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If people do not believe that mathematics is
simple, it is only because they do not realize
how complicated life is.

J.L. von Neumann

Introduction

In the present thesis we use Riemann-Hilbert problems in order to obtain
results in the theory of random matrices, orthogonal polynomials, and Painlevé
equations.

The first technique we use is the Deift/Zhou steepest descent method applied
to the Fokas-Its-Kitaev Riemann-Hilbert problem characterizing orthogonal poly-
nomials. Using this method, we obtain universality of double scaling limits in
certain critical random matrix ensembles. Furthermore we find asymptotics for
recurrence coefficients of orthogonal polynomials which are related to the consi-
dered random matrix ensembles.

Secondly we use the technique of a vanishing lemma. This approach enables
us to prove the solvability of certain Riemann-Hilbert problems associated with
Painlevé equations. The solvability of those Riemann-Hilbert problems leads to
the existence of real pole-free solutions of Painlevé equations.

Random matrices

Random matrices were first introduced in mathematical statistics by Wishart in
1928 [102]. In the 50’s and 60’s, mathematical physicists like Wigner, Dyson, and
Mehta began to study random matrices [42, 82, 101]. During the last decades,
random matrices have appeared in various branches of mathematics and physics.

e There are remarkable similarities between the eigenvalues of random matri-
ces and the non-trivial zeros of the Riemann-zeta function [84, 58, 90].

e Partition functions of random matrix ensembles are generating functions for
combinatorial quantities that are of interest in quantum field theory, see e.g.
[19, 38, 56].

e There are connections between random matrices and Brownian motions,
random permutations, random tilings, last passage percolation, polynuclear
growth models, and other models in statistical physics [6, 7, 8, 9, 10, 64, 87].
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e Certain bus systems and airplane boarding can be modelled using random
matrices [5, 70, 4].

A random matrix ensemble consists of a space of matrices with a probability
measure on it. The statistical properties of the eigenvalues of random matrices are
of big interest. A remarkable fact is that local statistics of eigenvalues of random
matrices are the same for large classes of random matrix ensembles, whereas the
global statistics depend highly on the probability distribution of the ensemble.
This important phenomenon is called universality. We will restrict ourselves to the
study of Hermitian matrices, although in the literature unitary, real symmetric,
and quaternion self-dual matrices have also been studied. A general reference for
random matrices is the book of Mehta [83]. An overview of the history of random
matrices can also be found in [51]. In [27] random matrices are viewed from a
perspective that is very close to ours, using a Riemann-Hilbert approach.

Probably the most extensively studied ensemble of random Hermitian matrices
is the Gaussian Unitary Ensemble (GUE). The probability measure on the space
of Hermitian n X n matrices in the GUE is

1
7 exp(— Tr M?)dM,

n

where Z,, is a normalization constant and dM is the flat Lebesgue measure

dM = ﬁdMu- 1 dRe MijdTm M;;.

i=1 i<j

In this ensemble the entries of the random matrices are independent (up to the
requirement that the matrices are Hermitian) Gaussian distributed random vari-
ables and the probability measure is invariant under unitary conjugation. This
last property is shared by a large class of random matrix ensembles, which are
called unitary ensembles. Other unitary invariant distributions are given by

Lexp(—nTrV(M))dM, (1)
Zn,
where V' is a real analytic function satisfying some growth condition at infinity.
The factor n turns out to be convenient when the size n of the matrices increases.
Due to this factor, the limiting mean density of eigenvalues exists when letting
n — oo. In the Gaussian case where V (z) = 22, the density is given by the Wigner
semi-circle law. The limiting mean eigenvalue distribution, which is highly depen-
dent on the potential V', is characterized as the unique measure that minimizes
the logarithmic energy in external field V,

1) = [ [ Yo ——du()dn(w) + [ V@)du(a), 2)

|z -yl
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among all probability measures p on R. The first term in (2) expresses a repulsion
between the eigenvalues, while the second term avoids the eigenvalues to drift away
to infinity. Due to the factor n in the exponent of (1), those two effects balance
with each other so that the limiting mean eigenvalue density is supported on a
compact set.

Useful information about the statistics of the eigenvalues is contained in the
so-called two-point kernel or eigenvalue correlation kernel

n—1
K(z,y) = e 8V @em8V0 3™ 0 @)pi (y), (3)
k=0

where pggn) denotes the k-th degree orthonormal polynomial with respect to the

weight e~V (®) . This connection between random matrices and orthogonal poly-
nomials holds also for more general ensembles than the ones with a measure of
the form (1), see [83]. The limiting mean density of eigenvalues ¢y as n — oo
can be retrieved from the kernel by the formula

Yy (z) = lim lKn(:zc,:zc)

n—oo n

and the m-point correlation functions R,, are given by
Rm(Il, e ,Im) = det(Kn(:ci, xj))lgi,jgm- (4)

Gap probabilities and the distribution of the largest eigenvalue can also be ex-
pressed in terms of K,,, and the joint probability density of the eigenvalues is
given by

1
7 det(Kn (@i, 25))1<i<n-

It turns out that local scaling limits of the two-point kernel near a point z*
are universal: the limiting kernel depends on the scaling regime, but further not
on the potential V' or on the position of z*. The two regular scaling regimes are
the following,

e bulk scaling, near points where the limiting mean eigenvalue density is pos-
itive,
e edge scaling, near edge points of the spectrum (i.e. the support of the limi-

ting mean eigenvalue density).

In the case where z* lies in the bulk of the spectrum the limiting kernel is the
sine kernel,

1 U v
lim —K, [ 2" + , o+ = K"k (y, v),
I e (7 e ) (42)
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where KP"¥ is given by

sinm(u — v)

KP4, v) = (5)

m(u — )
This was proven by Bleher and Its [13] in the case where V is a quartic polynomial
and by Deift et al. [27, 32, 33] for general real analytic V, see also [86]. In the
edge case where there is square root vanishing of the density at z*, the Airy kernel
appears in the large n limit, see e.g. [30],

. 1 * u * v edge
L WKn <x - (cn)z/g’x - (cn)2/3) =K (wv),

where c is a constant depending on V and K®d2¢ is given by

Ai(z) Ai'(y) — Ai(y) Ai'(x) '

Kedge —
(,0) —

(6)

The Airy function Ai is a special function characterized by the differential equation
Ai,, = z Ai and the asymptotics

_2,3/2
s

~ 2\/mxt/4

Ai(x) as T — +00.

Note that there is a difference in scaling between the bulk, where the scaling is
with 1/n, and the edge, where the scaling is with 1/n2/3. The scaling corresponds
to the mean distance between consecutive eigenvalues, which is of order 1/n in
the bulk and of order 1/n%/3 near the edges.

In critical random matrix ensembles, singular points occur. We distinguish
three other scaling regimes, depending on the type of the singular point. Singular
points are classified as follows, see e.g. [33, 74],

e type I singular points, which are singular points outside the support of the
limiting mean eigenvalue density,

e type II singular points, which are points in the interior of the spectrum
where the limiting mean eigenvalue density vanishes,

e type III singular points, which are edge points of the spectrum where the
limiting mean eigenvalue density vanishes at a higher order than in the
regular case.

Near singular points, the universality results stated above are no longer valid and
limiting kernels are different from the sine and the Airy kernel. However local
scaling limits should remain in some sense universal, they should depend only on
the nature of the singular point. Critical random matrix ensembles with singular
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points are such that the number of intervals in the support can change when
modifying the external field V slightly. For example, the presence of a type II
singular points indicates the closing or opening of a gap, or in other words the
transition where two intervals merge together to a single interval. Type I and
type III singular points also indicate a possible change in the number of intervals
where eigenvalues accumulate. To describe these transitions fully, it is useful to
deform the weight wy = e™"" to a weight w; depending on a parameter ¢. In
double scaling limits where we let n — oo and at the same time ¢ — 0 at an
appropriate rate, limiting kernels should depend on a deformation parameter.

Unitary random matrix ensembles of the form (1) can be modified in such a
way that a so-called spectral singularity at the origin is included. We then have
probability distributions (which are also unitary invariant) of the form

Zi| det M |** exp(—nTr V(M))dM, a>—1/2. (7)

The factor |det M|?* leads to an additional repulsion between the eigenvalues
close to the origin when a > 0 and an attraction when o < 0. This factor
does not change the limiting mean density of eigenvalues, but it gives rise to
a different local behavior of the eigenvalues that are close to 0. The two-point
kernels associated with such random matrix ensembles can be expressed as in (3),
but in terms of polynomials orthogonal with respect to the weight |:C|2ae_"v(””).
Due to the special point at the origin, local scaling limits of the two-point kernel
are different near 0. For example, if the limiting mean eigenvalue density is
positive in 0, this leads (instead of the sine kernel) to the Bessel kernel [77] given
by

(mru)J,

_1
a—3

(mv) = oy ()]

« a—

2(u — )

1(mu)

Jort
I8 (u,v) = m/uy/v—2 (8)

Here J, 1 are Bessel functions of order a + 1.

In the last kind of unitary ensembles we consider, the eigenvalues are restricted
to [0, +00) by putting a probability distribution on the positive-definite Hermitian
matrices,

Zi(det M) exp(—nTr V(M))dM, a> —1. 9)
n

Here the related orthogonal polynomials are orthogonal on [0, +00) with respect
to the weight 2%e~"Y(®), Local scaling limits of the two-point kernel are different
near 0 for two reasons. First there is again the repulsion or attraction because of
the factor (det M)®, and secondly 0 is now a hard edge where the eigenvalues are
not allowed to pass through. If the limiting mean eigenvalue density is positive
at the origin, the limiting kernel is again built out of Bessel functions [99].
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Universality is not a phenomenon that occurs only in unitary random matrix
ensembles. Recently, universality results have also been obtained for other random
matrix ensembles such as orthogonal and symplectic ensembles, see [29, 30].

Painlevé equations

At the beginning of the 20th century, Painlevé wanted to classify second order
ordinary differential equations (ODEs) of the form

U = F(x,u,uy), (10)

where F' is a rational function. Solutions of such ODEs can have singularities,
some of them fixed (independent of the chosen solution, fixed by the differential
equation itself) and some of them movable (depending on the chosen solution).
Painlevé aimed to classify all nonlinear ODEs of the form (10) for which the
movable singularities are restricted to be poles. It turned out that each of those
ODEs can be reduced either to a previously known differential equation or to an
equation in a list of six equations, which are now known as the Painlevé equations.
Solutions of those equations are called Painlevé transcendents.

The Painlevé equations are integrable, which means that they can be expressed
as the compatibility condition of a system of linear differential equations, called
the Lax pair. Associated with the Lax pairs, Painlevé equations have Riemann-
Hilbert problems in which the so-called monodromy data of a solution of the
linear system are contained. The Painlevé equation characterizes the monodromy
preserving deformations of the linear system [44, 62]. Generalizations of the Lax
pairs (which are obtained by increasing the degree of the polynomial coefficients
of the linear system) have higher order differential equations as underlying com-
patibility conditions. Those higher order ODEs are collected together with the
Painlevé equations in Painlevé hierarchies.

Besides the fact that Painlevé equations constitute a rich theory from a purely
mathematical point of view, they also have a wide variety of applications, e.g. in

e random matrix theory:

— gap probabilities and the distribution of the largest eigenvalue can be
expressed in terms of Painlevé transcendents [97, 103],

— in critical ensembles with type IT or type I1I singularities, local behavior
of eigenvalues near the singular point is described in terms of functions
associated with Painlevé equations [2, 12, 14, 18],

e combinatorics: in analogy to the largest eigenvalue of unitary random ma-
trices, fluctuations of the length of a largest increasing subsequence of large
random permutations are described by a special solution of the Painlevé 11
equation [6],
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e Hamiltonian perturbations of hyperbolic equations are in certain cases de-
scribed by Painlevé equations [39, 40],

e various models in statistical mechanics, like the Ising model, are related to
Painlevé equations [11].

An extended survey, including history and applications, on Painlevé equations
and associated Riemann-Hilbert problems can be found in the very recent book
[45].

Riemann-Hilbert problems

”The Riemann-Hilbert problem” has its origin around 1900, when it referred to
Hilbert’s 21st problem from his famous list of 23 problems. It was only later that
the term ”Riemann-Hilbert (RH) problem” began to be used in the context we
use it, for a whole class of boundary value problems. For our concerns, a RH
problem is typically as follows. We seek for a (scalar or matrix-valued) function
satisfying conditions of the following form:

(a) the function is analytic outside a given contour in the complex plane,

(b) the boundary values of the function satisfy prescribed jump conditions
across the contour,

(c) some additional conditions are required, e.g. at infinity, in order to have a
unique solution.

In the 70’s and 80’s, RH techniques were used for solving integrable systems.
Integrable systems are, as mentioned above, nonlinear differential equations which
can be expressed as the compatibility condition of a system of linear differential
equations. This linear system of equations is called the Lax pair of the underlying
nonlinear differential equation. There is a RH problem which characterizes solu-
tions of the Lax pair, and this RH problem also contains information about the
original nonlinear differential equation. An important issue in this context is the
solvability of RH problems. In some cases, existence of a solution is equivalent
with a vanishing lemma [48, 49, 104], which states that a related homogeneous
RH problem has only the trivial vanishing solution. This related RH problem
has typically the same jump conditions as the original one, but different beha-
vior at infinity. The idea behind this technique is that a RH problem is typically
equivalent with an integral equation, to which a certain operator is related. The
solvability of the RH problem then follows from the fact that this operator is bi-
jective. If the considered operator is Fredholm with zero index, this is equivalent
with triviality of the kernel of the operator, which in turn can be translated to a
vanishing lemma.
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In the early 90’s, Fokas, Its, and Kitaev [47] introduced a 2 x 2 matrix-valued
RH problem for which the unique solution was given in terms of orthogonal poly-
nomials. Given a weight w, the problem is to find a 2 x 2 matrix-valued function
Y =Y, that satisfies the following conditions:

(a) Y is analytic in C\ R,

(b) Yy(z) = Y_(2) <(1) “’(1”“’)) for @ € R,

© e =40 (5 %) wiowx
where Y, (z) (Y_(z)) denotes the limit when we approach z € R from the upper

(lower) half-plane. The solution of this RH problem is given by

1 n
K pn(2) H;l_' / pn(s)w(s) ds
2 Jp S — 2
Y(z) = ) ; (11)
ik pn1(2) —Km / Pn-1(s)w(s) ,
R Ss—Zz
where p,,(2) = K,2™ + -+ - denotes the n-th degree orthonormal polynomial with

respect to the weight w on R, see also [27]. For the choice of w = |z|**e~"V(®),

the eigenvalue correlation kernel for random matrix ensembles of the form (7) can
be expressed explicitly in terms of the RH solution Y,

Kn,N(xa y)

— a, —LINV(z)|, o, —LNV(y) 1 —1 1
afte BV VO (0 1) ¥ Yo ().

which indicates the interest of this RH problem in random matrix theory.

Also in the beginning of the 90’s, Deift and Zhou [36] developed a powerful
machinery to find asymptotics for solutions of matrix RH problems depending on
a parameter tending to infinity. This Deift/Zhou steepest descent method consists
of a series of transformations of the RH problem in order to obtain a new RH
problem which can be solved approximately. It can be seen as an analogue to
the classical method of steepest descent used to approximate certain integrals.
Instead of approximating an integral, the goal is here to approximate the solution
of a RH problem or, equivalently, the solution of a matrix integral equation.

The Deift/Zhou steepest descent method was used by Deift, Kriecherbauer,
McLaughlin, Venakides, and Zhou [27, 32, 33] to obtain asymptotics for the Fokas-
Its-Kitaev RH problem characterizing orthogonal polynomials on the real line.
This leads also to asymptotics for the eigenvalue correlation kernel in unitary
random matrix ensembles and to universal local scaling limits of this kernel. The
techniques introduced in [27, 32, 33] have led to many asymptotic results for
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orthogonal polynomials and random matrices, see [28]. We also use this method
in the thesis to obtain universality in critical random matrix ensembles. We give
a brief sketch of the ideas used in this analysis.

The starting point is the RH problem for orthogonal polynomials with respect
to an exponential weight depending on a parameter n. One would like to compute
asymptotics as n — oo for the solution of this RH problem, from which asym-
ptotics for the orthogonal polynomials and for the eigenvalue correlation kernel
would follow. The strategy is to find an equivalent ’easier’ RH problem for which
we can approximate the solution asymptotically. To find such a RH problem, we
need to perform several transformations. Without going into detail, we describe
the main ideas behind those transformations.

The first transformation, the normalization of the RH problem, takes care of
the behavior at infinity and leads to a RH problem with a solution tending to
the identity matrix at infinity. The appropriate way to do this, is to construct
a so-called g-function which is related to an equilibrium problem. Due to this
transformation, oscillating jumps are created.

In the second transformation, the jump contour is deformed to a lens-shaped
contour in order to turn the oscillating jumps into exponentially decaying jumps.
Ignoring those exponentially small jumps and small neighborhoods of some special
points, the RH solution can now be constructed explicitly. This is called the
construction of the outside parametrix.

The outside parametrix determines the asymptotic behavior of the RH solu-
tion outside small neighborhoods of the special points, where the local behavior
is determined by local parametrices which have to be constructed. Those can,
generically, be constructed using Airy functions.

The construction of parametrices leads to a final RH transformation, which
results in a RH problem normalized at infinity and with jumps which are uniformly
close to the identity matrix as n — oo. For such a RH problem it is known that the
solution is also close to the identity matrix. Reversing the series of transformations
now leads to asymptotics for the RH problem for orthogonal polynomials.

In critical cases, the local parametrices cannot be constructed using Airy func-
tions. Here the parametrices have to be built using other kinds of functions, such
as for example functions related to Painlevé equations. This is one of the main
issues in this thesis.

We refer to [52, 27] for more information on RH problems and to [59] for
historical details.
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Outline of the thesis

Outline for Chapter 1 and Chapter 2

In Chapter 1, we consider random matrix ensembles of the form

exp(—NTr V(M))dM (12)
n,N

on the space of n x n Hermitian matrices, with a potential V' which is such that
there is a type II singular point where the limiting mean density of eigenvalues
(as n, N — oo such that n/N — 1) vanishes quadratically. We establish universa-
lity for a double scaling limit of the eigenvalue correlation kernel near the singular
point. This generalizes a result of Bleher and Its [14] who considered critical quar-
tic symmetric potentials V. The limiting kernel K1 is built out of functions
related to the Hastings-McLeod solution of the second Painlevé equation

Gss(5) = sq(s) +2¢°(s),
which is characterized by the condition
q(s) ~ Ai(s) as s — +oo.

In Chapter 2, we extend our result to ensembles of the form

1

n,N

| det M|** exp(—N Tr V(M))dM, a>—1/2, (13)

where a type II singular point (with quadratic vanishing) lies at the origin. Here
the limiting kernel is built out of functions that are related to the general Painlevé
IT equation with parameter «,

ss(8) = 5q(s) +2¢3(s) — . (14)

The generalized Hastings-McLeod solution g, is for o £ 0 characterized by the
conditions

a
da(s) ~ — as s — 400, Gua(8) ~ | — ass— —o0.
s

2

The universal limiting kernel appearing in the double scaling limit of the eigen-
value correlation kernel is of the form

K0, 015
D, 1(u; 8) P 2(v58) — Py 1 (V5 8)Pa2(u; )

2mi(u — v)

— _ p3mialsgn(u)+sgn(v)] a5)



Introduction 11

where (io"l) is a solution of the Lax pair associated to the Hastings-McLeod

«@,2
P
solution of the general Painlevé Il equation with parameter a. The vector < (I)O"1>
a,2
is defined as a special solution of the linear differential equation

_(—4iC? —i(s+2¢%)  ACq+2ir+a/C
We() = ( 4¢q — 2ir + /¢ 4ic? +i(s+2q2)> w0,

where ¢(s) = ¢o(s) is the Hastings-McLeod solution of the general Painlevé II

(16)

equation (14), and where r(s) = ¢/,(s). The solution (ia’l) is analytic in C \
«@,2

(—ioc0, 0] and characterized by the condition

0 () = () e "

uniformly as ¢ — oo in the sector € < arg( < m—¢ for any € > 0. For the limiting
kernel (15), we need the values of @, 1 and ®, 5 on the real line.
We can now formulate our main results of Chapter 1 and Chapter 2.

0.1 Theorem. (see Theorem 1.1 in Chapter 1) Consider random matriz
ensembles of the form (12) where the limiting mean eigenvalue density vy (as
n,N — oo in such a way that n/N — 1) vanishes quadratically at an interior
point x* of Sy = supp ¥y, which is such that

Yy (") =9y (2") =0,  ¥i(z") > 0.

Assume also that there are no other singular points besides x*. Then we take a
double scaling limit where we let n, N — oo such that the limit

lim  n2/3 (% _ 1) -y

n,N—oo

exists with L € R. Then there exist explicit constants c,c1 > 0 such that for
s =c1L € R the following limit holds for the eigenvalue correlation kernel K, n,

. 1 . u . v crit, I,
i WKn’N (I " (cny 173" " (cn)l/3> =Ko is). (18)

0.2 Theorem. (see Theorem 2.2 in Chapter 2) Consider random matriz
ensembles of the form (13) where the limiting mean eigenvalue density vy (as
n, N — oo in such a way that n/N — 1) vanishes quadratically at the origin,

Yy (0) =11, (0) =0, (0) > 0.

We take a double scaling limit where we let n, N — oo such that the limit

lim n?/? (% —1) =L

n,N—oo
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exists with L € R. Then there exists constants c,c1 > 0 such that for s = ¢1L,
the eigenvalue correlation kernel K, n has the following double scaling limit,

. 1 u v _ qeerit,IT )
M T (g s ) = i) "

uniformly for u,v in compact subsets of R\ {0}.

We should note that the existence of K& (y, v; 5) for all real s is only guaran-
teed if the Hastings-McLeod solution g, has no poles on the real line. This result
was only known in the literature for & = 0 [57], but we could prove it for general
a > —1/2 too (see Theorem 2.1) by proving the solvability of an associated RH
problem via a vanishing lemma.

The simplest examples for which the conditions of Theorem 0.1 and Theorem
0.2 are satisfied, are the models with quartic potentials V' that were also considered
by Bleher and Its [14], V(z) = 42* — /ga® for g > 0. Here the limiting mean
eigenvalue density is given by

1 4
Yy (z) = %gm21 / % — 22, for z € [-2g~ /4 297 1/4),

and the constants ¢, ¢y are given by

In the case where supp ¥y consists of a single interval, we also compute, in
addition to the double scaling limit of the kernel, asymptotics for the recurrence
coefficients of orthogonal polynomials with respect to the weight |z|?®e=NV(®)
on R. The normalized orthogonal polynomials satisfy a three-term recurrence
relation of the form

zpy (@) = oo (@) + 0w (@) + 0 pi) (@)
In the double scaling limit, the recurrence coefficients a&N) and bE{V) tend to a
limit and the fluctuations around this limit are of order n=/3. The coefficients
describing the fluctuations are given in terms of the Hastings-McLeod solution
Qo sSee Theorem 2.7 for details.

We prove the universality results in Chapter 1 and Chapter 2 by applying
the Deift/Zhou steepest descent method to the RH problem for orthogonal poly-
nomials. A key step in the asymptotic analysis is the construction of modified
equilibrium measures which can have a negative density near the critical point.
Using these modified equilibrium measures, we can construct a local parametrix
near the singular point using the model RH problem associated with the Hastings-
McLeod solution of the Painlevé IT equation. For the proof of Theorem 0.2, there
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is an additional difficulty since we have to deal with RH problems with singular
behavior at the origin. Chapter 1 corresponds to the paper [22] and is joint work
with Arno Kuijlaars, Chapter 2 corresponds to [23] and is joint work with Arno
Kuijlaars and Maarten Vanlessen.

Outline for Chapter 3

In Chapter 3, we consider the P7 equation

s =1ty — (éf + 2—14(y§ + 2yyss) + 2%Oyssss> ; (20)
which is a fourth order analogue of the Painlevé I equation. It is the second
member of the Painlevé I hierarchy. It was conjectured by Brézin, Marinari, and
Parisi for ¢ = 0 [20], and by Dubrovin for general ¢ [40], that this equation has a
real solution with no poles on the real line. Our main result in Chapter 3 is the
following.

0.3 Theorem. (see Theorem 3.1 in Chapter 3) There exists a solution y(s,t)
to the P? equation (20) which is real valued and pole-free for s,t € R.

In addition we compute asymptotics for y(s,t) as s — +o0o. We find that
y(s,t) ~ F6/3s|1/3 as s — %00,

as it was suggested by Kapaev [66]. We construct the pole-free solution y in terms
of the solution of a RH problem. Showing that this RH problem is solvable is then
sufficient to prove that the solution of the P? equation is pole-free on the real line.
We do this by using a vanishing lemma. In addition, we apply the Deift/Zhou
steepest descent method on the RH problem in order to find asymptotics at +oo
for the real pole-free solution. This chapter corresponds to the paper [24] and is
joint work with Maarten Vanlessen.

Outline for Chapter 4

In Chapter 4, we study type III singular (edge) points in random matrix ensembles
of the form (1), where the limiting mean eigenvalue density vanishes with a power
5/2. We consider potentials V' = V,, = Vo + sVi + tVa, with V, Vi, and V;
real analytic, depending on two parameters. We assume that Vj is such that the
limiting mean eigenvalue density ¢ for s = ¢ = 0 of the random matrix ensemble
is supported on a single interval [a, b]. Furthermore b is a singular endpoint where,
for some ¢ > 0,

Yo(z) ~ c(b—x)°/? asz /b
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V1 can be arbitrary, but V5 needs to satisfy the critical condition

/ab \/EVQ’(u)du =0. (21)

We perform double scaling limits of the eigenvalue correlation kernel where we
let n — oo and at the same time s,t — 0 at an appropriate rate. We obtain a
universal limiting kernel K which is associated with the pole-free solution of
the P? equation considered in Chapter 3. The limiting kernel is of the form

—®4 (u; s, 6)Pa(v; 8, t) + Pao(u; s, t)P1(v; s, t)
2mi(u — v)

Kcrit,III(u’ v; s, t) _

)

Dy . . . . .
where the vector ( (1)1> is a special solution of the Lax pair associated to the
2

pole-free solution of the P? equation. To be precise,

(a).=v (o) @)

with U given by

1 [ ~AysC — (12yys +ysss) 8T+ 8yC + (1257 + 2y — 1208)
240 U2 4?/.5( + (12yy5 + ysss) ’

Uz = 8(% — 8y¢® — (4y” + 2y.s + 120t)C
+ (16y° — 2y3 + 4yyss + 240s),
where y is the real pole-free solution of P? considered in Chapter 3. For this

choice of y, the solution of (22) we are looking for, is the unique one for which
the following limit holds,

Loy (@1({;s,t)) e L b ( 1 )e_%”
C (1)2(<;Sat) \/5 -1
as ¢ — oo with 0 < arg ¢ < 67/7.

)

Here is the main result of Chapter 4.

0.4 Theorem. (see Theorem 4.7 in Chapter 4) Let Vs = Vi + sVi +tVa be
such that for s =t =0, supp o = [a,b], with b a singular (edge) point where g
vanishes with a power 5/2. Assume also that Vy satisfies condition (21) and that
there are no other singular points besides b. We take a double scaling limit where
we let n — oo and at the same time s,t — 0, in such a way that, for appropriately
chosen constants c1, ca,

c1- limn®7s = sq € R, co - limn* 7t = t5 € R. (23)
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Then, the eigenvalue correlation kernel K,(f’t) satisfies the following universality
result for a constant ¢ > 0,

1 U
K (s:t) _
cen2/77T (b+ cn2/7’b+

v
cn2/7

lim ) = KM (4 v: 50, t0), (24)

uniformly for u,v in compact subsets of R.

A simple example where the conditions of Theorem 0.4 are satisfied, is the one
where

1 4 1 8
Vo(z) = —=a* — —23 4+ —2? + —u, Vi(z) =z, Va(z) = 2% — 62. (25)
Then v is supported on the interval [—2,2] and given by

o) = 7=+ 22w = 272 o () (26)

We also obtain asymptotics for the recurrence coefficients of the related ortho-
gonal polynomials with respect to the weight e ~"V=:t. In the double scaling limit,
the recurrence coefficients show fluctuations of order n=2/7. Those fluctuations
are described by the real pole-free solution of P?. In particular we have that

b—a 1 -

o) = P Ly so,to)n =71+ o(1), @)
b+ 1 -

bt = 2 Lot (1 4 o)), 28)

see Theorem 4.11.

As in Chapter 1 and Chapter 2, we prove these results by applying the
Deift/Zhou steepest descent method on the RH problem for orthogonal poly-
nomials. The major difference compared with the first two chapters is the con-
struction of the local parametrix near the singular point. Here we use the RH
problem associated with the real pole-free solution of the P7 equation. This chap-
ter corresponds with the paper [25] and is joint work with Maarten Vanlessen.

Outline for Chapter 5

In Chapter 5, we consider random matrix models of the form

(det M)* exp(—N Tr V(M))dM, a>—1 (29)

Zn,N
on the positive-definite Hermitian n x n matrices. We consider the critical case
where the soft edge coincides with the hard edge at the origin in the limit where
n, N — oo such that n/N — 1, in such a way that the limiting mean eigenvalue
density ¥y vanishes like a square root at the origin,

Yy () ~ cxt/? as x \, 0.
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In a double scaling limit, we see the transition where the left endpoint approaches
the origin, where we observe the critical case before the density blows up at the
origin. The limiting kernel in this case is related to the limiting kernel K¢rit:II
from Chapter 2, associated with the general Painlevé II equation.
If we let n, N — oo such that the limit
im @n)¥* (£ -1) =L
N2
exists with L € R, we obtain the following double scaling limit for the eigenvalue

correlation kernel K, n, see Theorem 5.1. There exist constants c,c; > 0 such
that, for s = ¢y L, we have that

lim —— K - -
nN—oo (2en)2/3 "N\ (2¢n)2/3 (2¢n)?/3
1 i i
= L) (R Vi) + K~y ) (B0

uniformly for u,v in compact subsets of (0,400). If a > 0, this can be rewritten
as

lm K - !
nN—oco (2en)2/3 "N \ (2en)2/3" (2cn)2/3
1 . .
= ) (K (Vi) — KO (Vi —Vais) ) . (31)
2 2
Here the kernels K;rj;’fl are the ones that appear also in Chapter 2. The simplest

2
examples for which this critical situation occurs, are the ensembles with a potential
of the form V(z) = 42? — 2,/gz for g > 0, where ¥y is given by

-7 = ~1/2
Py () 27T\/5 7 z, for z € (0,497 1/7],

and where the constants c, c; are given by

g/4

1 IS SVER

To prove our result, it is not necessary to perform a Deift/Zhou steepest
descent analysis. In fact, it is a quite straightforward consequence of our results
obtained in Chapter 2 (see Theorem 0.2). This chapter is joint work with Arno
Kuijlaars.

Outline for Chapter 6

In Chapter 6, we indicate that the different limiting kernels that appeared in this
thesis are related to each other. We prove that the Bessel kernel and the Airy
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kernel can be obtained as limits of the critical kernel associated with the Hastings-
McLeod solution of the Painlevé II equation. Also we prove that the sine kernel
and the Airy kernel can be obtained as limits of the critical kernel associated with
the real pole-free solution of the P? equation, see Theorem 6.1 for the formulation
of the results. We prove our results by applying the Deift/Zhou steepest descent
method to the model RH problems associated with those Painlevé equations.

We conclude the thesis with a summary of the new results obtained and an
outlook on possible problems for future research.






Chapter 1

Universality of a double
scaling limit near a singular
interior point

Summary! We study unitary random matrix ensembles in the critical case where
the limiting mean eigenvalue density vanishes quadratically at an interior point of
the support. We establish universality of the limits of the eigenvalue correlation
kernel at such a critical point in a double scaling limit. The limiting kernels are
constructed out of functions associated with the second Painlevé equation. This
extends a result of Bleher and Its for the special case of a critical quartic potential.

The two main tools we use are equilibrium measures and Riemann-Hilbert pro-
blems. In our treatment of equilibrium measures we allow a negative density near
the singular point, which enables us to treat all cases simultaneously. The asymp-
totic analysis of the Riemann-Hilbert problem is done with the Deift/Zhou stee-
pest descent analysis. For the construction of a local parametrix at the singular
point we introduce a modification of the approach of Baik, Deift, and Johansson
so that we are able to satisfy the required jump properties exactly.

1 This chapter corresponds to the following paper [22]:

T. Claeys and A.B.J. Kuijlaars, Universality of the double scaling limit in random matrix
models, Commaunications on Pure and Applied Mathematics 59 (2006), no. 11, 1573-1603.

19



20 Chapter 1 - Singular interior point

1.1 Introduction and statement of result

1.1.1 Unitary random matrix ensembles

We consider the unitary random matrix model

Z, yexp(—=N Tr V(M))dM (1.1)
defined on Hermitian nxn matrices M in a critical regime where the limiting mean
density of eigenvalues vanishes at an interior point. It is a basic fact of random
matrix theory [27, 83] that the eigenvalues of the random matrix ensemble (1.1)
follow a determinantal point process with correlation kernel

n—1
Kon(a,y) = e FV@em 5V N5 ()50 (), (1.2)
k=0

where p,(CN) denotes the kth degree orthonormal polynomial with respect to the

weight e~ V'V on R.
We assume in this chapter that the confining potential V : R — R in (1.1) is
real analytic and that it satisfies the growth condition

Vi(x)
These assumptions ensure that the mean eigenvalue density %Kn ~N(x,x) has a
limit as n, N — oo, n/N — 1, see e.g. [27], which we denote by ¥y (z). It is
known that 1y is the density of the measure uy which minimizes the weighted
energy

1
Fo) = [ o rdute)dnto) + [ Viwauta) (14)
among all probability measure on R. The measure uy is called the equilibrium
measure in the external field V', and it satisfies the following variational conditions
for some constant £y :

2/10g |z —ylduy (y) = V(z) + 4y =0 for x € supp pv, (1.5)

2/10g |z —ylduy (y) — V(z) + Ly <0 for x € R\ supp py. (1.6)
The fact that V is real analytic ensures that the support Sy = supp py consists
of a finite union of intervals [31].

It is a remarkable fact that local scaling limits of the kernel (1.2) depend only
on the nature of the density vy. This has been proven rigorously in the bulk
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of the spectrum for a quartic V' in [13] and for general real analytic V in [32].
Indeed, if 9y (z*) > 0, then

1 U v
li 7}(" n * * — Kbulk 1.7
1 e (0 T ) T 0)
exists, and
Kbk () = sinm(u —v) (1.8)

m(u —v)

The scaling limits are different at special points of the spectrum. At edge points
of the spectrum the density ¥y typically vanishes like a square root, and then it
is known that for some constant ¢ > 0,

. 1 * U * v edge
i, o (5 G+ ) =K 09)
where

Ai(u) AP’ (v) — Ai' (u) Ai(v)

u—v

Ked8e (y, v) = (1.10)

and Ai is the Airy function. The Airy kernel is related to the Tracy-Widom
distribution [97]. In (1.9) we have assumed that z* is a right edge point. For a
left edge point we change u — —u, v — —v in the left-hand side of (1.9).

Other special points in the spectrum include

e Edge points where the density vanishes to a higher order. The possible edge
point behaviors (at a right end point x*) are

by (z) = c(z* —2)**T2(14+0(1) asx — a*+ (1.11)
where ¢ > 0 and k is a non-negative integer.
e Interior points where the density vanishes. Then
Yy (z) = c(x — ") (1 4+ 0(1)) asz — z* (1.12)
where ¢ > 0 and k is a positive integer.

In these critical cases it is believed that the local scaling limit at z* of the kernel
only depends on the order of vanishing of the density at z* [12].

1.1.2 Singular interior point

The case where 1y vanishes quadratically at an interior point of Sy, that is, the
case k = 1in (1.12), was considered by Bleher and Its [14] for the case of a critical
quartic potential V(z) = %:v‘l + %xz, with ¢ > 0 and ¢t = t. = —2,/g. Then

1 4
pvie) = %9”“’2\/;’ for @ € (29”1, 2971),
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so that ¥y vanishes quadratically at the origin. Bleher and Its consider the double
scaling limit where ¢ changes with n and tends to ¢, as n — oo in such a way
that n2/3(t — t.) remains constant. For the quartic potential this is equivalent to
considering (1.1) where n, N — oo, n/N — 1, such that

()
n}l\lzrgoon I 1 (1.13)

exists. Bleher and Its gave a one-paremeter family K% (y, v;s) of limiting
kernels, depending on s € R, so that for some ¢ > 0,

lim  —— Ky oy —
nN oo (en) 173 N \ (en) 173 (en) /3

) =K (y, v; 5) (1.14)
where s is proportional to the value of the limit (1.13).

1.1.3 Hastings-McLeod solution of Painlevé 11

The critical kernels Kt (y, v; s) are expressed in terms of so-called ¥-functions
associated with the Hastings-McLeod solution of the Painlevé II equation [57].

Consider as in [14] the linear differential equations for a 2-vector (or 2 x 2 matrix)
U =(Gs),

d )
— 0 = AV — ¥ = BU 1.15
d¢ ’ Os (1.15)
where
Al 4(q 4% +5+2¢% +2r
A=AlGs) = (—442 — 5 —2¢% +2r —4¢q ’ (1.16)
and

B=DB((;s) = (_qc _<q> . (1.17)

The compatibility condition for the Lax pair (1.15) is that ¢ = ¢(s) satisfies the
Painlevé II equation ¢ = sq + 2¢® and that r = r(s) = ¢/(s). We assume that
q(s) is the Hastings-McLeod solution of Painlevé II, which is characterized by the
asymptotic condition

q(s) = Ai(s)(1 + o(1)) as s — +oo.
The critical kernels [14] are given by

O (u; 5) 2 (v; 5) — B2 (us; 5)0 (v3 5)
m(u —v)

Kt (g, p; 5) = (1.18)
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where (i;ggzi) is the special solution to (1.15) which is real for real ¢, satisfies

OH—(s) = DH(G5s),  PE—Crs) = PG 9),
and has asymptotics on the real line
#(Gis) = cos (360 +50) + 0L
4 as ( — too.
®?((;8) = —sin <§C3 + SC) +0(¢™h
If we put
Oy = o' +id? by = o' —i®? (1.19)
then
—®q (u; 5)Pa(v; 8) + Pao(u; s)P1(v; s)

Kt (g, v; 5) = it ) (1.20)
and (i;) is a special solution of the differential equations

s = (TR e e (1.21)
and

9 4(is) = (_ic F’) U((;s). (1.22)

s q ¢

The equations (1.21)-(1.22) for the t-functions correspond to the ones used by
Flaschka and Newell [44] and we will also use those in what follows. The vector
(g;) is the unique solution of (1.21) with asymptotics

(¢ +50) <$;E§3> _ (é) +0(¢™Y) (1.23)

as ( — oo uniformly in € < arg( < 7 — ¢ for any € > 0.

Before discussing our results, we like to point out an integral formula for the
kernel Kty v; s). If we take a derivative of (1.18) with respect to s and use
(1.15) and (1.17), we get after some calculations

diKcm’H(u,v; 5) = 1 (@ (u; 5)@" (v 5) + @ (u; 5)@%(v5 5)] .
s m

Using the Deift/Zhou steepest descent method for s — —oo as done in [37] (see
also Section 6.4 in Chapter 6 of this thesis), one can show that K% (y, v;5) — 0
as s — —o00, so that we get

K0 (4 0 5) = 1 /S [fl)l(u;a)q)l (v;o) + ‘I)Q(U§U)(I)2(U§U)] do. (1.24)

T J-—c

Since ®!((;s) and ®2((;s) are real for real ¢, formula (1.24) clearly shows that
Keri® I (4 u; 5) > 0, as it should be.
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1.1.4 Statement of result

It is the aim of this chapter to show that the kernel Ke*!(y, v;s) is a universal
limit. Whenever the limiting mean eigenvalue density ¢y vanishes quadratically
at an interior point x*, the correlation kernel K, y has a double scaling limit
given by (1.14), assuming that there are no other singular points besides z*. Here
singular point refers to the classification of [32] according to which there are three
types of non-regular behavior for a real analytic external field V', see also [74].
The singular points of type I are points in R\ Sy where equality in the variational
inequality (1.6) holds. Singular points of type II are interior points of Sy where
the density 1y vanishes, and singular points of type III are edge points of Sy
where 1y vanishes to higher order than a square root.

We have not been able to show universality of the double scaling limit in the
presence of other singular points besides x*, although we strongly believe that the
universality result should hold in full generality. The problem lies in the existence
of suitable parametrices around other singular points which we have been unable
to prove in the double scaling regime, see also Remark 1.9.

In our Theorem 1.1 below, we use the equilibrium measure wg of a compact
set S C R. This is the unique probability measure on S that minimizes the
logarithmic energy

1) = [ [ 0w =)t (1.25)

among all Borel probability measures p on S. If S is a single interval [a, b], then
wg has a density wg given by

1
/(0 —z)(x —a)

wg(z) = z € (a,b).
If S is a finite union of disjoint intervals, say S = (Jj_, [a;, b;] with a; < b; < a;41.
Then wg has density

_ p()|
’LUS(:Z?) = —
/T (6 = 2)(a = ay)]

where p(z) is a monic polynomial of degree n — 1 with exactly one zero in each of
the gaps (bj,a;41), 7 =1,...,n—1, see e.g. [94, Lemma 4.4.1]. Note that (1.26)
has an extension to an analytic function in C\ (R \ $°), where S° = {J;(a;, b)),
which is a fact that we will use in what follows.

The following is our main result.

;o we|Jlayby), (1.26)
j=1

1.1 Theorem. LetV be real analytic on R such that wll)gloo %

Yy be the density of the equilibrium measure in the external field, and let x* be
an interior singular point of Sy = supp ¥y which is such that

Yy (z7) = ¢y (2*) =0, ") > 0.

= +400. Let
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Assume that there are no other singular points besides x*. Let n,N — 0o such
that the limit

Ii 2/3 (ﬁ — 1) =L
nNoe AN
exists with L € R. Let K, n be the correlation kernel (1.2) for the eigenvalues of
the random matriz model (1.1). Then there exist constants ¢ > 0 and s € R such
that

v
n)i/3

. 1 " u * __ meerit,IT .
n)}l\lrrgoo WK}LN (:17 + (cn)1/3’x + ( > =K (u,v;s) (1.27)
uniformly for u,v in compact subsets of R.

Ezxplicit formulas for the constants ¢ and s are

" *
c= TV (1.28)
8
and
7T *
5= mesv (x"), (1.29)

where wg,, is the density of the equilibrium measure of Sy .

As noted before, Bleher and Its [14] proved (1.27) for the case of a critical
quartic V. See [15] for a rigorous expansion of the free energy in this critical case.
Recently Shcherbina generalized Theorem 1.1 for certain non-analytic symmetric
potentials [93].

1.2 Remark. The random matrix model (1.1) may be generalized to include a
spectral singularity at the origin

Z, |det M|** exp(—N Tr V(M))dM, o> —1/2. (1.30)

If ¢y (0) > 0 and n = N — oo, then the scaled limit of the correlation kernels is
a Bessel kernel which involves Bessel functions of order o = %, see [2, 77]. In the
multi-critical case where 1y vanishes quadratically at 0, an analogue of Theorem
1.1 is valid, see Theorem 2.2. In Chapter 2, we are considering the double scaling
limit of (1.30) and we show that the limiting kernels are expressed in terms of the
1-functions associated with a special solution of the general Painlevé II equation

¢ =sq+2¢° —a.

The main ingredients in the proof of Theorem 1.1 are equilibrium measures
and Riemann-Hilbert problems. We give some comments on both.
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Figure 1.1 The density of p: for V(z) = 5”4—4 — 22 with t equal to 0.8, 1 and 1.3,
respectively.

1.1.5 Equilibrium measures

Recall that the equilibrium measure in external field V' minimizes (1.4). We need
to know how the equilibrium measure gy in the external field changes as a result
of a change in V. The particular modification we consider here is

1

so that V3 = V. Let us put

Mt = Kv; -

Then it is known that tu; and S; are increasing as a function of ¢, see e.g. [26, 91,
96]. We also have the Buyarov-Rakhmanov formula [21]

1

t
Mt = ¥/0 Wsupp pu AT, (1.31)

which expresses the equilibrium measure in the external field as an average of
equilibrium measures of sets. A consequence of (1.31) is that

= WSy, (132)

d
— ()
dt i—1

which partly explains why the equilibrium measure wg,, plays a role in the formula
(1.29) for s.

For the case of interest in this chapter we have that ¢y vanishes at x = x*.
Then for ¢ > 1, there is a positive density at z*, while for t < 1, 2* is out of
the support of u:. For ¢ slightly less than 1, there is a gap in supp p+, see Figure
1.1. An asymptotic analysis based on the equilibrium measure p; would require
a discussion of the two different situations ¢ > 1 and ¢ < 1, as is done in [6].

Therefore we found it convenient to introduce a modification of the equilibrium
problem in external field, which will enable us to treat both cases simultaneously.
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0.6 0.6 0.6
] t=0.8 ] t=1 ] t=1.3
0.41 0.4 0.4
0.2 0.2 0.2
0 0 0
e R R

Figure 1.2 The density of v; for V(z) = % — 22 with t equal to 0.8, 1 and 1.3,
respectively (compare with Figure 1.1).

The modification we make is that we do not require the measure to be non-
negative in a neighborhood of the point x*. For a sufficiently small do > 0, we
consider the problem to minimize

Iy, (v) = // log ﬁdu(m)dv(y) + % /V(I)dl/(l‘) (1.33)

among all signed measures v = vt —v~ on R, where v+ are nonnegative measures,
such that
/dl/ =1, and suppv” C[z* —do,x* + do]. (1.34)

We denote the minimizer by v, and we let Sy = supp v4.
Then vy = uz for t > 1, but for t < 1 there is a clear distinction between vy
and p¢, see Figure 1.2. However we still have the analogue of (1.32) (as we prove)

— sy, (1.35)
t=1

d
E (tVt)

What’s more, we also have (1.35) at the level of densities, that is, if 1; denotes
the density of v, and if x is an interior point of Sy (in particular if = 2*), then

d
g (@) = wsy (@), (1.36)

t=1

where wg,, is the density of the equilibrium measure of Sy, which is what we need
for the proof of Theorem 1.1. Note that we do not have (1.36) for x = z* if ¢y is
the density of u;.

1.1.6 Riemann-Hilbert problem

The second main tool for the proof of Theorem 1.1 is the characterization of ortho-
normal polynomials by means of a Riemann-Hilbert problem, due to Fokas, Its,
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and Kitaev [47], and the subsequent asymptotic analysis of the Riemann-Hilbert
problem by means of the Deift /Zhou steepest descent analysis of Riemann-Hilbert
problems, introduced in [36], and further developed in [35, 33, 32], and other
more recent papers. The Deift/Zhou steepest descent analysis of the Riemann-
Hilbert problem consists of a sequence of explicit transformations, which result in
a Riemann-Hilbert problem that is explicitly solvable in terms of Neumann series.
(In fact, in this chapter, we only need the first term of this series.) The critical
point z* needs special attention.

Of particular interest for us is the paper [6] by Baik, Deift, and Johansson
on the length of the longest increasing subsequence of a random permutation of
{1,2,...,n}. These authors show that the fluctuations of this random variable
are distributed according to the Tracy-Widom distribution [97] in the limit as
n — oo. One of the technical tools in this important paper is the asymptotic
analysis of a Riemann-Hilbert problem on the unit circle which is related to an
equilibrium measure (also on the unit circle) whose density vanishes at the point
—1. This situation is comparable to ours. The authors of [6], see also subsequent
papers [7, 8, 9, 10], construct a local parametrix near —1 with the aid of the
1-functions associated with the Hastings-McLeod solution of Painlevé II. These
1-functions satisfy a model Riemann-Hilbert problem and the local parametrix
is constructed by appropriately mapping the model Riemann-Hilbert problem
onto a neighborhood of —1 so that it satisfies certain desired jump properties
approximately.

We follow the approach of [6] but we introduce a modification in the construc-
tion of the local parametrix so that it has the desired jump properties ezactly, in
contrast to [6] where the desired jump properties only hold approzimately. The
fact that we have the exact jump properties simplifies the arguments considerably
and we feel that this is also a main contribution of the present work.

1.1.7 Outline of the rest of the chapter.

In Section 1.2 we collect the necessary facts about equilibrium measures. In par-
ticular we study the modified equilibrium problem with external field in some
detail. In Section 1.3 we discuss the Riemann-Hilbert problem satisfied by the
i-functions. Here we follow [44]. Then in Section 1.4 we state the Riemann-
Hilbert problem for orthogonal polynomials, discuss the relation with the cor-
relation kernel K, n, and perform the transformations in the steepest descent
analysis. Finally in Section 1.5 we give the proof of Theorem 1.1.

1.2 Equilibrium Measures

As explained in the previous section, we consider a modification of the equilibrium
problem where we drop the non-negativity condition in a small neighborhood of
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x*. We take dg > 0 sufficiently small so that
Yy (x) >0 for all z € [z* — §p, 2™ + o] \ {z"}. (1.37)

and we use v, to denote the signed measure that minimizes (1.33) under the
conditions (1.34). We define

Sy = supp V4. (1.38)

The existence and uniqueness of v; follows as in [91].
Let

()= [ lo N v
U (@) = [ 1o ——avty)

be the logarithmic potential of v. Then standard arguments of potential theory
[27, 91] show that 14 is the unique signed measure satisfying (1.34) with the
property that

20" (x) + %V(x) = {4, x € supp v, U [z" — o, 2" + o, (1.39)
2 () + %V(:c) >0, weR (1.40)

for some constant ¢;.
As before we use p; to denote the equilibrium measure in the external field
V;. This is a probability measure that satisfies for some constant ¢,

1

20" (x) + ;V(a:) =l T € Supp L, (1.41)
1 -

WH(a) + V(@) 2 b, zcR. (1.42)

It is known that ¢ty and supp p¢ are increasing with ¢ > 0, see [21, 91]. For ¢ > 1,

we have supp py C supp p; which implies that v, = p; in view of (1.37) and the

variational conditions (1.39)—(1.42). For ¢ < 1, we have that z* is outside the

support of p;, and in fact the strict inequality in (1.42) holds for x = z* if ¢ < 1.
In general there is the following inequality between p; and v.

