
Architecture for programmable
network infrastructure

Tom Barbette

Université de Liège

Faculté des Sciences Appliquées

Département d’Electricité, Electronique et Informatique

Doctoral Dissertation presented in fulfilment of the requirements for the degree
of

Docteur en Sciences

May 2018

mailto:t.barbette@gmail.com
http://www.ulg.ac.be
http://www.facsa.ulg.ac.be
http://www.montefiore.ulg.ac.be

This online version contains small grammatical corrections made after the original

publication.

ii

Summary

Software networking promises a more flexible network infrastructure, poised

to leverage the computational power available in datacenters. Virtual Net-

work Functions (VNF) can now run on commodity hardware in datacenters

instead of using specialized equipment disposed along the network path.

VNFs applications like stateful firewalls, carrier-grade NAT or deep packet

inspection that are found “in-the-middle”, and therefore often categorized

as middleboxes, are now software functions that can be migrated to reduce

costs, consolidate the processing or scale easily.

But if not carefully implemented, VNFs won’t achieve high-speed and will

barely sustain rates of even small networks and therefore fail to fulfil their

promise. As of today, out-of-the-box solutions are far from efficient and

cannot handle high rates, especially when combined in a single host, as

multiple case studies will show in this thesis.

We start by reviewing the current obstacles to high-speed software net-

working. We leverage current commodity hardware to achieve what seemed

impossible to do in software not long ago and made software solutions be-

lieved unworthy and untrusted by network operators. Our work paves the

way for building a proper software framework for a programmable network

infrastructure that can be used to quickly implement network functions. We

built FastClick, a faster version of the Click Modular Router, that allows

fast packet processing thanks to a careful integration of fast I/O frame-

works and a deep study of interactions of their features. FastClick proposes

a revised, easier to use execution model that hides multi-queuesing and sim-

plifies multithreading using a thread traversal analysis of the configuration.

We propose tailored network-specific multi-threaded algorithms that enable

parallel high-speed networking. We build a new retro-compatible batching

implementation, and avoid system calls “left over” by previous work.

We then build MiddleClick, an NFV dataplane built on top of FastClick.

It combines VNFs along a service chain to use a common subsystem that

implements shared features such as classification and session handling, but

makes sure no feature is applied that isn’t absolutely needed by one of the

VNFs. E.g., the classification is optimized to be minimal and only needs

to be done once for all VNFs. E.g., if no VNF needs TCP reconstruction,

that reconstruction won’t happen. We propose an algorithm to enable a

per-session, per-VNF “scratchpad”. Only the minimal amount of state is

declared and accessible in predictable locations using a per-VNF offset into

the “scratchpad” for fast lookups across the chain.

MiddleClick also offers new flow abstractions and ways to handle sessions

that enable fast and easy development of new middlebox functions that can

handle many flows in parallel.

Cooperation, consolidation and using the hardware in an appropriate way

may not always be enough. This thesis finally explores how to use classi-

fication hardware such as smart NICs and SDN switches to accelerate the

processing of the combined service chain, removing the need for software

classification.

While this work mostly relies on known high-level NFV dataplane principles

and proposes a few new ones, it is one of the most low-level work in the

field, leading to precise implementation considerations yielding very high

performance results. Both FastClick and MiddleClick are available as Open

Source projects and constitute an important contribution to the state of the

art.

Multiple leading edge use cases are built to show how the prototype can be

used to build fast and efficient solutions quickly.

Résumé

Auparavant, les infrastructures réseaux étaient composées de simples com-

mutateurs et routeurs. Mais rapidement sont venu s’ajouter des “middlebox”

(littéralement “boite au milieu”). Ces fonctions réseaux (NF pour “Network

Functions” en anglais) comprennent les pare-feu, les traducteurs d’adresses

(“NAT”), les inspecteurs de paquets, et bien d’autres fonctionnalités des-

tinées à garandir un réseau plus sécurisé, plus performant, ou à rendre le

réseau plus intelligent.

Depuis quelques années, ces fonctions réseaux ont progressivement été im-

plémentées au niveau logiciel, en remplacement des appareils dédiés à une

seule fonction. Cette tendance est appellée la virtualisation des fonctions

réseaux (NFV, “Network Function Virtualization” en anglais). Ces logiciels

peuvent être migrer pour réduire les coûts d’exploitation, et facilitent le pas-

sage à l’échelle. Les fonctions réseaux virtuelles (VNF) peuvent maintenant

tourner dans les centres de données au lieu de matériel spécifique disposé

au sein du réseau. Les infrastructures réseaux logicielles promettaient plus

de flexibilité, notamment pour utiliser la capacité de calcul potentiellement

disponible dans les centres de données (“datacenters”).

Mais si les VNFs ne sont pas implémentées précautionneusement, elles ne

peuvent pas atteindre la capacité de traitement nécessaire, même pour de

petits réseaux. Elles échouent donc à tenir leurs promesses. Aujourd’hui, les

solutions disponibles sont peu efficaces et ne peuvent atteindre de grandes

capacités de traitement, encore plus quand elles sont combinées dans une

seule machine comme le montreront divers cas d’études.

Nous commencerons par passer en revue les obstacles à la haute capacité

dans les réseaux logiciels. Nous utiliserons du matériel commun pour ar-

river à atteindre ce qui semblait pourtant impossible à faire en logiciel il y

a peu et menait à un manque de confiance des opérateurs réseaux dans les

solutions purement logicielles. Ce travail mène à la construction d’une “fon-

dation” logicielle pour les infrastructures réseaux programmables qui peut

être utilisée pour implémenter tout type de fonctions réseaux.

Dans ce travail, nous développons FastClick, une versions améliorées du

“Click Modular Router” (littéralement “Routeur Modulaire Clique”) qui per-

met de faire du traitement de paquet très rapide grâce à une intégration

minutieuse de librairies logicielles pour l’entrée/sortie (E/S) et un passage

en revue des interactions entre leurs fonctionnalités. FastClick propose un

modèle d’exécution revisité et plus facile, car il cache l’utilisation de l’E/S

multi-files et réduit les protections nécessaires à la programmation parallèle

qui ne sont pas réellement obligatoire en faisant une traversée du graphe

de fonctions lors de la configuration du système. Nous proposons des algo-

rithmes de programmation parallèle spécifiques aux réseaux qui permettent

un traitement à haute vitesse, un nouveau modèle rétro-compatible de traite-

ment par groupes de paquets, et nous évitons des appels système importants

oubliés par la plupart des précédents travaux.

Nous construisons ensuite “MiddleClick”, une base logicielle pour la virtu-

alisation de fonctions à partir de FastClick. MiddleClick combine les VNFs

d’une chaine de service pour utiliser un sous-système commun qui implé-

mente les fonctionnalités partagées comme la classification et la gestion des

sessions, mais s’assure qu’aucune fonction inutilisée ne soie appliquée si elle

n’est pas absolument nécessaire pour une des VNFs de la chaine. Par exem-

ple, la classification est optimisée pour être minimale et n’est faite qu’une

seule fois pour toutes les VNFs. Si aucune VNF ne nécessite de reconstruc-

tion TCP, elle ne sera pas faite. Nous proposons un algorithme qui permet

un espace unique par session et par VNF. Seulement l’espace d’état minimal

est alloué à des emplacements prédictibles pour que toutes les VNFs aient

un accès rapide à l’espace d’état.

MiddleClick introduit aussi une nouvelle abstraction de flux et des moyens

de gérer les sessions qui permettent un développement facile et rapide de

nouvelles “middlebox” qui peuvent traiter de nombreux flux en parallèle.

La coopération et la consolidation de fonctions de même que la gestion

efficace du matériel ne sont pas toujours suffisantes. Cette thèse explore

des méthodes pour utiliser du matériel en amont comme un commutateur

“SDN” ou une carte réseau intelligente pour accélérer le traitement et les

chaines combinées, en enlevant le besoin pour la classification en software.

Ce travail se repose sur des principes de virtualisation de fonctions réseaux

et en propose de nouveaux. Mais c’est surtout en proposant un passage

en revue plus bas niveau que ce travail se détache. En découle une im-

plémentation avec des considérations très spécifiques aux réseaux à hautes

capacités menant à de très bonnes performances. FastClick et MiddleClick

sont tous deux disponibles en tant que logiciels libres, ce qui constitue en

soit un apport à l’état de l’art.

Plusieurs cas d’études novateurs sont étudiés pour montrer comment le pro-

totype peut être utilisé pour construire des fonctions réseaux efficaces, et ce

très rapidement.

viii

Acknowledgements

Getting to this thesis has been a long journey, full of collaborations, discus-

sions, and many hours, days and months of testing. I learned from many

people from the USA to China, through Sweden. They helped me to get to

the final results presented in this thesis.

I’d like to particularly thank my thesis advisor, Professor Laurent Mathy

who helped me with wise guidance on technical solutions to overcome many

challenges, and my colleague Cyril Soldani who took part in the elaboration

of previous and undergoing work, many pieces of which are presented here.

Of course, other colleagues have provided many interesting meetings and

lunch-time discussions allowing me to import numerous bits of other fields

to my work.

In the last year, I started trying some of my work in Cisco Meraki security

appliances, leading to various interesting findings, in this real-case applica-

tion. But the biggest contributions from that exchange are the en-lighting

talks, so much so that I stayed in touch just to hear their scaling problems

and to have great fun trying to solve them.

I would like also to thank the University of Liege and its IT service (SEGI)

for authorizing traffic trace captures of network data (under strict terms) to

prove that my findings do not apply only to spheric chickens in a vacuum.

This work has been funded by the Belgian Fond National de la Recherche

Scientifique (FNRS). This funding gave me the rare opportunity to build a

fully-fledged lab as my needs grew. In the last few months, I was also part

of the Superfluidity European H2020 project.

This work is built on multiple open source software cited through the ma-

nuscript. I would like to thanks all the contributors and people of their

community for helping me here and there, mainly the Click Modular Router

community.

Finally, last but not least, I would like to thank my family and soulmate for

their support and the provided food during the busiest times. My mother

deserves a special mention for providing the illustrations that enhance this

thesis.

Contents

List of Figures vii

List of Tables xiii

1 Introduction 1

1.1 Network Function Virtualization . 4

1.2 Stateful service chaining . 6

1.3 Use cases for a high-speed programmable infrastructure 11

1.4 Structure of this thesis . 13

2 The fall of the old paradigms 17

2.1 Kernel I/O . 19

2.2 Kernel by-pass networking . 20

2.2.1 Features . 21

2.2.2 I/O Frameworks . 24

2.2.3 The case of Netmap and DPDK 26

2.3 Pure I/O forwarding evaluation . 28

2.4 An attempt at fixing the kernel I/O limits 32

3 A high-speed packet processing platform 37

3.1 A modular high-speed packet processing platform 39

3.2 I/O analysis . 46

3.2.1 I/O batching . 46

3.2.2 Ring size . 51

3.2.3 Execution model . 52

3.2.3.1 Pipeliner: a software queue that keeps a full-push path 55

iii

CONTENTS

3.2.3.2 Advantage of a full-push configuration for reference count-

ing . 56

3.2.4 Zero Copy . 57

3.2.5 Multi-queueing . 59

3.2.6 Compute Batching . 61

3.2.6.1 Batch size . 62

3.2.6.2 Batch-local variables . 64

3.2.6.3 Backward compatibility 64

3.2.6.4 Compute batching feature evaluation 66

3.3 FastClick evaluation . 67

3.4 Beyond Network I/O . 68

3.4.1 Timing . 68

3.4.2 Evaluation . 72

3.4.2.1 Accuracy . 72

3.4.2.2 Performance . 74

4 Distributed packet processing 75

4.1 Distribution approaches . 76

4.1.1 CPU-bound workload comparison 79

4.1.2 Memory-bound workload comparison 84

4.1.3 Work distribution bias in the pipeline and parallel approaches . . 88

4.2 Handling mutable data . 91

4.2.1 Ensuring graph thread-safeness 96

4.3 Networking data structures for parallelization 97

4.3.1 Write mostly . 98

4.3.2 Read mostly . 102

4.3.3 Update and degeneration . 109

5 An NFV Dataplane 113

5.1 Motivation experiment . 120

5.2 Architecture for an efficient NFV platform 124

5.2.1 Execution model . 126

5.3 State of the art . 128

5.3.1 I/O Frameworks and virtualization 128

iv

CONTENTS

5.3.2 Userlevel TCP stacks . 129

5.3.3 NFV Dataplanes . 129

5.3.4 Controller-based approach . 130

5.3.5 Graph consolidation . 131

5.3.6 Flow tempering . 131

5.4 Combining middleboxes . 132

5.4.1 Session data size . 135

5.4.2 Dynamic scratchpad space and virtualized environments 136

5.4.3 Multiple levels of sessions . 137

5.5 Stream abstraction . 138

5.5.1 Contexts . 138

5.5.2 Request for more data . 140

5.5.3 TCP flow reordering . 141

5.5.4 TCP flow stalling . 141

5.5.5 TCP flow resizing . 142

5.5.6 Matching both directions of the flow 144

5.6 Prototype implementation . 146

5.6.1 Flow Classification . 149

5.6.2 Classification tree expansion . 152

5.6.3 FCB release . 152

5.6.4 Context implementation . 154

5.6.5 Socket-like abstraction . 156

5.7 Performance evaluation . 157

5.7.1 Stateless firewall . 157

5.7.2 NAT . 159

5.7.3 TCP load-balancing reverse proxy 161

5.7.4 Service chaining . 162

6 Cooperative infrastructure 165

6.1 Traffic class classification offloading . 166

6.2 Service chain classification offloading . 168

6.2.1 Evaluation . 170

v

CONTENTS

7 Experimental automation and reproducibility 175

7.1 Network Performance Framework . 176

7.2 Architecture . 179

7.2.1 Testie . 179

7.2.1.1 Variables expansion . 179

7.2.1.2 Initialization and pre-defined scripts 179

7.2.1.3 Results parsing . 181

7.2.1.4 Regression . 181

7.2.2 Software . 181

7.2.3 Cluster . 183

7.2.4 Multiple metrics . 183

7.2.5 Data representation . 183

7.3 Interpretation of results . 184

7.3.1 Graphing . 184

7.3.1.1 Data transformations 184

7.3.2 Output module . 186

7.3.3 Statistical analysis . 186

7.4 Conclusion . 187

8 Conclusion and future work 189

Appendices 195

A More results about distributed packet processing 197

A.1 Increasing proportion of access to the packet content 197

A.2 Increasing number of cores . 199

B More results about userlevel parallel data structures 201

B.1 RxWMP data structure with read or write preference 203

References 207

vi

List of Figures

1.1 Schematic view of an end-to-end network 1

1.2 Schematic view of a more realistic network 2

1.3 Migrating from physical NFs to virtual NFs 4

1.4 Schematic decomposition of a service chain 6

1.5 Schematic decomposition of the MiddleClick system 7

1.6 MiddleClick flow abstraction system . 9

1.7 The TeraStream network . 11

1.8 Schematic describing the structure of this document 13

2.1 Kernel network I/O receive path . 19

2.2 An attempt at solving receive livelock with priorities and NAPI budget . 23

2.3 Internal working of DPDK and Netmap 27

2.4 Description of the forwarding test case 29

2.5 I/O frameworks forwarding test case results 29

2.6 XDP performance improvement . 35

3.1 Example of a usual path of the Click Modular Router. 40

3.2 Execution loop of a Click thread. 41

3.3 Click forwarding test case results . 44

3.4 Probability of having flows of 1 to 128 packets for the router packet

generator. 45

3.5 Click router test case results . 45

3.6 Impact of I/O Batching . 48

3.7 Campus test case description . 50

3.8 I/O Batching impact with DPDK . 50

vii

LIST OF FIGURES

3.9 Impact of ring size . 51

3.10 Push to Pull and Full Push path in Click. 53

3.11 Comparison between some execution models 53

3.12 The Pipeliner element . 55

3.13 Shallow copy . 56

3.14 Vanilla Click Netmap packet copy . 57

3.15 FastClick zero-copy implementation . 58

3.16 Impact of zero-copy on the forwarding test case 58

3.17 Full push path using multi-queue. 59

3.18 Multi-queue advantage on the full-push model 60

3.19 Multi-queue advantage on the full-push model when using a higher num-

ber of cores . 61

3.20 Linked list of packets as passed between elements when using compute

batching . 62

3.21 Un-batching and re-batching of packets between two batch-compatible

elements for a single path . 64

3.22 Un-batching and re-batching of packets when downstream elements have

multiple paths. 65

3.23 Compute batching evaluation . 67

3.24 Userlevel method to get the current time improvements 69

3.25 User timing accuracy . 72

3.26 User timing accuracy over a longer period 74

4.1 Distribution of two processing stages among two cores using the parallel

approach with hardware multi-queues and the pipeline approach 77

4.2 Pool allocation and release process under the pipeline approach 79

4.3 Pipeline approach to distribute two processing stages among two cores

using one more software queue to transmit packets using the same core

than the one receiving them . 79

4.4 Performance of the parallel and pipeline approaches to execute two pro-

cessing stages under increasing CPU workload 80

4.5 Schematic view of methods to dedicate cores to I/O in the pipeline approach 81

viii

LIST OF FIGURES

4.6 Throughput of the parallel and pipeline approaches with a varying num-

ber of processing stages . 82

4.7 Performance of the parallel approach and the returning pipeline approach

with a varying number of processing stages and queue sizes 82

4.8 Relative performance of the parallel approach over the returning pipeline

approach using two processing stages running on two cores 85

4.9 Relative improvement of the parallel approach over the returning pipeline

approach under an increasing percentage of access to the packet data

instead of the array . 86

4.10 Relative performance of the parallel approach over the returning pipeline

according to the number of cores . 87

4.11 RSS distribution deviation . 88

4.12 RSS inner working . 89

4.13 Imbalance problem to distribute the processing stages over cores when

using the pipeline approach . 90

4.14 Three ways to handle data contention problem with multi-queue and our

solution. 92

4.15 Thread bit vectors used to know which thread can pass through which

elements. 95

4.16 Per-thread duplication approach. Two sequences of events leading to an

inconsistent read and a stall read respectively 98

4.17 Update using atomic operations . 99

4.18 Protecting the mutable data using a lock 100

4.19 Performance of multiple data structures in write mostly situation 101

4.20 RCU order of events . 103

4.21 QSBR-based RCU . 104

4.22 Our EBR, ring-based method to implement userlevel RCU 105

4.23 RW lock based on per-core spinlocks . 107

4.24 Performance of multiple data structures under an increasing read versus

write proportion . 108

4.25 Performance of multiple data structures under an increasing read versus

write proportion . 110

ix

LIST OF FIGURES

5.1 3 different ways to build a middlebox service chain. On most links, there

is no cooperation to avoid redundant operations. 114

5.2 MiddleClick flow abstraction system . 115

5.3 Profiling of multiple service chains . 121

5.4 Overall schematic of the architecture we propose 124

5.5 Scenario using the run-to-completion-or-buffer model 126

5.6 A small system handling ARP packets, applying some processing on

HTTP traffic and load-balancing traffic 133

5.7 Computation of the size and offsets needed for the FCBs 135

5.8 Memory allocation for isolated environments 136

5.9 Two components needing two different levels of sessions. 137

5.10 Context approach . 140

5.11 Example of the mapping between an original flow and the corresponding

modified flow . 143

5.12 New configuration syntax in MiddleClick 147

5.13 Classification tree for the small setup of figure 5.6. 150

5.14 Example configuration for a transparent middlebox 155

5.15 WAN to LAN throughput and latency of a stateless firewall using 2 cores

(one per side), except for Vanilla Click which uses 4. 157

5.16 Throughput of data downloaded through different NAT implementations

using 128 concurrent connections on one core 160

5.17 Throughput of data downloaded through different NAT implementations

using 128 concurrent connections on one core 160

5.18 MiddleClick load-balancer test case . 162

5.19 MiddleClick load-balancer latency test case 162

5.20 Impact of service chain length . 163

6.1 Architecture to use tagging to dispatch packets to multiple service chains

running inside a single NFV server . 169

6.2 Firwell service chain classification offloading performance results 171

6.3 Service chain classification offloading performance results 173

7.1 Simple configuration to test TCP throughput of a local connection using

iPerf3, and the resulting graph produced by NPF. 177

x

LIST OF FIGURES

7.2 Example of software source definition . 181

7.3 Advanced configuration supporting remote execution and multiple software182

7.4 Internal representation of the results of a full execution 184

7.5 Multiple figures as produced by NPF tools for the same Click-based

router testie using DPDK for I/O . 185

B.2 Performance of multiple data structures under an increasing read versus

write proportion with 8 cores . 202

B.3 Per-thread duplication approach protected per an RxW lock (preferred

read) to allow for consistency . 203

B.4 Performance of the RxWMP data structure with read or write preference 206

xi

LIST OF FIGURES

xii

List of Tables

2.1 I/O Frameworks features summary. 24

3.1 Click integrations of I/O frameworks. 43

4.1 Summary of usual concurrent access safe data structures 112

5.1 Example flow table for a simple system 134

5.2 Example flow table for a simple system with dynamic rules 135

5.3 Context requests . 139

6.1 OpenFlow rules for tagging packets in the example of figure 5.6. 167

7.1 Testie file sections . 180

xiii

LIST OF TABLES

xiv

1

Introduction

Programmable Network Infrastructure

At the beginning, networks were essentially composed of end hosts - computers and

servers - and forwarding machines, - switches and routers. Hosts communicated with

each other, and machines in the middle were only concerned with the data - the packets.

Except for small changes for the sake of correct routing1, the traffic between the hosts

was left untouched. In a sense, the network infrastructure was composed of the minimal

functionality, leaving most of the duty to the machines at the edge. This is referred as

the end-to-end principle as depicted in figure 1.1.

Figure 1.1: Untouched end-to-end network, with only switches and routers between hosts
that receive data exactly as it was sent

But quickly, for security but also for many different needs, other machines were

introduced in the middle of the network. For instance, some of them block some un-

allowed types of packets, they are firewalls. Others analyze the packet content - deep

packet inspectors (DPI) - to decide if they are attacks or banned content that should

be rejected before it reaches the final recipient. All those devices that act “in the mid-

dle” are referred to as middleboxes[1]. Example of such network, more representative of
1For instance, the Time To Live (TTL) field is modified by routers to protect against endless loops

1

1. INTRODUCTION

today’s state of the Internet, is depicted in figure 1.2. End-users often have a Customer

Premise Equipment (CPE) in their homes that are provided by the Internet Service

Provider (ISP) and run multiple functions typical of middleboxes such as a firewall

or a Network Address Translator (NAT), that allows hiding internal devices behind

the CPE as if it was the only equipment connected to the internet. The ISP network

may include another round of security device, Wide Area Network (WAN) optimizers,

especially mobile providers, that breaks the end-to-end principle on purpose to cope

with the different rates of cable networks and wireless networks. Most computers that

only provides Internet services, called servers, are grouped in farms called datacenters.

Datacenters generally run stateful firewalls that retain information about specific hosts

to limit the number of connections to prevent Denial of Service (DoS) attacks. Data-

centers often use Load Balancers (LB) that take care of dispatching traffic to multiple

servers to spread the load. In which case in the end-to-end principle, the second end

may actually change between multiple connections without the other end knowing it.

Figure 1.2: A more realistic network, comprising a number of middleboxes that heavily
modify the traffic

This is only a limited non-exhaustive list of middleboxes that can be found in the

network, [1] categorized 22 type of middleboxes in 2002, a number which would probably

be higher today. According to [2, 3] middleboxes account now for 1/3 of the network

devices in enterprises network and are also massively present in datacenters.

Middleboxes, however introduce multiple problems.

2

Network ossification. Middleboxes modify the traffic, breaking the end-to-end prin-

ciple [4]. Some of them drop unknown type of packets or do not handle correctly new

protocols, preventing innovation in the network [5].

Laborious development There is currently no good, widely deployed middlebox

programming framework that allows fast development of stateful network functions.

Multiple propositions in the state of the art will be reviewed in this work, but developing

a middlebox is not an easy task as networking stacks do not handle easily high level of

parallelism (OSes performance are reviewed in chapter 2). They do not allow flexible

flow definition (in general only TCP and UDP) and do not handle session management,

that is allowing the programmer to remember data per-session. Indeed, middleboxes

often need to keep specific statistics or state for each different micro-flows. That leaves

developers handling multi-thread contexts, hash-tables for session data, and makes it

difficult to achieve high-speed when a high number of flows is involved.

No cooperation between middleboxes Most middleboxes exchange packets as

RAW packets, without any meta-data and thus the same work is repeatedly done by

various middleboxes even inside the same operator-owned network.

They are responsible for a lot of failures In a large scale review[3], it was shown

that “Middleboxes contribute to 43% of high severity incidents despite being 11% of

the population”. Some functions make failover harder or nearly impossible, especially

stateful functions. For instance, NAT failover would require the flow table to be shared

between multiple appliances to allow mapping of micro-flows to keep the same transla-

tion when the second one takes over.

High-speed needs hardware. To handle large amount of traffic, most high-end

middleboxes are hardware-based. Major innovation needs a change of hardware, as

seen with the IPv6 deployment which required most hardware equipment to be changed.

Moreover, hardware equipment is often costly, not necessarily supporting fault tolerance.

And even when they do, the spare equipment does not always take over when a fault

occurs[2].

3

1. INTRODUCTION

Figure 1.3: From physical boxes implementing network functions to virtual network
functions (VNFs)

1.1 Network Function Virtualization

Therefore as networks are composed of more and more complex equipment performing

legitimate and needed work, but given that they ossify the network and they are respon-

sible for lots of failures, the last few years have witnessed the migration of hardware

implementations to much more flexible software counterparts, a trend called Network

Function Virtualization (NFV) shown in figure 1.3. NFV enables faster innovation[6],

more programmable network infrastructure and allows to take advantage of the high

computing power available in the cloud.

Software packet switching and routing started the NFV trend. With early research

about high-speed packet header classification algorithms[7, 8] that would perform well

in software. But the best classification algorithms would still achieve a much lower

packet processing rate than their hardware counterpart[9, 10]. Software routers reached

a momentum with the Click Modular Router[11]. Even if the speed of Click was not

comparable to its contemporary hardware routers, the modularity it provided made

it popular, being still of today one of the most used packet processing prototyping

platform for researchers[12, 13]. Click did not only exceeded performance of its contem-

porary Operating System’s IP routing stack[14], but offered an easy-to-use, graph-based

programmable packet processing platform that lend itself for general purpose network

function virtualization. However, even if Click achieved sufficient performance to re-

place low-end and mid-end routers[11, 14], it was still not fast enough to replace high-end

routers that can be found in the core networks or datacenters.

The challenge is therefore to enable high-speed software packet processing, while

keeping the advantage of software flexibility.

4

1.1 Network Function Virtualization

No matter how much optimization comes into place, software scalability requires

multi-processing at some stage. The network functions can be split over multiple cores

but also even across multiple servers. Subsequent work[15, 16, 17, 18] therefore studied

parallelisation of software packet processing platforms and fairness while consolidating

virtual routers on a single system[19, 20].

In this thesis we also present an extension of Click, called FastClick, that provides

an automatic parallelisation model. FastClick also leverages latest commodity hardware

features to enable very high-speed packet processing after conducting a very extensive

review of their interaction. The techniques behind FastClick, such as hardware-specifics

for fast I/O, possible scaling and execution models, how to efficiently handle packets

with batching and zero-copy, will be further discussed in chapter 3 and form an im-

portant contribution of this thesis. FastClick is available in Open Source at [21], and

provides by itself a piece of software useful to the research community as a basis for

further development[22, 23, 24, 25] or a relevant point of comparison as an established

state of the art packet processing platform[26, 27, 28, 29].

In chapter 4, we review different models to distribute packets among multiple cores,

extending the analysis of [16] and [30] with various other considerations about the

impact of different pipelining models, amount of memory accesses and their location

and number of CPU cores. We also study and propose specific data-structures to

protect mutable states in the context of high-speed networking, how to detect concurrent

accesses, and how to ensure that unsafe parts of the graph are not traversed by multiple

threads. We find the best spot in use cases for each data structure and provide an

openly available implementation at [21].

Most MiddleBoxes functions mostly supervise the network traffic and do not initi-

ate or close connections. However, usual Operating Systems network stacks are imple-

mented in the scope of packets being received and consumed by a socket application

that terminates the connection. Therefore a lot of heavy work is done upfront, directly

in the driver, which is not necessary for “pass-through” workload. Multiple userlevel

I/O frameworks such as DPDK[31], Netmap[32] and other initatives[33, 34, 35, 36] were

proposed to deliver network packets to userlevel, bypassing the Kernel to achieve high-

speed. Chapter 2 conduct an extensive review of those frameworks, how they work,

and the techniques used such as interrupt mitigation and batching of packets to achieve

high packet reception and transmission rate. It is our belief that our review will help

5

1. INTRODUCTION

the reader understanding the ups and downs of each framework. Our contribution also

includes a quantitative comparison of those frameworks. Section 2.4 explores how to

re-mediate to the lack of fast path in Operating System network stacks, and proposes

improvements to the Linux Kernel to enable in-kernel high-speed packet processing.

Section 3.4 conduct a review of non-networking I/O system calls to avoid when build-

ing network functions in userlevel such as time reading system calls. We build a new

userlevel clock that allows reading the time much faster than when using kernel facilities,

with a very high precision. While the precited recent I/O frameworks focus on network

I/O and similar techniques have been used for management of storage devices[37], we

propose a userlevel clock that synchronizes upon the operating system time as part of

FastClick at [21].

It is our belief that the platform we built has revisited those many aspects of high-

speed packet processing and is a strong basis to build new scalable virtual network

functions.

1.2 Stateful service chaining

In general, multiple network functions are chained together to form a service chain.

Running service chains with pure NFV allows operators to move the functions to run

them in different equipment or datacenters. A possibility helped and pushed by the

recent trend called Software Defined Networking (SDN) that allows to program switches

using software controllers, and direct each flow specifically through the network. With

SDN, each flow can easily follow a different service chain.

Figure 1.4: A standard service chain with firewall, DPI and NAT decoupled in basic
blocks. One can easily see the case for factorization.

Figure 1.4 represents a simplified logical view of a service chain composed of a

stateless firewall, a DPI and a NAT. They are decoupled in basic blocks. They all

6

1.2 Stateful service chaining

Figure 1.5: A improved version of the service chain of figure 1.4

start with some traffic class classification steps that dispatch packets according to their

headers. In fact, a stateless firewall is only about classification. The DPI will also

do some classification to run some protocol-based checks and then use a session table

to rebuild micro-flows and look for patterns inside the reconstructed payload. The

NAT will use the same kind of session tables to remember the mapping to apply for

each session. All classification steps in those middleboxes are mostly similar, while the

session tables are almost identical.

The first challenge to enable efficient service chaining is therefore to propose an

infrastructure which can factorize these redundant pieces of work, to avoid a fall in

performance as the service chain grows.

xOMB[38] decouples network functions to allow better programmability, SNF[39] to

combine some identical basic read and write operations while CoMb[40] explores high-

level, per-block consolidation of middleboxes for better resources management. We

extend those ideas by proposing a programmable infrastructure that allows VNFs to

expose their classification and per-session state needs. The system can then factorize

the classification and reconcile the state for all middleboxes as shown in figure 1.5.

The unified state management avoids inconsistent state and prevents to have multiple

session tables that will essentially be the same along the service chain. Moreover,

the work to be done by the platform for each VNF is minimized by the process of

factorization and allocate per-session space that is needed for each VNF at once. Only

7

1. INTRODUCTION

the minimal amount of state is declared and VNFs are informed of a constant offset to

look at in the unified session space for fast lookup. The unified session management

and the session classification combination for all VNFs of the chain is one of our major

improvements over the state of the art which mostly combine the traffic class, static

classification[39, 41]. The unique session table leads to very high-speed throughput, even

for very long and diversified service chain and offer potential acceleration for stateless

functions such as firewalls that may use the session table that is present anyway to store

per-flow decision.

The second challenge is to avoid multiplying identical protocol-specific stack services

along the chain, such as reconciling TCP state, reordering TCP packets or joining and

splitting a stream of bytes into packets.

NetBricks[42] and E2[43] allow to chain functions, passing TCP streams instead

of packets between the components, avoiding re-construction of TCP sessions. In the

system we present, we propose a generilized (i.e. not TCP-centric) version of this idea.

Keeping the protocol stream is automatized and not the result of specific pipelining

of VNFs built using a specific stream APIs. All VNFs exchange batches of packets

of the same session, but without losing the associated session context. The user may

then use various layer of abstractions described further in section 5.5 that allows to

work on packets as a stream of bytes. The VNF are all compatibles as they always

exchange packets underneath the bytestream abstraction. To avoid multiple identical

stack services, these abstractions makes request to a given current protocol “context”

that is set using specific building blocks that are easily interchangeable. E.g. one can

build a pattern-matching VNF in only a few lines using the higher level abstraction that

provides an iterator over the payload of bytes, reminescent of FlowOS[44]. Therefore,

multiple VNFs working on the same context can be chained without any protocol-related

performance cost.

The third challenge regarding stateful service chaining is to allow for innovation,

and be, as much as possible, future-proof. Most high-speed NFV dataplane supporting

stream modification come with a userlevel TCP stack[27, 42, 45, 46], that aside from

implementing only the TCP protocol, are hard to maintain, or already strip some options

of TCP preventing innovation and future deployments. Some TCP stacks implement

older or fixed congestion or flow control algorithms that will not work well with future

ones.

8

1.2 Stateful service chaining

Figure 1.6: MiddleClick flow abstraction system. A VNF can make requests to its current
abstract context that takes care of the implications for the protocol it supports, and then
pass the request to the lower context and so on. This allows to easily build support for
tempering flows of new protocols on top of others.

The context-based abstraction provides seamless inspection and modification of the

content of any flows (such as TCP or HTTP), automatically reflecting a consistent

view, across layers, of flows modified on-the-fly as shown in figure 1.6. When an HTTP

payload is modified, the content-length must be corrected. A layered approach allows

to back-propagate the effect of stream modification across lower layers as shown in

figure 1.5. The stack can modify on-the-fly sequence and acknowledgement numbers

on both sides of a TCP stream when the upper layer makes changes. The advantages

of this system are in two parts. Firstly, we do not need to implement a full TCP

stack, as we rely on the end hosts to implement congestion, flow control and handle

most retransmissions, therefore protocol blocks are very thin, and easier to maintain.

We avoid the overhead of a full TCP stack and do not make assumptions about the

TCP implementations at the ends. Secondly, each block layer is easily interchangeable,

and can be added on top of another layer to support new protocols, making it easy to

implement new application layers on top of HTTP, or new flow control on top of UDP

such as UDT[47]. Aside from VNFs tightly tied to the underlying protocol (e.g. WAN

9

1. INTRODUCTION

optimizers), no change in the VNFs themselves needs to be done when changing the

context blocks in front of them.

The system finally provides support for a mechanism to “wait for more data” when a

middlebox needs to buffer packets, unable to make a decision while data is still missing.

Our TCP in-the-middle implementation supports pro-active ACKing to avoid stalling a

flow while waiting for more data, and enables handling of large amounts of flow using a

run to completion-or-buffer model. The ability to easily save per-session states without

the cost of a context switch allows to build innovative function such as DPIs that are

not subject to eviction by saving the state of the DFA in the session table.

Chapter 5 focus on building such a factorization and abstraction framework that

is shown to be efficient and enables fast development of complex flow-based functions

in no-time. While the examples VNFs built using the platform perform better than

the compared state of the art, a big contribution of this work to the field of high-speed

packet networking is also the availability of MiddleClick, our prototype that builds upon

the efficiency of FastClick which can be used to quickly implement stateful network

functions. It is fully available at [48] with the hope it will be used by others to build

new efficient VNFs.

As the needs of the Internet grows, service chains and the complexity of the VNFs

themselves. Therefore multiple researchers tried to offload some part of the VNFs

processing to GPU[13, 35] or FPGA[49].

In this work, we try to offload the classification needed by the VNFs to hardware

facilities. Indeed, the factorization of the classification needs by MiddleClick offers a

unique opportunity to move it even before the traffic hits the CPU. Chapter 6 study how

various hardware can be used to accelerate MiddleClick by offloading some part of the

classification. We also present a way to not only offload the service chain classification

but let the hardware tag the packets so it can be received by the right CPU core

that handles the service chain directly, avoiding any useless inter-core communication

in section 6.2. This contribution therefore leaves those CPU cycles free to do the

meaningful processing of the VNFs, achieving 100Gbps processing[25].

10

1.3 Use cases for a high-speed programmable infrastructure

Figure 1.7: Simplified view of the TeraStream network where most services of the Deutsch
Telekom ISP are moved to datacenters

1.3 Use cases for a high-speed programmable infrastruc-
ture

In their TeraStream network[50], Deutsche Telekom uses an inter-connected IPv6 only

network to connect all customer access interfaces (LTE, DSLAM, ...). This is a pure

optical switching network, connected to datacenters to run the “Infrastructure Cloud”.

This is represented in a simplified way in figure 1.7. In that way, they remove all services

from the networking equipment and are able to fully scale them, instead of relying

on “intelligent routers” (routers embedding middlebox functions) to do the processing

along the path. Virtual middleboxes avoid the need to have more expensive network

equipment than switching gears in the core of the network as Deutsche Telekom does.

Virtualizing the infrastructure by moving middleboxes themselves to NFV enables

middlebox consolidation in datacenters to reduce energy consumption. A large Content

Delivery Network (CDN) provider, Akamai is moving computation to datacenters where

the energy price is currently cheaper[51]. Nowadays the bandwidth in the core network

is not the main problem, simple high-rate switches and routers that only do switching

can transfer the job to be done to network edges or other datacenters efficiently and at

affordable costs because of their relative simplicity as they only do L2 or L3 switching.

11

1. INTRODUCTION

Energy consumption is, however, a challenge to solve. Therefore CDN providers can

afford to pay ISPs for bandwidth and move requests around continents.

An infrastructure easier to program and more flexible ease the development of the

two examples above. But it also enables novel use cases such as carrier-grade ad-removal

or user-targeted ad-insertion, on the fly video re-encoding to cope with bandwidth

changes, parental filtering that is based on the content of the flow and not only headers,

better innovative DDOS protection, application-level proxies and caches and many oth-

ers that only need to be invented. One could modify a flow to provide information for

augmented reality, showing the user targeted information on his screen. The proposed

framework also builds a ground for a super-fluid network where VNFs can move from

one place to another. In such network, functions usually executed on a mobile such as

ad-removal, parental control or firewall can be moved to the network edge to improve

security and battery.

While there is currently no standard for 5G deployments, one way to achieve the

very high rate is to allow mobile devices to communicate with multiple antennas using

a MIMO technology. That means the data must be re-conciliated in the Radio Access

Network (RAN) by middleboxes. To accommodate speeds as high as 10Gbits per mobile

devices, most middleboxes functions must be pushed to the network edge as the WAN

bandwidth will not be able to achieve the aggregated rate to transport all traffic to

datacenters. Therefore the 5G network makes a big case for fluid software networking

where the proxy caches, proactive content caching, WAN optimizers or even third party

VNFs can run in the operator’s owned devices between the RAN and the Core Network

(CN).

NFV also allows redundancy by taking advantage of virtualization technologies

largely available in the cloud, allowing easy scalability as the VNF can spread over

multiple CPUs or even multiple compute nodes. NFV also enables the concept of In-

frastructure as a Service (IaaS), where instead of running its own middleboxes a network

operator may delegate middlebox functions to a third party, cloud-based provider as

proposed in [2], who estimated that 90% of network functions present in enterprises

networks could be run by third parties in the cloud. In this work, we build a high-

speed packet processing platform, FastClick, that we then enhance to allow building

innovative and efficient stateful service chains. We tackle in this work all the observed

MiddleBox challenges highlighted at the beginning of the chapter. We therefore believe

12

1.4 Structure of this thesis

Figure 1.8: This thesis follows a bottom-up approach to explain how we build our archi-
tecture for programmable infrastructure

the solution presented in this thesis is fit for purpose and will contribute to the state of

the art towards, a fluid, programmable, high-speed network infrastructure.

1.4 Structure of this thesis

Chapter 2 to 6 approaches the problem of building a high-speed programmable in-

frastructure with a layered, bottom-up approach instead of a more tradition unique

state-of-the-art ⇒ solution ⇒ evaluation approach as shown in figure 1.8. Chapter 2

reviews the state of the art of pure network I/O and compare the available frame-

works for fast high-speed packet transmission. Chapter 3 studies the ways to integrate

those methods in a high-speed I/O platform that allows high-speed packet-based

processing and then how to scale using more CPU cores in chapter 4. Chapter 5 builds

on top of that platform to provide proper NFV features such as flow processing and

compares to other NFV architectures proposed in the state of the art. Chapter 6

reviews how to use multiple, maybe different, hardware environment to enable coop-

eration of multiple hosts, expanding the programmable infrastructure over the whole

network of an operator. Therefore it is worth mentioning that given that layered ap-

proach, detailed comparison with the state of the art and highlighting of our specific

13

1. INTRODUCTION

contributions are also categorized by chapter. We have taken the problem layer per

layer, reviewed the state of the art, implemented solutions on top of it to make it faster,

evaluated what we’ve done and moved to the next step. I.e. high-speed I/O is needed to

build a fast network platform, which should be fast enough to build an NFV platform,

and only when good enough will make a case for making multiple of them cooperate.

Chapter 7 details how experiments were done. For the purpose of our research,

most of them were done using a hand-crafted tool that is also described as part of this

thesis. This tool also contributes to the field of high-speed networking by allowing to

write performances tests in an easy language. The tool allows studying the behaviour

of solutions under development in term of latency, throughput and other metrics. It is

parametrisable to review how the metrics change under various parameters. The tool

processes the huge amount of samples that a big number of parameters leads to allowing

a human to quickly understand how the device under test reacts to parameters change.

Chapter 8 finally discusses further possibilities and concludes about our work.

This chapter in a nutshell
I Context of this thesis

• NFV is promising, especially to solve network ossification problems. NFV
helps to leverage the power available in the cloud and prepare for the network
of tomorrow such as 5G mobility.

• But current implementations are very much perfectible in term of performance,
ease of programming and ability to build efficient service chain.

I Highlight of our main contributions.

• We review high-speed I/O state of the art and compare available frameworks.

• We leverage known techniques to build a high-speed platform, make a novel
study of their impact and interactions deeper than the state of the art.

• We add new techniques of our own to achieve high speed, in a safe but scal-
able multi-threaded context leading to FastClick, now used in multiple recent
publications as a faster version of the Click Modular Router.

• We build an NFV dataplane that is very efficient and performs better than
current approaches using a novel classification system and facilities that allows

14

1.4 Structure of this thesis

both easier development and factorization of common functions in a unified,
faster and hardware offloadable flow manager. The dataplane is automatically
tailored to the needs of the VNFs that compose the service chain.

• The platform allows to modify TCP (but also others) flows on the fly without
the need to terminate the connection, leading to better performances than
proposed in the state of the art.

• We prove the case for middlebox cooperation to build a programmable network
infrastructure.

• We build an experiment automation tool suited for high-speed networking
(NPF).

• Our main open source contributions, FastClick, MiddleClick and NPF are avail-
able online at [21], [48] and [52].

�

15

1. INTRODUCTION

16

2

The fall of the old paradigms

Kernel by-pass networking

In this section, we review the current industry practices, and the model followed by

Operating Systems to receive and transmit packets, how to improve this model and the

alternatives.

Standard Operating System kernels such as Linux are built with functionality in

mind. They offer full-stack services and are shaped with the scope of packets ending up

in a socket, being delivered to a userspace application. While this suits well end hosts,

it may not be the best approach in an NFV context where most of the VNFs do not

need to terminate connections. Most VNFs only analyse the data passing through, or

slightly modify it and therefore do not need to fully terminate a connection and re-open

a new one. Section 2.1 reviews usual operating system network stack implementations

and their bottlenecks.

In recent years, we have witnessed the emergence of high speed packet I/O frame-

works such as Netmap[32] or DPDK[31], bringing unprecedented network performances

to userspace. Section 2.2 reviews a set of existing userspace I/O frameworks and their

mechanisms to achieve better throughput and latency. Section 2.3 then evaluates their

forwarding performance.

Most solutions proposed by those frameworks are possible inside the kernel itself.

But even if performance can be improved, building Kernel application is complex and

the slightest mistake can crash the kernel. Nevertheless, some software like the Click

Modular Router[11] can run in-kernel. In section 2.4, we propose a set of changes

and build upon novel features of the Linux Kernel to make it suit better high-speed

17

2. THE FALL OF THE OLD PARADIGMS

networking applications. We build a proof-of-concept to evaluate potential performance

gains that shows a 4X improvement with minimal size packets. The changes made also

prevent the livelock problem that will be described in section 2.2.1 that completely stalls

the system when under high receive rate.

This chapter in a nutshell
I Context of this chapter

• Operating Systems are generally made for terminating connections, they are
not suitable as an infrastructure platform that barely modifies packets and
passes them as fast as possible.

