = h′(0) = α′2(0).

Lemma 4.13. For i = 1, 2, let γi = (αi, βi) : I → H = N oπ G be a C1-curve such that γi(0) = 1H .
Then (γ1, γ2) has the property (?) as soon as one of the following conditions holds:
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(1) β1 : I → G is a (local) one-parameter subgroup.
(2) α′2(0) ∈ n1.

Proof. If (1) holds, we define α3 : I → N by (α3(t), β1(t)) = expH(t(α′2(0), β′1(0))). Then for all t ∈ I,

(α3(2t), β1(2t)) = (α3(t), β1(t))2 = (α3(t) · π(β1(t))α3(t), β1(t)2)

and hence
π(β1(t))α3(t) = α3(t)−1α3(2t),

so that α3 indeed has all the desired properties.
If (2) holds, we define α3 : I → N by α3(t) = expN (tα′2(0)). Then

π(β1(t))α3(t) = expN (t · π̇(β1(t))α′2(0)) for all t ∈ I,
so that α3 also has all the desired properties in this case. �

Theorem 4.14. Let G,N be Banach Lie groups and π : G → Aut(N) be a continuous action. Let
γ1, γ2 : I → H be C1-curves with γ1(0) = γ2(0) = 1H , and assume that (γ1, γ2) has the property (?).
Then

lim
n→∞

(
γ1( tn )γ2( tn )

)n
= expH

(
t(γ′1(0) + γ′2(0))

)
uniformly in t on compact subsets of [0,∞[.

Proof. We fix some left invariant metric d on G compatible with the topology, and we normalise the
norm on n so that ||[x, y]|| ≤ ||x|| · ||y|| for all x, y ∈ n. We also fix some open connected symmetric
0-neighbourhood V in n such that expV := expN |V is a diffeomorphism onto the open identity neigh-
bourhood U := expN (V ) ⊆ N . Finally, we fix some convex open 0-neighbourhood V1 ⊆ V in n such
that expV (V1)2 ⊆ U , so that the local multiplication x ∗ y := exp−1

V (expV (x) expV (y)) is defined for
all x, y ∈ V1.

Given a curve α : [0, r] → U for some r ∈ R+, we put α := exp−1
V ◦α : [0, r] → V . Note that α is

continous (resp. C1) if and only if α is continuous (resp. C1). We also recall that

π(g) expN (v) = expN (π̇(g)v) ∀g ∈ G, v ∈ n.

For i = 1, 2, write γi(t) = (αi(t), βi(t)) for some C1-curves αi : I → N and βi : I → G. By
assumption, there exists some C1-curve α3 : I → N such that the map h : I → N, t 7→ π(β1(t))α3(t)
is C1 and such that α3(0) = 1N and α′3(0) = h′(0) = α′2(0).

Consider the continuous curves c1, c2 : I → H, x1, x2 : I → N and y : I → G defined by

c1(t) := (x1(t), y(t)) := γ1(t)γ2(t) = (α1(t) · π(β1(t))α2(t), β1(t)β2(t))

and
c2(t) := (x2(t), y(t)) := (α1(t) · π(β1(t))α3(t), β1(t)β2(t)).

Thus c2 is a C1-curve with c′2(0) = (α′1(0) +α′2(0), β′1(0) + β′2(0)) = γ′1(0) + γ′2(0). Corollary 4.11 then
implies that

(4.7) lim
n→∞

c2(t/n)n = expH
(
tc′2(0)

)
= expH

(
t(γ′1(0) + γ′2(0))

)
uniformly in t on compact subsets of [0,∞[. It thus remains to show that

lim
n→∞

c1(t/n)−n · c2(t/n)n = 1H

uniformly in t on compact subsets of [0,∞[.
Consider the continuous curves x : I → N and zs : I → N for each s ∈ N, defined for t ∈ I by

x(t) := x2(t)x1(t)−1 and (zs(t), y(t)s) := c2(t)s = (x2(t), y(t))s =
( s−1∏
i=0

π(y(t)i)x2(t), y(t)s
)
.

One then easily computes that

c−n1 = (x1, y)−n =
( n∏
s=1

π(y−s)x−1
1 , y−n

)
and cn2 = (x2, y)n =

(
π(y)n

1∏
s=n

π(y−s)x2, y
n
)
,
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so that

c−n1 cn2 =

(( n∏
s=1

π(y−s)x−1
1

)
·
( 1∏
s=n

π(y−s)x2

)
, 1G

)
=

( n∏
s=1

π(y−s)(z−1
s · x · zs), 1G

)
.

Indeed, setting ΠL
n :=

∏n
s=1 π(y−s)x−1

1 , ΠR
n :=

∏1
s=n π(y−s)x2 and ΠLR

n :=
∏n
s=1 π(y−s)(z−1

s · x · zs),
we deduce from the equalities

ΠR
n = π(y−n)zn and π(y−n)zn · π(y−(n+1))z−1

n+1 = π(y−(n+1))x−1
2

that

ΠL
n ·ΠR

n · π(y−(n+1))(z−1
n+1xzn+1) = ΠL

n · π(y−(n+1))x−1
1 · π(y−(n+1))zn+1 = ΠL

n+1 ·ΠR
n+1,

so that the claim follows by induction on n.
Fixing some R ∈ R+, we thus have to show that

F (n, t) :=

n∏
s=1

π(y( tn )−s)(zs(
t
n )−1 · x( tn ) · zs( tn ))

converges uniformly for t ∈ [0, R] to 1N as n→∞. For each s ∈ {1, . . . , n}, we set

Fs(n, t) := π(y( tn )−s)(zs(
t
n )−1 · x( tn ) · zs( tn )).

Since the local multiplication f : V1 × V1 → V, (x, y) 7→ x ∗ y is smooth, its second differential

d2f : (V1 × V1)× (n× n)× (n× n)→ n

is continous, where n× n is endowed with the norm (x, y) 7→ ||x||+ ||y||. Hence there exists some r > 0

with B
n

r (0) ⊆ V1 such that

d2f((B
n×n
r (0))3) ⊆ Bn

1(0),

where B
X

r (0) denotes the closed ball centered at 0 and of radius r in the metric space X. In particular,
the continuous bilinear map d2f(x, y, ·) : (n× n)2 → n has operator norm

(4.8) ||d2f(x, y, ·)||op ≤
1

r2
for all x, y ∈ V1 with ||x||, ||y|| ≤ r.

