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Frequencies, temporal patterns, and spatial regularity of mobile-phone data

Philipp Hövel,1, 2, 3, ∗ Filippo Simini,1, 4, 5 Chaoming Song,1, 6 and Albert-László Barabási1, 6, 7

1Center for Complex Network Research, Northeastern University, Boston, USA
2Institut für Theoretische Physik, Technische Universität Berlin, Germany

3Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Germany
4Dipartimento di Fisica “G. Galilei”, Università di Padova, Padova, Italy

5Institute of Physics, Budapest University of Technology and Economics, Budapest, Hungary
6Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, USA

7Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA

In recent years more and more data have been gener-
ated contributing to the rise of network science. In par-
ticular, social networks can be studied in greater details
as an increasing number of datasets become readily avail-
able in the digital age. The analysis of what is generally
termed big data allows for the inference of human behav-
ior such as mobility or statistics about the social environ-
ment. One type of datasets that is especially suited to
serve as a proxy for human behavior arises from the usage
of mobile-phones [1–5]. The mobile-phone dataset used
in this contribution, for instance, consists of anonymized
call data records (CDRs) of 10 million customers from a
single phone company.
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FIG. 1: Call activity during one month with an hourly reso-
lution. The colored days mark Easter holidays.

We present a data analysis of CDRs with the pur-
pose to extract various patterns of synchronization and
to identify different rhythms of daily life. Our analy-
sis spans multiple time periods, which allows to discover
rhythms on a daily, weekly, and even longer time frames.
For example, we study routines during weekdays and the
deviations from these temporal patterns during weekend
activities. Furthermore time-resolved evaluations of the
total number of calls provides a simple insight into the
heartbeat of the society as a whole. See Fig. 1, which
shows a repeating call activity profile during weekdays
interrupted by weekends or holidays (marked by color).
Systematic sorting of users into pre-defined groups, that
is, the use of additional meta data such as the age of the
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FIG. 2: Normalized distribution P (rg) of the radius of gyra-
tion rg derived from the mobile-phone data (left, observation
period: 1000 hours) and the individual-mobility model (right,
arbitrary spatial units). Reproduction of Figs. 4(a) and (c)
of Ref. [6].

mobile-phone users, enables further investigation of the
social behavior of different subpopulations.

Next to the social network (who calls whom), the
dataset at hand also provides information about the in-
dividual mobile-phone user’s whereabouts (where does a
call originates from). The position of the caller is approx-
imated by the location of the nearest mobile-phone tower
that handles the call. We demonstrate that the study of
this spatial layer of information offers an insightful per-
spective on human mobility. In particular, it will lead
to scaling laws of human travel calculated, for instance,
for the radius gyration [6]. The radius of gyration rg for
each user, who is recorded during L events at positions
~r1, . . . , ~rL, is defined as

rg =

√√√√ 1

L

L∑

i=1

(~ri − ~rcm)
2

with the center of mass ~rcm = L−1
∑L

i=1 ~ri. The distri-
bution of the radius of gyration is depicted in Fig. 2.

In addition, we will consider limits of predictability [7].
For this, we use a measure of regularity given by the ratio
Ri of the number of recordings at the most frequently
visited tower to all calls,

Ri =
number of appearances at primary location

total number of appearances
,
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FIG. 3: Regularity of mobility: (bottom) ratio R to find a
user at his/her most frequent location and (top) number of
different locations N with an hourly resolution for each day
of the week. Data: May 2009 for a class of users between 12
and 100 events on the daily average.

for each hour of the week, i = 1, . . . , 168. Figure 3 de-
picts the averaged regularity R (bottom) and the average
number of locations N (top). That figure confirms an
intuitive expectation: The average person is most regu-
lar (largest R) with the least number of locations during
early-morning hours and least regular (smallest R) with
the largest number of locations during commuting times
between home and workplace. Similar to Fig. 1, one can
see that this effect repeats for each weekday, but is less
pronounced on the weekend.
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FIG. 4: (Left) probability distribution of a call over a dis-
tance r and (right) to a municipality with population size n.
Data: number of phone calls between users living in different
municipalities during a period of 4 weeks with a total number
of 38,649,153 calls placed by 4,336,217 users. The data was
aggregated to obtain the total number of calls between every
pair of municipalities. Reproduction of Figs. 3(g) to (h) of
Ref. [8].