• A lot of new frameworks allow receiving packets directly in userspace very
quickly, by-passing the OS network stack and allowing easier programming
than in-kernel.

I Highlight of our main contributions in this chapter

• We review the techniques for high-speed I/O and the frameworks using those
techniques.

• We evaluate the different methods to achieve high-speed packet processing and
compare their performances.

• We propose some slight but conceptually important modifications to the Linux
Kernel to allow fast in-kernel processing.

�

18

2.1 Kernel I/O

Figure 2.1: Usual network I/O receive path for userlevel or kernel applications

2.1 Kernel I/O

This section will briefly summarize the packet receive path of common Operating Sys-

tems. Of course, exact details depend on the specific OS, and even inside a given OS a

fair part of the path actually depends on the driver.

The driver generally arranges for a Direct Memory Access (DMA) mapped memory

space visible to both kernel and the Network Interface Controller (NIC). The DMA

memory space contains some buffers that will receive the packet content, and rings of

packet descriptors. The descriptors reference those buffers and information about the

data in the buffer, such as the packet length and various kind of flags(fig. 2.1 - 2b).

When a packet is received, the NIC directly writes the packet inside a buffer of the

DMA memory space (fig. 2.1 - 1) using DMA. When the copy is finished, the NIC

updates the receive ring (fig. 2.1 - 2) to set the length of the packet it just copied, along

with a few other information. The NIC will then issue an Interrupt Request (IRQ)

that will make the CPU stop its current task if interrupts are not masked and run the

interrupt request handler of the NIC driver(fig. 2.1 - 3).

The NIC may issue an interrupt request after each packet, after a batch of packets

has been written, or none for some time if technologies like interrupt throttling or New

network API (NAPI) in the Linux Kernel are used to lower the interrupt rate. When

NAPI is used, the IRQ handler will disable further IRQ. A kernel thread will then poll

19

2. THE FALL OF THE OLD PARADIGMS

for incoming packets, reading the DMA memory zone to check if packets were received.

After a certain amount of packets or if no more are available, it will unschedule and

re-enable interruptions.

The driver’s packet receive loop (executed under NAPI or the IRQ handler) and

other subsequent routines build an internal Kernel packet descriptor around the buffer.

On freebsd it is the mbuf structure and on Linux it is the sk_buff structure. We will

keep sk_buff to reference this kind of structure for convenience, as the idea is the same

for most OSes. Some driver pre-create sk_buff around the buffer, so the structure is

nearly ready to go when the interrupt happens. The driver then pushes the sk_buff

through the network stack(fig. 2.1 - 4).

In the end, a list of “pending” sk_buff is built in kernel memory, either for delivery

to third-party kernel application modules(fig. 2.1 - 7) or to userspace.

In the case of userspace networking, the application issues read/write system calls,

passing userspace buffers(fig. 2.1 - 6). The system call handler will copy the data from

the sk_buff to the userspace application’s buffers(fig. 2.1 - 5).

[53] analysed in 2006 the receive path of the Linux kernel and is still a valuable

source for further reading as most of the process is still identical.

2.2 Kernel by-pass networking

Contribution notice
Most of section 2.2 is from published work [54] made in collaboration with Cyril

Soldani and Laurent Mathy.

One man cannot solve all the world’s problems �

Recent years have seen a renewed interest in software packet processing. However, as

will be shown in section 2.3, a standard general-purpose kernel stack is too slow for lin-

erate processing of multiple 10-Gbps interfaces. To address this issue, several userspace

I/O frameworks have been proposed. Those allow to bypass the kernel and obtain ef-

ficiently a batch of raw packets with a single syscall, while adding other capabilities of

modern NICs, such as support for multi-queueing.

We first review various features exhibited by most high performance userspace packet

I/O frameworks. We then briefly review a representative sample of such frameworks.

20

2.2 Kernel by-pass networking

2.2.1 Features

Zero-copy. The standard scheme for receiving and transmitting data to and from a

NIC is to stage the data in kernelspace buffers, as one end of a Direct Memory Access

(DMA) transfer. On the other end, the application issues read/write system calls,

passing userspace buffers, where the data is copied across the protection domains, as a

memory-to-memory copy.

Most of the frameworks we review aim to avoid this memory-to-memory copy by

arranging for a buffer pool to reside in a shared region of memory visible to both NICs

and userspace software. If that buffer pool is dynamic (i.e. the number of buffers an

application can hold at any one time is not fixed), then true zero-copy can be achieved:

an application which, for whatever reasons must hold a large number of buffers, can

acquire more buffers. On the other hand, an application reaching its limit in terms of

held buffers would then have to resort to copying buffers in order not to stall its input

loop (and induce packet drops).

Note however that some frameworks, designed for end-point applications, as opposed

to a middlebox context, use separate buffer pools for input and output, thus requiring

a memory-to-memory copy in forwarding scenarios.

Kernel bypass. Modern operating system kernels provide a wide range of net-

working functionalities (routing, filtering, flow reconstruction, etc.).

This generality does, however, come at a performance cost which prevents to sustain

linerate speed in high-speed networking scenarios (either multiple 10-Gbps NICs, or

rates over 10 Gbps).

To boost performance, some frameworks bypass the kernel altogether, and deliver

raw packet buffers straight into userspace. The main drawback of this approach is that

this kernel bypass also bypasses the native networking stack; the main advantage is that

the needed userspace network stack can be optimized for the specific scenario[55].

In pure packet processing applications, such as a router fast plane, a networking

stack is not even needed. Note also that most frameworks provide an interface to inject

packets “back” into the kernel, at an obvious performance cost, for processing by the

native networking stack.

21

2. THE FALL OF THE OLD PARADIGMS

I/O batching. Batching is used universally in all fast userspace packet frameworks.

This is because batching amortizes, over several packets, the overhead associated with

accessing the NIC (e.g. lock acquisition, system call cost, etc.).

Hardware multi-queues support. Modern NICs can receive packets in multiple

hardware queues. This feature was mostly developed to improve virtualization support,

but also proves very useful for load balancing and dispatching in multi-core systems.

Indeed, for instance, Receiver-Side Scaling (RSS) hashes some pre-determined packet

fields to select a queue, while queues can be associated with different cores.

Some NICs (such as the Intel 82599) also allow, to some extent, the explicit control

of the queue assignment via the specification of flow-based filtering rules.

Lighter interrupt, or no interrupt. Under very high throughput, it may happen

that the CPU runs interrupt routines to handle packets without having any time left for

the application to run and actually consume the packets. This is referred to as receive

livelock. It is often mistakenly thought that IRQ throttling and NAPI can solve this

problem. While they avoid IRQ storms when the rate is high, the networking routine

that fills the sk_buffs will still run as a kernel thread (as a softirq in Linux or "bottom

halves"), copying packets or pointers to some userspace buffers if a socket is open, with

no way to apply backpressure to the NIC when those buffers are full.

The result is that the driver receive handler will still receive packets and initial-

ize sk_buffs that cannot be processed by the application endlessly and end up being

dropped. [56] already showed this problem and that beyond a certain packet rate the

performance drops. While NAPI is already a response from the Linux Kernel to receive

livelock, it actually fails to solve it. [57] tuned the process scheduler, the process priority

and the NAPI packet budget to lower the livelock effect for the Snort IDS running in

userlevel. We ran an experiment similar to theirs in figure 2.2. We use 4 cores, each

of them reading packets from one of the 4 10G NICs (Intel 82599 chipsets) in parallel,

transmitting directly the packets using PCAP. The PCAP application only rewrites

the MAC addresses of the packets and transmits the packets as soon as possible. Our

findings are different than theirs as the priority is more relevant than the budget in our

case. We explain this by the fact that the good tuning depends on the driver (their

hardware used the e1000 driver while our is ixgbe), on the input traffic characteristic,

22

2.2 Kernel by-pass networking

1 2 4 8 16 32 64 128 256 512 1024
NAPI Budget (Packets)

0

200

400

600

800

1000

1200

1400

1600

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Priority

BATCH
FIFO
Nice -19
Default
Nice 20
RR

Figure 2.2: Trying various userlevel process priorities/schedulers and NAPI budget for a
forwarding application where each of the 4 10G NICs interrupts are pinned to the same 4
cores used to run the application. The application simply forwards packets to one of the
NICs, potentially achieving 40G of 64bytes UDP packets. Further testbed description is
available in section 2.3, with the exception that the Linux version used for this test is 4.9
and the CPU is a Xeon E5-2630 v3 @ 2.40GHz

the packet rate but also the size of the packets and the time taken to process each pack-

ets. Moreover lowering the NAPI packet budget augments the time the CPU spends

in masking and unmasking interrupts and rescheduling the NAPI task, leading to less

useful CPU work. Making the application run inside the kernel itself (as in figure 2.1 -

5) will lead to the same priority problem.

Some frameworks therefore drastically reduce or completely remove the interrupt

work. This allows userspace applications to run even under a high packet rate. The

applications then call the framework routines which will do the job that the interrupts

had to do usually in the Kernel stack. As the application themselves will not call

the receive routine if they don’t have enough time to process the packets, the method

effectively applies backpressure. That is, when the packets are not served, the NIC stops

receiving packets as the NIC ring becomes full.

23

2. THE FALL OF THE OLD PARADIGMS

2.2.2 I/O Frameworks

We first review the technical aspects of some existing userspace I/O frameworks, such

as Netmap[32], the DPDK[31], OpenOnload[34], PF_RING[33], PacketShader I/O[35]

and Packet_MMAP[58]. Some other works go further than a “simple” module bypassing

the kernel, like IX[59] and Arrakis[37]. We won’t consider those two in this section as,

for our purpose, they only offer fast access to raw packets, but in a more protected way

than the other I/O frameworks, using virtualization techniques. They will be reviewed

as potential other NFV platforms in chapter 5.

Framework Packet_mmap PacketShader I/O Netmap PF_RING ZC DPDK OpenOnload
Zero-copy ∼ N Y Y Y Y
Buffer pool unique for RX and TX N Y Y Y Y Y
Kernel bypass N Y Y Y Y Y
I/O Batching Y Y Y Y Y Y
Hardware multi-queues support N Y Y Y Y Y
Devices family supported ALL 1 10 ZC / ALL (non-ZC) 4 ZC / ALL (non-ZC) 32 All SolarFlare
Pcap library Y N Y Y Y Y
License GPLv2 GPLv2 BSD Proprietary BSD Proprietary
IXGBE version Last 2.6.28 Last Last Last N/A

Table 2.1: I/O Frameworks features summary.

Packet_mmap [58] is a feature added to the standard UNIX sockets in the Linux

Kernel1, using packet buffers in a memory region shared (mmaped, hence its name)

between the kernel and the userspace. As such, the data does not need to be copied

between protection domains. However, because Packet_mmap was designed as an ex-

tension to the socket facility, it uses separate buffer pools for reception and transmission,

and thus zero-copy is not possible in a forwarding context. Also, packets are still pro-

cessed by the whole kernel stack and need an in-kernel copy between the DMA buffer

and the sk_buff, only the kernel to user-space copy is avoided and vice versa.

PacketShader [35] is a software router using the GPU as an accelerator. For the

need of their work, the authors implemented PacketShader I/O, a modification of the

Intel IXGBE driver and some libraries to yield higher throughput. PacketShader uses

pre-allocated buffers, and supports batching of RX/TX packets. While the kernel is

bypassed, packets are nevertheless copied into a contiguous memory region in userspace,

for easier and faster GPU operations.

1When not mentioned explicitly, the kernel refers to Linux.

24

2.2 Kernel by-pass networking

Netmap [32] provides zero-copy, kernel bypass, batched I/O and support for multi-

queuesing. However, the buffer pool allocated to an application is not dynamic, which

could prevent true zero-copy in some scenarios where the application must buffer a

lot of packets. Recently, support for pipes between applications has also been added.

Netmap supports multiple device families (IGB, IXGBE, i40e, r8169, forcedeth, e1000,

e1000e and still growing) but can emulate its API over any driver at the price of reduced

performance.

PF_RING ZC (ZeroCopy) [33] is the combination of ntop’s PF_RING and

ntop’s DNA/LibZero. PF_RING is much like Netmap [60], with both frameworks

evolving in the same way, adding support for virtualization and inter-process commu-

nication. PF_RING ZC has also backward compatibility for non-modified drivers, but

provides modified drivers for a few devices. The user can choose to detach an interface

from the normal kernel stack or not. As opposed to Netmap, PF_RING ZC supports

huge pages and per-NUMA node buffer regions, allowing to use buffers allocated in the

same NUMA node as the NIC.

A major difference is that PF_RING ZC is not free while Netmap is under a BSD-

style license. The library allows 5 minutes of free use for testing purpose, allowing us

to do the throughput comparison of section 3.1 but no further testing. Anyway, the

results of our work should be applicable to PF_RING DNA/ZC.

DPDK. The Data Plane Development Kit[31] is somehow comparable to Netmap

and PF_RING ZC, but provides more userlevel functionalities such as a multi-core

framework with enhanced NUMA-awareness, and libraries for packet manipulation

across cores. DPDK also provides two execution models: a pipeline model where typi-

cally one core takes the packets from a device and give them to another core for process-

ing, and a run-to-completion model where packets are distributed among cores using

RSS, and processed on the core which also transmits them.

DPDK can be considered more than just an I/O framework as it includes a packet

scheduling and execution model.

DPDK originally targeted, and is thus optimized for, the Intel platform (NICs,

chipset, and CPUs), although its field of applicability is now widening.

25

2. THE FALL OF THE OLD PARADIGMS

OpenOnload [34] is comparable to DPDK but made by SolarFlare, only for their

products. OpenOnload also includes a userlevel network stack to accelerate existing

applications.

We do not consider OpenOnload further in this chapter because we do not have

access to a SolarFlare NIC.

Table 2.1 summarize the features of the I/O frameworks we consider.

2.2.3 The case of Netmap and DPDK

From all of those, Netmap and DPDK are probably the most known and used ones.

Netmap uses shadow NIC rings visible to both kernel and userspace as a way to

abstract hardware specifics (top of fig. 2.3). When the interrupt is received from the

NIC, the interrupt handler of Netmap only sets some flags and wakes up the application

(if it was sleeping until packets are available), but does not process any packet. Even

under high interrupt storm, this does not hog the CPU at all. All the receive-path

work is deferred to the application. The application must use a select-like operation or

an ioctl to synchronize the transmission state of the shadow ring descriptors with the

real rings used by the NIC. The select operation will sleep until the receive interrupt

arrives, while the ioctl will return directly. We refer to both as the synchronization

operation. The synchronization operation does not actually return any information, it

only updates the shadow ring state so the user can access the ring and look if some

packets are available.

Netmap avoids the memory-to-memory copy by arranging for a buffer pool to reside

in a shared region of memory visible to both NICs and userspace software, the same

region also used by the shadow rings. But the shadow rings come at the price of a

higher memory usage and prevents accessing NIC specific features such as reading the

RSS hash or VLAN tag of the packet when hardware offloading is enabled without core

modifications to the Netmap module.

The transmit path is not shown in figure 2.3, but the logic is only inverted. The

applications put the packets ready for transmission in the transmit shadow ring. At this

point Netmap has no way to actually know if it should synchronize the state of the NIC

ring with the shadow ring. The application must call the synchronization operation

26

2.2 Kernel by-pass networking

Figure 2.3: Netmap (top) and DPDK (bottom) inner workings. Netmap uses a shadow
ring to allow the userspace application to receive packets residing in a shared memory
region. DPDK implements the driver in userspace, the application therefore have direct
access to the ring used by the NIC and the buffers.

27

2. THE FALL OF THE OLD PARADIGMS

(the select or the ioctl) to tell Netmap that some packets were placed in the shadow

ring and that it should synchronize its state with the real rings used by the NIC.

To avoid the need for some common structure hiding hardware and driver specifics,

DPDK implements the drivers directly in userspace 1 (bottom of fig. 2.3). The ring

used by the NIC is directly the one residing in userspace memory. This is enabled by

some kernel facility only invoked at initialization time. As DPDK disables interruptions,

the application must constantly loop over the ring (bottom of fig. 2.3 - 3) to check if

packets are available. This is known as polling. This leads to a higher maintenance

cost for DPDK as its developers must maintain a full set of userspace drivers whereas

Netmap developers only needs to patch kernel drivers to hook in the interrupt receive

loop to prevent the normal path from being called, keeping all of the driver’s logic for

device initialization.

2.3 Pure I/O forwarding evaluation

For testing the I/O system we used a computer running Debian GNU\Linux using a 3.16

kernel on an Intel Core i7-4930K CPU with 6 physical cores at 3.40 GHz, with hyper-

threading enabled [61]. The motherboard is an Asus P9X79-E WS[62] with 4×4 GB of

RAM at 1.6 GHz in Quad-Channel mode. We use 2 Intel (dual port) X520 DA cards

for our performances tests. Previous experiments showed that those Intel 82599-based

cards cannot receive small packets at linerate, even with the tools from framework’s

author [32, 35]. Our experiments lead to the same conclusion, our system seems to be

capped at 33 Gbps with 64-byte packets.

To be sure that differences in performances are due to changes in the tested plat-

form, a Tilera TileENCORE Gx36 card fully able to reach linerate in both receive and

transmit side was used. We used a little software of our own available at [63] to generate

packets on the Tilera at linerate towards the computer running the tested framework

connected with 4 SFP+ DirectAttach cables. The generator counts the number of

packets received back. All throughput measurements later in this chapter indicates the

amount of data received back in the Tilera, 40 Gbps meaning that no loss occurred,

and a value approaching 0 that almost all packets were lost. We start counting the
1Some DPDK non-Intel hardware use bifurcated driver, keeping most logic inside the kernel and

allowing operation through standard APIs like ethtool, but exposing buffer memory to userspace like
any other DPDK driver.

28

2.3 Pure I/O forwarding evaluation

Figure 2.4: Forwarding test case. Packets are directly transferred to the opposite link

Netmap improved

DPDK
Netmap

PF RING

PacketShader I/O

Linux Kernel
PCAP (12 cores)

PCAP

0 200 400 600 800 1000

0

10

20

30

40

Packet size (bytes)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

Figure 2.5: Forwarding throughput for some I/O frameworks using 4 cores and no multi-
queuesing.

number of packets received back after 3 seconds to let the server reach a stable state

and compute the throughput after 10 seconds. The packets generated have different

source and destination IP addresses, to enable the use of RSS when applicable.

For these tests there is no processing on the packets: packets turning up on a

specific input device are all forwarded to a pre-defined, hardwired output device as

shown on figure 2.4. Each framework has been tuned for its best working configuration

including batch size, IRQ affinity, number of cores, thread-pinning and multi-queues.

All forwarding tests were run for packet sizes varying from 60 to 1024 bytes, excluding

the 4 bytes of the Frame Check Sequence appended at the end of each Ethernet frame

by the NIC.

We realized that our NICs have a feature whereby the status of a transmit packet

ring can be mirrored in memory at a lower performance cost than the original method,

29

2. THE FALL OF THE OLD PARADIGMS

directly accessing the NIC register through the PCIe bus. We modified Netmap1 to

exploit this feature and also limited the release rate of packets consumed by the NIC to

only recover buffers for sent packets once every interrupt, which released the PCIe bus

of useless information and brought Netmap performances above DPDK as we can see

in figure 2.5. For 64-byte packets, these improvements boost the throughput by 14%,

1.5% over DPDK. However, except for the line labelled “Netmap Improved” in figure

2.5, only the final evaluation in section 3.3 use this improved Netmap version.

As expected (because they share many similarities), PF_RING has performance

very similar to (standard) Netmap as shown in figure 2.5.

The wiggles seen in DPDK, Netmap and PF_RING are due to having two NICs on

the same Intel card and produce a spike every 16 bytes. When using one NIC per card

with 4 PCIe cards the wiggles disappear and performance is a little better. This leads

us to think that the bottleneck is not on the CPU or memory side, as from their point

of view, having 4 NICs on 2 or 4 PCIe does not change a thing. We believe them to

be a per-transfer bottleneck in the NIC or in the PCIe bus, as when the size increase

less than 16 bytes, the performance increases, but when adding the 16th byte, a drop

appears as if a new chunk of data was needed. However PCIe word size is 32 bits, while

its theorical throughput (PCIe 2.0 x8) is 32Gbits/s which should be enough to handle

the ∼ 16Gbits/s of link layer payload a dual 10G NIC represents when transferring

minimal-size packets, given that the inter-frame, CRC, preamble and start of frame are

not copied. Therefore we doubt it’s linked to the PCIe bus, and probably some limits

in the NIC itself, but we are not able to prove it. The wiggles have a constant offset of

4 bytes with PF_RING, but we couldn’t explain it, mainly because PF_RING sources

are unavailable.

PacketShader I/O is slower because of its copy to userspace, while the other frame-

works that use zero-copy do not even touch the packet content in these tests and do not

pay the price of a memory fetch.

We also made a little Linux module available at [64] which transmits all received

packets on an interface back to the same interface directly within the interrupt context.

1The usage of the transmit ring status is now merged in mainline Netmap, but not the possibility
to ask for non-synchronizing transmission, that is just telling the NIC that packets are available for
transmission but not recover sent buffers

30

2.3 Pure I/O forwarding evaluation

The module should show the better performances that the kernel is able to provide in

the same 4 cores and no multi-queues conditions. The relative slowness of the module

compared to the other frameworks can be explained by the fact the receive path involves

the building of the heavy sk_buff and the whole path involves multiple locking, even if

in our case no device is shared between multiple cores. This important result shows that

as is, the Linux Kernel, even doing nothing (the packets are untouched in this scenario)

is not able to achieve high-speed. Therefore, we’ll try to tackle some of those problems

in section 2.4.

PCAP (that relies on PACKET_MMAP) shows very poor performance because it

does not bypass the kernel like the other frameworks and, in addition to the processing

explained for the Linux module, packet need to go through the kernel network stack

to find its path to the PCAP application. But the bigger problem is that PCAP relies

on the kernel to get packets, and each IRQ causes too much processing by the kernel,

which is overwhelming a single core and does not let enough time for the userlevel ap-

plication to actually consume the packets, even with NAPI and IRQ throttling enabled

as already discussed in section 2.2.1. The solution is either to use a polling system like

in FreeBSD [65] or DPDK, or reduce the “per-packet” cost in the IRQ routines like in

Netmap where it does very little processing (e.g. flags and ring buffer counter updates),

or to distribute the load using techniques like multi-queues and RSS to ensure that each

core receives fewer packets than the critical livelock threshold. Our kernel module is not

subject to the receive livelock problem because the forwarding of the packet is handled

in the IRQ routine which does not interrupt itself.

To circumvent the livelock problem seen with PCAP, we used the 12 hyper-threads

available on our platform and 2 hardware queue per NICs to dispatch interrupt requests

on the first 8 logical cores, while 4 PCAP threads forward packets on the remaining 4

logical cores. The line labeled “PCAP (12 cores)” gave the best results we could achieve

out of many possible configurations allocating diverse number of cores to serve the IRQ

and the PCAP threads.

However, this setup is using all cores at 100% and still provides performance way

below the other frameworks which achieve greater throughput even when using only

one core.

31

2. THE FALL OF THE OLD PARADIGMS

2.4 An attempt at fixing the kernel I/O limits

Some packet processing software run in-kernel like the Click Modular Router[11] or

its enhanced version for multi-queueing RouteBricks[15]. At the price of harder de-

velopment and many precautions to be taken, running applications in-kernel obviously

avoids the need to copy the packet content to a userspace buffer. But even in-kernel

applications that need to receive all packets from a given device without the network

stack overhead offer a very limited throughput as discussed in section 2.3. This section

analyses why, and tries to propose partial solutions.

From the analysis in section 2.1 can be derived two main observations that could be

applied in-kernel:

The kernel application needs to apply backpressure. Both Netmap and

DPDK will actually handle the packets when the userspace application calls the frame-

work. Therefore when the NIC is dedicated to one application, the interrupt stops

processing packets as soon as the application is stalling. Instead, the kernel reads

packets, process them, fill their sk_buff, only to drop them afterwards. Possibly even

stalling the application even more. The most common way to hook into the Kernel re-

ceive path to intercept all packets from a specific NIC is to use the rx_handler feature.

The rx_handler allows to register a function that will be called when the drivers pass

the packet to the network stack. However at this point the driver has already done

much work such as initializing the sk_buff. Applications that install a rx_handler

will receive all packets from that device and can return some value to allow the pack-

ets to continue its traversal through the network stack (RX_HANDLER_PASS) or

tell that it was consumed and the driver should process the next packet in line with

RX_HANDLER_CONSUMED. The in-kernel version of the Click Modular Router

uses the rx_handler facility. We modified the Linux Kernel 4.4.77 to add a return value

similar to CONSUMED, but indicates that the device should stop processing packets

until further notice (RX_HANDLER_DROPPED).

If the device was shared between multiple applications, the application taking full

possession of the flow control of the device would be a problem. In which case, the back-

pressure would block receiving and would stall other applications. However, programs

such as Click may take all packets and re-injects the one that needs to go to the normal

32

2.4 An attempt at fixing the kernel I/O limits

network stack at a later stage. Recent NICs also support multiple receive queues,

using some filters to direct different kinds of traffic to different queues. This allows to

use different queues for different applications, e.g. the HTTP traffic would go to one

specific queue. The backpressure can then be propagated by an application only to its

own receive queues.

Normally, drivers using the NAPI (all high-speed drivers as of today) do not handle

packets in the interrupt loop anymore but schedule NAPI and mask interrupts. The

NAPI polling function will then run, process a certain budget of packets from the receive

ring, and then re-enable interrupts.

With our modification, when a driver is informed that pressure should be applied by

passing the new return values from functions to functions, the driver can stop emptying

the receive ring right away. But in itself stopping the polling function is not sufficient as

the interrupt will be un-masked when the NAPI function returns. The interrupt request

will then happen very fast if the throughput is still high, and the driver will re-schedule

the NAPI polling function right away. This would only giving a few more cycles to the

application to actually consume packets, if any. Therefore in that case we also don’t

re-enable interruption, and expose a generic function that drivers must implement to re-

enable interruption when the application has processed some packets. The work needed

in the driver is minimal: only break the loop when the DROPPED value is returned,

and move the code to re-enable the interruption to an exposed function.

A proof-of-concept, still perfectible but working version of the Linux Kernel 4.4.77 is

available at [66]. The patch adds the rx_handler return code and implements the driver

handling for the i40e driver, but the technique should apply to most drivers easily. The

modification in the i40e driver only involves adding 59 lines, moving the re-enabling

of IRQ out of the NAPI polling function so it can be delayed if pressure needs to be

applied. We modified the in-kernel Click Modular Router to use that functionality, Click

re-enables interruptions when the queue is being cleaned bellow 1/3 of its capacity[67].

To test the throughput gain, we pinned the interrupt and the application to the

same cores, hence the application cannot process any packet when the rate is too high as

already shown in section 2.3. The pressure system reduces unnecessary processing in the

receive loop and handle more load. The backpressure proof-of-concept allows handling

9.9GBps throughput forwarding 64bytes UDP packets using a single core serving a

40G NIC instead of the 4.3Mbps achieved in the same situation without back-pressure.

33

2. THE FALL OF THE OLD PARADIGMS

4.3Mbps may seam unrealistically low. When there are multiple CPU cores available

to serve the interrupts on a dedicated core, Linux will balance the application and the

interrupts so this low throughput would not happen in practice. Nevertheless, this state

of affairs consumes a lot of CPU cycles to process packets that will be dropped before

reaching the application. Also, while CPU are nearly always multi-cores nowadays,

some virtual machines may run with a single core. The guest operating system would

therefore not be able to balance the interrupt and the application on different cores,

leaving no time for the application to run while processing interrupts, as in this test

case. This test uses UDP packets. With TCP, the sender would eventually decrease

the sending rate when packets are dropped. However with many active connections, or

under a UDP or TCP SYN flood attack, the livelock problem would also appear.

Kernel applications need to hook in the receive path before the heavy

sk_buff creation. Specific in-kernel applications like Click or the OpenFlow Virtual

Switch (OVS) will:

A. handle completely the networking stack by themselves including the layer 2

B. not need most of the kernel sk_buff fields and its lot of pre-defined variables for

handling of multiple protocols and sockets

Those applications only need to receive a buffer pointer and a length to process a packet.

Therefore a generic way to hook right in the driver would benefit such use case. A very

recent initiative, the eXpress Data Path (XDP) allows hooking into the driver before

the sk_buff creation. However in its current state, XDP relies on an eBPF program.

XDP does not allow to pass the packet to a third party x86 application (either in-kernel

or in userspace) and is limited by the instruction set of eBPF[68].

Figure 2.6 shows the performance of a packet counter (which also touches the packet)

using the rx_handler facility to receive packets, compared to using a function inserted

into the XDP handler instead of a BPF program. Indeed the BPF program structure

is composed of a pointer to a function to be called to execute the BPF code and an

array of BPF instructions. The function pointer can be changed by any kernel module

to a normal function. This shows the potential of a proper system to hook closer to the

driver. At the time of writing, the transmission possibilities of XDP are still limited

but there are plans for full support for transmission between devices using XDP.

34

2.4 An attempt at fixing the kernel I/O limits

rx_handler xdp_handler
Handler

0 Mpps

10 Mpps

20 Mpps

30 Mpps

PP
S

Figure 2.6: Counting the amount of 64bytes UDP packets received using the rx_handler
facility or a hijacked xdp_handler running a normal module functions instead of a BPF
program. MAC addresses are rewritten to actually touch the packets. Two 40G NICs with
one queue pinned to the same unique core.

Note that XDP does not solve backpressure, both are complementary. On top of

those changes, the Kernel could also allow I/O batching, but changes from the two

observations would already put kernel fast data-path much more on a par with the

userspace I/O frameworks.

These techniques, however, do not solve the userspace copy problem. Packet_mmap

shares buffers with userspace, but the problem is that a copy from the NIC DMA driver

to that space still needs to be made inside the kernel. Therefore the copy is just

shifted to another place. Providing a generic way for drivers to allow their buffers to be

shared with an application would represent much more work. However, some initiative

(probably pushed by the rise of all the userspace I/O frameworks) like [69] want to allow

this possibility but are not yet ready.

35

2. THE FALL OF THE OLD PARADIGMS

36

3

A high-speed packet processing
platform

High-speed I/O

Chapter 2 conducted a review of most known high-speed I/O frameworks and showed

that recent frameworks such as Netmap[32] and the Data Plane Development Kit[31]

are more or less on a par, allowing to receive packets at rates over 10 Gbps with a single

CPU core.

The issue of software packet processing is now reconsidered, in the context of mod-

ern commodity hardware with hardware multi-queues, multi-core processors and non-

uniform memory access.

Through a combination of existing techniques and improvements of our own, we

derive modern general principles for the design of software packet processors.

To explore their performance in a general purpose environment, we then compare

the existing off-the-shelf integrations of some of these frameworks in the Click Modular

Router[11].

Click enables programmers to build routers by composing graphs of elements, each

executing a single simple function (e.g. decrementing a packet TTL). Packets then

flow through the graph from input elements to output elements. Click offers a nice

abstraction, includes a wealth of usual network processing elements, and has already

been extended for use with some of the studied I/O frameworks. Moreover, we think

its abstraction may lend itself well to network stack specialization and NFV (even if it

is mostly router-oriented for now).

37

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

Multiple authors proposed enhancements to the Click Modular Router.

RouteBricks[15] focuses on exploiting parallelism and was one of the first to use the

multi-queue support of recent NICs for that purpose. However, RouteBricks only sup-

ports the in-kernel version of Click. DoubleClick [12] focuses on batching to improve

overall performances of Click with PacketShader I/O[35]. SNAP[70] also proposed a gen-

eral framework to build GPU-accelerated software network applications around Click.

Their approach is not limited to linear paths and is complementary to the others, all

providing mostly batching and multi-queuing. All these piece of work provide useful

tips and improvements for enhancing Click, and more generally building an application

on top of a “raw packet” interface.

The first part of this chapter conducts a critical analysis of those enhancements, and

discusses how they interact with each other and with userspace I/O frameworks, both

from a performance and ease of configuration points of view.

While all those I/O frameworks and Click enhancements were compared to some

others in isolation, we are the first, to our knowledge, to conduct a systematic survey

of their performance and, more importantly, interactions between the features they

provide.

Our contributions include new discoveries resulting from this in-depth factor analy-

sis, such as the fact that the major part of performance improvement often attributed

to batching is, in fact due to the usage of a run-to-completion model, or the fact that

locking can be faster than using multi-queue in some configurations.

Finally, based on this analysis, and new ideas of our own, we propose a new userspace

I/O integration in Click (including a reworked integration of Netmap, and a novel in-

tegration of DPDK). Our approach offers both simpler configuration and faster perfor-

mance. The network operator using Click does not need to handle low-level hardware-

related configuration anymore. Multi-queue, core affinity and batching are all handled

automatically but can still be tweaked. Contrary to previous work which broke com-

patibility by requiring a special handling of batches, our system is retro-compatible

with existing Click elements. The Click developer is only required to add code where

batching would improve performance, but it is never mandatory.

Section 3.1 discusses how some of the frameworks presented in chapter 2 were in-

tegrated into the Click modular router. Section 3.2 analyses those integrations, and

various improvements to Click, giving insights into the design of fast userspace packet

38

3.1 A modular high-speed packet processing platform

processors. We then propose FastClick, based on what we learned. Finally, section 3.3

evaluates the performance of our implementation.

This chapter in a nutshell
I Context of this chapter

• Multiple techniques and parameters need to be chosen carefully to enable fast
packet processing on top of I/O frameworks.

• There are multiple integrations of those techniques inside Click, focusing on
specific features such as I/O batching or multi-queueing but most often not
the interactions between them.

I Highlight of our main contributions in this chapter
We build FastClick, an enhanced version of the Click Modular Router powered

by the following contributions:

• We conduct a review of features enabling high-speed I/O, how to integrate
them and for the first time at this scale, carefully decouple them and study
their interactions.

• We show the pull path of Click is now unneeded and speed can be gained from
using a full-push path.

• We propose a batching implementation and study methods for backward com-
patibility, enabling the migration of complex functions from simple per-packet
processing.

• Beyond network I/O, other system calls impact performance in userlevel. We
built a userlevel Clock for x86 systems that is much faster than relying on the
OS facilities without losing precision.

�

3.1 A modular high-speed packet processing platform

Contribution notice
Most of sections 3.1, 3.2 and the above introduction are from published work [54]

made in collaboration with Cyril Soldani and Laurent Mathy. Section 4.2 is also
based on this article but has been largely reworked.

One man cannot solve all the world’s problems �

39

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

We chose the Click modular router to build a fast userspace packet processor. We

first compare several systems integrating various I/O frameworks with either a vanilla

Click, or an already modified Click for improved performance.

Figure 3.1: Example of a usual path of the Click Modular Router.

In Click, packet processors are built as a set of interconnected processing elements

(fig 3.1. More precisely, a Click task is a schedulable chain of elements that can be

assigned to a Click thread (which, in turn, can be pinned to a CPU core). A task

always runs to completion, which means that it is not interrupted and will process a

certain number of packets one by one through the downstream Click elements and give

back control to the scheduler only when it has finished. A Click forwarding path is the

set of elements that a packet traverses from input to output interfaces, and consists of

a pipeline of tasks interconnected by software queues.

Each Click thread runs a loop of 3 actions: the thread executes its assigned set of

tasks, executes expired software-based timers and then uses a select mechanism to

sleep on some file descriptors until some event occurs as depicted in figure 3.2.

At each round, Click’s thread runs up to a configurable limit of 128 tasks. //,

potentially multiple times the same tasks. Generally, tasks process some data (packets

from a device or a software queue) and unschedule themselves when there is no more

data to process; the 128 tasks limit is rarely reached in practice.

Timers are purely software based. After processing the tasks, the thread will loop

through a list of timers structures and check if the time set to fire some functions has

expired.

Tasks may register a set of file descriptors for Click to wait on, using the select

mechanism after the timers executed. Generally, when an I/O element has no more

input, it will unschedule its task and register a file descriptor that will enable the Click

thread to sleep until an event occurs. Most of the time the event is the availability

of data. The select mechanism allows to set a timeout to wait for some maximal

amount of time. It is set to 0 if there are pending tasks, or at the time of the next

40

3.1 A modular high-speed packet processing platform

Figure 3.2: Execution loop of a Click thread.

timer to expire. When the select returns specifying that some file descriptors have data

available for processing, a function from the element associated to the file descriptor

will be executed. In general that function will only remove the file descriptor from the

file descriptor list and re-schedule the element’s task that will run at the next thread

loop.

While Click itself can support I/O batching if the I/O framework exposes batching (a

FromDevice element can pull a batch of packets from an input device), the vanilla Click

task model forces packets to be processed individually by each element, with parallelism

resulting from the chaining of several tasks interconnected by software queues.

41

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

Also, vanilla Click uses its own packet pool, copying each packet to and from the

buffers used to communicate with the interface (or hardware queues). As such, even if

the I/O framework supports zero-copy, vanilla Click in userlevel imposes two memory-

to-memory copies (one at the input and one at the output).

For our tests, we use the following combinations of I/O framework-Click integration:

• Vanilla Click + Linux Socket: this is our off the shelf baseline configuration. The

Linux socket does not expose batching, so I/O batching is not available to Click.

• Vanilla Click + PCAP: while PCAP eliminates the kernel to userspace copy by

using packet_mmap, Click still copies the packets from the PCAP userspace buffer

into its own buffers. However, PCAP uses I/O batching internally, only some of

the library calls from Click produce a read or write system call.

• Vanilla Click + Netmap: as netmap exposes hardware multi-queues, these can

appear as distinct NICs to Click. Therefore multi-queue configuration can be

achieved by using one Click element per hardware queue. Netmap exposes I/O

batching, so Click uses it.

• DoubleClick[12]: integrates PacketShader I/O into a modified Click. The main

modification of Click is the introduction of compute batching, where batches of

packets (instead of individual packets) are processed by an element of a task,

before passing the whole batch to the next element. PacketShader I/O exposes

I/O batching and supports multi-queueing.

• Kernel Click: To demonstrate the case for userspace packet processing, we also

run the kernel-mode Click. We only modified Kernel Click to support the recep-

tion of interrupts to multiple cores. Interrupt processing (creating a sk_buff for

each incoming packets) is very costly and using multiple hardware queues pinned

to different cores spreads the work. Our modification has been merged in the

mainline Click[71].

Kernel Click had a patch for polling mode, but this is not used because it only

works for the e1000 driver and only supports very old kernels which prevent our

system from running correctly.

42

3.1 A modular high-speed packet processing platform

Netmap PCAP UNIX Sockets DoubleClick Kernel FastClick Netmap FastClick DPDK
IO Framework Netmap PCAP Linux socket PSIO Linux Kernel Netmap DPDK
IO Batching Y N N Y N Y Y
Computation Batching N N N Y N Y Y
Multi-queue support Y N N Y N Y Y
No copy inside Click N N N Y N Y Y

Table 3.1: Click integrations of I/O frameworks.

Table 3.1 summarizes the features of these I/O framework integrations into Click.

We ran tests for pure packet forwarding, similar to those in section 2.2.2, but through

Click. Each packet is taken from the input and transmitted to the output of the same

device. The configuration is always a simple FromDevice pushing packets to a ToDevice.

These two elements must be connected by a software queue, except in DoubleClick where

the queue is omitted (and thus the FromDevice and ToDevice elements run in the same

task) because PacketShader I/O does not support the select operation. As a result, the

ToDevice in DoubleClick cannot easily check the availability of space in the output ring

buffer, while the FromDevice continuously polls the input ring buffer for packets. As

soon as the FromDevice gets packets, these are thus completely processed in a single

task.

While this scenario is somewhat artificial, it does provide baseline ideal (maximum)

performance.

In all integrations, FromDevice and ToDevice are pinned to the same core. The

results are shown in figure 3.3. The top two lines, labelled FastClick, should be ignored

for the moment. For this simple forwarding case, compute batching does not help much

as the Click path consists of a very small pipeline and the Netmap integration already

takes advantage of I/O Batching. Therefore Netmap closely follows DoubleClick.

The in-kernel Click, the integration of Click with PCAP and the one using Linux

Socket all showed the same receive livelock behaviour as the one observed in section

2.3. The same configurations where interrupt requests (IRQ) are dispatched to 8 logical

cores and 4 logical cores are kept to run Click lead to the best performances for those

3 frameworks.

The in-kernel Click is running using kernel threads and is therefore likely to receive

livelock for the same reason as the PCAP configuration in section 2.3. The interrupts

43

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

do less processing than for sockets because they do not pass through the forward in-

formation base (FIB) of the kernel but still create heavy sk_buff for each packet and

call the “packet handler” function of Click with a higher priority than Click’s thread

themselves, causing all packet to be dropped in front of Click’s software queue while

nearly never servicing the queue consumer.

FastClick - DPDK
FastClick - Netmap

DoubleClick

Original Netmap
Click Kernel (12 cores)

PCAP (12 cores)
Linux Socket (12 cores)
Click Kernel (4 cores)

0 200 400 600 800 1000

0

10

20

30

40

Packet size (bytes)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

Figure 3.3: Forwarding throughput for some Click I/O implementations with multiples
I/O systems using 4 cores except for integration heavily subject to receive livelock.

We also tested a router configuration similar to the standard router from the orig-

inal Click paper, changing the ARP encapsulation element into a static encapsulation

element. Each interface represents a different subnetwork, and traffic is generated so

that each interface receives packets destined equally to the 3 other interfaces, to ensure

we can reach linerate on output links. As the routing may take advantage of flows of

packets, having routing destination identical for multiple packets, our generator pro-

duces flows, that is packets bearing an identical destination, of 1 to 128 packets. The

probability of a flow size is such that small flows are much more likely than large flows

(fig. 3.4). There is a large probability of having very small flows (16% of the flows will

have between 1 and 16 packets), a small probability of having middle-sized flows (6%

of packet will have between 30 and 80 packets), and a small probability of having long

flows (7% of packet will have between 96 and 128 packets) to reproduce the observed

“mice and elephants” phenomenon seen in the Internet[72].

Results are shown in figure 3.5. We omit the PCAP and socket modes as their

performance is very low in the forwarding test. Additionally, we show the Linux kernel

44

3.1 A modular high-speed packet processing platform

p(x) = 0.1

(
x− 1

128
× 1.6− 1

)8

+ 0.001

0 20 40 60 80 100 120

0

2

4

6

8

10

Flow size (packets)

%

0
0.1
0.2
0.3

Figure 3.4: Probability of having flows of 1 to 128 packets for the router packet generator.

FastClick - DPDK
FastClick - Netmap

DoubleClick

Original Netmap
Click Kernel (12 cores)

Linux
Click Kernel (4 cores)

0 200 400 600 800 1000

0

10

20

30

40

Packet size (bytes)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

Figure 3.5: Throughput in router configuration using 4 cores except for in-kernel Click.

routing functionality as a reference point. Again, ignore the lines labelled FastClick for

now.

DoubleClick is faster than the Netmap integration in Click, owing to its compute

batching mode and its single task model. They are both faster than the Linux native

router as the Kernel does much more processing to build the sk_buffs and go through

the FIB than Click which does only the minimal amount of work for routing. The

Kernel-Click is still subject to receive livelock and is slower than the native kernel

router when routing is done on only 4 cores. Even when using 12 cores, Kernel-Click is

slower than DoubleClick and the Netmap integration.

45

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

3.2 I/O analysis

We now present an in-depth analysis of the features used by the Click integrations

studied in section 3.1, discussing their pros and cons. This will ultimately lead to

general recommendations for the design and implementation of fast userspace packet

processors. As we implement these recommendations into Click, we refer to them as

FastClick for convenience.

In fact, we integrated FastClick with both DPDK and Netmap. DPDK seems to be

the fastest in term of I/O throughput, while Netmap affords more fine-grained control

of the RX and TX rings, and already has multiple implementations on which we can

build upon and improve. See section 2.2.3 for a more detailed walk-through of Netmap

and DPDK.

The following section starts from vanilla Click “as is”. Features will be reviewed and

added one by one.

3.2.1 I/O batching

Both DPDK and Netmap can receive and send batches of packets, without having to

do a system call after each packet read or written to the device. Figure 3.6 assesses

the impact of I/O batching using the vanilla Click Netmap integration in a modified

version to force a synchronization call after multiple packets are received up to a cer-

tain batch size in both input and output. As explained in more depth in section 2.2.2,

the synchronization call is the facility provided by the underlying I/O framework to

check if some packets are available for processing or tell that packets are waiting to be

sent. With DPDK, the synchronization is done after some packets are passed to DPDK

through the DPDK API, however Netmap has no way to know if some packets were

added in the transmit ring which is simply memory mapped and thus relies the use of

46

3.2 I/O analysis

a select-like1 facility or a specific ioctl.