• Claim 1.1: There is a constant C = C(r) such that

||x ∗ y|| ≤ ||x+ y||+ C ||x||
2+||y||2

2 for any x, y ∈ V1 with ||x||, ||y|| ≤ r.

Indeed, the first order Taylor expansion of f around (0, 0) with remainder term (see [Nee06, Prop.
I.2.3(v)]) yields

||x ∗ y − x− y|| ≤
∫ 1

0

(1− t)||d2f((tx, ty), (x, y), (x, y))||dt

≤
∫ 1

0

(1− t)||d2f(tx, ty, ·)||op(||x||+ ||y||)2dt

≤ ||x||
2 + ||y||2

r2
.

• Claim 1.2: For each n ∈ N and ρ > 0, set an(ρ) := 1
C ((Cρ+ 1)n − 1). Then

a2n(ρ) = 2an(ρ) + Can(ρ)2 and an(ρ/n) ≤ a(ρ) :=
1

C
(eCρ − 1) for all n ∈ N and ρ > 0.

Indeed, the equality is an easy computation, while the inequality follows from the fact that the sequence
(1 + Cρ/n)n is increasing and converging to eCρ.

• Claim 1.3: Let n = 2k for some k ∈ N. Then for all ρ > 0 with a(ρ) ≤ r and all x1, . . . , xn ∈ V1

with ||xi|| ≤ ρ/n (i = 1, . . . , n), the product x1 ∗ x2 ∗ · · · ∗ xn is defined and we have

||x1 ∗ x2 ∗ · · · ∗ xn|| ≤ an(ρ/n).
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Indeed, we prove the claim by induction on k. If k = 0, there is nothing to prove. Assume now that
the claim is true for n = 2k, and let us prove it for 2n. Let thus x1, . . . , x2n ∈ V1 with ||xi|| ≤ ρ

2n for
all i. Note first that by induction hypothesis and Claim 1.2, we have

||x1 ∗ · · · ∗ xn|| ≤ an(ρ/n) ≤ a(ρ) ≤ r

and similarly ||xn+1 ∗ · · · ∗ x2n|| ≤ r, so that x1 ∗ · · · ∗ xn and xn+1 ∗ · · · ∗ x2n belong to V1. Hence
their product f(x1 ∗ · · · ∗ xn, xn+1 ∗ · · · ∗ x2n) is defined. Moreover, the induction hypothesis (with ρ/2
instead of ρ) and Claim 1.1 imply that

||x1 ∗ · · · ∗ x2n|| ≤ ||x1 ∗ · · · ∗ xn||+ ||xn+1 ∗ · · · ∗ x2n||+ C
||x1 ∗ · · · ∗ xn||2 + ||xn+1 ∗ · · · ∗ x2n||2

2

≤ 2an( ρ
2n ) + Can( ρ

2n )2 = a2n( ρ
2n ),

where the last equality follows from Claim 1.2.

• Claim 1.4: Let x, y ∈ n. Then expN (x) expN (y) expN (x)−1 = expN (ead xy) and ||ead xy|| ≤ e||x||||y||.
Indeed, by naturality of the exponential map, we have (see [Nee06, (2.5.4) p.340])

expN (x) expN (y) expN (x)−1 = expN ◦Ad(expN (x))(y) = expN (ead xy).

Moreover, since ||[x, z]|| ≤ ||x|| · ||z|| for all z ∈ n, so that adx has operator norm || adx|| ≤ ||x||, we have

||ead xy|| ≤ ||ead x|| · ||y|| = e|| ad x||||y|| ≤ e||x||||y||.

• Claim 2.1: Let ε1 > 0. Then there is some N1 ∈ N such that the curve x := exp−1
V ◦x satisfies

x( tn ) ∈ U and ||x( tn )|| ≤ ε1/n for all t ∈ [0, R] and n ≥ N1.

Indeed, since x(t) = α1(t) · π(β1(t))(α3(t)α2(t)−1) · α1(t)−1 is continuous, certainly x( tn ) ∈ U for all

large enough n (with t ∈ [0, R]). We may thus define x( tn ) = exp−1
V (x( tn )) for n large enough.

Let ε′1 > 0. Recall that α′2(0) = α′3(0). Hence there is some N ′1 ∈ N such that for all t ∈ [0, R] and
n ≥ N ′1, we have∣∣∣∣∣∣α3( tn )− α2( tn )

t/n

∣∣∣∣∣∣ ≤ ε′1, ∣∣∣∣∣∣α2( tn ))

t/n

∣∣∣∣∣∣2 ≤ ||α′2(0)||2 + ε′1 and
∣∣∣∣∣∣α3( tn ))

t/n

∣∣∣∣∣∣2 ≤ ||α′2(0)||2 + ε′1.

Up to increasing N ′1, we may further assume that
CR(||α′2(0)||2+ε′1)

n ≤ ε′1 for all n ≥ N ′1. It then follows
from Claim 1.1 that for all t ∈ [0, R] and n ≥ N ′1,

|| exp−1
V (α3( tn )α2( tn )−1)|| = ||α3( tn ) ∗ (−α2( tn ))||

≤ ||α3( tn )− α2( tn )||+ C
||α3( tn )||2 + ||α2( tn )||2

2

≤ Rε′1
n

+
CR2(||α′2(0)||2 + ε′1)

n2
≤ 2Rε′1

n
.

Let ε′′1 > 0. Since the linear action G× n→ n, (g, v) 7→ π̇(g)v is continuous by Lemma 4.3, we may
choose ε′1 small enough so that

||π̇(g)v|| ≤ ε′′1 for all g ∈ G with d(g, 1G) ≤ ε′1 and all v ∈ n with ||v|| ≤ 2Rε′1.