1.3 Lemma. For every t > 0 we have
e < vy (1.43)
Proof. Let A = v — py. From (1.39), (1.40), (1.41), and (1.42) it follows that

2UMNx) < by — 1y, for z € S, (1.44)
2UMNx) > by — 1y, for x € supp p. (1.45)
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The potential U” is subharmonic on C \ supp A* and since J dx =0, it is subhar-
monic at infinity as well. By the maximum principle for subharmonic functions
[88, 91], the maximum of U” is attained in supp A* only. Since supp AT C S; we
then have by (1.44) that equality in (1.45) holds for every x € supp ¢, and so
supp gt C supp AT. This implies (1.43). O

It follows from (1.43) that supp v; N supp p: is empty. Since for ¢ slightly
less than 1 a gap opens in supp p:, which depends continuously on ¢, see [74], it
follows that for any given ¢ € (0,d), there is tg < 1 such that

supp v, C [z* —¢,2" + 0], for ¢t > .

This shows that for ¢ < 1 sufficiently close to 1, the definition of v, is independent
of the choice of dg.

A very useful fact is that for real analytic V', say V is analytic in a neighbor-
hood V of the real line, the measures p; have densities z/;t which can be expressed
in terms of the negative part of an analytic function in V. Indeed, if

ae = (52) -3 [P ), (140

then it was shown in [31] that

Jula) = —4/Gr (@) (1.47

where Qt_ = max(0, —Q;) denotes the negative part of Q;. A consequence of
(1.47) is that supp f is the closure of the set where Q, is negative.

The arguments of [31] can be readily extended to the signed measures vy,
provided that supp v, C [¢* — §,2* 4 0] for some 0 < §p. We define

Qui(z) = (V;(:)> - %/de(y), zEV. (1.48)

and then the following holds.

1.4 Proposition. There exists tg € (0,1) such that for every t > tq, the signed
measure vy has a density ¥ and

Qi(z) = —[my(x)]?,  forz €S, (1.49)
In addition we have

, 2
wt(y)dy_p Vi) for x € R\ S;. (1.50)

s, Y- 2

Qi(z) = {

Proof. This follows as in [31, Proposition 2.51]. O
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Obviously, for ¢ > 1 we have Q; = Q,. Since 1, = ¥y has a double zero at
x*, we see from (1.49) that @1 has a zero at a* of order four. For ¢ slightly bigger
than 1, this fourth order zero splits into two double zeros in the complex plane
away from the real axis.

For t slightly less than 1, there is a difference in the behavior of the zeros of
Q: and Qt. Indeed, Qt has two simple real zeros near x* which are endpoints of
the support of py, and in addition there is a double real zero in between them.
On the other hand, we have that @); has two double real zeros near x*, which are
endpoints of the support of v, .

The fact that —Q; has only double zeros near z* allows us to take an analytic
square root, and in view of (1.49) we choose it so that for z € S,

Uilz) = (- Qu() (1.51)

where the sign of the square root at x = x* is taken negative if ¢ < 1 and positive if
t > 1. The right-hand side of (1.51) has an analytic extension to a neighborhood
of z*, which is independent of the value of ¢ > ty. Thus ¢, has an analytic
extension to a fixed neighborhood of *, which will also be denoted by ;.

Recall from the discussion before the statement of Theorem 2.1, that the
density wg, of the equilibrium measure of Sy also has an analytic extension to
a neighborhood of x*, which we also denote by wg, . The remaining part of this
section is devoted to the proof of the following proposition.

1.5 Proposition. We have
t —
o H1(2) = 9(2)

lim ] = wg, (2) (1.52)
uniformly for z in a neighborhood of x*.
We start with a lemma which contains a weaker form of (1.52).

1.6 Lemma. We have

d
E(tVt) = wsy (153)
t=1

where wg,, is the equilibrium measure of Sy .

Proof. Buyarov and Rakhmanov [21] proved (for a very general class of V') that

.ty — v
tgrlnf ﬁ = wWsy (154)
and
t —
e T BV wss, (1.55)

t—1+ t—1
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where wg; is the equilibrium measure of the set
Sy ={xeR|2U" (z) + V(z) = {1},

see (1.41) with ¢t = 1. For real analytic V, the sets Sy and S5, differ by an at
most finite number of points, so that ws, = ws:. Thus by (1.54) and (1.55) we
have

.ty —pyv

%EH T = Wsve (1.56)
Now write

vy —v1 tue — py t

s S B A G (O)

In view of (1.56) it suffices to prove that
[lve — pe|| = o(t — 1) ast — 1, (1.57)

where the norm denotes the total variation of a signed measure. We may assume
that ¢ < 1. Because of (1.43) we have

I = el = Wit = =i = [t =)+ [ =2 [, (s
For t < 1, the support of v; is contained in an interval [x* — 0(¢), * + ()], with
5(t)=0 ((1 - t)1/2) ast— 1, (1.59)

see [74, Lemma 8.1(iii)]. From (1.51) and the fact that @Q; has two double zeros
in [x* — 6(t),z* + &(t)] which are the end-points of the support of v, , we then
easily get that

d

e () = 0(5(t)%) = O(1 — 1) ast—1—. (1.60)

Combining (1.59) and (1.60), we find [dv; = O ((1 —t)3/?) as t — 1—, which
by (1.58) implies (1.57). This completes the proof of the lemma. ad

We now give a characterization of 1y, which will be of use in the proof of
Proposition 1.5.

1.7 Lemma. For x € Sy we have

11 Vi) = V'(y)
(x) / T —

- 212 wg, Y

Yv ()

dws (y), (1.61)

where wg,, 1is the density of ws,, .
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Proof. By the Sokhotski-Plemelj formulas, see e.g. [52], we have that

F(z) z/]V—(S)ds, for z € C\ Sy,
Sy Z—5
satisfies
Fi(z)+ F_(z) = V'(x), z € Sy, (1.62)
Fi(z)—F_(z) = =—2mivy(z), xz € Sy. (1.63)

Let Sy = Uj_,[aj, b;] and set

1/2

n

Riz) = |[[G-b)z—a)| . zeC\Sv,

Jj=1

where the square root is positive for z > b,. Using (1.62) and the fact that
Ri(x) = —R_(z) as x € Sy, we see that

p@)Fy(x)  p)F-_(z) _ pla)V'(x) (1.64)

Ry(x) R_(z) — Ri(a)

for any polynomial p. Suppose p has degree at most n — 1. Then (1.64) and the
fact that % — 0 as z — oo imply that

pRFE) _ 1 [ pe)Vis) 1
R(z) _2m'/5 R, (s) pumpr €C\ Sy

which we can rewrite for z € V as

PEFE) L[ VIS V) al) VIR [ 1
R(2) 27 Jg,, s—z Ry (s) 21 Jg, Ry(s)s—z
_ 1 V'(z) = V'(s) p(s) V'(z) p(2)
T 2mi /Sv z—5 Ry (s) ds + 2  R(z) (1.65)

by contour integration. Now we use (1.65) and (1.63) to obtain

_F@-F. () 1 Ri(x) [ V()-V'() pW)
WS  Tw  Jy oy R ™

and this holds for any polynomial p of degree at most n — 1. Since we know by
(1.26) that

_ i p(@)
wSV(x)_;R+(I)7 z € Sy,

for some monic polynomial p of degree n — 1, we get (1.61). O
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Now we can give the proof of Proposition 1.5.

Proof of Proposition 1.5. By (1.48) we have for z € V,

(4 2 ") — V!
eo) = (42) - [ aw
so that in view of (1.53) we find,

:_/w

d 2
S(EQi(2) —

deV (y)
t=1

Thus by (1.51) for z # z* in a neighborhood of z*,

d d1
7|, = R e
- vy [HEE g, )
11 V() = V'(y) y
~ 2n2 1/)V(z)/ i—y dwsy, (y)- (1.66)

By (1.61), the right-hand side of (1.66) is wg, (z) in case z # x* is real, and by
analytic continuation it continues to be wg, (z) in a punctured neighborhood of
2*. Thus (1.52) holds for z # z* in a neighborhood of x*, and then it easily
follows for z = =* as well. |

1.3 Riemann-Hilbert problem for Painlevé II

In this section we recall the RH problem associated with the second Painlevé
equation, see [44, 62, 37, 6, 60]. We transform this RH problem into a RH problem
that will be used in the next section to construct a parametrix around x*.

1.3.1 -functions associated with Painlevé 11

Consider the differential equation of (1.21),

d _(—4¢% —i(s + 2¢%) 4Cq + 2ir
d_gq’(o B ( 4Cq — 2ir 4iC? +i(s + 2q2)> v(©), (1.67)

where VU is a 2 x 2 complex matrix-valued function and s, ¢ and r are considered
as parameters. All solutions of (1.67) are entire functions of (.
For j =1,...,6, let S; be the sector

2j—3 2j —1

S;={¢eC| T <arg( <

7} (1.68)
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There exists a unique solution ¥; of equation (1.67) so that

W) E¢ 0 Z 11 o(c ) (1.69)
as ( — oo in the sector S;. Here we use o3 = (6 ) to denote the third Pauli
matrix. There exist complex values s;, j =1,...,6 (called Stokes multipliers) so
that

Ui (Q) =¥;(QA4;, forj=1,....5  ¥i(¢) = ¥g(()As. (1.70)
with

Aj = (1 0) if j is odd, (1.71)

S5 1
and
1 S5 o
Aj = 0 1 if j is even. (1.72)

Furthermore, we have
Sj4+3 = 85 and $18283 + 81 + Sg + S3 =0. (173)

Now define the rays

27 -1
I ={C|arg¢= w} forj=1,...,6, (1.74)

oriented away from the origin, and the matrix-valued function
T(C) := ¥;(Q), for ¢ € S;. (1.75)
Then VU satisfies the following RH problem
(a) W is analytic on C\ U?:1 r
(b) ¥ =T_A; onTy,
(¢) W(QeES 5078 — [ 1 O(¢1) as ¢ — ox,
(d) ¥ is bounded near 0.

The Stokes multipliers s; depend on s, ¢ and r. An isomonodromy deformation
is a variation of these parameters such that the Stokes multipliers remain constant.
Flaschka and Newell [44] showed that the isomonodromy deformations are given
by the Painlevé I equation ¢”(s) = sq(s) + 2¢3(s) and 7(s) = ¢/(s).

Any solution of the Painlevé II equation is a meromorphic function with an
infinite number of poles. We write W((;s) for the ¥ function (1.75) with pa-
rameters s, ¢ = ¢(s), r = r(s), where ¢ is the Hastings-McLeod solution and
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Figure 1.3 Jumps for V((; s) for the U-functions associated with the Painlevé IT
equation (general case).

r(s) = ¢'(s). Let P be the set of poles of g. Then ¥((;s) is defined and analytic
for ¢ € C\ U?:l I'; and for s € C\ P. It is known that there are no poles on
the real line [57]. The Stokes multipliers corresponding to the Hastings-McLeod
solution are

81:17 82207 832—1.

Thus ¥(¢; s) is analytic across the imaginary axis. We reverse the orientation of
I's and T'y4, and we define

21:F1UF3, and 22:F4UF6.
Then ¥((;s) solves the following RH problem, see also Figure 1.4.
(a) W is analytic on C\ (31 U X3),

(b) W satisfies the following jump conditions on ¥; and o,

1 0
\I]J’_ =U_ (1 1) on Elu

1 -1
U, =0_ (0 1> on s,
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() ()

(o 1) (o 1)

Figure 1.4 Jumps for W((;s) for the special U-function associated with the
Hastings-McLeod solution of the Painlevé II equation.

(c) W(G; )€l 307 = T4 O(¢T1) as ¢ — ox,
(d) ¥ is bounded near 0.

The RH problem has a solution if and only if s € C\ P. The properties (c)
and (d) are valid uniformly for s in compact subsets of C \ P.

1.8 Remark. We also note that ¥((;s) is jointly analytic in ( € C and s €
C\ P. This follows from basic results on the analyticity of solutions of differential
equations with analytic parameters, since ¥ satisfies both (1.21) and (1.22) where
g = q(s) and r = ¢’(s) depend analytically on s.

1.3.2 Transformation of the RH problem

We modify the RH problem for ¥ so that it resembles the RH problem that we
will need locally near z*.
We introduce an additional parameter § € R and define

€073 (¢ S)ei(%<3+8<)ase—ieaa for Im¢ > 0,

) g ) 1.76
8“9”3\11@; s)ez(%<g+8<)"36_19”3 (? _01) for Im ¢ < 0. ( )

M(<;8,9)={

For any given s € C\ P and § € R, we then have that M is defined for ¢ €
C\ (RUX; U2Xy), see Figure 1.5, and satisfies the following RH problem

(a) M((;s,0) is analytic (both in ¢ and s) for ¢ € C\(RUX;UX;) and s € C\ P,
see also Remark 1.8.
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1 0
/(ezi(gCS“CQ) 1) N

0 1
-1 0
A 1 0 e
6721'(%(3“(79) 1

Figure 1.5 Jumps for M((;s,6).

(b) M satisfies the following jump conditions,

1 0
M—l—(c; S, 9) = M_(C; S, 9) (eQi(gCS'i‘SC—@) 1) for C S 21, (177)
M (C;s,0) = M_(C;5,0) <_01 (1)> for (€ R,  (1.78)

1 0

M (¢;5,0) = M_((;8,0) (e—2i(§43+sc—9) 1) for ( € o, (1.79)

(c) M((;s,0) =1+ 0O(C™1) as ¢ — oo in the upper half plane,

M(Gs,0) = (I +0(C) < 01

1 O> as ( — oo in the lower half plane,

(d) M((;s,0) is bounded for ¢ near 0.

The properties (c¢) and (d) hold uniformly for s in compact subsets of C \ P and
for 6 € R.

1.4 Steepest descent analysis of Riemann-Hilbert
problem

The proof of Theorem 1.1 is based on the steepest descent analysis of the Riemann-
Hilbert problem for orthogonal polynomials.

Since the main point of the present discussion is the treatment of the critical
point z*, we will restrict ourselves to the one-interval case. We also assume that
there are no other singular points besides z*. Thus Sy = [a, ] and vy vanishes
like a square root at a and b, and quadratically at * but at no other points of
Sy . In addition, we assume that the inequality in the variational condition (1.42)
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is strict for € R\ [a, b]. We then have that
Sy = supp v = [ay, by (1.80)

for certain a; < by for every t close to t = 1. Note that a; is an increasing and by
a decreasing function of t.

We will comment below on the modifications that have to be made in the
multi-interval case, see Remark 1.9.

1.4.1 RH problem for orthogonal polynomials

For each n and N, we consider a Riemann-Hilbert problem, introduced by Fokas,
Its, and Kitaev [46, 47]. We will look for a 2 x 2 matrix-valued function Y =Y, n
(we drop the subscripts for simplicity) that satisfies the following conditions:

(a) Y is analytic in C \ R,

~NV(@)
(b) Yi(z) = Y_(2) <(1) va > for 7 € R,

2" 0

@ v =(o) (5 0

) as z — OQ.

Here Y, () (resp. Y_(x)) denotes the limit as we approach « € R from the upper
(resp. lower) half-plane. The RH problem possesses a unique solution which is
given by

(V) —NV(s)
- 1 pn(8)e
R G ey [ L T
Y(z) = ® (1.81)
™ p(N)l(S)efNV(s)
—2Tikn—1,NDy, 1 (%) —Iin_l)N/ S s
R Ss—Zz
where pﬁ,N) (x) = kp,nx™ + - -+ denotes the orthonormal polynomial as before, see
also [27, 73].

The correlation kernel (1.2) can be expressed directly in terms of the solution
of the RH problem. Indeed, by the Christoffel-Darboux formula for orthogonal
polynomials

N N N
V) v e P @R () = P (@)ph )
Kn, N x—y

Kn,N(x7y) =e€

which involves the orthogonal polynomials of degrees n and n — 1 only. Using
(1.81) and the fact that det Y (z) =1 for every z € C\ R, we then get

_
2mi(z — y)

Knn(z,y) =e 2V @e 3V (0 1) Y (y)Yy(2) (é) (1.82)
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Applying the Deift/Zhou steepest descent method to the RH problem will allow
us to find the asymptotics of K, n as given in Theorem 1.1.

We note that an expression like (1.82) was first given in the context of ran-
dom matrices with external source [3, 16, 17] where the eigenvalue correlation
kernel is given in terms of the solution of a 3 x 3 matrix-valued RH problem, and
the expression similar to (1.82) was found to be very convenient for asymptotic
analysis. Also in the present 2 x 2-case we find it helpful to work with (1.82).

1.4.2 Normalization of the RH problem at infinity: YV — T

In the first transformation we normalize the RH problem at infinity. A standard
approach would be to use the equilibrium measure p; in external field V; where t =
n/N. If we would do this for the case where t < 1, we would have an equilibrium
measure with a gap in the support around x*, and an annoying consequence is
that the equality in the variational conditions is not valid near z*. For this reason
we have introduced the signed measures v; in Section 1.2 and we will use these
measures now to normalize the RH problem.

We let t = n/N and assume ¢ is sufficiently close to 1 so that (1.80) holds. As
before we use

dl/t

1/)t 3:%

to denote the density of v;. Then we define the g-function

gi(z) = /log(z —8)dv(s) = /log(z — $)(s)ds, (1.84)

(1.83)

where we take the branch cut of the logarithm along the negative real axis. Then
the following properties of g, are easy to check.

(i) e9(*) is analytic in C \ [ay, bs],
(i

(iii

e9?) =2+ 0(L) asz— oo,

i)
) 94 () — gi_ ):2mf Pi(s)ds  for x € R,

(iv) geg(2) +gi_(2) = $V(2) + £ <0 for z € R\ [ay, by,
(V) gey(@) +gi_(x) — $V(2) + £ = 0 for x € [ay, by].

In terms of the analytic function @, see (1.48) and Proposition 1.4, we have

gii () — gi_ () = _Q/I(Qt(s))lfds, for z € [az, by, (1.85)

be

and

g () +g¢ () — %V(:c) + by =2 /:(Qt(s))l/st for z > by, (1.86)
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Gey () +9¢_(x) — %V(x) + 4 =2 /I(Qt(s))lﬂds for x <a; (1.87)

where (Q¢(s))'/? is analytic for s € V\ [at, b;] and that square root is taken which
is positive for large real s. We define

or(z) = /b (Quls))/2ds (1.88)
and
aiz) = [ (@its)) 2as (1.89)

which are defined and analytic in the neighborhood V of the real line where V'
is analytic with cuts along (—o0,b;) and (a;, +00), respectively. Note that @
has simple zeros in a; and b, and only double zeros in V' \ [as, by, so that Q; /% i
indeed analytic there. It is possible that Q; has double real zeros, and that Qi/ 2
has sign changes in (—o0,at) or (b, 00). However, by (1.86) and (1.87) we have
that ¢i(x) > 0 for > by and ¢i(z) > 0 for < ay, since we are in a situation
with strict inequality in (1.40) for z > b; and z < a,.

We will now perform the first transformation of the RH problem: we take
t =n/N and define

T(2) = e2“o2 Y (2)e "9t (D3¢ 507 for , € C\R. (1.90)

Using the jump condition (b) in the RH problem of Y and (1.90), we easily check
that T4 (z) = T—(z)vr(x) for z € R, where

n —NV(z) .
UT(CL‘) — ¢5liosgngi_(x)os ((1) e . ) e~ "9ty (2)03 o~ § i3
(g4 (@) =ge—(2))  gn(gey (2)+ge_ ()= 1V (@) +Lr)
€ e
= ( O en(gt+($)79t,(ib)). ) (1.91)

Because of the properties (1.85)—(1.87) and the definitions (1.88)—(1.89), we see
that the jump matrix vy has the following forms on the respective intervals (a¢, b;),
(bt, 00), and (—o0, at),

2npt 1

v = <€ O 62714,%) on (at, bt)
1 —2ney

vp = <O € ) ) on (b, 00)

1 e 2né:
vr = (0 ] ) on (—o0, ay).

Thus T is the unique solution of the RH problem
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Figure 1.6 The contour after the opening of the lens.

(a) T is analytic in C\ R,
(b) T4 (x) =T_(z)vr(z) for z € R,
(c) T(z2)=I+0(z71) asz— .

1.4.3 Opening of the lens: T — §

The jump matrix vy on the interval (a¢, b;) has the factorization

e2nery 1
v = 0 ezn‘Pt B

1 0\[/0 1 10
:(emt 1) (_1 0) (emt+ 1). (1.92)

Now we open lenses around the intervals (a¢,z*) and (z*,b;) as shown in
Figure 1.6. Let C; be the upper lips of the lenses and C5 the lower lips, with
orientation as in Figure 1.6. We open the lenses in such a way that they are fully
contained in V), the region of analyticity of V and Q. In addition, we can take
C1 and Cs in such a way that Rep; < 0 on C and (s, with the exception of a
neighborhood of z* if ¢ < 1. This effect is due to the fact that v, has a negative
density near z* if t < 1. However, if ¢ < 1 increases to one, the exceptional
neighborhood shrinks to a point. It follows that for any given § > 0, there is a
constant v > 0 such that for ¢ sufficiently close to 1 we have

Reypi(z) < =y <0

for all z € C1 U Cy with min(|z — z*|,|z — a|, |z — b]) > ¢.
We define

T outside the lenses,

1 0

S = |
1 0

ener ]

in upper parts of the lenses,
) PPt (1.93)

) in lower parts of the lenses.
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The RH problem for T" and the factorization (1.92) imply that S solves the fol-
lowing RH problem:

(a) S is analyticin C\ (RUC; UCy),

(b) S+(2) =S_(2)vg(z) forze RUC, UCq,
(c) S(z)=T+0(z"1) asz— oo,

(d) S remains bounded near a;, b, and z*,

where vg is given by

1 e 2nwee
on (b, 00),
(0 ) ) (bt, 00)

1 e 2née

on (—o00,a),
() s
0 1

on (a¢, by),
(—1 0) (ar,br)

1 0
<e2n</7t(z) 1) on Cl U 02,

The jump matrices on R\ (at, b;) and on C; UC5 tend to the identity matrix as
n — oo and t — 1. Ignoring these jumps, we find the parametrix for the outside
region. Uniform convergence breaks down in neighborhoods of a¢, by, and z*, so
that we will also need to construct local parametrices near those points.

vg = (1.94)

1.4.4 Parametrix P for the outside region
The outside parametrix P(°°) = Pt(oo) solves the following RH problem
(a) P is analytic in C \ [ay, b,

00 0 0 1
(b) P> = pt )(_1 0) on (at, by),

(c) P)(2) =T+ 0(z71) as z — 0.

As in [32] it has the solution

- B8R BE)-BE)
P @) = _pelsemt pwise |0 2 € C\lanbd, (1.95)
21 2
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where

Z—bt

1/4
B(z) = Be(z) = ( > , z € C\ [ag, bl (1.96)

Z — Q¢

Note that P{°*) depends on t.

1.4.5 Parametrices near edge points

At edge points a; and b; the density v; vanishes like a square root. This allows the
construction of local parametrices near a; and b; with the use of Airy functions.
We will not give the details, see [27, 33, 32].

1.4.6 Parametrix near critical point

In a neighborhood Us = {z € C | |z* — z| < ¢} of z*, we want to construct a
parametrix P with the following properties

(a) P is analytic in Us \ (RUC1 U Cy),
(b) Py = P_vg(z) on (RUCy UCy) NUs,

(c) P(2) = (I+ O(n—1/3))Pt(°°) (z) as n — oo, t — 1, uniformly for z € 9Us,

P(z
(d) P(z) remains bounded for z near x*.

We seek a parametrix P near x* in the form
P(z) = Ey(2)M (n1/3f(z); n2/3st(z)7n9t) (1.97)

where F; is analytic in Us, f is a conformal map from U; to a neighborhood of 0,
s¢ is analytic in Uy, and 6; is a real constant. Recall that M is given by (1.76),
and since M is analytic as a function of both variables ¢ and s, see part (a) in
the RH problem for M in Section 1.3.2, we have that (1.97) is well-defined and
piecewise analytic in Us with jumps on the contours where f(z) € RU X U 3o,
for any choice of analytic Ey, f, and s;, provided that n?/3s,(z) € C\ P for every
z € Us.

In view of the jump properties of M, we seek f, s;, and 6; so that for z € Us,

(4 3 B vi(2) if Im 2z > 0,
(350 + (1) -0,) - { ey e

Since ;. = —¢;_, the right-hand side of (1.98) does indeed define an analytic
function in Us.

The conformal map f will not depend on ¢t. Recall that Qv has a zero of order
four at 2*, and that it is negative on (a,b) \ {z*}. Thus [ (—=Qv(y))'/?dy is
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analytic in Us and has a zero of order three at x*. We may assume there are no
other zeros in Us. Then we can take a third root and define

z 1/3
10=3 [cav ] . sev (1.99)
Then f is analytic in Uy with
T (2 1/3
10 = (T a0 (- o)
:cl/g(z—x*)+0((z—x*)2), as z — z* (1.100)

where ¢ is given by (1.28). Taking smaller ¢ if necessary, we then have that f
is indeed a conformal map on Us. Note that f(z*) = 0 and that f is real and
positive on (z*,z* 4+ §) and real and negative on (z* — §,z*). We still have some
freedom in opening the lenses. We take C7 and C5 in § so that f maps them to
the rays where M has its jumps. That is, C1 N Us is mapped into arg( = 7/6
and arg( = 57/6, and Cy N Us is mapped into arg( = —7/6 and arg { = —57/6.

Having f with f(z*) = 0, we take z = z* in (1.98) and we see that we should
take

O; = ipe, (27) = —ips_(x7). (1.101)

Then 6, is real and it is also given by

*

6, — — /b (—Qi(4))2dy

and so

z

0 Fipi(z) = / (—Q:(y))?dy, for £Imz > 0. (1.102)

*

Having f and 6, we finally take s;(z) so that (1.98) holds, that is,
4 .
st(2)f(z) = —gf(2)3 + 0 F ipe(2)

— [ ((-Quo)™* = (~Qui) ) dy (1.103)
where for the last line we used (1.99) and (1.102). Since the right-hand side of
(1.103) is analytic in Us and vanishes for z = * we can divide by f(z) (which
has a simple zero at z = =*) and obtain an analytic function s; in Us. Then s;(z)
is real for real z, and s1(z) = 0.

So the above construction yields analytic functions f, s;, and a constant 6; so
that (1.98) holds. Then we can define the parametrix P by (1.97), provided that
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n?/3s4(2) for z € Us stays away from the poles of the Hastings-McLeod solution
of Painlevé I, since for s € P we have that M((;s,0) is not defined. For given
values of n and ¢, we can take § small enough so that this is indeed the case.
However, we want to let n — oo, t — 1 so that n?/3(t — 1) — L, and work with a
neighborhood Us that is independent of n and ¢, although it may depend on L.

Note that by (1.103) and (1.51)
(@) = [ () = v )iy (1.104)

x

Because of (1.52) we have

Yi(y) — v (y) = (t = 1)(wsy (y) — ¥1(y)) +o(t — 1),

as t — 1, uniformly for y in a neighborhood of z*. Using this in (1.104) we get
that

zZ—XT *

st(2) 2L = wt =)= [ (ws ) = va()d +oft 1)
=n(t — Dwg, (") + (t —1)O0(z — x¥) + o(t — 1), (1.105)

where o(t — 1) is uniformly in z as ¢ — 1, and O(z — z*) is uniformly in ¢ as
z — z*. By (1.100) and (1.105) we then also have

s51(2) = w3t — Dwgy, (%) + (t —1)O(z — 2*) + o(t — 1), (1.106)

where again o(t — 1) is uniformly in z as ¢ — 1, and O(z — «*) is uniformly in ¢
as z — z*. Then if n?/3(t — 1) — L we get
n?3s,(z) = ne” Y3 Lwg,, (z*) + O(z — 2*) + o(1)
=54+ 0(z—2z")+o(1), (1.107)
where we used the definition (1.29) of the constant s. Since there are no poles on
the real line, we can find a neighborhood Us of x* such that n?/3s,(z) ¢ P for all

z € Us if n is large enough and n2/3(t — 1) — L. Note that § depends on L, but
not on n and ¢. Then

M(nl/gf(z); n?3s, (2),n04)

is well-defined for z in a fixed neighborhood Uy of x*.
Finally, we define E; in such a way that the matching condition at dUs is
satisfied. We do this by defining

P (2) for Im z > 0,

E = 1 1.108
(2) Pt(oo)(z) < 0 O) for Imz < 0, ( )
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Figure 1.7 The contour I' after the third and final transformation.

so that Fy(z) is analytic near 2* by the jump of Pt(oo) on (ag, by), see Section 1.4.4.
Because of the asymptotic behavior of M ((; s, 6) given in Section 1.3.2 (which is
valid uniformly for s away from the poles and for # € R) we have the matching
condition

P(z) = P (2) (I +0(n~Y3)) = (I + O(n~Y3) P (2),

uniformly for z € dUs. This completes the construction of the parametrix P in
the neighborhood of x*.

1.4.7 Final transformation: S — R

We set

R(z) = { S(z)P~(z) for z in disks around z*, a, and b, (1.109)

S(z)(Pt(oo))_l(z) for z outside the disks.

Since S and P have the same jumps inside each of the disks, and S and Pt(oo)
have the same jumps on [a¢, b;], R has jumps on a contour I" as shown in Figure
1.7.

R solves the following RH problem:

(a) R is analytic in C\ T,
(b) Ry(z) = R_(2)vr(z) as z €T,
(c) R(z2) =1+ 0(z71) as z — oo,
(d) R is bounded,
for certain jump matrices vg, which as n — oo, t — 1 so that n2/3(t —-1)— L,

satisty

I+0(n™1) for z in circles around a and b
vr(z) =4 IT+0(n Y3 for z € OU;,
I4+0(e™)  for some fixed v > 0 elsewhere on T'.
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As in [27, 33] it now follows that
IR(2) = Illoc = O(n~ /%) (1.110)

uniformly for z € C\ T

1.5 Proof of Theorem 1.1

Now we are ready for the proof of Theorem 1.1. We start with the expression
(1.82) for the kernel K, n. After the transformation (1.90), we find that for

HANTIS (a’tv bt)v

_
2mi(x — y)

e (@)

Ky n(x,y) = (0 e e W) TN (Y) Ty () ( 0 ) . (1.111)

Using formula (1.93) for S in the upper parts of the lenses, we get for z,y € (a¢, by),

1

= (_eneeg () ey (y)
2m'(x—y)( e e )

Kn7N(CC7 y) =

e_n‘Pt+(I)

< 57w (i ) (0L112)

Assume that z and y are inside the disk Us around xz*. Then by (1.109), (1.97),
(1.76), and (1.98) we get

Si(x) = R(@)By(x)e™ W (n'/? f(2);0% 5 () )" e ()78,

and so
—niy (x) )
510) (“ror ) = RO B0t (0 n¥550) () - (1113
Similarly

(_en%+(y) en%+(y)) Sll(y)
= (-1 1)U P (y)inPsiy))e BT (y) R (y). (1114)

Now we fix v and v and take

r=1"+—— and y=a"+

CORE (1.115)

v
(cn)l/B’

so that for n large enough,  and y are inside the disk around x*, so that (1.112),
(1.113), and (1.114) hold. Then it follows from (1.100) and (1.115) that

n'Bf(x) —u, and n'3f(y) - as n — 00. (1.116)



1.5. Proof of Theorem 1.1 49

From (1.107) and (1.115) we get

2/3

n?3sy(x) — s, and n?3s(y) — s (1.117)

as n — 00, t — 1 such that n?/3(t — 1) — L. Furthermore, from (1.110), (1.115),
and the fact that R is analytic near z*, we get
_ -y u—v

From (1.95), (1.108), and (1.115) we easily get

_ U—v
as n — o0o. The constants implied by the O-symbols in (1.118) and (1.119) are
independent of v and v, when u and v are restricted to a compact subset of R.
Combining (1.118) and (1.119) we get that
B )R R B = 140 (L) (1.120)

since 6; is real.

Then multiplying (1.114) and (1.113) and letting n — oo, t — 1 such that
n?/3(t —1) — L, we get by using (1.112), (1.115), (1.116), (1.117), and (1.120)
that

. 1 K N U N v
n1—>H;O (cn)1/3 n,N xr + (cn)l/?”x + (Cn)l/?’

—npi ()
— (e ) 50150 (o )

27Ti(u — 1}) n—00 engat+(;v)
_ 1 ~1(,,. o (!
= Smitu ) (-1 1)U (v;8)¥(u;s) (1 , (1.121)

uniformly for u and v in compact subsets of R.
By (1.23), (1.69) and (1.75) we have that

(@1(@ 8)) = U((;s) ((1)) for ¢ € S, U Ss.

P2(¢; )
In view of the jump ¥y = W_ (1 9) satisfied by ¥(¢;s) on ¥; we have that
P1(G8)\ oo (L
((1)2@; 9) V(s s) 1 for ¢ € S1 U Sy, (1.122)

Since det U = 1, we also get (after simple calculation)

(=1 1) U(¢s) = (—Pa(¢ss) @1((;s))  for ¢ € Sy U Sy (1.123)
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Note that S; U Sy includes the full real line, so that we can take ( = u in (1.122)
and ¢ = v in (1.123) which we use in (1.121) to obtain (1.27). This completes the
proof of Theorem 1.1.

1.9 Remark. The above proof of Theorem 1.1 was given under the assumption
that Sy consists of one interval and that there are no singular points except for
z*. Here we indicate briefly the modifications that have to be made if these
assumptions are not satisfied.

The main complication in the multi-interval case is that the construction of
the outside parametrix Pt(oo) is more complicated, since it uses ©-functions as in
[32, Lemma 4.3]. It should be noted that Pt(oo) will also depend on n. As a result
it will follow that F; as defined in (1.108) also depends on n. However this will
not effect the asymptotic behavior (1.119) as n — oo, so that the above proof
goes through.

If other singular points occur, we need local parametrices near those points.
Since our focus is on a small neighborhood of z*, it suffices to know the existence of
an appropriate parametrix. In the case n = N, the existence of local parametrices
is proven in [32, Section 5]. For n # N, we also believe that local parametrices
exist in all singular cases, but we have not been able to find a rigorous proof of
this fact.



Chapter 2

Universality of a double
scaling limit near a
multi-critical singularity and
the general Painlevé 11
equation

Summary ! We study unitary random matrix ensembles which are of the form
Z, | det M|** exp(—N Tr V(M))dM, where v > —1/2 and V is such that the
limiting mean eigenvalue density for n, N — oo and n/N — 1 vanishes quadrati-
cally at the origin. In order to compute the double scaling limits of the eigenvalue
correlation kernel near the origin, we use the Deift/Zhou steepest descent method
applied to the Riemann-Hilbert problem for orthogonal polynomials on the real
line with respect to the weight |2|2*e~NV (). Here the main focus is on the con-
struction of a local parametrix near the origin with y-functions associated with a
special solution g, of the Painlevé II equation ¢” = sq + 2¢> — a. We show that
do has no real poles for @« > —1/2, by proving the solvability of the corresponding
Riemann-Hilbert problem. We also show that the asymptotics of the recurrence
coefficients of the orthogonal polynomials can be expressed in terms of ¢, in the
double scaling limit.

1 This chapter corresponds to the following paper [23]:

T. Claeys, A.B.J. Kuijlaars, and M. Vanlessen, Multi-critical unitary random matrix en-
sembles and the general Painlevé equation, arxiv:math-ph/0508062, to appear in Annals of
Mathematics

o1
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2.1 Introduction and statement of results

2.1.1 Unitary random matrix ensembles

For n € N, N > 0, and a > —1/2, we consider the unitary random matrix
ensemble

Z- L | det M|?® exp(—=N Tr V(M) dM, 2.1
n,N

on the space of n x n Hermitian matrices M, where V : R — R is a real analytic
function satisfying
Vi(z)

— = . 2.2
smitoo log(z2? + 1) oo 22)

Because of (2.2) and o > —1/2, the integral
ZnN = /|det M**exp(~=N Tr V(M)) dM (2.3)
converges and the matrix ensemble (2.1) is well-defined. It is well known, see

for example [27, 83], that the eigenvalues of M are distributed according to a
determinantal point process with a correlation kernel given by

n—1
_NV(2)) ja N
Kon(2,y) = la]*e” 2V Olylte= 3V 3" 5 @)p (y), (24)
k=0
where pECN) = ke NTF + -+, Ky > 0, denotes the k-th degree orthonormal poly-

nomial with respect to the weight |z|?*e=NV () on R.

Scaling limits of the kernel (2.4) as n, N — oo, n/N — 1, show a remarkable
universal behavior which is determined to a large extent by the limiting mean
density of eigenvalues

Yy (z) = lim lKnn(gc,gc) (2.5)

n—oo n

Indeed, for the case o = 0, Bleher and Its [13] (for quartic V') and Deift et al. [32]
(for general real analytic V) showed that the sine kernel is universal in the bulk
of the spectrum, i.e.,

lim 1 K (w L 2o+ —" ) _ sinw(u —v)
n—00 n1/)V (Io) o 0 n1/)V (Io) 0 m/)v (Io) B 7T(’LL - ’U)

whenever 1y (zg) > 0. In addition, the Airy kernel appears generically at end-
points of the spectrum. If z( is a right endpoint and ¥y (z) ~ (zo — 2)'/? as
xr — x9—, then there exists a constant ¢ > 0 such that

v ) ~Ai(u) Ai'(v) — Ai'(u) Ai(v)
n2/3)

lim ——
n—oo cn2/3

U
Kn,n (170+ ) 3,$0—|— )
cn?/ U—v



2.1. Introduction and statement of results 53

where Ai denotes the Airy function, see also [30].

The extra factor | det M |2 in (2.1) introduces singular behavior at 0 if o # 0.
The pointwise limit (2.5) does not hold if ¢y (0) > 0, since K, ,(0,0) = 0 if
a>0and K, ,(0,0) = 400 if o < 0, due to the factor |x|*|y|* in (2.4). However
(2.5) continues to hold for 2 # 0 and also in the sense of weak* convergence of
probability measures

1 *
_Kn,n(xax)dx — wv(l')d1'7 as n — o0.
n

Therefore we can still call 1y the limiting mean density of eigenvalues. Observe
that 1y does not depend on «.

However, at a microscopic level the introduction of the factor | det M |?* changes
the eigenvalue correlations near the origin. Indeed, for the case of a non-critical
V for which ¢y (0) > 0, it was shown in [77] that

, 1 u v
A nipy (0) Hnn <nwv(0)’ mﬁv(o)> -

Jopr(mu)d,_
Sy e L

L (70) = Jo_y (10 oy (70)
2(u—wv) ’

where .J,, denotes the usual Bessel function of order v.

2.1.2 Multi-critical case

It is the goal of this chapter to study (2.1) in a critical case where 1y vanishes
quadratically at 0, i.e.,

v (0) =4y (0) =0,  and 4y (0) > 0. (2.7)

The behavior (2.7) is among the possible singular behaviors that were classified in
[31]. The classification depends on the characterization of the measure ¥y (z)dx
as the unique minimizer of the logarithmic energy

1) = [ [ Yo ——du(e)dntu) + [ V(@)duta) (2.8)

|z -yl

among all probability measures p on R. The corresponding Euler-Lagrange vari-
ational conditions give that for some constant ¢ € R,

2 [log o~ yluv (w)dy  V(a) + £ =0, for v € supp v, (2.9)

2/10g |z —ylvy (y)dy — V(z) + £ <0, for x € R. (2.10)



54 Chapter 2 - Multi-critical singularity and the general PII equation

In addition one has that ¥y is supported on a finite union of disjoint intervals,

and
wv(e) = 2 /Qr) (211)

where Qv is a real analytic function, and @)y, denotes its negative part. Note that
the endpoints of the support correspond to zeros of @y with odd multiplicity.
The possible singular behaviors are as follows, see [31, 74].

Singular case I Equality holds in the variational inequality (2.10) for some z €
R\ supp v

Singular case II iy vanishes at an interior point of supp ¥y, which corresponds
to a zero of Qv in the interior of the support. The multiplicity of such a
zero is necessarily a multiple of 4.

Singular case III vy vanishes at an endpoint to higher order than a square
root. This corresponds to a zero of the function Qv in (2.11) of odd mul-
tiplicity 4k + 1 with k& > 1. (The multipicity 4k + 3 cannot occur in these
matrix models.)

In each of the above cases, V is called singular, otherwise regular. The above
conditions correspond to a singular exterior point, a singular interior point, and
a singular endpoint, respectively.

In each of the singular cases one expects a family of possible limiting kernels
in a double scaling limit as n, N — oo and n/N — 1 at some critical rate [12]. As
said before we consider the case (2.7) which corresponds to the singular case II
with k£ = 1 at the singular point z = 0. For technical reasons we assume that there
are no other singular points besides 0. Setting ¢ = n/N, and letting n, N — oo
such that ¢ — 1, we have that the parameter ¢ describes the transition from the
case where ¢y (0) > 0 (for ¢t > 1) through the multi-critical case (t = 1) to the
case where 0 lies in a gap between two intervals of the spectrum (¢ < 1). The
appropriate double scaling limit will be such that the limit lim,, v oo n?/3 (t—-1)
exists.

The double scaling limit for o = 0 was considered in [6, 14, 15] for certain
special cases, and in [22] (which corresponds with Chapter 1) in general. The
limiting kernel is built out of ¥-functions associated with the Hastings-McLeod
solution [57] of the Painlevé I equation ¢ = sq + 2¢°>.

For general o > —1/2, we are led to the general Painlevé II equation

¢ =sq+2¢° —a. (2.12)

The Painlevé IT equation for general o has been suggested by the physical papers
[2, 92]. The limiting kernels in the double scaling limit are associated with a
special distinguished solution of (2.12), which we describe first. We assume from
now on that a # 0.
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2.1.3 General Painlevé II equation

Balancing sq and « in the differential equation (2.12), we find that there exist
solutions such that

q(s) ~ —, as s — 400, (2.13)
s
and balancing sq and 2¢3, we see that there also exist solutions of (2.12) such
that

q(s) ~ 4/ — as § — —oo. (2.14)

There is exactly one solution of (2.12) that satisfies both (2.13) and (2.14), see
[60, 61, 68], and we denote it by ¢,. This is the special solution that we need. It
corresponds to the choice of Stokes multipliers

5] = e ™ s9 =0, 83 = —e™%,
see Section 2 below. We call g, the Hastings-McLeod solution of the general
Painlevé II equation (2.12), since it seems to be the natural analogue of the
Hastings-McLeod solution for a = 0.

The Hastings-McLeod solution is meromorphic in s (as are all solutions of
(2.12)) with an infinite number of poles. We need that it has no poles on the real
line. From the asymptotic behavior (2.13) and (2.14) we know that there are no
real poles for |s| large enough, but that does not exclude the possibility of a finite
number of real poles. While there is a substantial literature on Painlevé equations
and Painlevé transcendents, we have not been able to find the following result.

2.1 Theorem. Let q, be the Hastings-McLeod solution of the general Painlevé
II equation (2.12) with o > —1/2. Then q, is a meromorphic function with no
poles on the real line.

2.1.4 Main result

To describe our main result, we recall the notion of ¢-functions associated with the
Painlevé IT equation, see [44]. The Painlevé IT equation (2.12) is the compatibility
condition for the following system of linear differential equations for ¥ = ¥, ((; s),
which is called the Lax pair for the Painlevé II equation.

ov ov

where

_(—4iC? —i(s+2¢%)  ACq+2ir+a/C (=i q
A_(4CQ—2ir+a/C 4iC2+i(s+2q2))’ B—(q i<>-(2-16)
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That is, (2.15) has a solution where ¢ = ¢(s) and r = r(s) depend on s but not
on (, if and only if ¢ satisfies Painlevé IT and r = ¢'.
Given s, g and r, the solutions of

0 <I>1(C)> (%(C))

- = A 2.17

3¢ (20) =4 (210 247
are analytic with branch point at ( = 0. For o > —1/2 and s € R, we take
q = qa(s) and r = ¢/, (s) where g, is the Hastings-McLeod solution of the Painlevé
Pa,1(¢r )

II equation, and we define
! <q>a,2<<;s>

> as the unique solution of (2.17) with

asymptotics

(4¢3 4s0) (I)a,l(<§8)) _ (1) -1

e''3 <(I)a,2(<; 5) 0 o), (2.18)
uniformly as ( — oo in the sector ¢ < arg( < m — ¢ for any € > 0. Note that this
is well-defined for every s € R because of Theorem 2.1.

The functions ®,,; and P, extend to analytic functions on C \ (—ioc0, 0],
which we also denote by ®, 1 and @, 2, see also Remark 2.62 below. Their values
on the real line appear in the limiting kernel. The following is the main result of
this chapter.

2.2 Theorem. Let V be real analytic on R such that (2.2) holds. Suppose that
v vanishes quadratically in the origin, i.e., ¥y (0) = 9, (0) = 0, and ¢7,(0) > 0,
and that there are no other singular points besides 0. Let n, N — oo such that

lim n?3(n/N-1)=LeR

n,N—oo

exists. Define constants

c= (%)US, (2.19)

and

~1/3

s =2m L[y (0)] " wsy (0), (2.20)

where wg,, is the equilibrium density of the support of Py (see Remark 2.3 below).
Then

. 1 U v _ perit,II .
Jim Ky (cn1/3’ cn1/3) = Koy, p; 5), (2.21)

uniformly for u,v in compact subsets of R\ {0}, where

Kcrit,II(u’ v; S) — _E%ﬂia[sgn(u)+sgn(v)]
el

o 2a1(ui8)®Pa2(vi8) — Pan(vi8)Pan(uis) (2.22)

2mi(u — v)
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2.3 Remark. The equilibrium measure of Sy = supp ¢y is the unique proba-
bility measure wg,, on Sy that minimizes the logarithmic energy

1
1) = [ [ tog —— du(e)dn(v)
|z -yl
among all probability measures on Sy . Since Sy consists of a finite union of
intervals, and since 0 is an interior point of one of these intervals, wg, has a
density wg, with respect to Lebesgue measure, and wg,, (0) > 0. This number is
used in (2.20).

2.4 Remark. One can refine the calculations of Section 2.4 to obtain the following
stronger result:

1 ) A PTeY
—1/3K77’7N ( Y v ) = K(;“t’H(U,U; S) + O <|U| |U| ) y (223)
cn

ent/37 enl/3 nl/3
uniformly for u, v in bounded subsets of R\ {0}.

2.5 Remark. It is not immediate from the expression (2.22) that K<t is real.
This property follows from the symmetry

e%”mSgn(“)fbaﬁg(u; s) = ezmiasen(WP, | (u;s), for uw € R\ {0},
which leads to the “real formula”

1 _ -
] Im (e%’”o‘(sgn(")fsgn(”))<I>a,1 (u; 8)Pq,1(v; s)) ,

it,I1 . _
O =)

see Remark 2.21 below.

2.6 Remark. For a = 0, we proved the theorem already in Chapter 1. The proof
for the general case follows along similar lines, but we need the information about
the existence of ¢,(s) for real s, as guaranteed by Theorem 2.1.

2.1.5 Recurrence coefficients for orthogonal polynomials

In order to prove Theorem 2.2, we will study the Riemann-Hilbert (RH) problem
for orthogonal polynomials with respect to the weight |z|**e~"V(#), This analysis
leads to asymptotics for the kernel K, n, but also provides the ingredients to
derive asymptotics for the orthogonal polynomials and for the coefficients in the
recurrence relation that is satisfied by them.

To state these results we introduce measures v; in the following way, see also
Chapter 1 and Section 2.3.2. Take d9 > 0 sufficiently small and let v, be the
minimizer of Iy, (v) (see (2.8) for the definition of Iy/) among all measures v =
vt — v~, where vT are nonnegative measures on R such that v(R) = 1 and
supp v~ C [—dp, do]. We use 9; to denote the density of v;.
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We restrict ourselves to the one-interval case without singular points except
for 0. Then supp ¥y = [a,b] and supp ¥ = [as, b;] for t close to 1, where a; and
b, are real analytic functions of ¢.

We write p,(CN) for the orthonormal polynomial of degree n with respect to the
weight |z[?*e~N V(#), Those polynomials satisfy a three-term recurrence relation

apiV(x) = afy pi, (@) + 0 (@) + al Y, (), (2.24)

with recurrence coefficients a,(cN) and b,(CN). In the large n expansion of aglN) and bgv) ,
we observe oscillations in the O(n~/3)-term. The amplitude of the oscillations
is proportional to g,(s), while in general the frequency of the oscillations slowly

varies with ¢ = n/N.

2.7 Theorem. Let the conditions of Theorem 2.2 be satisfied and suppose in

addition that supp ¥y = [a,b] consists of one single interval. Consider the three-

term recurrence relation (2.24) for the orthonormal polynomials p,(CN) with respect

to the weight |z|**e~NV (@) Then as n, N — oo such that n/N —1 = O(n=2/3),
we have

o = 870 _ dalstn) cosCmnin +200) 15 o2y (2.25)
4 2c
0 = 110y Gelun) @ £ RO+ DO 1ja o2y, (2.26)

where t =n/N, ¢ is given by (2.19),

T
sen =0 —4,(0), (2.27)
6 = arcsin z + a, (2.28)
and
bt
wy = P (x)de. (2.29)
0

2.8 Remark. We have also shown in Chapter 1 that %1/)t(0)|t:1 = wg, (0),
which in the situation of Theorem 2.7 implies that (since Sy = [a,b] and ¢(0) is
real analytic as a function of ¢ near ¢t = 1),

1/’15(0):@—1);4—0(@—1)2), ast — 1.