Vanilla Click always processes all available packets before calling again Netmap’s

select method – the select system call asks Netmap to synchronize the device input ring

with Netmap’s shadow rings and updates ring indices allowing to compute how many

packets are in the input ring. Click reads available packets in batches and transmits

them one packet at a time through a sequence of Click elements. The corresponding

tasks only relinquishes the CPU at the end of the burst. Vanilla Click will reschedule the

task if any packet could be received. On the other hand FastClick will only reschedule

the task if a full I/O burst of synched data is available. When not rescheduling, both

methods go back to the select system call that will synchronize the hardware and shadow

rings and will re-schedule the tasks when the select indicates some data is available. This

sequence of operations will probably enable a bigger batch at the next run as Netmap

will have synchronized with packets received by the NIC while Click was processing the

last batch through the graph. This strategy tends to force the use of bigger batches and

thus preserves the advantages of I/O batching.

On the other hand, the ToDevice completely fills the Netmap output ring before

synchronizing (i.e. flushing) it, that is to declare these packets as available for sending

to the output NIC. From that moment, the ToDevice uses a select-like facility to check

for available space in the output ring. However, that select will return even if a few

packets have actually been transmitted, releasing the ToDevice to fetch more packets

from the Click software queue to fill the Netmap output ring again. This thus results

in a short sequence of synchronize operations on the Netmap output ring, cancelling

the batching effect (as the number of synchronize per packet shoots up), resulting in

higher overhead. In essence, the first synchronize simply happens too late and the

Netmap output ring never really gets a chance to empty. The resulting high number of

synchronization call to Netmap reduces the TX throughput and force the interconnect

1The select operation in Linux allows a thread to wait on some file descriptors until some data is
available. That is for Netmap, wait until one NIC specific ring has received some packets. In practice,
Click uses the poll method that is more flexible than select and most of the time faster. Poll is not to
be mixed up with the concept of polling as referred to when speaking of DPDK. DPDK drivers have
no select-like mechanism and therefore rely on the CPU looping over the NIC ring checking if some
packets are available. To avoid confusion we’ll refer to the Linux poll method as select and poll will
always refer as the polling method as implemented by DPDK.

47

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

Queue between the FromDevice and the ToDevice to start buffering packets up to a

point where packets are dropped.

As a solution, we propose to synchronize the Netmap output ring much sooner, that

is when the number of unsynchronized packets in the shadow output ring reaches a

smaller batch limit, or when the input dries out. Our ToDevice constructs internally a

batch of the desired size, and dumps it into the Netmap output queue in one go, and

call the synchronize operation afterwards.

64-byte packets

128-byte packets

256-byte packets

0

10

20

30

40

1 2 4 8 16 32 64 128 256 512

Batch size (packets)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

Figure 3.6: I/O Batching – Vanilla Click using Netmap with 4 cores using the forwarding
test case (queue size = 512). A synchronization is forced after each “batch size”.

As DPDK disable interruptions1, the input task is running in loops, never stopping

and eating 100% of the CPU. The difference with Netmap is that as it does not support

a select mechanism for the transmit side, no pull path is possible. A simulated one

using the full CPU, or relying on a timer could be implemented. However for reasons

that will be further explained in section 3.2.3, we implemented the push approach only.

When packets are pushed to the DPDK ToDevice, they are kept in an internal software

queue up to a certain batch size. When the threshold is reached, packets are passed

to DPDK for transmission. To prevent waiting for too long while the batch grows to

the given size, a timer is also set to flush the packets when they are queued. In Click,

timers run after all tasks and there is no interruption. Therefore the default timeout

value is 0 seconds, meaning that after all tasks have run, the output internal queues

will be flushed as the timeout will have expired directly.

1DPDK introduced recently support for re-enabling interruption for the receive side but we did not
add support yet

48

3.2 I/O analysis

The resulting effect is that all FromDevice elements will process available packets

in the input hardware queue up to the input “burst” limit through the Click graph.

Packets will eventually be queued in the ToDevice’s internal queue. If enough packets

are queued, they will be transmitted to DPDK directly. The leftovers will be passed to

DPDK when the timer expires, that is right after the FromDevice’s task finishes. This

enables to avoid waiting for a certain time for the ToDevice’s internal queue to fill up,

which would increase latency when the rate is low.

To evaluate performance impact of the I/O batch size with DPDK in terms of

throughput but also in term of latency under realistic conditions, we built a third test-

case (fig. 3.7) similar to the router scenario running on a machine which has an E5-2630

v3 CPU, and 32 GB of RAM. We used traffic captured from our University campus at

the point of connexion to the Internet. The traffic is kept in two traces, one with the

traffic from the LAN to the WAN and one with the traffic from the WAN to the LAN.

Both traces are replayed towards two different port of the router as fast as we can, but

in relative order (the timing is accelerated but the order of packets between traces is

kept). The replayer uses FastClick (in its final version) with a configuration to preload

the traces in memory and replay them on a computer similar to the DUT connected

to the same switch. Therefore the replayer acts both as the WAN side and the LAN

side source and sink to be able to do latency measurements, as packets which are not

dropped by the router should arrive on the other side of the replayer.

As a single core can generally handle 10G of mixed packet size, we used dual-40G

Intel XL710 QDA2 NICs, on the two computers interconnected by a 40G switch. The

replayer is able to replay the WAN to LAN (referenced as RX further) side at 2̃8G

and replays the LAN to WAN (referenced as TX further) side at 12G which is not the

limiting one, so we omit it in all graphs. The TX side has a lower throughput, because

at the time of capture the TX transmission was lower than the TX transmission. As

the relative order between traces is kept, the TX replay side is waiting most of the time.

Results can be seen in figure 3.8. As expected, the input burst size should not

be too small (> 8) but has no major impact on performances. The input burst does

not matter much as DPDK rely on polling, meaning the FromDevice task will be re-

executed quickly. However the output burst size matters more. The throughput will

drop especially after an output burst size of 128 packets. This is because the output is

idle while the batch is being constructed, it is therefore waiting most of the time.

49

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

Figure 3.7: Campus test case. The replayer replay traces captured at the University
campus point of connection to the internet, tags the packets, associate a timestamp to
the tag to compute latency. The two computers are interconnected by a L2 switch, MAC
addresses are rewritten to act as in this schema.

1 2 4 8 16 32 64 128 256 512 1024
Output burst

14

15

16

17

18

19

20

RX
 T

hr
ou

gh
pu

t (
Gb

ps
)

Input burst
4
8
16
32
64
128
256
512
1024

1 2 4 8 16 32 64 128 256 512 1024
Output burst

300

400

500

600

700

800

La
te

nc
y

(µ
s)

Input burst
4
8
16
32
64
128
256
512
1024

Figure 3.8: I/O Batching - Vanilla Click with our DPDK integration with 1 core using
the campus router test case varying input and output burst size. Average of 3 runs per
point, standard deviation is shown by error bars (if not visible, runs are stable).

50

3.2 I/O analysis

3.2.2 Ring size

The I/O batch size limit is there to ensure that synchronization is not done after too

few packets. As such it should not be related to the ring size (the hardware queue size).

To convince ourselves, we ran the same test using the forwarding test case and Netmap

implementation with multiple ring sizes and found that the better burst choice is more

or less independent of the ring size as shown in figure 3.9.

8

10

12

14

16

18

1 4 16 64 256 1024

128-packet ring
256-packet ring
512-packet ring

1024-packet ring
2048-packet ring

Burst size (packets)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

Figure 3.9: Influence of ring size - FastClick using Netmap with 4 cores using the for-
warding test case and packets of 64 bytes.

What was surprising though is the influence of the ring size on the performance,

especially with Netmap.

With bigger ring size, the amount of CPU time spent in memcpy function to copy

the packet’s content goes from 4% to 20%, indicating that the working set is too big for

the CPU’s cache. Indeed, the total number of buffers increase up to a point where all

the buffers do not fit in the CPU caches anymore.

As described in section 2.2.2, this is more prominent with Netmap which has a higher

memory consumption than DPDK, but the later also shows a drop in performances if

using more than 2048 descriptors per ring.

51

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

3.2.3 Execution model

In standard Click, all packets are taken from an input device and stored in a FIFO

queue. This is called a “push” path as packets are created in the “FromDevice” elements

and pushed until they reach a software queue. When an output “ToDevice” element is

ready (and has space for packets in the output packet ring it feeds), it traverses the

pipeline backwards asking each upstream element for packets. This is called a “pull”

path as the ToDevice element pulls packets from upstream elements. Packets are taken

from the software queue, traverse the elements between the queue and the ToDevice

and are then sent for transmission as shown in figure 3.10 (a).

One advantage of the software queue is that it divides the work between multiple

threads, as one thread can take care of the part between the FromDevice and the queue,

and another thread can handle the path from the queue to the ToDevice. Another

advantage is that the queue enables the ToDevice to receive packets only when it really

has space to place packets in the output hardware ring. The ToDevice will only call the

pull path when it has some space and, when I/O batching is supported, for the amount

of available space.

But there are two drawbacks. First, if multiple threads can write to the queue,

some form of synchronization must be used between these threads, resulting in some

overhead. Second, if the pushing thread and the pulling thread run on different cores,

misses can occur at various levels of the cache hierarchy, resulting in a performance hit

as the packets are transferred between cores.

NICs now possess receive and transmit rings with enough space to accommodate

up to 4096 packets for the Intel 82599-based cards (not without some cost as seen in

section 3.2.2), so these are sufficient to absorb transient traffic and processing variations,

substituting advantageously for the Click software queues.

Therefore, we adopt a model without software queue: the full-push model where

packets traverse the whole forwarding path, from FromDevice to ToDevice, without

interruption, driven by a single thread. How multiple threads can still be used to

accelerate processing of packets from a single NIC in the full-push context will be

reviewed in section 4.1.

Packets are taken from the NIC in the FromDevice Element and are pushed one

by one into the Click pipe, even if I/O batching is supported. The packet is pushed

52

3.2 I/O analysis

Figure 3.10: Push to Pull and Full Push path in Click.

4 full push
4 - 0 pipeline

4 - 0
2 - 2
4 - 1
1 - 4

0

10

20

30

40

64 512 1024 1472

Packet size (bytes)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

Figure 3.11: Comparison between some execution models. Netmap implementation with
4 or 5 cores using the router test case.

through the pipe until it reaches a ToDevice Element and is added in the transmit buffer

as shown in figure 3.10 (b). If there is no empty space in the transmit ring, the thread

will either block or discard the packets.

As depicted in figure 3.10, in full push mode, all threads can end up in the same

output elements. So locking must be used in the output element before adding a packet

to the output ring. With Netmap the output ring must be synchronized sometime, to

tell the NIC that it can send some packets that were placed in the ring. Syncing too

often cancels the gain of batching, but syncing too sporadically introduces latency.

When the number of packets added reaches the I/O batch size or when the ring is

full, the synchronization operation explained above is called. The synchronization takes

53

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

the form of an ioctl with Netmap, which updates the status of the transmit ring so that

new packets can be advertised to the NIC, and available space from packet sent can be

reclaimed. This also enables an improvement as the slower select mechanism isn’t used

anymore for the transmit side, not having to constantly remove and add the Netmap file

descriptor to Click’s select list. For the DPDK implementation, the ToDevice queues

packets into an internal array that can directly be passed to DPDK when it reaches 32

packets as this number proved to be a good performance point for both throughput and

latency in section 3.2.1. As already explained in section 3.2.1, we flush packets as soon

as the input dries out if 32 packets could not be batched. In both situation we never

actually wait for packets to queue up, therefore compared with the pull approach the

full-push one does not introduce any latency.

When the transmit ring is full, two strategies are possible: the output has a block-

ing mode, doing the synchronization explained above until there is space in the output

ring; in non-blocking mode, the remaining packets are stored in a per-thread internal

queue inside the ToDevice, dropping packets when the internal queue is longer than

some threshold.

Figure 3.11 shows a performance comparison using the Netmap implementation with

I/O batching, and a varying number of cores running FromDevice and ToDevice (the

label i-j, represents i cores running the 4 FromDevice and j different cores running the 4

ToDevice). Therefore the 1-4 line uses 1 core to receive packets and 4 cores to transmit

them, while the 4-0 line uses 4 cores to receive packets and schedules the pull path on

the same 4 cores. The full push, where we have a FromDevice and all the ToDevice in

a single thread on each core, performs best. The second best configuration corresponds

to also a FromDevice and all the ToDevice running on the same core, but this time as

independent Click tasks with a Click queue in between (label 4-0). Even when using

5 cores, having one core taking care of the input or the output expectedly results in a

CPU constrained configuration.

Full-push path is already possible in DoubleClick but only as a PacketShader I/O

limitation and we wanted to study further its impact and why it proves to be so much

faster by comparing the Netmap implementation with and without full push, decoupling

it from the introduction of compute batching as it was introduced in DoubleClick.

54

3.2 I/O analysis

Figure 3.12: Enable queuing in a full-push execution model with the Pipeliner element

3.2.3.1 Pipeliner: a software queue that keeps a full-push path

In vanilla Click, a considerable amount of time is spent in the notification process

between the Queue element and the ToDevice. The time spent in synchronization and

scheduling reaches up to 60% of CPU time with 64-byte packets for the forwarding test

case in push-to-pull mode. We built a new queue that enables queuing but keeping

the full-push semantics and advantages, called the Pipeliner element. The Pipeliner

schedules a task which will read packets from the queue and push packets downwards.

The model is exposed in figure 3.12. Packets pushed to the Pipeliner are enqueued

into a per-thread queue inside the Pipeliner element and it is the thread assigned to

empty all the internal queues of the Pipeliner element which drives the packet through

the rest of the pipeline. The performance of the pipeliner is shown in figure 3.11 by

the line labeled “4 - 0 pipeline”. Queuing introduce a performance penalty compared

to a purely full-push model without queue but performs better than the comparable

approach using a thread-safe queue and a push-to-pull path (the “4 - 0” line). Instead

of having a pulling thread starting from the last output element constantly adding and

removing file descriptors to the select set, the pipeliner enables a much lighter full push

path that will only call Netmap’s ioctl from time to time. The per-core queue also

enables to remove the atomic operations as single-producer, single-consumer rings can

be implemented with normal operations on simple volatile indexes on x86 architectures.

Using the technique that will be presented in section 4.2, the Pipeliner knows in advance

which threads will push packets to it, and only opens one queue for each thread that

can actually reach the Pipeliner.

55

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

Figure 3.13: Simplified view of a Click packet and its shallow copy

3.2.3.2 Advantage of a full-push configuration for reference counting

In Click, packets can be seen as two parts: one is the packet metadata which in Click is

the Packet object and is 164-byte as of today. The other part is the packet data itself,

called the buffer which is 2048 bytes both for Click and Netmap. The packet metadata

contains the length of the actual data in the buffer and some annotations to the packet

used in the diverse processing functions. Click enables to clone packets using shallow

copy. Cloned packets only keep a reference to another packet’s buffer, and increments a

reference counter for the given buffer (figure 3.13). When cloned packets are destroyed,

the reference counter is decremented. The last destroy operation that therefore puts

the reference counter to 0 will actually recycle the buffer. In vanilla Click, the packet

can be cloned and freed by multiple cores, therefore an atomic operation has to be

used to increment and decrement the reference counter. In full push mode without the

new Pipeliner element or any software queue, we know that it is always the same core

which will handle the packets, therefore we can use normal increment and decrement

operations instead of the atomic ones. That modification showed a 3% improvement

with the forwarding test case and a 1% improvement with the router test case. FastClick

automatically detects a full push configuration using the technique described in section

4.2.

56

3.2 I/O analysis

Figure 3.14: Click implementation of the Netmap receive path. Packet content is copied
to Click’s own buffer.

3.2.4 Zero Copy

In vanilla Click, a buffer space is used to write the packet’s content, but allocating a

buffer for each freshly received packets with malloc() would be very slow. For this reason,

packets are pre-allocated in “pools”. There is one pool per thread to avoid contention

problems. Pools contain pre-allocated packet objects, and pre-allocated buffers. When

a packet is received, the data is copied in the first buffer from the pool, and the metadata

is written in the first packet object. The pointer to the buffer is set in the packet object

and then it can be sent to the first element for processing. This process is shown in

figure 3.14.

This packet copy can be avoided when using Netmap, by swapping buffers referenced

in the Netmap input and output rings with empty buffers as shown in figure 3.15.

Packets are received by the NIC and written to a buffer in the receive ring. We can

then swap that buffer with another one to keep the ring empty and do what we want

with the filled buffer. This is useful as some tasks such as flow reconstruction may need

to buffer packets while waiting for further packets to arrive. By allocating a number

of free buffers and swapping a freshly received packet with a free buffer, we can delay

the processing of the packet while not keeping occupied slots in the receive ring. This

also allows to swap buffers with the transmit ring, allowing “zero-copy” forwarding, as

a buffer is never copied.

Memory referenced in Netmap’s ring needs to be DMA-mapped so the NIC can ac-

cess the memory. We implemented an ioctl using the technique introduced in SNAP [70]

57

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

Figure 3.15: FastClick’s zero-copy implementation of the Netmap receive path. Dashed
red lines are pointer replaced as part of the receive process.

DPDK - Zero copy
Netmap - Zero copy

DPDK - Copying
Netmap - Copying

50 100 150 200 250 300

20

25

30

35

40

Packet size (bytes)

T
h
ro
u
gh

tp
u
t
(G

b
p
s)

Figure 3.16: Zero copy influence - DPDK and Netmap implementations with 2 cores
using the forwarding test case.

to allocate a number of free buffers from the Netmap buffer space. A pool of Netmap

buffers is initialized, substituted for the Click buffer pool. When a packet is received,

the Netmap buffer from the receive ring is swapped for one of the buffers from the

Netmap buffer pool.

When the Netmap output ring is beginning to be full, the ioctl to sync the output

ring is called after each packet to reclaim some buffers. Without zero-copy the buffer

copying took some time and ensured that the synchronization was not done too often,

actually leaving some time to the NIC to process the packets while the copying is done.

With zero-copy, there is no need to copy the buffer content and calling the ioctl after

58

3.2 I/O analysis

every packets is starting to introduce congestion on the PCIe link1, and is leading to

trashed CPU cycles as the ioctl rely on a system call, which is heavy by nature.

Therefore when the ring is full, the call to the ioctl is disabled until some number

of packets are pushed and kept in the internal queue, or when a timer of 1µs expires,

whichever comes first. When the call to the ioctl is re-enabled, it is very likely the

Netmap output ring will have sent some packets, and the ioctl will therefore release

some space in the output ring.

DPDK directly provides a swapped buffer, as such we do not need to take care of

swapping the buffer or copying its content before processing it through the Click graph.

We used the forwarding test case as our first experiment, with only two cores to serve

the 4 NICs to ensure that the results are CPU-bound, and that better performance is

indeed due to a better packet system. The results are shown in figure 3.16. The test

case clearly benefits from zero-copy, while copy mode produces more important drops

in the graph as one byte after the cache line size forces further memory accesses.

3.2.5 Multi-queueing

Multi-queueing can be exploited to avoid locking in the full-push paths. Instead of

providing one ring for reception and one ring for transmission, the newer NICs provide

multiple rings per side, which can be used by different threads without any locking as

they are independent as shown in figure 3.17.

Figure 3.17: Full push path using multi-queue.

We compared the full push mode using locking and using multiple hardware queues

both with DPDK and Netmap, still with 4 cores. Netmap cannot have a different
1Actually the synchronization ioctl does not rely on the PCIe bus with out improved Netmap version

(see section 2.3). Vanilla Netmap will however directly write to a NIC register instead of relying on
the NIC writing the state of the ring in memory and therefore creates PCIe messages when used.

59

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

number of queues in RX and TX, enabling 4 TX queues forces us to look for incoming

packets across the 4 RX queues. The results are shown in figure 3.18.

The evaluation shows that using multiple hardware queues is slower than locking

using Netmap, but provides a little improvement with DPDK. With Netmap, increasing

the number of queues produces the same results as increasing the number of descrip-

tors per rings, as seen in section 3.2.2. Both end up multiplying the total number of

descriptors, increasing the size of Click’s working set to the point where it starts to be

bigger than our CPU’s cache. As zero-copy is used, we see that the cost of reading and

writing from and to Netmap’s descriptors goes up with the number of queues.

DPDK - Multiqueue
DPDK - Locking
Netmap - Locking

Netmap - Multiqueue

50 100 150 200 250 300

0

10

20

30

40

Packet size (bytes)

T
h
ro
u
gh

tp
u
t
(G

b
p
s)

Figure 3.18: Full push path using multi-queue compared to locking - DPDK and Netmap
implementations with 4 cores using the router test case.

When using more cores, the cost of locking could increase to the point where multi-

queueing becomes more efficient. As Netmap would force us to look at the 12 RX queues

when using 12 TX queues, we ran the same experiment with 12 cores using only the

DPDK implementation, which can use 3 RX queues per NIC (1 for each input thread)

and 12 TX queues (one per output per thread). We also tried to lock per I/O batch,

instead of locking per-packet. As it can be seen in figure 3.19, there is no difference

between locking and using multi-queueing to avoid contention in the output ring in

the case where I/O batching is used. However, without I/O batching, locking indeed

becomes more expensive than multi-queueing, due to increased lock contention.

60

3.2 I/O analysis

Multiqueue, per batch
Locking, per batch

Multiqueue, per packet

Locking, per packet

60 80 100 120 140 160 180 200

0

10

20

30

40

Packet size (bytes)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

Figure 3.19: Full push path using multi-queue compared to locking - DPDK implemen-
tation with 12 cores using the router test case.

3.2.6 Compute Batching

While compute batching is a well-known concept [12, 70] we revisit it in the context

of its association with other mechanisms. Moreover, its implementations can differ in

some ways.

With compute batching, batches of packets are passed between Click elements in-

stead of only one packet at a time, and the element’s job is done on all the packets before

transmitting the batch further. SNAP and DoubleClick both use fixed-size batches, us-

ing techniques like tagging to discard packets which need to be dropped, and allocating

an array for each output of a routing element as big as the input batch would, leading to

partially-filled batches. We prefer to use a simply linked list as shown in figure 3.20, for

which support is already inside Click, and is better suited to splitting and variable size

batches. Packets can have some annotations, and there is an available annotation for a

“next” Packet and a “previous” Packet used by the Click packet pool and the queuing

elements to store the packets without the need for another data structure. As such, we

introduce no new Packet class in Click and more importantly, building batches does not

need any memory allocation.

For efficiency we added a “count” annotation which is set on the first packet of the

batch to remember the batch size. The “previous” annotation of the first packet is set

to the last packet of the batch, enabling to merge batches very efficiently. Indeed, to

append a batch to the end of another batch, we only need to add the second batch’s head

packet as the next packet of the tail of the first batch, and update the count and tail

61

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

Figure 3.20: Linked list of packets as passed between elements when using compute
batching

annotation of the head packet. Merging is therefore a O(1) operation and does not need

any memory allocation or release. This is contrasting with vector-based batching where

the second batch must be looped through entirely when merging, a O(N) operation

where N is the size of the second batch, plus the need to recycle the second vector. It

also has the limitation that the total size of the batch must not be bigger than the size

of the first vector.

One example of when merging is done is when batches of packets are transmitted

and then recycled. The batch of packets needs to be put back in the Click packet pool,

which is essentially a long list of packets. A batch of packets that has gone through the

router can therefore be recycled in O(1) when using linked list.

3.2.6.1 Batch size

The size of the batch is determined by the number of packets available in the receive

ring, up to a chosen burst size limit. We never wait for more packets to ensure a certain

minimal size before flushing the batch. It may appear as a contradiction to section

3.2.1 at first glance where we show that small batch sizes reduce performance. What

will happen is that when the throughput is high, the batches will grow naturally up

to the given batch size limit, therefore ensuring a high throughput and a low latency

on average as discussed in section 3.2.1. When the throughput is lower, the batches

62

3.2 I/O analysis

will become smaller, but as the CPU has also less work to do (as a fact of the lower

throughput and therefore fewer packets to handle), the CPU will be able to cope with

the overhead introduced by small batch sizes, ensuring a low latency for all packets but

still able to cope with the throughput.

This strategy will not pose problems when multiple applications run on the same

CPU cores. Indeed, when the rate is low on one application, inducing a little bit

overhead on the CPU, either the other applications still have enough CPU share and

it is fine, either they do not and will start stalling the first application that, while

running, will buffer more packets in the input hardware queue. And therefore when

scheduled again will process a bigger batch. Anyway, most high-speed packet processing

frameworks encourage or only support the use of one application per CPU core for better

performance. Moreover, targeting middlebox applications in this thesis we propose to

use dedicated cores for each NIC, because packets from the same input are more likely

to follow the same processing and therefore maximise instruction cache hit. CPU core

assignation will be discussed in more details in section 4.2.

Compute batching simplifies the output element. The problem with full-push was

that a certain number of packets had to be queued before calling the ioctl to flush the

output in the Netmap case, or DPDK’s function to transmit multiple packets, which

are the synchronize operation for the output side as explained in section 3.2.1.

With compute batching, a batch of packets is received in the output element and

the synchronize operation is always done at the end of the sent batch. If the input rate

goes down, the batch size will be smaller and the synchronize operation will be done

more often, reducing latency as packets don’t need to be accumulated. While there is

still space in the transmit ring, batching also avoids the need to set a timer to flush

pending packets if there is no queuing that needs to be done. However a flushing timer

is still needed in non-blocking mode where the ToDevice builds an internal batch to

cope with sudden burst towards a unique output.

Without batching, a rate-limit mechanism had to be implemented when the ring

is full to limit the call to the synchronize operation in full-push mode as explained in

section 3.2.4. Indeed, in this case, the synchronize operation tends to be called for every

packet to be sent, in an attempt to recover space in the output ring. These calls of the

synchronize operation can create congestion on the PCIe, a situation to be avoided

when many packets need to be sent. This problem naturally disappears when compute

63

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

Figure 3.21: Un-batching and re-batching of packets between two batch-compatible ele-
ments for a single path

batching is used as the time to process the batch by the Click elements gives time to

the NIC to empty part of the output ring.

3.2.6.2 Batch-local variables

In some cases, batching can allow us to remove the multi-thread problem caused by

mutable data. For example, the IP Routing element that chooses an output according

to the packet’s destination IP address will cache the address of the last seen packet and

its associated output as there is a high probability that the following packets are for the

same destination. In that case, if the element is traversed per multiple threads, there

would be a concurrency problem as the cache could be modified by multiple threads.

With batches of many packets, one can use a local variable (allocated on the thread’s

stack) to do the caching of the lookup. The only drawback would be if the last packet

of a batch has the same destination address than the first packet of the following batch,

as an additional lookup will have to be done.

3.2.6.3 Backward compatibility

In both SNAP and DoubleClick, the batches are totally incompatible with the exist-

ing Click elements, and one needs to use either a kind of Batcher/Debatcher element

(SNAP) or implement new compatible elements. In our implementation, elements which

can take advantage of compute batching inherit from the class BatchElement (which

inherit from the common ancestor of all elements “Element”).

Before starting the router, FastClick makes a router traversal, and finds BatchEle-

ments interleaved with simple Elements. In that case the port between the last BatchEle-

ment receiving batches (the left one on figure 3.21) and the vanilla Element will unbatch

the packets. The port after the vanilla Element will re-batch the packets as shown in

64

3.2 I/O analysis

Figure 3.22: Un-batching and re-batching of packets when downstream elements have
multiple paths.

figure 3.21. As the port after the vanilla Element cannot know when a batch is finished,

the port of the left BatchElement calls start_batch() on the downstream port and

calls end_batch() when it has finished unbatching all packets. When the downstream

port receives the end_batch() call, it passes the reconstructed Batch to its associated

BatchElement. Note that the downstream port uses a per-thread structure to remember

the current batch, as multiple batches could traverse the same element at the same time

but on different threads.

When a simple (non-batching) element has multiple output, we apply the same

scheme but we have to call the start_batch() and end_batch() on all possible directly

reachable BatchElement as shown in figure 3.22. This list is also found at configuration

time.

While the solution proposed here for backward compatibility is working and provides

improvements by keeping the batching semantics, it induces some costs. For elements

in the fast path, it is important to implement a proper support for batching as the

cost of un-batching and re-batching goes up. But for elements in rarely used path such

as ICMPError or ARP elements, the cost is generally acceptable and preferable over

development time of elements taking full advantage of compute batching.

65

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

3.2.6.4 Compute batching feature evaluation

Click keeps two pools of objects: one with packet descriptors, and one with packet

buffers. SNAP way of handling a freshly available Netmap packet is to take a packet

descriptor from the packet descriptor pool and attach the filled Netmap buffer from

the receive ring to the packet descriptor. A Netmap buffer from a third pool of free

Netmap buffers is then placed back in the receive ring for further reception of a new

packet. SNAP does the buffer switching only if the ring is starting to fill up, maintaining

multiple type of packets in the pipeline which can return to its original ring or to the

third pool; introducing some management cost.

We found that it was quicker to have only Netmap buffers in the Click buffer pool,

getting totally rid of malloc’ed buffers. If FastClick is compiled with Netmap support,

the pool of buffers is replaced by a pool of complete Netmap packets, that is a Click

Packet descriptor with a Netmap buffer already linked in. Therefore a single pool allo-

cation is needed when receiving Netmap packets. This provides improvement because

it is very likely that if Netmap is used, packets will be either received or sent from/to

a Netmap device. This is labelled “NPOOL” in figure 3.23.

If there is not enough buffers in the pool, the pool can be expanded by calling the

same ioctl than in section 3.2.4 to receive a batch of new Netmap buffers and allocate the

corresponding number of descriptors. Moreover, our pool is compatible with batching

and using the linked list of the batches, we can put a whole batch in the pool at once as

we have only one kind of packet buffers, this is called per-batch recycling and is labelled

“RECYC” in figure 3.23.

We do not provide the swapping functionality in our DPDK implementation. As

DPDK always swaps the buffer with a free buffer from its internal buffer pool when it

receives a packet, we do not need to do it ourselves. We simply use the Click pool to

take packet descriptors and assign them a DPDK buffer.

The results of the router experiment with and without batching for both DPDK and

Netmap implementations are shown in figure 3.23. The “BATCH” label means that the

corresponding line uses batching. The “PFTCH” label means that the first cacheline

of the packet is prefetched into the CPU’s cache directly when it is received in the

input elements. When a packet reaches the “Classifier” element which determines the

packet type by reading its Ethernet type field and dispatches packets to different Click

66

3.3 FastClick evaluation

DPDK + BATCH + PFTCH

DPDK + PFTCH

Netmap + BATCH + NPOOL
+ RECYC + PFTCH

Netmap + BATCH + NPOOL + RECYC

Netmap + BATCH + NPOOL

Netmap + BATCH

Netmap

50 100 150 200 250

15

20

25

30

35

40

Packet size (bytes)

T
h
ro
u
gh

p
u
t
(G

b
p
s)

Figure 3.23: Batching evaluation - DPDK and Netmap implementations with 4 cores
using the router test case. See section 3.2.6 for more information about acronyms in
legend.

paths, the data is already in the cache thanks to prefetching, enabling another small

improvement. We omit the forwarding test case because the batching couldn’t improve

the performance as it doesn’t do any processing.

3.3 FastClick evaluation

We repeated the experiments in section 3.1 with our FastClick implementation. The

results of the forwarding experiments are shown in figure 3.3, and those of the routing

experiment in figure 3.5.

Both Netmap and DPDK FastClick implementations remove the important overhead

for small packets, mostly by amortizing the Click wiring cost by using compute batches

and reducing the cost of the packet pool, using I/O batching and the cost of the packet

copy compared to vanilla Click.

The figures do not show an important part of the novelty which is also in the

configuration, which becomes much simpler (from 1500 words to 500, without any copy-

paste), because FastClick avoids per-thread duplication of elements. The input elements

are auto-configured according to NUMA nodes and available CPUs.

Open Source Availability
FastClick is available at [21].

Try it out ! �

67

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

3.4 Beyond Network I/O

Recent work tackles the matter of removing or highly amortizing system calls for network

I/O as depicted in section 3.2. Some works like IX [59] and Arrakis [37] try to get the

Operating System out of the way by also leveraging the scheduler and the storage stack

for high-speed. However, Kernel programming is still difficult and risky in many regards.

As such, high-speed platforms such as VPP[73], NetVM[74], E2[43], OpenBox[41] and

many others preferred to keep a purely userspace solution.

Applying most techniques presented in section 3.2 to a large security appliance

vendor1 revealed a bottleneck due to a very high number of calls to the system clock.

Multiple VNFs take care of keeping timed statistics about various state of flows, clients,

connections, etc. The whole time spent in timing system calls did go up to around

1/5th of the total CPU time.

In this section, we will review a way to avoid relying on time system calls. How-

ever others system calls may be problematic, especially with the recent Kernel Page

Table Isolation (KPTI) patch to counter the Meltdown[75] vulnerability that increase

drastically system call cost. For instance, avoiding the kernel to generate every pseudo-

random numbers or implement lighter message-based inter-process communication could

also be the subject of future work.

3.4.1 Timing

Linux kernel and C libraries now use virtual dynamic shared object (vDSO) which relies

on memory mapping through shared libraries to serve routines that do not specifically

need to run in kernel space. However, as shown in figure 3.24, simply time-stamping

every packet passing by (which is realistic according to observations of the live security

appliance) in the campus router test case induces a performance drop of ∼ 18% even if

using vDSO.

On x86 processors, the Time Stamp Counter (TSC) is a counter that increase at the

frequency of the CPU. On recent CPUs, the frequency of the TSC is fixed, meaning that

even if the frequency of some CPU cores is changing for power saving, the TSC will still

increment at the same frequency. While the exact frequency of the TSC is unknown, it
1Tom Barbette completed a 3 months research internship at Cisco Meraki, trying FastClick tech-

niques in some of their products

68

3.4 Beyond Network I/O

No timestamp User vDSO
0

5

10

15

20

Th
ro

ug
hp

ut
 (G

Bp
s) 15.26 14.05 12.47

Figure 3.24: Receive side of the campus router test case using one CPU core limited
at 1200MHZ, timestamping every packet using clock_gettime(), using our userland TSC-
based approach or without any timestamping.

can be approximated. One technique will be described later in this section. The RDTSC

instruction allows to read the counter into registers and is not a privileged instruction,

meaning it can be used in userlevel. Provided that the TSC is stable enough, it can be

used to compute a delta of time using an algorithm like algorithm 1. This is how most

Operating Systems compute the time when the TSC is known to be stable.

Most systems also dispose of a High Resolution timer (HPET) which has a more

accurate and known-in-advance tick frequency. The value of the timer is read through

memory-mapped IO for efficient access, but still more expensive than issuing a RDTSC

instruction[76]. Moreover, it is in general around 10Mhz and does not provide a very

high precision as the maximum precision would be 100ns. For those reasons the Linux

Kernel use the TSC by default even when HPET is available.

Algorithm 1 Time computation using the TSC
function init

T0 = current time

TSC0 = RDTSC

end function
function now

TSC1 = RDTSC

T1 = T0 + (TSC1 − TSC0)/TSC_FREQ
or
T1 = T0 + (TSC1 − TSC0) ∗mult >> shift

end function

The general algorithm to compute time using the TSC is shown in algorithm 1. At

T0, the current TSC value is read along with the current time. The time that passed

69

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

since T0 can be computed by dividing the difference between the current TSC value and

its value at T0 by the TSC frequency. The time since T0 can then be added to T0 to

compute the current time. Note that for performance, this computation is always done

using integer algebra, and never floating point. Even integer division is costly, therefore

most time algorithms use a multiplication and a shift, as shown in algorithm 1. The

bigger the multiplication is, the more precise the equivalent division will be. However,

if the delta is too big the total value would overflow. Consider a shift of 32 bits, and a

TSC at 3GHz. In less than two seconds, the delta between TSC0 and TSC1 will reach

4.3G, that is 233, shifting that value by 32 bits to the left leads to an overflow when

using 64bits integer. Before an overflow could happen, the current time is accumulated

into the initial values (T1 becomes T0).

While the OS starts and read T0 from a hardware Clock and then apply corrections

from time to time using NTP, the userlevel application can use the OS clock itself as

a first source and apply corrections by re-reading the OS clock from time to time. [76]

proposes a userspace high precision time library that automatically selects the best

source, however the library is not publicly available and the paper does not provide

much implementation details such as when re-synchronization with the time source

(the OS wall time system call) is done, and how shifts are applied to catch up for NTP

updates that unexpectedly change the source time, if it actually does.

The main problem is that the time in OSes is not advancing at a constant rate

as NTP corrections may be applied to slowly catch up with the real time. Therefore

we try to compute an accurate time and TSC frequency without any available notion

of constant time. A solution would be to base ourself on NTP and not the OS, but

that would mean that Click would produce timing and statistics uncorrelated to other

systems events, therefore we prefer to synchronize with the OS timing system, no matter

how much variable and unprecise it can be, even if that requires more engineering efforts

detailed below.

We modified Click to use a function pointer for time computation instead of the

hard-coded system call. When Click starts, the OS system calls are always used. The

user can then place any Clock element in its configuration that will replace the function

pointer when ready to provide an accurate time. This enables to afford waiting to ensure

the Clock is stable enough, as the OS can be used in the meantime.

70

3.4 Beyond Network I/O

The TSCClock, our element that sets the function pointer to a TSC-based user time

facility has 3 phases: stabilization, synchronization, and running.

Stabilization The goal of the stabilization phase is to compute the TSC frequency.

Sleeping for one second and computing a delta is not precise enough because the sleep

is not guaranteed to be exactly one second, and the time in the OS is not advancing at a

constant rate. Therefore loops of c = rdtsc; sleep(1s); freq = rdtsc−c will give variable
frequency. In our solution, a timer runs every 10ms and computes the frequency freq

that the TSC seemed to have during those last 10ms. It then corrects a base frequency

using weighted average, such as base_freq = alpha ∗ freq + (1 − alpha) ∗ base_freq
until less than an error threshold on the compute time (user-defined, by default 100ns)

is achieved for 10 consecutive runs. When the precision is not achieved for 10 runs the

whole stabilization phase restarts.

Synchronization One problem of the TSC is that it may not be synchronized

between CPU cores, though recent CPUs ensure they are. In the synchronization phase,

each CPU runs another 10ms timer that compares the OS time and the computed time

to ensure that the TSC is synchronized across cores and compute a per-CPU potential

TSC offset. When all cores gets good timing for 10 runs, the function pointer is set and

the TSCClock enters the running phase. Therefore, if the TSC is not stable, the

synchronization phase will never pass and therefore the userlevel clock will

not be activated.

Running From that point, Click uses the TSCClock to get the current time. The

function to compute the time is similar to algorithm 1. In parallel, an “accumulation”

timer runs every second to accumulate T1 in T0 and reset TSC0 to the current TSC value

for the reasons explained above (mainly, avoiding an integer overflow when computing

the time). The accumulation timer also computes the difference between the computed

time and the actual OS time to slightly change the TSC frequency to catch up with

the OS time. If the catchup is bigger than one second (due to NTP updates), the time

jumps directly to the correct time, as the OS does.

As in Click timers are sloppy (they run after all tasks run) one Click task may keep

the CPU for so much time that the timer cannot run every second. To prevent that

case, if the delta in time is bigger than 2 seconds, the timer moves to another CPU.

71

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

If no CPU can ensure a run every two seconds, the TSCClock is uninstalled and the

timing function reset to the OS-based one.

The data needed during the running phase to compute the approximated time is the

last TSC value (TSC0), the time when it was read (T0), and the frequency (kept as a

shift and multiplier to avoid 64 bit division). They must be updated atomically together,

as if a thread reads the old TSC0 TSC value but the new T0 value, the computed time

would be wrong. Therefore a Read-Copy-Update (RCU) structure is used. RCU will be

described in section 4.3.2. In a nutshell, RCU allows very efficient concurrent reader

accesses to a structure, while a writer will work on a copy of the structure and commit

the modification atomically. This applies very well to the TSC Clock as the data is

read when time must be computed, while the data is updated only once every seconds,

when the accumulation timer runs.

3.4.2 Evaluation

3.4.2.1 Accuracy

 1

 10

 100

 1000

 10000

 100000

 1x106

00:00 00:05 00:10 00:15 00:20

O
ff

se
t

(n
s)

Time (s)

Linux
User

Corrected Difference

Figure 3.25: User timing accuracy during the 3 phases using the GPS clock as a reference
(Linux and User lines), and the difference between the time as read using Linux time and
the User time. The difference is corrected by subtracting the time taken for two consecutive
user time read to compensate for the delay of the read itself. The stabilization phase starts
at 10.89 and the Clock is installed and running at 15.89.

72

3.4 Beyond Network I/O

To ensure the accuracy of our system, we compare the Linux time and our User time

to a GPS-based high precision PCI-Express clock (Meinberg GPS180PEX). The GPS

time is acquired using memory-mapped IO in a very efficient way. Figure 3.25 shows

the first seconds of the synchronization phase, computing the difference with the GPS

time for both methods and the difference between the two results every ∼ 1ms. The

∼ 10µs spikes that can be seen from time to time in the User and Linux lines happen

with delta between the GPS clock and both User and Linux time. We believe them

to be caused by interrupts that happen during the computation of the time, leading

to context switches in certain circumstances and a pause in the middle of the time

computation. If the spikes were caused by some inaccuracy of the TSC counter we

would observe also “negative” spikes. The corrected difference line in figure 3.25 is the

difference between the two times, but subtracted by the time taken to compute the user

time itself. To mesure the computation time of the user time itself, we simply compute

the time twice, and compare the difference between the results of the two computations.

The synchronization phase that starts at 10.89 appears to introduce jitter because it

is trying to find a possible local TSC offset for each core which initially amplifies the

jitter before converging. The difference is most of the time correct in a +-15ns margin

but with a constant offset of 90ns that will be discussed later.

Figure 3.26 shows the accuracy over a longer period of time. We implemented a

version of our user clock that sync on the GPS time instead of the OS time, given by

the “User - GPS” line in figure 3.26. The offset between the user GPS-based time and

the actual GPS time is equal to the time taken between two GPS read (the “GPS read

time” line). Similarly, the difference between the “User - Linux” time and the Linux

time is equal to the time taken to compute the Linux time itself, i.e. the time to call

the system call (which is represented by the “User read time” line). In both cases, the

user clock actually takes the error of the base Clock. While those constant offsets could

be compensated, we follow again the original method which would not compensate for

its own time out of the box.

73

3. A HIGH-SPEED PACKET PROCESSING PLATFORM

 1000

 10000

 100000

 1x106

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00

O
ff

se
t

(n
s)

Time (s)

Linux
User - Linux

User - GPS
GPS read time
User read time

Diff User - Linux

Figure 3.26: Relative accuracy over 2 hours using the GPS clock as reference, lines are
approximated for clarity but ∼ 10µs spikes are still observable on every line as in figure
3.25. User - Linux is the User clock synchronizing with Linux time and User - GPS is
following the GPS time. Both read times are time between two consecutive calls to the
respectively the GPS device and the user clock (no matter its reference).

3.4.2.2 Performance

Figure 3.24 shows the performance of our userlevel Clock compared with the standard

“system call” (a vDSO in practice). Time-stamping all packets of the router test case

with the vDSO leads to a 22% impact on throughput. Using our clock instead of the

vDSO reduces this impact by 60%.

74

4

Distributed packet processing

As shown in section 2.3, handling 10 Gbps of minimum-size packets on one core is

only possible with a fast framework to quickly deliver packets to userspace and a fast

processor. And even in this configuration, any processing must be delegated to another

core as the core assigned to the receive loop is nearly submerged.

Therefore, in section 4.1 we review the ways to use multiple CPU cores to process

packets from a single input device.

In section 4.2 we study techniques to seamlessly handle multi-threading and multi-

queuing in FastClick, making the configuration simple by automatically detecting thread

traversal in network functions. FastClick uses graph analysis to discover the path that

each thread can take and minimizes the use of memory and multi-queue.

Finally, in section 4.3 we review data-structures that enable very efficient parallel

processing with no or a minimal amount of locking.

In this section, DPDK will be used in experiments as chapter 3 showed that it is

more or less on a par with Netmap and we don’t need to re-experiment with both I/O

frameworks.

This chapter in a nutshell
I Context of this chapter

• There are two main approaches for distributed packet processing with multiple
cores: pipelining and parallel processing.

75

4. DISTRIBUTED PACKET PROCESSING

• While there are studies comparing the two approaches, the limits of the ap-
proaches with more than two cores and when they should be used in the context
of userlevel processing, batching, and with modern hardware is still not fully
reviewed.

• Operating Systems locking facilities are too slow in the context of high-speed
packet processing and do not cope well with a run-to-completion model based
on userlevel threads, which is used in Click and most recent NFV platforms.

I Highlight of our main contributions in this chapter

• We show the parallel approach should be preferred in most cases after a very
extensive study under various kind of workloads. This is because it avoids
atomic operations and data cache misses that occur when passing packets from
core to core as needed by the pipeline approach. Even if instruction cache
may suffer from the parallel approach, cases are very rare where the pipeline
approach actually performs better, in part because compute batching amortizes
over a batch the cost of warming up the instruction cache.

• FastClick detects thread traversal and enables a novel easy-to-use multi-threaded
and safe configuration, hiding multi-threading and multi-queuing specifics.