Moreover, since β1 is continuous, there is some N ′′1 ≥ N ′1 such that d(β1( tn ), 1G) ≤ ε′1 for all t ∈ [0, R]
and n ≥ N ′′1 . Hence for all t ∈ [0, R] and n ≥ N ′′1 ,

||n · exp−1
V (π(β1( tn ))(α3( tn )α2( tn )−1))|| = ||π̇(β1( tn ))(n · exp−1

V (α3( tn )α2( tn )−1))|| ≤ ε′′1 .

Finally, we choose ε′′1 so that ε′′1 · eε
′′
1 ≤ ε1. Since α1 is continuous, there is some N1 ≥ N ′′1 such that

||α1(t/n)|| ≤ ε′′1 for all t ∈ [0, R] and n ≥ N1. It then follows from Claim 1.4 that for all t ∈ [0, R] and
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n ≥ N1,
||nx( tn )|| = ||n · exp−1

V

(
α1( tn ) · π(β1( tn ))(α3( tn )α2( tn )−1) · α1( tn )−1

)
||

= ||eadα1(t/n)(n · exp−1
V (π(β1( tn ))(α3( tn )α2( tn )−1)))|| ≤ ε′′1 · eε

′′
1 ≤ ε1.

This concludes the proof of Claim 2.1.

• Claim 2.2: Let ε2 > 0. Then there is some N2 ∈ N such that for all n ≥ N2, s ∈ {0, . . . , n} and
t ∈ [0, R],

zs(
t
n )−1 · x( tn ) · zs( tn ) ∈ U and || exp−1

V

(
zs(

t
n )−1 · x( tn ) · zs( tn )

)
|| ≤ ε2/n.

Indeed, let ε′2 > 0. Define the continuous curve z : R→ N by

(z(t), expG(t(β′1(0) + β′2(0)))) = expH(tc′2(0)) for all t ∈ I.

Then (4.7) implies that zn( tn )
n→∞−→ z(t) uniformly for t ∈ [0, R]. Hence there exists some N ′2 ∈ N

(depending on ε′2) such that

zn( tn )z(t)−1 ∈ U and || exp−1
V (zn( tn )z(t)−1)|| ≤ ε′2 for all t ∈ [0, R] and n ≥ N ′2.

In particular,

(4.9) || exp−1
V (zs(

t
n )z(t)−1)|| = || exp−1

V (zs(
st/n
s )z(t)−1)|| ≤ ε′2 for all t ∈ [0, R] and n ≥ s ≥ N ′2.

Note also that by Claim 2.1, there is some N1 ≥ N ′2 such that

(4.10) x( tn ) ∈ U and ||x( tn )|| ≤ ε′2/n for all t ∈ [0, R] and n ≥ N1.

Consider the compact subset K := z([0, R])−1 of N , and let U1 ⊆ U be an identity neighbourhood
in N such that Int(K)U1 := {gug−1 | g ∈ K, u ∈ U1} ⊆ U . From (4.9), (4.10) and Claim 1.4, we get
for all t ∈ [0, R], n ≥ N1 and s ≤ n with s ≥ N ′2 that

(4.11) Int(z(t))(zs(
t
n )−1 · x( tn ) · zs( tn )) = expN (ead exp−1

V (z(t)zs(
t
n )−1)x( tn ))

and that

(4.12) ||ead exp−1
V (z(t)zs(

t
n )−1)x( tn )|| ≤ ε′2

n · e
ε′2 .

In particular, choosing ε′2 small enough, we may assume that

zs(
t
n )−1 · x( tn ) · zs( tn ) ∈ Int(z(t)−1)U1 ⊆ Int(K)U1 ⊆ U

for all t ∈ [0, R], n ≥ N1 and s ≤ n with s ≥ N ′2. Let now V2 ⊆ V be a 0-neighbourhood in n such

that Ad(K)V2 ⊆ B
n

ε2(0). We further choose ε′2 small enough so that B
n

ε′2·e
ε′2 (0) ⊆ V2. (We now fix

this choice of ε′2, and hence also of N ′2.) We then deduce from (4.11) and (4.12) that for all t ∈ [0, R],
n ≥ N1 and s ≤ n with s ≥ N ′2,

n ·Ad(z(t))(exp−1
V (zs(

t
n )−1 · x( tn ) · zs( tn ))) = n · exp−1

V

(
Int(z(t))(zs(

t
n )−1 · x( tn ) · zs( tn ))

)
∈ V2

and hence that

n · exp−1
V (zs(

t
n )−1 · x( tn ) · zs( tn )) ∈ Ad(K)V2 ⊆ B

n

ε2(0).

This proves Claim 2.2 when s ≥ N ′2, with N2 := N1.
We now deal with the case where s < N ′2. In this case, since zs is continuous, there is some N2 ≥ N1

such that

zs(
t
n ) ∈ U and || exp−1

V (zs(
t
n ))|| ≤ ε′2 for all t ∈ [0, R] and n ≥ N2.

Up to increasing N2, we may further assume that zs(
t
n )−1 · x( tn ) · zs( tn ) ∈ U for all t ∈ [0, R] and

n ≥ N2. Together with (4.10) and Claim 1.4, this implies that

zs(
t
n )−1 · x( tn ) · zs( tn ) = expN

(
ead exp−1

V (zs(
t
n )−1)x( tn )

)
and

||ead exp−1
V (zs(

t
n )−1)x( tn )|| ≤ ε′2

n · e
ε′2
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for all t ∈ [0, R] and n ≥ N2. Hence, as before,

zs(
t
n )−1 · x( tn ) · zs( tn ) ∈ U

and

||n · exp−1
V

(
zs(

t
n )−1 · x( tn ) · zs( tn )

)
|| = ||n · ead exp−1

V (zs(
t
n )−1)x( tn )|| ≤ ε′2 · eε

′
2 ≤ ε2

for all t ∈ [0, R] and n ≥ N2. This concludes the proof of Claim 2.2.

• Claim 2.3: Let ε3 > 0. Then there is some N3 ∈ N such that

Fs(n, t) ∈ U and || exp−1
V (Fs(n, t))|| ≤ ε3/n for all t ∈ [0, R], n ≥ N3 and s ∈ {0, . . . , n}.