Finally, we will briefly review simple models like the
individual-mobility model [6] or the radiation model [8]
that reproduce the empirical findings to large extent and
provide mechanisms for the discovered scaling laws and
scales of human travel. For a comparison of these models
to the empirical findings see Figs. 2 and 4.
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Discovering urban and country dynamics from mobile phone 
data with spatial correlation patterns 
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Barbara Furlettia, Fosca Giannottia, Zbigniew Smoredab, Cezary Ziemlickib 
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Abstract 

Based on data coming from mobile communication infrastructures, this paper proposes an analytical process aimed at 
extracting interconnections between different areas of the city that emerge from highly correlated temporal variations of 
population local densities. The proposed methods are experimented on two real scenarios of different spatial scale: the Paris 
Region and the whole France.  

1  Introduction and objectives 
In recent years massive mobile phone location data have been studied and shown to have great potential to model human 
mobility (González et al., 2008; Song et al., 2010). In particular, studies on long-term mobility data proved how this kind of 
data could be important for urban planning and transportation studies (Reades et al., 2007; Calabrese et al., 2011). The 
difficulty to conduct classical travel surveys using self-report records (diaries or questionnaires) as well as the growing need 
to collect longitudinal data have drawn attention to automatic mobile phone data collection systems (Wang et al., 2010). 
However, one of the main difficulties with mobile phone data is the incompleteness of the users’ traces. In fact, people are 
localized only when they are using their phone (calling or sending SMS); it leads to several problems in finding mobility 
patterns by means of classical data mining algorithms. Recent experiences using mobile phone data have shown that they 
can provide a good understanding of how the density of population changes during the day in various regions of a given 
(urban or larger) area, the existing body of research appears to be mostly focused on the discovery of local phenomena, such 
as increases of population, or simple flows of population between pairs of regions. On the contrary, the dynamics of a city 
naturally create links of several different natures between regions of the city, sometimes even very far apart: some regions 
tend to get congested together as response to some external event (e.g. intense precipitations); others might be connected 
through a cause-effect chain, where the population of a region flows from one to the other in exceptional measure when the 
former exceeds some levels of saturation. In this paper, we propose a new pattern definition, correlation pattern, which 
tackles the problem of finding correlations between areas using the presence of cellphone users. The proposed algorithm 
and tools are integrated in an existing mobility data analysis platform: M-Atlas (Giannotti et al., 2011), thus allowing the 
analyst to take advantage of all the pre-existing features. Our approach is based on the observation that the density 
distribution of population tends to be regular (periodic) in almost all regions. That is the result of the sum of several routine 
human activities such as going to work, going to school, etc. which are constantly generated by the same residents, as well 
as more random activities due to tourism, use of services (e.g., shopping, leisure activities), generated by different people 
yet yielding overall stable densities. Therefore, finding evidence of connections between areas by simply looking at raw 
densities would essentially lead to link everything to everything. A more promising approach, therefore, consists in looking 
for exceptions to regular behaviors. Following this idea, we start by searching events that represent significant deviations 
from regular trends, and locate them in space and time. Then, we try to detect recurrent combinations of events, therefore 
extracting frequent patterns of deviations. The types of patterns we look for essentially have the form of sequential patterns 
and are defined as follows: 
 
DEFINITION 1. Correlation patterns. A correlation pattern (C-pattern) is a sequence D = <D1,…,Dn> of sets of events, 
where Di = {d1,…,dm} is a set of events, each defined as dj = (sj, wj): sj is a spatial region and wj is the weight associated to 
the event. 
 