• We review and propose network-specific datastructures for parallelization ac-
cording to their potential usages. We propose a novel userlevel RCU mecha-
nism for efficient read-mostly applications, and RxWMP, an exclusive multiple-
readers or multiple-writers facility around a per-thread duplicated structure
that does not degenerate in either read-mostly or write-mostly.

�

4.1 Distribution approaches

When a lot of work has to be done on multiple packets, there are multiple ways to take

advantage of multiple CPU cores to accelerate the processing.

A first solution is to use multi-queueing to implement a “parallel” approach, not

only to avoid locking in the output hardware queue for the full push mode as proposed

in section 3.2.5, but to exploit functionality such as Receive Side Scaling (RSS) which

partitions the received packets among multiple hardware queues. Each hardware queue

can then be serviced by different cores. This is depicted in figure 4.1 (A). In the parallel

approach, the data (the packets) is distributed among the cores, that all executes the

full processing in parallel.

76

4.1 Distribution approaches

Core 1 Core 2

Core 2

Core 1

Stage #2Input #1 Q #1 Output #1 Q #1Stage #1

Input #1 Stage #2Stage #1

A Parallel approach

B Pipeline approach

Stage #2Input #1 Q #2 Output #1 Q #2Stage #1

Output #1

Figure 4.1: Distribution of two processing stages among two cores using the parallel
approach with hardware multi-queues and the pipeline approach

A second solution is the “pipeline” approach, that distributes the instructions among

the cores. Each core does some part of the processing and then passes the packets to

the next core. In this chapter, we’ll refer to “part of the processing” as processing stages.

Together, the chain of processing stages represents all the work to be executed on every

packets. This solution is presented in depicted 4.1 (B). While we only show figures

where the pipeline approach always executes one processing stage, we actually vary the

amount of work per processing stages, simulating the case where each core runs multiple

processing stage.

Comparison regarding CPU cache locality. In Click, and generally for efficient

implementation of the parallel approach, the code is not duplicated. Only some mutable

state for each element is duplicated. Therefore in both approaches the total number of

instructions is identical. However, in the parallel approach, the instructions will have to

be fetched in every L1i caches. But the parallel approach improves data cache locality

as the packet always stays on the same core and can be kept in local L1d or L2 cache,

while the pipeline approach improves instructions cache locality as each core executes a

reduced set of instructions that can better fit in L1i or L2. The pipeline approach also

benefits memory that is used specifically by one processing stage such as DPI rules or

firewall rules that will benefit from staying in a cache as close as possible to the core

using the rules.

77

4. DISTRIBUTED PACKET PROCESSING

Comparison regarding locking. The first approach (parallel) needs locks and com-

plex data structures when the state must be synchronized between all cores, e.g. for flow

tables. While the second approach (pipeline) introduce some of the same problems as

the push-to-pull path discussed in section 3.2.3 to enable multiple cores to exchange

packets and notify the next core that some packets are available. However pipelining

(the second model) leads to easier state management as the same function is most of the

time executed by one unique CPU core. Even when pipelining is involved, some status

such as NAT flow tables may still need to be shared between cores handling different

side of the connection, or status of connections shared between the cores handling the

first part and the last part of the pipeline.

[16] already compared the two approaches for using 2 cores to accelerate processing.

They evaluated the impact of doing N memory accesses to an array of size S for each

packet, varying both parameters to see the impact in term of throughput. We re-built

the experiment to study the impact also in term of latency, and for multiple other

reasons.

First, the push-to-pull path in itself is responsible for some performance loss because

the select mechanism is heavy, and the push-to-pull path leads to constantly scheduling

and de-scheduling tasks. Section 3.2.3 studied the impact of push-to-pull path in more

details.

Secondly, the Click Queue implementation is also perfectible when the number of

cores goes up. Therefore in the following experiment, we keep a full-push path using

the new Pipeliner element described in section 3.2.3.1 that will benefit the pipelining

approach.

Thirdly, with compute batching elements process packets in batches. That means

that even if the instructions are not in the closest CPU cache for the first packet, they

will be for all the subsequent packets of the batch. This will mostly benefit the parallel

case, but also the pipeline mode when the amount of instructions per core is still too

big for the L1i cache. Also, [16] used kernel click and some mechanisms are heavier

in userlevel (like adding and removing file descriptors for the select operation) or, at

the contrary lighter such as the packet reception cost when using I/O frameworks like

DPDK or Netmap. Finally, pipelining may suffer from more synchronization work when

the number of cores, and therefore the number of software queues is going up and is not

modelized in [16].

78

4.1 Distribution approaches

4.1.1 CPU-bound workload comparison

The two main drawbacks of the pipeline approach are the software queues that intro-

duce synchronization cost between the multiple cores handling the software queue and

the fact that packets will be allocated on one core but released on another one. The

synchronization cost can be amortized with batching. We’ll use the software queues to

pass batches of packets instead of single packets, amortizing the synchronization costs

per-batch. The second drawback is that Click packets are allocated on the first core

Core 1 Core 2

Input #1 Stage #2Stage #1 Output #1

When empty When filled

ALLOC RELEASE
DROP DROP

Figure 4.2: Pool allocation and release process under the pipeline approach

of the pipeline but are recycled on the last core as shown in figure 4.2. In Click, the

packet pool have a per-core LIFO cache. When the LIFO cache is reaching a default

size of 2048 packets, it is considered full and transferred to a lock-protected global pool

as a batch of 2048 packets. In pipeline mode, it is the last core that will release packets

after transmission and fill the cache. The first core of the pipeline will access the global

pool to recover the batch and re-fill its CPU local cache when its local pool is empty.

Therefore a larger number of packet descriptors will be accessed in the process, while

the parallel approach can re-use the same packet descriptors in the LIFO queue, keeping

most probably all packet descriptors in cache. To compensate for this drawback, we

Core 1

Core 2

Input #1 Stage #2Stage #1

Output #1

Figure 4.3: Pipeline approach to distribute two processing stages among two cores using
one more software queue to transmit packets using the same core than the one receiving
them

propose a "returning pipeline" approach that introduces one more software queue to

send packets on the core where they were originally received. Therefore the recycling

79

4. DISTRIBUTED PACKET PROCESSING

1 2 4 8 16 32 64 128 256
W

0M

5M

10M

15M

20M

25M

PP
S

(P
ac

ke
ts

/s
)

Parallel
Parallel w/ Batching

Pipeline
Pipeline w/ Batching

Returning Pipeline
Returning Pipeline w/Batching

1 2 4 8 16 32 64 128 256
W

100

1000

La
te

nc
y

(µ
s)

Parallel
Parallel w/ Batching

Pipeline
Pipeline w/ Batching

Returning Pipeline
Returning Pipeline w/Batching

Figure 4.4: Performance of the parallel and pipeline approaches to execute two processing
stages under increasing CPU workload. Note that 22MPPS is actually the limit of the
generator. Latency is log scale.

and the allocation of packets are done on the same core as shown in figure 4.3. The

drawback of the returning pipeline approach is that the first core will have more work

to do than the second has the first core will handle one processing stage plus the full

I/O routines. Running the I/O operations on a dedicated core that does not execute

any processing stage will be considered later.

We built a test case using two cores to run two processing stages as in figure 4.1,

but without shared state between processing stages as suggested on the figure. Each

of the two processing stages are generating W pseudo-random numbers for each packet

passing by. We use the standard std::mt19937 C++ generator, which is a CPU-intensive

operation. The last core handling the packet is responsible for rewriting the packet MAC

addresses before transmission. The testbed is the same as in section 3.2.1 for the 40G

campus router test case but we generate 64bytes UDP packets instead of replaying

traces.

Figure 4.4 shows a comparison of the parallel approach, the simple pipeline approach

and the returning pipeline approach. All of them with and without batching. The

parallel approach is performing better than the pipeline one in term of throughput.

Batching enables amortizing the synchronization cost, but it still leaves the pipeline

approach around 1.4 to 2 times slower than the parallel one. It is interesting to see

that the returning pipeline approach performs better than the simple pipeline approach

with batching but worst in term of throughput without batching. This is because the

80

4.1 Distribution approaches

returning cost is much higher as the pipeliner is passing back packets one at a time to

the first core for transmission instead of doing it per-batch.

In term of latency the returning pipeline approach with batching seems to perform

slightly better than the parallel approach. It is because in the parallel approach we

use one input hardware queue per core, therefore when the rate is higher than what

the cores can handle (because the input rate is higher than the processing rate), the

input hardware queue are beginning to fill up. In the experiment, as we use two cores,

we buffer twice more packets as the total amount of buffers in the hardware queues is

doubled. Therefore the average latency increases.

Given the results, all the following use batching and it will not be explicitly men-

tioned any-more.

Core 5

Core 4Core 3

Core 2Core 1

Core 4Core 2 Core 3

Core 1

Input #1

Pipeline with one more core for I/O

Input #1 Stage #2Stage #1

Pipeline with two more cores for I/O

Stage #3

Output #1

A

B

Stage #1 Stage #3Stage #2

Output #1

Figure 4.5: Two new pipeline approaches to distribute 3 processing stages among 3 cores,
using one or two more cores to receive and transmit packets

All approaches tend to lead to the same performance when the amount of work

per packet (W) is huge, as the share of CPU time for the packet transfer is smaller

and is therefore only a small part of the overall work to be done. Letting the CPU

suffocate under so much constraint is not very realistic, instead the work to be done

can be distributed among more than two cores.

Figure 4.5 shows two pipeline configuration using 3 cores to run 3 processing stages,

using one or two more cores to handle I/O. The idea behind those configurations is that

when the number of cores increases in the pipeline, it may be better to use the core

budget to run the I/O elements on their own cores. Indeed, the core(s) running the I/O

elements in the pipeline or returning pipeline approaches also run a processing stage

and therefore may become bottlenecks.

81

4. DISTRIBUTED PACKET PROCESSING

2 4 6 8 10 12 14 16
Number of processing stages

0M

2M

5M

7M

10M

12M

15M

17M

20M

PP
S

(P
ac

ke
ts

/s
)

Parallel
Returning Pipeline
Parallel + 1
Pipeline + One core for I/O
Parallel + 2
Pipeline + Two cores for I/O

Figure 4.6: Throughput of the parallel and pipeline approaches with a varying number of
processing stages. Parallel and Returning pipeline use as many logical cores as processing
stages. Parallel + 1 and Pipeline + One dedicated core for I/O use one more core than
the number of processing stages, while the last two use two more logical cores.

2 4 6 8 10 12 14 16
Number of processing stages

2M

4M

6M

8M

10M

12M

14M

16M

18M

PP
S

(P
ac

ke
ts

/s
)

Parallel - Input queue size = 64
Parallel - Input queue size = 128
Parallel - Input queue size = 256

Returning Pipeline - Input queue size = 64
Returning Pipeline - Input queue size = 128
Returning Pipeline - Input queue size = 256

2 4 6 8 10 12 14 16
Number of processing stages

25

50

100

200

La
te

nc
y

(µ
s)

Parallel - Input queue size = 64
Parallel - Input queue size = 128
Parallel - Input queue size = 256

Returning Pipeline - Input queue size = 64
Returning Pipeline - Input queue size = 128
Returning Pipeline - Input queue size = 256

Figure 4.7: Performance of the parallel approach and the returning pipeline approach
with a varying number of processing stages. Both approaches use as many logical cores as
processing stages. Each method is compared using 64, 128, or 256 packets descriptors in
the hardware input queue of the NIC used

82

4.1 Distribution approaches

Our device under test has an Intel R© Xeon R© CPU E5-2630 v3 @ 2.40GHz which

has 8 physical cores, but 16 logical cores with hyper threading enabled. Therefore in

the following, figures using more than 8 logical cores spread on shared physical cores.

Logical cores 9 to 16 are hyper-threads corresponding to cores 1 to 8. Figure 4.6 shows

the performance of those two new pipeline variants with W still fixed to 32. In this new

test, the number of processing stages now ranges from one to sixteen. The parallel and

returning pipeline approaches use as many logical cores as processing stages. The two

other approaches using dedicated I/O logical cores use one or two more logical cores for

I/O. To allow a fair comparison with the parallel approach we also re-ran the parallel

approach with one or two more logical cores than the number of processing stages to

compare fairly against the dedicated approaches using an equivalent number of logical

core. Therefore in figure 4.6 the methods are to be compared two by two (groups using

the same final number of cores have the same line type and colours but different points

for different methods).

The figure clearly shows that while using dedicated I/O logical cores improves the

pipeline approach itself, the parallel approach can use more logical cores much more

efficiently. The pipeline approach with dedicated input and output cores is very stable

because it is actually bottlenecked by the speed of a single CPU executing its processing

stages.

Figure 4.7 shows the packet processing rate and the latency of the parallel and

returning pipeline approaches with various input hardware queue sizes. As the number

of logical cores increases, we use more input hardware queues in the parallel approach

and actually buffer much more packets and add up latency, as previously established.

The figure shows that the latency can be decreased by using fewer descriptors in the

input queues. However, the total buffering capacity should be taken in consideration to

avoid dropping too much packets. In realistic situations, lowering too much the number

of descriptors would lead to TCP retransmissions that will put even more pressure on

the link. The outcome of this experiment is not that using less descriptors leads to

better latency, but that at equivalent buffering capacity the parallel approach performs

better, while in all considered cases up to this point, achieving better throughput too.

The pipeline approach using software queues could start to buffer as well. It does

not happen in these micro-benchmarks because the pipeline stages are well balanced

and software queues stay empty most of the time. In a more realistic situation, the

83

4. DISTRIBUTED PACKET PROCESSING

pipeline approach would also start buffering more packets when the number of logical

cores increases.

4.1.2 Memory-bound workload comparison

As the pipeline approach is supposed to perform better in term of memory locality, we

now compare the pipeline and parallel approaches under a various number of memory

access to a various amount of data.

As in [16] we modify the processing stages to do N memory access for each packet

to an array of size S Mbytes. The array is filled with random data. The size S is per-

processing stage, therefore when using 2 processing stages the total memory pressure on

the shared L3 cache of the CPU is 2∗S. For each packet, the processing stage generates

one random number using the same method than in 4.1.1 (W = 1) and accesses a

random element of the array using that generated number. As shown in the previous

section, generating a new pseudo-random number for each N access of each packet

would kill the performances quite quickly. Instead, the random number is mixed (using

a xor operation) with the content of the array we just read, and used as the index of the

next element to read in the array. This is then repeated N times to execute N access

to the array.

As can be seen in figure 4.8, the parallel approach performs better when the number

of accesses is low (N < 20) or high(N > 1000), especially when the size of the data

is small (S < 8) or high (S > 64). When the returning pipeline approach performs

slightly better, it is per a few percents while the parallel approach can lead up to a

2X improvement. The second graph of figure 4.8 zooms on the range best for pipeline

approach. The advantage of the pipeline approach for the array locality allows the

returning pipeline approach to relatively catch up with the performance loss reviewed

in the CPU-bound workload comparison.

We also add a parameter R which is the percentage of the N access made to the

content of the packet instead of accessing the array. Therefore if R is 0%, we only read

from the memory array and if R is 100%, we only read from the packet.

Figure 4.9 repeats the experiment, showing the improvement of the parallel approach

over the returning pipeline approach but this time with an increasing proportion (R)

of the memory access made to the packet content instead of the array. The number

84

4.1 Distribution approaches

1 2 4 8 16 32 64 128 256
S

90%
100%
110%
120%

150%

200%

Th
ro

ug
hp

ut

N = 1
N = 10
N = 20
N = 100
N = 200
N = 1000
N = 2000

5 10 15 20 25 30 35 40 45
S

95%

100%

105%

Th
ro

ug
hp

ut

N = 10
N = 20
N = 100
N = 200
N = 1000

Figure 4.8: Relative performance of the parallel approach over the returning pipeline
approach using two processing stages running on two cores. The CPU shared L3 cache is
20M. Local L2 cache is 2M. L1 caches are 256K.

85

4. DISTRIBUTED PACKET PROCESSING

0 20 40 60 80 100
R

92%

94%

96%

98%

100%

102%

104%

Th
ro

ug
hp

ut S = 1
S = 2
S = 4
S = 6
S = 8
S = 12
S = 16
S = 32

Figure 4.9: Relative improvement of the parallel approach over the returning pipeline
approach using four processing stages running on four cores under an increasing percentage
of access to the packet data instead of the array (R).

of access N is fixed to 100, which showed to be the most advantageous value for the

pipeline approach.

As R increase, the parallel approach performs slightly better as the packets may

stay in a lower cache level along the path, while with the pipeline approach each access

to the packet on a new core needs to bring the packet in a closer cache. The difference

between the two approaches is never very high because in most cases the data is already

available in L3.

The higher R range where the parallel approach is performing best is in fact the

case of most network functions. Most functions do a simple processing (very low S, low

N) according to one or two fields of the packet as opposed to some static data (high R).

We used 4 cores to run 4 processing stages in this test, but figures in appendices A show

the trend is identical for 2 and 8 processing stages/cores. The parallel approach still

keeps its advantage with a low (N = 20) number of memory accesses per packet. With

a high number of accesses (N = 2000), as the packet is much smaller than the array

size, making 2000 access to a very small amount of memory makes both approaches

behave as under a purely CPU bound task. Still, the parallel approach behaves mostly

better.

86

4.1 Distribution approaches

0 2 4 6 8 10 12 14 16
Number of processing stages / Number of logical cores

92%

96%

100%

104%

108%

112%

116%

120%
Th

ro
ug

hp
ut

S
1
2
4
8
16
32

Figure 4.10: Relative performance of the parallel approach over the returning pipeline
approach doing N = 100 memory access to an array of size S for an increasing number of
processing stages. One logical core is used per processing stages.

Finally, the number of cores involved may influence performance under a memory

bound situation, as it did for the CPU-bound situation where the parallel approach

performed best with more cores. Figure 4.10 shows the relative performance of the

parallel approach over the returning pipeline approach under an increasing number of

cores for N = 100 access to the array (R = 0), among the most advantageous values for

the pipeline approach. The pipeline approach is around 2 to 5% more effective when

using 2 to 8 cores. However the parallel approach is able to use much more efficiently

hyper-threading and performs up to 10% better than the pipeline approach when using

the hyper-threads. Appendix A shows the same figure for N = 20 memory access

per packet in A.5 and N = 2000 in A.6. With a low number of accesses, results are

identical except for small array size where the parallel approach can keep the array in

L2 and therefore performs better. With a higher number of accesses, the test behave

in a CPU-bound fashion and the parallel approach performs much better as previously

shown.

This memory-bound performance study showed that the situation where the pipeline

approaches perform better than the parallel approach is in fact quite limited. The

parallel approach is performing better when the number of access to some static data

is either small (N < 20) because the memory pattern does not influence much the

87

4. DISTRIBUTED PACKET PROCESSING

results, or high (N > 2000) leading to a situation similar to the CPU-bound behaviour.

However, even between those constraints if the proportion of access to the packet instead

of the static data is high, or if hyper-threads are used the parallel approach performs

better again. Finally, we could achieve up to around 10% better performances when

all those conditions were reunited but the parallel approach can perform up to 100%

better in some other but often seen conditions. That is a few access (N = 1 ∼ 5) to

a few amount of static data (S < 1) and a small amount of fields (R ' 50) which is a

common case in VNFs.

4.1.3 Work distribution bias in the pipeline and parallel approaches

Both approaches have an imbalance problem. With the parallel approach, Receive Side

Scaling (RSS) is used to hash the packets and distribute them among cores. Nothing

guarantees that cores receive the same number of packets. With the pipeline approach,

it may be hard to fairly split the workload into processing stages of exactly equal shares.

0 2 4 6 8 10 12 14 16
Number of queues

60.0%

80.0%

100.0%

120.0%

140.0%

160.0%

180.0%

Qu
eu

e
di

st
rib

ut
io

n

Queue index
1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

Figure 4.11: Deviation from a uniform distribution of packets among hardware queues
using RSS hashing with a varying number of hardware queues.

Figure 4.11 shows the number of packets each hardware queue receives using our

campus traces. When using 15 queues, the queue number 6 receive ∼ 190% of the

amount of traffic a perfect distribution would achieve. While the queue 10 receives

around ∼ 50% of it. It means that some flows will have much more latency than others,

maybe even dropping packets. The CPU handling the queue 6 will have 4 times more

88

4.1 Distribution approaches

packets to handle than the CPU handling queue 10. To circumvent the problem, RSS

Figure 4.12: RSS inner working. Selected packet fields are hashed to a 32 bit number.
The 7 least significant bits are used as an index inside an indirection table that gives the
queue index

uses an indirection table to match the 7 last bits of the hash to a queue index, allowing

to re-balance the load if need be as shown in figure 4.12. However when doing stateful

processing changing the indirection table would mean that some flows may be served

by a different core than the one it was currently being served on. In which case some

synchronization would be needed such as using a protected global flow table instead of

a per-CPU one, or support migration of existing flows between cores. Therefore this

functionality is actually rarely used in practice. In fact, it was not even supported by

the ixgbe driver1 in the Linux Kernel before we upstreamed a patch ourselves into the

mainline Linux Kernel as part of an unrelated project [77].

With pipelining, the imbalance problem is that the number of processing stages does

not always fit the number of cores. The work to be done is not necessarily splittable

in small chunks, such as with IPsec encryption or when the load cannot be known in

advance such as with DPI where the processing time will depend on the rules and if

they match quickly the payload or not.

1ixgbe is the driver supporting the 10G Intel 82599 chipset often seen in many research papers

89

4. DISTRIBUTED PACKET PROCESSING

0 2 4 6 8 10 12 14 16
Number of logical cores

100%

200%

500%

1000%

Th
ro

ug
hp

ut

Number of processing stages
1
5
8

13
16
32

Figure 4.13: Relative performance of the parallel approaches over the returning pipeline
approach to run a given number of processing stages using an increasing number of cores.
Other parameters are chosen among the most advantageous for the pipeline approach
(N=100, R=0, S=2)

As a last test, we tried to distribute some fixed number of processing stages using

an increasing number of CPU cores. Other parameters are chosen among the most

advantageous for the pipeline approach (N = 100, R = 0, S = 2). For this test in

pipeline mode, cores are assigned in contiguous order as best as possible to distribute

processing stages among cores. When the number of logical cores perfectly divides the

number of processing stages, the pipeline approach performs slightly better given the

chosen fixed parameters as shown in figure 4.13. However in other cases some cores are

doing more work than others and become bottlenecks.

We did not find a case where the pipeline approach did perform much better than

the parallel approach, but it does not mean that there are none. There may be certain

cases where a hybrid approach may lead to better performances. But we showed that

while the common belief that pipelining allows to improve CPU caches efficiency is not

false, there are in fact very few cases where it actually leads to enough improvement to

compensate for the inherent slowness of synchronizing and passing data between cores.

It is also partly because compute batching allows to amortize the relative worst locality

of the parallel approach.

90

4.2 Handling mutable data

4.2 Handling mutable data

The question is thus how to duplicate the paths for each core and how to handle mutable

state, that is, per-element data which can change according to the packets flowing

through it, like data caches, statistics, counters, etc. In figure 4.14, the little dots in

Routing elements represent per-thread duplicable meta-data, like the cache of a last

seen IP route, and the black dots are the data which should not be duplicated because

either it is too big, or it needs to be shared between all packets (like an ARP Table, a

TCP flow table needing both directions of the flow, etc).

In vanilla Click in a multi-queue configuration such as proposed by RouteBricks[15],

there will be one FromDevice element attached to one hardware input queue of each

device. Each cores handles one queue from each device, as shown in figure 4.14 (a).

The problem is that in most cases, the Click paths cross at one element that could have

mutable data.

A first approach is to use thread-safe elements on the part of the path that multiple

threads can follow as in figure 4.14 (a). Only mutable data is duplicated, such as

the cache of recently seen routes per cores but not the other non-mutable fields of the

elements such as the Forward Information Base (FIB) that contains the forwarding rules

of a routing element. This method is advantageous in cases where memory duplication is

too costly, e.g. in the case of a big FIB, although the corresponding data structure must

become thread safe if it may be modified. Moreover, the operator must use a special

element to either separate the path per-thread (as shown by the white circle in 4.14 (a))

to use one output hardware queue for each thread as for the input, or use a software

thread-safe queue before reaching the output hardware queue and no multi-queue.

This is in contrast to the way SNAP and DoubleClick approach the issue: the whole

path is completely duplicated, as in figure 4.14 (b).

A third approach would be to duplicate the element for each thread path with a

shared pointer to a common non-mutable data like in figure 4.14 (c). But that would

complicate the Click configuration as we would need to instantiate one element (let’s

say an IP router) per thread-path, each one having their own cache, but pointing to a

common element (the IP routing table).

91

4. DISTRIBUTED PACKET PROCESSING

Figure 4.14: Three ways to handle data contention problem with multi-queue and our
solution.

92

4.2 Handling mutable data

We prefer to go back to the vanilla Click model of having one Element representing

one input device and one representing the output device. In that way the user only

cares about the logical path and the queueing management is hidden.

FastClick supports two thread allocation schemes. The first one allocates one hard-

ware queue per core for each devices, achieving the same configuration than in figure

4.14 (a). We refer to this as the “balanced” mode, as one core will serve packets from

one hardware queue of each devices. The second ones exclusively allocates cores to

input devices, which is depicted in figure 4.14 (d). We refer to this as the “dedicated

cores” mode as each input device has one or more cores exclusively dedicated to serve its

packets. Which mode to use depends mostly on the use case. Having each core handling

one queue of each device enables load-balancing if some input devices have less traffic

than others, but if the execution paths depend strongly on the type of traffic, it could

be better to have one core doing always the same kind of traffic and avoid instruction

cache misses. This is more common in NFV schemes, where network functions, and

sometimes even full virtual machines have dedicated cores.

Our FastClick implementation takes care of allocating queues and threads in a

NUMA-aware way by creating a Click task for each core allocated to an input device,

without multiplicating elements. On Intel platforms, since the Nehalem architecture

introduced in 2008, the Northbridge has been integrated in the CPU. This means that

the memory controller, but also PCIe lines are directly connected to the CPU (some-

times through a PCIe switch). Therefore, on recent multi-processor systems, an access

to a NIC attached to a first CPU from another CPU will be done through the QPI link

interconnecting the CPUs, introducing a performance and latency hit. Therefore on

this architecture, serving NICs input queues with the right CPU cores is of importance.

FastClick transparently manage the multi-queueing so the operator does not need

to separate paths according to threads or join all threads using a software queue or a

CPU-switch element as in figure 4.14 (a).

93

4. DISTRIBUTED PACKET PROCESSING

Assignation of cores to input devices In both modes, we use only one thread per

core as we use a run-to-completion model. However, in Click, multiple tasks can be

assigned to the same thread (and therefore, to the same core).

In “balanced” mode, for each input device we simply spawn one task per thread

running on the same NUMA node than the device. Therefore each core will run one

thread, that executes as many task as there are input devices attached to the same

NUMA node. With DPDK, we use one hardware queue per task, but with Netmap we

cannot change the number of receive queues (which must be equal to the number of

send queues), and have to look across multiple queues with the same thread if there are

too many queues.

To assign the cores to the input device in “dedicated cores” mode we do as follows:

For each device, we identify its NUMA node and count the number of devices per

NUMA node. We then divide the number of available CPU cores per NUMA node by

the number of devices on that NUMA node, which gives the number of cores (and thus

threads) we can assign to each device.

In both mode, the FromDevice element has an argument to disable NUMA awareness

and ignore the socket assignation of the device. In “balanced” mode each input device

will be served by all cores independently of their NUMA node, while in dedicated cores

all cores will be distributed to input devices independently of their NUMA node.

Assignation of queues to output devices For the output devices, we have to know

which threads will eventually end up in the output element corresponding to one device,

and assign the available hardware queues of that device to those threads. To do so, we

added the function getThreads() to Click elements. That function will return a vector of

bits, where each bit is equal to 1 if the corresponding thread can traverse this element,

that is called the thread vector.

FastClick performs a router traversal at initialization time, so hardware output

queues are assigned to threads.

To do so, the input elements have a special implementation of getThreads() to return

a vector with the bits corresponding to their assigned threads set to 1. For most of the

other elements, the vector returned is the logical OR of the vector of all their input

elements, because if two threads can push packets to a same element, this element will

be executed by either of these threads. Hence, this is the default behaviour for an

94

4.2 Handling mutable data

Figure 4.15: Thread bit vectors used to know which thread can pass through which
elements.

element without specific getThreads() function. An example is shown in figure 4.15. In

that example, some path contains a software queue where multiple threads will push

packets. As only one thread takes packets from the top right queue, the output #1 does

not need to be thread-safe as only one thread will push packets into it. The output #2

will only need 3 hardware queues and not 6 (which is the number of threads used on

this sample system) as the thread vector shows that only 3 threads can push packets in

this element. If not enough hardware queues are available, the thread vector allows to

automatically find if the output element needs to share one queue among some threads

and therefore needs to lock before accessing the output ring.

Additionally to returning a vector, the function getThreads() can stop the router

traversal if the element does not care of its input threads, such as for the software

queues elements. If that happens, we know that we are not in the full push mode and

we’ll have to use atomic operations to update the reference counter of the packets as

explained in section 3.2.3.

Our model has the advantages of figure 4.14 (a) and (c) while hiding the multi-queue

and thread management and the simplicity of approach (b).

Implementation details: the per_thread<T> structure
We also provide a per_thread template using the thread vector to duplicate

any structure per-thread, using C++ facilities to easily access the current thread’s
bucket with the dereference operator (− >). per_thread makes the implementation
of thread-safe elements easier. This is important as the chosen model needs to make

95

4. DISTRIBUTED PACKET PROCESSING

the internal mutable state of each element thread-safe, requiring a modification to
most stateful elements that therefore needs to be as easy as possible.

Many FastClick thread-safe elements use the per_thread template to duplicate
the object T per-thread As the CPU caches work with cache lines (64bytes on our
x86_64 CPUs), if two variables in the same cache line are accessed by multiple CPU
cores, they would conflict and be invalidated even if the underlying memory is well
segmented per-core, a problem known as false-sharing. The object T is padded with
enough bytes to protect against false-sharing.

At initialization a vector is initialized with as many threads replication of the
padded T structure. At runtime, the good bucket is accessed using a global Click
thread-local variable stored using Thread Local Storage (TLS) that gives the thread’s
index and use it as index of the vector. TLS themselves cannot be dynamically
instantiated, therefore per_thread itself cannot use TLS to implement the per-thread
bucket.

�

4.2.1 Ensuring graph thread-safeness

In Click, elements that are multithread-safe are marked with a macro at the end of the

file, but this is only used for documentation purposes. Click lexer has been modified

to expose the information that the element is to be considered thread-safe as a flag

of the element, accessible at run-time. To ensure elements of the graph that are not

multithread-safe are not traversed by multiple threads, we add a verification at the

router instantiation. We ensure that elements traversed by multiple threads as shown

by the thread vector are indeed thread-safe.

The modular approach of Click leads to most elements being quite compact and

relatively simple. Therefore it is not a complex task to review elements and mark them

as thread safe. There are mainly 2 aspects to verify:

• Element state: if the per-element data is modified by concurrent threads, suitable

protections and locks are needed. We review usual solutions in section 4.3.

• Handlers: Click use handlers, similar to functions exposed by elements to enable

the access to the element state and modify its configuration. Handlers run in

the context of the calling thread, therefore it may lead to multiple threads ac-

cessing the same data. As most handlers affect some configuration that is only

accessed read-only per the element itself, protecting the state with Read-Copy-

Update (RCU) data structures is most often the best solution. RCU is a data

96

4.3 Networking data structures for parallelization

structure that enables efficient access in a read mostly situation. RCU will be

discussed in more details in section 4.3.

4.3 Networking data structures for parallelization

Kernel provided locking and exclusion facilities such as mutexes rely on context-switches

to allow other threads to execute while the protected data is locked. In the Click

Modular Router, all tasks of the current thread would be stalled if the thread was to

sleep. Most high-speed I/O frameworks are built with the aim that each thread is

affinitized to one core, and in fact DPDK does not even support multiple threads per

CPUs. Therefore specific synchronization data-structures (or spin-looping as last resort,

but never for too long) must be used instead of relying on Kernel facilities. The userlevel

thread model is followed by most high-speed frameworks because context switches and

system calls are too costly as discussed in chapter 2. Therefore in the following we

assume that each thread is exclusively pinned to one core.

Some network functions can run in parallel, either by duplicating the mutable state,

by using only atomic instructions to access it, by locking to protect concurrent readers,

or use specific data structures such as Read-Copy-Update (RCU) that will be explained

further.

Which one to use entirely depends on the characterization of the network function

and the allowed margin for inconsistency. I.e. if concurrent reads and writes can happen

or if they are to be strictly exclusive. The first axis of characterization is the amount

of read versus write. Some locking facilities perform better when accessed for reading

mostly or at the contrary when accessed for writing mostly. The second axis is the

atomicity needed for the data. One may accept stale data, which could be slightly

old or allow for inconsistent data, that is reading a structure partially updated. The

following sections study in details what are the best options according to both axes and

potential use cases.

97

4. DISTRIBUTED PACKET PROCESSING

4.3.1 Write mostly

In this section, we’ll review some locking facilities in a write mostly context. We’ll

start from the most lax solutions regarding constraint on the consistency of the data

structure when multiple writers access it concurrently towards the most restrictive.

Inconsistent Statistic functions such as packet counters can use one counting variable

per thread, and compute the overall sum when the count needs to be re-conciliated,

which should not happen too often.

Figure 4.16: Per-thread duplication approach. Two sequences of events leading to an
inconsistent read and a stall read respectively

However, as is, the per-thread “duplication” solution does not provide consistency

or protect against stale data. Figure 4.16 shows an order of event that leads to the

two situations with a packet counter example. It counts the number of packets and

the total number of bytes passing by one path of the Click graph. For simplicity and

demonstration purposes, we assume that all packets are of 64 bytes. If the per-thread

memory is bigger than the architecture word, both values cannot be read atomically. If

the reader reads the first value, but the second value is updated before it is read, then

98

4.3 Networking data structures for parallelization

the reader will have an unsynchronized copy of the bucket. In the example of figure

4.16, the first reader reads the number of packets that is 8. Then the writer updates

the number of packets and bytes to 9 and 576. The reader then reads the number of

bytes that is 576. The given average size of a packet would be given as 576/8 = 72,

instead of 64. While one thread is summing all per-thread counters, individual threads

continue to update their values. By the time the aggregation thread reaches the last

thread bucket, the first one may have changed. In the bottom part of figure 4.16, the

sequence of action leads to a count of 10 packets for a total of 640 bytes, while at the

very same time the count is actually 11 packets for a total of 704 bytes. It is possible

for the two situations to happen at the same time.

Although this seems a bit limiting, in some cases this solution is actually fine.

When trying to get the number of packets that passed through one path, and the total

amount of bytes, a very slight inconsistency between the two, or a value actually old by

a few nanoseconds isn’t much of a problem. In figure 4.19 this approach is referred as

CounterMP. CounterMP is using the per_thread template to duplicate the two packets

and bytes counter per thread, with care for alignment and false sharing as discussed in

section 4.2.

Figure 4.17: Update using atomic operations. Each individual counter is read atomically
and is fresh at the time of reading, but both values cannot be read atomically and therefore
may not be synchronized.

Word-consistent One other possibility is to use a variable that all threads will read

and write using atomic operations. The atomic add operation guarantees that if multiple

threads add some number to a variable at the same time, the value will be incremented

with the sum of each thread’s increment. To prevent the reader from reading some old

data, the value is generally enclosed by memory barrier or declared as volatile. This

99

4. DISTRIBUTED PACKET PROCESSING

protects against stale data, but the consistency is limited to the architecture word size.

In the counter example shown in figure 4.17 the value of each individual packet and byte

counters will be consistent and guaranteed to be fresh, but both are not synchronized.

In figure 4.19 this is referred as CounterAtomic. The implementation simply uses 64

bits atomic operations to update both volatile 64bits packets and bytes variables. The

atomic approach is therefore fine for variables that do not need to be synchronized.

This can be used to count the number of packets dropped by a queue, to only count

the number of packets an element handled, for reference counting, . . .

Figure 4.18: Protecting the mutable data using a lock. Before accessing the data, any
reader or writer grabs the lock. This approaches provides full consistency of the data but
does not allow concurrent writers.

Another solution is to protect the data-structure using a plain old spin-lock letting

only one thread access the data at any time as shown in figure 4.17. In figure 4.19 this

is referred as CounterLock.

Consistent A variant of the duplication solution is to duplicate the mutable data

structure per-thread, along with a spinlock. The writers take their per-thread lock,

modify the data and then release it. While the readers take the lock thread per thread

read the value, and move on to the next thread. In figure 4.19 this approach is referred

as CounterLockMP. This allows to ensure consistency when reading each individual per-

thread bucket, but not to get a single consistent snapshot of the aggregate. To allow the

per-thread approach for fresh and consistent data, one can follow the per-thread lock

approach, and grab all the locks when a read must happen, before accessing individual

buckets. In a write mostly context, the read method is not of interest, therefore we do

not benchmark the fully constant approach in figure 4.19, but it will be referred later

as CounterPLockMP.

100

4.3 Networking data structures for parallelization

Single processor (1*16 Cores CPU)

2 4 6 8 10 12 14 16
Cores

0M

2M

4M

6M

8M

10M

12M

14M

16M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
CounterAtomic
CounterLock
CounterLockMP
CounterMP

NUMA System (2*8 Cores CPU)

2 4 6 8 10 12 14 16
Cores

0M

2M

4M

6M

8M

10M

12M

14M

16M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
CounterAtomic
CounterLock
CounterLockMP
CounterMP

Figure 4.19: Performance of multiple data structures in write mostly situation. Counting
the number of packets and total bytes passing by using various underlying data structures.
Note that the Counter value is wrong, as it is not protected against multi-threading.

Evaluation Figure 4.19 compare all those approaches using a varying number of cores

on a NUMA architecture and non-NUMA architecture. 64 bytes packets are generated

in loop locally. They traverse the given counter implementation before being destroyed.

The results are the average of 3 runs of 5 seconds each. The counter is only read at the

end of the 5 seconds. The single processor system is a 16 cores Xeon E5-2682 v4 while

the NUMA system has two 8 cores E5-2620 v4.

Without surprise the duplication approach performs better. However this works

because in this situation it is not a problem if the count is not totally exact. Note that

on the NUMA system, the memory allocation is not NUMA aware (that would need

101

4. DISTRIBUTED PACKET PROCESSING

one more indirection level to split the structure per-NUMA node) and when using cores

of both CPU the performance does not improve as much as when using more cores from

the same CPU.

If the data structure must allow for an atomic “snapshot” of the per-variable state

but not the whole structure, CounterAtomic offers more or less the same performances

but with a lower memory footprint, and is sure to not read stale data. With this

structure, the operator is sure to read the actual real number of packets or bytes but

cannot ensure the correlation between both.

The per-thread lock approach does not impose any performance hit. As each threads

has its own lock, there is actually no contention. One use case for fully atomic write

mostly would be a rate element. To compute the rate, the element needs to remember

the number of packets, the time it has seen the first one, and the time it has seen the

last one. The rate computation needs the whole state to be consistent. If the number of

packets is updated, then read by the aggregator but before the time of the last packet

is updated the rate could be wrong.

The lock is the slowest solution as it never enables concurrent writers.

4.3.2 Read mostly

On the contrary, some elements read mostly mutable state. That is in fact the biggest

use case when making the Click Modular Router thread-safe. When building a multi-

threaded network function, there are in general a lot of configuration variables that are

read by one or multiple threads for each packet but can be changed by any thread at

any moment. Data caches are also examples of read-mostly structures, such as name

servers cache or web servers serving static pages[78].

RCU An algorithm performing well under read mostly operation is the read-copy-

update (RCU) data structure.

As shown in figure 4.20, RCU relies on a pointer mechanism. The only job a reader

needs to do is to follow the pointer as shown in event 1 (with some limitations discussed

later). When a writer wants to modify the data, it will copy the whole structure and

update the copied version. The writer will then swap the pointer to the new copied

data structure (event 2). Subsequent readers will therefore access the new version of

the structure (event 3). At that time, two versions of the data exists as the first reader

102

4.3 Networking data structures for parallelization

Figure 4.20: RCU order of events. A writer will copy the structure, update it and swap
the RCU-protected pointer. Therefore multiple versions of the same data can live at the
same time allowing the read operation to be very efficient.

is still accessing the previous version of the structure. When the first reader finally

finishes reading, the old version can be destructed. The problem with RCU is to know

when the last reader has finished reading and the old version of the structure can be

reclaimed. While it would seem at first glance that simple reference counting can solve

the problem, it is actually not a solution because a reader cannot grab the pointer and

update the reference count atomically. A thread could reclaim the old structure after

another reader has read the pointer but still has not updated the reference counter.

RCU is a structure used a lot in kernels to protect variables and linked list of mostly

read data. But to solve the memory reclamation problem, the kernel RCU uses multiple

facilities that are not directly available in userlevel such as disabling preemption or that

would be too complex in userlevel such as scheduling itself through all CPUs. Therefore

we will not review kernel-specific deferred destruction approaches.

As such, RCU is not a very known technique in the userlevel world. Although

LibURCU[79], a userspace library that implements multiple RCU-like locking patterns

similar to Linux ones enables to use RCU in userlevel. The faster of the multiple

implementations they propose on the read side (that we seek to handle millions of

packets/locks per second) is the Quiescent State Based Reclamation(QSBR)[80]. QSBR

requires each thread to call periodically some function that declare a quiescent state.

A quiescent state is a moment where a thread does not hold any reference to an RCU-

protected structure. Moments between an update and the time where all threads passed

through a quiescent state is called the grace period as shown in figure 4.21. When a

thread swaps an RCU pointer, it knows the reference to the old data will be safe to

103

4. DISTRIBUTED PACKET PROCESSING

delete when all threads have gone through a quiescent state, as afterwards they cannot

have kept a reference to the old RCU data.

Figure 4.21: QSBR method to detect when an old version of an RCU-protected data
is safe to delete. Each thread must pass through a quiescent state from time to time
indicating it doesn’t hold any RCU protected reference. When all threads have passed a
quiescent state we know any prior reference is not held.

[81] reviews multiple userlevel RCU implementations, all relying on a global RCU

system where moment between quiescent states may be long. In the context of a non-

sleeping run-to-completion model it would introduce jitter when a thread is doing the

garbage collection as the amount of work depends on a somehow unbounded usage,

proportional to the number of elements used in the configuration and their usage of

RCU.

Therefore we target a non-global (i.e. per structure or at most per-element) RCU

that developers can use, allowing to bound the time a write will need to be in effect

(e.g. for updating firewall rules), bound the time of writes synchronization (e.g. time

for one write to be effective) and deferred destruction routine time.

We follow the idea of epoch-based reclamation[82], but differ in some points, par-

ticularly that our implementation is non-global for the reasons cited above. To avoid

costly memory allocation and having to handle some kind of garbage collection we use

a ring instead of allocated memory.

Writers increment an epoch number when finishing a write section. The only task

of each reader when entering a read critical section is to copy that value to a per-thread

104

4.3 Networking data structures for parallelization

3

Time

A

A

Thread 1

Thread 2

Thread 3

N Read bucket N

N Write to bucket N
+ Set bucket index to N

1 0

B

1 0

Global
write epoch

1 2

A1 0

A

B2 0

B

4

E Thread-local read
epoch changed to E

Waiting period

A

B

Bucket ring

Figure 4.22: Our EBR, ring-based method to implement userlevel RCU

epoch number as shown in figure 4.22. The corresponding algorithm is algorithm 2.

When the read critical section terminates, the read epoch is put back to 0. In practice

an RCU<T> template is used to enclose the T structure with the write epoch variable,

the per-thread read epoch vector, and create a ring of multiple T structures. The size

of the ring is N, which is at least 2 to allow one writer to write in a bucket while readers

access the other bucket. When a writer starts writing, the current ring bucket is copied

to the next one, and the reference to that bucket returned to the caller. When the caller

has finished writing, the epoch is incremented and the bucket index is updated as per

algorithm 3. As writers advance the new bucket to use may wrap around the ring and

try to overwrite a bucket currently accessed by readers. This will happen if multiple

writes happen faster than a single read. The writer only needs to check that all read

epoch are zero or above the write epoch minus N. If the epoch is 0, it means the thread

is not currently reading any bucket. If the epoch is bigger than the write epoch minus

N, it means that the current bucket of the given reader is accessing a bucket further

than the bucket the writer is going to overwrite.

In the other cases (the epoch is less or equal to the write epoch minus N) the writer

must wait. This situation is shown in figure 4.22 where the thread 2 executes two write

operations during a single read of thread 3. Thread 3 cannot overwrite bucket B because

it is still being read by the thread 3. It is detected because the thread 3 epoch is the

write epoch minus N, which is 4 − 2 = 2. The blocking time for a write is limited to

the size of a read critical section around the very same structure. However the writer

105

4. DISTRIBUTED PACKET PROCESSING

will only block when wrapping around the ring. At the price of a memory trade-off,

the size of the ring can be increased up to a point where it is nearly impossible that

multiple writers wrap around the ring faster than a single read critical section, meaning

that the next bucket will always be overwritten without locking. In practice a value of

2 is usually enough because read critical sections are usually faster than write critical

sections.