T —ab

Then it follows from (2.27) that s;,, = n?/3(t —1)—2— + O(n~%/3) and we could

cv/—ab
in fact replace s, in (2.25) and (2.26) by
. 1
st =03t - 1)m

We prefer to use s; , since it appears more naturally from our analysis.
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2.9 Remark. In [14], Bleher and Its derived (2.25) in the case where o = 0 and
where V is a critical even quartic polynomial. They also computed the O(n~=2/3)-

term in the large n expansion for a&N). For even V' we have that a = —b, 8§ = 0,
wy = 1/2 and thus cos(2mnw; + 2a0) = (—1)™, so that (2.25) reduces to

o (St,n)(=1)" n1/3 4 (,)(7,0—2/3)7

™) _
n 2c

N | o

which is in agreement with the result of [14]. Also for even V the recurrence
coefficient b\ vanishes which is in agreement with (2.26).

2.10 Remark. In [12] an ansatz was made about the recurrence coefficients
associated with a general (not necessarily even) critical quartic polynomial V' in
the case o = 0. For fixed large N, the ansatz agrees with (2.25) and (2.26) up to
an N-dependent phase shift in the trigonometric functions.

2.1.6 Outline of the rest of the chapter

In Section 2.2, we comment on the RH problem associated with the Painlevé IT
equation. We also prove the existence of a solution to this RH problem for real
values of the parameter s, and this existence provides the proof of Theorem 2.1.
In Section 2.3, we state the RH problem for orthogonal polynomials and apply
the Deift/Zhou steepest descent method. Our main focus will be the construction
of a local parametrix near the origin. For this construction, we will use the RH
problem from Section 2.2. In Section 2.4 and Section 2.5 finally, we use the results
obtained in Section 2.3 to prove Theorem 2.2 and Theorem 2.7.

2.2 RH problem for Painlevé II and the proof of
Theorem 2.1

As before, we assume « > —1/2.

2.2.1 Statement of RH problem

Let ¥ = ; I'j be the contour consisting of four straight rays oriented to infinity,

5 5
FlzargC:%, ngarggzg, Fg:argC:—%, F4:arg§:—%.
The contour ¥ divides the complex plane into four regions Si,...,S5; as shown

in Figure 2.1. For o > —1/2 and s € C, we seek a 2 x 2 matrix valued function
U, ((;s) = Uu(C€) (we suppress notation of s for brevity) satisfying the following.
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Fz l_‘1

Fg l_‘4

Figure 2.1 The contour ¥ consisting of four straight rays oriented to infinity.

RH problem for V,:

(a) ¥, is analytic in C\ X.

(b) W, satisfies the following jump relations on X \ {0},

Vo= V0O, b })s  frcem
Vot = V0O (L ). Proeln
Vo, +(0) = ¥a,-(0) <(1) 67;”0‘ ) for ¢ € I's,

1 _eﬂ'ia

Foe =@ (5 ) mrcers

(c) ¥, has the following behavior at infinity,

U (¢) = (I +0(1/¢))e G +07 a5 ¢ — o0,

Here o3 = (§ ;) denotes the third Pauli matrix.

(d) ¥, has the following behavior near the origin. If o < 0,

ol ) .
w@=0(e o) =0

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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and if & > 0,
o <:§:Z :2:2) . asC—0,(€8USs,
() =40 <:§:Z :2:2) . asC—0,CESy, (2.36)
S p—

Note that ¥, depends on s only through the asymptotic condition (2.34).

2.11 Remark. This RH problem is a generalization of the RH problem for the
case where a = 0, used in [6, 22].

2.12 Remark. By standard arguments based on Liouville’s theorem, see e.g. [27,
75], it can be verified that the solution of this RH problem, if it exists, is unique.
Here it is important that o > —1/2.

In the following we need more information on the behavior of solutions of the
RH problem near 0. To this end, we make use of the following proposition, cf.
[61]. We use G; to denote the jump matrix of ¥, on I'; as given by (2.30)—(2.33).

2.13 Proposition. Let ¥ satisfy conditions (a), (b), and (d) of the RH problem
for ¥,.

(1) If a — % ¢ Ny, then there exists an analytic matriz-valued function E and
constant matrices A; such that

0
<oz

where the branch cut of (* is chosen along I'y. The matrices A; satisfy

10 -0 () L)an  drces, 2.57)

Aji1 =A;Gj,  forj=1,2,3, (2.38)
and
0 -p!
Ay = » » , for some p € C\ {0}. (2.39)
2 cos(ma)

(2) If a— % € Ny, then there is logarithmic behavior of U at the origin. There
exists an analytic matriz-valued function E and constant matrices A; such
that

¢ 0

VO =@ (1o o)A forces, (2.0
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where again the branch cuts of (* and In { are chosen along I'y. The matrices
Aj satisfy
Aji1 = A;Gy, forj=1,2,3, (2.41)

and for some p € C,

0 -1
<1 ), ifa—% s even,
p
Ay = (2.42)

0 i
<. Z), ifa—%isodd.
tp

Proof. (1) Define E by equation (2.37) with matrices A; satisfying (2.38) and
(2.39). Then E is analytic across I'1, I'y, and T's because of (2.38). For ( € T'y
there is a jump

B (Q) = E-(C) <<Oa C%)_A4G4A11 (CO Coa)+- (2.43)

Using (¢ = 62““(?_ and the explicit expressions for the matrices G; and A;, we
get from (2.43) that F is analytic across I'y as well.

What remains to be shown is that the possible isolated singularity of F at the
origin is removable. If o < 0 it follows from (2.35) and (2.37) that

2a
E)=0 (EIM 1) , as ( — 0,

so that (since 2« > —1) the isolated singularity at the origin is indeed removable.
If & > 0 we have in sector Sy by (2.36), (2.37), and (2.39) that

(¢ 0

\II(C)AQ ( 0 <a>
o( 1Y C (G L)

Il g™/ \x 0/ \0 ¢

11
o1 1)
as ( — 0, ¢ € S3, where * denotes an unimportant constant. Hence the singularity
at the origin is not a pole. Moreover, from (2.36) and (2.37) it is also easy to
check that E does not have an essential singularity at the origin either. Therefore

the singularity is removable for the case o > 0 as well, and the proof of part (1)
is complete.

(2) The proof of part (2) is similar. O

E(¢)

2.14 Remark. The matrix As in Proposition 2.13 is called the connection matrix,
cf. [44, 49]. In all cases we have det A3 = 1 and the (1, 1)-entry of A, is zero.
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2.2.2 Solvability of the RH problem for ¥,

We are going to prove that the RH problem for ¥, is solvable for every s € R. We
do that, as in [32, 49, 104], by showing that every solution of the homogeneous
RH problem is identically zero. Such a result is known as a vanishing lemma
[48, 49].

We briefly indicate why the vanishing lemma is enough to establish the sol-
vability of the RH problem for ¥,. The RH problem is equivalent to a singular
integral equation on the contour . The singular integral equation can be stated
in operator theoretic terms, and the operator is a Fredholm operator of zero index.
The vanishing lemma yields that the kernel is trivial, and so the operator is onto
which implies that the singular integral equation is solvable, and therefore the
RH problem is solvable. For more details and other examples of this procedure
see [32, 49, 104] and [65, Appendix A].

2.15/\Pr0positi0n. (vanishing lemma) Let o > —1/2 and s € R. Suppose
that U satisfies conditions (a), (b), and (d) of the RH problem for ¥, with the
following asymptotic condition (instead of condition (c))

~

()30 — 0(1/¢),  as ¢ — . (2.44)
Then U = 0.
Proof. As before, we use G to denote the jump matrix of I';, given by (2.30)—

(2.33). Introduce an auxiliary matrix-valued function H with jumps only on R,
as follows.

T (()ei5¢ 50 for ¢ € So U Sy,
U(Q)G1e5 093 for ¢ € S; NCy,
H(C) = { B(()Gy tei3" 503 for ¢ € S3NCy, (2.45)

T(()Gaei5 073 for ¢ € S3NC_,

KD

()G teiE¢+s09s  for ¢ € S NC_.

Then H satisfies the following RH problem.
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RH problem for H:

(a) H:C\R — C?*? is analytic and satisfies the following jump relations on
R\ {0},
H(Q) = H (Q)e "¢ +0 (ega - >6i<%<3+s<>037
for ¢ € (—00,0), (2.46)
Ho(Q) = (e mom (G, T e,
for ¢ € (0,00).  (2.47)
(b) H(¢) = 0O(1/), as ( — oo.

(c¢) H has the following behavior near the origin: If a < 0,

H({() =0 ({EIZ IE{Z) , as ( — 0, (2.48)

and if a > 0,

0<|<|a K'a), as ¢ — 0,Im¢ > 0,

H C) = :C: |<||| (2.49)
e ile
o , —0,Im¢ < 0.
<ma|w> w ‘<

The jumps in (a) follow from straightforward calculation. The vanishing be-
havior (b) of H at infinity (in all sectors) follows from the triangular shape of
the jump matrices G, see (2.30)—(2.33). For example, for ¢ € S; N Cy we have
Rei(5¢3 + s¢) < 0 so that by (2.44) and (2.45)

1 0
HO = 00/0) (ringaitrsney 1) =0/ a5C .

The behavior near the origin in (¢) follows from Proposition 2.13. This is imme-
diate for (2.48), while for a > 0, o — 1 & No, we have by (2.37), (2.38), (2.39),
and (2.45),

B(C)C3 Ay = B(¢)¢ 208 (O *> . ifIm¢ >0,
H(Oe—i(%C3+sC)as _ *ox

E()¢7* Ay = E(Q)C*7 (: 2) , ifIm( <0,
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which yields (2.49) in case a — 3 ¢ Ny, since E is analytic. Using (2.42) instead
of (2.39), we will see that the same argument works if @ — & € No.

Next we define, cf. [32, 49, 104],
M) =H()H()*,  for (€ C\R, (2.50)

where H* denotes the Hermitian conjugate of H. From condition (c) of the RH
problem for H it follows that M has the following behavior near the origin

2a 2a
O<|<| [q )7 as ( — 0, in case a < 0,

I¢[P1¢)?e
M(C) = L
(9(1 1), as ¢ — 0, in case a > 0.

Since « > —1/2, it follows that each entry of M has an integrable singularity at
the origin. Because M (¢) = O(1/¢?) as { — oo, and M is analytic in the upper
half plane, it then follows by Cauchy’s theorem that fR M (¢)d¢ = 0, and hence
by (2.50)

[ Hon-@rac=o.

Adding this equation to its Hermitian conjugate, we find
/R [H (Q)H-(O)" + H_(O)H(¢)"] d¢ = 0. (2.51)

Using (2.46), (2.47) and the fact that (ei(3¢ +50o3)x = ¢=i(3¢°+50)9s for ¢ 5 € R,
(here we use the fact that s is reall), we obtain from (2.51),

0= [0 (g ) (@ =2 [ [ + I )m(©)F]

This implies that the second column of H_ is identically zero. The jump relations
(2.46) and (2.47) of H then imply that the first column of H is identically zero
as well.

To show that the second column of H and the first column of H_ are also
identically zero, we use an idea of Deift et al. [32, Proof of Theorem 5.3, Step 3].
Since the second column of H_ is identically zero, the jump relations (2.46) and
(2.47) for H yield for j = 1,2,

(Hy),, (¢) = e Omiee 3G (Hjy)_(¢),  for ¢ € R\ {0},
Thus if we define for j =1, 2,
Hj5(¢), ifIm¢ >0,
hi(¢) = { ’

. (2.52)
Hj(¢), ifIm(¢ <0,

then both A1 and ho satisfy the following RH problem for a scalar function h.
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RH problem for h:

(a) h is analytic on C\ R and satisfies the following jump relation

hi(Q) = —eenOmiae=2GEH0L_(¢), for ¢ € R\ {0},

(b) h(¢) = O(1/¢) as ¢ — oo.

(c) h(¢) = {(’)(|C|Of)7 as ( — 0, in case a < 0,

O(¢I~™), as ¢ — 0, in case a > 0.

Take (p with Im (y < —1 and define

?L(C) ((fgo)a h(©); if Im¢ > 0, s
_(gfgo)a (_ewiaefﬂ(%C?’JrSC)) h(<)7 if -1 < Im( < O7

where we use principal branches of the powers, so that (* is defined with a branch
cut along the negative real axis. Then it is easy to check that h is analytic in
Im ¢ > —1, continuous and uniformly bounded in Im{ > —1, and

?L(() = 0(673‘R°C|2), as ¢ — oo on the horizontal line Im { = —1.

By Carlson’s theorem, see e.g. [89], this implies that h= 0, so that h =0, asAwell.
This in turn implies that A1 = 0 and he = 0, so that H = 0. Then also ¥ = 0
and the proposition is proven. O

As noted before, Proposition 2.15 has the following consequence.

2.16 Corollary. The RH problem for ¥, see Section 2.1, has a unique solution
for every s € R and o > —1/2.

2.2.3 Proof of Theorem 2.1

Theorem 2.1 follows from the connection of the RH problem for ¥, of Section 2.1
with the RH problem associated with the general Painlevé II equation (2.12) as
first described by Flaschka and Newell [44, Section 3D].

Proof of Theorem 2.1. Consider the matrix differential equation
ov
¢

where A is as in (2.16) and s, ¢, and r are constants. For every k = 0,1,...,5,
4

there is a unique solution ¥y, of (2.54) such that W, (¢) = (I+O(1/¢))e (56 +50)as
as ¢ — oo in the sector (2k — 1)§ < arg( < (2k + 1)§. The function

T(¢) = Ui(Q), for (2k —1)§ <arg( < (2k+ 1), (2.55)

= AV, (2.54)

is then defined on C\ (X U4R) and satisfies the following conditions.
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(a) ¥ is analytic in C\ (X UR).
(b) There exist constants s1, s2, s3 € C (Stokes multipliers) satisfying
$1 + 82 + 83 + 818983 = —2isin T (2.56)

such that the following jump conditions hold, where all rays are oriented to

infinity,
1 0 1
U , onl'y, v_ 51 , on s,
S1 1 0 1
1 1 0
v, ={dw_ [~ %), oniR", U= . on iR~
0 1 s 1
1 0 1
U , on Iy, v_ %3 , on I'y.
s3 1 0 1

() W(Q) = (I +O(1/¢))e G +0m a5 ¢ — oo,

The Stokes multipliers s1, s2,s3 depend on s, ¢ and r. However, if ¢ = ¢(s)
satisfies the second Painlevé equation q” = sq+2¢> — «, and if r = ¢’(s), then the
Stokes multipliers are constant. In this way there is a one-to-one correspondence
between solutions of the Painlevé II equation and Stokes multipliers si, ss, s3
satisfying (2.56). This also means that there exists a solution of the above RH
problem which is built out of solutions of (2.54) if and only if s is not a pole of
the Painlevé II function that corresponds to the Stokes multipliers s1, 2, s3. The
Painlevé II function itself may then be recovered from the RH problem by the
formula [44]

q(s) = Clim 2i<\1/12(§)67i(%<3+5<),

with Wy the (1,2)-entry of . In particular, condition (c) of the RH problem can
be strengthened to the following formula as ( — oo

L ( u(s) q<s>> )
()= (I+-— ( +0(1 e U580, 2.57
© = (1455 (1) )+ ouse (2.57)
where u = (¢')? — s¢* — ¢* + 2aq.
The RH problem for ¥, in Section 2.1 corresponds to

s1 = e T s9 =0, §3 = —e™, (2.58)
These Stokes multipliers are very special in two respects [60, 68]. First, since
s2 = 0, the corresponding solution of the Painlevé IT equation decays as s — +0o0,
ie.,

q(s) ~ g, as s — 4o0. (2.59)
s
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Secondly, since s1s3 = —1 the Painlevé II solution increases as s — —oo, i.e.,
S
q(s) ~ 4/ —3 as § — —oo. (2.60)
where the choice s; = e™ ™%, s3 = —e™® corresponds to the +sign, while the

interchange of s; and s3 corresponds to the — sign in (2.60). Thus the special
choice (2.58) corresponds to ¢, the Hastings-McLeod solution of the general
Painlevé II equation, see (2.13) and (2.14).

Then as a consequence of the fact that the RH problem for ¥, stated in
Section 2.1 is solvable for every real s by Corollary 2.16, we conclude that g, has
no poles on the real line, which proves Theorem 2.1. O

2.17 Remark. Its and Kapaev [60] use a slightly modified, but equivalent, version
of the RH problem for ¥,. The solutions are connected by the transformation

it}

T, s eT3Y e T3, (2.61)
which results in a transformation of the Stokes multipliers s; < (—1)7is;.
For later use, we record the following corollary.

2.18 Corollary. For every fized sy € R, there exists an open neighborhood U of
so such that the RH problem for W, is solvable for every s € U.

Proof. Since ¢, is meromorphic in C, there is an open neighborhood of sg
without poles. This implies [44] that the RH problem for ¥, is solvable for every
s in that open neighborhood of sg, as well. O

2.19 Remark. The function ¥, ((; s) is analytic as a function of both ( € C\ ¥
and s € C\ Py, where P, denotes the set of poles of q,, see [44]. As a consequence,
one can check that (2.34), (2.35) and (2.36) hold uniformly for s in compact
subsets of C \ Py.

2.20 Remark. The functions ®,1 and ®, 2 defined by (2.15) and (2.18) are
connected with ¥, as follows. Define

U, (¢;8) <e 1 O) , for ¢ € Sy,

—Tia 1

‘I’a(C§5)7 for C S SQ,
1 0
i 1) ! for ¢ € S, (2.62)

_ i 1 0
Ta(Crs) <(1) el ) (e_m 1) , for ¢ € Sy, Re( >0,

1 0
< ) for ¢ € Sy, Re¢ < 0.
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Then it follows from the RH problem for ¥, that ®, is analytic on C\ (—ico, 0].
Moreover, we also see from (2.15) and (2.18) that

q)a,l *
P, = (@a,z *> , (2.63)
where * denotes an unspecified unimportant entry. It also follows that ®,; and

®,,2 have analytic continuations to C \ (—ioo, 0].

2.21 Remark. We show that the kern K<t (y, v;s) is real. This will follow
from the identity

e%”mSgn(“)fbaﬁg(u; s) = ezmiasen(WP, | (u;s), for u,s € R,u #0, (2.64)

since obviously this implies that

. 1 (s . —
B0, 018) = s (AT OO @ B 1075

m(u—wv

The identity (2.64) will follow from the RH problem. It is easy to check that

01V, (¢;8)o1, with o1 = (), also satisfies the RH conditions for ¥,. Because
of the uniqueness of the solution of the RH problem, this implies

Vo (C5s) = 01¥a(C;s)or. (2.65)
For ¢ € Sy, the equality of the (2,1) entries of (2.65) yields by (2.62) and (2.63)

™D, 5(C;5) = @oi((;s),  for ¢ € Sy, Re¢ >0, (2.66)
and

€ o o(Cs) = Pan(Cis),  for ¢ €Sy, Re¢ <0, (2.67)

Since both sides of (2.66) are analytic in the right half-plane we find the identity
(2.64) for u > 0, and similarly since both sides of (2.67) are analytic in the left
half-plane, we obtain (2.64) for u < 0.

2.3 Steepest descent analysis of Riemann-Hilbert
problem

In this section we write the kernel K, y in terms of the solution Y of the RH
problem for orthogonal polynomials (due to Fokas, Its and Kitaev [47]) and apply
the Deift/Zhou steepest descent method [36] to the RH problem for Y to get the
asymptotics for Y. These asymptotics will be used in the next sections to prove
Theorems 2.2 and 2.7.
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We will restrict ourselves to the one-interval case, which means that vy is
supported on one interval, although the RH analysis can be done in general. We
comment below in Remark 2.22 (see the end of this section) on the modifications
that have to be made in the multi-interval case.

As in Theorems 2.2 and 2.7 we also assume that besides 0 there are no other
singular points.

2.3.1 RH problem for orthogonal polynomials

The starting point is the RH problem that characterizes the orthogonal polyno-
mials associated with the weight |z|?*e=NV(#), The 2 x 2 matrix-valued function
Y =Y, n satisfies the following conditions.

RH problem for Y
(a) Y :C\ R — C?*? is analytic.

rl20e— (z)
(b) Y+<x>=Y_<x>(§) e )

for x € R.

z

(¢) Y(2) = (I +0(1/2) <20n 0n>, as = — o,

(d) Y has the following behavior near the origin,

1 2a
(9( 2 >, as z — 0, if a < 0,

1 |Z|2a

Y(z) = (2.68)

11
(9(1 1), asz — 0,if « > 0.

Here we have oriented the real axis from the left to the right and Y, (z) (Y_(x))
in part (b) denotes the limit as we approach z € R from the upper (lower) half-
plane. This RH problem possesses a unique solution given by [47] (see [75, 77] for
the condition (d)),

1 p(m(z) 1 /‘pg\o(y)|y|2aeil\rv(y)dy
B, N~ 2Tikin, N Jg y—z
V(z) = o (e | (2.69)
_271'2'/{,1,1,]\7])5{\?1(2:) —anl,]\r/ n—-1 dy
R y—=z
for z € C\ R, where pglN)(z) = Kp,n2" + -+, is the n-th degree orthonormal

NV (x)

polynomial with respect to the weight |z|?*“e~ and kp,n is the leading

coeflicient of pﬁf\’) .
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The correlation kernel K,, y can be expressed in terms of the solution of this
RH problem. Indeed, using the Christoffel-Darboux formula for orthogonal poly-
nomials and the fact that detY = 1, we get from (2.4) and (2.69),

KnyN(CC,y)
— |x|a67%NV(m)| |a67%NV(y) Rpn—1,N pg\[)(x)pg\i)l(y) —pg\gl(ff)pg\])(y)
y Kn,N T —y
e —iNV ()|, (o, —~ 3NV (y) 1 -1 1
afte BV VO (0 )Y )Yeto) (o) @70)

The asymptotics of K,, v follow from a steepest descent analysis of the RH
problem for Y, see [22, 32, 33, 76, 77, 99]. The Deift/Zhou steepest descent
analysis consists of a series of explicit transformations Y +— T — S +— R so that
it leads to a RH problem for R which is normalized at infinity and which has
jumps uniformly close to the identity matrix 7. Then R itself is uniformly close
to I. By going back in the series of transformations we then have the asymptotics
for Y from which the asymptotics of K, n in different scaling regimes can be
deduced.

The main issue of the present situation is the construction of a local parametrix
near 0 with the aid of the RH problem for ¥, introduced in Section 2.2. For the
case a = 0 this was done in Chapter 1 and we use some ideas introduced there.

Throughout the rest of this chapter we use the notation

1
t=n/N, and Vi = fV' (2.71)

2.3.2 Normalization of the RH problem at infinity: YV — T

In the first transformation we normalize the RH problem at infinity. The standard
approach would be to use the equilibrium measure in the external field V;, see
[27, 91]. This is the probability measure that minimizes

Roln) = [ tor = aut@)duty) + [ Vicwinta)
among all Borel probability measures p on R. The minimizer for t = 1 has density
1y which by assumption vanishes at the origin. For ¢ < 1, the origin is outside
of the support and for ¢ slightly less than 1, there is a gap in the support around
0. An annoying consequence is that the equality in the variational conditions is
not valid near the origin. To overcome this problem, we introduced a modified
measure v; in Chapter 1.

Here, we follow Section 1.3. We take a small dg > 0 so that ¢y (z) > 0
for z € [—dp,d0] \ {0}, and we consider the problem to minimize Iy, (r) among
all signed measures v = v+ — v~ where v* are nonnegative measures such that
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Jdv =1 and supp v~ C [—dp, o). There is a unique minimizer which we denote
by v¢. This signed measure is absolutely continuous with density v; and its
support S; = [a¢,by] is an interval if ¢ is sufficiently close to 1. The following
variational conditions are satisfied: there exists a constant £; € R such that

2/10g | — ylr(y)dy — Vi(z) + £ = 0, for « € [ag, by, (2.72)
2/10g |z — ylv(y)dy — Vi(z) + £, <0, for x € R. (2.73)

In addition, we have shown in Chapter 1 that for ¢ sufficiently close to 1,

i (z) = %(—Qt(x))lﬂ, for = € [a, by, (2.74)
where
() 2 ") — V'
Qu(z) = (VQ—(t)> - %/wwt(y)dy. (2.75)

For t > 1, we take the square root in (2.74) which is positive for = 0, while for
t < 1 we take the square root which is negative for z = 0.

For the first transformation, we introduce the following ‘g-function’ associated
with Vg,

gu(z) = / log(z — y)dui(y) = / log(z — y)de(y)dy, for z€ C\R, (2.76)

where we take the branch cut of the logarithm along the negative real axis. We
define

T(2) = e2™t3Y (2)e "9t ()ose=3nbos g1 C\R. (2.77)

We also use the functions

o) = [ Qi) s, (2.78)

2z = [ (@ils)) 2as, (2.79)

where the path of integration does not cross the real axis. The relations that exist
between g¢, ¢ and @; are described in Section 1.5.2]. Using these, we find that
T is the unique solution of the following RH problem.

RH problem for T

(a) T:C\ R — C?*? is analytic.



2.3. Steepest descent analysis of Riemann-Hilbert problem 73

Figure 2.2 The lens shaped contour Xg going through the origin.

(b) Ty (z) = T-(z)vp(z) for x € R, with

ezn‘PtA»(m) |x|2a
( 0 e () | for z € (ay,by),
1 2a ,—2np¢ ()
vr(z) = (0 21 el , for x € (b, 00),
1 |x|2o¢e—2mﬁt(m)
, for x € (—o0, ay).
[ .

(c) T(z)=I+0(1/2), as z — 0.

(d) T has the same behavior as Y near the origin, given by (2.68).

2.3.3 Opening of the lens: T'— S

In this subsection, we open the lens as in Figure 2.2. The opening of the lens is
based on the factorization of the jump matrix vy for € (aq, by), which is

e2n¢t,+(m) |x|2a
UT(‘T) = 0 627“0’5‘7(1)

= ! 0 0 |[ > 1 0
_<|x|—2ae2"%<w> 1) (—|m|20‘ 0 |2 e2nen (@) ] . (2.80)

We deform the RH problem for T into a RH problem for S by opening a lens
around [ay, by] going through the origin, as shown in Figure 2.2. The precise form
of the lens is not yet specified but for now we choose the lens to be contained in
the region of analyticity of V' and we can do it in such a way that for any given
0 > 0, there exists a constant v > 0 so that, for every ¢ sufficiently close to 1, we
have that

Repi(z) < —7, (2.81)
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for all z on the upper and lower lips of the lens with min{|z|, |z — al, |z — b|} > 0,
see also Section 1.4.3].
Let w be the analytic continuation of z — |z|?* to C\ (iR), i.e.,

2a if R, 0
wiz)={ 7 hhes= (2.82)
(—2)%*, if Rez < 0.

The second transformation is then defined by

T(z), outside the lens.

1

0
T(z , in the upper parts of the lens,
S(z) = (=) (—w(z)lezmpf(z) 1) PPerp (2.8

1 0
T(z) ,  in the lower parts of the lens.
w(z)"te2e2) 1

Then S is the unique solution of the following RH problem posed on the contour
3¢ which is the union of R with the upper and lower lips of the lens.

RH problem for S:
(a) S:C\ Xg — C?*? is analytic.

(b) Sy =S_vg on Xg, where

1 0
, for ze g\ R,
<w<z>1e2”%<z> 1) a

0 2a
<—|z|20‘ |Zl) ) , for z € (a¢, by),

vs(z) =
S( ) <1 |Z|2a€2ngﬂt(z)> " (b )
, or z € (b, 00),

0 1
1 |Z|2o¢e—2n¢t(z)

, for z € (—o0,ay).
[ -

(c) S(z)=1+0(1/z), as z — 0.
(d) S has the following behavior near the origin. If a < 0,

1 |Z|20¢

S(z) =0 (1 |Z|2“) .,  asz—0,z€C)\Zg, (2.84)
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and if o > 0,
1 1 .
O L 1) as z — 0 from outside the lens,
S(z) = e (2.85)
O <:Z:_2 1) , as z — 0 from inside the lens.
z (o7

2.3.4 Parametrix P for the outside region

On the lips of the lens and on (—o0, a;) U (bt, 00), the jump matrix for S is close to
the identity matrix if n is large and ¢ is close to 1. This follows from the inequality
(2.81) and the fact that ¢.(z) > 0 for > b, and @(z) > 0 for x < a;. Ignoring
these jumps we are led to the following RH problem.

RH problem for P(>):
(a) P():C\ [as,b:] — C?*? is analytic.

0) P = P (e 1) fore b\ ),

(c) P®)(2) =T+ 0(1/2), as z — oo.

Note that P(>) depends on n and N through the parameter t. As in [73, 75, 77]
we construct P(*) in terms of the Szegd function D associated with |z|>* on
(a¢,by). This is an analytic function in C \ [a¢, by satisfying Dy (z)D_(z) = |z|*>*
for z € (as, b;) \ {0} and which does not vanish anywhere in C \ [a;, b]. It is easy
to check that D is given by

D(z) = 2%¢ <M)_a7 for z € C\ [a¢, bt], (2.86)

by — ay

where ¢(2) = z 4 (2 — 1)1/2(z +1)*/2 is the conformal map from C \ [-1, 1] onto
the exterior of the unit circle. Since ¢(z) =2z + O(1/z) as z — oo we have

4 —
Jim D(z) = (bt - at) = Deo-

Now the transformed matrix-valued function

p(>0) = p_os p(>) pos (2.87)

satisfies conditions (a) and (c) of the RH problem and it has the jump matrix
(% §) on (at,b:). The construction of P(>) has been done in [27, 32, 33], and
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leads us to the solution of the RH problem for P(*): for z € C \ [ay, by],

ﬁ(Z)+§(Z)71 B(2)=p(=)""

P (z) = DI » D(z)™° 2.88
(2) = DS 800" pEIE)” (=77 (2.88)

(Z — bt)1/4

= a7 for z € C\ [ag, by). (2.89)
—ay

2.3.5 Parametrices near endpoints

The jump matrices of S and P(>) are not uniformly close to each other near the
origin and near the endpoints of [at, b;]. We surround a; and b; (the endpoints
of Sy) with small disks Us(a) and Us(b) of radius é. For ¢ sufficiently close to 1,
the endpoints a; and b; are in these disks, and then local parametrices P(**) and
P®) can be constructed with Airy functions as in [27, 32, 33].

2.3.6 Parametrix near the origin

Near the origin a local parametrix will be constructed with the aid of the RH
problem for ¥, of Section 2.2. Let Us be a small disk with center at 0 and radius
0 > 0. We seek a 2 x 2 matrix-valued function P in Us with the same jumps as
S, with the same behavior as S near the origin, and which matches with P(°°) on
the boundary 9Ujs of the disk. We thus seek a 2 x 2 matrix-valued function that
satisfies the following RH problem.
RH problem for P:

(a) P is defined and analytic in Us \ g for some ¢’ > 4.

(b) On ¥s N Us, P satisfies the jump relations

Po(z) = P_(2) <w (Z),lle%%(z) (1)) . forz € (S \R)NTs, (2.90)

0 |m|2a

P (xz)=P_(x) <—|m|20‘ 0 > , for x € (=4,6) \ {0}. (2.91)

(c) P satisfies the matching condition
P(z) = (I+0(n~1/%) P (z), (2.92)
as n, N — oo such that n?/3(n/N — 1) — L, uniformly for z € 9U; \ ¥s.

(d) P has the same behavior near the origin as S, given by (2.84) and (2.85).
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In order to solve the RH problem for P we work as follows. First, we seek
P such that it satisfies conditions (a), (b), and (d). To do this, we transform
(in the first step) the RH problem into a RH problem for P with constant jump
matrices. In the second step we solve the RH problem for p explicitly by using
the RH problem for ¥,,. In the final step we take also the matching condition (c)
into account.

Step 1: Transformation to constant jump matrices

In the first step we transform the RH problem for P into a RH problem for P
with constant jump matrices. We seek P in the form

P(z) = E(2)P(z)e"#t(:)o3g3mia0s ;—aos ifImz >0, (2.93)

0 -1

P(z) = E(Z)ﬁ(z)e—n%(z)ose%m’aog (1 .

) 27 ifImz <0, (2.94)

where the invertible matrix-valued function £ = E,, y (we suppress notation of
the indices) is analytic in Us and where the branch cut of z® is chosen along the
negative real axis.

Using (2.91), (2.93) and (2.94), and keeping track of the branches of z*, we
can easily check that P has no jumps on (—6,4)\ {0}. What remains are jumps
on the contour (Xg \R)NUs = U?Zl Y ;, which is shown in Figure 2.3. We have
reversed the orientation of X9 and X3 towards infinity, so that now the orientation
of the X;’s corresponds to the orientation of the I';’s in Figure 2.1. The contour
divides Uy into four regions I, IT, IIT and IV, also shown in Figure 2.3.

We will now determine the jump relations for P. By (2.82), (2.90), and (2.93),
P should have the following jump matrix on ¥,

P ()P (2)
1 0
w(z) terex)

gt 9= () .

For z € ¥5 we have, because of the reversal of the orientation, an extra minus
sign in the (2, 1)-entry of the jump matrix. The result is

P = (L tangen )= (e ) 0

where the last equality follows from the fact that w(z)122% = €27 by (2.82),
since Re z < 0 in this case. Using equations (2.91) and (2.94), the jump matrices

1 _ . Y —
_ enwt(z)agezﬂzaagz o3 ( >Zoza'3€ zTiaos np(z)os
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Figure 2.3 Contour and jumps for the RH problem for P.

for P on >3 and ¥4 can be determined similarly. The result is that

. 1 — i
P_(z) < ‘ ) , for z € X3,

. 0 1
Pi(z) = | (2.97)
Pt T, forces
(2 , for z .
0 1 !

We arrive at the following RH problem for P. If it is satisfied by P then P

defined by (2.93)-(2.94) satisfies the parts (a), (b), and (d) of the RH problem for
P.

RH problem for P:

a) P is defined and analytic in Us: 3 for some ¢’ > 4.
( ) y 7=
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(b) P satisfies the following jump relations

0
) ) , for z € X,
e—ﬂ'la 1

< 1
1 0
< , ), for z € ¥o,
—_e™a ]
< e

P_(z)
P_(z)
P_(z

Py(z) = I (2.98)
) 0 ) ) , for z € X3,
1 — Ti
P_(z) <0 61 ) , for z € ¥y.
¢) P has the fo owing behavior near the origin. If o < 0,
P has the foll beh h If 0
50— o (1217 127
P(z)=0 (|z|0‘ 22 ) as z — 0, (2.99)
and if a > 0,
o (:Z:a :Z:a> as z — 0, z € TUTII,
z z
Py ={0 (:Z:a :Z:a> . asz—0,zell (2.100)
z z
@ (:Z:a :Z:a> , asz—0,zelV.
z z

Note that if P has the behavior near the origin as described in part (c) of the
RH problem, then P defined by (2.93) and (2.94) has the same behavior near the
origin as S, as required by part (d) of the RH problem for P.

Step 2: Construction of p

Observe that the jump matrices and the behavior near the origin of the RH
problem for p correspond exactly to the jump matrices and the behavior near the
origin of the RH problem for ¥,. We use the solution of the latter RH problem
to solve the RH problem for P.

We seek P in the form

P(z) =1, (nl/gf(z);n2/3st(z)) , (2.101)
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where f and s; are analytic functions on Us which are real on (—6,4), and s; is
such that

n*3s,(z) € C\ Pa,  for z € Us, (2.102)

where P,, is the set of poles of ¢q,. In addition, f is a conformal map from Us onto
a convex neighborhood f(Us) of 0 such that f(0) = 0 and f/(0) > 0. Depending
on f we open the lens around [ay, b¢] such that that f(X;) =T, for i = 1,2, 3,4,
where the I';’s are the jump contours for the RH problem for ¥, see Figure 2.1.
Recall that the lens was not fully specified and we still have the freedom to make
this choice.

It remains to determine f and s; so that the matching condition for P is also
satisfied. As in Section 1.5.6] we take

o = [2 [ cawrea) (2,103
= 2 <@>1/3 +0(2%), asz—0, (2.104)

and

se(2)f(2) = /0 ((—Qt(y))”2 — (—Ql(y))1/2) dy. (2.105)

Then f is analytic with f(0) = 0 and f/(0) > 0, it does not depend on ¢, and it is
a conformal mapping on Us provided § is small enough. Since the right-hand side
of (2.105) is analytic and vanishes for z = 0, we can divide by f(z) and obtain
an analytic function s;. From (1.106), we get that there exists a constant K > 0
such that

|s¢(z) — w3 (t — Dwg, (0)| < K(t—1)|z| + ot —1) ast—1, (2.106)

uniformly for z in a neighborhood of 0. Now assume that [n?/3(t —1)| < M and
n large enough. Then it easily follows from (2.106) and the fact that g, has no
real poles, that there exists a § > 0, depending only on M, such that

[Tmn2/3s,(2)| < min{|Im s| | s is a pole of go } for |z| < 0. (2.107)

Then (2.102) holds and (2.101) is well-defined and analytic since ¥, ((; $) is jointly
analytic in its two arguments, see Remark 2.19.
It follows from (2.103) and (2.105) that

¢ —i(z), ifImz ,
i [ 4 s ()| = PO @), im0 (2.108)
3 @tHr(O) + wt(z), ifImz < O,
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see also Section 1.4.6. Hence by (2.34), which by Remark 2.19 holds uniformly
for s in compact subsets of C\ P,, we have

P(z) =10, (nl/gf(z);nQ/Bst(z)) [I+ 0(1/n1/3)} et +(0)03

e~mee(2)os  if Tmz > 0,
X (2.109)
enet(2)os - if Tmz < 0,

as n, N — oo, uniformly for z € Us.

Step 3: Matching condition

In the final step we determine E such that the matching condition (c) of the RH

problem for P is satisfied. By (2.93), (2.94), and (2.109) we have for z € 9Us,
E(z) [I+0(1/n'/?)] en#r+(0)0s gy miacs ;—aos if Imz > 0,

P(z) = 0 -1

E(Z) [I+ O(l/n1/3)] et +(0)os g miaos (1 .

) z729s if Imz <0,

as n, N — oo. This has to match the outside parametrix P(°°), so that we are led
to the following definition for the prefactor E(z), for z € Us,

P(OO)(z)zo“’?’e_%”io“’?’e_"‘/’w(o)”f“, if Imz > 0,

E(Z) = P(OO)(Z)ZO‘US (

0 1 (2.110)

e—%wiaage—nwt,Jr(O)a?’, ifImz < 0.
-1 0

One can check as in [77, 98] that E is invertible and analytic in a full neighborhood
of Us. In addition we have the matching condition (2.92). This completes the
construction of the parametrix near the origin.

2.3.7 Final transformation: S +— R

Having the parametrices P(°°), P(@) P(®t) and P, we now define
'(z)

(Pla))™ 1 for z € Us(a),

(P®) ™ (

S(z ( o))~ (z), for z € C\ (Us UUs(a) UUs(b) UXg).

S(z
S(z
S(z

, for z € Uy,

(2.111)
for z € Us(b),

)P
)
)
)
Then R has only jumps on the reduced system of contours ¥ shown in Figure

2.4, and R satisfies the following RH problem, cf. Chapter 1. The circles around
0, a; and b; are oriented counterclockwise.
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Figure 2.4 The contour X after the third and final transformation.

RH problem for R:
(a) R:C\ Xg — C?*? is analytic.

(b) Ry(z) = R_(z)vr(z) for z € £ g, with

P (pla)y=1 on AUs(a),
PR (po))—1, on 0Us(b),

VR = (2.112)
p) p—1, on AUy,

P(®)yg(P))=1 " on the rest of L.

(¢) R(z)=1+0(1/z), as z — 00,
(d) R remains bounded near the intersection points of ¥ g.

Now we let n, N — oo such that [n?/3(n/N — 1)| < M, so that § does not
depend on n. Then it follows from the construction of the parametrices that

I+0(1/n), on dUs(a)UdUs(b),
vr = T+ 0m-1/%), on oU;, (2.113)
I+ O(e™"), on the rest of Xp,

where v > 0 is some fixed constant. All O-terms hold uniformly on their respective
contours.

For large n, the jump matrix of R is close to the identity matrix, both in L*>
and in L%-sense on Y. Then arguments as in [27, 32, 33] (which are based on
estimates on Cauchy operators as well as on contour deformations), guarantee
that

R(z)=IT+0On"?), uniformly for z € C\ g, (2.114)

as n, N — oo such that [n?/3(n/N —1)| < M.
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This completes the steepest descent analysis. Following the effect of the trans-
formation on the correlation kernel K, ; and using (2.114) we will prove the main
Theorem 2.2. This will be done in the next section. For the proof of Theorem 2.7
we need to expand vg(z) in (2.113) up to order n=/3, from which it follows that

RM(z)

R(z) =1+ —

+ O3, uniformly for z € C\ Xg,

with an explicitly computable R(!) (z). The asymptotic behavior of the recurrence
coefficients is expressed in terms of R™") and this leads to the proof of Theorem
2.7. This will be done in Section 2.5.

2.22 Remark. The steepest descent analysis was done under the assumption
that supp 1y consists of one interval. In the multi-interval case, the construction
of the outside parametrix P(°°) is more complicated, since it uses O-functions as
in [32, Lemma 4.3] and the Szegd function for multiple intervals as in [77, Section
4]. With these modifications the asymptotic analysis can be carried through in
the multi-interval case without any additional difficulty.

2.4 Proof of Theorem 2.2

As in the statement of Theorem 2.2, we assume that n, N — oo with n?/3(t —
1) — L, where t = n/N. Let M > |L| and take n sufficiently large so that
[n?/3(t — 1) < M. Let § > 0 be such that (2.107) holds. We start by writing
the kernel K, n explicitly in terms of the matrix-valued function ®, defined in
(2.62). For notational convenience we introduce

B(z) = R(2)E(2), (2.115)
where E and R are given by (2.110) and (2.111), respectively.
2.23 Proposition. Let z,y € (=4,0) \ {0}. Then

1

Ky n(r,y) = e —y)

e%wia(sgn(m)—i—sgn(y)) (O 1) (I);l (n1/3f(y); n2/38t(y))

x B () B(r)®a (13 (2); 155, (x)) ((1)) . (2.116)

where @, is given by (2.62).

Proof. From (2.70), (2.77), and the fact that NV = nV;, the kernel K,, xy can
be written as

Knn(z,y) = |x|ae%n(2gn,+(w)—Vt(w)-i-ét)|y|ae%n(2gp,+(y)—Vt(y)-i-ét)
1

X PR p— (0 1) T N (y)Ty(2) (é)
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Using the relation
29t — Vi + 4y = =20+ on [ayg, by,

see Chapter 1, and (2.83) to express 1" in terms of S, we find for = and y in

(at, be) \ {0},

Jz|eemmenr @) |y|agmnen s (W) 1 0
Knn(z,y) = 2mi(z — y) ) —|y| 2ot ) ]

_ 1 0\ /1
X S+1(y)5+($) (|x|—2ae2n<pt,+(m) 1) (0)

1
_ -1 1 —aoy gnes, 4 (y)os g—1

X Sy ()]2]075 Pt @) G) . (2117)

We further simplify this expression by writing .S in terms of R and the pa-
rametrix P near the origin. Consider the case that x € (0,d). Then, since
St (z) = R(z)Py(x) by (2.111), we have by (2.93),

Si(x) = B(.T)P(CC)G%MQUS et (@)os| g —aos for x € (0, 9), (2.118)

where B is given by (2.115). By (2.118), (2.101), and (2.62) we then find for
z € (0,9),

S (et (1)

:BWWQ@Wﬂmea@)(f%a?)ﬁ”m(ﬁ

e

= AT B(2)d, (01 f(@);n* s () <(1)> : (2.119)

A similar calculation shows that (2.119) also holds for x € (—4,0). Similarly, we
have

(-1 1) oo )

= ek (0 1) @ (nf ()i sily)) BT (w), (2120)

for y € (=4,6) \ {0}. Inserting (2.119) and (2.120) into (2.117), we arrive at
(2.116), which proves the proposition. a
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Proof of Theorem 2.2. Let u,v € R\ {0}, and put u, = u/(cn'/3) and
vn = v/(cn'/?) with ¢ given by (2.19). Note that, by (2.104),

lim n'/3f(uy) = u, lim n'/3f(v,) = v. (2.121)

n—oo n—oo

Furthermore, by (2.106), (2.19), and (2.20),
In?/3s,(2) — 5| < Kn?3(t—1)|z| +n*30(t — 1) + [n*3(t — 1) — L|xc'Pwg, (0)

uniformly for z in a neighborhood of 0. Then, since n?/3(t — 1) — L, it easily
follows that

2/3

lim n?3s;(uy) = lim n*3si(v,) = s. (2.122)

n,N—oo n,N—oo

Now, similar as in [77], we use the fact that the entries of B are analytic and
uniformly bounded in Us, to obtain

lim B~ '(v,)B(u,) = I. (2.123)

n,N—oo

Inserting (2.121), (2.122), and (2.123) into (2.116), we find that

im ——=K Uy, U
nN—oo cn1/3 n,N( n n)

1 .
_ e%wza(sgn(u)Jrsgn(v)) (O 1) @;1(’1}; s)q)a(u;s) ((1)>

~ 2mi(u — v)

$mio(sgn(u)+sgn(v)) (1)0671(11‘; S)(I)Oc72(v; S) — (I)Otﬁl(v; S)(I)Oc72(u; S)
2mi(u — v) '

=—e

This completes the proof of Theorem 2.2. a

2.5 Proof of Theorem 2.7

In this section we will determine the asymptotic behavior of the recurrence co-
efficients af) and b as n, N — oo such that [n?/3(n/N — 1)] < M for some
M > 0. As in Theorem 2.7 we assume that Sy = [a,b] is an interval, and that
there are no other singular points besides 0. Then it follows that supp ¥ consists
of one interval [as, by] if ¢ is sufficiently close to 1. In addition we have that the
endpoints a; and b, are real analytic functions in ¢, see [74, Theorem 1.3], so that

a=a+0n"23), b =b+0n"23), (2.124)

since t =n/N =1+ O(n=2/3).
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We make use of the following result, see for example [27, 33]. Let Y be the
unique solution of the RH problem for Y. There exist 2 x 2 constant (independent

of z, but depending on n, N) matrices Y7, Y2 such that

27" 0 Y1 Y, 3
Y(z)<0 Zn>—f+?+§+0(1/z), as z — 00,
and
Y-
(Y1)12(Y1)o1, b = (Y1) + ( 2)12. (2.125)
(Y1)12

We need to determine the constant matrices Y7 and Ys. For large |z| we have by

(2.77), (2.83) and (2.111) that
Y(z) = e~ 278 R(2) P(™) (2)en9t ()03 o 3nle0s (2.126)

So in order to compute Y; and Y5 we need the asymptotic behavior of P("O)(z)7
e"9:(2)7s and R(z) as z — oc.