A C-pattern describes a set of regions that often experience a (significant) deviation from their common behavior, and do 
that either at the same time (in the case the events belong to the same event set) or at different times (if they belong to 
different event sets) but always in the specific order described by the pattern. 
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2  Methodology 
In order to support the detection of the events and patterns mentioned above, in this section we introduce methods and 
algorithms to achieve three basic objectives: first, detect the locations and times where relevant variations of population take 
place; second, infer from them more complex patterns that link regions where variations tend to appear together or in some 
constant sequence; finally, navigate the discovered patters along the spatial and temporal dimensions, and enrich patterns 
with additional information (derived from raw data) to help their interpretation. 
Stop Detection. The main concept behind our work is the population presence in a spatial region. Such presence can be 
estimated through mobile phone data in various ways, mainly depending on whether the presence measure for a region 
(within a time window) should include only users that stopped in the region or it should also count users that simply crossed 
it while moving towards a different destination. In particular, we propose a stop detection criterion inspired by Palma et al. 
(2008), where spatial positions and time intervals are used instead of the speed: a stop for user uid is any ordered pair (pk, 
pm) of mobile phone points such that their location is the same ((pi.x, pi.y)=(pk.x, pk.y)), between them there are no points in 
different locations, and the temporal distance between them is longer than a given minimum duration threshold. 
Density estimation and events detection. The basic elements of correlation patterns are the single events, which represent 
all the relevant variations of population for a given region. In this work, in particular, events are computed by comparing the 
density of population within a region in a given moment against the expected density for that area at that hour of the day. 
After partitioning the space into regions and time into time-slots of appropriate size (given by the user), the input data is 
divided into a training and a test dataset. For both datasets the spatiotemporal grid of densities is computed. The first is used 
to compute the expected densities of a typical period for each region. The second dataset is then compared against such 
typical period in order to detect significant deviations. For instance, we might obtain an expected density for each pair 
(region, hour of the day), i.e., 24 values for each region, assuming 24 one-hour time-slots. Then, for each region and each 
time-slot, the corresponding density is compared against its expected value: if the difference is significant (another 
parameter of the method), an event of form (region, weight, time slot) is produced, representing its spatiotemporal slot and a 
discretized measure (weight) of how strong was the deviation.  
C-patterns extraction. The extraction of C-patterns focuses on those patterns that appear frequently, i.e. they occur with 
some given minimum frequency. In particular, C-patterns are computed as sequential patterns over the dataset of events 
obtained in the previous step. To do that, we employ a simple extension of the standard SPAM (Agrawal & Srikant, 1995) 
that integrates spatial and temporal constraints, as well as the extraction of maximal and closed patterns. Finally, only the C-
patterns that show a high correlation are retained, the latter being evaluated by an ad hoc variant of the standard lift index 
defined for item sets, expressing the ratio between the actual frequency of the pattern and its expected frequency, computed 
under the assumption of complete independence between events. 
Spatial and temporal navigation of C-patterns. Adopting a hierarchical clustering method we are able to reorganize the 
patterns w.r.t. their temporal or spatial distributions in a tree structure. The result is a dendogram where each leaf represents 
a pattern and the intermediate nodes represent groups of similar patterns in terms of their temporal distribution. An example 
is shown in Figure 1(center), as produced by the tool that we implemented to cluster the temporal distributions. The tool can 
also visualize the temporal distribution of each intermediate node, as shown in Fig.1(bottom). It represents the typical 
distribution in its sub-tree (bold red line) with additional information about the minimum and maximum values of the group 
in each time interval (pink shadow). Practically, the analyst can study the dendogram at different levels in order to interpret 
group of patterns by their common temporal distribution, e.g., morning patterns as the patterns having all the occurrences in 
the morning. Analogously to the temporal navigation, it is possible to organize the patterns using their spatial component.  