In most RCU implementations, a single writer is not directly enforced. Another

locking facility such as a spinlock can be used to ensure that a writer does not ignore a

previous write. Our version directly forces a single writer using a spinlock, as it is not

naturally multiple-writer safe.

Algorithm 2 RCU read lock
function read_begin

readEpochs[thread]← writeEpoch

localCurrent← currentIndex

readBarrier()

return &ring[localCurrent]

end function
function read_end

readEpochs[thread]← 0

end function

Readers-writer locks RCU is not the only structure meant for read mostly. Multiple-

readers, single-writer locks fall in the same category. They are special spinlocks that

allow multiple readers at the same time, or one writer but not both. For comparison,

two different implementations of Readers-Writer locks (RW) are also benchmarked. RW

is the classical multiple-readers, single-writer lock based on atomic CAS instruction to

allow either multiple readers or a single writer.

The PRW version is the Click original one (though we ported it to userlevel ourselves)

which uses one spinlock per core, allowing to avoid the heavy CAS instruction and use

a faster atomic swap instruction. But this makes the write much heavier as a writer

must grab the locks of all cores as shown in figure 4.23.

106

4.3 Networking data structures for parallelization

Algorithm 3 RCU single writer lock
function write_begin

writeLock.acquire()

nextCurrent← (currentIndex+ 1)%N

minEpoch← writeEpoch−N
for i in n_threads do

while readEpoch[i] <= minEpoch do
relax cpu

end while
end for
return &ring[localCurrent]

end function
function write_end

writebarrier()

currentIndex← nextCurrent

writeBarrier()

writeEpoch← writeEpoch+ 1

writeLock.release()

end function

Figure 4.23: RW lock based on per-core spinlocks

107

4. DISTRIBUTED PACKET PROCESSING

Single processor (1*16 Cores CPU)

0 1 2 8 32 128 512 2048 8192 65536
Number of reads per write

1M

2M

10M

100M

1000M

10000M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
CounterAtomic
CounterLock
CounterMP
CounterPRW
CounterRCU
CounterRW

NUMA system (2*8 Cores)

0 1 2 8 32 128 512 2048 8192 65536
Number of reads per write

1M

2M

10M

100M

1000M

10000M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
CounterAtomic
CounterLock
CounterMP
CounterPRW
CounterRCU
CounterRW

Figure 4.24: Number of reads (read 64 bits count and bytes count) or write (add packet
count and number of bytes to the counter) per seconds with increasing read rate. Using
a NUMA system (top) and a non-NUMA system (bottom) with 16 cores. Both axes use
a log scale. 8 Cores version can be found in appendix B. Note that CounterAtomic and
CounterMP do not allow consistent read of the structure.

Evaluation Figure 4.24 shows the same counter test case using 16 cores, but after each

batch of packet counted (batches of 32 packets are generated), the values of the counters

are read (the number of packets and the amount of bytes) at a varying proportion of

reads per write, starting with 1 (alternate read/write) up to 65536 read operations in a

loop after each write. This is not very realistic for a counter function, but does the job

of benchmarking read mostly efficiency.

CounterAtomic and CounterMP do not allow consistent read of a structure and are

somehow to put aside. If inconsistency can be allowed, then atomic read/write/add

108

4.3 Networking data structures for parallelization

operations perform best as soon as reads are on a par with writes. The CounterMP

approach which performed best in write mostly needs to aggregate all thread values for

each read operation, seeing its performance de-gradate as the number of read per write

increase.

If consistency is needed, the RCU data structure becomes the most performant when

there are at least two reads per write on non-NUMA systems. On NUMA systems, when

the number of cores is huge the RCU implementation relying on a per-thread epoch takes

the inter-CPU hit, as it needs to read all per-thread epochs number and only performs

better when there are 4 reads per writes when using 16 cores from two CPUs.

If the structure protected is huge, the RCU approach may begin to be slower as

each write operation leads to a copy. The PRW lock approach is the better to use in

that case, but still with reads around 1000 times slower than writes if they are a large

majority (>=2048 reads per writes). The PRW lock performs much better than the

one based on atomic CAS instruction (RW) as soon as the reads are prominent but

performs awfully when there are less than 8 reads per write. This is expected as the

writer needs to grab all per-thread read locks, repeating a costly atomic operation as

many times as there are threads.

Appendix B also contains figures for varying number of read per write with 8 cores.

4.3.3 Update and degeneration

Figure 4.25 shows all data structures tested under a various proportions of reads and

writes,1 from the write-mostly situation to the read-mostly situation. Ignore the Coun-

terRxWMP for now. In overall, the CounterAtomic and CounterMP perform well, but

they do not allow full consistency. One will quickly see that the central “update case”

lacks an efficient data structure. Moreover, all data structure that performs well in read

mostly perform badly in write mostly, and vice versa. Therefore we seek for a structure

that would perform “correctly” in all cases, and performs well on average.

We combined the duplication approach with an exclusive multiple-readers multiple-

writers lock (R xor W, or RxW). This class of locks allows either multiple readers

or multiple writers but not a mix of the two. RxW is not a member of the class of

classical Read-Write locks, that is multiple-readers single-writer locks because it allows

concurrent writers. As the lock is used to protect a per-thread duplicated data structure,

it is fine to allow multiple writers as they all access their own per-thread bucket. This

109

4. DISTRIBUTED PACKET PROCESSING

Single processor (1*16 Cores CPU)

65536 1024 32 2 0 2 32 1024 65536
Proportion of reads per write

0M

1M

2M

10M

100M

1000M

10000M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
CounterAtomic
CounterLock
CounterLockMP

CounterMP
CounterPLockMP
CounterPRW

CounterRCU
CounterRW
CounterRxWMP

NUMA system (2*8 Cores)

65536 1024 32 2 0 2 32 1024 65536
Proportion of reads per write

0M

1M

2M

10M

100M

1000M

10000M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
CounterAtomic
CounterLock
CounterLockMP

CounterMP
CounterPLockMP
CounterPRW

CounterRCU
CounterRW
CounterRxWMP

Figure 4.25: Performance of data structures of interest in terms of operations per seconds
under a various amount of reads or writes. On the left, the graph shows the performance
of the structures in a write-mostly situation. A value of -65536 means 65536 writes per
read. This value decrease up to 0, meaning that read and writes are on a par. While on
the opposite when the value reaches 65536, 65536 reads are executed per write. Using a
NUMA system (top) and a non-NUMA system (bottom) with 16 cores. Both axes use a
log scale. 8 Cores version can be found in Appendix B. Note that CounterAtomic and
CounterMP do not allow consistent read of the structure, while CounterLockMP is not
doing fresh reads.

110

4.3 Networking data structures for parallelization

ensures that when reading, none of the buckets are modified and therefore provide

consistency and atomicity with the advantage of supporting multiple concurrent writers.

The limitation of this data structure is that writers should not read other’s thread values

as other writers may be accessing them. They must release the write lock and grab a

read one. The algorithm uses a compare-and-swap (CAS) instruction to change a unique

integer value. The CAS is an atomic instruction that will compare a memory value with

some expected value. If the value is the expected one, it is atomically swapped with

another desired value. Therefore two CAS cannot interfere with each other and if done

concurrently one of the two will fail. CAS is usually used when a value must be read

from memory to a register, then modified in the register and finally updated in memory.

The CAS will ensure that the memory value wasn’t changed while the computation was

done before the value is written back to memory. The lock is based on a volatile integer

value. When positive, the integer is the number of readers accessing the data, and when

negative it is the negative number of writers accessing the data. Readers are increasing

the value if it is already positive or null using a CAS instruction to protect against

concurrent modifications. Writers are decreasing the value if it is already negative or

null, also using a CAS instruction. In other cases readers and writers are spin-looping.

The CounterRxWMP line in figure 4.25 shows the performance of this approach. It

keeps a nearly constant operation rate, while performing around 2 to 4 times better

than the CounterLockMP (per-thread duplicated approach, with a lock also duplicated

per-core).

Appendix B.1 presents a slightly modified version of the RxWMP that allows to

“prefer” read or write. This version may be useful to ensure that either reads or writes

will succeed as soon as possible, but does not improve the performance and, as such, is

left in the appendix.

Table 4.1 shows a summary of the best basic structure to protect mutable data to use

in each situation according to the level of consistency needed and the most prominent

operation. The nuances highlighted in this section are to be kept in mind. Moreover,

more complex structure for specific operations such as inserting an item in a linked

list can perform faster. The micro-benchmark of this section is of course limited, and

abusing the per_thread technique may hit shared layers of caches but we believe it is

correct enough to give valuable insight on scaling data structures using non-sleeping

facilities. The number of read per write should not be used as a direct approximation

111

4. DISTRIBUTED PACKET PROCESSING

Read mostly Update Write mostly
Stale Atomic Atomic/MP MP
Word-consistent Atomic Atomic/MP Atomic
Consistent but stale RCU RxWMP LockMP
Atomically consistent RCU RxWMP PLockMP
Huge structure PRW RW Lock

Table 4.1: Summary of the best structures to provide a certain amount of consistency
(vertical axis) according to the most prominent operation (horizontal axis).

as in realistic cases all CPUs are not accessing the same structure at the same time, but

more as a rough idea of when some “lock” mechanisms become faster than others.

Open Source Availability
All the datastructures presented in this chapter are available as C++ templates,

to easily protect/duplicate a data structure per-thread. It is part of FastClick at
[21].

Try it out ! �

112

5

An NFV Dataplane

Network Function Virtualization

Chapters 3 and 4 focused on building a high performance, multithreaded platform,

leading to FastClick, our improved version of the Click Modular Router. But FastClick

is packet-based, and does not provide any efficient service chaining. Network Function

Virtualization (NFV) applications and particularly middlebox ones need specific facil-

ities such as the concept of flows and ways to temper them, i.e. they need to see a

seamless stream of payload passing through the box.

In current designs, VNFs have difficulties to cope with the growing needs for more

throughput because they are often independent systems working like complete black

boxes, totally unable to cooperate between themselves.

Three typical implementations of a service chain are shown in figure 5.1. They all

implement mostly the same logical chain, where the packets need to go through a firewall

which blocks malicious traffic, an intrusion detection/prevention system (IDS/IPS),

a vendor-specific application (e.g. proxy cache, content optimization, ad-removal or

insertion, parental filtering, etc.), and finally go through services for the internal network

such as a NAT or a load-balancer.

The first implementation is a standard Linux box implementing all functions us-

ing common software, Snort[83] for IDS, NetFilter/IPTables/NFT for the firewall,

HAProxy[84] or NGINX[85] for load-balancing, . . . This is the setup often found in

small networks. It is inexpensive but also slow as we’ll show in section 5.1.

113

5. AN NFV DATAPLANE

Figure 5.1: 3 different ways to build a middlebox service chain. On most links, there is
no cooperation to avoid redundant operations.

114

The second one uses virtualisation and switches to dispatch packets between VMs

containing mostly similar software. This setup is easier to scale as VMs can be repli-

cated, potentially across multiple servers. The setup is also more reliable thanks to

the virtualisation layer allowing to have fail-overs VMs on different servers that can

be started when the original one crashes. But virtualization also introduces penalty in

performances, although recent research papers try to reduce this hit[86, 87]. Making the

network functions virtual also allows to outsource the network functionality to some

datacenter instead of running a dedicated x86 infrastructure on campus.

The third chain, mostly seen on large campuses like ours uses different physical boxes

to achieve the same results in hope of achieving better latency and throughput,

but is also expensive.

Figure 5.2: MiddleClick flow abstraction system. A VNF can make requests to its current
abstract context that takes care of the implications for the protocol it supports, and then
pass the request to the lower context and so on. This allows to easily build support for
tempering flows of new protocols on top of others.

Before network functions moved to software with the NFV trend, most middleboxes

were implemented as hardware boxes. This slow down innovation, because upgrading

the box to support new protocols means changing the box. Therefore the Internet is

left with a lot of middleboxes that do not support newer protocols (e.g. IPv6) without

owner willing to pay to replace them.

115

5. AN NFV DATAPLANE

Of course the reality is not always like those exact setups, but they all share the

same problems. Observations of usual middlebox service chains lead to the 3 following

issues:

(a) A packet is partially or completely re-classified in each middlebox component,

i.e. packet headers are inspected to classify the packet according to known values

such as “destination port 80” to decide that a packet is HTTP. This is what we

call the packet traffic class classification. Rules to classify packets according

their traffic class are not limited to fields, they could be packets sharing some

meta-characteristics such as a pair of ingress and egress routers.

(b) A dictionary data structure is present in all stateful middleboxes to assign a

memory space for each group of packets belonging to the same session. The best

known concept of session is the TCP 4-tuple, shared by all packets of the same

TCP session, also sometimes referred to as TCP micro-flow. We reference the

per-session unique space resulting from the mapping done in the dictionary data

structure as the scratchpad of that session.

(c) The VNFs in the chain relies on slow OS capabilities such as a generic TCP

stack that may be only partially needed and not designed for specific needs of

middleboxes.

(d) Modification of a stream on-the-fly is usually implemented by terminating the

connection using a server socket and re-opening a client connection towards the

destination on behalf of the source, a very heavy process.

In this chapter we design and implement a prototype of a system in which the packets

begin their journey through a unified flow manager responsible for the classification,

which is then reused by all middleboxes. By enabling middlebox cooperation, they can

receive packets with a given associated flow identifier instead of exchanging raw packets.

The flow manager also handles the sessions for each middlebox component, allowing

to avoid multiple, often identical, hash tables along the way to find the session of each

packet.

By unifying the traffic class classification and session mapping done in VNFs along a

service chain, we ensure that each field of the packet is looked at only once for the same

116

values, and the result of the classification and the session mapping are reused across all

the following middleboxes.

The framework also provides a zero-copy stream abstraction, allowing to modify

packets of a same session without the need for any knowledge of the underlying protocols.

The abstraction enables building support for new protocols on top of others protocols

easily. When an HTTP payload is modified, the content-length must be corrected.

A layered approach allows to back-propagate the effect of stream modification across

lower layers. Following this approach, we provide a TCP-in-the-middle stack which will

modify, on-the-fly, sequence and acknowledgement numbers on both sides of the stream

when the upper layer makes changes. This allows to modify the number of bytes in the

stream without terminating the connection.

The system finally provides support for a mechanism to "wait for more data" when a

middlebox needs to buffer packets, unable to make a decision while data is still missing.

Our TCP-in-the-middle implementation supports pro-active ACKing to avoid stalling

a flow while waiting for more data, and allows to handle a large amount of flows using

a run to completion-or-buffer model which avoids costly context switches. While this

model is asynchronous, it still offers the convenience of a blocking system and allows to

handle very large numbers of concurrent sessions.

In our design, each flow element that needs more packets to process the session will

buffer packets per-session in the per-session scratchpad and go back to the input loop

until a packet of the same session arrives. The packet will be buffered if and only if

a decision on the processing of the flow cannot be made right away, e.g. because an

out-of-order packet is missing or we are in the middle of a potential matched pattern

in an IPS, for instance.

The system provides services tailored to the service chain according to the minimal

features needed for the VNFs composing the chain. The per-session state structure is

minimized to fit all space needed for the network functions. The fit-for-all state structure

avoids relying on dynamic memory allocation used by key-value stores like proposed

by OpenBox[41] or a unique context pointer that must be shared by all applications

such as proposed in mOS[46] that would need one more memory allocation per-NFs.

Therefore our system combines the advantages of efficient but purely end-to-end and

non-cooperative systems such as DPDK[31], Netmap[32], Arrakis[37], IX[59] or specific

userlevel stacks [27, 45, 46, 55], and the contrasting approaches that build on reusing

117

5. AN NFV DATAPLANE

components such as CoMb[40], SNF[39] or OpenBox. Our design therefore combines

efficient consolidation with tailored services. If no TCP reconstruction needs to happen

for the VNFs along the service chain, the reconstruction does not happen, and if multiple

VNF needs it, it is done only once. Section 5.3.1 studies deeper the state of the art and

our specific contributions.

In section 5.2, we present our design to build an efficient NFV dataplane. Section

5.4 explains how we combine the VNFs among the service chain. From there stems a

highly parallelisable and non-redundant stream architecture that can be used as a basis

to support multiple protocols, as explained in section 5.5.

To emphasize that the prototype we built is only one possible implementation of the

design, we defer all implementation related questions such as how a VNF can expose its

classification and session specification up to section 5.6, where we explain how we built

our prototype on top of FastClick, that we called MiddleClick.

Finally, we evaluate the performance of the prototype in section 5.7 that results in

extremely fast middlebox service chains that achieve, to the best of our knowledge and

the largest review of the state of the art we could achieve, unprecedented speed for pure

single-box software implementation and possibly even better results when cooperating

with heterogeneous hardware and multiple boxes, which is the subject of chapter 6.

This chapter in a nutshell
I Context of this chapter

• While basic high-speed platforms are mature, NFV platforms are still prob-
lematic, lacking efficient session management able to handle large amounts of
flows

• Along a service chain, packets are re-classified multiple times, sessions are re-
built, and most VNFs rely on slow OS-provided mechanism

• Current solutions tend to fall under two categories: decompose middleboxes
to re-use and/or consolidate components, or push further the end-to-end by
bypassing the OS completely or implementing a full TCP-stack which, at the
opposite prevents any consolidation

I Highlight of our main contributions in this chapter
We build MiddleClick, a new NFV platform on top of FastClick.

118

• MiddleClick combines the static classification done inside each VNF to allow
for an offloadable and ahead-of-time minimized classification step

• Each VNF declares the session it wants to see associated with each packet and
the per-session space it needs (e.g. a counter per IP pairs and TCP sessions).
This allows for a generic and very efficient per-flow metadata, with a flexible
definition of flow.

• MiddleClick combines the static classification with the dynamic sessions, drop-
ping impossible paths and ensuring that session fields are not looked at if the
path to the session actually fixes some values. E.g. an HTTP VNF may actu-
ally only need a 2 tuple as the IP destination and port may be fixed by the
path to reach that VNF. Contrary to previous work, this would automatically
be found as the fact of a low-level factorization and not user using specific
pipelines of fixed protocols such as TCP.

• MiddleClick uses sessions to build multiple, generic contexts such as IP or
TCP context. The contexts are layered, allowing to quickly use protocol on
top of others, passing requests such as adding bytes from layer to layer. This
allows very quick implementation of new protocols, with flexible underlying
flow definition. E.g. The HTTP layer will change the content length, pass the
request to the TCP layer that will change SEQs and ACKs for the packet and
subsequent packets, . . .We provide an efficient TCP stack for in-the-middle
modification of flows.

• Based on the session and the context, MiddleClick provides a flow abstraction
allowing to work on a stream of bytes, stopping current work when the VNF
needs more payload without context switching. VNFs are still allowed to go
down and check on packets if they asked for a stream of bytes, as all IDS do.

• MiddleClick allows to only instantiate the service VNF needs for each service
chain. The model allows for a full TCP stack support that reuses tailored
components according to the needs of each VNF and bring up only the minimal
functionalities to serve the service chain, and not more.

• MiddleClick is a real, publicly available implementation. There are few NFV
platform supporting flow tempering entirely available where the actual low-
level problems such as how to classify flexible sessions for each VNF, provide
a per-flow metadata map that can handle millions of flows is discussed and
actually implemented. A lot of current works have blurred lines between what
is actually done and what is conceptually allowed by their proposed design.

�

119

5. AN NFV DATAPLANE

Contribution notice
Most of this chapter has been presented as an EuroSys’18 poster, and then as

an invited paper presented to HPSR’18[88]. It has been done in collaboration with
Cyril Soldani, Romain Gaillard and Laurent Mathy. Romain has specifically worked
on section 5.5.5 as part of his Master Thesis[89], the TCP part on top of the flow
abstraction.

One man cannot solve all the world’s problems �

5.1 Motivation experiment

While some middleboxes like port-based firewalls are typically packet-oriented, more

and more middleboxes need to understand flows instead of packets. Examples of such

middleboxes are deep packet inspectors (DPI) or IDSes, where attacks could span across

multiple packets and one often needs to account for some relations between packets, or

accelerators like proxy caches.

Some load balancing software like HAProxy[84] or NGINX[85] (when used as such)

use the OS TCP stack, terminating connection and creating a new one even when it is

not strictly necessary. However, [32, 45, 54] show that performance and scalability of

the operating-system sockets are very limited. In short, most OS kernels such as Linux

are great systems for generic network functions, but the interrupt system and the very

big data structures such as the sk_buffs are not lightweight enough. As such, some

software like SNORT[83] or Suricata[90] use the RAW mode for sockets, or specific I/O

frameworks to receive raw packets, and do the classification of the packets into multiple

flows and sessions themselves. However, this prevents efficient chaining of middleboxes

as the operating system or the I/O framework gives raw packets to the first middlebox

and only understands that it receives back some raw packets from it. A second pipelined

middlebox will have to re-do all that classification again.

As a motivation experiment, we ran multiple service chains using Linux kernel fa-

cilities to run a simple L3 Router, a NAT and an IPS with Snort[83]. We profiled the

CPU during the test using the Linux kernel perf tool[91]. We built a mapping of every

function seen for more than 0.1% of the total CPU time share to 10 classes such as

filtering, routing or flow management as shown in figure 5.3. The profiling is not exact

and is limited in multiple ways. Profiling is known to miss some hit points, moreover

120

5.1 Motivation experiment

Forward NAT Snort Snort + NAT
0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f C
PU

 ti
m

e
sp

en
t

Function class
Filtering
Flow

IO
Kernel

NAT
Other

Routing
User App

User Flow
User IO

Forward NAT Snort Snort + NAT Snort + Squid + NAT
0
1
2
4

10
15

Th
ro

ug
hp

ut
 (G

Bi
ts

/s
)

Figure 5.3: Profiling of multiple service chains running on a unique CPU core acting on
8K HTTP requests and responses. CPU time spent is aggregated in classes with a manual
mapping from functions to classes.

121

5. AN NFV DATAPLANE

the mapping is not exact as the assignment of functions to classes is somehow subjec-

tive. But it will give an insight into how much performance could be leveraged from

better chaining and re-using previous classification. In our experiment, Snort does not

actually execute any rule but still launches the pattern matching algorithm and basic

hard-wired checks on the packets. More information on the testbed can be found in

section 5.7.

The first forwarding service chain (only a two entry routing table) spends around

50% of the time in the kernel I/O path and 10% of the time in routing (respectively

the IO and Routing classes). The kernel path still involves some filtering hooks even

if unused, explaining around 10% of the time spent in Filtering functions and the

relatively high overhead of the Routing class even with nearly empty iptables rules and

routing tables. The Kernel functions class corresponds to kernel facilities that cannot

be tied to a specific function such as memory allocation or spinlocks, but are somehow

proportional to the usage of kernel facilities. In the case of the first forwarding service

chain, we manually searched the functions call graph to find out that most of the Kernel

class is tied to IO.

The second service chain adds a NAT after the forwarding. The connection tracking

(the Flow class) takes around 20% of the CPU time (in Linux, that is the nf_conntrack

facilities) and a few percents for the packet rewriting itself (NAT class).

When adding Snort to the service chain, the CPU completely re-do a flow classifica-

tion (User Flow class) that takes more or less the same time as the connection tracking

done inside the Kernel, as used by the NAT. In the end, both do more or less the same

work. Moreover, a lot of time is spent in User IO, that is the service chaining itself,

passing the packets from the routing to Snort, and then back to the NAT. The User

IO class also comprises parsing done inside Snort, that uses a RAW socket as explained

above. A fair part of the work done in the User IO class was in fact already done in the

IO class but is re-done again in Snort. Re-doing the same parsing could be avoided by

using a unified classification system that allows remembering the classification of the

packets when piping applications together. The User IO class could also be reduced

using a shared memory system between the multiple tenants in the service chain, or

run multiple functionalities inside the same application. One of the two flow parsings

could be avoided while the time spent in filtering and routing could be reduced using

122

5.1 Motivation experiment

a system optimized based on the service chain, tailored in function of the needs of the

NFVs components. We will develop this idea further in section 5.2. In the end, the

useful time spent for the full service chain is limited to one of the two flow classifications

(Flow class), the Snort matching algorithm (User App class) and the NAT rewriting

(NAT class), that is around 20% of the total CPU time spent, without accounting for

packet I/O. As shown in chapter 2, the IO and Kernel class could be reduced by an

order of magnitude by using a faster raw I/O framework such as DPDK[31].

Figure 5.3 also shows the throughput when adding the Squid[92] proxy cache to

the full chain, but it is not profiled as the simple mapping from functions to classes

would require too much work. Squid brings-in a third flow classification as it uses

Kernel provided TCP stream sockets, bringing up a new in-kernel classification. And

it actually does a fourth one in userlevel to map each HTTP session to a control block

internally. Manual profiling of Squid also showed that it spends a lot of time in copying

the stream content and in memory allocations, bringing up the case for zero-copy stream

modification (without losing a socket “stream” abstraction).

123

5. AN NFV DATAPLANE

5.2 Architecture for an efficient NFV platform

Figure 5.4: Overall schematic of the architecture we propose as opposed to independent
middleboxes

Any middlebox can be viewed as a set of simple components such as NAT handlers,

pattern matchers, routing, ARP handlers, etc. Together, they are grouped to form a

middlebox. E.g., the Snort IDS uses a layered decoder approach to classify the packets

into flows, a preprocessor to reconcile sessions of related packets, and apply the correct

pattern matcher components accordingly.

Each component declares the kinds of packets it wants (e.g. HTTP packets, all TCP

packets, ...), and if needed the session definition they want to see (group packets by IP

pair, by the TCP 4 tuples, . . .), and in this case the size of the per-session scratchpad

they need. Exposing classification and session definition along with a few protocol-

specific needs does not impose any constraints on the developer, on the contrary it

allows to remove any classification and session mapping from the application. The

information provided by each component of the service chain is used to derive a unique

124

5.2 Architecture for an efficient NFV platform

classification table that will avoid further classification on the packet header. The

classification runs before all components, as shown in figure 5.4 - B. The classification

can therefore potentially be offloaded to some specific hardware or use classification

functionalities of the NIC. The classification also finds a Flow Control Block (FCB) for

each session at the same time. The FCB contains a session scratch pad big enough for

each component. The scratch pad size is derived from the size that each component

declares it needs, allowing to use a very efficient pool-based allocation and associate

static offsets for each component that map into the scratchpad space of the FCB.

Instead of letting each VNF handle flow reconstruction and more generically protocol-

dependent bookkeeping, we propose a context-based approach. In our design, packets

flow through the VNFs as batches of packets of the same session. Special components

change the context of the current session. E.g. from IP context to TCP context, han-

dling protocol specifics at the same time. Each VNF can interrogate the current context

of the batch to know the state of the flow, what is the offset to the payload in the packet,

remove or add bytes without terminating the connection, buffer the content and ask

for more data, and other queries that allow protocol-independent actions that will be

further discussed in section 5.5.1. The context is not left between middleboxes avoiding

for example multiple TCP reconstructions. We propose multiple abstractions on top of

the context system. The simplest one gives the developer the batch of packets from the

same session and a pointer to the session scratchpad space in the FCB that is unique for

the current session. The most advanced one abstracts an event-driven handling of the

flow, giving a developer an iterator to seamlessly iterate over the payload of the packets,

relative to the current context (e.g. iterate over TCP payloads if in TCP context, or

only the HTTP data without the header if in HTTP context).

Sessions can only be shared by components inside the samememory space, as sharing

the state of the session across memory boundaries would need some kind of protocol

which would probably defeat the purpose of factorizing the handling of sessions for

another protocol. However, we will see in section 6.1 that we can still use session

information from a previous memory space to accelerate the session handling in the

next memory space, even between two separate computers.

125

5. AN NFV DATAPLANE

5.2.1 Execution model

In the run-to-completion model, multiple parallel CPU cores process packets until they

reach the output NIC. The packets never switch core and achieve a better data locality,

at the expense of more instruction cache misses. Then the CPU core goes back to the

input NIC to classify the next available packets in the NIC queue and repeats the cycle.

Section 4.1 already reviewed the concept and pitfalls of the model.

We introduce an extended version of the run-to-completion model that we call the

run-to-completion-or-buffer execution model. Each middlebox component can de-

cide if it needs to wait for more data (i.e. packets) before proceeding, and save its state

and the list of buffered packets in the per-session scratchpad. Therefore, the system

runs to completion, or buffers the packet on a per-session basis but only if need be.

The run-to-completion-or-buffer model avoids the use of blocking threads as with

standard sockets. In a usual socket implementation, a call to read() for packet data

may block until some packets are available. In practice, high-speed NFV applications

do not rely on blocking read(), and rather put the packets to buffer into a flow table.

In our design, when there is no more data, the scratchpad can be used to remember the

current state of the component, without using any other data structure to remember

current active sessions. When a new packet of the same session arrives or a timeout

occurs, the state can be recovered from the scratchpad directly.

Figure 5.5: Scenario using the run-to-completion-or-buffer model

Figure 5.5 shows a scenario involving the run-to-completion-or-buffer model. It runs

a service chain comprised of a firewall, a TCP reorderer and an IPS searching for the

“ATTACK” word in flows. A first packet containing “HELLO” is sent. The firewall

establishes, through classification that the packet is from an allowed flow and remem-

bers the decision in its session scratchpad space. As that space is part of the unified

126

5.2 Architecture for an efficient NFV platform

flow table, it doesn’t present much cost to remember the decision per-flow instead of

traversing the classification rules for each packets. As a flow table will be needed for the

truly stateful functions anyway, the firewall can ask the manager for a little more space

in the flow table to remember its decision. The firewall then lets the packet go through,

in this case running-to-completion. A second but out-of-order packet containing “T”

arrives and is kept in the TCP reorderer session scratchpad, in this case running-to-

buffer. When the missing packet with “A” arrives, the TCP reorder lets the two packets

containing “AT” go through, now in order. While standard IPS would let the packets go

through as “AT” does not fully match “ATTACK”, we propose a “True IPS” mode. The

“True IPS” sees that it may be the beginning of the “ATTACK” word it is searching for,

and keeps the packets in the session scratchpad until the end of the word arrives. In the

example, when the last packet "HENS" arrives, the IPS lets the 3 packets go through

as “ATHENS” is finally not matching “ATTACK”.

Note that stalling TCP packets have multiple implications that will be discussed

further in section 5.5.5. This service is especially interesting for filtering content using

machine learning or score-based anti-spam. The confidence in the fact that the content

is not appropriate and should be blocked may arrive after the word has gone through.

Traditional IPS such as Snort or Suricata (when used in IPS or “inline” mode) use a

window over the stream of bytes from the same session. They wait for a certain amount

of bytes and launch the inspection over the chunk when filled, and then start a new

window. Therefore if an attack is done across two windows, it will not be detected. The

newer Snort 3 allows to use protocol aware flushing and randomize the window size to

cut the flow at more appropriate points or at least in an unpredictable way, but still

suffers from the problem and allows for potential eviction of the IPS. Moreover pre-

ACK window-based systems introduce jitter as they buffer multiple packets and flush

them in one go. Our system will stall packets only if they may be part of a potentially

problematic flow and will only force to flush them after some configurable amount of

memory is reached, but keeping the state of the DFA in the scratchpad, preventing

eviction.

Still, very specific use cases which need to maximize instruction cache hit can benefit

from a pipeline approach as opposed to a run-to-completion approach as discussed in

section 4.1. In this case, a link to the current flow and session must be passed with

127

5. AN NFV DATAPLANE

the packet in the software queues used to exchange packets between cores, with all the

special care needed for objects shared by multiple threads.

5.3 State of the art

5.3.1 I/O Frameworks and virtualization

Many previous works have tried to tackle the problem of performance in VNFs, from

different perspectives. One could argue that efficient service chaining is the problem of

the Operating System, but generic OSes have proven to be far too slow for raw I/O

[54] and middlebox implementations[46], a fact verified in sections 6.1 and 5.7 as well

as the motivation experiment above. Previous work such as IX[59], or Arrakis[37] mod-

ified or re-designed operating systems to improve performance and isolation between

middlebox components. Mirage[93] , NetVM[74] and ClickOS[94] try to make the com-

ponents themselves faster using fast-deployable and efficient unikernels or light VMs but

all three lack support for cooperation between components inside the OS and coopera-

tion between multiple instances of the dataplane. NetBricks[42] reduces the set of core

modules, allowing to ensure isolation at run-time using Rust that allows safe program-

ming instead of relying on virtualization techniques. Our work is somehow orthogonal

to those, NetBricks(Compiler-based isolation), ClickOS (Xen-based), NetVM (KVM),

OpenNetVM[95] (container-based variant of NetVM) could be used under our frame-

work to provide isolation between multiple set of VNFs. In other terms they provide an

alternative to pure bare-metal FastClick as presented in section 3.2, more or less taking

advantage of techniques up to section 3.2.5 such as zero-copy or multi-queuing. Section

5.4.3 discusses how to ensure memory isolation when the flow manager runs in a hyper-

visor or inside the operating system kernel, two situations that need to pass the flow

information across isolated memory spaces. Chapter 6 reviews how to keep classification

information across different boxes, or isolated environment that would be introduced

by the isolation provided by those frameworks and their virtualization techniques.

128

5.3 State of the art

5.3.2 Userlevel TCP stacks

CliMB[27] introduces a full event-driven TCP-stack inside the Click Modular Router[11]

which has proven to be a good platform for middlebox and NFV implementations and

helps to bridge the gaps, along with other user-space stacks[34, 45, 55], towards a full

userlevel service chain completely by-passing the kernel. Yet, they are not in the scope

of cooperation between instances of those stacks. They all receive and send raw packets,

that would need full re-classification and protocol specific management for each VNF

along the chain.

5.3.3 NFV Dataplanes

Flurries[96] use short-lived VNFs on top of OpenNetVM. Their system proposes the use

of one (light) VM per flow with quick state cleaning of pre-allocated docker VMs. This

allows a per-flow isolation but the performance drops quickly as the number of flow

increases.

xOMB[38] provides better programmability by decoupling middlebox functionalities,

and allowing to build simple pipeline of middleboxes functions. CoMb[40] explores

consolidation of middleboxes for better resource management and reduces the need

for over-provisioning. Like in our design, CoMb supports memory sharing with older

applications that cannot be modified to take advantage of the facilities provided. But

both those piece of work lack consolidation inside the low-level components, e.g. passing

flows between applications and providing support to build functions on top of a flow

abstraction that can be unified, likely leading to a limited throughput or a higher latency

when the service chain is long. xOMB relies on heavy message buffers passed between

components and their result is hardly achieving high-speed. For a function similar to the

one evaluated in 5.7.3 their performance is more than a hundred times slower than our

system. This difference of performance cannot only be the fact of their older testbed.

Moreover xOMB does not provide a way to decompose and recompose multiple VNFs

to consolidate the components of multiple middleboxes together and it is likely their

performances will drop even further with a higher number of VNFs. As xOMB is not

publicly available, it is not possible to dig into more up-to-date performance further.

NFP[97] automatically builds a parallel graph according to the order and depen-

dency between VNFs and takes care of efficiently copying packets and merging them

129

5. AN NFV DATAPLANE

back. It unifies the static service chain classification, but not the intra-VNF classifi-

cation, nor the dynamic flow tables and flow abstraction. While we assume a run-to-

completion model in this work, their pipelining technique could be used in conjunction

to our proposal.

5.3.4 Controller-based approach

SIMPLE[98] uses SDN to steer the traffic and simplify middlebox service chain defini-

tion. OpenMB[99] controls the service chain, and handle migration by allowing middle-

boxes to expose their state using an API. OpenBox[41] consolidates low-level functions

across the service chain, using a controller to manage Click-based low-level components

(though this is only a proof-of-concept and they allow for other implementations in-

cluding hardware ones), extracting packet header classification to a unified parser but

no stream abstraction or re-use of session parsing, e.g. sharing 5-tuple sessions which

would be re-classified in each component. The OpenBox protocol already defines a

per-session key/value store but it seems to be only conceptual at this stage, therefore

many questions are not addressed such as how to choose the right data structure to

allocate millions of per-session, per-VNF metadata spaces each second. Neither how do

they address the recycling of that structure or how to handle possibly multiple levels

of sessions (per destination, per ip pair, per TCP session, ...). We address those issues

in this work. Those 3 solutions do not go as deep as providing highly parallelisable

flow-aware processing. They do not provide an abstraction to implement middlebox

functions that act in-the-middle to temper streams of protocols such as TCP, or tackle

the issue of cooperation between multiple VNFs.

While our implementation can be used to manage and accelerate other applications

like Snort using DPDK Rings or DPDK Kernel Native Interface (KNI)1, our solu-

tion lacks an intelligent controller like in OpenBox[41], OpenMB[99] or xOMB[38]. A

controller would allow to automatically combine the flow classifier tables and pass in-

formation between different boxes using tagging as proposed in chapter 6. However, we

believe integration of our design into any existing controller would not be complicated.

1DPDK KNI allows to create a virtual interface that appears as a normal NIC to the Linux Kernel
stack. But it is actually tied to a ring of DPDK buffers. It is a fast was to exchange packets between
a DPDK application and the Kernel network stack

130

5.3 State of the art

There are not many modifications to the core of Click, and many previous piece of work

such as OpenBox already use Click as their data plane.

5.3.5 Graph consolidation

OpenBox, SNF[39] and CoMb do optimize the graph to reuse some basic components.

CoMb decouples functions into common parts to allow to re-use some bricks. OpenBox

goes a step further by differentiating kinds of bricks and re-order them - when allowed

- to allow further merging of some bricks. SNF associates functions to more basic read

and write blocks, allowing to synthesise the service chain graph even further. In our

design, functions re-ordering is not automatic but classification is unified and back-

propagated so that even classification steps to be done after some rewriting elements

can be optimized to suppress unreachable paths or speed up classification of values that

will be known in some part of the path.

5.3.6 Flow tempering

NetBricks[42] and mOS[46] both implement a TCP stack with some similar abstractions,

but do not provide any factorization and acceleration of the full service chain. Their

flow abstraction is limited to a less flexible window system and does not provide a

generic non-TCP stream abstraction nor the session scratchpad facility, likely losing a

lot of performances when the box actually runs many different VNFs. mOS offers a

nice, high-performance event-based TCP stack. Most of the events they offer can be

abstracted by a layer on top of a MiddleClick context element in a few lines as discussed

in section 5.6.5, with the advantage that it can work for any protocol.More importantly,

none of them proposes a way to modify flows (i.e. more than simple rewriting) without

fully terminating the connection and therefore bringing up a lot of book-keeping. The

system we propose lets endpoints handle the TCP semantics, making it future proof

whereas most of the state of the art implementing TCP stacks only support part of

the TCP protocol, strip options, or represent so much maintenance work that they

are already abandoned. TCP Splice[100] avoids full termination by mapping sequence

and acknowledgement numbers with a constant offset, but do not allow modifications.

Pattent [101] describes a similar on-the-fly TCP modification, but leaves out certain

details and do not take the same approach for retransmissions. They do not focus

on service chaining, do not use shared flow tables, or do not describe classifications

131

5. AN NFV DATAPLANE

problems as we do in this chapter. Moreover our proposal is protocol agnostic, we allow

a context-based system that allows to support e.g. HTTP modifications on top of TCP

modifications.

The novelty of our proposal also resides in the fact that it is able to automatically

collect information from the middlebox components and provides just enough, tailored

services. MiddleClick computes a minimal state, called the Flow Control Block (FCB),

with offsets that are placed in predictable locations for fast lookups across VNFs. Only

the needed protocol layers are invoked according to the context of each component,

and, when possible, the layer is not left across middleboxes, i.e. the stream is kept and

checksums, protocols specifics such as ACKs numbers are only recomputed once for

all middleboxes. This combines the speed gains from reusing components like CoMb

proposes, with the speed given by userlevel stacks like mTCP or CliMB or even more

end-to-end systems like mOS, NetBricks, IX or Arrakis, allowing to even optimize the

stack further by deactivating unused features, e.g. read-only TCP reconstruction for

IDS services is more lightweight than modifiable TCP flows, which is in turn more

lightweight than resizeable TCP flows that implies a lot of tracking facilities to correct

SEQ and corresponding ACK numbers, which is still lighter than a full, connection-

terminating TCP stack.

Compared with the state of the art, we also propose here a much more low-level drive

into building a fast NFV dataplane agent that supports efficient service chaining.

5.4 Combining middleboxes

In the architecture we designed, each independent component defines the kind of flows

it wants to receive. When middleboxes are chained, our system can take advantage of

what each component needs to re-classify more lightly between each of the components

and pipe them together more efficiently.

Note that flows are not limited to packet fields. E.g., for an ISP a flow could be

defined as packets from one ingress to a specified egress, the combination of the two

determining the processing to apply. To avoid confusion, we’ll refer to the flows in the

sense of kind of data, defining the path packets from the same flow must follow as the

traffic class. While we’ll reference as packets from the same session the packets from

132

5.4 Combining middleboxes

Figure 5.6: A small system handling ARP packets and applying some processing on
HTTP traffic, dropping other TCP streams. It then load-balances UDP and HTTP traffic
to some servers.

the same traffic class that share some properties, e.g. packets with the same 5-tuples

that form a TCP micro-flow.

Consider figure 5.6 as a simplified example. This system handles ARP requests and

replies in a packet-based fashion. It runs a per-session load-balancer for UDP and TCP

traffic, but before that, passes HTTP (TCP packets with port destination 80) traffic

through some HTTP filter (e.g. a parental filter or ad-remover). Other TCP traffic is

dropped.

Each component must declare a list of packet types (i.e. a list of traffic classes) they

want to receive.

The ARP subsystem wants to receive the traffic class of “ARP requests” and “ARP

replies”, and needs no session management. The HTTP filter needs TCP packets di-

rected to port 80. The load balancer receives any TCP or UDP traffic (though, given

the wiring it will actually only receives some HTTP TCP traffic).

In figure 5.6, each circle is one step of the classification which would usually be

handled by reading the corresponding packet fields to decide the next step when the

packet reaches that point. The first level has 2 outputs, ARP or IP packets that could

be identified as 1 and 2. Following this idea, reaching a leaf of the classification path

can be considered as following a list of next hop numbers. Table 5.1 shows the resulting

flow table (consider PFP entries in the table as wildcards for now).

To each rule will correspond a Flow Control Block (FCB), initially one per traffic

class. Instead of classifying packets at all steps of the processing chain as with the

133

5. AN NFV DATAPLANE

Rules Flow Control Block

Ethertype ARP Type Proto Dport Sport Dst Src Next hops Session space

ARP Request * * * * * 1, 2 -
ARP Reply * * * * * 1, 1 -
IP * TCP 80 PFP PFP PFP 2, 2, 1 TCPSession, int
IP * UDP PFP PFP PFP PFP 2, 1 int

Table 5.1: Rules for each possible path in figure 5.6 and their corresponding Flow Control
Blocks.

circles in figure 5.6, all the necessary information is included in the FCB, which starts

with the list of next hops.

Some components need more than just knowing the traffic class of the packet to

handle it properly. The load-balancer is stateful and needs an integer per TCP or UDP

session to remember which server it chose to handle that session, while the HTTP filter

needs some space per TCP session to reconstruct the TCP streams.

We allow each component to describe, on top of the traffic class, the sessions they

want to see, and an amount of space they need per-session to write their metadata,

the scratchpad. That space will be assigned in the FCB session space, as in table 5.1.

To define sessions, rules allow special header wildcards that are Populate From Packet

(PFP). The PFP entries mean that the rule must be duplicated with the exact values

of the fields when the rule is matched. The difference between defining a rule such as

proto = TCP ; dstport = ∗ and proto = TCP ; dstport = PFP is that the second one

will lead to one session and therefore one scratchpad per TCP destination port. When

a rule containing a PFP field is matched, the rule is duplicated replacing the PFP with

the actual value read in the packet. The FCB will be duplicated along the way, with

the needed space ready for each middlebox that asked for it.

Table 5.2 shows an example of the flow table after receiving packets that have hit

each of the rules. Only HTTP and UDP rules contain PFP fields, spawning new rules

and duplicating the session space. Details of implementation and timeout management

are deferred to section 5.6. In the case of TCP packets, as our example only considers

the packets with destination port 80 and drops the others, the session mapping will only

be done on the last 3 tuples.

134

5.4 Combining middleboxes

Rules Flow Control Block

Ethertype ARP Type Proto Dport Sport Dst Src Next hops Session space

ARP Request * * * * * 1, 2 -
ARP Reply * * * * * 1, 1 -
IP * TCP 80 52100 10.0.0.1 89.18.17.216 2, 2, 1 0x1a234579, 0
IP * TCP 80 32100 10.0.0.1 18.17.62.29 2, 2, 1 0x9e5cc632, 1
IP * TCP 80 52100 10.0.0.17 120.12.17.12 2, 2, 1 0xab38977d, 0
IP * TCP 80 PFP PFP PFP 2, 2, 1 TCPSession, int
IP * UDP 32100 32100 10.0.0.78 129.251.324.118 2, 1 0
IP * UDP PFP PFP PFP PFP 2, 1 int

Table 5.2: Rules for each possible path in figure 5.6 and their corresponding Flow Control
Blocks after having received some packets

5.4.1 Session data size

Figure 5.7: Example FCBs showing the computation of the size and offsets needed for
each VNFs. Note how the load-balancer data is always at the same offset.