Indeed, let ε′3 > 0. Define the continuous curve

ỹ : R→ G, ỹ(t) := expG(−t(β′1(0) + β′2(0))).

The strong Trotter property of the Banach Lie group G then implies that y( tn )−n
n→∞−→ ỹ(t) uniformly

for t ∈ [0, R]. Hence there exists some N ′3 ∈ N such that

d(y( tn )−n, ỹ(t)) ≤ ε′3 for all t ∈ [0, R] and n ≥ N ′3.

In particular,

(4.13) d(y( tn )−s, ỹ(t)) = d(y( st/ns )−s, ỹ(t)) ≤ ε′3 for all t ∈ [0, R] and n ≥ s ≥ N ′3.

Note also that by Claim 2.2, there is some N2 ≥ N ′3 such that for all n ≥ N2, s ∈ {0, . . . , n} and
t ∈ [0, R],

(4.14) zs(
t
n )−1 · x( tn ) · zs( tn ) ∈ U and || exp−1

V

(
zs(

t
n )−1 · x( tn ) · zs( tn )

)
|| ≤ ε′3/n.

Consider the compact subset K := ỹ([0, R]) of G. Since the linear action G× n→ n, (g, v) 7→ π̇(g)v
is continuous by Lemma 4.3, one may choose ε′3 small enough so that

(4.15) π̇(KB
G

ε′3
(1G))B

n

ε′3
(0) ⊆ Bn

ε3(0) ∩ V,

where the closed ball in G is defined with respect to the metric d. We now fix this choice of ε′3, and
hence also of N ′3.

From (4.13), (4.14) and (4.15), we get for all t ∈ [0, R], n ≥ N2 and s ≤ n with s ≥ N ′3 that

π̇(y( tn )−s) exp−1
V (zs(

t
n )−1 · x( tn ) · zs( tn )) ∈ V,

so that

Fs(n, t) = π(y( tn )−s)(zs(
t
n )−1 · x( tn ) · zs( tn )) = expN

(
π̇(y( tn )−s) exp−1

V (zs(
t
n )−1 · x( tn ) · zs( tn ))

)
∈ U,

and that

||n · exp−1
V (Fs(n, t))|| = ||π̇(y( tn )−s)

(
n · exp−1

V (zs(
t
n )−1 · x( tn ) · zs( tn ))

)
|| ≤ ε3.

This proves Claim 2.3 when s ≥ N ′3, with N3 := N2.
We now deal with the case where s < N ′3. In this case, since y−s is continuous, there is some

N3 ≥ N2 such that

y( tn )−s ∈ BGε′3(0) for all t ∈ [0, R] and n ≥ N3.

One then concludes as above that for all t ∈ [0, R] and n ≥ N3,

Fs(n, t) ∈ U and ||n · exp−1
V (Fs(n, t))|| ≤ ε3.

This concludes the proof of Claim 2.3.

• Claim 2.4: Let ε > 0. Then there is some N ∈ N such that

F (n, t) ∈ U and || exp−1
V (F (n, t))|| ≤ ε for all t ∈ [0, R] and n ≥ N .
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Indeed, let ρ > 0 be such that B
n

ρ(0) ⊆ V1. Denote for each n ∈ N by ñ the smallest natural number

of the form ñ = 2k for some k ∈ N, such that ñ ≥ n. By Claim 2.3, there is some N ∈ N such that

Fs(n, t) ∈ U and || exp−1
V (Fs(n, t))|| ≤ ρ

2n ≤ ρ/ñ for all t ∈ [0, R], n ≥ N and s ∈ {0, . . . , n}.

It then follows from Claims 1.2 and 1.3 that for all t ∈ [0, R] and n ≥ N ,

F (n, t) =

n∏
s=1

Fs(n, t) = expV (exp−1
V (F1(n, t)) ∗ · · · ∗ exp−1

V (Fn(n, t))) ∈ U

and

|| exp−1
V (F (n, t))|| = || exp−1

V (F1(n, t)) ∗ · · · ∗ exp−1
V (Fn(n, t))|| ≤ añ(ρ/ñ) ≤ a(ρ) =

1

C
(eCρ − 1).

Choosing ρ such that a(ρ) ≤ ε then yields the claim.

It now follows from Claim 2.4 that F (n, t)
n→∞−→ 1N uniformly for t ∈ [0, R]. This concludes the

proof of the theorem. �

Corollary 4.15. Let G,N be Banach Lie groups and π : G→ Aut(N) be a continuous action. Then
H = N oπ G has the Trotter property: for all C1 (local) one-parameter subgroups γ1, γ2 : I → H,

lim
n→∞

(
γ1( tn )γ2( tn )

)n
= expH

(
t(γ′1(0) + γ′2(0))

)
uniformly in t on compact subsets of [0,∞[.

Proof. This readily follows from Lemma 4.13 and Theorem 4.14. �

4.3. Continuous one-parameter subgroups of H. We conclude this section by investigating the
space Hom0(R, H) of continuous one-parameter subgroups of H = N oπ G. In contrast to the sit-
uation of Banach–Lie groups, not every γ ∈ Hom0(R, H) is automatically smooth: using the non-
smoothness of the multiplication in H, one can easily produce counterexamples by conjugating smooth
one-parameter subgroups with suitable elements. If N is abelian, we prove that, conversely, every
γ ∈ Hom0(R, H) is conjugated to some smooth one-parameter subgroup of H.

Given a continuous representation U : R → GL(E), t 7→ Ut of R on a Banach space E, we call a
map α : R→ E a 1-cocycle (or just cocycle) for U if Utα(s) = α(t+ s)−α(t) for all s, t ∈ R. Cocycles
of the form α(t) = Utv − v for some v ∈ E are called coboundaries. We call two cocycles equivalent if
their difference is a coboundary.

Lemma 4.16. Let U : R → GL(E), t 7→ Ut be a continuous action of R on a Banach space E. Then
every continuous cocycle α : R→ E for U is equivalent to a smooth cocycle for U .