3  Case studies 

In this section, we briefly summarize some of the results obtained by applying the methodology to extract patterns from two 
different CDR datasets: at a city level, covering Paris, and at a national level, covering all the French territory. 

Urban level: Paris. Figure 1 shows an example of results obtained, focused on the C-patterns that had the Charles De 
Gaulle Airport (CDG) as starting area. The lines connect the areas belonging to the same pattern. This result shows that all 
the major train stations are influenced by the airport, e.g., an increasing of +10% in the presences at CDG airport impacts on 
Gare de l’Est (train station) by a +10% in 2 hours at maximum. For better understanding of the phenomena, we analyze the 
temporal dimension of patterns (right part of the figure), since this chain of events may happen in different periods of a day. 
The temporal distribution shows that the patterns cover several parts of the day, suggesting a further drill-down navigation 
of the dendogram (possible through the GUI by a simple click on a node) to better separate patterns based on their temporal 
profile. On the right, a focus on two subtrees of the dendogram are shown, corresponding to the blue and green nodes. 
Beside a first differentiation on the temporal profile, the two subtrees correspond to significantly different spatial area. 
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Figure 1: A selection of C-patterns obtained on the Parisian area, starting from CDG airport. On the left, a spatial representation of all 
patterns selected; on the center, the dendogram (top) and hourly frequencies (bottom) of the temporal distribution of their occurrences; 
on the right, the temporal and spatial distribution of two subtrees of the dendogram. 

National level: France. A second analysis was performed at the national level, using departments as spatial units. The C-
patterns obtained are shown in Figure 2(left), with a focus on the Seine-Saint-Denis department (center), and the temporal 
distributions of the corresponding patterns (right). More in detail, we can notice that these patterns can be divided into in- 
and out-coming ones: the groups of patterns a,b,c,d,e move from the neighborhood departments to Seine-Saint-Denis, while 
patterns f,g,h move from Seine-Saint-Denis outwards. Also, we can notice that the incoming patterns are more present 
during mid-day or early afternoon, while the outcoming one are more present during the evening, with exceptions in e and f, 
since they have a two-peeks distribution which most likely follows the systematic movements of the area. 

 

Figure 2: A set of patterns extracted on France at the level of departments (left), a selection of patterns focused on Seine-Saint-Denis and 
the neighborhood departments (center), and the temporal profiles of the patterns (right).  

4  Conclusion 

We presented a new kind of pattern called C-pattern, aiming to discover hidden logic of connections between regions of a 
city (or other kinds of areas, at different scales), by analyzing frequently co-occurring changes in population densities. We 
have developed an extraction process to discover these patterns, and tested it on real cases studies at two different 
granularities (urban vs. national), showing examples of results and their temporal and spatial navigation. 
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Location Patterns of Mobile Users : A Large-Scale
Study

Ashwin Sridharan
AT&T Labs,
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Mobile devices have become a common accessory for a
large fraction of the population who carry and utilize it as
they move. The very nature of the wireless service allows the
network to record location of users on an almost continuous
basis via active and passive means. This has provided a con-
venient source of location information for large populations,
which in turn has spurred a large interest in the study human
mobility from various different perspectives.

In this abstract, our perspective is one of characterizing
the entire footprint or a location pattern of a user. Broadly
speaking, we define a location pattern of a user to be the set
of all locations (cell towers) touched by users when making
calls over an observation period. Location patterns possess
significant useful information and hence are interesting and
useful to study. For example, information regarding the range
covered by a user as well as characteristics of how a user
moves within the range, are important inputs for modeling and
sizing the paging ’zones’ to optimize paging load. Knowledge
about the size and shape of the footprint of the ensemble of
users based within a certain locale, e.g a city, allows us to
determine how far they range and in which direction, which
major routes they take, all of which are useful inputs for urban
and traffic planning. Last but not least, clearly such information
can be utilized in building mobility models, e.g. to determine
parameters related to the area covered by users, the directions
they choose, length of major routes etc.,.