All components of the middlebox must be visited to compute the total FCB size.

Starting from each input, the system visits the downstream components and computes

the total size needed for all of them. When a packet can traverse parallel paths ex-

clusively, the same space can be assigned to all these paths to optimize space. The

components are then informed of an offset in the FCB where they will be able to find

their requested space. To avoid needing an indirection table, we prefer to lose some

space and have an offset independent of the input path so each element has one and

135

5. AN NFV DATAPLANE

only one offset inside all potential FCBs assigned to packets passing by, eventually lead-

ing to some unused space. In figure 5.7 it would seem better to keep the Load Balancer

data for UDP at the beginning of the block, but given that FCBs are pool-allocated

leading to constant memory allocation costs and that offsets are unique, we have the

intuition that a perfect space optimization is not worth it. In terms of cache lines ef-

ficiency and data placement, removing the unused space would lead to an unordered

access for the HTTP packets as they would jump to the HTTP data and go back to

the load balancer data afterwards. It may be possible that re-ordering the component

offsets according to flow statistics would slightly improve the performances. But we

keep that as future work as it would need dynamic rearrangements and implies much

more precautions in multi-threaded environments.

5.4.2 Dynamic scratchpad space and virtualized environments

If the data needed by a middlebox has variable size, the middlebox may simply ask

for space to fit its static data and a pointer. The pointer can then be used to keep

a reference to memory allocated when the flow is first seen using another dynamic

mechanism, such as an efficient pool-allocation system.

This is also the design we propose for a virtualized environment. The flow manager

can handle a flow table unique for all VNFs components residing in multiple virtual

machines, or more generally, residing in isolated memory spaces. The flow table is kept

at the level of the hypervisor as shown in figure 5.8. The hypervisor reserves enough

Figure 5.8: Memory allocation for isolated environments

space in the flow control blocks to keep a pointer instead of the session data itself for

136

5.4 Combining middleboxes

each VNF. When a “PFP” rule is matched, the flow control block will be duplicated.

The hypervisor can then allocate the amount of space needed per-session for each VMs

in guest memory when the flow is seen for the first time. This enables fast allocation

of per-session space in the guest system without traversing per-VMs flow tables, but

still ensuring memory isolation. A practical implementation would need a new API to

pass the allocated memory along with the batches of packets from the same session,

something still not supported by our prototype.

5.4.3 Multiple levels of sessions

In a middlebox context, it sometimes makes sense to group all traffic according to a first

reduced session definition. E.g. group packets per IP pairs, check that the pair does

not exceed its fair amount of traffic according to some per-protocol and per-endpoints

statistics no matter the ports. Then re-classify further the packets with the same IP-

pair into TCP sessions. Such a scenario is depicted in figure 5.9, but a practical use

case may need even more levels.

IP pair statistics counter

Flow State
 int packet_count

int byte_count
IP Src + IP Dst

HTTP Parental filter

Flow State

TCPSession sess;
IP Src + IP Dst

+ Sport + Dport

DPort
80

Else

Figure 5.9: Two components needing two different levels of sessions.

In this context, the problem would be that duplicating the FCB for each TCP session

for the HTTP Parental filter would also duplicate the space for the IP Pair counters,

which would be a problem if the client has multiple different HTTP sessions towards

the same server.

When that situation arises, multiple FCBs have to be used. The first one will have

the scratchpad space for the IP pair statistics, the second one for the full TCP session.

The last field of the first (IP pair) FCB will be used as a pointer to a second flow

table, which will lead to the second FCB by matching only the last 2-tuples. The

implementation proposed in section 5.6.1 keeps one sub-table per-IP pair, allowing the

second table to be very small and only contain TCP sessions for the given IP pair. This

137

5. AN NFV DATAPLANE

will lead to many sub-tables allocations and de-allocations as there will be one per-IP

pair. Therefore we use a pool of sub-flow table for efficient memory management.

5.5 Stream abstraction

At this point of our design, a middlebox developer can easily receive a bunch of raw

packets matching a given traffic class along with their FCB. The developer knows di-

rectly to which kind of traffic belongs the given packets, as this is marked in the FCB.

If the component asked for some per-session scratchpad, the middlebox component will

also have some space for its own use in the FCB, knowing the FCB has been duplicated

per-session and this space is therefore shared by all packets of the same session.

5.5.1 Contexts

But most of the time, a middlebox developer expects a seamless stream of data, not

packets matching a given set of tuples, but from a given protocol. The developer also

wants a way to touch the data without caring about the protocol details.

Therefore we introduce the concept of stream context. Middlebox components ex-

change packets in batches of packets of the same session. When in a given context,

components can use a content offset, a metadata associated with each packet, to access

the payload directly. The context also allows to issue requests to act on or modify the

stream. Table 5.3 summarizes the available requests that will be detailed further. On

top of these facilities, we offer multiple abstractions that allow to act on the data as a

stream, without the need to copy the packet payload, like an iterator that can iterate

across packets. This enables zero-copy inspection of a stream, but still allowing the

middlebox component using this higher-level stream abstraction to access the headers

if need be, a feature all IDS need as some attacks may be based on header fields.

When a middlebox is in IP context, the content offset is set just after the IP header.

If the middlebox modifies data in a such a way that the IP packet length changes, the

length in the IP header will be changed when the packet leaves the IP context, and

the checksum will be updated accordingly. This is showed by the downwards arrow in

figure 5.10.

138

5.5 Stream abstraction

Packet
insertBytes Insert some bytes at the given position
removeBytes Remove bytes at the given position

requestMorePackets
Launch protocol specifics when stalling packets in a buffer
E.g. TCP should pro-actively ACK the current packet

closeConnection
Close the connection
May do nothing if the current context has no notion of connection

registerConnectionClose Register a function to call when the connection is closing
isLastUsefulPacket Tell if some packet is the last useful one in the session

determineFlowDirection
For protocol with multiple sides, return an index for the side
E.g. 0 or 1 for TCP

Table 5.3: Context requests

In TCP context, the offset is moved forward after the TCP header of each packet.

Each context does its own work when handling a request and then passes the request

to the lower context.

Modification of a packet is a little bit more complex and is shown by the green

boxes and lines in figure 5.10. Modification of the number of bytes in a TCP stream

implies a lot of accounting around acknowledgement and sequence numbers detailed in

section 5.5.5, for the current packet but also the following ones. But still, the IP header

will need to be changed no matter what TCP does if the packet length changes, so the

request is passed to the lower layer.

Each middlebox component can tell in which context it wants to be. The TCP

context will also ensure that the current flow has a session described by its 4-tuple, as

the packets only make sense while grouped as such.

On top of the functions to modify the packets, the context also allows to determine

if a given packet is the last useful one for the current context. In TCP context, the

request will simply check the TCP session state while HTTP context will use the value

of Content-Length or pass it to the previous context if unknown. The end of an HTTP

context does not necessarily mean the end of a TCP context but the contrary is true.

139

5. AN NFV DATAPLANE

Figure 5.10: Context approach. Upon entry in a context, the payload offset is moved
forward. When the stream is modified, previous layers of context take care of the impli-
cations, such as changing the TCP ACK number of the current packet and the following
ones, or fragmenting the Ethernet frame if need be.

5.5.2 Request for more data

The last request of the context is the ability to wait for more packets. IDS and IPS

systems, content filters and many more need such a feature to be able to find patterns

across packets. An HTTP ad-remover, or anti-tracker will typically look for known

HTML script blocks like < script > [data] < /script > and remove them. If that script

spans across multiple packets, the second part of the HTML block could arrive not right

after the first part, therefore the system must provide an efficient way to wait for more

packets.

For example, a TCPReorder element that will re-arrange TCP packets so they get

out only in order needs space in the per-TCP session scratchpad for a “out of order

packet pointer” and a “last seen sequence number”. When an out-of-order packet arrives,

TCPReorder sets those pointers and returns. In the run-to-completion model, the CPU

goes back to the flow manager. When a packet of the same session arrives later on, it

will be pushed up to the TCPReorder that will check if there are some “waiting packets”

140

5.5 Stream abstraction

in the scratchpad, reorder them, and sends all in-order packets if the hole has been

filled.

The goal of our work is not to review ways to handle missing packets, or different

IDS/IPS implementations. Our platform offers some services that may or may not

be used by more specific implementations to build upon with the factorization of the

classification and “only-done-once” session classification advantage.

5.5.3 TCP flow reordering

The TCP context will also take care of re-ordering packets for VNFs that need to receive

a stream of ordered payload. The TCP context will send pro-active ACKs when a hole

is encountered and starts buffering packets that are out-of-order and therefore cannot

be passed yet to the VNFs.

Functions that does not need to see a stream of data such as NATs or load-balancers

can receive out-of-order packets. The TCP context entry will not reorder packets for

those functions.

5.5.4 TCP flow stalling

As a TCP source may wait for an ACK from the destination before sending more

packets, buffering data may prevent the destination from sending an ACK, leading to a

deadlock situation. The TCP context provides an optional functionality to do pro-active

ACKing.

If enabled, when it receives a “request for more packet”, the TCP context sends an

ACK corresponding to the given packet to the source with an acknowledgement number

corresponding to the sequence that the destination would have send. We therefore keep

a “shallow copy”1 of outgoing pre-ACKed TCP packets in a buffer until the destination

acknowledge them. Buffering is done when a middlebox component specifies that it

may stall or modify packets, or when the component wants to protect against TCP

1We do not copy the packet content, we use buffer reference counting. The packets leaving the TCP
context will be remembered (using a linked list of pointers) and have their usage counters incremented
by one, most likely to 2. When sent, the packets will have their usage counter decremented, most likely
to 1. When the ACK is received, the list will be pruned and the packet’s counters decremented again,
and the packet recycled when the reference counter reaches zero.

141

5. AN NFV DATAPLANE

overlapping segment attacks1. If no VNFs in the service chain need to see an ordered

stream of data and can process the same data twice, we do not need to keep outgoing

packets in buffers, as processing retransmissions does not pose any problems, those are

actually the same VNFs that the one which do not need reordering.

Another more traditional approach also supported by our platform when the flow is

not to be modified such as for analysis purposes is to let the packets go through even if it

may be part of malicious content. The ACK is sent by the destination as expected, and

we send a RST to both sides of the connection if the connection needs to be closed when

a further packet is received, e.g. when a pattern has been matched by an IDS. However

some protocols on top of TCP may have already handled the payload and most of the

attack executed, or content unfiltered could have been displayed. On the other hand, a

valid example for such approach is the case of HTTP file downloads, where in general

the file will be dropped if the connection is reset before the last packet is received.

5.5.5 TCP flow resizing

Stalling and re-ordering are requirements for modifying a stream. Many applications

need to modify the stream content. For the specific web case, examples include rewriting

HTTP traffic to change URLs per CDN-based ones, ad-insertion and removal, along

with potential new uses enabled by the novel performance of the lightweight in-the-

middle stack we propose such as per-user targeted HTTP page modification or a proxy

cache that would include image content in the page itself. Instead of dropping a flow

containing an attack it could be sanitized to keep only the original content. Pages could

be translated on the fly to target the user language. Other usage include some protocol

translator, video transcoding or audio enhancement As will be shown in the evaluation

section, only a few lines are needed to build innovative uses on top of our framework.

The layered context approach allows to propagate the effect of modifications to

lower layers. When the middlebox removes or adds data in a TCP stream, the sequence

number must be set accordingly so the destination does not think the data has been

1A valid segment of data pass through the IDS, then the attacker sends a retransmission for that
data with a different content that would not go through the IDS pattern matcher to prevent messing
the state of the pattern matcher and would be directly passed to the destination. Depending on the
implementation, the destination may keep the malicious data instead of the first received segment.

142

5.5 Stream abstraction

lost or is a duplicate. However when the destination sends the corresponding ACK, the

number must be mapped back to its original value.

Figure 5.11: Example of the mapping between an original flow and the corresponding
modified flow. Red cells correspond to data removed from the original flow and green cells
correspond to data added in the modified flow.

The figure 5.11 shows an example in which the following modifications are done to

the original flow by the components in the TCP context, or above:

A. 3 bytes are removed at the position 2, removing cde from the stream.

B. 5 bytes are inserted at the position 6, adding yyyyy in the stream.

An important point depicted on figure 5.11 is that, to map a sequence number,

the positions corresponding to the removed bytes are all mapped to the position 2,

corresponding to f. Indeed, if the sender starts a retransmission with a sequence number

equals to, for instance, 3, trying to retransmit data from d, the mapped retransmission

will start at f. On the other hand, when mapping an acknowledgement number, all the

added data point to j in the original flow.

We keep track of a list of modifications, represented by a position (the position at

which the modification occurred) and an offset that corresponds to the number of bytes

143

5. AN NFV DATAPLANE

modified. This offset is negative if bytes are removed and positive if bytes are added. We

cannot keep a cumulative offset because an ACK may come and ask for previous data

before the cumulative offset and we would not know which bytes have been removed or

added from the original flow. However the list can be pruned when an ACK arrives.

It is worth mentioning that the book-keeping system will only be instantiated and

used if one of the middlebox component specify it may resize some flow. When the size

of the flow is not going to change, there is no need for such sequence mapping.

When resizing is enabled, the system must also keep the modified data in a buffer

for potential retransmission. The data to be maintained is limited to the currently un-

ACKed modified data, which in general represents less memory than a usual end-point

TCP socket. The buffering is done when leaving the TCP context, that is in most cases

after all potential re-writing.

5.5.6 Matching both directions of the flow

Some data must be shared between both directions of a session, such as TCP sessions.

Parsing again the classification tree but with inverted destination and port could have

been an option. But if both directions are not ensured to be served by the same core,

the tree would need complex locking solutions which would slow down probably the

most important element in the fast path. Ensuring that both directions are served per

the same core, is not as easy as it seems.

A symmetric hash key[102] could be used, but if NAT is in place the return direction

will have a different tuple that will not hash to the same core. mOS[46] loop through

multiple NAT source ports and compute the 4-tuple hash in software in the same way

the hardware would do until the hash leads to the current core as RSS would. This

approach is theoretically unbounded, though in practice the number of tuples to hash

in software should be equal to the number of cores. Still on average as many hash as

cores have to be computed in software.

Using the capabilities of smart NICs may allow to allocate NAT ports in such a way

that the return packets will be served by the right core, using specific receive filters to

assign chosen ranges of ports to core. The most commonly seen Intel NICs in recent

research papers, 10G 82599-based ones, had some unique field masking support but it

was dropped by Intel in its later XL710 chipsets which is beginning to replace 82599-

based ones as the new generation of chipsets and because it supports 40G. While there

144

5.5 Stream abstraction

are a lot of Smart NICs with more possibilities[103, 104] we would have to support a

fall-back solution for less-capable hardware anyway. NICs also often lack support for

newer protocols when they arrive, for example, IPv6 port filtering is still not supported

in the XL710 at the time of writing.

Therefore we prefer to develop an efficient, lockless (as much as possible) solution

that will allow each side of the connection to be served by different cores, but proposes

a very efficient way to reconcile common data.

When a new TCP stream is seen (a SYN packet), the TCP context entry will allocate

a new common data structure for data common to both directions using a per- thread

memory pool. The pointer to the common data is saved in the session scratchpad of the

FCB. The TCP context entry component will add a pointer to this common space in a

thread-safe hash table where each bucket is protected by a Readers-Writer (RW) lock.

The RW lock is based on a usage counter. The counter will be negative while there is

one writer and positive when there are readers in the bucket list.

When the other side sees the corresponding stream, it looks for the inverted 4-tuples

in the hash table, adds the pointer to the common data to his session scratchpad. As

the session scratchpad in the FCB will be passed with each packet of the same session,

the hash table will never be read anymore for the same session and the entry from the

hash table can be removed.

Section 4.3 discusses implementations for efficient concurrent access to the data

structures in the common area. We found that in most cases, no locking is needed at

all. The most common operation in the TCP case is to look at the other side’s current

ACK number. Only the other side will write the ACK number, and as x86 as a coherent

cache hierarchy, the ACK number can directly be read. Updating the TCP state does

not need to be atomic either. Only one side will send a SYN, then the other side will

send the SYN ACK. The same goes for the closing handshake. In the very unlikely

case that both side send a FIN on their own and they are processed at the very same

moment on both cores, potential consequences are only one side being closed too early.

The only plain old lock needed is around the sequence maintenance structure needed

to allow flow resizing. Further research could use the fact that an ACK only relates

to data that passed through previously to develop a specific data-structure that even

completely avoid locking.

145

5. AN NFV DATAPLANE

5.6 Prototype implementation

In the search for an efficient middlebox platform on commodity hardware, we established

some criteria:

• Flexible module-oriented configuration to allow users to easily use our system.

• Possibility of hardware offloading of some functions.

• Be in user-space to facilitate communication with other user-space software in a

zero-copy fashion using shared memory, and ease the development compared to

kernel programming.

• Support for fast packet I/O engine (Netmap[32], PSIO[35], PF_RING[33], DPDK

[31], etc.).

• Common networking functions already implemented, to reduce development time.

• Stateful packet processing, and more generally support for flow reconstruction for

flow treatment like DPI functions, HTTP reconstructions, and other middlebox

features.

Chapter 3 built such a platform, FastClick, which implements all criteria but the

last. Therefore, we implemented the flow design as described in the previous section to

make Click elements match the component definition given in section 5.2, mainly being

able to act on streams instead of packets, and asking for some flows and per-session

scratchpad by allowing them to override a few virtual functions. We’ll reference Click

in the following sections for common Click functions, only mentioning FastClick when

its specific features are involved.

In Click, the service chain is defined as a set of elements piped together. Dispatching

of the traffic according to fields, the flow classification, is done using a Classifier

element (or its variants such as IPClassifier that provide more convenience) which

dispatches traffic to following elements according to a given set of rules, as shown in

figure 5.12 (a).

In our flow-aware FastClick extension, which we call MiddleClick, we introduce a

FlowClassifier element that must be put just after all FromDevice elements (i.e.

146

5.6 Prototype implementation

ct :: Classifier (12/0800 ,
12/0806 20/0001 ,
12/0806 20/0002);

cp :: IPClassifier(proto tcp , proto udp , -);
cd :: IPClassifier(dst tcp port 80, -);
td :: ToDevice (...)
arp_querier :: ARPQuerier (...) -> td;
lb :: LoadBalancer () -> arp_querier;
FromDevice (...) -> ct;
ct[0] -> cp;
ct[1] -> ARPResponder (...)[0];
ct[2] -> [1] arp_querier;
cp[0] -> cd;
cp[1] -> lb;
cd[0] -> HTTPProcessor () -> lb;

(a)

td :: ToDevice (...);
arp_querier :: ARPQuerier (...) -> td;
lb :: LoadBalancer () -> arp_querier;
fc :: FlowClassifier ();
fd :: FromDevice (...) -> fc;
fd ∼> ARPResponder (...)[0] -> td;
fd ∼> [1] arp_querier;
fd ∼> HTTPProcessor () -> lb;
fd ∼> lb;

(b)

Figure 5.12: (a) Click configuration for the example of figure 5.6. (b) Corresponding
MiddleClick configuration.

inputs). It will visit all downstream elements to combine all flow classifications and

build a classification tree.

The difference with the usual Click classification is that the rules are aggregated

before Click enters the running phase. FlowClassifiers initialize the session scratch-

pads with the next hop numbers (the output port numbers in Click). Traditional Click

classification elements such as Classifiers are replaced by FlowDispatcher elements

which follow the same syntax. FlowDispatchers just have to read their scratchpad in

the FCB to decide the output, without classifying in place or even touching the packet.

Their only job at run time is to dispatch packets to the right output port according to

the next-hop field, hence their name.

Alternatively, figure 5.12 (b) illustrates a new link syntax called the context link,

“∼>”, which will automatically insert a FlowDispatcher element between its two ends.

147

5. AN NFV DATAPLANE

Those FlowDispatcher elements are configured according to flow descriptions exported

by all elements to the right of the arrow. Context also allows to remove the needs for

obvious Classifier, in our example the input can directly be tied using the context

link to all ARP elements, the traffic class defined by the ARP elements will be used

through the inserted FlowDispatcher to actually give ARP requests to the ARPRespon-

der, replies to the ARPQuerier and other packets to the remaining path. In many cases,

the element will always ask for the same traffic class and an explicit FlowDispatcher

is not needed.

To specify a session, the system needs an offset and a mask. The mask will tell

which bits define the session, that is the PFP fields. All packets sharing the same

masked value at the specified offset will share the same session. The definition for a

TCP session would be ipsrc/ffffffff ipdst/ffffffff dport/ffff sport/ffff. If

the port was already known, as in our running example, the dport/ffff will be ignored

when the rule is merged by the FlowClassifier when doing the graph traversal when

Click launches, avoiding to reclassify on the same tuple. All elements placed after such

flow dispatchers that define a session rules will have a session scratchpad per TCP

session. Using the context link, TCP and UDP specific elements will also automatically

insert such a session definition, in practice it is rarely needed to be written down by the

operator.

The flow and session definitions are totally flexible. E.g. a component can ask to

receive only packets matching an arbitrary value at an arbitrary offset, or can define ar-

bitrary PFP fields to define a session that is completely different from the TCP 4-tuples.

The implementation of the software classification algorithm inside the FromClassifier

that is subject of section 5.6.1 actually allows for programmable classification instruction

that return an arbitrary value when given a packet. Rules such as dport/ffff translate

into a “16bit header field at offset transport + 2” that given a packet will return its

destination port. Nothing prevents more evolved fields that would return a number

according to some HTTP cookies in the packet or run a BPF program on the packet

that returns some values. The only limit is that the advanced field cannot modify the

packet, as the classification is the very first step and supposed to be fast and read only.

Introducing unknown fields also prevents hardware offloading, though the advance in

148

5.6 Prototype implementation

recent NICs allow them to run complex BPF programs or P4[105] enabled upfront hard-

ware could run more complex functions, tag the packets, and let the evolved field read

the tag.

FastClick already implements batching using linked lists to pass lists of packets

between elements, instead of single packets. In MiddleClick, batches of packets are

always packets of the same session. To avoid having small batches, the flow classifier has

a builder mode to put packet in an internal ring of batches. The FromDevice element

passes a batch of packets to the FlowClassifier. The FlowClassifier then classify the

packet and insert it into the ring. The FlowClassifier then classifies the next packet,

and searches the ring for packets of the same session (that lead to the same FCB), and

appends the packet to the end of the batch if found. When all packets are classified,

it sends the session batches to the next element one by one. If the ring is full but the

packet that was just classifies is not from the same session than any batch in the ring,

the oldest batch in the ring is processed directly. Packets are reordered but the relative

order inside the same session is kept, and as the array is processed in order, the relative

order in which sessions are seen is also kept.

Hence, any middlebox element knows that it can work on the payload of the packets

of a batch as a single stream of data. Instead of modifying all push() functions of Click

to pass the FCB along the packet, we preferred to use a thread-local global variable

that is set by the FromClassifier before pushing the batch through the graph. Each

element can access from any function. In a run to completion model the FCB pointer

is guaranteed to be the one of the current batch.

5.6.1 Flow Classification

A simple implementation would be to have a static classification algorithm that leads

to either FCB pointers or PFP rules. If the classification leads to a FCB, it is used

as is. When encountering a PFP rule, a fast dynamic classification algorithm can be

used to search for the rule with the PFP fields expanded. This is in some way what

traditional Operating Systems do for TCP. Some fixed-at-compile-time lookup is done

on the packet headers (ethernet type, ip protocol, ip version, ...). This part is the static

classification, as it is not subject to change. If the packet is a TCP packet, then the 4

tuples will be matched using a hash-table. UDP and other protocols would use another

hashtable.

149

5. AN NFV DATAPLANE

IPIP/Protocol

Eth/Etherype ROOT

ARP/Operation ARP

TCP DPORT

IP/DST
IP/SRC

TCP/DPORT

TCP

80

Flow Control Blocks

REQUEST

1

REPLY

1

4-Tuple UDP

0 1

0

0

Per UDP flow data

0

1

0

1

Per TCP flow data

A.B.C.D
E.F.G.H 52136

0

0

A.B.C.D
E.F.G.H 20156

Per UDP flow data

Copy when a new 3-tuple is seenCopy when a new 4-tuple is seen

Figure 5.13: Classification tree for the small setup of figure 5.6.

However the traditional approach is not generic enough. The static classification

must be flexible, allow for non-standard field-based classification and built according to

the VNFs in the service chain. The dynamic fields used in a hashtable-like data structure

must also be flexible, and the fact that some fields will be known when reached from a

specific path and therefore do not need to be used in the dynamic classification should

be taken into account to allow improvements.

In our implementation, traffic classes and session classification are both implemented

using the same tree. Each node of the tree corresponds to one field, where each node

may have its own classification implementation according to the associated field or user-

provided hints about the best underlying implementation. A condition if there are two

possible outcomes, an array if the range of possible values is not big (such as with VLAN

numbers or 1-byte fields), a heap for static classification or a hash-table in the other

cases. Therefore the term “tree” does not refer to a usual algorithmic tree but a more

flexible implementation. Figure 5.13 shows the classifier corresponding to our running

example.

In our example, the first three nodes of the tree will use a condition as only very

few values are possible.

150

5.6 Prototype implementation

Each node also links to a level object (square objects in figure 5.13) that defines

the programmable field implementation, i.e. how to extract data from the packet for

header fields, or more complex logic for more evolved fields. Most levels are header

classifiers that will read a field of the packet, apply a mask and return the value so the

node implementation can access a child according to the value.

Matching simply consists in descending the tree until a leaf is reached. Leaves are not

node objects, but directly FCBs. All nodes also have a default branch. When building

the tree, we ensure that all paths (children branches or default branches) actually lead

to some FCB. In the example of figure 5.13, an ARP packet that is not a request or

a reply would go to the default FCB of the ARP level that will have a special “next

hop” that the FlowDispatcher will recognised, and will drop the packet. FCB can be

marked to apply early drop directly in the FlowClassifier if the operator allows it. It

is not always desirable because the operator may want to keep statistics about packets

being dropped. Level objects also define if the field is a PFP field in which case the

default node is to be duplicated upon a miss. When the default node is duplicated, it

will also duplicate the child FCB, therefore leading to a per-session FCB.

FCBs are managed in per-thread pools for efficient allocation and recycling.

It is important for the reader to understand that the classification algorithm we

propose in this section is only one example of how to implement a flow table that allows

dynamic duplication of some rule. We could have used a very efficient classification

algorithm like HyperCuts[106], but its update rate is far too slow. In our tree imple-

mentation, each node may use different implementation according to its particularities

(static, dynamic, maximal number of values, ...). Using more tailored data structures

than the basic ones we implemented is left as future work.

If the Flow Classifier is to be traversed by multiple threads (detected using FastClick’s

thread vector), a special dynamic “thread” node will be inserted before the first dynamic

node. When a new thread passes through the thread node, it will duplicate its children

for the current thread. That is correct under the assumption that packets for the same

session are handled by the same core, a feature allowed by RSS hashing. This should

not be confused with packets of both side of a stream that can be handled by different

cores and will therefore use different branches of the tree as they will branch differently

when encountering the thread node. Section 5.5.6 already explained our approach to

reconcile the two sides.

151

5. AN NFV DATAPLANE

5.6.2 Classification tree expansion

When the default implementation of a node is not sufficient (e.g. it reaches its maximal

capability, or it is producing a lot of collisions for a hashtable, ...) the node starts to

grow, which is marked by a flag in the node. The default path of the node is replaced by

a new empty node that uses the same level but a more appropriate implementation, like

a bigger hashtable, or when the hashtable size is closing up to the amount of possible

values (like the 65536 possible values of the 16bits TCP/UDP ports fields), a vector with

one child for every possible values. When the node is growing, no more children can be

added, the classification only looks at the node for existing flow When all children of a

growing node are removed (flow timed out or finished), the growing node is removed and

only the bigger replacement node remains. This scheme allows to avoid jitter caused

by growing hashtables that normally needs a full re-allocation. It would also allows to

grow one badly performing implementation into another one, e.g. changing the hash

function of a hash table, moving from linear probing to open addressing, etc.

5.6.3 FCB release

Each FCB has a usage counter. When a packet matches a FCB, the FCB usage counter

is incremented, and when the packet is released, the usage counter is decremented.

When the FCB usage counter reaches zero, a user-defined function is called to release

some FCB state that may need to be clean. The FCB is put back in the pool but

also removed from the tree. All nodes and leaves (FCBs) have a parent pointer so all

dynamic (PFP-duplicated) parent nodes having no other children can also be removed

to prune the tree.

That means that if any middlebox component wants to keep the session open longer

than for a burst of packets, it must increment the usage counter to take a reference and

release it when it sees the end of the stream, such as a RST or a FIN flag for TCP

sessions.

As an alternative solution, the flow manager also implements a global timer. To

avoid managing timeout themselves, middleboxes do not take any reference on the flow,

but set an amount of time the flow will stay alive even if the usage counter reaches zero.

Middleboxes are encouraged to use the global system to keep a consistent state across

middleboxes. If a NAT decides to drop a flow, we should also release it in subsequent

152

5.6 Prototype implementation

middleboxes as the flow will be broken anyway. Releasing is done directly when the

usage counter reaches 0 and the timeout is passed. If the timeout is not passed, the

FCB will be added to a list of pending timeouts.

The question is thus, when to look through the list of pending timeouts for expired

sessions.

In Click, tasks return false if they did not do anything useful. This was used for

scheduling purpose. We added a special kind of Click task, called IdleTask. An

IdleTask will run when all other tasks returns false, meaning that the thread is idle.

We use an IdleTask to trigger the check for expired timeouts. As an IdleTask could

technically never run, we also look for expired timeouts if the list of pending timeouts

is longer than some threshold after matching a full burst of packets. The threshold uses

exponential back-off as the fact that the list of unexpired FCBs growing is normal. To

provide a final upper bound on the release time, a timer also runs the list pruning every

15 seconds. Hence middleboxes needing precise timeouts must manage their own timing

as the list might not be released fast enough.

If a FCB is matched while in the list of pending timeout, it is checked for expiration

right away. If it is expires, the FCB will be renewed by the classifier as if it had expired

(the release function is called and the FCB space resets to its initial value), ensuring

that even if release is delayed up to 15 seconds, the timeout time itself is more strict.

Implementation details: the FlowElement classes
Any element that is part of the flow system (either defines a traffic class or

wants some per-session scratchpad in the FCB) extends the FlowElement class
instead of FastClick’sBatchElement class. FlowElement has a few virtual functions
that can or must be implemented to define the traffic class, the amount of space
the element wants into the FCB and its initial value. FlowElement also have a
_flow_data_offset integer that will be set by the FlowClassifier to the offset in
the FCB where the scratchpad space is to be found. Note that virtual functions are
only called at initialization time. At run-time the inherited element can look for its
space at fcb_stack− > data[_flow_data_offset].

For convenience, a template FlowSpaceElement < Derived, T > is provided. It
will implement the virtual FlowElement functions that return the per-FCB state for
a given structure T. The operator will have to implement the push_batch(int port,
T* fcb, PacketBatch* batch) function instead of FastClick’s usual push_batch(int
port, PacketBatch* batch) function. The new T ∗ fcb passed will be a pointer to

153

5. AN NFV DATAPLANE

the scratchpad space in the FCB, computed as explained above. The Derived tem-
plate parameter is used to rely on CRTP instead of a virtual function call to im-
plement push_batch. In itself, FlowSpaceElement is only a few lines, returning
sizeof(T) when asked for the amount of space it wants, and passing fcb_stack-
>data[_flow_data_offset] to Derived’s push_batch function.

A deeper FlowStateElement < Derived, T > class is provided for elements that
wants to build upon an event-driven idiom. It builds on top of FlowSpaceElement,
but allow the user to define 2 new functions: bool new_flow(T*, Packet*) called when
a new flow is seen for the first time, release_flow(T*) called when a flow is dying,
and a time-out value to force the flow to stay alive for some time. The T structure
is enclosed with a boolean to remember if the flow has been seen. The timeout is
managed by the flow manager and a wrapper around release_flow is registered in
the FCB’s release function chain.

The template approach may seem a bit unusual when thinking of event driven
systems, where most frameworks allows to register functions to be called when some
events happen. Our approach allows to avoid potentially long lists of function to call
for each event. In our approach only the release is part of a traditional function list,
though if the element implements its own timer it can also be avoided. The CRTP
pattern actually avoid any function call on top of FastClick’s push_batch, leading
to a very efficient implementation.

�

5.6.4 Context implementation

Entry and exit of context are done through pairs of IN and OUT elements, such as

TCPIn and TCPOut.

IN elements traverse the graph to find their corresponding OUT elements and an-

nounce themselves to them so one can access the other. Along the way, they also

announce themselves to the next flow elements, including other “downstream” IN ele-

ments. A middlebox element will have a previous context pointer pointing to the last

IN element, which will have its own pointer to the previous one, etc. up to the first IN

element.

Each context entry element implements a set of known requests described in section

5.5.1 (packet is modified in a certain range, request for stalling, know if the packet is

the last one of a flow-based context, ...). For each request, the context entry element

will execute its protocol specifics, and then pass the request to the previous one and

so on, until the first entry element (IPIn in most cases) finds no other context entry.

Combined with the context link, the usually complex Click manual wiring is actually

154

5.6 Prototype implementation

very minimal as shown in figure 5.14. When the flow classifier traverse the graph and

resolves the ∼> context links, it remembers the last IN element that was traversed.

The context link already allows to spawn a classification rule for a traffic class

and session definition according to the elements on the right of the ∼> symbol. We

also wanted to implement a way to automatically define protocol classification when

IN elements are inserted. For instance, the IPIn element could not expose a traffic

rule such as ethertype 0800 because the IP header may be encapsulated over another

protocol, e.g. over a GTP tunnel, and not in an Ethernet frame. Therefore the last IN

element is interrogated to spawn a traffic class rule according the next IN element. This

allows the IPIn element to spawn a ip prot/06 traffic class rule when it is followed by a

TCPIn element. But if TCPIn was preceded by an ATMIn element to implement TCP-

over-ATM, a different traffic class rule would be used if ATMIn has been programmed

to return a rule when interrogated about how to classify for TCPIn. By default, the

FlowClassifier act as a first “EthernetIn”, returning a rule like ethertype/0800 when

a context link is inserted before an IPIn element. Therefore the example of figure 5.14

will actually have a flow table with one rule “etherype/0800 ip prot/06 ip src/ffffffff ip

dst/ffffffff udp src port/ffff udp dst port/ffff” that will drop non-IP/UDP packets and

duplicate itself along with the session scratchpad for each UDP 4-tuples.

In this way, we keep Click’s modularity but have a very much streamlined default

case. Context links can be omitted to use a more refined FlowDispatcher if the user

wants a finer control on classification.

FromDevice (...) − > FlowClassifier ∼> IPIn ∼> UDPIn(TIMEOUT 300) ∼>

WordMatcher(ATTACK , MODE REMOVE) − > UDPOut − > IPOut − > ToDevice (1);

Figure 5.14: Configuration for a transparent middlebox that removes the word "AT-
TACK" of UDP flow passing by, even across packets. As UDP does not implement con-
nection semantics, the UDPIn element can set the session timeout to some value, here 300
seconds.

Using a HTTPIn context entry after a UDPIn context entry would work out of the

box, but of course would behave unpredictably when some packets are lost or reordered,

as UDP does not ensure any of those.

155

5. AN NFV DATAPLANE

5.6.5 Socket-like abstraction

As the elements of a FastClick configuration manipulate batches of packets, it is not

convenient for a developer to perform some operations such as searching a specific

pattern in the flow. We provide an iterator-like object reminiscent of FlowOS[44].

Initially, the iterator points to the first byte of the current level in the batch of packets.

When calling iterator++, it may cross a border seamlessly according to the current

context. If the processing function returns with the iterator in the middle of a packet,

all previous packets before the iterator point will be processed through the rest of the

graph. A request for more data will be propagated through the context for the packets

after the iterator point. If the iterator was at the last packet, all packets will go through.

This abstraction allows to implement new VNF components that would appear

complex in only a few lines. As with vanilla Click and later FastClick, we expect the

base of elements that take advantage of the context/session scratchpad to grow. We

already provide multiple generic VNF elements that act on the current context such as

regular expression matcher, packet counter, load balancer and an accelerated NAT.

Implementation details: the StackElement classes
StackStateElement<Derived, T> is similar to the FlowStateElement<Derived,

T> except that the event it provides rely on the context and not on arbitrary time-
outs and release functions. If new_flow returns false, the context’s close connection
request will be called to kill the flow and discard all subsequent packets. The re-
lease_flow function will be called when the stack decides to release the flow (such
as TCP timing out or receiving a RST or an ACK for a FIN).

StackBufferedElement<Derived, T> is the most refined template implementing
the socket-like abstraction explained in this section. Instead of the push_batch func-
tion the user needs to implement a int process_data(T*, FlowBufferContentIter&)
function that will be called with the iterator over new available data, starting where
the user left it at last call. If the function returns a non-zero value, the data is
destroyed and the close connection request propagated to the context. If the iterator
is returned, but not at the end of the flow, a request for more data is made to the
context, and packets before the iterator point are pushed to the next element.

Each of the StackElement and FlowElement helpers only add a few lines over each
other, proving the case for CRTP’s inlining instead of using register_event functions
that call each other leading to long chains of functions doing not much work.

�

156

5.7 Performance evaluation

5.7 Performance evaluation

This section discusses our results under various test cases. We start by demonstrat-

ing the performances in a few empirical or innovative test cases and then study the

advantages while building a service chain composed of multiple of those test cases.

5.7.1 Stateless firewall

1200 1400 1600 1800 2000 2200 2400
CPU Frequency (MHz)

0

5

10

15

20

25

RX
 T

hr
ou

gh
pu

t(G
bi

ts
/s

)

IPTable
Vanilla Click
Fastclick
MiddleClick

1200 1400 1600 1800 2000 2200 2400
CPU Frequency (MHz)

100

1000

10000

La
te

nc
y

(µ
s)

IPTable
Vanilla Click
Fastclick
MiddleClick

Figure 5.15: WAN to LAN throughput and latency of a stateless firewall using 2 cores
(one per side), except for Vanilla Click which uses 4.

To study the impact of the classification process, we built a stateless firewall test case

both with iptables, Vanilla Click (using PCAP for I/O), FastClick, and MiddleClick.

The device under test (DUT) has an Intelr Xeonr E5-2630 v3 CPU with 8 cores at 2.4

GHz, 32 GB of RAM, and is connected to a switch using two 40 Gbps Intelr XL710

cards. The setup is similar to the campus router presented in section 3.2.1, using a

second identical generator machine to replay traffic traces. However, in this test the

DUT acts as a firewall between the WAN and the LAN, in a similar position than

the one used to capture the traces. The traces are replayed according to their original

157

5. AN NFV DATAPLANE

direction, and the rules are created in consequence (e.g. dropping traffic with a source

IP address of the internal network coming towards the LAN, accept only known ports,

etc) to a list of around 20 rules. This test case is representative of small and mid-end

customers who want to do some basic security checks at the first point of connection of

their network before sending the traffic towards diverse appliances. The inbound rules

drop about 30% of the traffic, while the outbound rules never drop traffic, as our campus

has already a firewall that dropped bad outbound traffic before the capture point. 30%

of the traffic may seem huge, but the point of capture is actually before the University

firewall and it is therefore capturing inbound bad traffic. Also, as this first case is

stateless, some inbound packets are rejected as they would usually be accepted because

they are related to a connection initiated inside the campus. To ensure consistency (and

not especially best performances) we disabled all motherboard turbo abilities, CPU P-

states and down or up-scaling. CPU Cores 1 to 4 and corresponding hyperthreads are

isolated using the isolcpus Linux command line. The tuning is done according to what

was discussed in chapter 3 to max out the performances regarding I/O, batching,

To be able to make comparisons, all implementations of the firewall run on two cores,

except the Vanilla Click one which uses 4 cores to avoid the receive livelock problem,

assigning 2 cores for interrupts and 2 others for Click itself (see chapter 2).

All solutions implement a very simple routing table of two rules to direct the traffic

against the right port. This is done to compare more honestly towards the Linux iptables

module where routing cannot be avoided. Although technically the firewall could be

fully transparent.

Figure 5.15 shows the results of the firewall test case for the WAN to LAN side.

We omit the other direction as it is not under high load. As expected, the heavy Linux

network stack is falling way behind FastClick or MiddleClick solutions, and Click is even

worse as it does just more work after the packet has traversed the OS stack. Again,

refer to chapter 2 to understand the problem behind the Vanilla Click configuration.

This test only pushes the MiddleClick classification upfront in a more complex struc-

ture which is not completely used as this example is stateless and therefore does not re-

quire any session. The test case shows that this much more complex classification struc-

ture than the one used by the Click IPFilter element used for the Click and FastClick

implementations of the firewall does impact the performances, but it stays minimal.

158

5.7 Performance evaluation

Moreover, MiddleClick passes packets of the same traffic class and same session be-

tween elements, which causes MiddleClick to pass smaller batches between elements,

impacting the throughput a little.

Using a single core would be enough to reach the I/O throughput of the traffic

replayer, hence we scale the CPU frequency to be able to compare solutions under CPU

constraint.

Latency results also show that the addition of the flow classifier does not impact

MiddleClick, with an average latency of 160 µs, while iptables has an average latency

of 1200 µs. Latency is measured using the same system than section 3.2.1. Latency of

packets dropped is omitted, as we have a dropping firewall in the scheme.

5.7.2 NAT

While OpenBox and E2[43] are probably the work closest to MiddleClick, their imple-

mentation is not fully available and this prevents comparing the most interesting parts

of our work. The per-flow metadata of OpenBox is only conceptual, and they do not

tell how they would build and manage a data structure like the FCBs to handle millions

of flows per second, which is, in fact most of this chapter. Moreover OpenBox uses

the very slow Kernel I/O. Bringing DPDK support to OpenBox would lead to actually

re-building FastClick as it is based on Click. E2 allows to use “bytestream vports” allow-

ing to avoid TCP reconstruction, and their per-session Metadata Tags are not available

either. Therefore we would only be able to compare packet based functions, which is

what FastClick proposes and is not much of interest in this chapter. mOS[46] on the

contrary is fully available and proposes a NAT implementation that we can compare

against.

We simulate 128 concurrent HTTP clients using WRK[107] on the generator ma-

chine that generates requests towards a NAT that will forward the requests towards an

HTTP server running NGINX. Note that the 128 concurrent clients executes requests

in loop, leading to a theorical ∼ 3M requests per seconds for 1K files at 40Gbits/s. The

server is connected to the switch with a 40G Intelr XL710 NIC machine that has an

Intelr Xeonr E5-2683 v4 with 16 cores at 2.10GHz. Figure 5.16 shows the performance

of a MiddleClick-implemented NAT, the mOS one and the standard Linux NAT.

MiddleClick performs better than both Linux and mOS. mOS also impose serious

limitations as its model prevents using L2/L3 features such as learning bridge or ARP

159

5. AN NFV DATAPLANE

1KB 8KB 64KB 512KB 4MB 32MB 256MB
File size

0

5

10

15

20

25

30

35

40
HT

TP
 T

hr
ou

gh
pu

t (
Gb

its
/s

)

Linux NAT
mOS NAT
MiddleClick NAT

Figure 5.16: Throughput of data downloaded through different NAT implementations
using 128 concurrent connections on one core

1KB 8KB 64KB 512KB 4MB 32MB 256MB
File size

0

1

10

100

1000

Av
er

ag
e

fil
e

do
wn

lo
ad

 ti
m

e
(m

s)

Linux NAT
mOS NAT
MiddleClick NAT

Figure 5.17: Throughput of data downloaded through different NAT implementations
using 128 concurrent connections on one core

queries and therefore only supports a bump-in-the-wire configuration when used in

inline1 mode (mandatory for a NAT), needing multiple static ARP configuration on all

systems on both sides of the “bumped” wire. In its current state, mOS cannot be used

either in a service chain when using DPDK, which is mandatory to have acceptable

userlevel performances. The slowness of mOS can be explained by the much heavier

TCP stack it brings up, mostly unnecessary for a NAT. mOS reproduce the state of

both sides of the connection, speeding therefore a lot of time in timeout management.

In our system, we have a unique connection state with a negligible timeout management

1inline mode refers to a configuration where packets pass through the box, as opposed to a moni-
toring mode where the box receives copies of packets to perform some analysis but does not let them
through

160

5.7 Performance evaluation

cost and when the stream is known not to be modified by the NFVs components, the

checksums are not fully re-computed. Correcting the TCP checksum after address

translation is done directly by computing the difference between the new and the old

parameters.

One advantage of mOS is its relative simplicity on the programming side. As dis-

cussed in section 5.5.1, we propose a mostly similar event-driven layer, while being

a Click extension we still support the modularity prohibited by the TCP-first mOS

approach, allowing ARP handling, DHCP support, or TCP over tunnels.