Proof. Pick some bump function f ∈ C∞c (R) with
∫
R f(s)ds = 1, and set v :=

∫
R f(s)α(s)ds ∈ E.

Consider the coboundary α̃(t) := Utv − v. Then for all t ∈ R, we have

α̃(t) =

∫
R
f(s)(Utα(s)− α(s))ds =

∫
R
f(s)(α(t+ s)− α(t)− α(s))ds

=

∫
R
f(s)(α(t+ s)− α(s))ds− α(t) =

∫
R

(f(s− t)− f(s))α(s)ds− α(t).

Hence α̃(t) + α(t) =
∫
R(f(s− t)− f(s))α(s)ds is a smooth cocycle for U , yielding the lemma. �

Proposition 4.17. If N is abelian, then every continuous one-parameter subgroup γ : R → H =
N oπG is conjugated to a smooth one, hence of the form γ(t) = g expH(tx)g−1 for some g ∈ H,x ∈ h.

Proof. Assume first that N = E is a Banach space. Write γ(t) = (α(t), β(t)) for some continuous
curves α : R→ N and β : R→ G. Since γ is a one-parameter subgroup, β is a (smooth) one-parameter
subgroup of G and

α(s+ t) = π(β(t))α(s) + α(t) for all s, t ∈ R.
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In other words, α is a cocycle for the continuous R-action U := π ◦ β : R → GL(N). It then follows
from Lemma 4.16 that there is some v ∈ N such that α̃(t) := α(t)+π(β(t))v−v is a smooth cocycle for
π ◦ β. Hence (α̃(t), β(t)) = (v, 1G)−1γ(t)(v, 1G) is a smooth one-parameter subgroup of H, as desired.

Assume next that N is abelian. Since γ(R) is connected, we may without loss of generality assume

that N is connected. Then the simply connected cover Ñ of N is a Banach space, and the action

π : G → Aut(N) lifts to a continuous action π̃ : G → GL(Ñ). One may then conclude using the first
part of the proof. �

5. The Fréchet–Lie group N∞ of smooth elements

We use, throughout this section, the notation of §3.2. In particular, G and N are Banach–Lie groups
with respective Lie algebras g and n, and π∧ : G×N → N, (g, n) 7→ π(g)n is a continuous action. We
establish in this section that the space

N∞ = {n ∈ N | πn : G→ N, g 7→ π(g)n is smooth}
of smooth elements for π admits a Fréchet–Lie group structure for which the restricted action

π∧∞ : G×N∞ → N∞, (g, n) 7→ π∧(g, n)

is smooth. We moreover show that the Fréchet–Lie groups N∞ and H∞ := N∞ oπ G are R-regular,
and hence have the strong Trotter and commutator properties.

5.1. A Fréchet–Lie group structure on H∞. By [Nee10, Theorem 4.4 and Prop. 5.4], the space
n∞ = {v ∈ n | π̇v is smooth} of smooth vectors for π̇ admits a Fréchet space topology for which the
restricted action π̇∧∞ : G×n∞ → n∞, (g, v) 7→ π̇(g)v is smooth. We will show that there exists a unique
Fréchet–Lie group structure on N∞ for which the exponential map n∞ → N∞, v 7→ expN (v) is a local
diffeomorphism.

We recall from [Nee10, Definition 4.1] that n∞ is topologised as follows. Recall from §3.2 (see also
[Nee10, Section 4]) that we have a representation dπ̇ : g→ End(n∞) of g, defined by

dπ̇(x)v := d(π̇v)(1G;x) =
d

dt

∣∣∣
t=0

π̇(expG(tx))v for all x ∈ g and v ∈ n∞.

In particular, in the notation of §2.5 (see (2.1)), we have for all k ∈ N, x1, . . . , xk ∈ g and v ∈ n∞ that

(5.1)
dπ̇(x1) . . . dπ̇(xk)v =

d

dt1

∣∣∣
t1=0

. . .
d

dtk

∣∣∣
tk=0

π̇(expG(t1x1) . . . expG(tkxk))v

= dk(π̇v)(1G;x1, . . . , xk).

For each k ∈ N, let Multk(g, n) be the space of continuous k-linear maps gk → n, which we equip

with the topology of uniform convergence on bounded sets. Thus Multk(g, n) is a Banach space with
respect to the norm

||ω|| := sup{||ω(x1, . . . , xk)|| : ||x1||, . . . , ||xk|| ≤ 1}.
Consider also the map

Ψk : n∞ → Multk(g, n), Ψk(v)(x1, . . . , xk) := dπ̇(x1) . . . dπ̇(xk)v.

This yields an injective linear map

Ψ: n∞ →
∏
k∈N

Multk(g, n),

and we define the topology on n∞ so that Ψ is a topological embedding. Then n∞ is a Fréchet space,
with respect to the family {pk | k ∈ N} of seminorms defined by

pk(v) := sup{||dπ̇(x1) . . . dπ̇(xk)v|| : ||x1||, . . . , ||xk|| ≤ 1}.
The following two lemmas provide our main tool to establish smoothness of n∞-valued maps.

Lemma 5.1. Let X,Y, Z be locally convex spaces and UY ⊆ Y be open. Let f : UY → Multk(X,Z) be

a map such that f̃ : UY ×Xk → Z, (y, x1, . . . , xk) 7→ f(y)(x1, . . . , xk) is smooth. Then f is smooth.
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Proof. This follows from [Glö07, Proposition 2.1(b)] or [GN, Corollary 1.6.32]. �

Lemma 5.2. Let F be one of the Fréchet spaces n∞, L∞(I, n∞) or C(I, n∞), and write FB for the
Banach space n, L∞(I, n) or C(I, n), respectively. Let E be a locally convex space, U ⊆ E be an open
subset and h : U → F be a map. Assume that there exists some identity neighbourhood UG in G such
that the map

f : UG × U → FB , (g, y) 7→ π̇h(y)(g) = π̇(g)h(y)

is smooth. Then h is smooth.