Asymptotic behavior of P(*)(z) as z — oo:
From (2.86) and (2.89) it is straightforward to determine the asymptotic behavior

of the scalar functions D(z) and ((z) as z — oo. Indeed, as z — oo,

B(2)+B() " B(2)—B)""
2 21

B()=B(x)""1 B+ !
—2i 2

_ 1 0 —i\1 i, ,,
_I_Z(bt_at)<i 0);+§(bt—at

and
—o3 __ _ g 1 0 l * 0 i 3 —o3
D= [r-Sora (o )2+ (5 U)o+ 0w v
where * denotes an unspecified unimportant entry. Inserting these equations into
(2.88) and using (2.124) gives us the asymptotic behavior of P(>) at infinity,

P =T+-21—+2_+0(1/2%), asz— o, (2.127)
z z
with
P = D7 ~albeta) y(b—a) Do
_%(bt —at) %(bt +at)
~%(b+a) if(b—a
= D73 < j( ) i( )> D27 4+ O(n~2/3), (2.128)
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and
peo) _ pos * sla+1)(bf - af) D-os
’ * \dla 1)} - ap) * >
. * La+1)(b? —a?) . 3
= D% <£_(a 0 —a) 8 . D% +O(n~%?). (2.129)
8

Asymptotic behavior of ¢"9(*)% as z — co:

By (2.76) we have

0 z"

-n G G
o9t ()03 (Z O) = I+ 71 + 2—22 +0(1/2%), as z — oo,  (2.130)

with

bt
Gy = —n/ gy (y)dy <(1) _01) . Go= ((’; S) . (2.131)

Asymptotic behavior of R(z) as z — ooz

The computation of Ry and Ry is more involved. For z € 0Us N C,., we have by
(2.112), (2.93), (2.101), and (2.110),

vr(2) = P (2) P ()
_ P(oo) (Z)Zowge—%ﬂiowge—ntpt(z)ag W;l(nl/?)f(z); 7’L2/38t (Z))
x en¢r+(0)sggmiaos ,—aos (P(OO))_l(z). (2.132)

Using (2.57) and (2.108), we then find

AM(z) _
vr(2) =1+ =37~ + O(n 2, (2.133)
where
AD(z) = 1 (20) () 5273~ §mi0s =g, 4 (0)s

2if(z)
(%W%m» %W%w»>
~4a(n®Ps4(2))  —ua(n®3s,(2))

X enent O ghmiaos—am (peo)1(;)  (2.134)

for z € OUs N CL. A similar calculation leads to an analogous formula for z €
OUs N C_, which together with (2.134) shows that A™) has an extension to an
analytic function in a punctured neighborhood of 0 with a simple pole at 0.
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To calculate the residue at 0, we use (2.86) together with the fact ¢ (x) =
exp(iarccosz) for z € [—1,1] to find

lim = exp | —tavarccos | — ,
2—0+i0  2z% by — ay

so that by (2.87)

1 (c0) aoy ,—3Tiaos — J)os Do) iafios
zilg{luop (2)z%%%e™2 D3P, (0)e , (2.135)

with §; = arcsin 2+ Also note that by (2.74), (2.78), (2.29) and

be—at®

be
—r+(0) =mi Ye(x)dx = Tiws. (2.136)
0

Now use (2.103), (2.19), (2.135), and (2.136) in (2.134) to find

1 ~ _
Res(A;0) = —%DggPJ(FOO)(O)eZ(“”““*O“’f)“

(ua(ﬁ/%t(o» da(n?/35,(0)) )
—qa(n??5,(0))  —ua(n?3s,(0))
% e—i(frnwwi-ae)o's (ﬁJ(rOO))—l (O)Dgoa?’ . (2137)

Combining (2.105), (2.104), and (2.74) we see that n?/3s,(0) = s;.,, as defined in
(2.27). From (2.87), (2.88), and (2.89) it follows that

N B+(0)+8+(0)" B+(0)—@+(0)71
P (0) = 2 o AR
+ B+(0)=8+(0) ﬁ+(0)+§+(0)

2%

where (3, (0) = '™/4 (—bt/at)1/4.
We insert this into (2.137) and after some straightforward calculations we find

—Res(AW;0) = DT (r101 + ro09 + r303) D2, (2.138)

—1i

where the Pauli matrices are o1 = (94), 02 = (9 ('), and o3 = (§ ), and
bt — a¢
[ —— + -~
2\/ —atbt d
( (50m) b—a
=—— | ua(St.n) ——
2ic "2V =ab

(st,n) sin(2mnw; + 2a9t)>

R (u (S ) 7bt+at

b
+ qa(St.n) ta sin(2mnw; + 2049))

2v/—ab
+0Mn™%),  (2.139)
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ro = Go(5t.n) cos(2mnw; + 2a0;)
2c
= ZalStin) (;t") cos(2mnwy + 2a8) + O(n=2/%), (2.140)
c
1 bt — Q¢ . bt + ay
T3 5 (q (¢, )2 = sin(2mnw; 4+ 200;) + ua (St )2 —atbt)
1 b—a b+a
= — | gu(Se.n sin(2mnw; + 200) + ua(St.n) ——
o (a0 ) s (2 + 206) + uas,) 3

+0m™3),  (2.141)

where we used (2.124).
From (2.133) it follows that

RM(z)

s T O(n=%3), (2.142)

R(z)=1+

where Ri” = RY + AW on 9U; and RM(2) — 0 as z — oo. Since AW is
analytic with a simple pole at z = 0, we can find explicitly

—1Res(AM; 0) + AN (), for z € Us,
RV = = (2.143)
—LRes(AM;0), for 2 € C\ Us.

As in [33] the matrix-valued function R has the following asymptotic behavior at
infinity,

Rl Ry
R(z)=1+—+=2
(2) =T+ PR

+0(1/2%), as z — 00. (2.144)
The compatibility with (2.142) and (2.143) yields that
Ry = —Res(AW: 0)n"V3 + O(n=2/3), Ry =0O(n=2/3). (2.145)
Now, we are ready to determine the asymptotics of the recurrence coefficients.
Proof of Theorem 2.7. Note that by (2.126), (2.127), (2.130) and (2.144),
Vi = e bt [P 4 Gy 4 Ry bt (2.146)
and

Yy = e~ 3t [PQ("O) +Go+ Ry + Ry P + (Pf"o) + Rl) Gl} 3173 (2.147)



90 Chapter 2 - Multi-critical singularity and the general PII equation

We start with the recurrence coefficient a'". Inserting (2.146) into (2.125)
and using (2.128) and the facts that (G1)12 = (G1)21 = 0 (by (2.131)), and
(R1)12(R1)21 = O(n=2/3) (by (2.145)), we obtain

a%N) - [(Pfoo))lz(Pfoo))Zl + (Pl(oo))ﬂ(Rl)?l"'

(P)21(Ru)1z + 0(”_2/3)} v

b— ? b— 1/2
N l( 4 a) +ti— - (D2, (R1)21 — D32 (R1)12) + O(n‘2/3)]

b—a i
== + 3 (D2, (R1)21 — D32 (Ri)12) + O(n=%/3).

From (2.145) and (2.138) we then arrive at,

a,(]v) _ b;a _T2n71/3+0(n72/3)

n

b—a  qu(stn)cos(2mnw + 2a0)

—1/3 —2/3
1 5 nY3 4 Om3).  (2.148)

Next, we consider the recurrence coefficient bg,N). Inserting (2.146) and (2.147)
into (2.125), and using the facts that (G1)11 + (G1)22 = 0 (by (2.131)), and
(Ra)12 = O(n=2/3) (by (2.145)) we obtain

(P10 + (R1 P10 + O(02/3)

b = (P{™)11 + (R)n + )
(Pl +R1)12

= (Pl(OO))11 + (R + (1 _ Bz +O(n2/3)>

(P12
(o0) (o0)
x <E§2(oo);12 + (31)11 + E?(oo);m (31)12 + O(n2/3)> :

From equations (2.128), (2.129), (2.145), and (2.138), we then arrive at

b+a

b+a . - -
b = T 2(Ry)11 + 2ig D 2(Ri)i2 + O(n~%/?)

_b+a
)

b
+2 (T3+ibi_a(7“1 —iT2)> + 023, (2.149)

Using (2.139), (2.140), and (2.141) in (2.149) we see that the terms containing
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U, cancel against each other. The remaining terms are the ones containing q:

b+a
b = %
+ Ga(sin) [b¥a cos(2mnw; + 2a6) + 2v—ab sin(2mnw; + 2a6) | n~Y/3
c b—a b—a
+0(n~?). (2.150)
Since Zf—z =sinfd and @ = cos 6, we can combine the two terms within square

brackets and the result is

pN) — b+a L qo(St.n) sin(2mnw; + (2 + 1)0)

n~V3 L Om3).  (2.151)

Theorem 2.7 is proven by (2.148) and (2.151). a






Chapter 3

The existence of a real
pole-free solution of the
fourth order analogue of the
Painlevé I equation

Summary! We establish the existence of a real solution y(s,t) with no poles on
the real line of the following fourth order analogue of the Painlevé I equation,

- P 1
s=ty <6y + 24(y5 + 2yyss) + 24Oyssss) .

This proves the existence part of a conjecture posed by Dubrovin. We ob-
tain our result by proving the solvability of an associated Riemann-Hilbert pro-
blem through the approach of a vanishing lemma. In addition, by applying the
Deift/Zhou steepest descent method to this Riemann-Hilbert problem, we obtain
the asymptotics for y(s,t) as s — +o0.

3.1 Introduction and statement of results

3.1.1 The P} equation

The first Painlevé equation is the second order differential equation

Yss = 6y + 5. (3.1)

1 This chapter corresponds to the following paper [24]:

T. Claeys and M. Vanlessen, The existence of a real pole-free solution of the fourth order
analogue of the Painlevé I equation, arxivimath-ph/0604046.

93
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This equation has higher order analogues of even order 2m for m > 1, which
are collected, together with the first Painlevé equation itself, in the Painlevé I
hierarchy, see e.g. [69, 72]. The second member of the hierarchy is the fourth
order differential equation

1, 1, 1
= —\ = 2 ss 8888 | 9 3.2
S (Gy +24(ys+ yy )+—240y ) (3.2)

and has solutions that are meromorphic in the complex plane. In 1990, Brézin,
Marinari, and Parisi [20] argued numerically that there exists a solution y to (3.2)
with no poles on the real line, and with asymptotic behavior

y(s) ~ F|6s]'/3, as s — +oo. (3.3)

Moore [85] proved the existence of a unique real solution to (3.2) with asymptotic
behavior given by (3.3), and he gave a line of argument why this solution is
probably pole-free on the real line.

A generalization of (3.2) can be obtained by introducing an additional variable
t, as done by Dubrovin in [40], so that we get the following differential equation
for y = y(s,t), which we denote as the P} equation (cf. [66] for ¢ = 0),

1 1 1
=ty— | = 3 —(y2 2 ss S nYssss | - 4
s =ty <6y + 5 Ws +2yyss) + 55y > (3.4)

In recent work [40], Dubrovin conjectured (see Section 3.1.3 below for more de-
tails) the existence of a unique real solution to (3.4) with no poles on the real
line. We prove the existence part of this conjecture.

3.1.2 Statement of results

Our results are the following.

3.1 Theorem. There exists a solution y(s,t) to the P} equation (3.4) with the
following properties:

(i) y(s,t) is real valued and pole-free for s,t € R.
(i) For fizedt € R, y(s,t) has the following asymptotic behavior,
y(s, ) = %zo|s|l/3 FO(s]2),  as s — +oo, (3.5)
where zg = zo(s,t) is the real solution of

25 = —48sgn(s) + 24zo|s|72/3t. (3.6)
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3.2 Remark. Observe that zq is negative (positive) for s > 0 (s < 0) with the
following asymptotic behavior as s — Fo0,

2
20 =2 —sen(s) 2 674)s| 27 £ O(s %),z = —sn(s)2-6Y7, (37)
so that the asymptotics (3.5) for y can be rewritten as, cf. (3.3)
1
y(s, 1) = F(6s)'° F 6*%)s| 72+ O(ls| 1), as s — koo (3.8)

Power expansions for solutions of (3.2) were found in [71].

3.3 Remark. One expects, see [85, Appendix A] for ¢t = 0, that the solution y
considered in Theorem 3.1 is uniquely determined by realness and the asymptotics
(3.5).

3.1.3 DMotivation

Hamiltonian perturbations of hyperbolic equations

Hyperbolic equations of the form
us + a(u)us =0 (3.9)

can be perturbed to a Hamiltonian equation of the form

up + a(w)us + € [by(w)uss + ba(u)u?]
+é2 [bg(u)usss + by(u)ususs + b5(u)u§} +---=0, (3.10)

where € is small and by, b2, ... are smooth functions. These equations have been
studied by Dubrovin in [40], see also [39], where he formulated the universa-
lity conjecture about the behavior of a generic solution to a general perturbed
Hamiltonian equation (3.10) near the point (sg,to) of gradient catastrophe of the
unperturbed solution (3.9). He argued that this behavior is described by a spe-
cial solution to the P? equation (3.4). To be more precise, his conjecture is the
following.

3.4 Conjecture. (Dubrovin, [40])

(i) Let ugp = uo(s,t) be a smooth solution to the unperturbed equation (3.9),
defined for all s € R and 0 < t < tg, and monotone in s for any t. Then
there exists a solution u = u(s,t;€) to the perturbed equation (3.10) defined
on the same domain in the (s,t)-plane with the asymptotics as e — 0 of the
form

u(s, t;€) = ug(s,t) + €2up (s, t) + e*ug(s, t) + o(e?), (3.11)

where uy and us can be written down explicitly.
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(i) The ODE (3.4) has a unique solution y = y(s,t) smooth for all real s € R
for all values of the parameter t.

(iii) The generic solution u described in part (i) of the conjecture can be extended
up tot =to+0 for sufficiently small positive § = §(€); near the point (sg, to)
it behaves in the following way

u(s, t; €) = uo(s, t)+ac® Ty (b€76/7(8 —c(t —to) — s0), de T (t — to)) +0O(eY7),

for some constants a, b, ¢, d which depend on the hyperbolic equation, the
solution u, and on the choice of perturbation. Here y is the unique smooth
solution described in part (ii) of the conjecture.

So Theorem 3.1 in fact proves the existence part of part (ii) of Dubrovin’s
conjecture.

In [55], numerical calculations were done for the particular example (of a per-
turbed Hamiltonian equation) of the small dispersion limit of the KdV equation,
see also [78, 79, 80, 100],

g + 6uns + 2ugss = 0, with initial condition  u(s,0) = ug(s).

Before the time of gradient catastrophe tg, solutions turn out to behave nicely.
Around the critical time tg, fast oscillations near sy set in. The behavior of the
solution near the critical point (so,%p) should be described in terms of the real
pole-free solution to (3.4) we consider in this chapter.

Random matrix theory

The local eigenvalue correlations of unitary random matrix ensembles on the space
of n x n Hermitian matrices have universal behavior (when the size n of the
matrices is going to infinity) in different regimes of the spectrum. In the bulk of
the spectrum it is known, see e.g. [13, 27, 32, 86|, that the local correlations can
be expressed in terms of the sine kernel, while at the soft edge of the spectrum
they generically (i.e. when the limiting mean eigenvalue density vanishes like a
square root) can be expressed in terms of the Airy kernel, see e.g. [13, 32, 50, 97].

In the presence of singular points, one observes different types of limiting
kernels in double scaling limits, see e.g. [14] and Chapters 1 and 2. Near singular
edge points, where the limiting mean eigenvalue density vanishes at a higher order
than a square root (the regular case) the local eigenvalue correlations are expected
[18] to be described in terms of functions associated with real pole-free solutions
of the even members of the Painlevé I hierarchy. The particular case where the
limiting mean eigenvalue density vanishes like a power 5/2, which is the lowest
non-regular order of vanishing, should correspond with the real pole-free solution
of P? considered in Theorem 3.1. We come back to this in Chapter 4.
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3.1.4 Riemann-Hilbert problem and Lax pair for P}
Consider the following Riemann-Hilbert (RH) problem for given complex para-
meters s and ¢, on a contour X = (U?:OZJ-) UR™, with ; = ejL;”R*‘, where each
of the eight rays are orientated from 0 to infinity.
RH problem for U:

(a) ¥ is analytic in C\ X.

(b) ¥ satisfies the following jump relations on 3, for some complex numbers

S0, .- -,8¢ which do not depend on (, s, and ¢,
T, (¢)=T_(0) <(1) Sf) ) for ¢ € ¥; for even j, (3.12)
UL (0)=T_(0) (81‘ ?) 7 for ¢ € % for odd j, (3.13)
J
0 -1 -~
U, (¢)=9_(¢) (1 0 ) , for ( e R™. (3.14)

¢) There exist complex numbers y and h, which depend on s and ¢ but not on
Y
¢, such that ¥ has the following asymptotic behavior as { — oo,

1 2 )
#(Q) =t (1= 24 g (1) o)

x e 0o (315)

where

R A T A ) L g g 1/2
V=5 (1) an = g e s e

3.5 Remark. In [66], Kapaev uses a slightly modified RH problem for the P}?
equation with parameter ¢t = 0. However a transformation shows that both RH
problems are equivalent.

3.6 Remark. The RH problem for P7? is similar to the RH problem for the
Painlevé T equation, see [67]. The only differences are that, for Painlevé I, there
are only six rays in the jump contour, and that the highest exponent of ¢ in 6 is
5/2. For the m-th member of the Painlevé I hierarchy, there are 4 + 2m rays in
the jump contour, and the highest exponent of ¢ in 6 is m + 3/2.

The complex numbers sg, ..., S are the Stokes multipliers and do not depend
on s and ¢, so that varying the parameters s and ¢ leads to a monodromy preserving
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deformation [44, 54, 62, 63]. The RH problem can only be solvable if the Stokes
multipliers satisfy the relation

D D6 DD D Y- Y e

As we will show in Section 3.2.3 (in fact we only treat one particular choice of
Stokes multipliers, but the proof holds in general), a solution ¥ of the RH problem
for ¥ also satisfies the following system of differential equations, which is the Lax
pair for the P? equation,

O o
3% ve, -

where

=WV, (3.18)

1 [ —4yeC — (12yye +yass)  8C7 4 8yC + (1297 + 2yas — 1201) (3.19)
240 U2 4ysC + (12yys + ysss) ’ .

Us1 = 8¢ — 8y¢? — (4y? + 2yss + 120t)C
+(1633 — 2y% + 4yy,s + 240s), (3.20)

and

W= (<_02y é) (3.21)

This Lax pair appeared first in work of Moore [85] for T'= 0 and was derived
in [69] for general T'. The compatibility condition of the Lax pair (4.15)—(4.18) is
exactly the P? equation (4.14), see e.g. [69]. Different choices of Stokes multipliers
S0, ..,86 correspond to different solutions of the P? equation. The particular
solution we are interested in, is the unique solution with Stokes multipliers s; =
s2 = 85 = s8¢ = 0. It then follows by (3.17) that sp = 1 and s3 = s4 = —1. This
choice of Stokes multipliers was suggested by Kapaev in [66], where he proved
that the solution of (3.2) with asymptotics given by (4.19), if it exists, is indeed
the one corresponding to s1 = so = s5 = s¢ = 0, so = 1, and s3 = s4 = —1.
This proves the uniqueness part of Dubrovin’s conjecture for the case T'= 0. One
can expect that similar arguments, based on the asymptotic solution of the direct
monodromy problem, hold for T # 0 as well.

3.1.5 Outline of the rest of the chapter

In the next section, we prove the first part (the existence part) of Theorem 3.1.
In order to do this, we introduce in Section 3.2.1 a RH problem for ®, which
is equivalent to the RH problem for ¥ (the RH problem for P?) with Stokes



3.2. The existence of a real pole-free solution to P} 99

multipliers s; = s5 = s5 = s¢ = 0, sg = 1, and s3 = s4 = —1. Afterwards,
we prove in Section 3.2.2 the solvability of the RH problem for ® for real s and
t by proving that the associated homogeneous RH problem has only the trivial
solution. This approach is often referred to in the literature as a vanishing lemma,
see e.g. [23, 32, 48, 49, 104]. We are only able to prove the vanishing lemma for
real s and t due to symmetries in the RH problem. In Section 3.2.3 we show that
U satisfies a Lax pair of the form (3.18)—(3.21), with y given in terms of ®. By
compatibility of the Lax pair, it follows that y solves the P} equation, and by the
solvability of the RH problem, y has no real poles.

In Section 3 we prove the second part (the asymptotics part) of Theorem 3.1.
We do this by applying the Deift/Zhou steepest descent method [36, 37] to the RH
problem for ®. In this method, we perform a series of transformations to reduce
the RH problem for ® to a RH problem that we can solve approximately for large
|s|. By unfolding the series of the transformations, we obtain the asymptotics for

Y.

3.2 The existence of a real pole-free solution to
Py

3.2.1 Statement of an associated RH problem to P}

Let I' = U?:l I'; be the contour consisting of four straight rays,

61

I'yrarg( =0, FQ:argCZG—ﬂ- 0

- I's:arg(=m, Ty:arg(=-—

oriented as shown in Figure 3.1. We seek (for s,t € C) a 2 x 2 matrix-valued
function ®((;s,t) = ®(¢) (we suppress notation of s and ¢ for brevity) satisfying
the following RH problem.

RH problem for &:
(a) @ is analytic in C\T.

(b) @ satisfies the following constant jump relations on I,
11
2= (5 1) frCel.  (322)
10
®4(¢) =2-(¢) (1 1> ; for ( € Ty UTy, (3.23)

B (C) =D (C) (_01 (1)) , for ¢ €T, (3.24)
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I

I'y

=
0
[an]

Y
Y

ry

Figure 3.1 The oriented contour I' consisting of the four straight rays I'1, I'a,
I's, and I'y.

(¢) ® has the following behavior at infinity,
() = (I +O(1/Q)¢HoNe 7 as ¢ — oo, (3.25)
where N and 6 are given by (3.16).

3.7 Remark. By multiplying ® to the left with an appropriate matrix inde-
pendent of ¢, see (3.53) below, we obtain by Proposition 3.11 the RH problem
for W, as stated in Section 3.1.4, for the particular choice of Stokes multipliers
s1=8y=85=56=0, s =1, and s3 = s4 = —1.

3.8 Remark. Let ® be a solution of the RH problem. By using the jump relations
(3.22)—(3.24) one has that det @ = det ®_ on I'. This yields that det ® is entire.
From (3.25) we have that det®({) — 1 as ( — oo, and thus, by Liouville’s
theorem, we have that det ® = 1.

Now, suppose that ® is a second solution of the RH problem. Then, since P
and ® satisfy the same jump relations on T', one has that ® ®~! is entire (observe
that ®~! exists since det ® = 1). From (3.25) we have that ®(¢)®(¢)~! — I as
¢ — oo, and thus, by Liouville’s theorem, we have that d P! = J. We now have
shown that if the RH problem for ® has a solution, then this solution is unique.

3.2.2 Solvability of the RH problem for ¢

Here, our goal is to prove that the RH problem for ® is solvable for s,t € R.
Moreover, we will also strengthen the asymptotic condition (c¢) of the RH problem
and prove analyticity properties in the variables s and ¢. In case s =t = 0, the
solvability of the RH problem for ® has been proven by Deift et al. in [32, Section
5.3]. The general case is analogous but for the convenience of the reader we will
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recall the different steps in the proof and indicate where we need the restriction
to s,t € R. The result of this subsection is the following lemma.

3.9 Lemma. For every so,to € R, there exist complex neighborhoods V of so and
W of to such that for all s € V and t € W the following holds.

(i) The RH problem for ® is solvable.

(i) The solution ® of the RH problem for ® has a full asymptotic expansion in
powers of ("1 as follows,

B(C;5,t) ~ (I +y Ak(’“)(%%Ne*"@;sma, (3.26)
k=1

as ¢ — oo, uniformly in C\ T. Here, the Ay = Ax(s,t) are real-valued for
s,t € R.

(iii) The solution ® of the RH problem for ®, as well as the Ay in (3.26), are
analytic both as functions of s and t.

3.10 Remark. The important feature of this lemma is the following. In the next
subsection we will show that y = 24, 11 — A% |5, where A 45 is the (4, j)-th entry
of A, is a solution to the P? equation. From the above lemma we then have
that this y is real-valued and pole-free on the real axis, so that the first part of
Theorem 3.1 is proven.

In order to prove Lemma 3.9, we transform, as in [32, Section 5.3], the RH
problem for ® into an equivalent RH problem for ® such that the jump matrix
for ® is continuous on I' and converges exponentially to the identity matrix as
¢ — oo on I', and such that the RH problem for ® is normalized at infinity. To
do this, we introduce an auxiliary 2 x 2 matrix-valued function M satisfying the
following RH problem on a contour I'” = U?Zl I'7 consisting of four straight rays

I'{:arg¢( =0, TIg:arg(=0, TI§:arg(=w, TI]:argl=—o, (3.27)
where o € (3,7). We orientate the straight rays from the left to the right, as

shown in Figure 3.1 for the contour I'. The dependence on the parameter o is
needed in Section 3.3. In this section, we take o = 67/7 fixed, so that ' =T.

RH problem for M:

(a) M is analytic in C\ I'?.
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(b) M satisfies the following jump relations on I'?,

1 e_%43/2
o =m©o) ). forceTy,  (3.28)
1 0
M. (¢) = M_(C) <e% o2 1> : for ¢ € [ UTY, (3.29)
0 1
M, (¢) = M_(Q) (_1 o) , for ¢ € T'g. (3.30)

(c) M has the following behavior at infinity,
M)~ (T+D B H)CHAmN, s ¢ o0, (3.31)
k=1

uniformly for ¢ € C\ IT'V and o in compact subsets of (3,7). Here, N is
given by equation (3.16), and for k > 1,

_ 0 0 (0 ?21@71 _ ?Zk 0
B3p_2 = (t%l 0) , Bsp_1= (0 0 ) , Bsp = (0 t2k> , (3.32)

with

_ TBk+1/2) L Gkls
"7 36RKIT(k + 1/2) P k-1

)

(3.33)

It is well-known, see e.g. [27, 33], that there exists a unique solution M to the above
RH problem given in terms of Airy functions Ai. The matrix-valued function M
is the so-called Airy parametrix and for the purpose of this chapter we will not
need its exact expression but refer the reader to [27, 33| for this.

We now define ®((;s,t) = ®(¢) by
() = ®()e’ DM (¢)"Y,  for C € C\T. (3.34)

A straightforward calculation, using (3.22)-(3.25), (3.28)-(3.31), and 04 (() +
0_(¢) =0 for ¢ € R_, shows that ® satisfies the following RH problem.

RH problem for d:

(a) ® is analytic in C \T.
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~ ~

(b) ®4+(¢) = 2_(¢)0(¢) for ¢ € T, where v(¢) = v((; s,t) is given by
~20(0) _ o= 4¢*/?
M_(C) <1 e—20(¢ e3¢ ) M_(C)—17 on T\,
0 1
v(¢) = 1 0 (3.35)

M—(C) <€29(<) _6%43/2 1) M—(C)_l, on FQUF4,

I, on Fg.

(c) D) =1+0(1/¢), as(— oo.

Observe that the jump matrix v is indeed continuous on I' and that it converges
exponentially to the identity matrix as ( — oo on I'. This RH problem corre-
sponds to the RH problem [32, (5.108)—(5.110)], and the only difference is that

+26 v +3)/2

we now have a factor e’ (containing the s,t dependence) instead of e

in the jump matrices.

Proof of Lemma 3.9 (i). From (3.34) it follows that proving the solvability of
the RH problem for ® is equivalent to proving the solvability of the RH problem
for ®. By general theory of the construction of solutions of RH problems, this is
reduced to the study of the singular integral operator,

Co: L’T) = L*(D) : f—~Cy [f(T—v7)], (3.36)

where v is the jump matrix (3.35) of the RH problem for 6, and where C is the
+boundary value of the Cauchy operator

= ﬂds, for z € C\T.

2mi Jps—z

Cf(z) =

Indeed, suppose that I — C, is invertible in L?(T"). Then, there exists u € L*(T')
such that (I — Cy)u = C(I — v~ 1), and it is immediate that

-1
o) =T+ %/F I+ M(S)S)(_IC v(s) )ds7 for (e C\ T, (3.37)
is analytic in C \ T" and satisfies (since C;. — C_ = I) condition (b) of the RH
problem for ® in the so-called L2-sense. However, as in [32, Step 3 of Sections
5.2 and 5.3], one can use the analyticity of v to show that d satisfies jump con-
dition (b) in the sense of continuous boundary values, as well. Further, as in [32,
Proposition 5.4], it follows from the exponential decaying of I —v~! as ( — oo on
" that the asymptotic condition (c¢) of the RH problem for d is also satisfied. We
summarize that the RH problem for P is solvable, with solution given by (3.37),
provided the singular integral operator I — C,, is invertible in L?(T").
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First, we consider the case s,t € R. For this case, we show that I — C,, is
invertible by showing that it is a Fredholm operator with zero index and kernel
{0}. Exactly as in [32, Steps 1 and 2 of Section 5.3] one has that I — C, is a
Fredholm operator with zero index. In this step, one does not need the restriction
to real s and ¢. It remains to prove that the kernel of I — C,, is {0}, and it is in
this step that we will need the restriction that s,¢ € R. This is (again) as in [32,
Section 5.3] but for the convenience of the reader we will indicate were we need s
and t to be real.

Suppose there exists pg € L*(T") such that (I —C,)uo = 0. One can then show
that the matrix-valued function :130 defined by

50(() ! /F Ho(s)UI = U(S)_l)ds, for (e C\ T, (3.38)

= 2mi s —C

is a solution to the RH problem for 6, but with the asymptotic condition (c)
replaced by the homogeneous condition

Do(¢) = O(1/¢), as ¢ — oo, uniformly for ( € C\ T. (3.39)

Since pg = ‘i)o,+ (which follows from (3.38) together with (I—C,)uo = 0), we need

to show that 60 = 0. Showing that a solution of the homogeneous RH problem is

identically zero, is known in the literature as a vanishing lemma, see [32, 48, 49].
Now, let

~

Po(¢) = Po(Q)M(¢),  for (e C\T,

then it is straightforward to check, using (3.28)—(3.31), (3.35), and (3.39), that
® solves the following RH problem.

RH problem for ®:
(a) @y is analytic in C\ T.

(b) ®q satisfies the following jump relations on T,

1 6720(4-)
B =20-@ (5 ) fr¢ely,  (340)
1 0
o4 () = Bo._(C) (629(0 1) , for ¢ € Ty UTy, (3.41)
0 1
$o,+(¢) = Po,-(¢) (_1 0> ; for ¢ € T's. (3.42)

(c) ®o(¢) = O(1/¢)C 39N, as ¢ — oo, uniformly for ( € C\T.
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Further, we introduce an auxiliary matrix-valued function A with jumps only
on R, as follows, cf. [32, Equations (5.135)—(5.138)]

0 -1
D0 (¢) <1 O)’ for 0 < arg¢ < &,
1 0 0 -1
®0(¢) < 20(¢) 1) <1 0 ) , for 67” <arg( < m,
Al¢) = ‘ (3.43)
1 0
@0(() <—620(<) 1) ) for —m < arg( < _6771'7
®0(¢), for -5 < arg(¢ < 0.

Using (3.40)—(3.42) and condition (¢) of the RH problem for ®; one can then
check that A is a solution to the following RH problem.

RH problem for A:
(a) A is analyticin C\ R

(b) A satisfies the following jump relation on R,

1 —e204+(0)

40=-20 (o Ty ) BreeR. @Ay
02000 1

no=4-0(7" ) fr(eRy, (345

(c) A(C) = O3/, as ¢ — oo, uniformly for ¢ € C\ R.

Now, we define Q(¢) = A()A*((), where A* denotes the Hermitian conjugate
of A. The matrix-valued function @ is analytic in the upper half plane, continuous
up to R, and decays like (=3/2 as ( — oo. By Cauchy’s theorem this implies,
Jg @+(s)ds = 0. Using the jump relations (3.44) and (3.45) we then have,

4 1 _629+(s) 4 J 4 6720(5) —1 4 J
[0 (e )@ [ (T ) e —o.

Ry

Adding this to its Hermitian conjugate, and using the fact 6, (s) = 0_(s) for
s € R_ (which is true since s,t € R), we arrive at, cf. [32, Equation (5.146)]

26729(3) 0
0 0

[a- (5 ) s (460 )42 9ds =0 (3.9
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This is the crucial step where we need s and ¢ to be real. The latter relation
implies that the first column of A_ is identically zero, and the jump relations
(3.44) and (3.45) then imply that the second column of A is identically zero, as
well.

By writing out the RH conditions for each entry of A and using the vanishing
of the first column of A_ and the second column of A, the matrix RH problem
reduces to two scalar RH problems. The proof that the solutions of those scalar
RH problems (and thus also the second column of A_ and the first column of
A ) are identically zero, is exactly as in [32, Step 3 of Section 5.3] using Carlson’s
theorem, see [89], and we will not go into detail about this. We then have shown
that A = 0, so that also :130 = 0 and thus pug = 0. We now have proven that
I — C, is invertible for s,t € R, which implies that the RH problem for ® (and
thus also the RH problem for ®) is solvable for s,¢ € R.

Next, fix sg,to € R. Above, we have shown that the singular integral operator
I — Cy(.;s0,10) is invertible. Since

1=Coiaty = (1= Cutrsni)) [T+ (L= Cutrpun) " (Cotrsntn) = Cotis) |

it then follows that I — Cy(. .4 is invertible provided

(I = Cutc o)~ (Cotessonto) = Cotes) || < 1.

where || - || denotes the operator norm. It is straightforward to check that there
exist neighborhoods V of sg and W of ¢y such that for all s € V and t € W,

1Cuc-ss0.t0) = Coc s | < O] o5 s0,20) = w5 8, 0)]| oy

< H (I - CU('§80¢0))_1H_1’

which implies that the operator I —C,.,, ) is invertible. Hence the RH problem

for &J, and thus also the RH problem for ®, is solvable for s € V and t € W. This
finishes the proof of the first part of the lemma. a

Proof of Lemma 3.9 (ii). It follows from the asymptotic expansion (3.31) of
M together with ® = ®Me=973 see (3.34), that we need to show that ® has a
full asymptotic expansion in powers of (~!. Insert the relation

1 _ k—1,—k s"
s C Zs ¢ +C"(S—C)’ for n € N,

k=1

n

into the solution ® of the RH problem for ®, which is given by (3.37). We then
obtain for any n € N,

@-I—FZE}CCk-l—%/rsn(l_'—lé(j()z(_lg)v(o1)ds,

(3.47)
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where

Bi= s [ U ()T~ v() s, (3.48)

As in [32, Proposition 5.4] one can check that the integral in (3.47) is of order
O~ +1) as ¢ — oo uniformly for ¢ € C\ T'. We then have shown that ® has
the following asymptotic expansion in powers of ¢!,

O(C)~I1+Y Bi¢™*,  as ¢ — oo, uniformly for ¢ € C\T. (3.49)
k=1

From (3.31), (3.49), and the fact that ® = ®Pe =975 it now follows that @ has a
full asymptotic expansion in the form (3.26), where (with By = By = 1)

Ay =" B;Bi_;. (3.50)

It remains to show that the Ay, are real-valued for s,t € R. It is straightforward
to verify that for s,¢ € R the matrix-valued function —i®(;s,t)os is a solution
to the RH problem for ®. By uniqueness we then have

B(¢;5,t) = —i®((; 5,t)03, for s,t € R,

which yields
(I+ ZAkC"“)C‘%"SNe‘G“”’“"S — (I+ ZA_kC—k)C—%aaNe—G(C;S;t)U?;
k=1 k=1

and hence A;, = Ay for s,t € R. This proves the second part of the lemma. O

Proof of Lemma 3.9 (iii). We show that ® and A}, are analytic in s, for s € V.
The analyticity in ¢ follows in a similar fashion. In order to show that ® (and thus
also @) is analytic for s € V we need to show that, letting h — 0 in the complex
plane,

3 1 Y . Y .
%{% E ((I)(Cv s+ ha t) - (I)(Cv S, t))

exists. Consider the 2 x 2 auxiliary matrix-valued function H((;s,t;h) = H(C)
defined as follows,

H(Q) =®(¢;s+h,1)®(¢Gs,t)"!,  for (eC\T. (3.51)

Here we take h sufficiently small, so that ®((;s + h,t) exists by part (i) of the
lemma. It is straightforward to check that H satisfies the following RH problem.
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RH problem for H:
(a) H is analytic in C\T.

(b) H satisfies the jump relation Hy (¢) = H_({)vu (¢) for ¢ € ', where
v () = I+ 20 1)@ (G:s.1)
( (¢ 8,t)” ¢ely,
v (Q) = T+ e (2 _ 1)d_(¢;s,1)
x ((1) 8) O_(Gs,t)7", CelUTy,
va(Q) =1, ¢ erls.

(c) H() =I+0(1/¢), as ¢ — oo, uniformly for ( € C\ T.

Since vy () = I + O(h) as h — 0 uniformly for ¢ € T', where the O(h)-term
can be expanded into a full asymptotic expansion in powers of h, it follows as in
[27, 33, 32] that, as h — 0,

B(C s+ h, )D(C;s,t) " = H(C) = I+ hHy((;8,t) + O(h?), (3.52)

where Hi is a 2 X 2 matrix-valued function independent of h. This yields,

tim © (BG4 B, t) — B(G 5,0)) = H (G5, (G 5,1),

h—0

which implies that ® (and thus also ®) is analytic for s € V.
It remains to show that the matrix-valued functions Ay, are analytic for s € V.
By (3.37), it is immediate that

() =T+p(), for¢ey,

so that p is analytic for s € V. By (3.48) it then follows that By, is also analytic
for s € V. This yields, by (3.50) and (3.32), the analyticity of Ay, and hence the
last part of the lemma is proven. O

3.2.3 Proof of Theorem 3.1 (i)

In order to prove the existence part of Theorem 3.1 we proceed as follows. Intro-
duce, for s,t € R, a 2 X 2 matrix-valued function ¥(¢; s,t) = ¥(¢) by multiplying
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the solution ® of the RH problem for ® to the left with an appropriate matrix
independent of (,

V() = (Ai12 ;’) ®(¢), for CeC\T. (3.53)

Here Aj 12 is the (1,2)-entry of the 2 x 2 matrix A1 = A;(s,t) appearing in
the asymptotic expansion (3.26) of ® at infinity. The important feature of this
transformation is that ¥ satisfies the RH problem for P?, see Section 3.1.4, as we
will show in the following proposition.

3.11 Proposition. The matriz-valued function U, defined by (3.53), is a solution
to the RH problem for W, see Section 3.1.4, with Stokes multipliers s = s3 = s5 =
s6 =0, sop =1, and s3 = s4 = —1, and with the asymptotic condition (c) replaced
by the stronger condition

W(¢) = CTHPNT()e O, (3.54)

1/2

where U has a full asymptotic expansion in powers of (~ as follows,

~ 1/ h% 4
. ~ T _ -1/2 | + Yy -1
\P(Cv Sat) I hO-BC + ) <—Zy h2) C

1 & Gk T\ g1 Vg Wk k1
+ 2 I; |:<’L'7’k —qk> ¢ P —WE Uk ¢ » (3:55)
as ¢ — oo uniformly for ¢ € C\T. Here, y = y(s,t) is given by

Yy = 2A1111 - Ail? (356)

Further, h = Aq12 and the qx, Tk, vx and wi are some unimportant functions of
s and t (independent of C).

Proof. The fact that ¥ satisfies conditions (a) and (b) of the RH problem for
W follows trivially from (3.53) together with conditions (a) and (b) of the RH
problem for ®. So, it remains to show that ¥ given by

U= N"ICFw(()el O, (3.57)

satisfies an asymptotic expansion of the form (3.55) with y given by (3.56). It
follows from (3.57), (3.53) and (3.26) that

= _1,.923 1 0 - _
T(() ~ NI (A112 1) T+> At
? k=1

~ N <i<ﬂk<%“<k> N, (3.58)
k=0

CEN
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where

~ 1 0 5 1 0
Ag = (A1,12 1) , and A = (A1,12 1) Ay, for k > 1.

1\~Tow, using the facts that /Nl0711 = 210,22 = 1, that [10712 = 0 and that Ao)gl =
Ay 12 = Ay 12 we find,

S CFACECE
k=0

= 0 0y 42 0 Ay 12) kgl (Ak n 0 ) _k}
= 2 + ’ _|_ ’

kZ:O [(Akﬂl 0) (0 0 )¢ 0 Ago2o

0 Apia 12) k1 (Ak-i-l 11 0 ) —k—1:|
~ ’ 2 + ’ ~ .
(Ak,21 0 ¢ 0 Apy1,22 ¢

Inserting this into (3.58) and using (3.16) we arrive at,

\TJ((, s,t) ~ I — hogcfl/Q + l <

/11~,11 + /11~,22 Z'({h,ll - {11,22)) 1
2

—i(A111 — A122) A1+ Ao

L= [{an iri\ g1 Vg WY g1
+2,;K"k —Qk>c o —twg Vg ¢  (359)

where h = A~1712 andNWhere the qi, 7%, vk, and wy can be written down explicitly
in terms of Ay and Aj11. Now, note that since det ® = 1 (see Remark 3.8) and
since, by (3.26),

det® =1+ (A1711 + A1)22)C71 + O(Ciz), as ( — oo,

we have that A; 2o = —A; 11. This together with the facts that /11111 = Ay 11 and
Ay 22 = AT 15 + Ay 22 yields,

A+ Args = A}y, = 12, Apn— Ay =24111 - A 1, =
Inserting this into (3.59) the proposition is proven. O

The idea is now to show that ¥ satisfies the linear system of differential equa-
tions (3.18)—(3.21) with y given by (3.56), so that by compatibility of the Lax pair
this y is a solution to the P? equation (3.4). Since by Lemma 3.9 the functions
Ai111 and A 12 are real-valued and pole-free for s,t € R we have that y itself
is real-valued and pole-free for s, € R, so that the first part of Theorem 3.1 is
proven.
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Proof of Theorem 3.1 (i). Recall from the above discussion that we need to
show that the matrix-valued functions (note that, by Lemma 3.9 (iii) and (3.53),
¥ is differentiable with respect to s)

o0 _ov
U= aC U and W= P U (3.60)

are of the form (3.19) and (3.21), respectively, with y given by (3.56). Observe

that, since ¥ has constant jump matrices, the derivatives %—‘é’ and %—‘i’ have the

same jumps as ¥, and hence U and W are entire.
First, we focus on U. By (3.54), we have that for ¢ — oo,

v=-R - (Nt F 4 (9] ON). e

Since det ® = 1 we obtain from (3.53) and (3.54) that det W = 1, as well. Then,
it is easy to verify that

\/1}0.3\/1\]—1 _ 1 +/\2(I\Jl\2(1\/21 —2\/1\/1/1\/1\/12 _ ( Qll —iQ12>
2\1121\1122 —1- 2\1112\1121 —’ngl _Qll ’

and hence, by (3.16),

NUoy O IN1 = ( 2(@-Qu)  —3(Qa+Qu) - Q”) . (3.62)

2(Q21 + Q12) — Qu 1(Q12 — Q21)

The asymptotics of the functigns Q11,Q12 and Q21 at infinity follow from the
asymptotic behavior (3.55) of ¥. We find, as { — oo,

Q=1+ %y%_Q + (yw1 — %7‘%)4_3 +0(¢), (3.63)

1
Quz =y~ + (re —yh)CT2 + (Gyh? — hry 4 wi)¢ 72

+ %tc*”” +u¢ TP+ O, (3.64)

Qo1 =y¢ = (r —yh)(T32 + (%th — hry +w1p)¢ 3
- ét(’5/2 +uC P —u¢TT? 0, (3.65)

where ¢, u and v are some functions of s and ¢. Inserting (3.62)—(3.65) into (3.61)
and using the fact that,
06 1

1 1
7 5/2 _ ~,-1/2 | & —1/2
ac —30° T2t
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it is straightforward to check that,

U_i< a¢ +t 8C2+8yC+b+eC1>
240 \8¢3 —8yC? 4+ cC +d —al —t
. <0<<1> 0(4?))
o) o)

with
a = 8r1 — 8yh, (3.66)
b = 4y* — 120t + 4yh® — 8hry + 8wy, (3.67)
¢ = 4y* — 120t — 4yh® + 8hry — 8wy, (3.68)
d = 8yw; — 4r? + 1205 + 120yt — Su, (3.69)
e = 8yw; — 4r} + 1205 — 120yt + Su. (3.70)

Since U is entire, it contains no negative powers of (. In particular e = 0, so that
d=d+e=16yw; — 8} + 240s. (3.71)
We now have shown that,

1 aC +t 8¢2+8y( +b
8¢3 ’

=— 3.72
240 —8y(*+c(+d —al —t (3.72)

where a, b, and ¢ are given by (3.66) and (3.67), and (3.68), and where d is given
by (3.71).
Next, we consider W. Observe that by (3.54),

- _ 73 8\/1} T_1 —1 .23 89 _ 93 = T_1 1 93
W= (RN TN - o (N\I/ag\IJ N )<4. (3.73)
From (3.55) we obtain

ov

ds

93

CENTZ TN =N (b2 O NTICE

_ <}? 8) +0(¢?), (3.74)

where h denotes the derivative of h with respect to s. Further, using (3.62)—(3.65)
together with the fact that % = (12, we have

0 1

00 o3 ~ 0~ 73
50 (N\I/ag\lf_lN_l) (7 = (C o 0) +0(¢). (3.75)
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Inserting (3.74) and (3.75) into (3.73), and using the fact that W is entire (so
that VW contains no negative powers of ¢) we arrive at,

V= (v tm-n o) (3:76)

We will now complete the proof by determining the functions a,b,c,d,t and
hs exclusively in terms of vy, ys, ¥ss, and ysss, using the compatibility condition

o*v  9*V
9C0s  0s0C
This condition is equivalent to %—U - %—VZ +UW — WU =0 and leads, after a
S
straightforward calculation, to
Co(® + C1¢ + Co =0,
where
8(hs + 0
o= BTV , (3.77)
_Sys —2a 8<hs + y)
as +8y(hs —y)+b—c 8ys + 2a
= y(hs —y) y 7 (3.78)
cs —2alhs —y)—2t —as—8ylhs—y)—b+c
ts+blhs —y)—d bs + 2t
Cy = ( v) . (3.79)
ds — 2t(hs —y) — 240 —ts —b(hs —y) +d

Since Cy = 0 we deduce that hs = —y, and hence by (3.76) W is of the form
(3.21), and that a = —4y,. By (3.66) we then have,

1
ety (330
Further, since C1 11 = 0 we then obtain from (3.67) and (3.68) that
1 , 1o, 1
= — ss — h - = Sh' 3'81
w1 = Yss B YT+ gy 5Y (3.81)

Inserting the expressions (3.80) and (3.81) for r1 and w; into the expressions
(3.66), (3.67), (3.68), and (3.71) for a, b, ¢, and d, and using the fact that t = —1b,
(since Cy12 = 0) we arrive at

a = —4ys, b =12y + 2y,s — 120¢, (3.82)
c = —dy* — 2y,s — 120, d = 16y° — 29> + dyy., + 240s, (3.83)
t = —12yys — Ysss- (3.84)
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Inserting the latter equations into (3.72) we have that U is of the form (3.19).
Note that the fact that y satisfies the P12 equation now follows from Cs 17 = 0.
This proves the first part of the theorem. a

3.12 Remark. Note that, by Lemma 3.9 (iii), we can safely differentiate y and
h with respect to s, as we did in the above proof.

3.3 Asymptotic behavior of y(s,t) as s — +o00

In this section we will determine for fixed ¢ € R the asymptotics (as s — 00) of
the particular solution y(s,t) of the P? equation with no poles on the real line as
constructed in the previous section and given by, cf. (3.56),

Yy = 2A1111 - A%,l?' (385)

Here, A; is the matrix-valued function appearing in the asymptotic expansion
(3.26) for ®. So, it suffices to determine the asymptotics (as s — +00) of the first
row of A; which we will do by applying the Deift/Zhou steepest descent method
[27, 32, 33, 36, 37] to the RH problem for ®.

3.3.1 Rescaling of the RH problem and deformation of the
jump contour: ¢ — Y

Let 2o = 2zo(s,t) € R (to be determined in Section 3.3.2) and let T' = U?Zl I; be
the oriented contour through zo as shown in Figure 3.2. Here, the dotted lines
are in fact I's and ['4, see Figure 3.1, and are not part of the contour. The precise
form of the contour I (in particular of T'y and T'y) will be determined below. Now,
introduce the 2 x 2 matrix-valued function Y ({;s,t) = Y(¢) as follows,

®(|s|1/3¢), for ¢ e IUITUTIIUIV,
(|s]1/3¢) Lo for(eV

Y(¢) = 1 1)’ ’ (3.86)
D(|s|'/3¢) (_11 2) , for ¢ € VI,

where @ is the solution of the RH problem for ®, see Section 3.2.1, and where
the sets LIL,...,VI are defined by Figure 3.2. Then, it is straightforward to check,
using (3.22)—(3.24), (3.26) and (3.16), that Y satisfies the following conditions.
RH problem for Y:

(a) Y is analytic in C\ T.
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Y

v

Figure 3.2 The contour I' = U?Zl fj. Note that the dotted lines are not part of
the contour.

(b) Y satisfies the same jump relations on T' as ® does on I'. Namely,

70=v-©(y 1) forcefy,  (387)
Y (¢)=Y_(¢) G (1)) : for ¢ e Ty UTy, (3.88)
Y (¢)=Y_(C) (_01 é) : for ¢ € I's. (3.89)

(¢) Y has the following behavior as { — oo,

Y(¢) ~ (I + D Al 36"“) ¢ 5|7 TNl (3 90)

k=1

where

5 1 Lo-
0(Gis,t) = g7/ = 318l 72/%4CY2 4 sgn(s)¢M2. (3:91)

3.3.2 Normalization of the RH problem at infinity: Y — §

In order to normalize the RH problem for Y at infinity we proceed as Kapaev in
[67]. Introduce a function g((; s,t) = g(¢) of the following form,

9(¢) = c1(¢ — 20)% + e2(¢ — 20)°/* + ¢3(¢ — 20)%/2. (3.92)
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where zo and the coefficients ¢y, co, and c3 are to be chosen independent of ¢ (but
possibly depending on s and t) in such a way that

9(Q) =0() +0(¢71?),  as(— oo (3.93)

If we let zg = zo(s,t) be the real solution of the following third degree equation
(which has one real and two complex conjugate solutions),

23 = —sgn(s)48 + 24z|s|~¥/3t, for s # 0, (3.94)

and if we set
1 1 1 5

2
05 @2~ 3p% =357 —senls)g (3.95)

then it is straightforward to verify, using (3.91) and (3.92), that for ¢ sufficiently
large,

9(¢)

Q)+ b3, (3.96)
k=0

for some unimportant by’s which depend only on s and ¢ and which can be cal-
culated explicitly. The latter equation yields that for ¢ large enough,

e\S|7/6(9(C)*(9(C))03 =TI+ dealgC*kﬂ, (3.97)
k=1
where the coefficients dj, can also be calculated explicitly. Further, observe that
by (3.97) we have det(I + 377, drok¢™*/2) = 1, which yields
Ly
do = §d1. (3.98)

Another crucial feature of the g-function is stated in the following proposition,
which is important for the choice of the contour I', and which is illustrated by
Figure 3.3.