5.7.3 TCP load-balancing reverse proxy

To evaluate the flow performances of our system against state-of-the art industrial solu-

tions, we built a TCP load-balancing reverse proxy. The proxy balances in a round-robin

way the upcoming HTTP connections to multiple servers, making sure that packets of

the same session go to the same server. It is an application typical of datacenters.

The redirections are done by changing the destination IP address of the requests flow-

ing through the box. The requests traversing the proxy are NATed, to ensure that the

packets go back through the box so the source IP address can be set back to the original

destination address.

We compared a load-balancer implemeted using MiddleClick to HAProxy[84] in TCP

mode and the NGINX[85] reverse proxy. The setup is similar to the NAT experiment.

The proxy solution load-balances in a round-robin way the connections towards different

IP addresses that are actually served by the same NGINX server. We made requests

for file sizes from 0 KB to 256MB.The throughput can be seen in the first graph of

figure 5.18. The “direct” line shows the performance of the testbed itself by removing

completely the DUT and having the generator directly making requests to the server .

To compare the performance of the various solutions in term of latency, figure 5.19

shows the average time to download one object according to the request rate.

Our solution outperforms HAProxy in term of throughput for every object sizes,

ranging from a 3X improvement for small file sizes to a 2.5X improvement with bigger file

sizes. In term of latency MiddleClick achieves an average file download time relatively

close to the limit of the testbed.

161

5. AN NFV DATAPLANE

1KB 8KB 64KB 512KB 4MB 32MB 256MB
File size

0

5

10

15

20

25

30

35

40
Th

ro
ug

hp
ut

 (G
Bi

ts
/s

)

Direct
MiddleClick
HAProxy
NGINX

Figure 5.18: Data downloaded through a load-balancer using 128 concurrent connections
executing as much request as possible to saturate the link. The proxy solution run on one
core to constraint the performance by the CPU and not the test-bench capacity.

8 32 128 512 2048
Request rate (KRequests/s)

1

10

100

1000

Av
er

ag
e

fil
e

do
wn

lo
ad

 ti
m

e
(m

s)

Direct
MiddleClick
HAProxy
NGINX

Figure 5.19: Data downloaded through a load-balancer using 128 concurrent connections
to download a 1K file at an increasing request rate. The proxy solution run on one core.

5.7.4 Service chaining

Figure 5.20 shows the performance of running some service chains on 1 to 4 cores for

8K HTTP requests. First, we compare NAT implementations using MiddleClick and

FastClick. Both of them actually achieve the limit of the testbed. That is 32 Gbps,

using a single core of the dut . However, when adding a statistics VNF simply counting

all bytes per-sessions, FastClick performances drop considerably because of the second

session classification. MiddleClick, however, still achieves the limit of the testbed, as

adding this function only extends the flow table per a few bytes. To further highlight the

advantage of using MiddleClick, we introduce a few more functionalities to the chain.

When adding TCP reconstruction, a hit is introduced that lowers performances to 20

162

5.7 Performance evaluation

Gbps, a cost paid for TCP state management and reordering of TCP packets. Adding

VNFs for flow statistics (byte count per-session but only for the useful payload), a

load balancer, and a computation of a checksum1 induce very little impact as they

will all have their space in the FCB at the same cost, extended to fit all VNFs of the

service chain by MiddleClick without any manual tuning. Adding an IPS (simple string

matcher) induce a bigger hit because of the pattern matching algorithm that must sill

be improved. When using 2 cores, the chains up to the load balancer achieves 32 Gbps,

while 3 cores are enough to run the chain up to the checksum.

1 2 3 4
Number of cores

0

5

10

15

20

25

30

HT
TP

 T
hr

ou
gh

pu
t (

Gb
its

/s
)

MiddleClick NAT
+Stats
+TCP
+Stream stats
+LB
+Checksum
+IPS
FastClick NAT
FastClick NAT+Stats

Figure 5.20: Impact of service chain length

Open Source Availability
MiddleClick is available at [48].

Try it out ! �

1The checksum is a simple 4-byte-by-4-byte sum of the payload that could be used for signature
matching. The checksum from previous packets is directly available in the FCB and the chunk iterator
allows easy iteration over the payload of the stream to update the sum. When two chunks of payload
are not on a 4-byte boundary, the last 1 to 3 bytes are saved in the FCB and added to the sum when
the next packet arrives.

163

5. AN NFV DATAPLANE

164

6

Cooperative infrastructure

In this chapter, we discuss how our middlebox platform can be integrated into a large

scale network composed of Software Defined Networking (SDN)-enabled switches to do

some pre-processing before the traffic hits the NFV servers.

Section 6.1 focuses on techniques to accelerate MiddleClick unified classification.

We show how to take advantage of the consolidation of all classifiers inside MiddleClick

to offload part or all the classification to available hardware such as modern NICs or a

SDN infrastructure.

Section 6.2 tackles the problem of combining multiple VNF chains in a single box.

Current approaches usually rely on software classification to dispatch packets among

multiple processes or multiple virtual machines. Usually those systems use one or more

cores to dispatch packets to other cores that actually execute the VNFs themselves[43,

108]. Other solutions use the NIC itself to send packets back and forth between VNFs,

eventually leading to a bottleneck on the PCI Express link[109, 110]. We propose to use

SDN switches to accelerate the classification between multiple VNF chains running on

the same box while tagging the packets according to their traffic class. The offloading

allows to reduce the work done by the server itself but most of all, the tagging avoids

using CPU cores for the sole purpose of dispatching packets between isolated service

chains. Indeed the NIC can strip the tag and direct packets towards one service queue

per VNF, that will directly be opened and read by the isolated tenant.

165

6. COOPERATIVE INFRASTRUCTURE

This chapter in a nutshell
I Context of this chapter

• Recent NICs start to show some classification capabilities

• Datacenters have growing intelligence in the network infrastructure thanks to
SDN-enabled switches

• Recent approaches use CPU to dispatch the packets to the right NFV applica-
tion in software

I Highlight of our main contributions in this chapter

• Using the unified classifier of MiddleClick, the static classification part can be
offloaded to upfront hardware

• The classification of multiple service chains can be aggregated by a controller
to tag packets and allow them to be directly received by each isolated service
chains

�

6.1 Traffic class classification offloading

It is possible to take advantage of MiddleClick’s unified classification to offload it to

some classification available on today’s Smart NICs[103, 104], or SDN-enabled switches

using e.g. the OpenFlow protocol.

The idea is to tag packets with flow identifiers when they enter the system. Those

flow IDs are then used to dispatch the packets to the right middlebox components, and

serve as keys to retrieve flow-related metadata (the corresponding FCBs in MiddleClick).

For example, an OpenFlow switch can be set up to replace the VLAN ID of packets

according to the type of flow. An example match-action table for our running example

from figure 5.6 is given in table 6.1. It is technically equivalent to table 5.1, where each

FCB is simply numbered in order. A simple tag-to-FCB table can be used to avoid

classifying in software.

This approach has some limitations, however:

• The VLAN ID size is only 12 bits, meaning only 4096 flow classes are available. If

more classes are needed, a SDN switch capable of modifying larger packet fields

(e.g. MPLS tag) or adding new bytes to packets must be used.

166

6.1 Traffic class classification offloading

Match Action

ETH_TYPE=IP, IP_PROTO=UDP VLAN=0
ETH_TYPE=IP, IP_PROTO=TCP, TCP_DST=80 VLAN=1
ETH_TYPE=ARP, ARP_OP=0 VLAN=2
ETH_TYPE=ARP, ARP_OP=1 VLAN=3
* Drop

Table 6.1: OpenFlow rules for tagging packets in the example of figure 5.6.

• It makes it harder to use VLANs in the network. However, a match on the initial

VLAN ID can be done, provided that not too many VLANs are used. E.g. if

the HTTP middlebox in our example was also discriminating traffic based on the

VLAN, and there were four VLANs, we could simply duplicate the HTTP rule

four times, once per original VLAN (i.e. rather than having one unique flow ID

for all HTTP packets, we would have one per original VLAN ID).

• We are limited by the matching capacities of the upfront SDN switch. If we need

to classify on unsupported packet fields, we can still classify as much as we can

on the SDN switch, and only do the remaining classification tasks in software.

• Finally, and more importantly, current OpenFlow switches can only deal with

static classification, not session handling. Having a separate flow ID per ses-

sion (e.g. TCP 4-tuple) would require a controller to add new rules dynamically

whenever new sessions are seen, that would be equivalent to migrate the Mid-

dleClick classification to the controller. Moreover, currently there are no Open-

Flow switches that can handle millions of OpenFlow flow creation or modification

messages. Hopefully, SDN switches might gain the ability to directly create new

rules on the fly in the future (e.g. see the DevoFlow proposal [111]).

One can even avoid classifying in software the first packet of a flow using SmartNICs

capabilities to run the classification inside the NIC itself, and dispatch packets to queue

according to their traffic classes. A packet from a queue must match one of the corre-

sponding rules, reducing the classification work, or even avoid it entirely if only one rule

leads to that queue. The limiting factor here is the number of available queues, and the

matching capacities of the NICs. What we would want to see in future hardware, is the

possibility to ensure that a queue will correspond to a single flow. But while our Intel

X520 NICs have FlowDirector, a mechanism to map classification rules to different NIC

167

6. COOPERATIVE INFRASTRUCTURE

queues, the masks for the fields are global, meaning that if one flow specification has a

wildcard (e.g. on a source port), each other flow specification will use the same wildcard.

Having the classification unified at the entry of the box could also allow us to use Intel’s

Flow Director as a cache like in [112] with a gain of 40% in classification throughput

using an heuristic to cache elephant flows. However regarding FlowDirector, Intel is

evolving in the opposite direction, as recent NICs do not support masking on standard

IP, TCP or UDP fields anymore, leading to very limited unique-field classification.

6.2 Service chain classification offloading

Contribution notice
Most of section 6.2 is directly relating part of “Metron: NFV Service Chains

at the True Speed of the Underlying Hardware”[25], our publication presented at
NSDI’18, resulting from a collaboration between Georgios Katsikas (RISE SICS),
Tom Barbette (University of Liege), Dejan Kostić (KTH Royal Institute of Tech-
nology), Rebecca Steinert (RISE SICS) and Gerald Q. Maguire Jr. (KTH Royal
Institute of Technology).

One man cannot solve all the world’s problems �

For efficiency and to allow consolidation, it is best to allow combining multiple

service chains inside the same NFV dataplane agent. A unique server can then run

multiple service chains and scale or combine them to reduce energy consumption.

The solution we propose is to use a SDN switch to implement the service chain

selection, that could possibly run on different NFV servers. The switch directs the

packets towards the right server, but also tags packets so the NFV server can directly

dispatch packets to the right service chain in hardware. Each NFV server runs a master

agent that is responsible of advertising the tagging methods that its NIC support (e.g.

VLAN, MPLS, ...) to a controller that can then program the SDN switch accordingly.

The master agent is responsible for bringing up the service chains when the controller

sends a request to launch a new service chain. The master agent configures the NIC

according to the tags that the controller chose as stated in the request, which will be

from one of the tagging methods from the list of supported tagging methods the master

agent previously advertised.

This chain of action is depicted in figure 6.1.

168

6.2 Service chain classification offloading

Figure 6.1: Architecture to use tagging to dispatch packets to multiple service chains
running inside a single NFV server

When a dataplane agent is launched, the agent advertises the available NICs and

CPU cores of the NFV server it controls. The agent also advertises the tagging capabil-

ities of the NIC (figure 6.1 - 1), e.g. the ability to directly send packets with a specific

VLAN to a hardware queue. For example, Intel 82599 chipsets support tagging using

ethernet MAC addresses and/or VLAN.

The controller can then choose one of the supported tagging methods to insert rules

inside the upfront SDN switch to tag packets for a specific service chain and to directs

them towards the right NFV server (figure 6.1 - 2).

The controller can then ask the master agent to launch the service chain software.

The service chain may run directly in the same process, in a new child process or in a

fully virtual machines. We’ll refer to a tenant running one of the service chains as a

slave agent. Most NICs are now able to expose a subset of their hardware queues to

a children process (e.g. using VMDq with our Intel NICs) or virtual machines (using

PCIeVirtual Functions (VFs)). In contrast, the slave could also run inside the same

process context if isolation is provided by safe-language checkings like NetBricks[42].

The master agent can then instruct the NIC to direct packets with the service chain’s

tags to a specific hardware queue (figure 6.1 - 4) so the slave agent can directly access

the queue without any packet copy or VM entry/exit if using virtualization.

169

6. COOPERATIVE INFRASTRUCTURE

The master can finally launch the slave that implements the corresponding service

chain itself (figure 6.1 - 5). In the example from figure 6.1, we show the master/slave

process approach. The slave agent is only accessing its subset of queues knowing that,

thanks to the tagging made by the SDN switch, all packets in its dedicated queues are

of the traffic class it has to handle. This technique could possibly be combined with the

idea in section 6.1, sending multiple tags to the service chain that each refer to specific

traffic classes destined to the very same service chain but for different components. For

example, one tag/queue for HTTP traffic, one tag/queue for UDP traffic, ...

The key differentiator between this approach and earlier NFV work is the tagging

module shown in figure 6.1. This module exposes a map with tag types and values

that each NIC can use to interact with each CPU core of a server and this information

is advertised to the controller. The controller can remotely and dynamically associate

traffic classes to specific tags in order to enforce a specific traffic class affinity, thus con-

trolling the distribution of the load. More importantly, this traffic steering mechanism

is applied by the hardware (i.e. NICs), hence tadditional CPU cores are not used for

classification in the dataplane agent (as E2 [43] does) to perform this task, thus packets

are directly dispatched to the CPU core that executes their specific packet processing

graph.

6.2.1 Evaluation

To validate the idea and measure how much performance could be gained from avoid-

ing software service chain classification inside the NFV server itself, we made a static

experiment without the controller, manually assigning tags and launching rules.

For the data plane, we implemented the agent on top of MiddleClick and we used

the Virtual Machine Device Queues (VMDq) filters of DPDK 17.02 to implement the

hardware dispatching based on the values of the destination MAC address and VLAN

ID fields. Our prototype uses the destination MAC address as a filter, because the large

address space of this header field provides unique tags for trillions of service chains.

Our testbed consists of 2 identical machines, each with a dual socket 16-core Intelr

Xeonr CPU E5-2667 v3 clocked at 3.20GHz. The cache sizes are: 2x32KB L1 (in-

struction and data caches), 256KB L2, and 20MB L3. Hyper-threading is disabled and

the OS is the Ubuntu 16.04.2 distribution with Linux kernel v.4.4. Each machine has

two dual-port 10GbE Intel 82599 ES NICs. We use a NoviFlow 1132 OpenFlow switch

170

6.2 Service chain classification offloading

2 4 6 8 10 12 14 16
Number of cores

2

3

4

5

5

7

La
te

nc
y

(m
s)

RSS dispatcher (OpenBox)
Software dispatcher (emulated E2)
Offloaded dispatcher and firewall

(a) Latency

2 4 6 8 10 12 14 16
Number of cores

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (G

bi
ts

/s
)

RSS dispatcher (OpenBox)
Software dispatcher (emulated E2)
Offloaded dispatcher and firewall

(b) Throughput

Figure 6.2: Performance of a campus firewall with 1000 rules at 40Gbps, using our system,
(ii) an accelerated version of OpenBox using RSS, (iii) a software-based dispatcher that
emulates the performance of E2.

171

6. COOPERATIVE INFRASTRUCTURE

with firmware version NW400.2.2 and we attach the two machines to this switch. The

4 ports of the first machine are connected to the first 4 ports of the switch to inject

traffic at 40Gbps.

To test the overall system performance at scale, we deploy a service chain of a

campus firewall, followed by a DPI. The firewall implements access control using a list

of 1000 rules, generated using the traces to ensure all traffic is accepted. The second

VNF deeply inspects the output of the firewall using a set of regular expressions similar

to Snort (taken by [41]).

We compare our approach against two state of the art systems. Specifically, an

accelerated version of OpenBox based on RSS and an emulated version of E2 [43]. In

the latter case we emulate E2’s SoftNIC by using a dedicated CPU core that dispatches

packets to the remaining CPU cores of the system (1-15), where the service chains are

executed. 1

We injected a real campus trace that exercises all the rules of the firewall at 40

Gbps and measured the performance of the three approaches. Figure 6.2 visualizes the

results.

First, we deploy only the firewall VNF of this service chain to quantify the overhead

of running this VNF in software, as compared to an offloaded firewall. Indeed, the

controller will place all the classification inside the SDN switch, leaving no processing

to do for the VNF. To fairly compare our approach against the other two approaches, we

start a simple forwarding VNF in the server, such that all packets follow the exact same

path (generator, switch, server, switch, and generator) in all of the three experiments.

Figure 6.2b shows that OpenBox and the emulated E2 can achieve this large firewall

at line-rate. However, this is only possible if half (or more) of the server’s CPU cores

are utilized. Specifically, OpenBox requires 8 cores, while the emulated E2 requires 2

additional cores. In contrast, our approach can totally offload the firewall rules to the

switch, which can easily realize the access control list (ACL) at line-rate, thus one CPU

core at the server is enough to achieve the maximum throughput.

1The graphs of the emulated E2 in Figure 6.2 start from core 2 because the first core is reserved
for dispatching traffic to the VNFs.

172

6.2 Service chain classification offloading

2 4 6 8 10 12 14 16
Number of cores

2

4

6

8

10

12

14

16

La
te

nc
y

(m
s)

RSS dispatcher (OpenBox)
Software dispatcher (emulated E2)
Offloaded dispatcher and firewall

(a) Latency

2 4 6 8 10 12 14 16
Number of cores

0

5

10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (G

bi
ts

/s
)

RSS dispatcher (OpenBox)
Software dispatcher (emulated E2)
Offloaded dispatcher and firewall

(b) Throughput

Figure 6.3: Performance of a campus firewall with 1000 rules followed by a DPI at 40
Gbps, using: (i) Our system, (ii) an accelerated version of OpenBox using RSS, (iii) a
software-based dispatcher that emulates the performance of E2.

173

6. COOPERATIVE INFRASTRUCTURE

Looking at the latency of the three approaches (Figure 6.2a), it becomes evident

that software-based dispatching (yellow solid triangles) inflicts a large amount of un-

necessary latency. Hardware dispatching using RSS (green solid circles) achieves sub-

stantially lower latency because it avoids inter-core communication. However, since the

firewall introduces heavy classification in software, OpenBox still exhibits high latency

that cannot be decreased by simply increasing the number of cores. Specifically, using

16 CPU cores achieves comparable latency with just 4 cores. In contrast, our approach

achieves constant low latency by exploiting the switch’s capability to match large num-

ber of rules at line-rate. This latency is 2.7-4.3x lower than the latency achieved by the

emulated E2 and OpenBox respectively, when each system uses only one CPU core for

processing the VNF (emulated E2 requires 2 in this case). At the full capacity of the

server, the latency among the three systems is comparable; our approach outperforms

the emulated E2 and OpenBox by 6% and 19%.

Next, we chain this firewall with a DPI VNF in order to realize the entire service

chain. This chaining further pushes the performance limits of the three approaches as

shown by the dashed lines in Figure 6.3. In this case, our system implements the DPI

in software.

Our approach exploits the joint network and server capacity to scale even complex

VNFs, such as DPI, at line-rate (red dashed squares in Figure 6.3b). Most importantly,

our approach requires only 11 CPU cores on a single machine to achieve 40G, thus

substantially shifting the scaling point for larger service chains. The latency results

further highlight the system abilities. With 11 CPU cores, the server deeply inspects

the packets for this service chain by inflicting only 17% more latency than the latency

required to realize only the firewall. At the same time, OpenBox and the emulated

E2 inflict 40-96% more latency than our approach, with almost half of the throughput.

This difference is growing more rapidly when fewer CPU cores are utilized. For example,

when each system uses one CPU core our approach achieves 67-327% lower latency than

OpenBox and the emulated E2 respectively.

As we explained in our approach (see Section 6.2), the secret in the system ability

to scale complex VNFs (e.g. DPI) lies in the way that the incoming traffic classes are

tagged and then dispatched to the right CPU cores.

174

7

Experimental automation and
reproducibility

Trying all combinations at once

In this chapter we present a Network Performance Framework (NPF) which allows

replaying tests automatically, from software download and compilation up to ready-for-

paper graphs.

NPF is based on comprehensive test description files, which describe how to run a

single test. They describe which software to run, how and where to run them. Each test

comes with sets of parameters to try (e.g. number of threads, buffers size, packet length,

packet rate, . . .), that NPF can use to compare performance metrics (e.g. throughput,

delay, . . .) of different programs (or versions of a program), for all possible combinations

of parameters.

NPF takes care of launching the involved software on a Device Under Test (DUT)

and some packet generator on another computer. NPF launches software across a clus-

ter, replacing MAC, IP addresses or PCIe addresses in the configuration lines according

to the NICs involved. It is able to change NICs drivers to use DPDK, Netmap or the

normal drivers.

By sharing their test files, researchers not only provide a way to rebuild automati-

cally all the graphs in their papers, but they also share the much larger range of settings

they tried to convince themselves their results were fair, using built-in statistical and

machine learning tools.

175

7. EXPERIMENTAL AUTOMATION AND REPRODUCIBILITY

Most of the graphs presented in this thesis are actually available as NPF experiments.

Therefore most experiments can be reproduced by invoking a single NPF line, describing

the testbed and which experiment to launch. One only needs two or three computers

according to the experiment, interconnected by high-speed NICs.

This chapter in a nutshell
I Context of this chapter

• There are few experiment manager to organize testing in the context of high-
speed networking. While most networking topics can be simulated or virtual-
ized, high-speed networking requires real hardware access.

• The literature in the high speed networking topic presents a generalized repro-
ducibility problem[113, 114, 115].

I Highlight of our main contributions in this chapter

• We build NPF, a tool to automate a test case with many parameters to vary.

• Tests can run across a cluster automatically, changing addresses and parameters
according to the environment. That eases the reproducibility problem.

• NPF allows to quickly get insight into understanding the many results of an
experiment using an automatic graphing system and statistical tools.

�

7.1 Network Performance Framework

Frameworks for network test definition and execution are usually based on emulation

or virtualization. Both of those are not suitable for high-speed networking tests as they

induce either severe performance hits or involve hardware-specific features.

This leads to a plethora of recent papers where the description of the tests behind

numbers and figures are in the better cases barely comprehensive scripts to be executed

on some not well-defined cluster of nodes. It is not rare that the code is not even

available, or missing pieces.

[113] argues in favour of moving from repeatable research to replayable research,

which is still an open problem that NPF tries to tackle.

176

7.1 Network Performance Framework

NPF is an orchestrator to be used to reproduce multiple self-contained tests across

a set of nodes. NPF allows to easily run the same tests on different hardware and

configurations and as a result ensures robustness of the tested solution. However, it

does not support describing or ensuring the physical layout behind the tests.

%info
IPerf 3 test
This tests measures the throughput of a local TCP connection
%variables
PARALLEL=[1-8]
ZEROCOPY={:without,-Z:with}
%config
var_names={PARALLEL:Number of parallel connexions,ZEROCOPY:Zero-Copy}
%script
iperf3 -s &> /dev/null
%script
echo "RESULT $(iperf3 -c localhost -P $PARALLEL $ZEROCOPY \

| tail -n 3 | grep -ioE "[0-9.]+ kbits")"

(a) The test description file.

./npf-run.py iperf –testie tests/tcp/01-iperf.testie.

(b) The command to launch NPF on this testie file.

(c) Automatically generated graph displaying the results of the experiment after being

launched with (b)

Figure 7.1: Simple configuration to test TCP throughput of a local connection using
iPerf3, and the resulting graph produced by NPF.

NPF can download, compile and distribute software under test across a cluster, or

on a single node. It will handle a series of scripts to run across nodes, and re-execute

the test under various different settings as described by a single testie file. Testies are

freely inspired by the Click Modular Router[11] test suite, but NPF is suited to test

performance of any networking software such as middleboxes or NFV platforms.

177

7. EXPERIMENTAL AUTOMATION AND REPRODUCIBILITY

Figure 7.1 (a) shows a first simple local testie that will run iPerf3 to evaluate the

performance we can expect from a localhost TCP connection, using different parallelism

parameters, both with and without the zero-copy feature of Linux TCP sockets. The

resulting graph as produced by NPF can be seen in figure 7.1 (c), automatically gener-

ated after launching the experiment, i.e. with the command in figure 7.1 (b). Definition

of testies is further discussed in section 7.2.

For strict result reproducibility, we expect NPF to be used in conjunction with

physical testbeds platforms such as Emulab[116] or PlanetLab[117]. Those give access

to strictly defined nodes and their topology (either local or global), but do not provide

the ability to describe and manage the tests themselves up to the graph generation

and analysis we present in this chapter, nor do they provide a way to share the tests

configurations and parameters in an easily deployable and shareable fashion.

In the same spirit, virtual environments like Mininet[118], Mininet-HiFi[119] or

Netkit[120] allow to virtualize the testbed. Some others emulate it, as the the NS

simulator[121] does. Both solutions are fine for functional verifications and to get a

first glimpse into performance, but introduce slowdowns which prevent ground truth

when trying to study the behaviour of high-speed software. Virtualization and emu-

lation often prevent running tests that rely on hardware, and studies specific features

and their limitations (e.g. how the NIC behave at multi-10Gbps, hardware offloading

capabilities, multi-queues load-balancing, . . .). Those also limit the testing of software

requiring kernel bypass, like the DPDK[31] and Netmap[32] frameworks that are often

used as an essential brick for high-speed software networking.

NEPI[122] allowed to abstract the experiment environment, using a python interface.

We believe our framework is easier to use, as the most basics test description file is only a

list of bash lines that researchers would usually manually launch on different computers.

One can then add support for multiple variables, automatic binding, roles for cluster

definition, etc. . . NPF has virtually no learning curve. We believe it is therefore much

easier to adopt than other systems because it allows for a progressive adoption. The

syntax of variables makes it very easy to automate the experiment for different values

and produce graphs automatically, a feature not provided by NEPI.

Section 7.3 discusses the multiple NPF tools allowing to understand the data gener-

ated when many variables are involved, i.e. mainly the relation between the parameters

and the performance.

178

7.2 Architecture

7.2 Architecture

NPF itself is written in Python 3 and relies on one testie configuration file to describe a

single test. NPF comes with a set of repo files describing how to fetch and build multiple

networking software. We expect the set of repo files to grow so that researchers only

need to share their testies files.

7.2.1 Testie

Testies are organised in sections, of which a complete definition can be found at [52]. In

a nutshell, the %variables section defines a list of variables and their possible values,

given as a list, an interval, a logarithmic interval, . . . up to the ability to generate a list

of firewall rules. NPF will replace all $variable occurrences in the %script sections,

which define bash commands to run for the test. Variables will also be replaced in a

%file sections describing some files to create before running the scripts. While the

script language being bash may seems a bit limiting, a simple line is usually sufficient

to compile or build another program with its source defined in a %file section. Table

7.1 lists the available sections.

7.2.1.1 Variables expansion

NPF will parse the testie file, and call the handler of each section implemented as
Section objects. The %variables sections understand multiple kind of variables, like linear
increasing ranges, exponential ranges, list, . . . Each variable type is associated to a Variable
object that defines a regex to be tried on each line of the %variables section. The Variable
objects implement a makeValues() function that will return the list of possible values for
the variable. The execution function will iterate through each variables, re-creating the the
%file and re-executing %script sections for each possible combination of the values.

7.2.1.2 Initialization and pre-defined scripts

%init sections allow to execute some special scripts before any of the runs start. This allows
to initialize NICs, set IP addresses, routing tables, system options, Linux TCP settings, . . .
As most of those %init sections are actually identical across tests, NPF introduce the
%import section that allows to import other module testie that execute specific tasks. A
module is like any other testie, with init and script sections.

179

7. EXPERIMENTAL AUTOMATION AND REPRODUCIBILITY

Section Description Example
info Title of the test on the first line, followed

by the human-readable description of what
it does.

%info
A simple test
This is a simple example testie that will [...]

config Define configuration options, like the num-
ber of runs to execute, informations about
the units, the color of the lines in the
graph, ... All configurations options are
optional.

%config
n_retry=1
n_runs=3
var_name={BURST:Number of packets}
var_format={BURST:%d}

variables Defines variables that will be replaced in
the script and file sections. The test will
be executed for all set of values resulting
from the crossproduct of all variables

%variables
PARALLEL=[1-8] //1,2,3, ... 8
FILE_SIZE=[1*1024] //1,2,4, ... 1024
ODD=[1-17#2] //1,3,5, ... 17

file NAME Create a file named NAME, with the con-
tent of the section. Variables in the file will
be replaced by their values

%file ODD
Here is an odd value : $ODD

script Executes a bash script, its content is also
searched for occurence of variables. Scripts
can have some specific parameters, like au-
tokill=true which will stop all scripts when
the given one finishes, or delay to execute
it after some time.

%script autokill=true delay=2
echo "Downloading a file of $FILE_SIZE KB..."
wrk http://$HOST/$FILE_SIZE -c $PARALLEL

init Similar to script, but executed before run-
ning a test.

%init
ifconfig ${server:0:ifname} promisc

late_variables Allows to define variables that will be cre-
ated at each run of the test. This allows to
generate part of files or scripts according
to the value of the variable for the current
test. For example, duplicate some line of a
configuration file according to the number
of CPU used in the test.

%late_variables
MULTITHREAD=$((1 if $CPU >1 else 0))
PIPELINE=DUPLICATE(CPU , pCPU ::

Pipeliner() ->myElement;)

import MOD-
ULE

Import a “module” testie. Modules are nor-
mal testie files but intended to be imported
in another script. Modules generally im-
plement traffic generators, allows to bind
devices to drivers, ...

%import fastclick-replay-single trace=trace.pcap

Table 7.1: Testie file sections

180

7.2 Architecture

click.testie

name=Click
branch=master
url=https://github.com/kohler/click.git
method=git
bin_folder=bin
bin_name=click
configure=./configure --disable-linuxmodule

--enable-userlevel --enable-user-multithread
tags=click,vanilla

fastclick.testie

parent=click
name=FastClick
url=https://github.com/tbarbette/

fastclick.git
configure+=--enable-batch --enable-dpdk
tags+=fastclick,batching,dpdk

Figure 7.2: Example of software source definition

7.2.1.3 Results parsing

NPF will parse the output of script execution searching for “RESULT [0-9.]+” and some
standard units suffix (e.g. bps, Gbps, ms, us, µs, . . .), or a user-defined pattern. It will also
re-run each test multiple times, as defined by the n_runs configuration variable given in the
%config section (defaults to 3), to compute and plot standard deviation and ensure test
stability for the given set of variable values.

7.2.1.4 Regression

NPF includes a regression tool able to compare performance of multiple software versions,
ensuring that one version did not break the performance. The %config section has also
multiple parameters to tweak the variance the regression tool will accept, reject outlying
values, or run the test again multiple times before rejecting a new version of the software
and mailing the author about a possible regression.

7.2.2 Software

Testie files are executed against a specific software in either a given version, or its latest
version if not specified. Currently, two download/install methods are supported: git and
HTTP. The git method is able to go back in history to review performance changes across
versions automatically. Using git, NPF can watch for new commits and send a regression
report to some people and the commit author.

Figure 7.2 shows the repo definition for the Click Modular Router[11], and demonstrates
how to extend a configuration file using the parent keyword with FastClick[54], which is
based upon Click and can keep most of its parameters. Most of the examples here use Click
and its variants as Click has been the basis of most our recent work. However NPF is not

181

7. EXPERIMENTAL AUTOMATION AND REPRODUCIBILITY

%variables
PARALLEL=[1*8]
ZEROCOPY={:without,-Z:with}

%iperf3:script@server
iperf3 -s &> /dev/null
%iperf3:script@client delay=1
echo "RESULT $(iperf3 -c ${server:0:ip} -P $PARALLEL $ZEROCOPY \

| tail -n 3 | grep -ioE "[0-9.]+ kbits")"

%netperf:script@server
netserver -D -4 &> /dev/null
%netperf:script@client delay=1
echo "RESULT $(netperf -f kbits -l 2 -n $PARALLEL -v 0 -P 0 ${server:0:ip}kbits"

(a) Main parts of a testie that compares multiple different pieces of software by using tags,
and runs client and server scripts on remote nodes using role definitions.

(b) Output graph.

Figure 7.3: Advanced configuration supporting remote execution and multiple software

limited to Click, one can use the Moongen[123] generator to test the performance of any
networking software, for instance.

Repo files may also define a list of tags, allowing to use some specific configuration,
script, files or variables in the testie file according to the software under test. Figure 7.3 (a)
shows how tags are used to invoke the right script when comparing iPerf and Netperf. The
NPF comparator tool uses this feature to compare multiple piece of software against each
other as depicted in figure 7.3 (b).

182

7.2 Architecture

7.2.3 Cluster

All %script sections of testies can define a role they should be associated to, intended to
run on specific nodes. Example roles are client (or packet generator), dut (device under
test), and server (or traffic sink).

Roles such as client and server in figure 7.3 are mapped to real nodes using the NPF
--cluster argument followed by mapping parameters like

npf-run.py --testie my.testie --cluster client=node-01
server=tom@node-02.ulg.ac.be:/home/tom/npf

In this example, the client role maps to a specific node configuration file that will define
node-01. The server role maps directly to a node. The node file defines some variables such
as the IP and MAC addresses of each dataplane NIC of the given node. %script or %file
sections can use special variables that will be replaced by other nodes IP or MAC addresses
to allow dynamic connection between roles without knowing the nodes specifics a priori. In
figure 7.3 (a) the ${server:0:ip} variable will be replaced by the IP of the first NIC of the
node taking the server role.

Communication between NPF and the nodes is done through SSH. Undefined roles run
locally, so that in the configuration of figure 7.3, the iPerf test is identical to the one in
figure 7.1 when roles are not mapped through the --cluster argument.

7.2.4 Multiple metrics

NPF is able to understand multiple results from an experiment. The proposed technique
is to output lines such as "RESULT-TYPE VALUE unit" where TYPE is the result type
(latency, throughput, number of packets per seconds, ...). Alternatively multiple regular
expressions can be defined in the testie file.

7.2.5 Data representation

Figure 7.4 show the representation of results in memory. The dataset is kept in memory as
a dictionary data structure of Run keys mapping results. A Run object is a list of variables
as defined in the %variables sections, and the values fixed for a specific run. Results are
themselves kept as a dictionary of TYPEs as keys with the list of values returned by the
experiment for the given type. Individuals values are not aggregated (e.g. as an average of
values per run) to allow the user to ask for specifics statistical metrics such as the median,
compute the standard deviation,

NPF includes a result cache. After each execution, the dataset will be stored in a file,
per test, per software under test and per version. When re-executing a test, the cache is

183

7. EXPERIMENTAL AUTOMATION AND REPRODUCIBILITY

Dataset

Run (PARALLEL = 1, ZC = 0)
THROUGHPUT

LATENCY

17.86 , 17.92 , 17.62

1.28 , 1.32 , 1.42

Run (PARALLEL = 2, ZC = 0)
THROUGHPUT

LATENCY

19.32 , 19.41 , 19.28

1.10 , 1.08 , 1.21

Run (PARALLEL = 8, ZC = 1)

...

THROUGHPUT

LATENCY

29.18 , 29.32 , 29.50

0.92 , 0.83 , 0.87

Figure 7.4: Internal representation of the results of a full execution

looked for existing results for the same testie file, with the exact same software, version, and
individual Run parameters. This allows to avoid re-executing the whole test when adding a
few values to the parameters. For instance, after trying an experiment using a single CPU
core, re-executing the experiment for 1 to 4 cores will only launch the tests for 2 to 4 cores.

7.3 Interpretation of results

7.3.1 Graphing

A graph is always automatically generated for each test, using a line plot or a bar plot,
grouping variables as different series of the graph when needed to make the results under-
standable as quickly as possible. We use matplotlib for graph creation. Figure 7.5a, 7.5b
and 7.5d show result of the grapher under different configuration for the same Click router
test case.

7.3.1.1 Data transformations

When comparing multiple versions of a program (regression tests), or multiple different
software solutions described by a single testie (software comparison), NPF re-executes the
whole testie file multiple times, meaning that one dataset is returned per executions. We’ll
use datasets as series of the graph to produce. We then count the amount of dynamic
variables that is variables that have multiple values in the datasets, as the user may have
fixed some of the variables to a given value. If there is only one database, one of the dynamic
variables will be extracted from the dataset and we’ll duplicate the database per value of
the variable, removing the variable from the Runs along the way. If there is no dynamic
variable left, a barplot will be produced, showing the results for each of the series. If there is

184

7.3 Interpretation of results

(a) Regression test for Click (b) Result for the full 315 possible parameters
combinations

(c) Regression tree visualisation for packet of
64 bytes

(d) Click compared to FastClick

Figure 7.5: Multiple figures as produced by NPF tools for the same Click-based router
testie using DPDK for I/O

185

7. EXPERIMENTAL AUTOMATION AND REPRODUCIBILITY

only one, a lineplot will be used as in figure 7.5a. If there are more, a barplot will be used,
grouping variables as different bars such as in figure 7.5b.

One graph is produced per-type of result, e.g. one for throughput, one for latency, ...
The user may combine results in a single graph using dual axes, or transform the results as
a dynamic variables (e.g. RESULT=throughput, RESULT=latency, . . .).

This allows the user to get automatically a glimpse into the results, with many other
options to tweak the graph.

7.3.2 Output module

The datasets produced by the test can be exported as CSV files. The default parameter
is to print the average and standard deviation of the results in columns, with each runs as
rows. The user can ask for many metrics using the “–output-columns” argument such as
median, percantiles, all results using one column per results, . . .

7.3.3 Statistical analysis

In a real-life scenario, the number of parameters can quickly grow leading to an amount of
data that cannot be depicted well enough in a graph. Figure 7.5b displays 315 different
configurations of the router test case varying burst parameters and packet length. To help
finding the most interesting parameters NPF will give worst and best cases, and the average
when results are grouped per-variable.

NPF builds regression trees using skikit-learn[124] to compute the importance of each
variable, and decide which variables can be fixed in subsequent runs because they do not
influence the results.

The regression tree can also be directly visualized like in figure 7.5c. Each node can
be interpreted as an important pivot for a given variable, separating performance results in
branches that will lead to the most entropy.

The command line also allows to fix parameter values to re-execute the test and advance
from deductions to deductions while keeping best or interesting values only. After executing
a test with many values per variables, the results will be stored in the NPF cache as discussed
in section 7.2.5. Therefore reducing the parameter matrix size is instantaneous as results
will be in the cache.

For our own usage during development phase, we often let NPF run one night on a very
big matrix of parameters with all parameters that could potentially impact performance,
and quickly analyse results in the morning using the statistical insight. As any parameter

186

7.4 Conclusion

combination is already in the cache, we can quickly try to fix some variables and see how
the device under test performed from different angles.

7.4 Conclusion

Given a (perhaps virtual) cluster, NPF executes a test across its nodes, and automate it
for each line of a matrix of parameter values to study a given software under different
configurations. While existing testbed handlers (either physical, virtual or emulated) usually
allow to run some scripts and restart them, they lack support for unifying test case definition,
and lack tools to quickly get a glimpse of the impact of some parameters. NPF provides
multiple tools such as a comprehensive grapher, and use machine learning techniques to help
understand the classes of performance when many parameters are involved.

NPF is particularly suited for high-speed packet processing experiments. It supports
automatic binding of NICs to DPDK or Netmap, and has multiple generic scripts, called
modules, to generate worloads using multiple generation software such as WRK[107], Apache
BenchTools[125], Iperf[126], Netperf[127] and many different FastClick configurations. We
provide FastClick configuration to generate different kind of workloads, and replay traces
pre-loaded in memory at more than 150Gbits/s while measuring latency by tagging packets
of the trace.

NPF comes with support for downloading, building and installing software and distribute
them over a cluster. Testies can integrate a configuration phase to set up network require-
ments such as IP addresses or OS configuration.

As a result, NPF can also improve the reproducibility of network publication results, by
inviting researchers to share their testie files. Reviewers would be able to run the same tests
quickly; first locally, then on a similar but slightly different cluster, and maybe on a public
testbed to ensure a very good reproducibility.

NPF is available at [52]. It is distributed under the GPL3 license and welcomes merging
your own tests to build a big testie and repo files database, truly enabling sharing tests in
as few lines of code as possible.

Open Source Availability
NPF is available at [52].

Try it out ! �

187

7. EXPERIMENTAL AUTOMATION AND REPRODUCIBILITY

188

8

Conclusion and future work

The task of proposing a programmable platform for network infrastructure has been per-
formed in a bottom-up approach.

We have carried out an extensive study of the integration of packet processing mech-
anisms and userspace packet I/O frameworks into the Click Modular Router. The deeper
insights gained through this study allowed us to modify Click to enhance its performance.
The resulting FastClick system is backward compatible with vanilla Click elements and was
shown to be fit for purpose as a high speed userspace packet processor. It integrates two
new sets of I/O elements supporting Netmap[32] and the DPDK[31]. We showed those
frameworks were needed for fast I/O because of the current inadequacy of Kernel network-
ing stack for pass-through workloads. We proposed proof-of-concepts improvement to the
Linux kernel to demonstrate that the relative slowness of NFV applications in userlevel is
not a state of affairs. The Kernel may evolve, allowing to get rid of frameworks like DPDK
or Netmap. On top of high-speed I/O proposals, we studied some other kernel system calls
that slowed down performance in real appliances and also benefit from Kernel by-pass, such
as getting the time in userland. Future work may also review userlevel safe random number
generation and more efficient IPC, which still imposes a performance penalty when used.

Beyond improved performance, FastClick also boasts improved abstractions for packet
processing, as well as improved automated instantiation capabilities on modern commodity
systems, which greatly simplifies the configuration of efficient Click packet processors. We
reviewed distributed processing models and efficient data structures for parallel processing.
We reviewed when to use different solutions for both topics, and provided helpful implemen-
tations in FastClick.

189

8. CONCLUSION AND FUTURE WORK

On top of FastClick, we have developed a high-speed framework to build service chains
of middleboxes. Our system has better throughput and latency than other compared ap-
proaches, thanks to the avoidance of multiple reclassification of packets as they pass through
the various middleboxes in a chain. It also easily enables the offloading of part or all of the
classification to dedicated hardware, further improving performance.

Our framework eases the handling of per-traffic class and per-session state. The middle-
box developer can specify, in a flexible way, which traffic class the middlebox is interested in,
the sessions and the size of the state it needs for each session. Then, the system automati-
cally delivers packets for the given traffic classes, and provides and manages the associated
session storage, which is directly available to the middlebox through the packet themselves
(thanks to the metadata carried along with the packets).

Finally, our framework exposes simple stream abstractions, providing easy inspection and
modification of flow content at any protocol level. The developer only needs to focus on
the middlebox functionality at the desired protocol level, and the framework will adjust the
lower-level protocol headers as needed. Our framework can act as a man-in-the-middle for
TCP connections, greatly simplifying high-level middleboxes development, while avoiding
the overhead of a full TCP stack.

The architecture we proposed for flow stalling and on-the-fly modifications should gen-
eralize to new or unknown middleboxes and protocols thanks to our use of a “stacking”
approach. Protocol contexts can be chained one after the other, each layer taking care
of the implications of given requests, before passing the requests to the lower layers. On
top of contexts, session definitions are completely unrestricted and a new protocol using
different ways to map a session from the 4 TCP tuples could be implemented very easily.
This removes one hard part of designing a protocol implementation for middleboxes with
e.g. hash tables or other similar dictionary structures.

Our open-source implementation, codenamed MiddleClick, shows significant perfor-
mance improvements over traditional approaches on a few test cases. The deep under-
standing of low-level considerations and the focus on performances makes it one of the
fastest NFV dataplane agent publicly available to date.

Currently, the classification consolidation of MiddleClick is done when it launches and is
then kept as is. We would like to allow more dynamicity as future work, but that will also
require core modification to Click which currently relies more on a full graph replacement
than surgical element insertion and removal.

The unified classification is, of course, limited. While in MiddleClick VNF components
can expose any rule, the classifier may be less suited to particular classification such as core
routers forwarding table with thousands of routing prefixes that will benefit from special

190

purpose algorithm. The general rule of thumb to know if a rule should be exposed to the
system is to ask if that rule may also be spawned by another VNF, and therefore benefit
from being factorized by the MiddleClick flow manager. Maybe we could go further than
factorizing the classification, session and protocols handling. MiddleClick could factorize
some functionalities to remove redundant code. However the observations of chapter 5
suggest we factorized most of the redundant operations. E.g., it is unlikely that multiple
DPIs would be chained.

In a sense, implementing MiddleClick in the OS itself, providing a new kind of socket
interface would have been a more logical choice. It would have lead to a tailored Operating
System that uses only the parts of the networking stack that are currently asked by the
application and that would not loose the concept of service chain by receiving and sending
raw packets blindly back and forth between applications. We did not do so because of the
problems exposed in chapter 2, leading to the OS being slower even for simple I/O than
implementing the software in user space using frameworks like DPDK. Hence, we did not
want to build our system on a bad foundation. Fixing Linux limitations as proposed in
section 2.4, and adding MiddleClick context-based stack, along with the unified flow and
session classification as part of something similar than Linux’s NFQ to define the service
chain, would certainly be an interesting future work.