Proof. Since f is smooth, the maps

f̃k : gk × U → FB , (x1, . . . , xk, y) 7→ (dk1f)(1G, x1, . . . , xk, y) = dk(π̇h(y))(1G, x1, . . . , xk)

are also smooth for each k ∈ N. Lemma 5.1 then implies that for each k ∈ N, the induced map

fk : U → Multk(g, FB), y 7→
[
(x1, . . . , xk) 7→ dk(π̇h(y))(1G, x1, . . . , xk)

]
is smooth. Since fk = Ψk ◦ h by (5.1) (where Ψk(α)(t) := Ψk(α(t)) for t ∈ I and α ∈ F if F is
L∞(I, n∞) or C(I, n∞)), this in turn implies that h is smooth, as desired. �

We now introduce some additional notation, allowing us to work in charts.

Lemma 5.3. There exists an open connected symmetric 0-neighbourhood V in n such that the following
assertions hold:

(1) There exists some open 0-neighbourhood W ⊆ n with V ⊆W such that expW := expN |W is a
diffeomorphism onto expN (W ), and such that expN (V )2 ⊆ expN (W ). In particular, one may
define the local multiplication ∗ : V × V → n, (x, y) 7→ x ∗ y := exp−1

W (expW (x) expW (y)).
(2) expN (V∞) = N∞ ∩ expN (V ), where V∞ := V ∩ n∞.

Proof. By Lemma 4.2, there exist open (connected, symmetric) neighbourhoods UG of 1G in G and
V of 0 in n such that expV := expN |V is a diffeomorphism onto expV (V ) and such that

(expV )−1 ◦ πexpN (v)(g) = π̇v(g) for all g ∈ UG and v ∈ V .

Up to schrinking V , we may moreover assume that (1) is satisfied.
If v ∈ n∞, so that π̇v is smooth, then πexpN (v) = expN ◦π̇v is smooth (because expN is smooth),

showing that expN (v) ∈ N∞. Conversely, if expN (v) ∈ N∞ for some v ∈ V , so that πexpN (v) is smooth,
then π̇v|UG = (expV )−1 ◦ πexpN (v)|UG is smooth, and hence also π̇v (because π̇v ◦ λg = π̇(g) ◦ π̇v for all
g ∈ G). Thus (2) is also satisfied. �

Let V and V∞ be as in the statement of Lemma 5.3. We also fix some open identity neighbourhood
UG ⊆ G and some open (connected, symmetric) 0-neighbourhood V1 ⊆ V such that π̇(UG)V1 ⊆ V
(see Lemma 4.3). Up to schrinking UG, we moreover assume that there is some open 0-neighbourhood
VG ⊆ g such that expVG := expG |VG is a diffeomorphism onto UG = expG(VG). Finally, we set
V∞1 := V1 ∩ V∞. Note that, since the topology on n∞ is finer than the topology on n, the inclusion
map ι : n∞ ↪→ n is smooth. In particular, the sets V∞ and V∞1 are open in n∞.

Lemma 5.4. The quadruple (n∞, V∞1 × V∞1 , ∗, 0) is a local Lie group, where ∗ : V∞1 × V∞1 → n∞ is
the local multiplication of n∞.

Proof. Since the local inversion n∞ → n∞, x→ −x is clearly smooth, we only have to show that the
local multiplication ∗ is smooth. By Lemma 5.2, it is sufficient to show that the map

f : UG × (V∞1 × V∞1 )→ n, (g, x, y) 7→ π̇x∗y(g) = π̇(g)x ∗ π̇(g)y

is smooth. But f is the composition of the smooth action map

UG × (V∞1 × V∞1 )→ V∞ × V∞, (g, x, y) 7→ (π̇∧(g, x), π̇∧(g, y)),

the smooth inclusion map V∞×V∞ ↪→ V ×V and the local multiplication map V ×V → n, (x, y) 7→ x∗y
in n, yielding the claim. �
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Lemma 5.5. For each n ∈ N∞, the map Ad(n) : n∞ → n∞ is smooth.

Proof. Let n ∈ N∞. For all g ∈ G and v ∈ n∞, we have

π̇(g)(Ad(n)v) =
d

dt

∣∣∣
t=0

π(g)(n expN (tv)n−1) =
d

dt

∣∣∣
t=0

Int(π(g)n)π(g)(expN (tv))

= Ad(π(g)n)π̇(g)v.

In particular, Ad(n)n∞ ⊆ n∞. Moreover, the map

f : UG × n∞ → n, (g, v) 7→ π̇Ad(n)v(g) = Ad(π(g)n)π̇(g)v

is smooth, as it is the composition of the smooth maps

UG × n∞ → N × n, (g, v) 7→ (πn(g), ι ◦ π̇∧(g, v))

and Ad: N × n→ n. We may then apply Lemma 5.2 to conclude that the map Ad(n) : n∞ → n∞ is
smooth as well, as desired. �

Theorem 5.6. The group N∞ has a unique Fréchet–Lie group structure for which expN : n∞ → N∞

is a local diffeomorphism.

Proof. By Lemma 5.4, the quadruple (V∞, V∞1 × V∞1 , ∗, 0) is a local Fréchet–Lie group. Moreover,
by Lemma 5.3, the restriction of expN to V∞ yields an injective morphism expV∞ : V∞ → N∞ of
local groups. Set U := expV∞(V∞) ⊆ N∞. Note that U = U−1 as V∞ is symmetric. We equip U
with the smooth Fréchet manifold structure coming from V∞, that is, such that expV∞ : V∞ → U is
a diffeomorphism. This turns U into a local Lie group, with respect to the multiplication and neutral
element in N∞.

For each n ∈ N∞, the conjugation map

Int(n) : expN (V∞1 )→ N∞, expN (v) 7→ n expN (v)n−1 = expN (Ad(n)v)

is smooth by Lemma 5.5, and hence there exists some open symmetric identity neighbourhood Un ⊆ U
such that Int(n)Un ⊆ U and such that Int(n) : Un → U is smooth. It then follows from [Nee06,
Theorem II.2.1] that there is a unique Lie group structure on N∞ for which expN : n∞ → N∞ is a
local diffeomorphism. �

We now show that the induced G-action

π∞ : G→ Aut(N∞), g 7→ π(g)|N∞

on the Fréchet–Lie group N∞ is smooth.