3.13 Proposition. There ezist constants ¢ > 0, eg > 0 and so > 0 such that for
S Z 50,

Reg(¢) > ¢l¢ — 20|"* > 0, as arg(¢ — 20) =0, (3.99)
Reg(¢) < —¢|¢ — 20|72 <0, as 82 —gg <|arg(¢ — 20)| < & +eo. (3.100)
Proof. With ¢ = zg + re’® we have

17 2Re g(¢) = ¢1 cos(7¢/2) + ¢2 cos(5¢/2)r ™ + ¢3 cos(3¢/2)r™2,  (3.101)
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Figure 3.3 Contour plot of Reg for t =0 and s > 0. The shaded areas indicate
where Reg > 0.

where by using (3.94) and (3.95)

1 1
—, ey =——sgn(s)63+O(s7H3), 3 =6"134+0(s72/3), (3.102)
105 15
as |s| — oo. Observe that the right hand side of (3.101) is a second degree
equation in r—!, so that it is straightforward to check that,

2
1
(= T/6R, e 2 (523 =0 3.103
min( T OReg () =1 — 2 = 2+ O, as6=0, (3103
which yields already (3.99), and that for 7/3 < |¢| < 7,
5 cos*(50/2)
deg cos(3¢/2)

Cc1 =

max(r~ 7/ Re g(¢)) = ¢1 cos(7¢/2) — (3.104)

Further, since
cos®(5¢/2)
cos(3¢/2)
there exists, by continuity in ¢, a constant g > 0 sufficiently small such that the
following estimates hold,

cos(7¢/2) = —1, <1.31, as ¢ = O,

cos?(5¢/2)
cos(3¢/2)
This implies by (3.104) and (3.102) that

cos(7¢/2) < —0.99, < 1.31, as & — g < |¢| < & + .

2
max(r~"/%Re g(¢C)) < —0.99¢; + 1.3140—2 < —0.00069 + O(s~2/3),
C3

as 8T —eg < |¢| < & +e0, (3.105)
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which proves (3.100). O
3.14 Remark. Recall that the contour I' (1n particular I's and I‘4) is not yet

explicitly defined. For now, we choose I's and T'y to lie in the sectors where (3.100)
holds.

We are now ready to normalize the RH problem for Y at infinity. We let
S(¢;s,t) = S(C) be the following 2 x 2 matrix-valued function,

S(¢) = <d1|s1|1/6 (1)) Y(Qel 9O for ¢ e C\ T, (3.106)

where Y, g and d; are given by (3.86), (3.92), and (3.97), respectively. It is then
straightforward to check, using (3.87)—(3.89), using the fact that g4 (¢)+g—(¢) =0

for ¢ € (—o0, 2p), and using (3.90), (3.97), (3.16) and (3.98), that S satisfies the
following conditions.

RH problem for S:
(a) S is analytic in C \ T,

(b) S.(¢) = S_(C)vs(¢) for ¢ € T, where vg is given by,

1 e—2lsl"%g(0) R
0 , for ( €Ty,

o2l |7/6 ) R for ¢ € f‘z U f‘4, (3.107)

<_1 O) for ¢ € I's.

(c) S has the following behavior as { — oo,

- 1 O 1 O ,1/3 —1
S(¢Q) = {I"‘ <d1|8|1/6 1) Ay <_d1|s|1/6 1) |s|7°¢

1,2 —-1/6 o3 73
. (2d1 dys] >4_1+O(<_2)} Rl EN, (3.108)

* *
where the *’s denote unimportant functions depending only on s and ¢.

3.15 Remark. Note that by Proposition 3.13 the jump matrix vg on f‘l, I'; and
I’y converges exponentially fast (as s — +00) to the identity matrix.
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3.3.3 Parametrix P> for the outside region

From Remark 3.15 we expect that the leading order asymptotics of ® will be
determined by a matrix valued function P(>°) (which will be referred to as the
parametrix for the outside region) with jumps only on (—o0, zg) satisfying there
the same jump relation as S does. Let

3

PO = |s| B (C—2)" TN, for (€C\ (—00,z) (3.109)

o .
_23 i

Then, using (3.16) and the fact that (¢ — 20)273@ —z20)y T =e 2% for ¢ €
(=00, 2p), we obtain that

P(¢) = PN —20) T (C—20)5 T N

= PSOO)(Z) (_01 é) ) for ¢ € (—o0, 29). (3.110)

Before we can do the final transformation S +— R we need to do a local analysis
near zp since the jump matrices for S and P(°) are not uniformly close to each
other in the neighborhood of zj.

3.3.4 Parametrix near z;

In this subsection, we construct the parametrix near zy. We surround the fixed
point Zg, see (3.2), by a disk Us = {z € C : |z — Z| < ¢} with radius § > 0
(sufficiently small and which will be determined in Proposition 3.16 below as part
of the problem) and we seek a 2 x 2 matrix-valued function P((;s,t) = P(¢)
satisfying the following conditions.

RH problem for P:
(a) P is analytic in Us \ T.

(b) P(¢) = P_(¢)vs(¢) for ¢ € I'NUs, where vg is the jump matrix for S given
by (3.107).

(c) PP~ =T+ 0(s71), as s — £oo, uniformly for ¢ € 9Us.

We start with constructing a matrix-valued function satisfying conditions (a)
and (b) of the RH problem. This is based upon the auxiliary RH problem for
M with jumps on the contour I'?, see Section 3.2.2. The idea is that, by (3.28)—
(3.30), the matrix-valued function M(|s|7/?f(2)) will satisfy conditions (a) and
(b) of the RH problem for P if we have appropriate biholomorphic maps f on Us
which satisfy the following proposition.



120 Chapter 3 - Real pole-free solution of P}

3.16 Proposition. There exists s1 > sp > 0 and § > 0 such that for all |s| >
s1 there are biholomorphic maps f = f(-;s,t) on Us satisfying the following
conditions.

1. There exists a constant co such that for all ¢ € Us and |s| > s1 the derivative
of f can be estimated by: co < |f'(¢)| < 1/co and |arg f'(C)| < g0 with o
defined in Proposition 3.13.

2. f(UsNR) = f(Us) "R and f(Us N Cx) = f(Us) N Cx.
3. 2£()*? = g(¢) for ¢ € Us \ (—00, 20].

Proof. One can verify, using (3.102), that there exists s1 > so > 0 sufficiently
large and ¢ > 0 sufficiently small, such that for all |s| > s; the function f((;s,t) =
f(¢) defined by

2/3
10 = (§eat Sealc =202 + Jealc —20)) (¢~ 30

2 2
2/3
- <g € —g(zi))3/2> S S

is analytic for ¢ € Us, and that f is uniformly (in s and ¢) bounded in Us. By
Cauchy’s theorem for derivatives we then also have that f” is uniformly (in s and
¢) bounded in Us for a smaller §. Then, there exists a constant C' > 0 such that

¢
[F(C) — f'(20)] = / " (s)ds| < C|¢ — zo], for all |s| > s1 and ¢ € Us.
20
Since, by (3.102),
fl(z0) = (203)2/3 > const >0  for |s| large enough, (3.112)

this yields that for all |s| > s; (for a possible larger s1) the functions f are
injective and hence biholomorphic in Us (for a possible smaller §) and that they
satisy part 1 of the proposition.

The second part follows from the first part (for a possible smaller §). The last
part follows from the second part and from (3.111). O

Now, let |s| > s; and o € (5, m) (we will specify our choice of o below),
and recall that the contour I' is not yet explicitly defined. We suppose that I is
defined in Uy as the pre-image of I' N f (Us) under the map f (so I' depends on the
parameters s and o), where I'” = U;*:ll'“; is the jump contour for M, as defined
by (3.27). Then, we immediately have, by (3.28)-(3.30) and part 3 of Proposition
3.16, that M (|s|"/?f(¢)) satisfies conditions (a) and (b) of the RH problem for
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P. Moreover, for any invertible analytic matrix-valued function E in Uy, one has
that

P(¢) = EQQM(|s|"°f(¢)),  for (e Us\T, (3.113)

satisfies also conditions (a) and (b) of the RH problem for P. We need E to be
such that the matching condition (c) is satisfied as well. Let

E(Q) = s|7# (¢ — 20)"F (s £(O) F, (3.114)

which of course is an invertible analytic matrix-valued function in Us. Then, using
(3.31), (3.32) and (3.109) we have,

PP ()™ =T+ Ayls| ™t + Agls| ™2 + O (|s|*7/3) : (3.115)

as s — oo uniformly for ¢ € 9Us; and o in compact subsets of (%, 7), where A,
and As are given by

M= 1 (Cf?C§O>1/2 (tol 8) ’ (3.116)

1 ¢ — 2 —-1/2 . 0
Ag = W (m) wzdegattl 0 5 (3117)

and where ¢; and #; are unimportant constants given by (3.33). We then have
shown that P defined by (3.113) satisfies the conditions of the RH problem for
P. This ends the construction of the parametrix near zy.

3.3.5 Final transformation: S — R

We will now perform the final transformation. Recall that the contour I is still
not yet explicitly defined. We will now define it in terms of the (sufficiently large)
parameter s.

Consider the fixed point %o + de"F (which depends only on sgn(s)) on dUs.
Since zp — Zp as § — 00, see Remark 3.2, there exists sy > s; sufficiently large
such that for all |s| > so,

671' N 6mi 671'
7—60 <arg(zo+5e 7 —Zo) < 74‘60,

where ¢¢ is defined in Proposition 3.13. From Proposition 3.16 we then know that
for |s| > s, there exists 0 = o(s) € (% —2e¢, & +2¢0) such that f~H(I'3)NOUs =
{Z0 + 5e¥}_. By the symmetry f(¢) = f(¢) we then also have f~1(I'7) N dU; =
{20+ 0= " }. We now define I in Uy (for |s| > s3) as the inverse f-image of the
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67i

20+ e 7
{ aUs

Figure 3.4 The contour I'p = I'rUUs. The part of I'r inside Us depends on
s. The rest of I'r is independent of s.

contour I'. Outside Us, we take Luls = R, Iy = {20 + b/ > 0}, and
I'y = {3 +te /7 . t > §}. Note that by Proposition 3.13,

Reg(¢) > ¢|¢ — z|™/? for ¢ € 'y \ Us, (3.118)
Reg(¢) < —c[¢ — 20|/ for ¢ € ([ UTy) \ Us. (3.119)

Further define a contour ' as I'g = ru OUs. This leads to Figure 3.4. Note
that I'r N Us depends on s. However, the part of I'g outside Us is independent
of s.

Now, we are ready to do the final transformation S — R. Define a 2 x 2
matrix-valued function R((;s,t) = R(C) for ( € C\T'g as
S(OP(O)! f Us\T
R(C) _ (C) (C) ’ or C S 5\ R (3120)
S(Q)P)(¢)~1, for ¢ elsewhere,

where P is the parametrix near z given by (3.113), P(*) is the parametrix for
the outside region given by (3.109), and S is the solution of the RH problem for
S.

By definition, R has jumps on the contour I'r. However, S and P have the
same jumps on I'g N Us. Further, S and P(°) satisfy the same jump relation
on (—o0,Zyp — ). This yields that R has only jumps on the reduced system of
contours I'g (which is independent of s), shown in Figure 3.5.

Using (3.120), (3.108) and (3.109) one can now show that R is a solution of
the following RH problem on the contour [r.
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RH problem for R:
(a) R is analytic in C \ I'r.
(b) R () = R-(¢)vr(C) for ¢ € I'r, with vg given by
vr(0) = PP (Qus(QO)P) ()™, for ¢eTg\al;.  (3.121)
vr(¢) = P(O)P ()71, for ¢ € OU;. (3.122)

(¢) R(Q) =1 +0(C) as ¢ — oc.

3.17 Remark. Observe that by (3.115), (3.118) and (3.119) we have as s — o0,

vr(C) =
T+ Aqls| ™t 4 Agls| =42 + O(|s|~7/3), uniformly for ¢ € OU;, (3.123)
I+ O(e=clsl"*1c=20"%) uniformly for ¢ € T\ U;,

for some constant v > 0, and where A; and Ay are given by (3.116). As in
[27, 32, 33], this yields that R itself is uniformly close to the identity matrix,

R(C)=T+0(s1), as s — 400, uniformly for ¢ € C\ T'g. (3.124)

3.18 Remark. Since R(() = S(¢)P(*® ( )~ for ¢ large one can use (3.108),
(3.109), and the fact that (¢ — z9)® = ¢+ [I — 120037+ O((7?)] as ¢ — oo,
to strengthen condition (c) of the RH problem for R to

Ry

R() =1+ 3 +0(¢7?), as ( — 0o, (3.125)

where R; is a 2 x 2 matrix-valued function depending on s and ¢ with (1,1) and
(1,2) entries given by,

2 1
Riq = _ZO +5di + |s|7Y/3 Ay 1y — du|s| "0 Ay 1o, (3.126)
Ri12 = —d1|$|71/6 + |S|71/3A1,12- (3.127)

From (3.123) it follows, as in [32], that
Ry = —Res(Aq, 20)|s| ! — Res(Ag, z0)|s| ™42 + O(|s|77/?), as s — +oo,
so that by (3.116) and (3.117),

R1711 = O(|S|77/3), R1712 = O(|S|74/3), as s — Foo. (3128)
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oUs

Figure 3.5 The reduced system of contours I'r independent of s.

3.3.6 Proof of Theorem 3.1 (ii)

We now have all the necessary ingredients to prove the second part of the main
theorem.

Proof of Theorem 3.1 (ii). Recall that y = 24,11 — A} ;,. Using (3.126) and
(3.127) one can then write y in terms of the (1,1) and (1,2) entries of Ry,

1
2A1)11 = §Zo|8|1/3 + 2|S|1/3R1)11 — d§|8|1/3 =+ 2d1|8|1/6A1712,
Al = |5|2/3R%,12 — d3|s]"3 + 2dy|s|'/O Ay 12,
so that
1
y = 5z0|s|1/3 +2[s|"2Ry 11 — [s[*3RE . (3.129)

Inserting (3.128) into the latter equation we obtain precisely (3.5). This finishes
the proof of Theorem 3.1. O



Chapter 4

Universality of a double
scaling limit near a singular
edge point

Summary! We consider unitary random matrix ensembles Zn, ;te’” br Ve, e (M) g0 g
on the space of Hermitian n x n matrices M, where the confining potential V ;
is such that the limiting mean density of eigenvalues (as n — oo and s,t — 0)
vanishes like a power 5/2 at a (singular) edge point of its support. The main
purpose of this chapter is to prove universality of the eigenvalue correlation kernel
in a double scaling limit. The limiting kernel is built out of functions associated
with a special solution of the P? equation, which is a fourth order analogue of
the Painlevé T equation. In order to prove our result, we use the well-known
connection between the eigenvalue correlation kernel and the Riemann-Hilbert
(RH) problem for orthogonal polynomials, together with the Deift/Zhou steepest
descent method to analyze the RH problem asymptotically. The key step in the
asymptotic analysis will be the construction of a parametrix near the singular
endpoint, for which we use the model RH problem for the special solution of the
P? equation.

In addition, the RH method allows us to determine the asymptotics (in a
double scaling limit) for the recurrence coefficients of the orthogonal polynomials
with respect to the varying weights e Vs on R. The special solution of the
P? equation pops up in the n~2/7 term in the asymptotics of the recurrence
coeflicients.

1 This chapter corresponds to the following paper [25]:

T. Claeys and M. Vanlessen, Universality of a double scaling limit near singular edge points in
random matrix models, arxiv:math-ph/0607043, to appear in Communications in Mathema-
tical Physics.
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4.1 Introduction and statement of results

4.1.1 Unitary random matrix ensembles

On the space H, of Hermitian n x n matrices M, we consider for n € N and
s,t € R the unitary random matrix ensemble,

Z exp(—nTr Vy (M))dM. (4.1)
n,s,t

Here, the confining potential V;; is a real analytic function, depending on two
parameters s,t € R, satisfying the asymptotic condition for some dg > 0,
Vi ()
im —————
z—too log(z? + 1)

Then,

= 00, uniformly for s,t € [—do, do]- (4.2)

Znosit :/ exp(—nTr Vs ,(M))dM
Hn
is convergent as n — oo so that the random matrix model is well-defined.

It is well-known, see e.g. [83], that an important role in the study of the
unitary random matrix ensemble (4.1) is played by the following scalar 2-point
(correlation) kernel,

n—1
Ko (a,y) = o7 VooVl 3 7m0 a0 (y), (4.3)
k=0

constructed out of the orthonormal polynomials

p{s0 () = sk K50 5 )

with respect to the varying weights e=""+*(*)_ Indeed, the correlations between

the eigenvalues of M can be written in terms of the correlation kernel. More

precisely, the m-point correlation function RSIS,Q satisfies [83],

RG (w1, yom) = det (K0 (21, 25)) . (4.4)
’ 1<ij<m
Further, the limiting mean eigenvalue distribution p, has a density ps; which
can be retrieved from the correlation kernel as follows,
)
psi(x) = lim —K*Y(z,x). (4.5)
n—oo N,
The limiting mean eigenvalue distribution us ; equals [32] the equilibrium mea-

sure in external field V; ;. This is the unique measure minimizing the logarithmic
energy [91]

mgmaﬁkgl M@W@+/KMMM% (4.6)

lz -yl
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among all probability measures p on R. Furthermore, there exists a real analytic
function @, ¢, such that [31],

pes() = 2 Qso), (47)

where ()5 ; denotes the negative part of Qs ¢, i.e. Qs = Q;”)t — Q5 ¢, With Qit >0
and Q7,Q;, = 0. Due to condition (4.2) we have that Q ¢(z) — 400 as x — =00,
so that p ¢ is supported on a finite union of intervals, which we denote by S; ;.
It is known [91] that the equilibrium measure pu,, satisfies the following Euler-
Lagrange variational conditions: there exists a constant xs; € R such that

2/10g |z — uldps,¢(u) — Vs () = Ks 1, for x € Sg 4, (4.8)

2/1og |z — uldpse(u) — Vse(x) < Ks 1, for v € R\ Ss . (4.9)

The external field Vs, is called regular if strict inequality in (4.9) holds, if the
density ps ¢ does not vanish in the interior of the support S, and if Qs+ has a
simple zero at each of the endpoints of the support S, ;. If one of these conditions

is not valid, V;; is called singular. The singular points x* are classified as follows,
see [32, 74]:

(i) z* € R\ S, is a type I singular point if equality in (4.9) holds. Then, z* is
a zero of Q;t of multiplicity 4m with m € N.

(ii) z* € Ss4 is a type II singular point if it is an interior point of S, ; where the
equilibrium density p;; vanishes. Then, z* is a zero of Q;, of multiplicity
4m.

(iii) «* is a type III singular point if it is an edge point of the support S and
a zero of (), of multiplicity larger than one. Then, z* is a zero of Q)5 of
multiplicity 4m + 1, which means that p ;(z) ~ ¢z — z*|(4m+1D/2,

In this chapter, we consider external fields V,; which are such that in the
critical case s = ¢t = 0, Vy = Vj 0 has a type III singular (edge) point z* with
m=1,ie.

po.o(x) ~ clz — x*|>/2, as ¢ — z*. (4.10)
Further, we take V;; of the special form,
Vo = Vo + sV1 +tVa, (4.11)

where V] is an arbitrary real analytic function, while V5 is real analytic and in
addition satisfies some critical condition which we will specify in Section 4.1.4
below.
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4.1.2 Universality in random matrix theory

Consider for now unitary random matrix ensembles Z,, ! exp(—nTr V(M))dM on
the space of Hermitian n x n Hermitian matrices. Scaling limits of the associated
correlation kernel K,, show universal behavior.

Near regular points, universality results have been established in [13, 27, 32,
33, 86]. For example, if 2* lies in the bulk of the spectrum (i.e. * is such that it
lies in the interior of the support S of the equilibrium measure in external field V,
and such that the equilibrium density p does not vanish at z*) there is a constant
c such that

_ZAmR Y (4.12)

v inm(u — )
) s m(u —v)

1
lim —K, (x* + i,x* + —
n—oo Cn cn cn
On the other hand, if z* is a regular edge point of the spectrum (i.e. z* is an
endpoint of S and p(z) vanishes like a square root at = x*), there is a constant

¢ such that

lim ——
n—oo cn2/3

o+ s+ ) - ST

cn2/3’x 2/3 , (4.13)

U—v
where Ai is the Airy function.

Near singular points, similar results hold. In those singular cases it is inter-
esting to consider double scaling limits where the external field V' depends on
additional parameters. In [14, 22, 23, 93], an external field V was considered such
that there is a type II singular point z* with m = 1, i.e.

p(x) ~ ez — z*)?, as ¢ — x*.

If an additional parameter is included in the external field, V; = V/¢, one observes
for t close to 1 the transition where two intervals in the support of the limiting
mean density of eigenvalues merge to one interval through the critical case of a
type II singular point. In the double scaling limit where n — oo and ¢ — 1 in
such a way that ¢on?/3(t—1) — s € R for some appropriately chosen constant co,
there exists a constant ¢ such that (for the associated correlation kernel K, ),

u

lim K, (:C* + 75 x* + ) = KO (g, v 5).
cn

cnl/3 cnl/3

Here, K41 (y, v; s) is built out of functions associated with the Hastings-McLeod
solution of the second Painlevé equation.

The main purpose of this chapter is to obtain, for the random matrix models
in Section 4.1.1 above, a similar result near the type III singular (edge) point of
Vo with m = 1. We take a double scaling limit (n — oo and s,t — 0), and the
limiting kernel KM will be built out of functions which are associated with a
special solution of the fourth order analogue of the Painlevé I equation. The case
of a type III singular (edge) point was also studied in the Physics literature [18].
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In addition, the techniques that we use to prove this allow us to determine
the asymptotics (in a double scaling limit) of the recurrence coefficients in the
three-term recurrence relation satisfied by the orthogonal polynomials pggn’s’t) with

respect to the varying weight e="Vs¢ on R.

4.1.3 1-functions associated with a special solution of the
P? equation

We consider the following differential equation for y = y(s,t), which we denote as
the P? equation,

B 1, 1,, 1
s=ty <6y +24(ys+2yyss)+240yssss>. (4.14)

For ¢ = 0, this equation is the second member in the Painlevé I hierarchy [69, 72].
The P? equation has been studied for example in [20, 66, 85] (for ¢ = 0) and
[24, 40] (for general t). The Lax pair for the P? equation is the linear system of
differential equations

8_\1121]\117 a\pf

3 5o =W, (4.15)

where

1 [—4ysC = (12yys +ysss)  8CT + 8yC + (125 + 2y — 1200) (4.16)
T 240 Usi AysC + (12yys + Ysss) T

Uz = 8(% — 8y¢® — (4y® + 2yss + 120t)¢
+ (16y° — 2y2 + 4yyss + 240s), (4.17)

and

W= (c—ozy é) (4.18)

The system of differential equations (4.15)—(4.18) can only be solvable if y = y(s, t)
is a solution to the P? equation (4.14). For different solutions y, we have different
Lax pairs.

We are interested in the special solution y which was studied in [20, 40] and in
Chapter 3. This solution y = y(s, t) is characterized by the vanishing of its Stokes
multipliers s1, $2, S5, and sg, see [66]. We have shown in Chapter 3 that y has no
poles for real s and ¢, and that it has, for fixed ¢t € R, the following asymptotic
behavior,

1
y(s,t) = 7(6]s)Y3 562/3t|s|_1/3 +O(|s|™h), as s — +oo. (4.19)



130 Chapter 4 - Singular edge point

It has been shown in [85, Appendix A] that for ¢ = 0, y is uniquely determined
by realness and asymptotic condition (4.19). For general ¢ we are not aware of
a similar result although it is supported by a conjecture of Dubrovin [40] that it
should hold for general ¢. For s,t € R, the Lax pair (4.15)—(4.18) associated with
this special choice of y has a unique solution (g;) for which the following limit
holds, see [24, 66],

Ciag (q)l(g;sat)) e@(C;s,t) _ i ( 1 )e—iﬂ'i
(1)2(€;Sﬂt) \/5 1 7

as ( — oo with 0 < arg ¢ < 67/7, (4.20)

where o3 = ((1) ,01) denotes the third Pauli-matrix, and where 6 is given by

1 1
0(Gis,t) = 5577 = 3tV sV (4:21)

The functions ®; and ®5 will appear below in the universal limiting correlation
kernel near type III singular (edge) points with m = 1.

4.1.4 Statement of results
We work under the following assumptions.
4.1 Assumptions.
(i) We consider external fields Vs, of the form
Voo = Vo + sVi +tVa, (4.22)

where Vp, V1, and V5 are real analytic and are such that there exists a §g > 0
such that the following holds

Vs ()

‘w‘iinoo Toga? 1 1) = 400, uniformly for s,¢ € [0, d0].  (4.23)

(ii) Vb is such that the equilibrium measure vy in external field Vj is supported
on one single interval [a,b] C R, and b is a type III singular (edge) point
with m = 1. Then, v is of the form [31],

dvy(x) = %ho(x) (b—x)(x — a) X[a,p)(2)dz, (4.24)

with X[q,p) the indicator function of the set [a,b], and with hg real analytic
and satisfying,
ho(b) = hgy(b) =0, and hg(b) > 0. (4.25)

Furthermore, we assume that there are no other singular points besides b.
In particular, a is a regular (edge) point and we then have that

ho(a) > 0. (4.26)
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(iii) V4 is such that it satisfies the critical condition

/ab \/Evg(u)du —0. (4.27)

Throughout the rest of this chapter we let V be the neighborhood of the real
line where Vg, V1, Vo, and hg are analytic.

4.2 Example. The assumptions above are valid for the particular example where
Vo, Vi, and Vs are given by,
1, 4 45 1, 8

= — _— — — = = 3—
Vo(z) = 5% ~ 1% +5:c +5:v, Vi(z) =z, Va(x) = 2° — 62. (4.28)

Then, the equilibrium measure vy is supported on the interval [—2,2] and given
by

1
dvy(v) = o~ (o + 2)12(z — 2)%2x|_g 9(z)dz. (4.29)

T

It should be noted that a type III singular (edge) point cannot occur when Vj is
a polynomial of degree lower than 4.

4.3 Example. In the continuum limit of the Toda lattice [34], an external field
of the form

Virto () = (L+ 1) (Vo(2) + t2)

was studied. This deformation of Vj can be written in the form (4.22). Indeed,
if we let Vi(x) = x and Va(x) = Vo(x) + cz, with ¢ chosen such that the critical
condition (4.27) holds, we have that

‘/tl,tQ - ‘/0 + S‘/l + t‘/27
with s = t9 + t1t9 — ct1 and ¢t = ¢4.

4.4 Remark. In Section 4.2 we will show that assumption (iii) is equivalent to

the vanishing of the equilibrium density d”;—g(f) at the right endpoint b, where vs is
the unique measure which minimizes Iy, (v), see (4.6), among all signed measures

v, supported on [a, b] and having zero mass, v([a,b]) = 0.

4.5 Remark. The case where the left (instead of the right) endpoint of the
support is singular can be transformed to our case by considering the external
field V5 ¢ (—x).

4.6 Remark. If we let ¢t = 0 and s vary around 0, one typically observes the
transition from the regular one-interval case to the singular case and back to the
regular one-interval case. For s = 0 and ¢ around 0, one can observe the transition
from the regular one-interval case to the regular two-interval case. Letting s,t # 0,
we can observe one of the above described transitions, or the critical transition
where a type II singular point moves to the endpoint b, where it becomes a type
IIT singular point before moving on as a type I singular point.
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Further, to describe our results, we have to introduce constants ¢, ¢1, and co,

15, 2
c= 7h0 (b)vb—a >0, (4.30)
A0 ()
cA2(b— a)l/2’ 2 A32(b— a)l/2’

where hy is the real analytic function appearing in (4.24), and where the functions
hj, j = 1,2, are defined as,

hj(z) = —%][ V(b —u)(u—a)Vj(u) du , for = € [a, b]. (4.32)

Uu—2x

Cc1 = (431)

Universality of the double scaling limit
Our main result is the following.

4.7 Theorem. Let Vs = Vo + sVi +tVa be such that the assumptions 4.1 above
are satisfied. We take a double scaling limit where we let n — oo and at the same
time s,t — 0, in such a way that

c1- limn%"s = 5y € R, co - limn®/ "t =ty € R, (4.33)

where the constants c¢1 and co are defined by (4.31). Then, the 2-point kernel

Kr(f’t) satisfies the following universality result,

1
lim Kt (b Y Y

cn2/7T cn2/7’ cn2/7

) = KM (4 v: 50, t0), (4.34)

uniformly for w,v in compact subsets of R. Here, K™ 45 built out of the
functions ®1 and ®o defined in Section 4.1.3,

(I)l(u7 S, t)(I)Q(va S, t) - (I)l(v; S, t)(I)Q(ua S, t)

KCrit,IH(u’ v S,t) — 5 ( )
— 47U — v

. (4.35)

4.8 Remark. Since y(s,t) has no poles for s,t € R (see Chapter 3), the kernel
Kerit Iy v; 5, ) exists for all real u,v,s, and t. Furthermore, using a similar
argument as in the proof of Lemma 3.9 (ii), one can show that e™/*®; and
e™/4®, are real. It then follows that Kerit I (g v; 5, ) is real for real u, v, s, and
t.

4.9 Remark. It is possible to give an integral formula for K< Using the
fact that (g; ) satisfies the second differential equation of the Lax pair (4.15), we
have that

oo,
Os

0®s

(¢ 8,t) = Pa((; 8, 1), and -

(C; S, t) = (C - 2y(8, t))q)l(C7 S, t)
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Using (4.35) this yields,

8Kcrit,IH 1
T (’U,, v S, t) = %q)l(ua S, t)q)l(v7 S, t)
Now, since lim_, o, K% (3 v; 5, ¢) = 0, which can be shown using a Deift/Zhou
steepest descent method argument [36], it then follows that Kt has the fol-
lowing integral formula,

. 1 s
K (g e s, ) = / @4 (u; 0,) @1 (v; 0, t)do. (4.36)

2mi J o
4.10 Remark. Theorem 4.7 can be generalized to the case where the support
of vy (the equilibrium measure in external field Vj) consists of more than one
interval. Then, the proof becomes much more technical, although the main ideas
remain the same. We comment in Remark 4.23 on the modifications that have to
be made in the multi-interval case.

Recurrence coefficients for orthogonal polynomials

It is well-known [95] that the orthonormal polynomials p, = p,(cn’s’t) satisfy a

three-term recurrence relation of the form,

Tpr(r) = apr1Pr1(x) + brpr(2) + arpr—1(x), (4.37)
where af = a,(cn’s’t) > 0 and b, = b,(c"’s’t) € R (we suppress the s and ¢ dependence

for brevity). In the generic case where V; has no singular points, the recurrence
coefficients for s = ¢t = 0 have the following asymptotics, see e.g. [14, 27],

a{m00) — b ; a +0(n™ 1), b(m0.0) — HTG—I—O(n_l), as n — o0o. (4.38)
For singular potentials Vj, the constant terms in the expansions (4.38) remain
the same, but the error terms behave differently [14, 23]. In our case of interest,
where we have a type III singular (edge) point with m = 1, the error term is of
order O(n=2/7), and the coefficient of the n~%/7 term is expressed in terms of the
special solution y of the P? equation discussed in Section 4.1.3.

4.11 Theorem. Let Vs, be such that the assumptions 4.1 above are satisfied.
Consider the three-term recurrence relation (4.37) satisfied by the orthonormal
polynomials pr, = p,(g"’s’t) with respect to the weight function e "Vet. Then, in the
double scaling limit where n — oo and s,t — 0 such that

lime;n®7s = s € R, lim eon® 7t =ty € R, (4.39)
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with ¢1 and co given by (4.31), we have

b— 1
almst) = Ta + % y(ern® s, con® Tt)n =27 4 O(n37), (4.40)
b—a 1 -
=— * %y(so,to)n 271+ o(1)),
and
b 1
pimt) = % te y(e1n®7s, con® Ttyn =27 4+ O(n=37) (4.41)
_b+a 1

5t o y(s0,to)n~>/7(1 + o(1)),
where the constant c is given by (4.30), and where y is the special solution of the
P? equation discussed in Section 4.1.3.

4.12 Remark. For polynomials which are orthogonal on certain complex con-
tours, it can occur that the equilibrium density vanishes like a power 3/2. Asym-
ptotics for the recurrence coefficients in this case were obtained in [41]. Here the
role of y is played by special solutions of the Painlevé I equation.

4.1.5 Outline of the rest of the chapter

We prove our results by characterizing the orthogonal polynomials via the well-
known 2 x 2 matrix-valued Fokas-Its-Kitaev Riemann-Hilbert (RH) problem [47]
and applying the Deift/Zhou steepest descent method [36] to analyze this RH
problem asymptotically. This approach has been used many times before, see e.g.
[22, 23, 27, 32, 33, 41, 75, 98, 99].

An important step in the Deift/Zhou steepest descent method is the con-
struction of so-called g-functions associated with equilibrium measures. Those
equilibrium measures will be constructed in Section 4.2. In order to deal with
the deformations Vi, of V; o, we use modified equilibrium problems where we
allow the measures to be negative, which was also done in Chapters 1 and 2.
Another modification of the equilibrium problem is that we choose the support of
the equilibrium measure fixed, instead of allowing it to choose its own support.

In Section 4.3, we perform the Deift/Zhou steepest descent analysis to the
RH problem Y for orthogonal polynomials. Via a series of transformations Y —
T — S — R we want to arrive at a RH problem for R which is normalized at
infinity (i.e. R(z) — I as z — o0) and with jumps uniformly close to the identity
matrix. Then, R itself is close to the identity matrix. By unfolding the series of
transformations we then get the asymptotics for Y. The key step in this method
will be the local analysis near the endpoints a and b. Near the regular endpoint a,
we construct (in Section 4.3.5) a parametrix built out of Airy functions. Due to the
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modified equilibrium measures, which have a fixed support, we also need to make
a technical modification in the construction of the Airy parametrix, compared
with the parametrix as used e.g. in [27]. To construct the local parametrix near
the singular endpoint b (in Section 4.3.6) we use a model RH problem associated
with the special solution y of the P? equation as discussed in Section 4.1.3.

The results of Section 4.3 will be used in Section 4.4 to prove the universality
result for the correlation kernel (see Theorem 4.7) and in Section 4.5 to determine
the asymptotics for the recurrence coefficients (see Theorem 4.11).

4.2 Equilibrium measures

We consider external fields Vs = Vi + sV} + tV2 which satisfy the Assumptions
4.1 in the beginning of Section 4.1.4. In order to perform the Deift/Zhou steepest
descent analysis to the RH problem for orthogonal polynomials one would expect
to use the equilibrium measure p,; in external field V; ; minimizing Iy, , (1), see
(4.6), among all probability measures p on R. However, as in Chapters 1 and 2, it
will be more convenient to use modified equilibrium measures v ; which we allow
to be negative.

The aim of this section is to find measures v, ; (depending on the parameters
s,t € R) supported on the interval [a,b] C R (where [a, b] is the support of the
equilibrium measure v in external field Vp), such that v, .([a,b]) = 1, and such
that they satisfy the following condition: there exist £, ; € R such that for every
d > 0 there are ¢, k > 0 sufficiently small such that for s,t € [—¢,¢],

2/10g |z — uldvs i (u) — Vi (x) = Ly, for « € [a,b]. (4.42)

2/10g |z — uldvsy(u) = Vii(x) < lsy — K, for z € R\ [a —0,b+ d]. (4.43)

We seek v ¢ in the following form,
Vst = Vg + sv1 + Lo, (4.44)

where vy is the equilibrium measure in external field V) minimizing Iy, (v), see
(4.6), among all probability measures v on R. From Assumption 4.1 (ii) we know
that vy can be written as follows

dVO(I) = wO,Jr(‘:C)X[a,b] (I)dI, (445)

where X[q,) is the indicator function of the set [a,b], and where 1) 1 is the
+boundary value of the function

ol(z) = %R(z)ho(z), for z € V\ [a, 1], (4.46)
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with hy analytic in the neighborhood V of the real line, and with
R(z) = ((z—a)(z—1))"*  for 2€C\[a,b]. (4.47)

Here, we take the principal branch of the square root so that R is analytic in
C\ [a,b]. Further, since a is a regular (edge) point and since b is a type III
singular (edge) point with m = 1, we have

hola) >0,  ho(b) =hjy(b) =0, and  RY(b) > 0. (4.48)

Since V; is assumed to have no other singular points besides b, we know (cf. (4.8)
and (4.9)) that v satisfies the following condition: there exists £y € R such that

2/10g |z — u|dvo(u) — Vo(z) = Lo, for x € [a,b], (4.49)

2/10g |z — u|dvo(u) — Vo(z) < Lo, for x € R\ [a, b]. (4.50)

We will now construct the two measures v1 and vo. In order to do this we
introduce the following auxiliary (analytic) functions,

dg
-2

hj(z) = ! %R({)Vj’(g) forz€Vand j=1,2, (4.51)
gl

"~ 2mi

where v is a positively oriented contour in V with [a,b] and z in its interior, and
where R is given by (4.47). Observe that, using the fractional residue theorem,
one has,
1 [ , du
hj(r) = ——= 4+ Ri(u)V](u) , for z € [a,b], (4.52)

T Jq U—

where the integral is a Cauchy principal value integral. So, h; is real on [a,b].
Observe that by Assumption 4.1 (iii) and (4.52),

ha(b) = 0. (4.53)
4.13 Lemma. Define two signed measures v1 and vy supported on [a,b] as
dvj(z) = Yj+ (@)X(apdr,  §=1,2, (4.54)

where Xiap) is the indicator function of the set [a,b], and where ;  is the
+boundary value of the function

_ 1z
2w R(z)’

~

¥;(2)

for z € V\ [a,b]. (4.55)
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Here, h; is given by (4.51), see also (4.52) for its expression on [a,b], and R is
given by (4.47). Then, v; has zero mass, i.e.

b
at]) = [ b (idu =0, (4.56)
and there exist constants £; € R such that
2/10g |z — u|dv;(u) — V;(z) = ¢, for z € [a,b]. (4.57)

Proof. Define, for j = 1,2, the auxiliary functions

b
Fj(z) = #R(z)/a Ry (u)V; (u) ud_uz, for z € C\ [a, b], (4.58)

which, by standard techniques and by (4.51) and (4.55), are equal to
1 1 d¢
Fi(z) = =V!(2) = ——— ¢ R()V!

%V;’(z) — mi;(2), for z € V\ [a, b],

where 7 is a positively oriented contour in V with [a, b] and z in its interior. This,
together with the fact that ¢; + = —¢; _ on (a,b), yields
Fiy(z) — Fj _(x) = —2mivp; 4 (z), for x € [a, b], (4.59)

Fj(x) + Fj—(z) = V] (x), for = € [a, b). (4.60)

Since Fj is analytic in C\ [a, b] and since, by (4.58), F;(z) = O(272) as z — o0,
a standard complex analysis argument, shows that

211 u—z

b o _
L/ FJ7+(U) FJ#*(u)dstj(z), for z € C\ [a,b].
By (4.59), this yields,

b b
Fi(z)=— Mdu = —z_l/ Y+ (w)du + O(272), as z — 00.

« U—2

Comparing this with the fact that F;(z) = O(272) as 2 — oo, we obtain that
fab ¥ +(u)du = 0, which proves (4.56).
It remains to prove (4.57). It is straightforward to check that,

_ Y4 (u)

u—z

Fi(z) = du = —mith;(z) + %7{ 1/’{53 de, for z € V\ [a, ],
gl

§

a
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so that, using the fractional residue theorem,

b .
Fji(x) = —mivyj+ () — %%(Z)du, for z € [a, b].

From (4.60) and the fact that ¢; + +1;_ = 0 on [a, b] this yields,

L (2 [rogle a0+ vi0)

N 2]lb wi%(?d“ + (Fj(2) + Fj—(2)) = 0. (4.61)

This proves (4.57). O

4.14 Corollary. Let vyy = v + sv1 + tvy. Then, dvs(x) = Vg4 (2)X[0,nd,
where

ws,t = 77[]0 + 5¢1 + t¢27 on V\ [a’7 b]7 (462)

with o given by (4.46) and 1 and o given by (4.55). So, vs, is supported
on [a,b] and has mass one, i.e. vsi([a,b]) = 1. Further, there exist constants
lst € R such that for any 6 > 0 there are €,k > 0 sufficiently small such that for
s,t € [—¢, €] the conditions (4.42) and (4.43) are satisfied.

Proof. Since vs, = vg+sv1 +tvy, from (4.56), and from the fact that vo([a, b]) =
1 it is clear that v, .([a,b]) = 1. Next, with €5, = €y + sl1 + tl2, we have

2/1og | — uldvs i (u) — Vsp(x) — bsy = Io(z) + sIi(z) + tlz(x) (4.63)
where
Ij(a:):2/1og|x—u|d1/j(u)—vj(:c)—Ej, j=123.

Then, condition (4.42) follows from (4.49) and (4.57). Now, by using (4.50) and
the fact that Ip(x) — —oo as |z| — oo, there exists x > 0 such that

I < —gn, on R\ [a—5,b+d]. (4.64)

Further, one can check that I; and I> are bounded on R\ [a — d,b + 4], and thus
there exists € > 0 such that for s,t € [—¢,¢],

1
sl +tly < 3f on R\ [a —d,b+4]. (4.65)

Inserting (4.64) and (4.65) into (4.63) we obtain condition (4.43). i
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4.15 Remark. The measure vy (v2) is the equilibrium measure that minimizes
Iy, (v) (Iv, (v)) among all signed measures v, supported on [a, b] with v([a, b]) = 0.
The measures v, ; on the other hand minimize Iy, , () among all signed measures
supported on [a,b] with v([a,b]) = 1.

Observe that since vy has a strictly positive density on (a,b) (since vy has no
type II singular points) we have for any § > 0 that v, is positive on (a+d,b—9)
for s,t sufficiently small.

4.3 Steepest descent analysis of the Riemann-Hilbert
problem

4.3.1 RH problem for orthogonal polynomials

For each fixed n,s, and ¢, we consider the Fokas-Its-Kitaev Riemann-Hilbert
problem [47] characterizing the orthogonal polynomials pggn’s’t) with respect to
the weight functions e="Vst. We seek a 2 x 2 matrix-valued function Y (z) =
Y (z;n,s,t) (we suppress the n, s, and ¢ dependence for brevity) that satisfies the

following conditions.

RH problem for Y:
(a) Y :C\R — C?*? is analytic.

(b) Y possesses continuous boundary values for z € R denoted by Y, (z) and
Y_(x), where Y, (z) and Y_(x) denote the limiting values of Y (z') as 2’
approaches x from above and below, respectively, and

—nVs ¢(x)
Y (2) =Y (x) ((1) ) ) for z € R. (4.66)

(¢) Y has the following asymptotic behavior at infinity

2" 0

v - o) (50

) , as z — o0o. (4.67)

z

The unique solution of the RH problem is given by, for z € C\ R,

—1 —nVs ¢ (u)
K= 1pn(2) Fin / Pa(w)e ™
2m Jp U—Z
Y(z) = v ; (4.68)
=27k —1Pn—1(2) —ﬂn,l/ Pro1(u)e”" ™ du
R u—=z
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where pp = pggn’s’t) is the k-th degree orthonormal polynomial with respect to the

varying weight e Vst and where x;, = lién’s’t) > 0 is the leading coefficient of
pr. The solution (4.68) is due to Fokas, Its, and Kitaev [47], see also [27, 32, 33].

It is now possible to write the 2-point kernel K,(f’t), see (4.3), in terms of
Y. Indeed using the Christoffel-Darboux formula for orthogonal polynomials and
the fact that detY = 1 (which follows easily from (4.66), (4.67), and Liouville’s
theorem), we get

1

Kb _ o BVeu(@) g3 Veu(y)
n(@y) =e 2 ez pr e

(0 1) Y (y)Ya(a) (é) . (4.69)

So, in order to prove Theorem 4.7, we need to analyze the RH problem for Y
asymptotically. We do this by applying the Deift/Zhou steepest descent method
[36] to this RH problem.

4.3.2 Normalization of the RH problem at infinity: Y — T

In order to normalize the RH problem for Y at infinity, the equilibrium measures
Vg ¢, introduced in Section 4.2 play a key role. Consider the log-transform g, ; of

Vs,t,

b
gs(2) = / log(z — uw)dvs (u), for z € C\ (—o0,b]. (4.70)

Here, we take the principal branch of the logarithm so that g is analytic in
C\ (—00,b]. We now give properties of g5, which are crucial in the following.
From (4.70) and condition (4.42) it follows that

Gst4 () + gsp,—(x) = Vii(x) —lst =0, for x € [a, b]. (4.71)

Another crucial property is that

b
Gs,t.+(x) — gsp—(x) = 27ri/ dvs ¢ (u), for x € R, (4.72)
so that since v, is supported on [a, b] and has mass one (see Corollary 4.14),

2mi, for x < a,

(4.73)
0, for x > b.

o+ () — gt () = {

Now, we are ready to perform the first transformation Y — T. Define the
matrix-valued function T as

T(z) = ei%"23’“’3Y(z)efngs’t(z)”f*e%"ls’t‘”, for z € C\ R, (4.74)
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where £, is the constant that appears in the variational conditions (4.42) and
(4.43), and where o3 = (§ %) denotes the third Pauli-matrix. Using (4.71),
(4.73), the RH conditions for Y, and the fact that g,.(z) = logz + O(1/z) as
z — 00, it is straightforward to check that T is a solution to the following RH
problem.

RH problem for T
(a) T:C\ R — C?*? is analytic.

(b) T4 (z) = T-(z)vp(z) for x € R, with

—n(gs,t,+—Js,t,—) 1
e
< 0 en(gs,t,Jr_gs,t,)) ’ on (a’ b)7

- (4.75)

T
1 e”(gs,t,++gs,t,—*Vs,tffs,t) .
, on R\ (a,b).
. 1 \(a)

(c) T(z)=I+0(1/2), as z — 0.

4.16 Remark. From (4.72) we see that the diagonal entries of vr on (a,b) are
rapidly oscillating for large n. Further, using condition (4.43) and (4.70), we see
that vp — I decays exponentially on R\ [a — 0, b+ 4].

4.3.3 Opening of the lens: 7' — S

Here, we will transform the oscillatory diagonal entries of the jump matrix vy on
(a,b) into exponentially decaying off-diagonal entries. This step is referred to as
the opening of the lens.

Introduce a scalar function ¢, ; as,

b
Ps1(2) = —7ri/ s 1(£)dE, for z € V\ [a, ], (4.76)

where the path of integration does not cross the real line, and where v, ; is defined
by (4.62).

The important feature of the function ¢, is that by (4.72), ¢s ¢+ and ¢s ¢ —
are purely imaginary on (a,b) and satisfy,

— 20514 (%) = 2054, ()

b
= 27ri/ Avs(u) = gs,t,+-(®) — gst,—(x), for x € (a,b), (4.77)
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which means that —2¢,; and 2¢,; provide analytic extensions of g ¢ — gs,t,—
into the upper half-plane and lower half-plane, respectively. Further, 2g, ;4+2¢5 . —
Vst — £s¢ is analytic in V' \ (—o0, b] and satisfies by (4.77) and (4.71),

29s,t,+ + 20560 — Vit — st = Gs,t+ + gst,— — Vst — st =0, on (a,b),
so that by the identity theorem,

295t — Vst — lst = =201, on V\ (—o0,d. (4.78)
Using (4.73) this yields,

Gstt + st~ — Vit — Lot = 2G5t~ — Vor — st + (gs,tr — Gsit.—)

= —2¢s,1,— + 2mi, on (—oo,a).  (4.79)

Inserting (4.77), (4.78), and (4.79) into (4.75), the jump matrix for T' can be
written in terms of ¢ as

2n¢s ., + () 1
<e ) , for z € (a,b),

0 e2n¢>syt,,(w)
vr(r) = (4.80)

Lot forz € R\ (a,b
, or x € a,b).
e (@)

It is straightforward to check, using the fact that ¢s 4+ + ¢s,— = 0 on (a,b),
that v has on the interval (a,b) the following factorization,

1 0 0 1 1 0
v = <62n¢s,t, 1> <_1 0) (e2n¢s,t,+ 1>, on (a,b), (4.81)

and the opening of the lens is based on this factorization. Observe that, since
Re s +(x) = 0 and Im ¢, 1 () = F [ dv (u) for x € (a,b) (see (4.77)), and
since vs; is positive on (a + §,b — ) for § > 0 and s,t sufficiently small (see
Remark 4.15), it follows (as in [27]) from the Cauchy-Riemann conditions that

Re ¢s4(2) <0, for Im z| # 0 small and a +§ < Rez < b — 4. (4.82)

We deform the RH problem for T into a RH problem for S by opening a lens
as shown in Figure 4.1, so that we obtain a contour . For now, we choose the
lens to be contained in V, but we will specify later how we choose the lens exactly.
Let

T(z), for z outside the lens.

1 0
T(z , for z in the upper part of the lens,
(2) < 1) pper p (4.83)

1 0
T(z) < ) ,  for z in the lower part of the lens.
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a b

Y
Y

PN
N

Figure 4.1 The lens X

Then, using (4.81) and the RH conditions for T, one can check that S is the
unique solution of the following RH problem.

RH problem for S:
(a) S:C\ ¥ — C?*2 is analytic.

(b) S4(z) = S_(2)vg(z) for z € 3, with

0
1 ) for z € (a,b),

vs(z) = < oo 2(2) 1) , for z€ ¥ NCy, (4.84)
72n¢5 t,—(2)
, for z e R\ (a,b).

(c) S(z)=1+0(1/z), as z — 00.

4.17 Remark. On the lips of the lens (away from a and b) and on R\[a—4, b+4], it
follows from (4.82) and (4.43) that the jump matrix for S converges exponentially
fast to the identity matrix as n — oo. This convergence is uniform as long as
we stay away from small disks surrounding the endpoints a and b. Near these
endpoints we have to construct local parametrices.

4.3.4 Parametrix P for the outside region
From Remark 4.17, we expect that the leading order asymptotics of Y will be
determined by a solution P(>) of the following RH problem.
RH problem for P(>):
(a) P©):C\ [a,b] — C?*? is analytic.
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(b) P (z) = P (x) (_01 (1)> for z € (a, b).