In this work, we develop a systematic methodology that
utilizes geometric constructs to capture salient features of
location patterns such as their size, shape, or internal structure.
We apply these techniques to study the location patterns of
several million users extracted from a large nation-wide data
set comprising of several billion call data records, which record
the location of users over a period of 1 month with a spatial
granularity of a cell tower (meaning that the location of the
user is identified by the cell tower the user is associated with).
As explained in detail below, one of our main results is the
discovery that the distribution patterns of users in general,
at both nationwide and city levels, follow a statistical distri-
bution with a simple generative process, namely the Double
Pareto Log Normal distribution(DPLN ). Specifically, the
DPLN is an excellent fit to model the distribution of several
features of a location pattern, including its size, shape and
structure. In addition, we also show how these features can be
used to discern and compare human footprints across locales.

We characterize the location pattern of a user from two
aspects : a) the coverage spread of the pattern which relates
to its size and shape and b) the arrangement of points within

the pattern which relates to the movement of the user as well
as radio coverage.

A. Size, Shape and Structure of Location Patterns

The size and shape of the area covered by a location pattern
is one of its most basic features. In order to study this aspect,
we circumscribe the ’hull’ or boundary of each location pattern
with a simple geometric shape : a rectangle. We then focus on
studying properties of the rectangle, which are much more
amenable to analysis. The specific rectangle we choose is the
Minimum Area Bounding Rectangle (MABR) [6]. The MABR
covers the convex hull of all the points comprising the cell-
towers visited by the user (this includes air-travel)1 with the
least amount of area, which allows us to minimize the error
induced by this approximation in estimating the coverage area.
Once we circumscribe the pattern in a MABR , we study three
basic properties of the rectangle (and hence the pattern) : 1)
the area of the rectangle, 2) the skew defined as ratio of width
to length and 3) the orientation of the rectangle (with reference
to true north).

B. Clusters and Trajectories

In order to study the internal arrangement of points within
a location pattern, we classify points into structures that aim
to answer two intuitive questions with regards to movement :

• Does a user’s calling/movement pattern occur in a
contiguous area or is the movement disparate, i.e., the
user appears at distinctly apart locations?

• Does a user’s pattern contain trajectories, e.g.a high-
way route?

The first question, apart from providing an intuitive sense
of movement of the user, also has the benefit of characterizing
the radio coverage patterns in an area and can provide im-
portant information to design paging ’zones’ since it provides
information about the area in which a user is most likely to
make calls. To address this, we extract ’dense’ clusters of
points that would identify preferred ’areas’ of a user using
a modified version of the well-known dbScan [1] algorithm
that can identify clusters of arbitrary shape and size in the
presence of noise.

The second question is related to major routes that a user
may follow. Our interest is in identifying major routes followed

1The cell-towers are mapped to a 2−D space which is reasonably accurate
for small distances. In practice they actually reside on a 3D ellipsoid.
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by a user over the entire duration of observation rather than a
specific call. Since such movement would normally be along
roadways that (at least in the continental US) are generally
straight, we approximate the paths a user follows in the real
world as segments in 2D space and extract segments from the
set of points by applying a version of the Iterative-End-Point-
Fit (IEPF ) segment extraction algorithm [4] that includes a
pre-partitioning phase presented in [2]. We visually verified
the effectiveness of both the cluster and segment extraction
algorithms over several examples.

Having defined the geometric constructs that characterize
a location pattern, our objectives in applying them to our large
data-set are two-fold : First, study statistical properties of ac-
tual location patterns and in particular determine good models
that can characterize them. Second, utilize these constructs to
understand how user location patterns compare across various
geographical areas. For the latter, we computed and studied
location patterns of users at the nationwide level, as well as
for eleven cities : New York, San Francisco, Los Angeles,
Chicago, Boston, Seattle, Kansas City, Denver, Albuquerque,
Tulsa and Dallas.