Theorem 5.7. The action map π∧∞ : G×N∞ → N∞, (g, n) 7→ π(g)n is smooth.

Proof. We first claim that for any n ∈ N∞, the orbit map πn∞ : G → N∞, g 7→ π(g)n is smooth.
Indeed, let n ∈ N∞ and consider the smooth map hn := λn−1 ◦ πn : G → N . Since hn(1G) = 1N ,
there exists some open 0-neighbourhood WG ⊆ VG in g such that

π(expG(WG))hn(expG(WG)) ⊆ expN (V ) ∩N∞ = expN (V∞)

(see Lemma 5.3). Since πn∞ ◦ λg = π(g) ◦ πn∞ for all g ∈ G, it is sufficient to prove that πn∞ is smooth
on expG(WG), or equivalently, that the map

h̃n : WG → n∞, x 7→ exp−1
V (hn(expG(x)))

is smooth. But since hn is smooth, the map f : expG(WG)×WG → n defined by

f(g, x) := π̇h̃n(x)(g) = π̇(g) exp−1
V (n−1 · π(expG(x))n) = exp−1

V (hn(g)−1 · hn(g expG(x)))

is smooth as well, so that the claim follows from Lemma 5.2.
On the other hand, the restriction of π∧∞ to the open subset G× expN (V∞) of G×N∞ is smooth,

since it is the composition of the smooth maps

idG× exp−1
V : G× expN (V∞)→ G× V∞, π̇∧∞ : G× n∞ → n∞ and expN : n∞ → N∞.
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Given n0 ∈ N∞, it now remains to prove the smoothness of the map

G× n0 expN (V∞)→ N∞, (g, n0n) 7→ π∧∞(g, n0n) = π(g)n0 · π(g)n.

But this follows from the smoothness of the maps G × n0 expN (V∞) → G × expN (V∞), (g, n0n) 7→
(g, n),

G× expN (V∞)→ N∞ ×N∞, (g, n) 7→ (πn0
∞ (g), π∧∞(g, n))

and N∞ ×N∞ → N∞, (n1, n2) 7→ n1n2. �

Corollary 5.8. The group H∞ := N∞ oπ∞ G has a canonical Fréchet–Lie group structure extending
the Lie group structures on G and N∞.

5.2. R-regularity of H∞. Keeping with the notation introduced so far in this section, we now show
that the Fréchet–Lie group N∞ is R-regular, with a smooth evolution map

EvolN∞ : R(I, n∞)→ ACR(I,N∞).

Since for any α ∈ R(I, n∞), the map ι ◦ α is in R(I, n) by Lemma 2.2 (where ι : n∞ ↪→ n), one
may identify R(I, n∞) with a subspace of R(I, n). It is then natural to consider the restriction of
EvolN : R(I, n)→ ACR(I,N) to R(I, n∞) as candidate for EvolN∞ .

Let W ⊆ V1 be an open 0-neighbourhood in n such that

EvolN (R(I,W )) ⊆ ACR(I, expN (V1)).

Let ŨG ⊆ UG and W1 ⊆W be identity neighbourhoods such that

π̇(ŨG)W1 ⊆W

and set

W∞ := W ∩ n∞ ⊆ V∞1 and W∞1 := W1 ∩ n∞ ⊆W∞.
Recall that EvolN : R(I, n)→ ACR(I,N) is smooth (see Lemma 2.6). Consider the smooth map

η : R(I,W )→ ACR(I, V1), α 7→ exp−1
V ◦EvolN (α).

Note that the corresponding map

R(I,W )→ C(I, V1), α 7→ η(α)

is also smooth (cf. §2.8). Moreover, Lemma 2.7 yields that

(5.2) π̇(g) ◦ η(α) = η(π̇(g) ◦ α) for all g ∈ ŨG and α ∈ R(I,W1).

Lemma 5.9. The map UG ×R(I, n∞)→ R(I, n∞), (g, α) 7→ π̇(g) ◦ α is smooth.

Proof. We deduce from Lemma 2.3 applied to the smooth action map

f : VG × n∞ → n∞, (x, v) 7→ π̇(expG(x))v

that the map

f̃ : VG ×R(I, n∞)→ R(I, n∞), (x, α) 7→ π̇(expG(x)) ◦ α
is smooth. Since VG → UG, x 7→ expG(x) is a diffeomorphism, the conclusion follows. �

Lemma 5.10. The following assertions hold:

(1) For all α ∈ R(I,W∞1 ), the map ŨG → C(I, n), g 7→ π̇(g) ◦ η(α) is smooth.
(2) η(α)(t) ∈ n∞ for all t ∈ I and α ∈ R(I,W∞1 ).
(3) For all α ∈ R(I,W∞1 ), the map ηα : I → n∞, t 7→ η(α)(t) is in L∞(I, n∞).
(4) The map R(I,W∞1 )→ L∞(I, n∞), α 7→ η(α) is smooth.
(5) For all α ∈ R(I,W∞1 ), the map ηα is continuous.
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Proof. (1): Let α ∈ R(I,W∞1 ). Since the inclusion map R(I,W∞) ↪→ R(I,W ) is smooth by

Lemma 2.2, the map ŨG → R(I,W ), g 7→ π̇(g) ◦ α is also smooth by Lemma 5.9. The claim then
follows from (5.2) and the smoothness of the map R(I,W )→ C(I, n), α 7→ η(α).

(2): Let t ∈ I and α ∈ R(I,W∞1 ). We have to show that the map ŨG → n, g 7→ π̇(g)η(α)(t) is
smooth. But this follows from (1) and the smoothness of the evaluation map C(I, n)→ n, β 7→ β(t).