(c) PO®)(2) =T+ 0(1/2), as z — o00.

It is well known, see for example [27, 33], that P(°) given by

P(OO)(z):(l, 1,) (Z_b>03/4(1. 1Z.>_1, for z € C\ [a,b], (4.85)

(3 —1 zZ—a (3 -

is a solution to the above RH problem. Note that P(°) is independent of the
parameters s,t and n.

4.3.5 Parametrix P near the regular endpoint a

Here, we do the local analysis near the regular endpoint a. Let Us, = {z € C:
|z — a|] < 0} be a small disk with center a and radius § > 0 sufficiently small
such that the disk lies in the region V where V;; is analytic. We seek a 2 x 2
matrix-valued function P(®) (depending on the parameters n, s, and t) in the disk
Us,o with the same jumps as S and which matches with P(>) on the boundary
O0Us,q of the disk. We thus seek a 2 X 2 matrix-valued function that satisfies the
following RH problem.

RH problem for P(®):
(a) P :Us,\ S — C?*? is analytic.
(b) PJ(ra) (2) = p (2)vs(z) for z € ¥ N Us,, where vg is given by (4.84).
(c) P satisfies the matching condition
PO ()(PENED (2) = T+ O~ Y7), (4.86)

as n — oo and s,t — 0 such that (4.33) holds, uniformly for z € OUs, \ 2.

Airy model RH problem

We will construct P(®) by introducing an auxiliary 2 x 2 matrix-valued function
A(C;r) with jumps (in the variable () on an oriented contour I' = J; I';, shown
in Figure 4.2, consisting of four straight rays

6 6
T'yrarg( =0, Fg:argC:%T, I's:arg( =, F4:argC:—77T.
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I

4
\

IIT
T4 v

Figure 4.2 The oriented contour I'. The four straight rays 'y, ...,y divide the
complex plane into four regions I, 11, 11T and IV.

These four rays divide the complex plane into four regions I, IT, III, and IV, also
shown in Figure 4.2. Let,

MG M)
Ai(¢() 2<(r) 0
X () 2 Ai(wc®) (4.87)
Ai(¢l\" —w? Ai(w¢'"
<Ai’(<<r>) AV (w¢™) ) < ) el
Ai(CM)  —w? Ai(wC™)) g,
<Ai’<<<r>> Ay )T cem

2mi

with w = e, with ¢(") = ¢ +r (for brevity), and with Ai the Airy function. Tt
is well-known, see e.g. [27, 33|, that A satisfies the following RH problem.

RH problem for A:

(a) A is analytic for ¢ € C\T" and for r in C.
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(b) A satisfies the following jump relations on T',

a0=4-0(" ). forCels  (488)
40 =4-0 (5 1) for¢els,  (489)
A (O) = A_(O) G (1)) , for ¢ € Ty UT. (4.90)

(c) A has the following asymptotic behavior at infinity,
AGr) = () N [T 40 (¢ 4+7r)72) | et

= (7%3]\7 [I — iT2<71/20'3 + %#Cill

+O(r8¢3/2) (’)(r(_l)} e~ (BC24r¢ e (4 91)
as ( — oo, uniformly for r such that
sgn(Im (¢ + 7)) = sgn(Im¢), and Ir] < |¢|M2. (4.92)

In (4.91), N is given by

1 ,
N (_11 }) e~ ¥mivs, (4.93)

Construction of P(®

We seek P(®) in the following form

P@(2) = B9 (2)03A (n2/3fa(z); nz/grsyt(z)) ogenPet(2)7s (4.94)

where E(® is an invertible 2 x 2 matrix-valued function analytic on Us , and where
fo and s, are (scalar) analytic functions on Us , which are real on (a—9,a+4¢). In
addition we take f, to be a conformal map from Us , onto a convex neighborhood
fa(Us,q) of 0 such that f,(a) =0 and f/(a) <O0.

If those conditions are all satisfied, and if we open the lens 3 (recall that the
lens was not yet fully specified) such that

fa(Em(Ué,am(C-i-)) = F4ﬂfa(Ut5,a)u and fa(zﬂ(U&aﬂ(c—)) = F2ﬂfa(Ut5,a)u

then it is straightforward to verify, using (4.84) and (4.88)—(4.90), that P(®) de-
fined by (4.94) satisfies conditions (a) and (b) of the RH problem for P(®).
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Let

)= |3 (=i [ n@rde) (a - 22| Ta-2)

) 2/3
=— <§h0(a)\/b—a) (z —a) + O((z — a)?), as z —a, (4.95)
where we have used (4.46), and let

real@) = (=i [ (svn(©) + 10a()a ) £(2)2 (4.96)

Then, f, is analytic with f,(a) = 0 and f/(a) < 0, it is real on (a —d,a + J), and
it is a conformal mapping on Us , provided 6 > 0 is sufficiently small. Further, it
is straightforward to check that 7, ; is analytic on U; , and real on (a — 4, a+9), as
well. Thus, f, and r, ; satisfy the above conditions, so that P(%) defined by (4.94),
with E(®) any invertible analytic matrix-valued function, satisfies conditions (a)
and (b) of the RH problem for P(®).

4.18 Remark. We can use any functions f, and r, ., satisfying the conditions
stated under equation (4.94), to construct the parametrix P(*). However, we have
to choose them so as to compensate for the factor e"%+:¢73 in (4.94). Using (4.62),

(4.76), and the fact that f: Y14 (u)du =1 we have, for z € Usq \ [a,a + J),
e—n(%fa(Z)3/2+rs,t(z)fa(Z)l/z)gg _ (_l)ne—nqbs,t(z)ag. (4_97)

From this and (4.91) it is clear that our choice of f, and r,; will do the job.

It now remains to determine E(%) such that the matching condition (c) holds
as well. In order to do this we make use of the following result.

4.19 Proposition. Let n — oo and s,t — 0 such that (4.33) holds. Then,

P@(2) = (~1)"E@(z) (n2/3 fa(z))*“/ Y o Nos

4/7 2 4/7 4
|- e 2R f(z)f/? ran /14 LLatlE p-arm  ogusm) (aos)
Proof. We will use the asymptotics (4.91) of A. In order to do this we have
to check that condition (4.92) is satisfied for our choice of ¢ = n2?/3f,(z) and
r=n?3r,(2).
Obviously 7, ¢(z) = O(n=*/7) as n — oo and s,t — 0 such that (4.33) holds,
uniformly for z € OUs,. Then, it is straightforward to check that there exists
no € N sufficiently large, and k1, ko > 0 sufficiently small, such that

|n2/37°5,t(z)| < |n2/3fa(z)|1/4, (4.99)
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for z € 9Us,, (for a possible smaller §), for n > ng, and for s and ¢ such that
|cln6/7s — 50| < k1 and |01n4/7t —to| < ka.

Further, since f, and r;; are analytic near a and real valued on (a — d,a + )
one can check that

Im f,(2) = f/(Re 2)Im z + O((Im 2)?), as z — a,

Imrg¢(2) =1l (Rez) + O((Im 2)?), as z — a.

Now, since f;(a) # 0 and r{ ,(Rez) = O(n=*7) uniformly for z € Us,, one then
can find a constant C' > 0 such that,

Imr,:(2)] < ClImz| < |Im fo(2)],

for z € OUs 4\ (a—9, a+9), for n > ng, and for s and ¢ such that le1nS/Ts—so| < Ky
and |¢; n4/7t—t0| < kg (for a possible smaller 0, k1 and k2, and for a possible larger
ng). This yields

sgn(Im (fo(2) + 75.4(2))) = sgn(Im f,(2)). (4.100)

We now have shown that condition (4.92) is satisfied so that we can use the
asymptotic behavior (4.91) of A. Using (4.94), (4.91), (4.97), and the fact that
re.0(2) = O(n~*7) we obtain (4.98). O

From (4.98) and the fact that r,, = O(n~%7) it is clear that (in order that
the matching condition (c) is satisfied) we have to define E(®) by,

E@ = (—=1)"P®) g3 N Loy (n?/3 f,)72/1, (4.101)

Obviously, E® is well-defined and analytic in Us, \ (a,a + §). Further, using
condition (b) of the RH problem for P(>) equation (4.93), and the fact that

;/f = if;/f on (a,a + §), it is straightforward to check that E(*) has no jump
on (a,a + 6). We then have that E(%) is analytic in Us, except for a possible
isolated singularity at a. However, F(® has at most a square root singularity at
a and hence it has to be a removable singularity. Further, since det P(>) = 1 and
det N =1 it is clear that det £(® =1 and thus E(% is invertible. This ends the

construction of the parametrix near the regular endpoint.

4.3.6 Parametrix P® near the critical endpoint b

Here, we do the local analysis near the critical endpoint b. Let Usy, = {2z € C :
|z — b < ¢} be a small disk with center b and radius 6 > 0 sufficiently small
such that the disks Us , and Usy do not intersect. We seek a 2 x 2 matrix-valued
function P® (depending on n, s and t) in the disk Us;, with the same jumps as
S and with matches with P(°®) on the boundary OUs, of the disk. We thus seek
a 2 x 2 matrix valued function that satisfies the following RH problem.
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RH problem for P®);
(a) P®) : Usp\ & — C2*2 is analytic.
(b) PJ(rb)(z) =p® (2)vs(z) for z € Usp N X, where vg is given by (4.84).
(c) P® satisfies the matching condition
PO (2)(PCN7L2) =T+ O(n~7), (4.102)
as n — oo and s,¢ — 0 such that (4.33) holds, uniformly for z € dUs, \ X.

Due to the singular behavior of the equilibrium measure dvy(x) near b, see As-
sumptions 4.1 (ii), the Airy parametrix does not fit near b. Instead we use a
different model RH problem associated with the P? equation (4.14).

Model RH problem for the P} equation

We construct P(®) by introducing the following model RH problem for the special
solution y of the P? equation (4.14) as discussed in Section 4.1.3. This RH problem
depends on two complex parameters s, ¢ and has jumps on the oriented contour I"
as defined in Section 4.3.5, see Figure 4.2. We seek a 2 x 2 matrix-valued function
U(¢) = U((;s,t) satisfying the following conditions.

RH problem for U:
(a) U is analytic for ¢ € C\T.

(b) U satisfies the following jump relations on T,

V() = T_(0) (_01 é) , for ¢ € T, (4.103)
V() = T_(0) ((1) i) , for ¢ €Ty, (4.104)
V() = T_(0) G ;’) , for ¢ € Ty UT. (4.105)

(c¢) W has the following behavior at infinity,

1 2 .

« 679(4;5125)‘73, (4.106)

where y = y(s, t) is the special solution of the P? equation (4.14) as discussed

in Section 4.1.3, where % = —y, where N is given by (4.93), and where 6

is given by (4.21).
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4.20 Remark. Note that the only difference between the model RH problem
for Airy functions and the one for P? lies in the asymptotic condition (c). In
particular, in 6 we have an extra factor ¢7/2.

If we fix sg,tp € R, it was proven in Lemma 3.9 and Proposition 3.11 that
there exists a neighborhood U of sy and a neighborhood W of ¢y such that the
RH problem for ¥ is (uniquely) solvable for all (s,t) € U x W. Furthermore, for
(s,t) € U x W, ¥ is analytic both in s and ¢, and condition (c) holds uniformly
for (s,t) in compact subsets of U x W.

In Section 3.2.3, we have shown that the solution ¥ of the RH problem for
U satisfies the Lax pair (4.15)—(4.18). From (4.20), (4.106), and (4.105) we then
obtain

), for 0 < arg ¢ < 67/7,

1
) (1 (1)> , for 6m/7 < arg ¢ < .

(4.107)

Construction of P®

We seek P(®) in the following form
PO () = EO ()W (027 fy(2);n%Ts f1(2),n T2 fo(2) ) €004 C)70, - (4.108)

where E(® is an invertible 2 x 2 matrix-valued function analytic on Us, and where
fvs f1,and fo are (scalar) analytic functions on Us, which are real on (b— 4, b+9).
We take f1 and fa to be such that f1(b) = ¢1 and fa(b) = ¢ (where ¢; and co are
given by (4.31)). Then it is clear from (4.33) that for n sufficiently large and s
and ¢ sufficiently small,

n7sfi(z) el, and n*Ttfa(2) e W, for z € Usyp,

where U and W are the neighborhoods of sg and ¢ty where ¥ exists. In addition
we take f, to be a conformal map from Uy, onto a convex neighborhood fi,(Usp)
of 0 such that f;(b) =0 and f;(b) > 0.

If those conditions are all satisfied, and if we open the lens 3 (recall that the
lens was not yet fully specified near b) such that

fb(Eﬂ(U57bﬂ(C+)) = Fgﬂfb(U57b), and fb(Eﬂ(U57bﬂ(C_)) = F4ﬂfb(U5)a),

then it is straightforward to verify, using (4.84) and (4.103)-(4.105), that P(®)
defined by (4.108) satisfies conditions (a) and (b) of the RH problem for P(®).
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Let

. 2/7
fo(z) = [105 (—m/ ¢o(§)d§> (z — b)m] (z — )

=c(z —b)+ O(z — b)?, (4.109)

as z — 0, where

To get the expansion of f; near b we have used (4.46) and the facts that ho(b) =
hy(b) = 0 (see (4.48)). Further since hg(b) > 0 we have that ¢ > 0. So, we have
defined an analytic function f, with f,(b) = 0 and f[(b) = ¢ > 0, which is real
on (b —4,b+ ¢), and which is a conformal mapping on Us, provided § > 0 is
sufficiently small.

Next, let fi and f2 be defined by

b
fi(z) = <—7Ti/ ¢1(§)d§> folz)V2, (4.110)

b
folz) = -3 (—m' / msm&) folz) 2. (4.111)

Since fp is a conformal mapping in Uy, it is clear from (4.55) and (4.47) that f; is
analytic in Usp. To see that f, is analytic in Us, as well, we also need to use the
extra condition h2(b) = 0 (see (4.53)). Further, f; and f2 are real on (b—d,b+0)
and one can check that,

) _ ha(b)
fi(b) = 70—z = fa(b) = B ) (4.112)
Thus, fp, f1, and fo satisfy the above conditions, so that P®) defined by (4.108),
with E(®) any invertible analytic matrix-valued function, satisfies conditions (a)
and (b) of the RH problem for P(®).

4.21 Remark. As in Remark 4.18 we note that we could have also used different
functions fy, f1, and fo. However, we have to choose them so as to compensate
for the factor e"®=+7s in (4.108). Using (4.21), (4.109), (4.110), (4.111), (4.62),
and (4.76), we have for z € Usy, \ (b —9,0],

0(n®'" fu(2);n® s f1(2),n" Tt f2(2)) = nds,p(2). (4.113)

From this and (4.106) it is clear that our choice of f, f1, and fo will do the job.
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Figure 4.3 The contour X g after the third and final transformation.

It now remains to determine E®) such that the matching condition (c) holds
as well. In order to do this we make use of the following proposition (the analogon
of Proposition 4.19).

4.22 Proposition. Let n — oo and s,t — 0 such that (4.33) holds. Then,

703/4

PO (z) = E® () (n2/7fb(z)) N [I — hfy(2) Vo307

L/ h* iy 1, —2/7 —3/7
+§ (—iy h2> fo(z)"n +O0OMm™N . (4.114)

where we have used for brevity the notation
h = h(n%"sfi(z),nYTtf(2)), and y =y sf1(2),n" Tt fo(2)).
Proof. This follows easily from (4.108), (4.106), and (4.113) O

From (4.114) it is clear that (in order that the matching condition (c) is
satisfied) we have to define E(®) by,

o3 /4
E(b) = P(OO)N—]. (n2/7fb) 8 ) (4115)

where N is given by (4.93) and where P(>) is the parametrix for the outside
region, given by (4.85). Similarly as we have proven that E(®) is an invertible
analytic matrix-valued function in Us, we can check that E(® is invertible and
analytic in Usp. This completes the construction of the parametrix near the
singular endpoint.

4.3.7 Final transformation: S — R

Having the parametrix P(°) for the outside region and the parametrices P(*) and
P®) near the endpoints ¢ and b, we have all the ingredients to perform the final
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transformation of the RH problem. Define

S() (P@) 7" (2)
R(z) = 5(z) (PO) " (2)

for z € Us 4,
for z € Usp, (4.116)
S(z) (P)) 7 (2), for z € C\ (UsaUUsyp).

7
)

Then, R has only jumps on the reduced system of contours ¥ shown in Figure
4.3, and R satisfies the following RH problem. The circles around a and b are
oriented clockwise.
RH problem for R:

(a) R:C\ Xg — C?*? is analytic.

(b) Ri(2) = R_(2)vr(z) for z € ¥, with

P@ (P on 9U;,,
vp = 4 P® (p(oo>)*1 7 on AUs,, (4.117)
P()yg (P(OO))71 , on the rest of Xg.

(¢) R(z)=1+0(1/z), as z — 00.
(d) R remains bounded near the intersection points of ¥ g.

As n — oo and s,t — 0 such that (4.33) holds, we have by construction of the
parametrices that the jump matrix for R is close to the identity matrix, both in
L? and L*°- sense on Y,

) I+0n=Y7"), on dUs, UdUsy, (4118)
VR(Z) = .
I+ O(e™ "), on the rest of Xg,

with v > 0 some fixed constant. Then, arguments as in [33, 32] guarantee that R
itself is close to the identity matrix,

R(z)=IT+0On"Y7), uniformly for z € C\ g, (4.119)

as n — oo and s,t — 0 such that (4.33) holds. This completes the steepest
descent analysis.

4.23 Remark. The Deift/Zhou steepest descent method can be generalized to
the case where the support of vy consists of more than one interval. However, there
are two (technical) differences. First, in the multi-interval case, the equilibrium
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measures v and v, have densities which are more complicated than in the one-
interval case, but it remains possible to give explicit formulae. Consequently,
condition (4.27), which expresses the requirement that the density of vo vanishes
at the singular edge point, has to be modified. Further, the construction of the
outside parametrix P(°) is more complicated, since it uses ©-functions as in [32,
Lemma 4.3]. With these modifications the asymptotic analysis can be carried
through in the multi-interval case.

4.3.8 Asymptotics for R

For the purpose of proving the universality result for the kernel K, 5 ; (Theorem
4.7) it is enough to unfold the series of transformations Y +— T — S — R and to
use (4.119). This will be done in the next section. However, in order to determine
the asymptotics for the recurrence coefficients a,, 5 and b, s+ (Theorem 4.11) we
need to expand the O(n~Y/7) term in (4.119).

We show that the jump matrix vy for R has an expansion of the form,

Al(z) AQ(Z)

ni/7 n2/7

vp(z) =1+ + 037, (4.120)

as n — oo and s,t — 0 such that (4.33) holds, uniformly for z € ¥, and we will
explicitly determine Ay and Ay. On X\ (0Us,q UdUsy), the jump matrix is the
identity matrix plus an exponentially small term, so that

Aq(2) =0, As(2) =0, for z € g\ (OUs,o U OUs ). (4.121)
Now, from (4.117), (4.98), and (4.114) we obtain (4.120) with,

2
Aq(z) = —% (n4/7rs,t(z)) fa(z)fl/QP(oo)(z)agP(oo)(z)71,
for z € OUs 4, (4.122)

A (2) = —hfo(z) V2P (2)a3 PO) (2) 71, for z € OUsp, (4.123)
and
1 4
Aq(2) = 3 (n4/7rs7t(2)) fa(2)7, for z € OUs 4, (4.124)
1 _ h? i
Aa(2) = 3 fol=) ™ (_iy hg) , for = € AU, (4.125)

where we have used for brevity

h = h(”6/78f1(2)a n4/7tf2(z)), Y= y(n6/78f1 (2), n4/7tf2(z)).
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Observe that A; and Ay have an extension to an analytic function in a punctured
neighborhood of a and a punctured neighborhood of b with simple poles at a and
b.

As in [33, Theorem 7.10] we obtain from (4.120) that R satisfies,

R(l)(z) R(Q)(z)
nl/? n2/7

R(z) =1+ + O3/, (4.126)

as n — oo and s,t — 0 such that (4.33) holds, which is valid uniformly for
z € C\ (0Us o UOUsp). We have that
RM and R® are analytic on C \ (9Us,, UdUsy), (4.127)

RW(2) =0(1/2), R (2)=0(1/2), as z — 0. (4.128)

We will now compute the functions RY) and R® explicitly.

Determination of R(:

Expanding the jump relation Ry = R_vg using (4.120) and (4.126), and collecting
the terms with n= /7 we find

Rgrl)(z) = R(_l)(z) + Aq(2), for z € OUs o U Usp.

This together with (4.127) and (4.128) gives an additive RH problem for R,
Recall that A; is analytic in a neighborhood of z = a and z = b except for simple
poles at a and b. So,

A0 B
Ai(z) =

z—a+0(1)7 as z — a, Al(z):z—b+0(1)’ as z — b,
for certain matrices A and B(Y). We then see by inspection that
AWM B

for 2 € C\ (Us.o UUsp),

A B
+ —Ay(2), for z € Usqo UUsp,

z—a z-—0b

solves the additive RH problem for R, In now remains to determine A and
B . This can be done by expanding the formulas (4.122) and (4.123) near z = a
and z = b, respectively. We then find after a straightforward calculation (using
also the fact that f1(b) = ¢1 and fa(b) = ¢, see (4.112),

AD = =T @B a2 (). (1.130)
B = gnvi=anm e (7). (1131)

where we used h to denote h(cin%7s, con/t) for brevity.
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Determination of R(3):

Next, expanding the jump relation Ry = R_vg using (4.120) and (4.126), and

collecting the terms with n~2/7 we find

Rf) () = Rr®? (2) + R(_l)(z)Al(z) + As(z), for z € OUs,o U Usp.

This together with (4.127) and (4.128) gives an additive RH problem for R(),

Since R(f) is the boundary value of the restriction of R™) to the disks Us,q and
Us,p and since A; and Ay are analytic in a neighborhood of a and b, except for
simple poles at a and b, we have

A®)
+
zZ—a

B®2)
Z_b—i—(?(l), as z — b,

RW(2)A1(2) + As(z) =

o), as z — a,

RW(2)A1(2) + As(z) =

for certain matrices A®®) and B®. As in the determination of R we then see
by inspection that

(2) (2) — —
A B—b’ for z € C\ (U5, UUsp),
z—a z—
R(2)(Z) _ (4.132)

4@ p®
+ =— —RW(2)A(2) — Ay(2), for z € Us,o U Usyp,

z—a z-—D>b

solves the additive RH problem for R(®). The determination of A?) and B® is
more complicated than the determination of A1) and BM. It involves R™) and
RM(b) for which we need to determine also the constant terms in the expansions
of Ay near z = a and z = b. After a straightforward (but rather long calculation)
we find,

A — ("4/7Ts,t(a))4 (0 2) T & (n4/77°s,t(a))2h (1 2) . (4.133)

82(~fu(@) \=i 0) " B(=fu(a) PRHB2 \~i 1
@) — y+h? (0 (n*ry4(a))h -1
B 2f4(b) (—i 0) * 8(—fL(a)) /2 fl(b)1/2 (—i _1) ; (4.134)

where we used h and y to denote h(cin®7s, con®7t) and y(c1n® s, can/t) for
brevity.

4.4 Universality of the double scaling limit

Here, we will prove the univarsality result for the 2-point correlation kernel K ,(f’t).

We do this by unfolding the series of transformations Y — T +— S +— R.
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Proof of Theorem 4.7. From equations (4.69), (4.74), and (4.78), the reader
can verify that the 2-point kernel Kff’t) can be written for z,y € R as follows, cf.
Chapters 1 and 2,

1

K (s:0) — bt (2) y—nbes 1 (y)

- 1
(0 1) T (y)Te(z) (0) .
From (4.83) and the fact that S; = RP_(Fb) on (b—4,b+9), see (4.116), we have

RP"), on (b,b+ 4),

Ty = 1
RP" ( O) . on (b—6,b).

62n¢s,t,+ 1

)

Inserting this in the previous equation for K,(f’t we arrive at,

for x € (b —9,b+ J), where

PY, on (b,b+d),
P= 1 0 (4.136)
®)
PJF <e2n¢s,t,+ 1) > on (b -9 b)

Further, we define

\I/+ on R+,

= 10 (4.137)
\I/+ 1 1 , on R,,

where W is the solution of the RH problem for ¥, see Section 4.3.6. By (4.107),
we have that U1 = ®; and WUy, = Po. Using (4.108), (4.136), and (4.137) a
straightforward calculation yields,

~

P(a) = EO@)F (n27 fy(2);n®/Ts f1 (), 08/ Tt fy (1) ) end @,
for x € (b—6,b+ ).
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Inserting this into (4.135) we then obtain,

K(9(@,y) = j(0 yet (n* 7 1ol n s 11 (), n " T 2w))

2mi(x —y
x (BN "N y)R™ (y)R(z) E®) ()

x W (n2/7fb(x);n6/7sf1(ac),n4/7tf2(y)) ((1)) , (4.138)

for x € (b—6,b+0).
Now, we introduce for the sake of brevity some notation. Let

u v
with
, 15,00 =\
c= f(b) = Eho O)Vb—a . (4.140)
We then have,
lim n?7 fy(un) = u, and lim %7 fy(v,) = v. (4.141)

Furthermore, since f1(b) = ¢; and fa(b) = c2 (see (4.112)) we have in the limit as
n — oo and s,t — 0 such that (4.33) holds,

lim n®7s f1 (un) = so, lim s f1 (vn) = so, (4.142)
lim 0/ 7t fo (un) = to, lim n* 7t f5(v,) = to. (4.143)

Now, a similar argument as in [77] shows that
lim B, ' (v,) R(vn) " R(un) By (uy) = 1. (4.144)

Inserting (4.141)-(4.144) into (4.138) and using the fact that Uy, = @ and
Wy, = ®s it is then straightforward to obtain

] (S)t)
lim cn2/7K" (U, Un)
= ; (0 1) \/I\/_l(’l)'SO to)\/I\/(U' S0 to) 1
2mi(u — v) Y T 0
—1
= Irilu—v) (@1 (u; s0,t0)P2(v; 50, t0) — P1(v; S0, t0)P2(us S0, t0)) ,

where we take the limit n — oo and s,t — 0 such that (4.33) holds. This
completes the proof of Theorem 4.7. |
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4.5 Asymptotics of the recurrence coefficients
We will now determine the asymptotics of asln’s’t) and as n — oo and
s,t — 0 such that (4.33) holds. In order to do this, we make use of the following
result, see e.g. [27, 33]. Let Y be the unique solution of the RH problem for Y.
There exist 2 x 2 constant (independent of z but depending on n, s and ¢) matrices
Y: and Y5 such that

z7™ 0 Yi Y,
Y(Z)< 0 z">:”7+?

bgln,s,t)

+0(1/2%), as z — 09, (4.145)

and

Y-
al* ) = /(Y1) 12(Y1)21, ) = (Y1)11 + ( 2)12- (4.146)
(Y1)12

We need to determine the constant matrices Y7 and Ys. For large |z| it follows
from (4.74), (4.83), and (4.116), that

Y (2) = €298 R(2) P(%0) (5)endet(2) 73 g snbunton, (4.147)

So, in order to determine Y7 and Y5, we need the asymptotic behavior as z — oo
of P(®)(z),en9s(2)93 "and R(z).

Asymptotic behavior of P(*)(z) as z — oo:

Expanding the factor ((z —b)/(z — a))?/* in (4.85) at z = oo it is clear that,

P =T+ 21— +2 101/, as z — 0o, (4.148)
z z
with
ORI 0 1 (00) _ b o % 1
P~ = 4(b a) (_1 O)’ P> = 8(b a’) (_1 N (4.149)

Asymptotic behavior of e™9t(*)3 ag » — co:

By (4.70) we have

n9s.+(2)3 <Zo Zi) =TI+ % + % +01/2%), asz—o0, (4.150)

with

b
1 0 * 0
Gy = —n/a udvs ¢(u) (O _1) ; Go = (O *) . (4.151)
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Asymptotic behavior of R(z) as z — ooz

As in [33] the matrix-valued function R has the following asymptotic behavior at
infinity,

R Re

R(z)=I+—=+—=2+0(1/z%), asz—oc. (4.152)
z z

The compatibility with (4.126), (4.129), and (4.132) yields that
R, = (A<1> n B<1>) n~ YT 4 (A<2> + B<2>) n~HT 4 O(n=37), (4.153)
Ry = (aA(l) + bB<1>) n YT 4 (aA<2> + bB<2>) nHT 4 On¥7), (4.154)

as n — oo and s,t — 0 such that (4.33) holds. Here, AW BM AR and B@
are given by (4.130), (4.131), (4.133), and (4.134), respectively.

Now, we are ready to determine the asymptotics of the recurrence coefficients.

Proof of Theorem 4.11. Note that by (4.147), (4.148), (4.150) and (4.152),
Vi = edntees [P 1 Gy 4 Ry | e dntes (4.155)
and

Y, = ednteces [P2<°°> 4 Go+ Ry + R P + (Pf“) + Rl) Gl]
X "2t (4.156)
We start with the recurrence coefficient a'/"*""). Inserting (4.155) into (4.146),

and using the facts that (Pl(oo))lg = —(Pl(oo))gl = i(b—a)/4 (by (4.149)) and
(Gl)lg = (Gl)gl =0 (by (4151)), we obtain

1/2
. (4.157)

a%nys,t) - [<b ; a) * ib ; - ((R1)21 — (R1)12) + (R1)12(R1)21

Now, from the formula (4.153) for Ry and the formulas (4.130), (4.131), (4.133),
and (4.134) for AW, BM_ A®) and B® we have

(Ri)21 — (R1)12 = —i

Y (n4/7r51t(a))2 h ’ n=2/7 n=3/7
fé(b)+(4(—f$(a))1/2+fé(b)>] TO,

and

2

b—a [ (n*ry(a))? h 9 _
(R = =25 (Feite + 7)o"+ 007,
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Note that we have used y to denote y(clnﬁ/7s7 02n4/7t) for brevity. Inserting the
latter two equations into (4.157) and using the fact that f](b) = ¢ (by (4.109)) we
then obtain (4.40).

We will now consider the recurrence coefficient 5" Inserting (4.155) and

(4.156) into (4.146), and using the facts that (P{°?)11 = (P{°)55 = 0, (G1)12 =
(Gg)lg =0, (Gl)ll + (Gl)gg =0, and R, = (’)(n_l/7), we obtain

bgln,s,t) — (R + (PQ(OO))12 + (R1)11(P1(00))12 + (R2)12
(Pl(OO))IQ + (R1)12
Py R
= (Rl)ll + (2(0.%))12 + (Rl)ll + ((020))12
(P72 P12

Since (P{™)12 = i(b — a)/4, (Py™ )12 = i(b> — a®)/8, Ri = O(n~*/7), and
Ry = O(n~"7) we then obtain after a straightforward calculation and combining
terms,

bgln,&t) —

b+a b+a 41
— t <2(R1)11 + 2zb — a(R1)12 - a(R2)12)

X (1 + b4ia(R1)12> B b4i (R1)11(Ri)12 + O(n=%/7).  (4.158)

—a
Now, from (4.153), (4.154), (4.130), (4.131), (4.133), and (4.134) we have

+a 41

—a(Rl)u_ b—a

b
2(R1)11 —|—2zb (R2)12

=21 [A) - B |07+ O(n/7)

_ Y h? _("4/77”s,t(a))4 n=2/7 n=3/7
_(fé(b)+fé(b) 16(—fé(a))) + O,

and

(R1)11(Ri)i2 = —i [(A%))Q - (Bg))Q] n=T 4 0(n¥)

——ib_a h? _(”4/7Ts,t(a))4 =2/ n=3/7
- (f,;<b> 16(—/1(a) ) +OET).
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Inserting the latter two equations into (4.158) and using the facts that (R1)12 =
O(n~7) and f](b) = ¢ we obtain (4.41). So, the theorem is proven. O



Chapter 5

Universality of a double
scaling limit near a soft edge
approaching the hard edge

5.1 Introduction and statement of result

5.1.1 Universality in unitary random matrix ensembles

We consider unitary random matrix models on the space of positive-definite n x n
Hermitian matrices, with a probability measure of the form

(det M)¥ exp(—N TrV(M))dM, a>—1 (5.1)
n,N

Here Z,, y is a normalization constant and the confining potential V' is real ana-
lytic on [0, +00) with enough growth at infinity,

% — 400  as x — +00. (5.2)
Because the eigenvalues of a random matrix in this model are restricted to be
positive, 0 is called the hard edge of the random matrix model. The limiting
mean eigenvalue distribution of the random matrix model (5.1), as n, N — oo in
such a way that n/N — 1, is the equilibrium measure gy which minimizes the
weighted energy

1w = 1o 2 du@dn(y) + [ Viedu(a) (5.3)

|z -yl
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among all probability measures on [0, +00). The measure py is uniquely charac-
terized by the following variational conditions for some constant ¢y,

2 / log |z — ylduv (y) — V(@) + by =0 as & € supp sy, (5.4)
2 / log [z — yldjuy (s) — V(@) + £y <0 as @ € [0,400) \ supp pv.  (5.5)

The support Sy of py is bounded and consists in general of a finite union of
intervals. The measure py has a density ¢y which can be written [31] in the
form

Yy () =/ Qy (), (5.6)

where Qv is a real analytic function on (0, +00) and @y, denotes the negative part
of Qy. In 0, Qv has an isolated singularity which is at most a simple pole. Points
where Qv has a zero of odd multiplicity (which are endpoints of the support Sy)
are called soft edges.

Statistics of the eigenvalues are determined by the two-point kernel

o

n—1
a a _Ny(py _N
Kon(z,y) =afyfe FV@e VO3 pN )My, (5.7)
j=0

where p(m is the j-th degree orthonormal polynomial with respect to the weight

e~ NV(®) on [0, +00). Scaling limits of the kernel show universal behavior. Near
a soft edge * # 0 where the density ¢y vanishes like a square root (this means
that z* is a simple zero of Qv ), it is known (see e.g. [30]) that for some constant
C,

1
lim ———=K, <x* +
uU—v

n—oo (C’]’L)2/3

u . v Ai(u) Ai' (v) — Ai'(u) Ai(v)
e ) -

where Ai is the Airy function. If 0 € supp ¢y and if the density ¥y tends to
infinity at the origin (which means that Qv has a simple pole in 0), the following
holds for some constant ¢ [76],

1 U v
lim —SKyn| 5,735 | =Jalu,v),
et (cn)2™ ™ <(cn)2 (cn)2> Ja(u,v)
where the Bessel kernel J,, is built out of Bessel functions of the first kind of order
«,

_ Ja(Vu)VUIL (V) = Ja (V) VTG (Vi)
Ja(u, ) 2(u —v) '
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Figure 5.1 The density of py,. for V(z) = %2 — 2x with ¢ equal to 0.7, 1 and
1.2, respectively.

We will focus on the case where a soft edge coincides with the hard edge at
the origin, so Qv (0) = 0 and Q4 (0) # 0. We assume furthermore that there are
no singular points, which means that strict inequality in (5.5) holds, that @y has
simple zeros at the endpoints of supp vy, and that @y does not vanish in the
interior of supp ¢y . These conditions are generic [74].

We will consider a double scaling limit of the eigenvalue correlation kernel,
where we let n,N — oo and at the same time we let ¢ = n/N — 1 at an
appropriate speed. For n/N — ¢ > 0, the limiting mean eigenvalue distribution
is the equilibrium measure py/. in external field V/c. For ¢ close to 1 and ¢ < 1,
0 lies outside the support of uy,. and the left endpoint of the support is then
a soft edge, see [74]. For c close to 1 and ¢ > 1, the density vy, tends to
infinity at the origin, see Figure 5.1. If we let ¢ /' 1, we observe the soft edge
approaching the hard edge. For ¢ > 1, the soft edge disappears and the density
blows up at the hard edge. The limiting kernel in the transitional case ¢ ~ 1 will
be associated with the Hastings-McLeod solution of the Painlevé II equation, and
can be expressed in terms of the kernel KSt!! that already appeared in Chapter
1 and Chapter 2. This is the main result of this chapter, see Theorem 5.1.

There is a connection between random matrix models of the form (5.1) and
random matrix models on the space of Hermitian n X n matrices, with probability
measure of the form

1
| det MPeFle= 2 TV 94 11> 1. (5.8)
n,N

Therefore we will use the results we obtained in Chapter 2 and we will translate
them to results for the random matrix ensembles of the form (5.1). Another
strategy would be (as in Chapters 1, 2, and 4) to apply the Deift/Zhou steepest
descent method on the RH problem for the orthogonal polynomials on [0, +00)
related to the matrix model. Then we would have to construct a local parametrix
near the origin, which would be built out of the ¥-functions associated with the
Hastings-McLeod solution of Painlevé II. However the approach we present here
is much shorter and more direct.
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5.1.2 The general Painlevé II equation

We recall briefly some notions which were already defined in Section 2.1.4. The
general Painlevé II equation, depending on a parameter «, is the following differ-
ential equation,

¢ =sq+2¢° - a. (5.9)

For o # 0, the Hastings-McLeod solution ¢, is the unique solution of the Painlevé
II equation which has the following asymptotics,

as § — 400, (5.10)
qa(s) ~ | — as s — —o0. (5.11)

If @« = 0, the Hastings-McLeod solution ¢, is characterized by the asymptotic
condition

da(s) ~ Ai(s) as § — +00. (5.12)

From Theorem 2.1, we know that g, has no real poles for a > —1/2.
For oo > —1/2 and s € R, we abbreviate ¢ = g (s) and r = ¢/, (s), where g, is
Pa,1(C58)

the Hastings-McLeod solution, and we define
& <(I)oz,2(<; S)

) as the unique solution

of the equation
d (D1 _ —4i¢? —i(s+2¢%)  4Cq+2ir + /¢ D, 1 (5.13)
d¢ \®as2/)  \ 4Cq—2ir+a/¢  4i*+i(s+2¢%)) \Pap2)’ '
with asymptotics

s () = (o) roen, 614

uniformly as ¢ — oo in the sector € < arg ( < 7 —¢ for any € > 0. Since ¢, has no
real poles for & > —1/2, ®, 1 and P, o are well-defined for real s. The functions
®,1 and P, 2 extend to analytic functions on C\ (—ioco, 0], with branch points
in 0. We denote these extensions also by ®,,1 and ®,2. In particular we are
interested in their values on the real line.

The Painlevé II kernel appearing in Chapter 2 is the following function, for
real u, v, and s.

K (o, 07 5) =

_ e%ﬂ'ia[sgn(u)—i—sgn(v)] (I)lel(u; S)(I)a,2(v; S) — (ba,l(v; S)(I)a72(u; S)
2mi(u — v) '

(5.15)
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5.1.3 Statement of result

Before we formulate our results, we need to define an equilibrium measure which
plays a role in the double scaling limit. Define w as the unique minimizer of

I(w) = // log ! dw(z)dw(y) (5.16)

[z —yl
among all probability measures on Sy. We write w for the density of w. In
the one-interval case where Sy = [0,b], the equilibrium density w is given by
1
w(z) = ——— for x € (0,b).
(@)= 7o 0,8)

We are now ready to formulate the main result of this chapter.

5.1 Theorem. Fiz o > —1. Let V be real analytic on [0,+00) such that
. V(x)
mllrg—loo log(z2+1)

random matriz model (5.1) as n, N — oo in such a way that n/N — 1. Assume
that 0 € Sy = supp Yy with ¥y (0) = 0 and ¥{,(0) # 0, and assume also that
there are no singular points in the external field V.. Now let n, N — oo such that
the limit

lim (2 2/3(3—1) -y

im (2n) I

n,N—oo

= 4o00. Let ¢y be the limiting mean eigenvalue density of the

exists with L € R. Let K, n be the correlation kernel (5.7) for the eigenvalues of
the random matriz model (5.1). Then there exist constants ¢ > 0 and s € R such
that

lim K - !
n,N—oo (2cn)2/3 N (2cn)2/37 (2cn)?/3
1 - ri ri
= )™ (K (VL Vos) + KO (Va —Vs) ) (5.07)
uniformly for u,v in compact subsets of (0,+00). If a > 0, the limit (5.17) can
also be written as

lim —— K . .
n,N—oo (2cn)2/3 N (2cn)2/37 (2cn)2/3

1 - ri ri
= 5 (uv)™* (KZ_EI(\/U, Vi) = K (Vi =y 8))- (5.18)
Ezxplicit formulas for the constants ¢ and s are

c— vV —Qv(0) (5.19)

4

and
™ .
s = Lm :P{% Vzw(z), (5.20)

where w is the density of the equilibrium measure of Sy .
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5.2 Remark. For a > 0, we find a remarkable relation between KZT’;I and

. 2
K:it’%n by (5.17) and (5.18). However this is not completely surprising since qq, 4 1
and q,_ 1 are also related by a Bécklund transformation [53, 81].

The orthonormal polynomials p,(cN) with respect to the weight 2®e=NV () on

[0, +00) satisfy a three-term recurrence relation of the form
N N N
apy” (2) = apipey (@) + 0wy (@) + 0 p (@), (5.21)

We have the following result about the asymptotics of aﬁf\’) and be’) when n, N —

oo in such a way that n/N — 1 = O(n=2/3).

5.3 Theorem. Let V satisfy the conditions of Theorem 5.1 and suppose in addi-
tion that supp ¥y = [0,b] consists of a single interval. Then, if we let n, N — oo
in such a way that n/N —1 = O(n=2/3), we have

b

o™ = vl O(n=2/%), (5.22)
b

b = 5+ O(n=2/3). (5.23)

5.1.4 Outline of the rest of the chapter

In Section 5.2 we give formulae which express the limiting mean eigenvalue density
wy in terms of the limiting mean eigenvalue density of (5.8), and we express
the orthogonal polynomials pECN) on RT in terms of orthogonal polynomials on
the real line. This allows us to find a formula for the kernel K, n in terms of
the correlation kernel for the random matrix model (5.8). In Section 5.3, we
prove Theorem 5.1. This result will basically follow from Theorem 2.2, using
the formulae obtained in Section 5.2. In Section 5.4, we compute asymptotics
for the recurrence coefficients of the orthogonal polynomials with respect to the
weight z%e~NV(*) on R, using the asymptotics for the recurrence coefficients of
orthogonal polynomials with respect to the weight \x\mile_%v(m2) on the real
line, which we computed in Chapter 2 (see Theorem 2.7).

5.2 Connection between random matrix models

5.2.1 Equilibrium measures puy and vy

We define puy to be the limiting mean eigenvalue distribution of (5.1), and vy
to be the limiting mean eigenvalue distribution of the matrix ensemble (5.8) as
n, N — oo in such a way that n/N — 1. Then vy is the equilibrium measure
which minimizes the weighted energy

Foenal) = [[tow 2 av@anty) + [ 5 vt (5.24)
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among all probability measures on R. The measure vy is uniquely characterized
by the following variational conditions for some constant fy:

2/10g |z — yldvy (y) = V(@?)/2+ 6y =0  as x € supp vy, (5.25)
2/10g |z —yldvy (y) — V(@) /240y <0  aszeR\supp vy.  (5.26)

We write ¢y for the density of vy .

5.4 Lemma. (i) Let 1y be the density of pyv and ¢y the density of vyv. Then

by (z) = |z|Yy (z?) for x € R. (5.27)

(ii) Let w be the equilibrium density of the set Sy and let w be the equilibrium
density of {x : %> € Sy }. Then

() = |z|w(z?) for z € R. (5.28)

Proof. We give the proof of part (i), the proof of part (ii) is completely similar.
We first show that |z|¢y (22) is indeed a probability density. This follows from
the positivity of |z[1y (2?) and the fact that

—+oo +oo
R e
0o 0
+oo

= Yy (u)du = 1.
0

To prove part (i) of the lemma, it is now sufficient to show that the measure
|z|¢py (2?)dx satisfies variational conditions (5.25) and (5.26). We have

—+oo
/ log |z — yllylvv (y°)dy

— 00

+oo —+oo
- /0 log |z — ylywy (4)dy + /0 log |z + ylywov (v?)dy
e 2 2 2
=/ log |2* — y*|yvv (y°)dy
0
1 [t
= —/ log |22 — u|Yy (u)du.
2 0

This equation implies (5.25) and (5.26) by (5.4) and (5.5). These variational
conditions characterize uniquely the probability measure vy . O
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5.2.2 Orthogonal polynomials pﬁi\” , P,SN), and ng)

Let pglN) be the orthonormal polynomial of degree n with respect to the weight
w(z) = 2% NV on [0, +00), and let P and Q¥ be the orthonormal poly-
nomials with respect to the weights Wi (z) = |z[2¢t1e=3V(E) and Wy(z) =
|$|2a—1e—%v(z2) on the real line. Note that pﬁ,N) and P,(IN) are well-defined for
a > —1, while Q%N) is only defined for a > 0.

5.5 Lemma. We have

i) QM (x) = 2P, (z) ifa 0.
(i) P2V (a) = piV(a?) ifa>-1,
QUM () = ap (22) ifa>0.

Proof. Part (i) of the lemma follows directly from the orthogonality conditions
for P,(IN) and Q%N). For part (ii) we argue as follows. Since W and W5 are even,
the even degree orthogonal polynomials are even and the odd degree orthogonal
polynomials are odd. Together with part (i) of the lemma, this implies that there

exists a polynomial ;E{HN) of degree n such that

PV (@) =), QLN (2) = 2p® (2?) (5.29)

2n n 2n+1

For k < n, we have

+oo
0 — / PPN (2)22 |z 201 e NV ) gy

o0

n

+oo
_ 2/ ﬁ(N)(I2)x2kx2a+le—NV(w2)dx
0

—+oo
= / P (w)uFute NV gy, (5.30)
0

In the above equation we read exactly the orthogonality conditions for pg\[) . For

k = n, the normalization of the polynomials follows exactly in the same way. We

can conclude that p'Y) = p&"). Now part (ii) of the lemma follows from (5.29). O
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5.2.3 Correlation kernels K, v, K, y, and Ky

n

We write Ki y for the two-point kernels of the random matrix ensembles (5.8).
This means that

2n—1
atli jatl Ny g2y _Ny,? 2N 2N
Ky oy (@) = a0 [y|ot2 e 5V 3VED 3™ pEN (4 pEY ()
j=0
ifa>-1, (5.31)
2n—1

— a—L ja—1 —Ny(z?) N 2
Koy oy (@) = [a]* E[y|o 2 TV 2V 3™ 98N ()M (y),
7=0

ifa>0 (532

In the following lemma, we show that the kernel K,, n, in which we are mainly
interested, can be expressed in terms of the kernels K. Qj; 9N -

5.6 Lemma. For a> —1,

(ey) "t (KGon (VEVI) + Kfon(VE VD)), (5:33)

N =

Kn,N(xa y) =
and for a > 0,
Ko(o,9) = 3 @0) ™ (Kanan (VE VD) ~ Kpan (VB —vB)) . (5.34)

Proof. From (5.31), we know that for 2,y > 0 and a > —1,

K on(VEAT) + Koy (VT = V7)) = (ay)F Tie V@V @)
2n—1 2n—1
< | 3 PPV WRP () + Y PPV VP () | (5.35)
j=0 j=0

Since the weight |x|20‘+1e_NV("”2) is even, we have that

2N 2N 2N 2N
PN (@) = PEY (), PN (2) = —PEN) (—a),

so that the odd j-terms in the sums of (5.35) cancel out, while the even j-terms
are equal in both sums. We obtain by Lemma 5.5 that

K2+n,2N(\/E7 VY) + K;n,QN(\/E7 —VY)

n—1
= 2(ay) S e FV@HV N N pEN (/) PEN ()

Jj=0

e

= 2(zy) " Kn,N(2,y).
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This proves (5.33). In a similar way we find for « > 0,

K;n,QN(\/Ev \/@) - K27n,2N(\/Ev _\/g)
n—1
= 2(ay) F e FV@VOI N QRN (V) QST (Vi)

j=0
= 2(‘1‘13“/)i n,N(CC7y),

and this gives us (5.34). O

5.3 Universality near an endpoint approaching 0
in a double scaling limit

Proof of Theorem 5.1. Fix a > —1. Consider an external field V' such that
0 is a soft edge point of supp ¥y, and assume that there are no singular points.
Then by Lemma 5.4,

v (@) = |zlpy (%) = |o]y/ Qy (2?),

which means that

¢v(0) = ¢y (0) =0, v(0) =24/-Q4(0) > 0. (5.36)

It follows from Lemma 5.4 that there are no singular points in the external field
V(2?)/2 (in fact, the absence of type I singular points follows from the proof
of the lemma). The conditions of Theorem 2.2 are satisfied. We take a double
scaling limit where we let n, N — oo such that the limit

lim(2n)%/® (n/N —1) = L

exists with L € R. Define constants

_ 1l (0) _ m/=Qy(0) (5.37)

‘T8 i

and
fL”AOfLﬂl'\/_ 5.38
§= Cl—gw()_ m;{% zw(z), (5.38)

where w is the equilibrium density of the support of ¢y and w is the equilibrium
density of the support Sy of ¥y. Then by Theorem 2.2 we get, for u,v > 0,

i 71 + Vu =V _ qrerit,IT )
o ey i78 Kanan ((2cn)1/3’ (2cn)1/3> =Ko (Vu, £Vss),
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and for a > 0 we also have

i 71 \/E :l:\/5 _ qrcrit,II .
i g7 an2n <(2m)1/3’ (2cn)1/3> =K (Va, £/vss).