We then studied how to use upfront classification hardware to offload the unified classi-
fication of MiddleClick, so it can receive packets pre-classified and directly recover the right
session state with a minimal classification step. We looked at how to combine multiple NFV
instances on the same box without requiring a software classification by exposing the NIC
capabilities to a controller that can tag packets. Packets can then be received directly by
the right core of the right NFV agent that serves the corresponding service chain. Com-
bined, those two approaches would allow to keep isolation between service chains without
any cost, push firewall and most classification task in SDN switches, drop the traffic before
it even hits the box and remove classification even inside the NFV server itself. As a future
work, we would like to study how the dynamic session classification of MiddleClick could be
accelerated using SmartNICs and programmable switches, possibly supporting the P4[105]
language. Packets could arrive to the NFV server not only tagged according to their traf-
fic class and the service chain they must follow, but also in a way that will accelerate the
identification of their session.

Surprisingly, measuring the performance of high-speed systems have been a badly covered
area of research. Reproducibility is a known problem in our field of research, with little to
no experiment management system. Indeed, in high-speed networking environments tightly

191

8. CONCLUSION AND FUTURE WORK

tied to hardware facilities, simulation or virtualization are not a solution. We built a new
python-based experiment manager automation tool for high-speed networking, NPF. The
tool allows to simply define an experiment in a single file using scripting languages. NPF
will deploy multiple software over a cluster, and run the experiment multiple times to ensure
stability of the results. The experiment file can define many parameters to grid-search and
run again the experiment to find the combination that will lead to the best performance.
NPF supports multiple packet generation methods and generates multiple measurements at
once such as throughput or latency. The tool automatically build comprehensive graphs and
statistical outcomes.

The “final” step of this layered-approach to design the efficient and resilient infrastructure
of future networks is in three parts.

Firstly, use the liberated CPU resources to build new efficient functions. MiddleClick
allows to easily change any flow on the fly, modify requests to re-route them, or part of
them to fast caches. We already started this kind of work while working in the SuperFluidity
EU H2020 project related to 5G mobility, re-routing some mobile requests to serve them
in the edge. While for consistency this document focuses on datacenter usage, ISPs and
particularly mobile ISPs would also benefit from most of these developments. There are a
number of potential uses for a better, “fluid”, modular and distributed NFV platform.

Secondly, we want to enhance the NFV agents management, improving network dis-
tribution techniques. How to allocate enough resources to the service chains to ensure a
certain SLA (latency bound, throughput, ...) ? How to scale the service chain among
multiple servers ? While we introduce bits of ideas for cooperation with an NFV controller,
the topic of VNF migration, and how to use horizontal scaling (using multiple NFV agents
in parallel) to distribute the work among multiple servers is still uncovered and is one of
our major future works. We’ll have to look at “service chain” scheduling and placement to
ensure bounded latency under maximized throughput. This starts with the characterization
of building blocks. That is, given an amount of resources, what will be the performance of
those blocks? One way to do it is to use an evolved NPF to characterize the performance of
the blocks. Using machine learning, one could allow to query the “parameters” (number of
cpus, amount of memory, table sizes, . . .) that will be needed to fulfill a given SLA. How to
move the learning to a datacenter scale? How to use online learning to use the information
gathered from running appliances? Then maybe use reinforcement learning to decide some
action about scaling and learn about their impact on the performance.

Thirdly, while we focused on pass-through traffic, some middleboxes actually require
connection termination or initiation. Proxy caches terminate some of the connection to
serve some files by themselves. While MiddleClick actually supports some client and server

192

semantics, they are not discussed here because they are still in an early stage. We would
like to study further the possibility of integrating a full TCP stack, which would follow the
idea of factorization and only invoke the minimal features of MiddleClick. Network stack
specialization has already be proven to enhance performance[55].

The context of our work is a world of VNFs that can move around, in datacenters to
consolidate processing or at the contrary on processing units as close as possible to the final
user, e.g. in an ISP’s backhaul to minimize the latency. The commercialization of virtual
middleboxes is an emerging new industry, allowing network operators to outsource their
costly and ageing network equipment. Cloud-based NFV allows to activate security features
for their network like we download mobile applications today. This will push innovation in the
network that ossified in past years while it needs to evolve, and enable innovation through new
protocols that could be installed in one click. That will also lead to customized, sometimes
per-client service chains that can grow very long. It is our belief that our work covered low-
level details of how to build an NFV dataplane agent that can accommodate tomorrow’s
network using its very profound flexibility, that can take advantage of hardware offloading
capabilities as hardware evolves, but already very efficient in pure software implementation.

193

8. CONCLUSION AND FUTURE WORK

194

Appendices

195

Appendix A

More results about distributed
packet processing

A.1 Increasing proportion of access to the packet content

0 20 40 60 80 100
R

94%

96%

98%

100%

102%

104%

Th
ro

ug
hp

ut S = 1
S = 2
S = 4
S = 6
S = 8
S = 12
S = 16
S = 32

Figure A.1: Relative improvement of the parallel approach over the returning pipeline
approach using two processing stages running on two cores under an increasing percentage
of access to the packet data instead of the array. N = 100

197

A. MORE RESULTS ABOUT DISTRIBUTED PACKET PROCESSING

0 20 40 60 80 100
R

92%

94%

96%

98%

100%

102%

104%

Th
ro

ug
hp

ut S = 1
S = 2
S = 4
S = 6
S = 8
S = 12
S = 16
S = 32

Figure A.2: Relative improvement of the parallel approach over the returning pipeline
approach using eight processing stages running on eight cores under an increasing per-
centage of access to the packet data instead of the array. N = 100

0 20 40 60 80 100
R

96%

100%

104%

108%

112%

116%

Th
ro

ug
hp

ut S = 1
S = 2
S = 4
S = 6
S = 8
S = 12
S = 16
S = 32

Figure A.3: Relative improvement of the parallel approach over the returning pipeline ap-
proach using four processing stages running on four cores under an increasing percentage
of access to the packet data instead of the array. N = 20

198

A.2 Increasing number of cores

0 20 40 60 80 100
R

94%
96%
98%

100%
102%
104%
106%
108%
110%
112%

Th
ro

ug
hp

ut

S = 1
S = 2
S = 4
S = 6
S = 8
S = 12
S = 16
S = 32

Figure A.4: Relative improvement of the parallel approach over the returning pipeline ap-
proach using four processing stages running on four cores under an increasing percentage
of access to the packet data instead of the array. N = 2000

A.2 Increasing number of cores

199

A. MORE RESULTS ABOUT DISTRIBUTED PACKET PROCESSING

0 2 4 6 8 10 12 14 16
Number of processing stages / Number of logical cores

92%

96%

100%

104%

108%

112%

116%

120%

Th
ro

ug
hp

ut

S
1
2
4
8
16
32

Figure A.5: Relative improvement of the parallel approach over the returning pipeline
approach doing N = 20 memory access to an array of size S for an increasing number
of processing stages. One logical core is used per processing stages. Cores 9 to 16 are
hyper-threads.

0 2 4 6 8 10 12 14 16
Number of processing stages / Number of logical cores

90%
100%

120%
140%
160%
180%
200%
220%

260%
300%

Th
ro

ug
hp

ut

S
1
2
4
8
16
32

Figure A.6: Relative improvement of the parallel approach over the returning pipeline
approach doing N = 2000 memory access to an array of size S for an increasing number
of processing stages. One logical core is used per processing stages. Cores 9 to 16 are
hyper-threads.

200

Appendix B

More results about userlevel
parallel data structures

0 1 2 8 32 128 512 2048 8192 65536
Number of reads per write

2M

10M

100M

1000M

10000M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
CounterAtomic
CounterLock
CounterMP
CounterPRW
CounterRCU
CounterRW

Figure B.1: Number of reads (read 64 bits count and bytes count) or write (add packet
count and number of bytes to the counter) per seconds with increasing read rate. Using 8
cores from a single processor.

201

B. MORE RESULTS ABOUT USERLEVEL PARALLEL DATA
STRUCTURES

65536 1024 32 2 0 2 32 1024 65536
Proportion of reads per write

0M

1M

2M

10M

100M

1000M

10000M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
CounterAtomic
CounterLock
CounterLockMP

CounterMP
CounterPLockMP
CounterPRW

CounterRCU
CounterRW
CounterRxWMP

Figure B.2: Performance of data structures of interest in terms of operations per seconds
under a various amount of reads or writes. On the left, the graph shows the performance
of the structures in a write-mostly situation. A value of -65536 means 65536 writes per
read. This value decrease up to 0, meaning that read and writes are on a par. While on
the opposite when the value reaches 65536, 65536 reads are executed per write. Using 8
cores from a signle processor. Both axes use a log scale. Note that CounterAtomic and
CounterMP do not allow consistent read of the structure, while CounterLockMP is not
doing fresh reads.

202

B.1 RxWMP data structure with read or write preference

B.1 RxWMP data structure with read or write preference

The RxWMP method can be modified to enable a preference for reads or for write operations.
Having a preferred operation allows to bound the amount of time the preferred operation
will wait before accessing the structure. The RxW lock with a preference for read or write
is actually a solution to the classical shared shower problem of multi-core programming. For
ease of comprehension, we will focus on the preferred-read solution, the preferred-write only
needing to reverse the logic. Men and women can access the showers but never at the same
time. When men are in the shower, other men can join and the same applies to women.
When the showers are accessed by men, but a woman wants to access, no further man can
enter the shower to ensure that the showers are available for women as soon as possible.
This applies for readers in a preferred-read situation as we want the reader to wait for a
bounded time before accessing the per-thread structure, as writers (men in the metaphor)
may come one by one always keeping the lock (the shower) busy without letting any chance
for a reader to grab it (a woman to enter the shower).

Figure B.3: Per-thread duplication approach protected per an RxW lock (preferred read)
to allow for consistency. The numbers in circles show the sequence of events.

Pseudocode for the read acquire sequence is algorithm 4 and the write sequence in
algorithm 5. In the context of write mostly the readers may wait for too long before accessing
the variable, therefore if a reader cannot lock directly (because the value is strictly lesser
than 0 indicating some writers are accessing the structure), it will prevent further writers
from taking the lock by adding -MAX_WRITER to the value using a CAS. MAX_WRITER
is an upper bound on the maximal number of concurrent writers. Before operating the CAS
instruction, the writers check if the value is not lower than -MAX_WRITER and wait for it

203

B. MORE RESULTS ABOUT USERLEVEL PARALLEL DATA
STRUCTURES

to become bigger again meaning that the reader has accessed the data and actually finished
reading.

Figure B.3 shows a sequence of action where two threads access the bucket to update
their counter value (the lock becomes -1 then -2 as shown per the sequence 1 and 2). In
this example, MAX_WRITER is arbitrarily fixed to 65536. One the thread finishes (the
value becomes -1 as shown per the event 3). A reader wants to grab the lock, but as there
are currently some writers, the lock becomes -65537 in event 4 to prevent further writer to
grab the lock. In event 5, a writer arrives but spinloop as the value is lower than -65536.
The the first writer finishes, changing the to -65536 in event 6. The reader that subtracted
65536 from the value can then change it to 1, to grab the lock in event 7, compute the sum
by traversing the full array until it finishes and put back to 1 the value in event 8. At which
points the last writer that was stalled because a reader wanted to access the array can grab
the value by setting it to -1 in event 9.

Algorithm 4 RxW Lock read
function read_begin

while true do
current← refcnt

if current ≥ 0 then . Unlocked or reader presents
if refcnt.CAS(current, current + 1) then

break
end if

else if current > −65536 then . Writers present, no pending reader
if refcnt.CAS(current, current - 65536) then . Notify our reader presence

repeat
relax cpu

until refcnt == −65536 . Wait for all writers to finish
refcnt← 1

break
end if

end if
relax cpu

end while
end function
function read_end

atomic refcnt−−
end function

204

B.1 RxWMP data structure with read or write preference

Algorithm 5 RxW Lock write
function write_begin

while true do
current← refcnt

if current ≤ 0 and current > −65536 then
if refcnt.CAS(current, current - 1) then

break
end if

end if
relax cpu

end while
end function
function write_end

atomic refcnt++

end function

Figure B.4 shows the performance of the preferred-read and preferred-write versions
of the RxWMP data structure compared to the agnostic one. While performance do not
increase using one or the other, we do believe ensuring one operation completes as soon as
possible is useful in certain situations. In the counter example, one might want to aggregate
the values on rare occasions, without competing too much with other cores to avoid jitter
while doing so.

205

B. MORE RESULTS ABOUT USERLEVEL PARALLEL DATA
STRUCTURES

Single processor (1*16 Cores CPU)

65536 1024 32 2 0 2 32 1024 65536
Proportion of reads per write

0M

2M

4M

6M

8M

10M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
Agnostic Prefer read Prefer write

NUMA system (2*8 Cores)

65536 1024 32 2 0 2 32 1024 65536
Proportion of reads per write

0M

2M

4M

6M

8M

10M

Op
er

at
io

ns
 p

er
 se

co
nd

s

Counter type
Agnostic Prefer read Prefer write

Figure B.4: Performance of the RxWMP data structure with read or write preference

206

References

[1] Brian Carpenter and Scott Brim. Middleboxes: Taxonomy and issues. Technical report, 2002.
1, 2

[2] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Vyas Sekar. Making Middleboxes Someone Else’s Problem: Network Processing as a Cloud
Service. In Proc. ACM SIGCOMM, August 2012. 2, 3, 12

[3] Demystifying the Dark Side of the Middle: A Field Study of Middlebox Failures in Datacenters. ACM –
Association for Computing Machinery, May 2014. 2, 3

[4] Gregory Detal, Benjamin Hesmans, Olivier Bonaventure, Yves Vanaubel, and Benoit Don-
net. Revealing middlebox interference with tracebox. In Proceedings of the 2013 conference on
Internet measurement conference, pages 1–8. ACM, 2013. 3

[5] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley, and
Hideyuki Tokuda. Is it still possible to extend TCP? In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, pages 181–194. ACM, 2011. 3

[6] Benjamin Hesmans, Fabien Duchene, Christoph Paasch, Gregory Detal, and Olivier Bonaven-
ture. Are TCP Extensions Middlebox-proof? In Proc. Workshop on Hot Topics in Middleboxes and
Network Function Virtualization (HotMiddlebox), 2013. 4

[7] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and Scalable Layer Four Switch-
ing. Proc. ACM SIGCOMM, October 1998. 4

[8] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner. Scalable high
speed IP routing lookups. In Proc. ACM SIGCOMM, 1997. 4

[9] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. Proc. ACM SIG-
COMM, 1999. 4

[10] Edward Guillen, Ana María Sossa, and Edith Paola Estupiñán. Performance Analysis over
Software Router vs. Hardware Router: A Practical Approach. In Proc. IAENG World Congress
on Engineering and Computer Science (WCECS), 2012. 4

[11] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The
Click Modular Router. ACM Trans. Comput. Syst., 18(3):263–297, August 2000. 4, 17, 32, 37, 129,
177, 181

[12] Joongi Kim, Seonggu Huh, Keon Jang, KyoungSoo Park, and Sue Moon. The Power of
Batching in the Click Modular Router. In Proc. ACM Asia-Pacific Workshop on Systems (APSYS),
2012. 4, 38, 42, 61

207

https://www.microsoft.com/en-us/research/publication/demystifying-the-dark-side-of-the-middle-a-field-study-of-middlebox-failures-in-datacenters/
http://doi.acm.org/10.1145/2535828.2535830
http://doi.acm.org/10.1145/285243.285282
http://doi.acm.org/10.1145/285243.285282
http://doi.acm.org/10.1145/354871.354874
http://doi.acm.org/10.1145/354871.354874
http://doi.acm.org/10.1145/2349896.2349910
http://doi.acm.org/10.1145/2349896.2349910

REFERENCES

[13] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim, and Sue Moon. NBA
(network balancing act): A high-performance packet processing framework for heteroge-
neous processors. In Proc. ACM European Conference on Computer Systems (EuroSys), 2015. 4, 10

[14] Andrea Bianco, Robert Birke, Davide Bolognesi, Jorge M Finochietto, Giulio Galante,
Marco Mellia, MLNPP Prashant, and Fabio Neri. Click vs. Linux: two efficient open-
source IP network stacks for software routers. In IEEE Workshop on High Performance Switching
and Routing (HPSR), May 2005. 4

[15] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall, Gianluca
Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. RouteBricks: Exploiting
Parallelism to Scale Software Routers. In Proc. ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), October 2009. 5, 32, 38, 91

[16] Mihai Dobrescu, Katerina Argyraki, Gianluca Iannaccone, Maziar Manesh, and Sylvia Rat-
nasamy. Controlling parallelism in a multicore software router. In Proc. ACM Workshop on
Programmable Routers for Extensible Services of Tomorrow (PRESTO), November 2010. 5, 78, 84

[17] Katerina Argyraki, Salman Baset, Byung-Gon Chun, Kevin Fall, Gianluca Iannaccone,
Allan Knies, Eddie Kohler, Maziar Manesh, Sergiu Nedevschi, and Sylvia Ratnasamy. Can
Software Routers Scale? In Proc. ACM Workshop on Programmable Routers for Extensible Services of
Tomorrow (PRESTO), August 2008. 5

[18] Benjie Chen and Robert Morris. Flexible Control of Parallelism in a Multiprocessor PC
Router. In Proc. USENIX Annual Technical Conference (ATC), June 2001. 5

[19] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici, and Laurent
Mathy. Fairness issues in software virtual routers. In Proc. ACM Workshop on Programmable routers
for extensible services of tomorrow (PRESTO), August 2008. 5

[20] Yong Liao, Dong Yin, and Lixin Gao. PdP: Parallelizing Data Plane in Virtual Network
Substrate. In Proc. ACM Workshop on Virtualized Infrastructure Systems and Architectures (VISA), 2009.
5

[21] Tom Barbette. GitHub - FastClick, 2015. https://github.com/tbarbette/fastclick. 5, 6, 15, 67,
112

[22] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. Stateless data-
center load-balancing with beamer. In Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI), April 2018. 5

[23] Georgios P Katsikas, Gerald Q Maguire Jr, and Dejan Kostić. Profiling and accelerating
commodity NFV service chains with SCC. Journal of Systems and Software, 127:12–27, May 2017.
5

[24] Hassan Jameel Asghar, Luca Melis, Cyril Soldani, Emiliano De Cristofaro, Mohamed Ali
Kaafar, and Laurent Mathy. Splitbox: Toward efficient private network function virtu-
alization. In Proc. ACM Workshop on Hot topics in Middleboxes and Network Function Virtualization
(HotMiddlebox), 2016. 5

[25] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert, and Gerald Q
Maguire Jr. Metron: NFV Service Chains at the True Speed of the Underlying Hard-
ware. In Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2018. 5, 10,
168

208

http://doi.acm.org/10.1145/1629575.1629578
http://doi.acm.org/10.1145/1629575.1629578
http://doi.acm.org/10.1145/1397718.1397724
http://doi.acm.org/10.1145/1397718.1397724
http://doi.acm.org/10.1145/1592648.1592651
http://doi.acm.org/10.1145/1592648.1592651
https://github.com/tbarbette/fastclick
https://github.com/tbarbette/fastclick

REFERENCES

[26] Leonardo Linguaglossa, Dario Rossi, Dave Barach, Damjan Marjon, and Pierre Pfiester.
High-speed Software Data Plane via Vectorized Packet Processing. Technical report, Telecom
ParisTech, CNIT and University of Rome Tor Vergata, Systems, Inc., 2018. 5

[27] Rafael Laufer, Massimo Gallo, Diego Perino, and Anandatirtha Nandugudi. CliMB: en-
abling network function composition with click middleboxes. Proc. ACM SIGCOMM, 2016. 5, 8,
117, 129

[28] Davide Kirchner, Raihana Ferdous, Renato Lo Cigno, Leonardo Maccari, Massimo Gallo,
Diego Perino, and Lorenzo Saino. Augustus: a CCN router for programmable networks. In
Proc. ACM Information-Centric Networking (ICN), 2016. 5

[29] Sebastian Gallenmüller, Paul Emmerich, Rainer Schönberger, Daniel Raumer, and Georg
Carle. Building Fast but Flexible Software Routers. In Proc. ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS), 2017. 5

[30] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici, Laurent
Mathy, and Panagiotis Papadimitriou. Forwarding path architectures for multicore software
routers. In Proc. of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow
(PRESTO), November 2010. 5

[31] Linux Foundation. Data Plane Development Kit (DPDK), 2015. http://www.dpdk.org. 5, 17,
24, 25, 37, 117, 123, 146, 178, 189

[32] Luigi Rizzo. netmap: A Novel Framework for Fast Packet I/O. In Proc. USENIX Annual Technical
Conference (ATC), 2012. 5, 17, 24, 25, 28, 37, 117, 120, 146, 178, 189

[33] ntop. PF_RING. http://www.ntop.org/products/pf_ring/. 5, 24, 25, 146

[34] Solarflare. OpenOnload. http://www.openonload.org/. 5, 24, 26, 129

[35] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. PacketShader: A GPU-
accelerated Software Router. In Proc. ACM SIGCOMM, August 2010. 5, 10, 24, 28, 38, 146

[36] Björn Töpel. Introducing AF_XDP support. 5

[37] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy,
Thomas Anderson, and Timothy Roscoe. Arrakis: The Operating System is the Control
Plane. In USENIX Symposium on Operating Systems Design and Implementation (OSDI), October 2014. 6,
24, 68, 117, 128

[38] James W Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin Vahdat. xOMB:
extensible open middleboxes with commodity servers. In Proc. ACM/IEEE symposium on Archi-
tectures for networking and communications systems (ANCS), 2012. 7, 129, 130

[39] Georgios P Katsikas, Marcel Enguehard, Maciej Kuźniar, Gerald Q Maguire Jr, and Dejan
Kostić. SNF: synthesizing high performance NFV service chains. PeerJ Computer Science, 2:e98,
2016. 7, 8, 118, 131

[40] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu Shi. Design
and implementation of a consolidated middlebox architecture. In Proc. USENIX conference on
Networked Systems Design and Implementation (NSDI), 2012. 7, 118, 129

[41] Anat Bremler-Barr, Yotam Harchol, and David Hay. OpenBox: a software-defined frame-
work for developing, deploying, and managing network functions. In Proc. ACM SIGCOMM,
2016. 8, 68, 117, 130, 172

209

https://newnet.telecom-paristech.fr/wp-content/uploads/2018/05/vpp-bench-techrep.pdf
http://www.dpdk.org
http://www.dpdk.org
http://info.iet.unipi.it/~luigi/netmap/
http://www.ntop.org/products/pf_ring/
http://www.ntop.org/products/pf_ring/
http://www.openonload.org/
http://www.openonload.org/
http://doi.acm.org/10.1145/1851182.1851207
http://doi.acm.org/10.1145/1851182.1851207
https://lwn.net/Articles/745934/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter

REFERENCES

[42] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and Scott
Shenker. NetBricks: Taking the V out of NFV. In Proc. USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016. 8, 128, 131, 169

[43] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Ratnasamy,
Luigi Rizzo, and Scott Shenker. E2: a framework for NFV applications. In Proc. ACM Sympo-
sium on Operating Systems Principles (SOSP), 2015. 8, 68, 159, 165, 170, 172

[44] Mehdi Bezahaf, Abdul Alim, and Laurent Mathy. FlowOS: A Flow-based Platform for
Middleboxes. In Proc. ACM Workshop on Hot Topics in Middleboxes and Network Function Virtualization
(HotMiddlebox), 2013. 8, 156

[45] EunYoung Jeong, Shinae Woo, Muhammad Asim Jamshed, Haewon Jeong, Sunghwan Ihm,
Dongsu Han, and KyoungSoo Park. mTCP: a Highly Scalable User-level TCP Stack for
Multicore Systems. In Proc. USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2014. 8, 117, 120, 129

[46] Muhammad Asim Jamshed, YoungGyoun Moon, Donghwi Kim, Dongsu Han, and KyoungSoo
Park. mOS: A Reusable Networking Stack for Flow Monitoring Middleboxes. In Proc. USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2017. 8, 117, 128, 131, 144, 159

[47] Yunhong Gu and Robert L Grossman. UDT: UDP-based data transfer for high-speed wide
area networks. Computer Networks, 51(7):1777–1799, 2007. 9

[48] Tom Barbette. GitHub - MiddleClick, 2018. https://github.com/tbarbette/fastclick/tree/
middleclick. 10, 15, 163

[49] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo, Ningyi Xu, Yongqiang
Xiong, and Peng Cheng. Clicknp: Highly flexible and high-performance network processing
with reconfigurable hardware. In Proc. ACM SIGCOMM, 2016. 10

[50] B Zaluški, B Rajtar, H Habjanić, M Baranek, N Šlibar, R Petračić, and T Sukser. Teras-
tream implementation of all IP new architecture. In Proc. IEEE International Convention on Infor-
mation and Communication Technology, Electronics and Microelectronics (MIPRO), 2013. 11

[51] Niv Buchbinder, Navendu Jain, and Ishai Menache. Online job-migration for reducing the
electricity bill in the cloud. NETWORKING 2011, pages 172–185, 2011. 11

[52] Tom Barbette. NPF, 2017. https://github.com/tbarbette/npf. 15, 179, 187

[53] Wenji Wu, Matt Crawford, and Mark Bowden. The performance analysis of Linux
networking–packet receiving. Computer Communications, 30(5):1044–1057, 2007. 20

[54] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace packet processing. In Proc.
ACM/IEEE Symposium on Architectures for networking and communications systems (ANCS), May 2015. 20,
39, 120, 128, 181

[55] Ilias Marinos, Robert NM Watson, and Mark Handley. Network stack specialization for
performance. In Proc. ACM Workshop on Hot Topics in Networks (HotNets), 2013. 21, 117, 129, 193

[56] Luigi Rizzo, Giuseppe Lettieri, and Vincenzo Maffione. Speeding up packet I/O in virtual
machines. In Proc. ACM/IEEE symposium on Architectures for Networking and Communications Systems
(ANCS), 2013. 22

[57] K Salah and A Kahtani. Performance evaluation comparison of Snort NIDS under Linux
and Windows Server. Journal of Network and Computer Applications, 33(1):6–15, 2010. 22

210

http://doi.acm.org/10.1145/2535828.2535836
http://doi.acm.org/10.1145/2535828.2535836
https://github.com/tbarbette/fastclick/tree/middleclick
https://github.com/tbarbette/fastclick/tree/middleclick
https://github.com/tbarbette/fastclick/tree/middleclick
https://github.com/tbarbette/npf
https://github.com/tbarbette/npf
https://www.sciencedirect.com/science/article/pii/S0140366406004221
https://www.sciencedirect.com/science/article/pii/S0140366406004221

REFERENCES

[58] Linux Foundation. Packet_mmap. https://www.kernel.org/doc/Documentation/networking/
packet_mmap.txt. 24

[59] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. IX: A Protected Dataplane Operating System for High Throughput and
Low Latency. In Proc. USENIX Symposium on Operating Systems Design and Implementation (OSDI),
October 2014. 24, 68, 117, 128

[60] ntop. DNA vs netmap. http://www.ntop.org/pf_ring/dna-vs-netmap/. 25

[61] Intel. CoreTM i7-4930K Processor (12M Cache, up to 3.90 GHz). http://ark.intel.com/
products/77780. 28

[62] ASUS. P9X79-E WS. http://www.asus.com/Motherboards/P9X79E_WS/. 28

[63] Tom Barbette. GitHub - Tilera Packet Generator. https://github.com/tbarbette/tilerapktgen.
28

[64] Tom Barbette. GitHub - KForward, 2017. https://github.com/tbarbette/kforward. 30

[65] Luigi Rizzo. Device polling support for FreeBSD. In BSDConEurope Conference, 2001. 31

[66] Tom Barbette. GitHub - A proof of concept for the ability to forward backpressure to the
driver in Linux. https://github.com/tbarbette/linux-backpressure. 33

[67] Tom Barbette. GitHub - Click branch supporting RX_HANDLER_DROPPED. https:
//github.com/tbarbette/linux/tree/kpressure. 33

[68] Tom Barbette. XDP for Kernel by-pass?, 2017. https://www.spinics.net/lists/xdp-newbies/
msg00247.html. 34

[69] John Fastabend. [RFC,1/2] af_packet: direct dma for packet ineterface, 2017. http:
//patchwork.ozlabs.org/patch/720937/. 35

[70] Weibin Sun and Robert Ricci. Fast and Flexible: Parallel Packet Processing with GPUs
and Click. In Proc. ACM/IEEE Symposium on Architectures for Networking and Communications Systems
(ANCS), October 2013. 38, 57, 61

[71] Tom Barbette. Click pull request #162 to enable multi-producer single-consumer mode in
linuxmodule FromDevice. https://github.com/kohler/click/pull/162. 42

[72] T. Mori, R. Kawahara, S. Naito, and S. Goto. On the characteristics of Internet traffic
variability: spikes and elephants. In Proc. IEEE/IPSJ International Symposium on Applications and the
Internet (SAINT), 2004. 44

[73] fd.io. Vector Packet Processing (VPP). 68

[74] Jinho Hwang, K K_ Ramakrishnan, and Timothy Wood. NetVM: high performance and
flexible networking using virtualization on commodity platforms. IEEE Transactions on Network
and Service Management, 12(1):34–47, 2015. 68, 128

[75] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Man-
gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown. arXiv preprint
arXiv:1801.01207, 2018. 68

211

https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt
https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt
https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
http://www.ntop.org/pf_ring/dna-vs-netmap/
http://www.ntop.org/pf_ring/dna-vs-netmap/
http://ark.intel.com/products/77780
http://ark.intel.com/products/77780
http://ark.intel.com/products/77780
http://www.asus.com/Motherboards/P9X79E_WS/
http://www.asus.com/Motherboards/P9X79E_WS/
https://github.com/tbarbette/tilerapktgen
https://github.com/tbarbette/tilerapktgen
https://github.com/tbarbette/kforward
https://github.com/tbarbette/kforward
https://github.com/tbarbette/linux-backpressure
https://github.com/tbarbette/linux-backpressure
https://github.com/tbarbette/linux-backpressure
https://github.com/tbarbette/linux/tree/kpressure
https://github.com/tbarbette/linux/tree/kpressure
https://github.com/tbarbette/linux/tree/kpressure
https://www.spinics.net/lists/xdp-newbies/msg00247.html
https://www.spinics.net/lists/xdp-newbies/msg00247.html
https://www.spinics.net/lists/xdp-newbies/msg00247.html
http://patchwork.ozlabs.org/patch/720937/
http://patchwork.ozlabs.org/patch/720937/
http://patchwork.ozlabs.org/patch/720937/
https://github.com/kohler/click/pull/162
https://fd.io/technology/

REFERENCES

[76] Irina Fedotova, Eduard Siemens, and Hao Hu. A high-precision time handling library. J.
Commun. Comput, 10:1076–1086, 2013. 69, 70

[77] Tom Barbette. ixgbe: support for ethtool set_rxfh. https://github.com/torvalds/linux/
commit/1c7cf0784e4d448ed8a07c5fc1e3aac1528272f1. 89

[78] Linux Foundation. Userspace RCU Library : What Linear Multiprocessor
Scalability Means for Your Application. https://linuxplumbersconf.org/2009/slides/
Mathieu-Desnoyers-talk-lpc2009.pdf. 102

[79] Userspace RCU library. http://liburcu.org/. 103

[80] Mathieu Desnoyers, Paul E McKenney, Alan S Stern, Michel R Dagenais, and Jonathan
Walpole. User-level implementations of read-copy update. IEEE Transactions on Parallel and
Distributed Systems, 23(2):375–382, 2012. 103

[81] P McKenney. Deterministic synchronization in multicore systems: the role of RCU. Aug,
18:1–9, 2009. 104

[82] Keir Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, University of Cambridge,
Computer Laboratory, February 2004. 104

[83] Cisco. Snort - Network Intrusion Detection & Prevention System, 2017. http://www.snort.
org/. 113, 120

[84] Willy Tarreau. HAProxy: The Reliable, High Performance TCP/HTTP Load Balancer,
2017. http://www.haproxy.org/. 113, 120, 161

[85] NGINX Inc. NGINX | High Performance Load Balancer, Web Server & Reverse Proxy,
2017. https://www.nginx.com/. 113, 120, 161

[86] Luigi Rizzo and Giuseppe Lettieri. VALE, a Switched Ethernet for Virtual Machines. In Proc.
ACM International Conference on Emerging Networking Experiments and Technologies (CoNEXT), 2012. 115

[87] Mauricio Vasquez Bernal, Ivano Cerrato, Fulvio Risso, and David Verbeiren. Transparent
Optimization of Inter-Virtual Network Function Communication in Open vSwitch. In Cloud
Networking (Cloudnet), 2016 5th IEEE International Conference on, pages 76–82. IEEE, 2016. 115

[88] Tom Barbette, Cyril Soldani, Romain Gaillard, and Laurent Mathy. Building a chain of
high-speed VNFs in no time. In Proc. IEEE High Performance Switching and Routing (HPSR), 2018.
Invited Paper, to appear. 120

[89] Gaillard Romain. Lightweight Middlebox TCP. Master Thesis, 2016. 120

[90] Open Information Security Foundation. Suricata | Open source IDS / IPS / NSM engine,
2017. https://suricata-ids.org/. 120

[91] Linux Foundation. Linux Perf. https://perf.wiki.kernel.org. 120

[92] The Squid Proxy Cache. http://www.squid-cache.org/. 123

[93] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh,
Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library
Operating Systems for the Cloud. In Proc. ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2013. 128

212

https://github.com/torvalds/linux/commit/1c7cf0784e4d448ed8a07c5fc1e3aac1528272f1
https://github.com/torvalds/linux/commit/1c7cf0784e4d448ed8a07c5fc1e3aac1528272f1
https://github.com/torvalds/linux/commit/1c7cf0784e4d448ed8a07c5fc1e3aac1528272f1
https://linuxplumbersconf.org/2009/slides/Mathieu-Desnoyers-talk-lpc2009.pdf
https://linuxplumbersconf.org/2009/slides/Mathieu-Desnoyers-talk-lpc2009.pdf
https://linuxplumbersconf.org/2009/slides/Mathieu-Desnoyers-talk-lpc2009.pdf
https://linuxplumbersconf.org/2009/slides/Mathieu-Desnoyers-talk-lpc2009.pdf
http://liburcu.org/
http://liburcu.org/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
http://www.snort.org/
http://www.snort.org/
http://www.snort.org/
http://www.haproxy.org/
http://www.haproxy.org/
https://www.nginx.com/
https://www.nginx.com/
http://doi.acm.org/10.1145/2413176.2413185
http://hdl.handle.net/2268.2/1626
https://suricata-ids.org/
https://suricata-ids.org/
https://perf.wiki.kernel.org
https://perf.wiki.kernel.org
http://www.squid-cache.org/
http://www.squid-cache.org/
http://doi.acm.org/10.1145/2451116.2451167
http://doi.acm.org/10.1145/2451116.2451167

REFERENCES

[94] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda, Roberto
Bifulco, and Felipe Huici. ClickOS and the art of network function virtualization. In Proc.
USENIX Networked Systems Design and Implementation (NSDI), April 2014. 128

[95] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire Todeschi,
KK Ramakrishnan, and Timothy Wood. OpenNetVM: a platform for high performance
network service chains. In Proc. ACM workshop on Hot topics in Middleboxes and Network Function
Virtualization (HotMiddlebox), 2016. 128

[96] Wei Zhang, Jinho Hwang, Shriram Rajagopalan, KK Ramakrishnan, and Timothy Wood.
Flurries: Countless Fine-Grained NFs for Flexible Per-Flow Customization. In Proc. ACM
International on Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2016. 129

[97] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. NFP: Enabling Network
Function Parallelism in NFV. In Proc. ACM Special Interest Group on Data Communication. ACM,
2017. 129

[98] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan Yu.
SIMPLE-fying middlebox policy enforcement using SDN. Proc. ACM SIGCOMM, 2013. 130

[99] Aaron Gember, Robert Grandl, Junaid Khalid, and Aditya Akella. Design and implemen-
tation of a framework for software-defined middlebox networking. Proc. ACM SIGCOMM, 2013.
130

[100] David A Maltz and Pravin Bhagwat. TCP Splice for application layer proxy performance.
Journal of High Speed Networks, 8(3):225–240, 1999. 131

[101] David Dolson, Matthew Desmond, and Jim Kuhn. TCP proxy providing application layer
modifications, October 2 2007. US Patent 7,277,963. 131

[102] Shinae Woo and KyoungSoo Park. Scalable TCP session monitoring with symmetric receive-
side scaling. KAIST, Daejeon, Korea, Tech. Rep, 2012. 144

[103] Netronome. Netronome Smart NICs. https://www.netronome.com/products/smartnic/overview/.
145, 166

[104] Mellanox. Mellanox Ethernet Cards. http://www.mellanox.com/page/ethernet_cards_overview.
145, 166

[105] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4: Programming
protocol-independent packet processors. Proc. ACM SIGCOMM, 2014. 149, 191

[106] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet classification using
multidimensional cutting. In Proc. ACM SIGCOMM, 2003. 151

[107] Will Glozer. WRK. https://github.com/wg/wrk. 159, 187

[108] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia Rat-
nasamy. SoftNIC: A software NIC to augment hardware. Dept. EECS, Univ. California, Berkeley,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2015-155, 2015. 165

[109] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian, and Haibing Guan. High
performance network virtualization with SR-IOV. Journal of Parallel and Distributed Computing,
72(11):1471–1480, 2012. 165

213

https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
http://www.mellanox.com/page/ethernet_cards_overview
http://www.mellanox.com/page/ethernet_cards_overview
https://github.com/wg/wrk
https://github.com/wg/wrk

REFERENCES

[110] Jiuxing Liu. Evaluating standard-based self-virtualizing devices: A performance study on 10
GbE NICs with SR-IOV support. In IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), 2010. 165

[111] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. DevoFlow: Scaling Flow Management for High-performance
Networks. In Proc. ACM SIGCOMM, August 2011. 167

[112] Voravit Tanyingyong, Markus Hidell, and Peter Sjödin. Using hardware classification to
improve pc-based openflow switching. In Proc. IEEE High Performance Switching and Routing (HPSR),
2011. 168

[113] Eric Eide. Toward replayable research in networking and systems. Position paper presented at
Archive, 2010. 176

[114] ACM SIGCOMM 2017 Reproducibility Workshop (Reproducibility’17). http://conferences.
sigcomm.org/sigcomm/2017/workshop-reproducibility.html. 176

[115] Quirin Scheitle, Matthias Wählisch, Oliver Gasser, Thomas C Schmidt, and Georg Carle.
Towards an ecosystem for reproducible research in computer networking. In Proc. ACM Re-
producibility Workshop (Reproducibility), August 2017. 176

[116] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Guruprasad, Tim Stack,
Kirk Webb, and Jay Lepreau. Large-scale Virtualization in the Emulab Network Testbed. In
Proc. USENIX Annual Technical Conference (ATC), 2008. 178

[117] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike Wawrzo-
niak, and Mic Bowman. Planetlab: an overlay testbed for broad-coverage services. Proc. ACM
SIGCOMM, 2003. 178

[118] Mininet Team. Mininet, 2014. 178

[119] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick McKeown.
Reproducible network experiments using container-based emulation. In Proceedings of the 8th
international conference on Emerging networking experiments and technologies, pages 253–264. ACM, 2012.
178

[120] Maurizio Pizzonia and Massimo Rimondini. Netkit: easy emulation of complex networks on
inexpensive hardware. In Proc. International Conference on Testbeds and research infrastructures for the
development of networks & communities (TRIDENTCOM), 2008. 178

[121] Kevin Fall and Kannan Varadhan. The network simulator (ns-2). URL:
http://www.isi.edu/nsnam/ns, 2007. 178

[122] Alina Quereilhac, Mathieu Lacage, Claudio Freire, Thierry Turletti, and Walid Dabbous.
NEPI: An integration framework for network experimentation. In Proc. IEEE Software, Telecom-
munications and Computer Networks (SoftCOM), 2011. 178

[123] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg
Carle. Moongen: A scriptable high-speed packet generator. In Proc. of the ACM Internet
Measurement Conference (IMC), 2015. 182

[124] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011. 186

214

http://doi.acm.org/10.1145/2043164.2018466
http://doi.acm.org/10.1145/2043164.2018466
http://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
http://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
http://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html
http://mininet.org

REFERENCES

[125] Apache. Apache Benchmark. https://httpd.apache.org/docs/2.4/programs/ab.html. 187

[126] IPerf. https://iperf.fr/. 187

[127] HewlettPackard. Netperf. https://hewlettpackard.github.io/netperf/. 187

215

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://iperf.fr/
https://iperf.fr/
https://hewlettpackard.github.io/netperf/
https://hewlettpackard.github.io/netperf/

	List of Figures
	List of Tables
	1 Introduction
	1.1 Network Function Virtualization
	1.2 Stateful service chaining
	1.3 Use cases for a high-speed programmable infrastructure
	1.4 Structure of this thesis

	2 The fall of the old paradigms
	2.1 Kernel I/O
	2.2 Kernel by-pass networking
	2.2.1 Features
	2.2.2 I/O Frameworks
	2.2.3 The case of Netmap and DPDK

	2.3 Pure I/O forwarding evaluation
	2.4 An attempt at fixing the kernel I/O limits

	3 A high-speed packet processing platform
	3.1 A modular high-speed packet processing platform
	3.2 I/O analysis
	3.2.1 I/O batching
	3.2.2 Ring size
	3.2.3 Execution model
	3.2.3.1 Pipeliner: a software queue that keeps a full-push path
	3.2.3.2 Advantage of a full-push configuration for reference counting

	3.2.4 Zero Copy
	3.2.5 Multi-queueing
	3.2.6 Compute Batching
	3.2.6.1 Batch size
	3.2.6.2 Batch-local variables
	3.2.6.3 Backward compatibility
	3.2.6.4 Compute batching feature evaluation

	3.3 FastClick evaluation
	3.4 Beyond Network I/O
	3.4.1 Timing
	3.4.2 Evaluation
	3.4.2.1 Accuracy
	3.4.2.2 Performance

	4 Distributed packet processing
	4.1 Distribution approaches
	4.1.1 CPU-bound workload comparison
	4.1.2 Memory-bound workload comparison
	4.1.3 Work distribution bias in the pipeline and parallel approaches

	4.2 Handling mutable data
	4.2.1 Ensuring graph thread-safeness

	4.3 Networking data structures for parallelization
	4.3.1 Write mostly
	4.3.2 Read mostly
	4.3.3 Update and degeneration

	5 An NFV Dataplane
	5.1 Motivation experiment
	5.2 Architecture for an efficient NFV platform
	5.2.1 Execution model

	5.3 State of the art
	5.3.1 I/O Frameworks and virtualization
	5.3.2 Userlevel TCP stacks
	5.3.3 NFV Dataplanes
	5.3.4 Controller-based approach
	5.3.5 Graph consolidation
	5.3.6 Flow tempering

	5.4 Combining middleboxes
	5.4.1 Session data size
	5.4.2 Dynamic scratchpad space and virtualized environments
	5.4.3 Multiple levels of sessions

	5.5 Stream abstraction
	5.5.1 Contexts
	5.5.2 Request for more data
	5.5.3 TCP flow reordering
	5.5.4 TCP flow stalling
	5.5.5 TCP flow resizing
	5.5.6 Matching both directions of the flow

	5.6 Prototype implementation
	5.6.1 Flow Classification
	5.6.2 Classification tree expansion
	5.6.3 FCB release
	5.6.4 Context implementation
	5.6.5 Socket-like abstraction

	5.7 Performance evaluation
	5.7.1 Stateless firewall
	5.7.2 NAT
	5.7.3 TCP load-balancing reverse proxy
	5.7.4 Service chaining

	6 Cooperative infrastructure
	6.1 Traffic class classification offloading
	6.2 Service chain classification offloading
	6.2.1 Evaluation

	7 Experimental automation and reproducibility
	7.1 Network Performance Framework
	7.2 Architecture
	7.2.1 Testie
	7.2.1.1 Variables expansion
	7.2.1.2 Initialization and pre-defined scripts
	7.2.1.3 Results parsing
	7.2.1.4 Regression

	7.2.2 Software
	7.2.3 Cluster
	7.2.4 Multiple metrics
	7.2.5 Data representation

	7.3 Interpretation of results
	7.3.1 Graphing
	7.3.1.1 Data transformations

	7.3.2 Output module
	7.3.3 Statistical analysis

	7.4 Conclusion

	8 Conclusion and future work
	Appendices
	A More results about distributed packet processing
	A.1 Increasing proportion of access to the packet content
	A.2 Increasing number of cores

	B More results about userlevel parallel data structures
	B.1 RxWMP data structure with read or write preference

	References