(3): Let α ∈ R(I,W∞1 ). By definition, ηα ∈ L∞(I, n∞) if supt∈I pk(ηα(t)) < ∞ for all k ∈ N. Fix

k ∈ N. By (1), the map ŨG → C(I, n), g 7→ π̇ηα(·)(g) is smooth. Thus the multilinear map

mk : gk → C(I, n), (x1, . . . , xk) 7→ dk(π̇ηα(·))(1G;x1, . . . , xk)

is continuous, hence bounded. It then follows from (5.1) that

sup
t∈I

pk(ηα(t)) = sup{||dk(π̇ηα(t))(1G;x1, . . . , xk)|| : t ∈ I, ||x1||, . . . , ||xk|| ≤ 1}

= sup{||mk(x1, . . . , xk)||C(I,n) : ||x1||, . . . , ||xk|| ≤ 1} <∞,

as desired.
(4): The map

f : ŨG ×R(I,W∞1 )→ L∞(I, n), (g, α) 7→ π̇ηα(·)(g) = η(π̇(g) ◦ α)

is smooth since it is the composition of the smooth maps ŨG×R(I,W∞1 )→ R(I,W∞), (g, α) 7→ π̇(g)◦α
(see Lemma 5.9) and R(I,W∞) ↪→ R(I,W )→ C(I, n) ↪→ L∞(I, n), α 7→ η(α). Hence (4) follows from
Lemma 5.2.

(5): Let α ∈ R(I,W∞1 ), and let us show that ηα is continuous. This is clear if α is a constant
function, that is, if α = cv : I → W∞1 , t 7→ v for some v ∈ W∞1 , since then EvolN (α)(t) = expN (tv),
and hence ηα(t) = tv for all t ∈ I. Assume next that α is a step function, say α|]tj−1,tj [ = cvj |]tj−1,tj [

for j = 1, . . . , n, where 0 = t0 < t1 < · · · < tn = 1 is a subdivision of I and v1, . . . , vn ∈ W∞1 . Then
for all j ∈ {1, . . . , n} and t ∈ [tj−1, tj ], we have

ηα(t) = t1v1 ∗ (t2 − t1)v2 ∗ · · · ∗ (tj−1 − tj−2)vj−1 ∗ (t− tj−1)vj ,

so that the continuity of ηα follows from the continuity of the local multiplication in n∞ (Lemma 5.4).
Let now (αn)n∈N be a sequence of step functions inR(I,W∞1 ) converging to α. Let p be a continuous

seminorm on n∞. Fix ε > 0. By (4), there exists some N ∈ N such that

sup
s∈I

p(ηα(s)− ηαN (s)) ≤ ε/3.

The above discussion also yields some δ > 0 such that p(ηαN (t)−ηαN (t0)) ≤ ε/3 whenever |t− t0| < δ.
Thus for t ∈ I with |t− t0| < δ, we have

p(ηα(t)− ηα(t0)) ≤ p(ηα(t)− ηαN (t)) + p(ηαN (t)− ηαN (t0)) + p(ηαN (t0)− ηα(t0)) ≤ ε.

Hence ηα is continuous, concluding the proof of the lemma. �

Lemma 5.11. For all α ∈ R(I,W∞1 ), the map ηα : I → n∞, t 7→ η(α)(t) is in ACR(I, n∞). Moreover,
R(I,W∞1 )→ ACR(I,N∞), α 7→ EvolN (α) is a (local) evolution map for N∞.

Proof. Recall from §2.5 that the map

f : V∞1 × n∞ → n∞, (x, v) 7→ expN (x).v = T1(λexpN (x))v

is continuous (here we identify each fiber TnN
∞ of TN∞ for n ∈ expN (V∞1 ) with the space n∞, using

the chart (expN (V∞1 ), exp−1
V )). Since ηα : I → n∞ is continous by Lemma 5.10(5) and α ∈ R(I, n∞),

we deduce from Lemma 2.2 that

γ := f ◦ (ηα, α) : I → n∞, s 7→ EvolN (α)(s).α(s)
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is in R(I, n∞). Since n∞ is a Fréchet space, Lemma 2.1 then implies that the weak integrals η̃α(t) :=∫ t
0
γ(s)ds exist in n∞ for all t ∈ I and that η̃α ∈ ACR(I, n∞). On the other hand, by definition of

EvolN (cf. §2.10), we have

ηα(t) =

∫ t

0

γ(s)ds

for all t ∈ I, where the above weak integrals are considered in n (c.f. §2.2). By unicity of the weak
integral in n, we conclude that ηα = η̃α ∈ ACR(I, n∞), as desired.

Finally, since expN ◦η(α) = EvolN (α) for all α ∈ R(I,W∞1 ), the above discussion also implies that
EvolN |R(I,W∞1 ) : R(I,W∞1 )→ ACR(I,N∞) is a (local) evolution map for N∞. �

Theorem 5.12. The Fréchet–Lie group N∞ is R-regular, with smooth evolution map

EvolN∞ : R(I, n∞)→ ACR(I,N∞), α 7→ EvolN (α).

Proof. By Lemma 5.11, the Fréchet–Lie group N∞ is locally R-semiregular (with local evolution map
EvolN |R(I,W∞1 )). It then follows from Lemma 2.5(1) that N∞ is R-semiregular. Moreover, the unicity
of the evolution map for N implies that EvolN∞ := EvolN |R(I,n∞) is the (global) evolution map for
N∞. It thus remains to prove that EvolN∞ is smooth. By Lemma 2.5(2), it is sufficient to show
that EvolN∞ |R(I,W∞1 ) is smooth or, equivalently, that the map R(I,W∞1 ) → ACR(I, n∞), α 7→ η(α)
is smooth. By Lemma 2.4, this is in turn equivalent to the smoothness of the map R(I,W∞1 ) →
C(I, n∞), α 7→ η(α). But this can be established exactly as in the proof of Lemma 5.10(4), replacing
L∞(I, n∞) by C(I, n∞) and L∞(I, n) by C(I, n). �

Corollary 5.13. The Fréchet–Lie group H∞ = N∞ oπ∞ G is R-regular, with a smooth evolution
map. In particular, H∞ has the strong Trotter and commutator properties.

Proof. The R-regularity of H∞ follows from Theorem 5.12, together with the fact that R-regularity
is an extension property (see [Glö15, Theorem G]). The second statement then follows from [Glö15,
Theorem I]. �
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