Moreover these results hold uniformly for u,v in compact subsets of (0, +00).
Using Lemma 5.6, the proof of Theorem 5.1 follows immediately. |

5.4 Asymptotics for the recurrence coefficients

Orthonormal polynomials satisfy a three-term recurrence relation

apiV(x) = apy o, (@) + 0 (@) + oY, (), (5.39)
2PN (z) = AN, PO () + BV PN (2) + AN P, (), (5.40)
2QM () = QW (z) + DM (z) + NV QM (x). (5.41)

Since the weights W7 and W5 are even, B,(IN) = D7(1N) =0, and since ng) = :EP(N)

n—1

it follows that C’S\Ql =A™ In what follows, we abbreviate for convenience

Di = pggN), ar = ag\r)’ br = bECN),

P, =P 4, =A% B, =B,

O = QI(CQN)7 O = ClizN)v Dy = DI(QQN)-
5.7 Lemma. We have

ap = Ao Aoy_1 = Copyi 10, (5.42)

b = A3, 01+ A5, =C3 0+ C3 i1, (5.43)
Proof. By (5.39), we have

2?pn(2%) = ant1Pn11(2°) + bnpn(2?) + anpp-1(2?),
which yields by Lemma 5.5

2% Py () = @1 Pon42(2) + b Pon (%) + apn Pap—a(2).
Using (5.40) and the fact that By = 0, we find

T Aok+1 Pogy1(2) + 2 A2k Pogp—1(%) = apy1 Pokv2(2) + bk Pog (%) + ag Pog—2().
Again using (5.40) twice, we obtain

Aojp1Azr2Potio () + A3y Pog(2) + A3y Page (7)) + Ao Ao—1 Pog—2 ()

= apy1 Porr2(x) + bp Pog () + ap Pop—2(7).

Since the orthogonal polynomials are linearly independent, we find (5.42) and
(5.43). O
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We now collected all the ingredients for the proof of Theorem 5.3.

Proof of Theorem 5.3. As in the proof of Theorem 5.1, it follows that the
external field V (22)/2 satisfies the necessary conditions for Theorem 2.7. It then

follows from this theorem that, if we let n, N — oo in such a way that n/N —1 =
O(n=2/%),

Vb 1 _ _

AR = L (1) gy (sn )™+ O ), s> 1,

(5.44)
b 1

cM = % + (=1t 5173 qa_%(snw)n_l/?’ +O(n~23), as a > 0,

(5.45)
with
o
SnN = n2/3z¢%v(0). (5.46)

Here ¢ 2y is the modified equilibrium density (which we introduced in Chapter
1) which is allowed to be negative close to 0.
From (5.42), we find that

ap, = ApAan_y
b 1 _ -
= 1 5778 Yot 1 (5202N) = day 3 (S20-12))n V3 4+ 0(n=%%)
b
= 1 +0(n~2/3) as n — 0o, (5.47)

and by (5.43),

bn = Agn-{-l + Agn
b
= 3t O(n=2/3) as n — 00. (5.48)

O

It would be interesting to calculate the O(n~2/3)-terms in (5.47) and (5.48)
explicitly. If we would know the coefficients of the O(n~2/3)-terms in the large
N expansions (5.44) for A, n or (5.45) for Cy, n, this would allow us to compute
the O(n~=2/3) in (5.47) and (5.48) too. However these coefficients have only been
computed in the literature for the case where V (2?)/2 is a quartic polynomial [14]
and for 2o + % =0.



Chapter 6

Relations between limiting
kernels

6.1 Introduction and statement of results

In this chapter, we show that the different limiting kernels that appeared in the
previous chapters of this thesis are related to each other. The regular kernels KPuk
and K8 can be obtained as limits of the critical kernels Kt and KeritHI,
Also the Bessel kernel J9 can be seen as a limit of the kernel K  This is
not surprising if we keep the random matrix ensembles in mind where the critical
kernels K&t and Kt appear. These critical ensembles have a singular point
whose nature can change from one regime to another when parameters in the
external field change. When we let the deformation parameter(s) vary, we can
observe the transition from the critical scaling regime to a regular scaling regime.
We show in this chapter that these transitions are not only visible in the random
matrix ensembles, but that they can also be observed on the level of the limiting
kernels.

The kernel K¢t describes the opening of a gap when we let s — —oo, and
for s — 400, it describes the case where a singular point is absorbed in the bulk
(cf. Figure 1.1). For s — +o00, this leads us to the sine kernel KP" when oo = 0
and to the Bessel kernel J9 for general o > —1/2. When s — —oo, two regular
endpoints appear near the singular point. Following those endpoints brings us to
the Airy kernel K®8¢, For the critical kernel K" similar observations can be
made. If we deform the external field, the singular point can for example turn
into a point in the bulk (which leads to the sine kernel) or a regular edge point
(which leads to the Airy kernel).

In the random matrix ensembles the mean distance between eigenvalues de-
pends on the regime, this is for example O(n~') in the bulk, O(n~2/3) at the re-

175
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gular edge of the spectrum, O(n‘l/ 3) near a type II singular point with quadratic
vanishing, and O(n=2/7) near a type I singular point where vanishing with a
power 5/2 occurs. This induces a re-scaling of the variables u,v in the double
scaling limits near singular points. On the level of the limiting kernels, we need
to re-scale u and v in a similar fashion in order to see the transition from one
kernel to another.

We have the following results.

6.1 Theorem. (i) Foru,v € R,

. 1 eri u v
lim _Kgm,n (—, - s) = KPulk(y, ).
s's

s——+o0 8§
(ii) For u,v € R\ {0}, we have
u v

1 .
lim —Kit! ( ) ,S) =J% (u,v).
s’s

s—+o0 §
(iii) For u,v € R,
. 1 crit, 1T L2 u
Slu,noo 27/6|S|1/2K0 :FEM - 2776|5172

1 1/2 v . edge
¥ﬁlsl iW’S) = K**(u, v).

(iv) For u,v,t € R,

4 49 1 it, 1T 1 4 4/ U
. = crit, /3 =
i (5) g (W (5)

1/3 4 e v edge
|s["/ %20 + 3 |S|T/9;S’t = K*®(u, v),

where zy is defined as the real zero of

zS’ = —sgn(s)48 + 24z0|s|_2/3t, for s £ 0.

(v) Setc= \g;(0)|; with g defined by (3.92) and (3.95). Then, for u,v,t € R,

™

RLLUNONET:

. u v
Kerit, 1T (C|S|5/6 ) C|S|—5/6; s, t) = ]Kbulk(,u7 ’U).
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Outline of the rest of the chapter

We will prove Theorem 6.1 by applying the Deift/Zhou steepest descent method
on the model RH problems associated with the special solutions of the Painlevé
II equation and the P? equation. We use similar techniques as in [37]. In Section
6.2 we recall the different model RH problems that are relevant to prove Theorem
6.1. In Section 6.3 we prove part (i) and part (ii) of the theorem. Here we need
to construct a local parametrix near the origin by using a model RH problem
for Bessel functions. In Section 6.4 we prove part (iii) of the theorem. The
main difficulties here are the construction of an appropriate g-function, a contour
deformation, and the construction of a local parametrix using Airy functions. In
Section 6.5 finally, we prove part (iv) and part (v) of the theorem. Here we do not
need to perform the Deift/Zhou steepest descent method since we already did the
required asymptotic analysis in Chapter 3. We only need to use the results from
Chapter 3 in an appropriate way in order to prove Theorem 6.1 (iv) and (v).

6.2 Model RH problems and related kernels

6.2.1 Model RH problem for Painlevé 11

From Chapter 2 (see Section 2.2.1), we recall the RH problem associated with
the Hastings-McLeod solution of the Painlevé IT equation with parameter o. We
use a slight modification of the RH problem stated in Chapter 2, by using a
more general jump contour. However, it is easily checked that the RH problem
we consider here is equivalent to the one considered in Chapter 2 by analytic
continuation. Let ¥ = ;25 be a contour consisting of four curves X; connecting
0 with infinity, with ¥; contained in the sector ¢ < arg ¢ < /3 — ¢ for some
e > 0, with X5 contained in the sector 27/3 + € < arg ( < ™ — ¢, X3 contained in
m+e < arg ( < 47/3—¢, and ¥4 contained in the sector 7m/3+¢ < arg ( < 2m—e.
The contour ¥ divides the complex plane in four regions Si,...,5s as shown in
Figure 6.1. We will need this freedom in the choice of the contour later on. For
a > —1/2 and s € R, we write ULl for the unique 2 x 2 matrix-valued function
satisfying the following conditions.

RH problem for V!

(a) W is analytic in C\ X.
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p) 1
Sa
0
53 Sl
Sa
23 Z:4

Figure 6.1 The contour X.

(b) Wl satisfies the following jump relations on ¥\ {0},

Q=9 O, b ). freesy (6.1)
Q=00 (b V). mrcem, (6:2)
wo-vi @ 7). wrcem, (63
wo-v @ 7)., e (6.4

(c) W has the following behavior at infinity,

VI(Q) = (I +0(1/Q)e "7 ag ¢ — oo, (6.5)
with
01(Gis) = 56+ 5C. (6.6)

Here 03 = (§ ) denotes the third Pauli matrix.

(d) I has the following behavior near the origin. If a < 0,

U _ o (117 |C|a> _
v, (()=0 (|<|a icje ) as ( — 0, (6.7)
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and if o > 0,
O <|<|—o¢ |<|—a> s aS<—>0,<631U83,
[SY
wio={o(lF 197 acoces, (6.9
<l Il
o |<|7a |<|a , as(—0,¢€8,.
lcI= Il
Recall from Chapter 2 and in particular from (2.62) that, if we define ®!I by
1 0
D) . 1) . for ¢ >0,
ol (¢;8) = 61 . (6.9)
TG | 1) , for (<0,
e

then the kernel K1 is given by
it, 11 )
S ()
11 RPN ) 1T RPN :
Lriafsgn(u)+sgn(v)] q)a,ll(uv S)(I)oz,21 (v;s) — Py 11 (v; S)(I)oz,21 (u; )

2mi(u — v)

1) & (v; s) 10N (u; 5) ((1)) . (6.10)

= —€

e%ﬁia[sgn(u)Jrsgn(v)]

2mi(u — v)

6.2.2 Model RH problem for Bessel functions

The model RH problem for Bessel functions can be stated in a very similar way
as the one for the Painlevé I equation. We write B,, for the function satisfying
exactly the same RH conditions as Wl but with §'1(¢;s) replaced by ¢, so that

[e3

Ba(Q) = (I +O(1/0))e ", as ¢ — o, (6.11)
For convenience, we choose the jump contour of B, to be ¥/ = U?:1E;a with

T T T us

Elliafngga E’gzargg“:g, g:argC:—F, ﬁl:argg“:—g.

The function B, can be constructed explicitly in terms of Bessel and Hankel
functions (see e.g. [1] for more details about these functions) in a similar way as
in [98, Section 4]. If we define B, by, cf. (6.9),

i &@)fgfg,mm>m
B)=4 ¥ (6.12)
BOC (g) eﬂ.ia 1 ’ for C < 07
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I

I'y

=
0
[an]

Y
Y

ry

Figure 6.2 The oriented contour I'.

the kernel JO is given by

Ba11(4)Ba21(v) = Ba11(v) Ba, 21 (u)

2mi(u — v)

Jg (u7 U) = _e%ma[sgn(u)-ﬁ—sgn(v)]

e%ﬂ'ia[sgn(u)-ﬁ—sgn(v)]

= (0 1) B;'(0) Bulw) <é> | (6.13)

2mi(u — v)

6.2.3 Model RH problem for P?

We recall the RH problem associated with the pole-free solution of the P? equation
from Chapter 3 and Chapter 4, see (4.103)-(4.106). Let T' = U?Zl I'; be the
contour consisting of four curves connecting 0 with infinity, with 'y = RT, 'y =
R~, with T’y contained in the sector 57/7 + € < arg ( < m — € for some € > 0,
and with Ty contained in the sector 7 + ¢ < arg { < 97/7 — e. Note that, as in
Section 6.2.1, this contour is more general than the one considered in Chapter 3
and Chapter 4, but we can find the solution satisfying the RH problem on the
deformed contour by continuing the solution in an analytic way. The contour I"
is oriented as shown in Figure 6.2. We write W for the unique solution of the
following RH problem.

RH problem for Pr;

(a) WM is analytic in C\ T
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(b) W satisfies the following constant jump relations on T,

wi(¢) = () (é i) : for ¢ € Iy, (6.14)
v Q) = v GL (1)> : for ¢ e Ty UTy, (6.15)
wi(¢) = v (_01 (1)> , for ¢ € T's. (6.16)

(c) WM has the following behavior at infinity,
Q) = AN+ O(1/¢M2)e D7 as (= 00, (6.17)

where N and ! are given by

R T A U I N g 11/ -, 1 g T o5 1/2
1 T D e e

From (4.137) we know that, if we define ®!II by

W s, 0) for ¢ > 0,

oM (¢:s,t) = 10
(G 2) UHI(¢;s,) <1 L] for¢<o,

(6.18)
the kernel K¢t is given by

O (u; 5, ) Po (vs 5, 8) — DI (v 5, 1) DY (us 5, 1)
—2mi(u — v)

Kcrit,III(u’ v; s, t) _

1
2mi(u — v)

x (0 1)@ (v;s,t) 7 @M (u;s,1) (é) (6.19)

6.2.4 Model RH problem for Airy function

The model RH problem for the Airy function is very similar to the one for the
special solution of the P? equation. We let A be the function satisfying exactly
the same RH conditions as ! except for the asymptotic condition (c) which is
now the following,

WI(Q) = (AN (T + O(1/¢Y/?))e 0" (GoTIos, (6.20)
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with 6A1(¢) = 2¢3/2. Here we make the particular choice IV = Ul T for the
jump contour, with

6 6
I :arg¢ =0, Fé:argg“:;, Iy :arg¢ =, Fﬁlzargg‘:—%r,
If we define A, cf. (6.18), by

AL (C) for ¢ > 0,

1 0

1) , for ¢ <0, (6:21)

the kernel K®d¢ is given by, see e.g. [27],

Ay (u) Agy (v) — Apy (v)Agy (u)

K o ) —27i(u — v)

L 0 ) A wiw ((1)) . (6.22)

2mi(u — v)

6.2 Remark. The RH solution A is closely related with the function M defined
in Section 3.2.2. To be precise,

A(Q) = M(Q)e 3¢ s (6.23)

6.3 Proof of Theorem 6.1 (i) and (ii)

Assume that s > M with M > 0 sufficiently large, and consider a contour X as
described in Section 6.2.1. We will specify the exact form of the contour later.
We now apply the Deift/Zhou steepest descent method on the RH problem for
Ul when s — +o0.

RH problem for S
We write S for the function
S(¢) = Wl(s1/2¢)e® s for ¢eC\ S, S=571/78, (6.24)

Then it follows from the RH conditions (6.1)-(6.8) for U1l that S satisfies the RH
problem

(a) S is analytic in C\ s,
(b) S4(¢) = S-(Qus(¢) as C € ,
(c) S)=T1+0(¢ 1) as ¢ — oo,
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(d) S has the same behavior as Wl near the origin,

where vg is given by

vs(C) = (eﬂ'iaeQiHlH(sl/zg;s) ?) ) for ¢ € £, := s71/2%, (6.25)
vs(C) = (_ewiaeﬂin(sl/z(;s) (1)> ) for ¢ € £y := s71/2%,, (6.26)
vg(¢) = ((1) eﬁia€2;911(81/2<;5)> , for ¢ € 83 1= s~ /253, (6.27)
vg(¢) = ((1) _eﬂiQQQ;GII(Sl/QQS)) , for ¢ € 8y := s71/2%,. (6.28)

Note that, since 8'(s/2¢;s) = 83/2(%C3 + (), the jump matrix vg tends to I
exponentially fast when s — +00, except for ( near 0, where we need to construct
a local parametrix. We do this by using the Bessel model RH problem.

Local parametrix near 0

We construct the local parametrix in a sufficiently small disk Us = {¢ : || < 0}
using the function B, which we defined in Section 6.3. Define the parametrix P
as follows,

P(C) = Ba(s¥2f(¢))et®" (s *Ci9)as for ¢ € Us. (6.29)

Here f is the conformal mapping given by

FQ =23+ (6.30)

3
Now we can choose the contour 3 (and thus also ¥ = st/ 22) by requiring that P
and S have their jumps along the same curves in Us. Therefore we require ¥ to
satisfy

FENUs) =%'n f(Us),

where ¥’ is the jump contour for B,. Outside Us we choose S to be independent
of 5. Note that, for § small, we can still choose the contour ¥ = s/ 25 according
to the conditions given in Section 6.2.1. We constructed P in such a way that it
has exactly the same jumps as S has in Us and the same behavior at the origin.
Furthermore (6.30) ensures that P(¢) = I + O(s3/2) for ¢ € OUs as s — +o0.
We have that P satisfies the following conditions,

(a) P is analytic in U \ 3,
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oU;

Figure 6.3 The contour ¥g.

(b) Pp(¢) = P-(Qus(¢) as ¢ € N s,
(c) P(C) =1+ 0(s7%2) for ¢ € OU;s, as s — +0o0,

(d) P has the same behavior than S has for ¢ — 0.

RH problem for R
Now we define R by

R((;s)—{ S(¢) for ¢ € C\ U, (6.31)

S(Q)P()~" for ¢ € Us.

Then R is analytic outside a contour ¥ i as shown in Figure 6.3, with a
removable singularity at the origin. We can conclude from condition (c) of the
RH problem for P and from the exponential decay of vg outside Us that R satisfies
a RH problem of the following form:

(a) R:C\ Xg — C?*? is analytic on C\ X,
(b) R satisfies the following jump conditions for some v > 0,
R(¢) = R-(Q)(I+0O(s%?)) for ¢ € AU, (6.32)
R(¢) = R(Q)(I + 0" for ( € Sp\ U5,  (6.33)
(¢) R(C)=I+0(¢(™") as ¢ — oo.
From those RH conditions it follows that
RO =T+0(s"%?)  ass— 4oo, (6.34)

uniformly for ( € C\ Xg.
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Proof of Theorem 6.1 (i) and (ii). Inserting (6.31), (6.29), and (6.24) in the
asymptotics (6.34) for R, it follows that for ¢ € [ —6,0] \ {0},

\1110}7+(sl/2g; $)Ba, + (33/2f(<))71 =1+ 0(8_3/2) as s — +oo.
By (6.9) and (6.12) this yields

ol (s1/2¢; 5) B, (53/2f(C))_1 —T+0(s7%?)  ass— +oo.
Setting

¢ =us"%?, u € R\ {0},
we obtain using (6.30) that

u

78):

jss))

lim ®(

s——+o0 S

alu).
Now using (6.10) and (6.13), we find easily that, for u,v € R\ {0},

1 .

lim ~Keried! (E, E; s) = 1% (u,v),
§—00 § s S

which proves Theorem 6.1 (ii). In the case a = 0, J = Kbk which brings us to

Theorem 6.1 (i). O

6.4 Proof of Theorem 6.1 (iii

Assume that s < —M with M > 0 sufficiently large. We consider a contour ¥
which is slightly different from the ones described in Section 6.2.1. We require
that [0, %|3|1/2] C 31,34 and [—%|3|1/2,0] C Xo,33, as shown in Figure 6.4.
However the RH problem for U{! is equivalent to the RH problem as it is stated in
Section 6.2.1. We also partly reverse orientations of the contour so that all pieces
of the contour are directed from left to right. Choosing this jump contour, it is
straightforward to check that the jumps for U{l are given as indicated in Figure
6.4. We now apply the Deift/Zhou steepest descent method on the RH problem
for Ul when s — —oo0.

RH problem for S

An important step in the asymptotic analysis is the construction of an appropriate
g-function, see also [37]. We define g by

Z_ 1) (6.35)

9(Q) = 2/%(¢* = 5).
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—%|8|1/2 - %|S|1/2

o 7) o)

0 -1
1 1
Figure 6.4 The modified contour ¥ and the jump matrices for W1,

Here we choose the branch cut of g3/ on [—%, %] and we define g3/2 in such a
way that

2 _

S50 =0"(s|' 2O + O as (= o0 (6.36)

Now we write & = |s|~1/2% (which we will choose independent of s) and we define
S as follows,

\IJ%JI(|s|1/2§)e%i|5‘3/29(03/2"3 for (€ C\ &, Im¢ >0

5 = W (|s|1/2¢) e 3181 29(0) 2o <O

-1 ~
) O) for (e C\ X%, Im¢ <O0.

(6.37)

Then S satisfies a RH problem of the form

(a) S is analytic in C\ &,
(b) 54(Q) = S-(Ovs(¢) as C € %,

I+0(¢™) as Im¢ >0
(©) 560 = <O _1> +0O(™Y) asIm( <0

as ( — oo.

1 0
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Condition (c) follows from (6.36), and using the jump conditions for ¥{' we check
that the jump matrix vg is given by

1 0 A
’US(<) - (egis|3/2g(<)3/2 1) y fOI‘ C S 21 = |S|_1/221 \ [07 %], (638)

—_

1 0 EN
’US(<)) - (egis|3/2g(<)3/2 ) s for C S 22 = |S|_1/222 \ [—%,0], (639)

0 ~
% Is |2/2 2 1) , for(eXs= |S|_1/223 \ [—%,0], (640)

3/
3/

0 ~
( —4ils |2/2 2 1) , for C €y = |S|_1/224\ [07 %] (641)

o dils |3/2 NG
O , for (e [——=, =] (6.42)

vs(¢) = (_1 é) for ¢ € (=00, =75) U (5, +00).  (6.43)

Now we choose ¥ in such a way that the following important inequalities hold,

Img(¢)** >0 for ¢ € £, US,, (6.44)
Img(()*? <0 for ¢ € 33U Sy, (6.45)
Img,(¢)*? <0 for ¢ € [— \/— \/_] (6.46)

Consequently the jump matrix vg tends to I exponentially fast when s — —oo,
except for ( € (—oo, —%) U (%,—i—oo) and for ¢ close to the points :I:\/ii. We
need to construct an outside parametrix and local parametrices near the special

. 1
points :I:E.

Outside parametrix

We construct the outside parametrix, which we will call 16(00), using the out-
side parametrix P(°°) corresponding to the interval [— \/— \/_] as defined in the
previous chapters, see e.g. (4.85). We define

o3P () o3, as Im¢ >0

o3P (Q) ( :

Pe(¢) = 1
© . 0) o3, asIm({ <0,

(6.47)

so that it has the same behavior as S at infinity and the same jumps on (—oo, — %)U

(J5++o0):
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e P(>) is analytic in C\ ((—oo7 —%) U (%, —|—oo)),

¢ PO =P () 3) or €& (o0, U g oc),
o S(OPCI() T =1+0(C") as ¢ — oo

: 1 1
Local parametrices near 75 and 75

We first construct the parametrix near —% using the solution A of the Airy

model RH problem. We will take P of the form
P(¢) = E(Q)A(—|slg(z))e3 s o> s for ¢ U5, (6.48)

where Uy = {¢ : | + \%| < 6}, 6 > 0 is a sufficiently small constant, E is
analytic in Uy, and g is defined by (6.35), so that it is a conformal mapping with

g (—%) =0, ¢ <—%) =-2"6<0, g(R)CR.

We take the branch cut of the power 3/2 along (—o0,0], so that (—g(¢))%/? is

analytic in C \ ((—o0, —%) U (%, +00)). As in the case where s — 400, we can

now specify the contour ) by requiring that P and S have their jumps along the
same curves near the origin. We define ¥ N U(Si by

—gENU;) =T N—g(U;), £=-%

where TV is the jump contour for the Airy model RH problem where A has its
jumps. Now we define E in such a way that P matches with P(>) at oUy , by

B(¢) = PPN (~Islg(¢) 7. (6.49)

Then E is analytic and it is straightforward, using the jump conditions for A and
the asymptotic behavior (6.20), to check that P satisfies the following conditions,

(a) P is analytic in Uj \ 3,
(b) P1(¢) = P-(Qus(¢) as C € £N Uy,
(c) P(OPO(C)t =T+ O(|s|73/2) for ¢ € U}, as s — —o0.

Using the symmetries in the RH problem for S, we can construct the parame-
trix near % easily using the parametrix near —%. We define

P(¢) = 03P(—()os, for ¢ € Uy == —Uj, (6.50)

so that
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Y
S

Figure 6.5 The jump contour for R.

(a) P is analytic in U;r \ 3,
(b) P4(¢) = P-(Ovs() as C € SN T,

(c) P(C)PC) () = I+ O(]s|73/2) for ¢ € U , as s — —oo.

RH problem for R
Now we define R by

D(o0) -1 or +
R(g;s>_{5<<)1’ ()7 for e C\U,

S(OPEQ)~ for ¢ € UE. (6.51)

Then R satisfies the following RH conditions on a contour ¥ as shown in Figure
6.5,
(a) R:C\ Xg — C?*2 is analytic on C\ X,
(b) there exists v > 0 such that R satisfies the following jump conditions,
R (Q) = R(Q)(I + O(|s| 7)) for ¢ € OUs, (6.:52)
Ro(Q)=R(QU+0E 1) for CeSp\oUs,  (6.53)
(¢) R(Q) =T+ 0(C™) as ¢ — oo,
From these conditions it again follows that
R(¢) =1+ 0O(]s|7*/?), (6.54)
uniformly for ¢ € C\ Zp.
Proof of Theorem 6.1 (iii). It follows from (6.54), (6.37), and (6.48) that for
(e (-t —6-L +9),

oLy (Is]'2G;8) = (1 + O(sI ™) E(Q) A+ (=119 (€)) ,
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and by (6.9) and (6.21)
ol (|s]M2¢;5) = (I + O(Is| =) E(O) A (—[s]g(C)) -

Set
1 U 1 1
(=-——F—51=Is ' =——%+ 55uls|”", weR
V20 VoA
If we let s — —o0, we find
1 ~
lim F(———=)"1® (¢ s) = A(u).
Jim_ B(=—=) 718l (G:5) = Alw)
Using (6.10) and (6.22), we find that
lim 1 Kcrit,II _il |1/2+_ | | 1/2 | |1/2+—U|S|_1/2'S
s—o0 27/6|51/2 V2 27/6 ’ \/— 27/6 ’
= KCdgC(u,v).

Doing exactly the same calculations for ¢ near —|—\/i§, we also find

1 rit, 11 1/2 1 ~1/2 1/2 172,
JE{}O 27/6|s[1/2 ¢ (75"9'/ - 27/6“3| / \/—| s|'/? - 27/6U| s|Y/

= K& (y, v).

6.5 Proof of Theorem 6.1 (iv) and (v)

We will use the asymptotic analysis done in Section 3.3 in order to prove part (iv)
and part (v) of Theorem 6.1.

Proof of Theorem 6.1 (iv) We assume s,¢ € R with |s| > M for a sufficiently
large constant M > 0. If we define Y as in Section 3.3 by (3.86), we can check
using (3.53) and (6.19) that the kernel K is given by
Kcrit’IH(|S|l/3u, |S|1/3U; s, t)
1 S S 1
=————— (0 D)Y@)Y 6.55
27i|s|1/3 (u — v) ( )Y () (u) (0)’ (6.55)
where we write Y for the function defined by

Y (¢) for ¢ > zo,

6.56
(1)> , for { < 2z, ( )
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In Chapter 3 we proved, see (3.124), that
R(Q)=T+0(1 as s — 400, (6.57)

where, for ¢ close to 29 = —sgn(s)2.6'/%, R was defined by (see (3.120), (3.106),
and (3.113)),

R() = SQPE)
- <i (1)> Y (Q)el O M (18T £(¢)) T E(Q) ! (6.58)

= (1 D)roacsresoree (6.59)

This last step follows from (6.23) and Proposition 3.16. Here E is analytic near
zo, * denotes an entry independent of ¢ which is unimportant for now, and f is a
conformal mapping with (see (3.112), (3.92), and (3.102))

4/9
f(z0) =0, f(z0) = (Z) +0(s|7%3) as s — +oo. (6.60)

Recall that zg is defined as the real zero of (3.94) and that zo = 29 4+ O(]s|~%/3)
as |s| — oo. If we set

Ny
==+ (5)

(6.57) and (6.59) lead by (6.60) to

. {1 0 ANARY
SEIiIlOOE(Zo) 1 Yi |2+ 3 W = A;(u). (6.61)
By (6.56) and (6.21) we find
4/9
. 1 (1 0\ o 4 U o~

Now we can use (6.55) and (6.22) to conclude that

4 49 1 it, I1T 1 4 /9 u
. = crit, /3 = v
i (5) g (W (5)

|s]M/3 20 + 2 . st = Ked&e(y, v)
0 3 |S|4/9, ) ) .

This proves Theorem 6.1 (iv). O
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Proof of Theorem 6.1 (v) We assume s,t € R with s < —M for a sufficiently
large constant M > 0. Then zy > 2, with zo defined as the real zero of (3.94), so
that |¢| < 1 is not contained in the small neighborhood Us surrounding 2.

In Chapter 3 we proved that, for ¢ € C\ Us,

R = SQP>()
B <i ?) Y (Qel 9107 pleo ()
= I14+0(s|™) as s — —oo. (6.63)

Here g is given by (3.92) and (3.95). Now for the particular choice

U
|94 (0)] |s[ /6"

(6.63) implies together with (6.56) that

1 |5‘7/69+(0)03 (o0) -1 I 0\ __ _—imuos 10
lim e P(0) <* 1 Y(()=e L 1)

¢ =

§— — 00

After simple calculation, we find using (6.55) that

T i ™ v
hm KCI‘It,HI < , )
s==o0 |g' (0)] [s[>/6 |9 (0)][s[5/6 " |g', (0)][s[5/6
im(u—v) _ —im(u—v)
e €
_ _ hulk .
2im(u — v) (u,0)



Conclusion and outlook for
future research

We conclude with a list containing the main new results we proved in this thesis.
These results concern random matrices, orthogonal polynomials, and Painlevé

equations.
We obtained the following results in random matrix theory:

e universality of a double scaling limit in unitary random matrix ensembles
near type II singular points with quadratic vanishing of the limiting mean

eigenvalue density (Theorem 1.1),

e universality of a double scaling limit in multi-critical unitary random matrix
ensembles where a spectral singularity coincides at the origin with a type 11

singular point with quadratic vanishing (Theorem 2.2),

e universality of double scaling limits near type III singular (edge) points
where the limiting mean eigenvalue vanishes with a power 5/2 (Theorem

4.7),

e universality of a double scaling limit in unitary random matrix ensembles
where the eigenvalues are restricted to be positive, in the critical case where

the soft edge approaches the hard edge (Theorem 5.1).

In the theory of orthogonal polynomials, we obtained the following two results:

e asymptotics in a double scaling limit for the recurrence coefficients of ortho-
gonal polynomials with respect to the weight |z|?*e= V(#) in the presence

of a type II singular point with quadratic vanishing (Theorem 2.7),

e asymptotics in double scaling limits for the recurrence coefficients of ortho-

gonal polynomials with respect to the weight e="V=+(

) in the presence of a

type III singular point where vanishing with a power 5/2 occurs (Theorem

4.11).

Finally we proved the following results about Painlevé equations,
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the Hastings-McLeod solution of the general Painlevé II equation has no
poles on the real line for oo > —1/2 (Theorem 2.1),

there exists a real solution to the P} equation with no poles on the real line
(Theorem 3.1 (i)); in addition, we compute asymptotics for this pole-free
solution (Theorem 3.1 (ii)).

Several problems related to topics covered by this thesis, remain open. We
first discuss some open problems concerning random matrices.

In Chapter 1 and Chapter 2, we obtained a double scaling limit of the
two-point kernel near singular points of type II where the limiting mean
eigenvalue density vanishes quadratically. If the vanishing is of order 2m
with m > 1, the limiting kernels are different. It is believed [2] that they
will be built out of functions associated with a special solution of the m-th
member of the Painlevé II hierarchy, but this is not proven rigorously yet.

A similar problem holds near type III singular points. In Chapter 4, we
established universality near points where the limiting mean eigenvalue den-
sity vanishes with a power 5/2, but no similar results have been proven when
there is higher order vanishing, with a power 2m + % for m > 1. Here a li-
miting kernel associated with the 2m-th member of the Painlevé I hierarchy
is expected [18].

Recently the case of a type I singular point outside the spectrum has also
been studied [43], but no rigorous results have been obtained yet. It would
be interesting to study double scaling limits of the two-point kernel in this
case as well.

Near regular endpoints, fluctuations of the largest eigenvalue of large ran-
dom matrices are given by the Tracy-Widom distribution. It is not known
yet how these fluctuations can be described near singular endpoints.

The same problem is open in random matrix ensembles for which the (re-
gular or singular) right edge point of the spectrum coincides with a spectral
singularity at the origin.

Also in the theory of Painlevé equations, many interesting questions remain
open. We mention two problems which are closely related with this thesis.

It is not proven that there exist real pole-free solutions of higher members
of the Painlevé II hierarchy. However it should be possible to generalize
the techniques used in Chapter 2 to prove this. A natural candidate for
these pole-free solutions are the ones that are expected to appear in random
matrix theory near type II singular points with higher order vanishing.
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e It is known that no real solution of the Painlevé I equation is pole-free on
the real line. However we expect that all even members of the Painlevé 1
hierarchy have a pole-free solution since the arguments given in Chapter
3 should be extendable to all even members of the hierarchy. This is also
supported by the expectation that special solutions of the even members
of the Painlevé I hierarchy arise near singular endpoints in random matrix
models.
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Inleiding

We gebruiken in deze thesis Riemann-Hilbert problemen met als doel resultaten
te vinden die zich situeren in de theorie van random matrices, orthogonale veel-
termen en Painlevé vergelijkingen.

Een eerste techniek die we gebruiken is de Deift/Zhou steilste-afdalingsmethode
toegepast op het Fokas-Its-Kitaev Riemann-Hilbert probleem dat orthogonale
veeltermen karakteriseert. Met deze methode vinden we universaliteit van dubbel-
geschaalde limieten in bepaalde kritieke random matrix ensembles. Daarenboven
vinden we de asymptotiek voor recursiecoéfficiénten van orthogonale veeltermen
die verband houden met de bestudeerde random matrix ensembles.

Een tweede techniek is deze van het ’vanishing lemma’. Hierdoor kunnen
we de oplosbaarheid aantonen van sommige Riemann-Hilbert problemen die te
maken hebben met Painlevé vergelijkingen. De oplosbaarheid van deze Riemann-
Hilbert problemen leidt tot het bestaan van poolvrije oplossingen van Painlevé
vergelijkingen.

Random matrices

Random matrices werden door Wishart geintroduceerd in wiskundige statistiek
in 1928 [102]. In de jaren ’'50 en ’60 begonnen ook wiskundige natuurkundi-
gen als Wigner, Dyson en Mehta random matrices te bestuderen [42, 82, 101].
Gedurende de laatste tientallen jaren zijn random matrices opgedoken in ver-
scheidene wiskundige en natuurkundige gebieden.

e Er zijn opmerkelijke gelijkenissen tussen eigenwaarden van random matrices
en de niet-triviale nulpunten van de Riemann-zeta functie [84, 58, 90].

e Partitiefuncties voor random matrix ensembles zijn genererende functies
voor bepaalde combinatorische grootheden die van belang zijn in kwan-
tumveldentheorie [19, 38, 56].
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e Er zijn verbanden tussen random matrices en Brownse bewegingen, random
permutaties, random betegelingen, last passage percolation, polynucleaire
groeimodellen en andere modellen in statistische fysica [6, 7, 8, 9, 10, 64, 87].

e Bepaalde wachttijden voor bussen en voor het instappen in vliegtuigen kun-
nen gemodelleerd worden door middel van random matrices [5, 70, 4].

Een random matrix ensemble bestaat uit een ruimte van matrices uitgerust
met een kansmaat. De statistische eigenschappen van de eigenwaarden van ran-
dom matrices zijn van groot belang. Een opmerkelijk feit is dat lokale eigen-
schappen van de eigenwaarden dezelfde zijn voor grote klassen van random matrix
ensembles, terwijl de globale eigenschappen sterk afhangen van de gekozen kans-
maat van het ensemble. Dit belangrijke fenomeen noemt men universaliteit. We
zullen ons beperken tot de studie van Hermitische matrices, hoewel ensembles van
unitaire, reéle symmetrische en quaternionische zelf-duale matrices ook te vinden
zijn in de literatuur. Een algemene referentie voor random matrices is het boek
van Mehta [83]. Een overzicht van de geschiedenis van random matrices is ook
te vinden in [51]. In [27] worden random matrices bekeken vanuit een perspectief
dat heel dicht aanleunt bij het onze, gebruik makende van een Riemann-Hilbert
aanpak.

Het grondigst bestudeerde ensemble van Hermitische matrices is allicht het
Gaussish Unitaire Ensemble (GUE). De kansmaat op de ruimte van Hermitische
n X n matrices in het GUE is

1
7 exp(— Tr M?)dM,

waarbij Z, een normalisatieconstante is en dM de Lebesgue maat

dM = ﬁdMu- [ 1 dRe MijdTm M;;.

i=1 i<j

In dit ensemble zijn de elementen van de random matrices onafhankelijke (de
eis dat de matrices Hermitisch zijn buiten beschouwing gelaten) Gaussische toe-
valsveranderlijken en de kansmaat is invariant onder conjugatie met unitaire ma-
trices. Deze laatste eigenschap vinden we terug in een grote klasse van random
matrix ensembles die we unitaire ensembles noemen. Andere unitair invariante
verdelingen zijn bvb.

Lexp(—nTrV(M))dM, (N.1)
Zn

waarbij V' een reéel analytische functie is die voldoende snel groeit naar oneindig
toe. De factor n in de exponent blijkt handig te zijn wanneer de grootte n van
de matrices toeneemt. Door deze factor bestaat de limiet van de gemiddelde ei-
genwaardedichtheid als n — co. In het Gaussische geval waar V(x) = 2% wordt
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deze dichtheid gegeven door de Wigner halve-cirkelwet. De limiet van de gemid-
delde eigenwaardeverdeling, die sterk athangt van de gekozen potentiaal V', kan
gekarakteriseerd worden als de unieke maat die de logaritmische energie in extern
veld V

1) = [ [ o8 = dut@iuty) + [ Via)dta). (N2)
minimaliseert onder alle kansmaten p op R. De eerste term in (N.2) drukt een
afstoting tussen de eigenwaarden uit, terwijl de tweede term de eigenwaarden ver-
hindert om uit te dijen naar oneindig. Door de factor n in de exponent van (N.1)
is er een juiste balans tussen deze twee verschijnselen zodat de limietverdeling
gedragen wordt op een compacte verzameling.

Bruikbare statistische informatie over de eigenwaarden is bevat in de zoge-
naamde tweepuntskern

n—1
K, (z,y) = e~ 2V(@)e=3V() Zpl(cn) (x)plin) (y), (N.3)
k=0

waarbij we p,in) noteren voor de orthonormale veelterm van graad k tegenover

het gewicht e="V(*) op R. Dit verband tussen random matrices en orthogonale
veeltermen geldt ook voor meer algemene ensembles dan degene met een kansmaat
van de vorm (N.1), zie [83]. De limiet van de gemiddelde eigenwaardedichtheid
1Yy als n — oo kan teruggevonden worden uit de kern door de formule

Yy (z) = lim lKn(a:,:zr)

n—oo n

en de m-punts correlatiefuncties R, worden gegeven door
Rm(:vl,...,:vm) :det(Kn(xi,xj))lgmgm. (N4)

'Gap’-waarschijnlijkheden en de verdeling van de grootste eigenwaarde kunnen
ook uitgedrukt worden in functie van K,, en de gezamenlijke eigenwaardedicht-
heid van de eigenwaarden is gegeven door

1
1 det(Kn(zi, 25))1<ij<n-

Het blijkt dat lokaal geschaalde limieten van de tweepuntskern nabij een punt
x* universeel zijn: de limietkern hangt af van het schalingsregime, maar verder
niet van de potentiaal V' of van de positie van z*. De twee reguliere schalingsre-
gimes zijn de volgende,

e bulk schaling, rond punten waar de limietdichtheid positief is,
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e randschaling, rond randpunten van het spectrum (dit is de drager van de
limiet van de gemiddelde eigenwaardeverdeling).

In het geval waar x* in het bulk-gebied van het spectrum ligt, is de limietkern de
sinuskern,

1 U v
lim ——K, [ 2" + A = K"k (y, v),
i e (7 e ) (42)

waar KPUK gegeven wordt door

_ sin7(u —v)

KD (4, ) = (N.5)

m(u —v)
Dit is bewezen door Bleher en Its [13] in het geval waar V' een vierdegraadsveel-
term is en door Deift en anderen [27, 32, 33] voor algemene reéel analytische V|
zie ook [86]. Nabij een randpunt z* waar de dichtheid als een wortel naar 0 gaat,
duikt de Airykern op in de limiet voor grote n, zie bvb. [30],

: 1 * u * v edge
ey WKn <x * (cn)2/3’j7 " (cn)2/3) =K (wv),

waar ¢ een constante is die afhangt van V' en K®48° wordt gegeven door

Ai(z) Ai'(y) — Aiy) Al'(z)
z—y

K48 (4, v) = (N.6)
De Airy functie Ai is een speciale functie gekarakteriseerd door de differentiaal-
vergelijking Ai,, = x Ai en de asymptotiek

2,.3/2
6_51/

M)~ 5o

als ¢ — +o0.

Merk op dat er een verschil in schaling is tussen de bulk, waar de schaling gebeurt
met 1/n, en de rand, waar de schaling gebeurt met 1/ n?/3. Deze schalingen komen
overeen met de gemiddelde afstand tussen opeenvolgende eigenwaarden, die van
de orde 1/n is in de bulk en van de orde 1/n?/? aan de rand.

In kritieke random matrix ensembles kunnen singuliere punten voorkomen.
We onderscheiden hier nog drie andere schalingsregimes afhankelijk van het type
van het singuliere punt. Singuliere punten worden als volgt geclassificeerd, zie
bvb. [33, 74],

e type I singuliere punten, dit zijn singuliere punten gelegen buiten de drager
van de limiet van de gemiddelde eigenwaardeverdeling,

e type Il singuliere punten, dit zijn punten in het inwendige van het spectrum
waar de limietdichtheid 0 wordt,
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e type III singuliere punten, dit zijn randpunten van het spectrum waar de
limietdichtheid sneller naar 0 gaat dan in het reguliere gevan.

Nabij singuliere punten gelden de bovenvermelde universaliteitsresultaten niet
meer en zijn de limietkernen niet meer gegeven door de sinuskern en de Airy-
kern. Desalniettemin zouden lokaal geschaalde limieten in zekere zin universeel
moeten blijven. Kritieke random matrix ensembles met singuliere punten hebben
de eigenschap dat het aantal intervallen in de drager kan veranderen wanneer we
het extern veld V lichtjes wijzigen. De aanwezigheid van een type II singulier punt
wijst bijvoorbeeld op het sluiten of openen van een ’gap’, of in andere woorden
de overgang waar twee intervallen samenvloeien tot een enkel interval. Ook type
I en type III singuliere punten wijzen op een mogelijke verandering in het aantal
intervallen waar de eigenwaarden zich bevinden. Om deze overgangen ten volle
te beschrijven, is het nuttig om het gewicht wy = e~V te deformeren tot een
gewicht w; dat athangt van een parameter t. In dubbelgeschaalde limieten waar
we n — oo laten gaan en ter zelfder tijd ¢ — 0 aan een gepaste snelheid, zouden
we limietkernen moeten vinden die athangen van een deformatieparameter.

Unitaire random matrix ensembles van de vorm (1) kunnen aangepast worden
zodat er een zogenaamde spectrale singulariteit in de oorsprong toegevoegd wordt.
We krijgen dan kansmaten (die nog steeds unitair invariant zijn) van de vorm

Zi| det M |** exp(—nTr V(M))dM, a>—1/2. (N.7)

De factor |det M |** geeft aanleiding tot een extra afstoting tussen de eigenwaar-
den dicht bij de oorsprong als o > 0 en tot een aantrekking als o < 0. Deze factor
verandert de limiet van de gemiddelde eigenwaardeverdeling niet, maar we krijgen
wel een ander lokaal gedrag van de eigenwaarden dicht bij 0. De tweepuntskernen
die horen bij zulke random matrix ensembles kunnen uitgedrukt worden als in (3),
maar dan in functie van de veeltermen die orthogonaal zijn ten opzichte van het
gewicht |z[2*e~"Y(®) Door de spectrale singulariteit in de oorsprong zijn lokaal
geschaalde limieten nu anders rond de oorsprong. Bijvoorbeeld, als de limiet van
de gemiddelde eigenwaardedichtheid positief is rond 0, leidt dit (in plaats van tot

de sinuskern) tot de Bessel kern [77] die uitgedrukt kan worden als
(ﬂ—u)‘]a (7T’l)) - JOH—% (ﬂ—v)‘]oz—% (ﬂ—u)

2(u — )

_1
2

Joia
T6,(u,v) = m/uy /o2 (N8)

Hier zijn J, 1 Bessel functies van orde a + 1

In de laatste soort unitaire ensembles die we beschouwen, zijn de eigenwaarden
beperkt tot [0, +00) door een kansmaat te leggen op de positief-definiete Hermi-
tische matrices,

1

Z (det M) exp(—nTr V(M))dM, a>—1. (N.9)
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De bijhorende orthogonale veeltermen zijn in dit geval orthogonaal op [0, +00) ten
opzichte van het gewicht z%e~""(*), Lokaal geschaalde limieten van de tweepunts-
kern zijn verschillend rond 0 omwille van twee redenen. Ten eerste is er opnieuw
de afstoting of aantrekking van de eigenwaarden door de factor (det M)%, en ten
tweede is 0 nu een harde rand waar de eigenwaarden niet voorbij kunnen. Als de
limiet van de gemiddelde eigenwaardedichtheid positief is rond de oorsprong, is
de limietkern opnieuw opgebouwd uit Bessel functies [99].

Universaliteit komt niet enkel voor in unitaire random matrix ensembles. Re-
cent, zijn er ook universaliteitsresultaten gevonden voor andere random matrix
ensembles, zoals orthogonale en symplectische ensembles, zie [29, 30].

Painlevé vergelijkingen

In het begin van de 20e eeuw wou Painlevé gewone tweede orde differentiaalver-
gelijkingen van de vorm

Uge = F(2,u,uz) (N.10)

classificeren, waarbij F' een rationale functie is. Oplossingen van zulke differen-
tiaalvergelijkingen kunnen singulariteiten hebben, waarvan sommige vast (on-
afhankelijk van de gekozen oplossing, vastgelegd door de vergelijking zelf) en
sommige beweegbaar (afhankelijk van de gekozen oplossing). Painlevé had als
doel een classificatie te vinden van alle niet-lineaire gewone differentiaalvergelij-
kingen van de vorm (10) waarvoor de beweegbare singulariteiten beperkt zijn tot
polen. Het bleek dat elk van deze differentiaalvergelijkingen kon herleid worden,
ofwel tot een reeds gekende differentiaalvergelijking, ofwel tot een vergelijking uit
een lijst van zes differentiaalvergelijkingen, dewelke nu gekend zijn als de Painlevé
vergelijkingen. Oplossingen hiervan worden Painlevé transcendenten genoemd.

De Painlevé vergelijkingen zijn integreerbaar, wat betekent dat ze uitgedrukt
kunnen worden als de compatibiliteitsconditie van een stelsel van lineaire diffe-
rentiaalvergelijkingen, het Lax paar. Horend bij dit Lax paar, hebben Painlevé
vergelijkingen Riemann-Hilbert problemen waarin de zogenaamde monodromie-
gegevens van het lineaire stelsel bevat zijn. De Painlevé vergelijking karakteriseert
de monodromie-bewarende deformaties van het lineaire stelsel [44, 62]. Veralge-
meningen van de Lax paren (die bekomen worden door de graad van de veel-
termcoéfficiénten van het lineaire stelsel te verhogen) hebben hogere orde dif-
ferentiaalvergelijkingen als compatibiliteitscondities. Deze hogere orde differen-
tiaalvergelijkingen worden samen met de Painlevé vergelijkingen zelf verzameld
in de Painlevé hiérarchieén.

Buiten het feit dat Painlevé vergelijkingen een rijke theorie vormen vanuit een
zuiver wiskundig oogpunt, kennen ze ook een verscheidenheid aan toepassingen,
bvb. in
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e random matrix theorie:

— ’gap’-waarschijnlijkheden en de verdeling van de grootste eigenwaarde
kunnen uitgedrukt worden door middel van Painlevé transcendenten

97, 103],

— in kritieke ensembles met type II of type III singulariteiten wordt het
lokale gedrag van de eigenwaarden rond het singuliere punt beschreven
met functies die te maken hebben met Painlevé vergelijkingen [2, 12,
14, 18],

e combinatoriek: op een vergelijkbare manier als voor de grootste eigenwaarde
van unitaire random matrices, worden schommelingen in de lengte van een
langst stijgende deelrij van grote random permutaties uitgedrukt met een
speciale oplossing van de Painlevé IT vergelijking [6],

e Hamiltoniaanse verstoringen van hyperbolische vergelijkingen worden in be-
paalde gevallen beschreven met Painlevé vergelijkingen [39, 40],

e bepaalde modellen in statistische mechanica, zoals het Ising model, hebben
een verband met Painlevé vergelijkingen [11].

Een uitgebreid overzicht, met ook geschiedenis en toepassingen, over Painlevé
vergelijkingen en bijhorende Riemann-Hilbert problemen is terug te vinden in het
zeer recente boek [45].

Riemann-Hilbert problemen

”Het Riemann-Hilbert probleem”kent haar oorsprong rond 1900, toen het verwees
naar het 2le probleem van Hilbert uit zijn befaamde lijst van 23 problemen.
Het was pas later dat de term ”Riemann-Hilbert (RH) probleem” gebruikt begon
te worden in de context waarin wij deze gebruiken, voor een hele klasse van
grenswaardeproblemen. Voor ons is een RH probleem typisch als volgt. We
zoeken naar een (scalaire of matrixwaardige) functie die aan voorwaarden van de
volgende vorm voldoet:

(a) de functie is analytisch buiten een gegeven contour in het complexe vlak,

(b) de grenswaarden van de functie voldoen aan voorgeschreven sprongvoor-
waarden over het contour,

(c) enkele extra voorwaarden moeten voldaan zijn, bvb. op oneindig, om een
unieke oplossing van het probleem te hebben.

In de jaren 70 en 80 werden RH technieken gebruikt om integreerbare sys-
temen op te lossen. Integreerbare systemen zijn, zoals hierboven reeds vermeld,
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niet-lineaire differentiaalvergelijkingen die kunnen uitgedrukt worden als de com-
patibiliteitsconditie van een stelsel lineaire differentiaalvergelijkingen. Dit lineaire
stelsel vergelijkingen wordt het Lax paar van de onderliggende differentiaalver-
gelijking genoemd. Er is een RH probleem dat oplossingen van het Lax paar
karakteriseert, en dit RH probleem bevat ook informatie over de oorspronkelijke
niet-lineaire differentiaalvergelijking. Een belangrijk onderwerp in dit opzicht is
de oplosbaarheid van RH problemen. In bepaalde gevallen is het bestaan van een
oplossing equivalent met een vanishing lemma [48, 49, 104], dat zegt dat een gerela-
teerd homogeen RH probleem enkel de triviale 0-oplossing heeft. Dit gerelateerde
RH probleem heeft doorgaans dezelfde sprongvoorwaarden als het oorspronke-
lijke, maar een verschillend gedrag op oneindig. Het idee achter deze techniek is
dat een RH probleem equivalent is met een integraalvergelijking waarmee een be-
paalde operator geassocieerd kan worden. De oplosbaarheid van het RH probleem
volgt dan van het feit dat deze operator bijectief is. Als de beschouwde operator
Fredholm is met index 0, is dit equivalent met de trivialiteit van de kern van de
operator, hetgeen op zijn beurt kan vertaald worden naar een vanishing lemma.

In het begin van de jaren ’90 introduceerden Fokas, Its en Kitaev [47] een
2 x 2 matrixwaardig RH probleem waarvoor de unieke oplossing gegeven wordt
in functie van orthogonale veeltermen. Het probleem is hier om, gegeven een
gewicht w, een 2 x 2 matrixwaardige functie Y = Y,, te vinden zodat aan volgende
voorwaarden voldaan is:

(a) Y is analytisch in C\ R,

(b) Yy(z) = Y_(2) <(1) “’(f)) voor z € R,

Z’Il

(¢) Y(2) = (1 +0(="1) (O Zon) als = — 0o,

waarbij Y, (x) (Y_(x)) de limiet is wanneer we = € R benaderen vanuit het boven-
halfvlak (benedenhalfvlak). De oplossing van dit RH probleem wordt gegeven
door

K (2 o1 L[ pa(s)wls)

"2 s—z

Y(z) = , (N.11)

— 2k —1Pn—1(2) _,{nl/wds
R S—Zz

waar pp(r) = kpa™ + - -+ de n-de graads orthonormale veelterm is tegenover het
gewicht w op R, zie ook [27]. Voor de keuze w = |z|?**e~"V(*®) kan de correlatiekern
voor random matrix ensembles van de vorm (7) ook uitgedrukt worden in functie
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van de RH oplossing Y,

Kn,N(xa y)

:|x|aeféNV(m)|y|aeféNV(y) 1

. 1
itz —g) (0 1) YT (y)Ya(a) <O> ;

hetgeen het belang van dit RH probleem in random matrix theorie aangeeft.

Nog in het begin van de jaren 90 ontwikkelden Deift en Zhou [36] een krachtige
werkwijze om de asymptotiek te vinden voor oplossingen van matrix RH proble-
men die athangen van een parameter die naar oneindig gaat. Deze Deift/Zhou
steilste-afdalingsmethode bestaat uit een aantal transformaties van het RH pro-
bleem, om uiteindelijk sprongmatrices te bekomen die dicht bij de eenheidsmatrix
liggen. Ze kan gezien worden als een veralgemening van de klassieke steilste-
afdalingsmethode om bepaalde integralen te benaderen. In plaats van een inte-
graal moet hier de oplossing van een RH probleem of, equivalent, de oplossing
van een matrix-integraalvergelijking benaderd worden.

Deift, Kriecherbauer, McLaughlin, Venakides en Zhou [27, 32, 33] gebruik-
ten de Deift/Zhou steilste-afdalingsmethode om de asymptotiek te bepalen voor
het Fokas-Its-Kitaev RH probleem dat orthogonale veeltermen op de reéle rechte
karakteriseert. Dit leidt ook tot asymptotiek voor de correlatiekern in unitaire
random matrix ensembles en tot universele geschaalde limieten van deze kern. De
technieken die in deze papers [27, 32, 33| geintroduceerd werden, hebben intussen
geleid tot diverse resultaten betreffende de asymptotiek van orthogonale veelter-
men en random matrices, zie [28]. Wij maken in de thesis ook gebruik van deze
methode om universaliteit in kritieke random matrix ensembles te bekomen. We
geven een kort overzicht van de ideeén achter deze analyse.

Het vertrekpunt is het RH probleem voor orthogonale veeltermen tegenover
een exponentieel gewicht dat athangt van een parameter n. Men wil dan de asym-
ptotiek vinden voor de oplossing van dit RH probleem als n — oo, waaruit dan
ook de asymptotiek voor de orthogonale veeltermen en de correlatiekern voor de
eigenwaarden volgen. De strategie is om een 'makkelijker’ equivalent RH pro-
bleem te vinden waarvoor we de oplossing asymptotisch kunnen benaderen. Om
een zulk RH probleem te vinden, moeten we verschillende transformaties door-
voeren. Zonder in detail te gaan, geven we de belangrijkste ideeén achter deze
transformaties.

De eerste transformatie, de normalisatie van het RH probleem, zorgt voor een
geschikt gedrag op oneindig en leidt tot een RH probleem met een oplossing die
naar de eenheidsmatrix convergeert naar oneindig toe. De geschikte manier om
dit te doen, is door de constructie van een zogenaamde g-functie die te maken
heeft met een evenwichtsprobleem. Door deze transformatie worden oscillerende
sprongen gecreéerd.

In de tweede transformatie wordt het sprongcontour vervormd tot een lensvor-
mig contour om de oscillerende sprongen om te vormen tot exponentieel dalende
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sprongen. Als we even deze exponentieel kleine sprongen en kleine omgevingen
van enkele speciale punten buiten beschouwing laten, kan de RH oplossing nu
expliciet geconstrueerd worden. Dit noemt de constructie van de 'outside para-
metrix’.

De outside parametrix bepaalt het asymptotisch gedrag van de RH oplossing
buiten kleine omgevingen van de speciale punten, waar het lokale gedrag bepaald
wordt door lokale parametrices die moeten geconstrueerd worden. Deze kunnen,
in de meeste gevallen, geconstrueerd worden met behulp van Airy functies.

De constructie van parametrices leidt tot een laatste RH transformatie die
resulteert in een RH probleem dat genormaliseerd is op oneindig en dat sprongen
heeft die uniform dicht bij de eenheidsmatrix liggen als n — co. Voor een dergelijk
RH probleem is het gekend dat de oplossing ook dicht bij de eenheidsmatrix
ligt. Als we nu deze opeenvolging van transformaties omkeren, vinden we de
asymptotiek terug van het RH probleem voor orthogonale veeltermen.

In kritieke gevallen kunnen de lokale parametrices niet geconstrueerd wor-
den met Airy functies. Dan moeten de parametrices gebouwd worden met andere
soorten functies, zoals bvb. functies die te maken hebben met Painlevé vergelijkin-
gen. Dit is een van de belangrijkste onderwerpen van deze thesis.

We verwijzen naar [52, 27] voor meer informatie over RH problemen en naar
[59] voor een historisch overzicht.

N.1 Universaliteit rond een inwendig singulier punt

In het eerste hoofdstuk van de thesis beschouwen we unitaire random matrix
ensembles van n x n Hermitische matrices met een kansverdeling van de vorm

Z N exp(—=N Tr V(M))dM. (N.12)

n7

Hierbij veronderstellen we een kritieke potentiaal V' zodat de limiet van de gemid-
delde eigenwaardedichtheid (als n, N — oo op een zodanige manier dat n/N — 1)
kwadratisch 0 wordt in een inwendig punt van het spectrum. Dit geval is reeds
bestudeerd door Bleher en Its [14] in het geval waar V een even vierdegraadsveel-
term is,

V(z) = %x‘l + %x2, g >0, t=t.=—27.
De dichtheid 1y heeft dan een dubbel nulpunt in de oorsprong. Bleher en Its be-
schouwen een dubbelgeschaalde limiet waar ¢ afhangt van n en convergeert naar
t. als n — 0o, op een zodanige manier dat n?/3 (t — t.) constant blijft. Met be-
trekking tot ons model is dit equivalent met het nemen van een dubbelgeschaalde
limiet waar n, N — oo zodat

lim n2/3 (% - 1) (N.13)

n,N—oo
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bestaat. Bleher en Its vonden een één-parameterfamilie K (v, v; s) van limiet-
kernen, athankelijk van s € R, waarvoor het volgende geldst,

. u v _ meerit,IT .
n,]l\lfgoo (C’]’L)l/B Kn,N ((Cn)l/3 ? (Cn)l/3> - K (u7 v? S)? (N'14)

waarbij s evenredig is met de waarde van de limiet (N.13).

Hastings-McLeod oplossing van Painlevé 11

De kritieke kernen K% (y v; s) zijn opgebouwd uit zogenaamde -functies ho-
rend bij de Hastings-McLeod oplossing van de Painlevé IT vergelijking [57]. We
beschouwen zoals in [44] de volgende lineaire differentiaalvergelijking voor een
2-vector (of 2 x 2 matrix) ¥ = ¥((;s),

d_  (—4i(*—i(s+2¢%) 4Cq + 2ir )

d_g\l/(c’ 5) = ( ACq — 2ir 4i¢% +i(s + 2q)> W(Gs) (N-15)
en

0 R ]

S = (¢ ), (N.16)

De compatibiliteitsconditie voor het Lax paar (N.15)—(N.16) is dat ¢ = ¢(s) vol-
doet aan de Painlevé II vergelijking ¢” = sq + 2¢° en dat r = r(s) = ¢/(s). We
bekijken hier het geval waar ¢(s) de Hastings-McLeod oplossing van Painlevé II
is, dewelke gekarakteriseerd wordt door de asymptotische voorwaarde

q(s) = Ai(s)(1 + o(1)) as s — +oo.
De kritieke kernen K zijn nu van de volgende vorm

—P1(u; 5)Pa(v; 5) + Po(u; 5)P1 (03 5)
2mi(u — v)

Kt (g, v; 5) = , (N.17)

waarbij (g;) een speciale oplossing is van het Lax paar (N.15)—(N.16), met ¢

de Hastings-McLeod oplossing van Painlevé II en r = ¢’. De functies ®; en ®o
vormen de unieke oplossingsvector met asymptotiek

e () = () e o

als ¢ — oo. Dit geldt uniform voor € < arg( < m — € voor willekeurige € > 0.

Formulering van resultaat

Het doel van Hoofdstuk 1 is om aan te tonen dat de kern K i:!(y, v;s) een
universele limiet is. Wanneer de limiet van de gemiddelde eigenwaardedichtheid
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1y kwadratisch 0 wordt in een inwendig punt x*, dan heeft de correlatiekern
K, n een dubbelgeschaalde limiet gegeven door (N.14), in de veronderstelling dat
er, behalve z*, geen andere singuliere punten zijn.

We hebben niet kunnen aantonen dat de universaliteit van de dubbelgeschaalde
limiet ook geldt in de aanwezigheid van andere singuliere punten, hoewel we er
sterk van overtuigd zijn dat de universaliteit ook in dit geval gehandhaafd blijft.
Het probleem ligt hier in het bestaan van geschikte parametrices rond andere sin-
guliere punten, hetgeen we niet hebben kunnen aantonen in het dubbelgeschaalde
regime.

In Stelling N.1 gebruiken we de evenwichtsmaat wg van een compacte verza-
meling S C R. Dit is de unieke maat, met dichtheid wg, die de logaritmische
energie

1) = [ [ tor =rdn(s)autr) (N.19)

minimaliseert onder alle Borel kansmaten u op S.
We formuleren nu ons belangrijkste resultaat uit Hoofdstuk 1.

N.1 Stelling. Zij V reéel analytisch in R zodat linrtl % = +400. Zijyy de

limiet van de gemiddelde eigenwaardedichtheid in (N.12), en laat z* een inwendig
singulier punt zign zodat

Yy (") =9y (2") =0,  ¥i(z") >0.

Veronderstel verder dat er behalve x* geen andere singuliere punten zign. Laat
n, N — oo op een zodanige manier dat de limiet

lim  n2/3 (ﬁ - 1) -y
wNoos AN
bestaat met L € R. Zij K, N de correlatiekern (N.3) voor de eigenwaarden van
het random matriz model (N.12). Dan bestaan er constanten ¢ > 0 en s € R zodat

. 1 " (" . v crit,I1
n,zlxlfriloo WK"’N (w ’ (eny 737" - (cn)1/3) = K 030) (N-20)
uniform voor u,v in compacte deelverzamelingen van R.
Ezxpliciete formules voor de constanten ¢ en s zijn

1 *
e o My () (N.21)
8
en
™ *
s= megv (x"), (N.22)

waar wg, de dichtheid is van de evenwichtsmaat Sy .

Zoals reeds vermeld, hebben Bleher en Its [14] (N.20) bewezen in het geval
van een kritieke even vierdegraadsveelterm V. Recent veralgemeende Shcherbina
Stelling N.1 voor bepaalde niet-analytische potentialen [93].
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Evenwichtsmaten en Riemann-Hilbert problemen

De belangrijkste ingrediénten voor het bewijs van Stelling N.1 zijn evenwichts-
maten en Riemann-Hilbert problemen.

Zoals reeds gezegd, is de limiet van de gemiddelde eigenwaardedichtheid ge-
geven als een evenwichtsmaat py die de logarithmische energie in extern veld V'
minimaliseert. In de dubbelgeschaalde limiet is het belangrijk te weten hoe de
evenwichtsmaat i/, zich gedraagt als functie van ¢ ~ 1. Door de overgang van
een spectrum bestaande uit één interval naar twee intervallen, zal py,; echter
niet op een ’gladde’ manier afhangen van ¢t. Daarom blijkt het handig te zijn een
gewijzigde evenwichtsmaat te bekijken. Dit doen we door de evenwichtsdichtheid
negatief te laten worden in de buurt van het kritieke punt z* als ¢t < 1.

Het tweede belangrijke element in het bewijs van Stelling N.1 is de karak-
terisatie van orthogonale veeltermen door middel van het Fokas-Its-Kitaev RH
probleem, en de asymptotische analyse van het RH probleem met behulp van de
Deift/Zhou steilste-afdalingsmethode. Van speciaal belang voor ons is het werk
[6] door Baik, Deift en Johansson over de lengte van de langst stijgende deelrij
van een random permutatie van {1,2,...,n}. Deze auteurs tonen aan dat de
schommelingen van deze toevalsvariabele verdeeld zijn volgens de Tracy-Widom
verdeling [97] in de limiet waar n — oo. Eén van de belangrijke technieken die
in dit artikel gebruikt worden, is de asymptotische analyse van een RH probleem
op de eenheidscirkel dat verband houdt met een evenwichtsmaat die kwadratisch
0 wordt in het punt —1. Deze situatie is vergelijkbaar met de onze. De auteurs
van [6], zie ook de daaropvolgende werken [7, 8, 9, 10], construeren een lokale pa-
rametrix rond —1 met behulp van de -functies horend bij de Hastings-McLeod
oplossing van Painlevé II. Deze i-functies voldoen aan een model RH probleem
en de lokale parametrix wordt geconstrueerd door het model RH problem op
een geschikte manier af te beelden op een omgeving van —1 zodat de gevraagde
sprongvoorwaarden benaderd worden voor grote n.

Wij volgen dezelfde strategie als in [6], maar we introduceren een wijziging in
de constructie van de lokale parametrix zodat de gevraagde sprongvoorwaarden
precies voldaan zijn, in tegenstelling tot [6] waar deze slechts benaderend voldaan
zijn. Dit vereenvoudigt de argumenten merkelijk en we hebben het gevoel dat dit
ook een belangrijke bijdrage van ons werk is.

N.2 Universaliteit rond een multi-kritieke singu-
lariteit

Voor n € N, N > 0 en o > —1/2 beschouwen we het unitaire random matrix
ensemble

Z,, | det M|** exp(—N Tr V(M)) dM, (N.23)
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op de ruimte van n x n Hermitische matrices M, waarbij V' : R — R een reéel
analytische functie is die voldoet aan de voorwaarde

. Vix)
| — = . N.24
smtoo log(z2? + 1) oo ( )

Multi-kritieke geval

Het doel van Hoofdstuk 2 is om (N.23) te bestuderen in het kritieke geval waar
de limiet van de gemiddelde eigenwaardedichtheid 1y een dubbel nulpunt heeft
in 0, m.a.w.

v (0) =9, (0)=0, en  ¥{(0)> 0. (N.25)

In dit kritieke geval verwacht men een familie van mogelijke limietkernen in een
dubbelgeschaalde limiet waar n, N — 0o en n/N — 1 aan een geschikte snelheid
[12]. Omwille van technische redenen nemen we aan dat er buiten 0 geen andere
singuliere punten zijn. Als we ¢ = n/N stellen en n, N — oo laten gaan op een
zodanige manier dat ¢ — 1, dan beschrijft de parameter ¢ de overgang van het
geval waar 1y (0) > 0 (voor t > 1) langs het multi-kritiecke geval (¢ = 1) naar het
geval waar 0 in een ’gap’ tussen twee intervallen van het spectrum ligt (¢ < 1). De
geschikte dubbelgeschaalde limiet zal zo zijn dat de limiet lim,, y—.oo n%/3 (t — 1)
bestaat.

Voor o = 0 werd deze dubbelgeschaalde limiet bestudeerd in [6, 14, 15, 22, 93].
Het algemene geval o > —1/2 brengt ons tot de algemene Painlevé IT vergelijking

q" =sq+2¢° — . (N.26)
De Painlevé II vergelijking met parameter a was gesuggereerd in de fysische
werken [2, 92]. De limietkernen in de dubbelgeschaalde limiet horen bij een spe-
ciale oplossing van (N.26), die we zo meteen beschrijven. We veronderstellen nu
dat a # 0.

Algemene Painlevé II vergelijking

Als we sq en « laten balanceren in de differentiaalvergelijking (N.26), vinden we
dat er oplossingen bestaan waarvoor

@
q(s) ~ —, as s — 400, (N.27)
s
en als we sq en 2¢> laten balanceren, zien we dat er ook oplossingen van (N.26)
bestaan waarvoor
-5

q(s) ~ 55 as s — —o0. (N.28)
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Er is juist één oplossing van (N.26) die zowel aan (N.27) als aan (N.28) voldoet,
zie [60, 61, 68], en we schrijven g, voor deze oplossing. Dit is de speciale oplossing
die we nodig hebben. Aangezien ¢, de natuurlijke veralgemening blijkt te zijn van
de Hastings-McLeod oplossing voor a@ = 0, noemen we ¢, de Hastings-McLeod
oplossing van de algemene Painlevé II vergelijking.

De Hastings-McLeod oplossing is meromorf in s (zoals alle oplossingen van
(N.26)) met oneindig veel polen. We hebben nodig dat ze geen polen op de reéle
rechte heeft. Vanwege het asymptotische gedrag (2.13) en (2.14) weten we dat er
geen reéle polen zijn voor |s| groot genoeg, maar dit sluit de mogelijkheid niet
uit dat er een eindig aantal re€le polen zijn. Hoewel er een uitgebreide literatuur
over Painlevé vergelijkingen en Painlevé transcendenten voorradig is, hebben we
het volgende resultaat niet kunnen terugvinden.

N.2 Stelling. Zij q, de Hastings-McLeod oplossing van de algemene Painlevé IT
vergeligking (N.26) met o > —1/2. Dan is qo meromorf zonder reéle polen.

Hoofdresultaat

Om ons hoofdresultaat te beschrijven, herhalen we de notie van ¥-functies ho-
rend bij de Painlevé II vergelijking, zie [44]. De Painlevé II vergelijking (N.26)
is de compatibiliteitsvoorwaarde voor het volgende systeem van lineaire differen-
tiaalvergelijkingen voor ¥ = ¥, ((;s), dat we het Lax paar voor de Painlevé IT
vergelijking noemen.

ov ov

— = AV = BU N.2

oA S =B, (N29)
waarbij

_ (—4¢ —i(s +2¢%)  4Cq+ 2ir + o/ _(-i¢ q
4= ( 4¢q — 2ir + a /¢ 4¢g2+¢(8+2q2)>7 B = ( . iC)' (N.30)

De algemene Painlevé II vergelijking vormt samen met de eis dat 7 = ¢’ precies
de compatibiliteitsconditie van (N.29). Dit wil zeggen dat (N.29) een oplossing
heeft waar ¢ = q(s) en r = r(s) athangen van s maar niet van ¢, als en slechts als
q voldoet aan Painlevé Il en r = ¢'.

Gegeven s, q en r zijn de oplossingen van

9 <I>1(C)> (%(O)

— =A N.31

g (ani0) = (om0 (N3
analytisch met een vertakkingspunt in ( = 0. Voor @ > —1/2 en s € R nemen we
q = qu(s) en r = ¢, (s), waarbij g, de Hastings-McLeod oplossing van de Painlevé

q)a,l (Cv 8)

als de unieke oplossing van (N.31
q)a,Z(C; S)) P &y ( )

II vergelijking is, en we definiéren (
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met asymptotiek

a0 (2 16) =) e

uniform als { — oo in de sector € < arg( < ™ — € voor willekeurige € > 0. Merk
op dat dit goed gedefinieerd is voor elke s € R vanwege Theorem 2.1.

De functies ®,1 en @, 2 zijn uitbreidbaar tot analytische functies in C \
(—i00, 0], en we noteren deze uitbreidingen ook door @, ; en @, 2. Hun waarden
op de reéle rechte komen voor in de limietkern. Het volgende is het hoofdresultaat
van Hoofdstuk 2.

N.3 Stelling. Zij V reéel analytisch in R zodat (N.24) geldt. Veronderstel dat
de limiet Yy van de gemiddelde eigenwaardedichtheid kwadratisch 0 wordt in de
oorsprong, d.w.z. ¥y (0) = ¢¥,(0) = 0 en ¥{,(0) > 0, en dat er behalve 0 geen
andere singuliere punten zijn. Laat n, N — oo op een zodanige manier dat

lim n*3(n/N—-1)=LeR

n,N—oo

bestaat. Definieer constanten

o (”‘/’g(o)>”g (N.33)

en

s =2r2AL [ (0)]°

ws,y (0), (N.34)
waar wg,, de evenwichtsdichtheid van de drager van v is. Dan geldt de volgende
dubbelgeschaalde limiet voor de correlatiekern horend bij het random matriz model
(N.23),

. 1 u v rit, I .
lim Koy (cnl 5 77) = K (u, v 9), (N.35)

uniform voor u,v in compacte deelverzamelingen van R\ {0}, waar

Kcrit,H(u’ v; S) — _E%ﬂia[sgn(u)+sgn(v)]
el

D1 (u; 8)Po2(v;8) — Pi1(v;8)Pa2(u; s)

2mi(u — v)

(N.36)

N.4 Opmerking. Voor a = 0 hebben we de stelling in Hoofdstuk 1 bewezen.
Het bewijs voor het algemene geval verloopt in grote lijnen gelijkaardig, maar
we hebben de informatie nodig over het bestaan van ¢, (s) voor reéle s, hetgeen
verzekerd is door Theorem N.2.
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Recursiecoéfficiénten voor orthogonale veeltermen

Om Stelling 2.2 te bewijzen, zullen we het RH probleem voor orthogonale veel-
termen tegenover het gewicht |z|?*e~NV(*) bestuderen. Deze analyse leidt tot
asymptotiek voor de kern K,, y, maar voorziet ook de ingrediénten om asym-
ptotiek voor de orthogonale veeltermen af te leiden en voor de coéfficiénten in de
recursierelatie waaraan de veeltermen gehoorzamen.

Om deze resultaten te kunnen formuleren, introduceren we eerst maten v, als
volgt, zie ook Hoofdstuk 1 and Sectie 2.3.2. Neem &g > 0 voldoende klein en laat
v¢ de logarithmische energie Iy, () minimaliseren onder alle maten v = vt —v™,
*+ niet-negatieve maten zijn op R zodat v(R) = 1 en supp v~ C [~do, o).
We schrijven 1, voor de dichtheid van v;.

We beperken onszelf tot het geval waar ¢y gedragen is op een enkel interval
en waar er geen singuliere punten zijn behalve 0. Dan is supp ¥y = [a,b] en
supp ¥ = [at, bs] voor t dicht bij 1, waarbij a; en b; reéel analytische functies in
t zijn.

We schrijven p,(CN) voor de n-de graads orthonormale veelterm tegenover het
gewicht |z|>?*e~NV(#) op R. Deze veeltermen voldoen aan een drieterms recursie-
vergelijking

waar v

ap (@) = afy piY, (@) + 0P () + o p (), (N.37)

met recursiecoéfficiénten a,(CN) en b;gN). In de grote-n-ontwikkeling van aﬁ,N) en bglN)
merken we oscillaties in de O(n~1/3)-term. De amplitude van de oscillaties is
evenredig met ¢,(s), terwijl in het algemeen de frequentie traag varieert met
t=n/N.

N.5 Stelling. Veronderstel dat de voorwaarden van Stelling N.3 voldaan zijn en
veronderstel ook dat supp ¥y = [a,b] wit één interval bestaat. Bekijk de drie-
terms recursievergelijking (N.37) woor de orthogonale veeltermen p,(CN) tegenover
het gewicht |z|**e~NV (@) Als we dan n, N — oo laten gaan zodat n/N — 1 =

O(n=2/3), krijgen we dat

2N b—a  ga(stn)cos(2mnw; +2a0)

~1/3 —2/3
1 50 n +O(n=47), (N.38)

s b+a n da(St.n) sin(2mnw, + (20 + 1)0)
" 2 c

waar t =n/N, ¢ gegeven is door (N.33),

n~V3 L OmY?),  (N.39)

v
St =n?/ 3E¢t(0)7 (N.40)

. +a
0 = arcsin

(N.41)

—a



214 Nederlandse samenvatting

en
by
wy = Py (x)dx. (N.42)
0
N.6 Opmerking. In [14] hebben Bleher en Its (2.25) afgeleid in het geval waar
a = 0 en waar V is een kritieke even vierdegraadsveelterm. Ze berekenden ook
de O(n=2/3)-term in de grote-n-ontwikkeling voor aﬁf\’). Voor even V hebben we
dat a = —b, 6 = 0, wy = 1/2 en dus is cos(2mnw; + 2a8) = (—1)", zodat (2.25)
herleid wordt tot
b galsen)(=1)" _ _
™ _ Y _ 4aStn)\—1)" _1/3 2/3

ay, 5 5 n +O(n=%7),
wat in overeenstemming is met het resultaat uit [14]. Voor even V is de recur-
siecoéfficiént b&N) gelijk aan 0 hetgeen overeenstemt met (N.39).

N.3 Een reéle poolvrije oplossing van de P}? ver-
gelijking
De eerste Painlevé vergelijking is de tweede orde differentiaalvergelijking
Yss = 6y° + 5. (N.43)

Deze vergelijking heeft hogere orde veralgemeningen van even orde 2m voor m >
1, die samen met de eerste Painlevé vergelijking zelf verzameld worden in de
Painlevé I hiérarchie, zie bvb. [69, 72]. Het tweede lid van de hiérarchie is de
vierde orde differentiaalvergelijking

14, 1 5 1
= - - a1 2 CE} G nJssss 9 N44
s (6y +5g s+ 29Yss) + 550 ) (N.44)
en deze vergelijking heeft meromorfe oplossingen in het complexe vlak. In 1990
gaven Brézin, Marinari en Parisi [20] numeriek aan dat er een oplossing y van
(N.44) bestaat zonder reéle polen, en met asymptotiek

y(s) ~ F|6s]'/3, als s — +o0. (N.45)

Moore [85] toonde het bestaan aan van een unieke reéle oplossing van (N.44) met
asymptotiek gegeven door (N.45), en hij gaf een argument waarom deze oplossing
poolvrij hoort te zijn op de reéle rechte.

Een veralgemening van (N.44) kan bekomen worden door een extra verander-
lijke ¢ toe te voegen, zoals in het werk van Dubrovin [40], zodat we de volgende
differentiaalvergelijking krijgen voor y = y(s,t), die we noteren als de P} verge-
lijking (cfr. [66] voor ¢ = 0),

B 1, 1,, 1
s=ty <6y + 24(ys + 2yyss) + 240yssss>. (N.46)
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In het recente werk [40] opperde Dubrovin het vermoeden dat er een unieke reéle
oplossing van (N.46) bestaat zonder reéle polen. We bewijzen het bestaan van
deze oplossing.

Formulering van resultaten

Onze resultaten uit Hoofdstuk 3 zijn de volgende

N.7 Stelling. Er bestaat een oplossing y(s,t) van de P} vergelijking (N.46) met
de volgende eigenschappen:

(1) y(s,t) is reéelwaardig en poolurij voor s,t € R.
(i) Voor vaste t € R heeft y(s,t) het volgende asymptotisch gedrag,
1
y(s,t) = §zo|s|1/3 +O(]s|72), als s — +00, (N.47)
waarbij zg = zo(s,t) de reéle oplossing is van

zS’ = —48sgn(s) + 24z0|s|_2/3t. (N.48)

N.8 Opmerking. Merk op dat zp negatief (positief) is voor s > 0 (s < 0) met
de volgende asymptotiek als s — o0,

2
20 = 2o — sgn(s) 3 62/3t|s|72/% + O(]s|/?), 20 = —sgn(s) 263, (N.49)
zodat de asymptotiek (N.47) voor y kan herschreven worden als, cfr. (3.3)
1
y(s,t) = T(6|s)Y3 T §f52/3t|5|_1/3 +0O(|s|™), als s —» +oo.  (N.50)

We bewijzen het bestaan van een poolvrije oplossing door de oplosbaarheid
van een geassocieerd RH probleem aan te tonen. Dit kunnen we doen door middel
van een vanishing lemma. Om de asymptotiek (N.47) van y te vinden, passen we
de Deift/Zhou steilste-afdalingsmethode toe op het RH probleem dat gerelateerd
is met y.

N.4 Universaliteit rond een singulier randpunt

Voor n € N en s,t € R bekijken we in Hoofdstuk 4 een unitair random matrix
ensemble van de vorm

exp(—nTr V, (M))dM (N.51)

n,s,t

op de ruimte van n x n Hermitische matrices. We beschouwen daarbij externe
velden V,; die zodanig zijn dat in het kriticke geval s =t = 0, V) = V0 een
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type III singulier (rand)punt heeft waar de limiet van de gemiddelde eigenwaar-
dedichtheid pgo naar 0 gaat als een macht 5/2,

po.o(x) ~ clo — z*|>/2, as x — r*. (N.52)
Bovendien nemen we V;; van de speciale vorm
‘/;)t = Vo + sVp +tVs, (N53)

waar V7 een willekeurige reéel analytische functie is, terwijl Vo reéel analytisch
is en bovendien aan een bepaalde kritieke voorwaarde moet voldoen die we zo
meteen verduidelijken.

y-functions associated with a special solution of the P? equation
We bekijken de P} differentiaalvergelijking uit Hoofdstuk 3,

B 1, 1,, 1
s=ty <6y + 24(ys + 2yyss) + 240yssss>. (N.54)

Het Lax paar voor de P? vergelijking is het lineaire stelsel van differentiaalverge-
lijkingen

ov ov

- = — =WU N.55

=W, (N.55)

waar

1 [ —4yaC— (12yys +yass)  8CT 4 8y¢ + (12y° + 2y — 1201) (N.56)
240 U2y 4?/.5( + (12yy5 + ysss) ’ -

Us1 = 8¢ — 8y¢? — (4y? + 2y, + 120t)C
+ (169 — 292 4 4yyss + 240s), (N.57)

en

W= (<—02y (1)) . (N.58)

Dit lineaire stelsel (4.15)—(4.18) kan enkel oplosbaar zijn als y = y(s,t) een oplos-
sing van de P? vergelijking (N.54) is.

We zijn geinteresseerd in de bijzondere reéle poolvrije oplossing y die we in
Hoofdstuk 3 bestudeerd hebben, zie ook [20, 40]. Deze oplossing y = y(s,t) wordt
gekarakteriseerd door de Stokes multipliers si, s3, S5 en sg die alle gelijk zijn
aan 0, zie [66]. Voor s,t € R heeft het Lax paar (N.55)—(N.58) horend bij deze
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bijzondere keuze van y een unieke oplossing ( g;) waarvoor de volgende limiet
geldt, zie [66] en Hoofdstuk 3,

boo (OG0 ooy L (1) im
<4<%@mwe &l e
als ¢ — oo met 0 < arg ¢ < 67/7, (N.59)

waarbij o3 = ((1) Pl) de derde Pauli-matrix is en waarbij € gegeven is door
0(Cis,t) = ——¢7/2 — Ly gerre (N.60)
T 105 3 ' '

De functies ®; en ®5 zullen opduiken in de universele limietkern rond type III
singuliere (rand)punten waar de dichtheid 0 wordt als een macht 5/2.
We werken onder de volgende aannames.

N.3 Aannames.

(i) We veronderstellen externe velden Vj ; van de vorm
Vs,o = Vo + sV1 + Vs, (N.61)

waarbij Vp, V1 en Va reéel analytisch zijn en zodanig dat er een dg > 0
bestaat zodat

Vs ()

‘wl‘iinoo Tog? 1 1) = 400, uniform voor s,t € [—dp,dp].  (N.62)

(ii) Vb is zodanig dat de evenwichtsmaat vy in extern veld V gedragen wordt
op een enkel interval [a,b] C R, waarbij b een type III singulier (rand)punt
is waar de evenwichtsdichtheid 0 wordt als een macht 5/2.

o) = o)/~ D) — @) Xjo (@), (N.63)

met x[qp de indicatorfunctie van het interval [a,b], en waarbij ho reéel
analytisch is en voldoet aan

hob) = hy(b) =0  en  AL(b) > 0. (N.64)

Daarenboven veronderstellen we dat er geen andere singuliere punten zijn
behalve b. In het bijzonder is a een regulier randpunt

(iii) Vs is zodanig dat de volgende kritieke voorwaarde voldaan is,

/a ’ \/E VJ (u)du = 0. (N.65)
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N.4 Voorbeeld. Deze aannames zijn geldig voor het volgende voorbeeld, waar
Vo, V1 en Va gegeven worden door

1 8
Vo(z) = =2 — —z°+-z°+ -z, Vi(z) = =, Va(x) = 2° —62. (N.66)
Dan is de evenwichtsmaat vy gedragen op het interval [—2, 2] en gegeven door

1
dvo(w) = W(:v +2)Y2(2 — 2)5 x|y 9 (x)da. (N.67)
i
We merken ook op dat een type III singulier (rand)punt niet kan voorkomen als
Vo een veelterm van graad lager dan 4 is.

N.9 Opmerking. Het geval waarbij het linker randpunt van de drager (i.p.v. het
rechter randpunt) singulier is, kan getransformeerd worden naar ons geval door
het extern veld V; ;(—x) te bekijken.

N.10 Opmerking. Als we t = 0 nemen en s laten variéren rond 0, zien we
typisch de overgang van het reguliere één-interval-geval naar het singuliere geval
en dan terug naar het reguliere één-interval-geval. Voor s = 0 en t dicht bij 0
kunnen we de overgang zien waar één interval overgaat naar twee intervallen. Als
we s,t # 0 laten zijn, kunnen we één van de bovenvermelde overgangen zien, of
de kritieke overgang waarbij een type II singulier punt naar het eindpunt toegaat,
waar het een type III singulier punt wordt, alvorens verder te gaan als een type I
singulier punt.

Om onze resultaten te kunnen beschrijven, voeren we constanten c,c; en cs
in

2/7
c= (12—5h6’(b)\/b - a) >0, (N.68)
ha(b) hy(b)

ARG a2 2T T ERG a2 (N.69)

CcC1 =

waarbij hg de reéel analytische functie is die voorkomt in (N.63) en waar de
functies hj, j = 1,2, gedefinieerd worden als

b
hj(z):_%]l VO —u)(u—a)V(u) du_ eorzefab.  (N.T0)

uUu—x

Universaliteit van de dubbelgeschaalde limiet

Ons hoofdresultaat in Hoofdstuk 4 is het volgende.
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N.11 Stelling. Zij V, ; = Vo+sVi1+tVa zo dat aan Aannames N.3 voldaan is. We
nemen een dubbelgeschaalde limiet waarbij we n — oo laten gaan en terzelfdertijd
laten we s,t — 0, op een zodanige manier dat

c1- limn%7s = sy € R, co - limn* 7t =ty € R, (N.71)

waarbij de constanten c1 en co gedefinieerd zijn door (N.69). Dan voldoet de

tweepuntskern K$ voor het random matriz model (N.51) aan het volgende uni-
versaliteitsresultaat,

1
K0 (b+ Y by

lim
2/ en2/7’

—2/7) = Kcrit’m(u,v;so,to), (N.72)
cn

ungvorm voor u,v in compacte deelverzamelingen van R. Hierbij is K4 opge-
bouwd wuit de functies ®1 en Py die hierboven gedefinieerd zijn,

Dy (u; 8,t)Da(v; 8,t) — Py (v 8, 1) Pa(u; s, t)

—2mi(u — v)

K (g y: s, ¢) = : (N.73)

N.12 Opmerking. Aangezien y(s,t) geen polen heeft voor s,t € R (zie Chapter
3), bestaat de kern K (y v; 5 ¢) voor alle reéle u, v, s en t.

Recursiecoéfficiénten voor orthogonale veeltermen

Het is gekend [95] dat de orthonormale veeltermen p, = p,(cn’s’t) tegenover het

gewicht e="s¢ op R voldoen aan een drieterms recursievergelijking van de vorm
pr(r) = apr1Pr1(x) + brpr(2) + arpr—1(x), (N.74)
waar ap = a,(cn’s’t) > 0en by = b,(c"’s’t) € R. In het reguliere geval waar V geen

singuliere punten heeft, hebben de recursiecoéfficiénten de volgende asymptotiek
voor s =t = 0, zie bvb. [14, 27],

agln,o,o) = b ; a—l—(’)(n*l), b;"*ov‘” = HTG—FO(n*l), als n — oco. (N.75)
Voor kritieke potentialen Vj blijven de constante termen in (N.75) nog steeds
dezelfde, maar de correctietermen zijn verschillend [14, 23]. In ons geval, waar we
een type III singulier punt hebben waar de dichtheid 0 wordt als een macht 5/2,
is de correctieterm van de orde O(n~2/7), en de coéfficiént van de n=2/7 term kan
dan uitgedrukt worden in functie van de speciale poolvrije oplossing y van de P?
vergelijking.

N.13 Stelling. Veronderstel dat Vs; voldoet aan Aannames N.3. Beschouw de
drieterms recursierelatie (N.74) waaraan de orthogonale veeltermen pj = pgcn’s’t)
tegenover het gewicht ="Vt voldoen. In de dubbelgeschaalde limiet waar n — oo
en s,t — 0, zo dat

limeyn®7s = 5o € R, limeon® "t =ty € R, (N.76)
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met ¢1 en ca gegeven door (N.69), krijgen we dat

b— 1
almst) = Ta + % y(ern® s, con®T)n T 4+ O3, (N.77)
b—a 1 -
=— * %y(so,to)n 271+ 0(1)),
en
b 1
b = B LT o T 1 O (x78)
_b+a 1

5t o y(so, to)n™ (1 4 o(1)),
waar de constante ¢ gegeven wordt door (4.30), en waar y de bijzondere poolvrije
oplossing van de P} vergelijking is, beschouwd in Hoofdstuk 3.

We bewijzen de resultaten in Hoofdstuk 4 op een analoge manier als in Hoofd-
stuk 1 en Hoofdstuk 2, door een asymptotische analyse van het RH probleem
dat orthogonale veeltermen karakteriseert met behulp van de Deift/Zhou steilste-
afdalingsmethode. Het belangrijkste verschil situeert zich in de constructie van
een lokale parametrix rond het singuliere randpunt b. Verder gebruiken we ook
gewijzigde evenwichtsmaten, waarbij we de evenwichtsdichtheden negatief laten
worden (zoals in Hoofdstuk 1 en Hoofdstuk 2). In tegenstelling tot de evenwichts-
maten uit de eerdere hoofdstukken kiezen we hier ook de drager van de maten
vast, onafhankelijk van s en ¢, omdat dit handig blijkt te zijn in de asymptotische
analyse.

N.5 Universaliteit in de overgang van zachte naar
harde rand

In Hoofdstuk 5 beschouwen we unitaire random matrix ensembles op de ruimte
van positief-definiete n x n Hermitische matrices, met een kansmaat van de vorm

(det M)* exp(—N Tr V(M))dM, a>—1. (N.79)
n,N
Hierbij is Z, n een normalisatieconstante en de potentiaal V is reéel analytisch
op [0, +00) met voldoende groei op oneindig,
Vi(x)

Omdat de eigenwaarden van een random matrix in dit model beperkt zijn tot de
positieve reéle as, wordt 0 de harde rand van het random matrix model genoemd.
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Randpunten waar de limiet van de gemiddelde eigenwaardedichtheid naar 0 toe-
gaat, worden zachte randen genoemd. We concentreren ons op het geval waar een
zachte rand samenvalt met de harde rand in de oorsprong. We veronderstellen
ook dat er geen singuliere punten zijn.

We beschouwen een dubbelgeschaalde limiet van de correlatiekern, waar we
n, N — oo laten gaan en terzelfdertijd laten we t = n/N — 1 aan een aangepaste
snelheid. Voor n/N — ¢ > 0 is de limiet van de gemiddelde eigenwaardeverdeling
gelijk aan een evenwichtsmaat uy/. in extern veld V/e. Voor ¢ dicht bij 1 en
¢ < 1 ligt 0 buiten de drager van py/. en dan is het linkse eindpunt van de drager
een zachte rand, zie [74]. Voor ¢ dicht bij 1 en ¢ > 1, gaat de dichtheid naar
oneindig toe rond 0. Als ¢ / 1 zien we de zachte rand die naar de harde rand
toegaat. Als ¢ > 1 verdwijnt de zachte rand en de dichtheid gaat naar oneindig
aan de harde rand. De limietkern in de overgang c ~ 1 zal te maken hebben met
de Hastings-McLeod oplossing van de Painlevé II vergelijking en kan uitgedrukt
worden in functie van de kernen K% die reeds voorkwamen in Hoofdstuk 1 en
Hoofdstuk 2.

Er is een verband tussen random matrix ensembles van de vorm (N.79) en
ensembles op de ruimte van Hermitische n X n matrices met een kansmaat van de
vorm

1
| det MPeEle=3 VMY 9 4] > 1, (N.81)
n,N

We zullen de resultaten die we bekomen hebben in Hoofdstuk 1 en Hoofdstuk
2 vertalen naar resultaten voor ensembles van de vorm (N.79). Een andere
strategie zou zijn om (zoals in Hoofdstukken 1, 2 en 4) de Deift/Zhou steilste-
afdalingsmethode toe te passen op het RH probleem voor de orthogonale veelter-
men op [0, +00) die verband houden met het matrix model. De werkwijze die we
hier voorstellen, is echter veel korter en directer.

Formulering van resulaten

Vooraleer we onze resultaten formuleren, moeten we nog een evenwichtsmaat
definiéren die een rol speelt in de dubbelgeschaalde limiet. Definieer w als de
unieke maat die

1
I(w) = // log mdw(m)dw(y) (N.82)

minimaliseert onder alle kansmaten op de drager van de limiet van de gemiddelde
eigenwaardedichtheid Sy. We noteren w voor de dichtheid van w. In het geval

waar Sy = [0,b] is de evenwichtsdichtheid gegeven door w(z) = ——~—— voor

my/x(b—x)
x € (0,b).
We formuleren nu het belangrijkste resultaat uit Hoofdstuk 5.
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N.14 Stelling. Neem o > —1. Zij V reéel analytisch op [0,+00) zodanig dat

lir_il % = +00. Noem Yy de limiet van de gemiddelde eigenwaardedicht-

heid van het random matriz model (N.79) als n, N — 0o op een zodanige manier
dat n/N — 1. Veronderstel verder dat 0 € Sy = supp ¢y met ¥y (0) = 0 en
1,(0) # 0, en veronderstel ook dat er geen singuliere punten zijn in het extern
veld V. Laat nun, N — oo zo dat de limiet
im @n)%* (1) =L
nN P

bestaat met L € R. Zij K, n de correlatiekern voor de eigenwaarden van het
random matriz model (N.79). Dan bestaan er constanten ¢ >0 en s € R zodat

I 1 % U v
im ———K, )
nN—oo (2en)2/3 "N\ (2en)2/37 (2¢n)2/3
1 cri cri
= 5(%)’”4 (Kaf%n(\/ﬂ, Vi) + K (Va, —\/5;5)) , (N.83)

uniform voor w,v in compacte deelverzamelingen van (0,400). Als a > 0 kan de
limiet (N.83) ook herschreven worden als

I 1 I U v
im —— K, ,
nN—oo (2en)2/3 "N \ (2en)2/37 (2¢n)2/3
1 — i ri
= 5 (uo) ™ (RS Vo 8) — K (Vi Vi s)) . (N84)

Expliciete formules voor de constanten c en s zijn

LTV —f’v(o) (N.85)

en
™ .
s = L—cl/3 i{% Vzw(z), (N.86)

waarbij w de evenwichtsdichtheid van Sy 1is.

N.15 Opmerking. De eenvoudigste voorbeelden waarbij deze kritieke situatie
voorkomt, zijn ensembles met een potentiaal V' van de vorm V (z) = $2% — 2, /gx
met g > 0, waarbij ¢y gegeven wordt door

Yy (z) = %\/5\/?, for z € [0,497 /.

De constanten c, ¢; zijn dan gegeven door

g3/ gt/4

4’ IS SVER

C =
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De orthonormale veeltermen p,(CN) tegenover het gewicht 2%~V (*) op [0, +00)

voldoen aan een drieterms recursierelatie van de vorm
N N N
wpp () = apyyphyy (2) + 0L Pl (2) + ap pY, (o). (N.87)

We hebben het volgende resultaat betreffende de asymptotiek van de recursiecoéf-
ficiénten aglN) en bgv) als n,N — oo op een zodanige manier dat n/N — 1 =

O(n=2/3),

N.16 Stelling. Veronderstel dat V wvoldoet aan de voorwaarden van Stelling N.14
en veronderstel ook dat supp 1y = [0,b] uit een enkel interval bestaat. Als we dan
n, N — oo laten gaan zo dat n/N — 1 = O(n=2/3), dan krijgen we dat

™ = Z + O(n=2/3), (N.88)
b = g + O(n=2/3). (N.89)

N.6 Relaties tussen limietkernen

In Hoofdstuk 6 tonen we aan dat de verschillende limietkernen die doorheen de
thesis opgedoken zijn, gerelateerd zijn met elkaar. Zo kunnen de reguliere kernen
KPulk en Keds® hekomen worden als limieten van de kriticke kernen Kt en
Kt Ook de Bessel kern J9 kan gezien worden als een limiet van de kern
KL Dit is niet verwonderlijk als we de random matrix ensembles in gedachten
houden waar de kritieke kernen K&t en KB yoorkomen. Deze kritieke
ensembles hebben een singulier punt waarvan het karakter kan veranderen van het
ene regime naar een ander, wanneer we parameters in het extern veld wijzigen.
Als we de deformatieparameter(s) laten variéren, kunnen we de overgang zien
van het kritieke schalingsregime naar een regulier schalingsregime. We tonen in
Hoofdstuk 6 aan dat deze overgangen niet enkel zichtbaar in de random matrix
ensembles, maar dat we deze ook kunnen zien op het niveau van de limietkernen.

We hebben de volgende resultaten.
N.17 Stelling. (i) Voor u,v € R,

. 1 : U v
lim _Kgm,n (—, —; 5) = KPulk(y, ).
s’s

s—+o0 §

(ii) Voor u,v € R\ {0} krijgen we

1.
lim —Kie! (E, g; S) =J% (u,v).
s

s——+oo § S
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(iii) Voor u,v € R,

1

crlt,H - 1/2 u
Jm 27/6[5[1/2 0 (qt\@'s'

= 27/6| |1/27

|1 /2 4 = K& (y, v).

27/6| |1/2’ )

(iv) Voor u,v,t € R,

4\ 1 crit, ITT 1 N\
: = rit, /3 = ¢
i (5) e (1 (3)
4 4/9 v v
|5|1/320+ (g) |S|T/9;S’t =K (u,v),

waarbij zo het reéle nulpunt is van de vergeliking

w

28 = —sgn(s)48 + 24z|s| /3, for s £ 0.

(v) Zij ¢ = |g,+750)‘, met g gedefinieerd door (3.92) en (3.95). Dan geldt voor
u,v,t € R dat

Jerit T ( w v 57,5) = K" (4, v).

SLHPOO c| s[5/ c|s[5/6" ¢[s|5/6’

We tonen deze resultaten aan door de Deift/Zhou steilste-afdalingsmethode
toe te passen op de model RH problemen geassocieerd met de kritieke kernen.
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