C. Results

With respect to the first objective, we find rather surpris-
ingly that a single statistical distribution, the Double Pareto
LogNormal Distribution (or DPLN ) provides an excellent fit
for the area of the location patterns and internal clusters as
well as trajectory lengths of location patterns at both national
and city level.

The Double Pareto Log Normal Distribution is a four
parameter distribution (α, β, ν, τ) introduced by Reed ( [3]).
The complete DPLN distribution is given by :

f(x) =
αβ

α+ β

[
eαν +α2+τ2

x−α−1Φ(
log x− ν − ατ2

τ
) +

e−βτ+β
2τ2/2xβ−1Φc(

log x− ν + β2τ2

τ
)
]

(1)

where Φ is the Normal CDF of N(0, 1). An attractive property
of the DPLN distribution is that it arises via exponential
sampling of a generative process that was originally lognor-
mally distributed and then evolves as a Brownian process.
Consequently, this process can also be used as a basis to model
evolution of the empirical process being observed. Qualita-
tively speaking, on a log-log plot, the DPLN distribution is
characterized by two linear curves corresponding to the head
and tail of the distribution with slopes β − 1 and −(α + 1)
respectively and a log-hyperbolic middle section.

Our analysis shows that dPLN provides a very good
fit to empirical distributions of the size of location pattern
(approximated by MABR area), size of clusters as well as
trajectory lengths. Furthermore, this is observed to hold at both
the nationwide level as well as city-level.

Fig. 1 plots the empirical density function (1(a)) for the
area of the MABR of location patterns for users nationwide2.
In the same graph, we also plot the MLE fit of DPLN
distribution computed using the EM algorithm outlined in [3]
along with the associated parameters in the legend. Visually,

2We truncate the range of the x-axis such that y-axis values ≈ 10e− 6.

(a) PDF

(b) QQ Plot

Fig. 1. MABR Area : Nation

one can see that the DPLN is an excellent fit to the empirical
distribution. To further strengthen this assertion, Figure 1(b)
shows a quantile-quantile (QQ) plot between the empirical
data and samples generated from a DPLN distribution with
parameters from the MLE fit (the graph is on a log-scale) .
A clear linear relation is evident in the QQ plot between the
empirical data and random samples from the fitted DPLN
distribution up to about ≈ 1 million km2 thereby verifying
the goodness of the fit.

Fig. 2 shows the empirical distribution as well as the
DPLN fit and associated QQ plot for the size of location
pattern for users in New York. Again, we see the distribution
provides an excellent fit, albeit with different parameters. We
have observed that the DPLN distribution provides similarly
good fits for other features such as cluster size and trajectory
length at both nationwide and city scale. Further results are
available in [5].

The second aspect of our work involved comparing and
studying location patterns across different cities. For brevity,
we present a sample of our results in Fig. 3.

Fig. 3(a) compares the average MABR area3 per user
at each city. The graph gives a sense of the range that
users travel around each . For example, it shows that users
associated with dense urban areas such as New York, Boston,
Chicago, and Los Angeles have a smaller footprint than areas
such as Dallas, Denver, Kansas City, Tulsa or Albuquerque.
Overall, we observe that the typical average MABR area is
≈ 20, 000 km2 which translates to user range of about 150 km
in each direction (assuming equal length and breadth of the
MABR ).

The difference in orientation of the MABR as a function
of geography is explored in Fig. 3(b). We plot the empirical

3To ensure the measure stays city-specific, we computed the mean over
95% of the CDF mass since the tail values typically correspond to air travel.
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(a) PDF

(b) QQ Plot

Fig. 2. MABR Area : NewYork

density function of this metric for three representative locales
and compare it against the nationwide orientation. Note that the
x-axis in the figure ranges from −π to π and the y-axis is the
PDF. From the figure, the distribution for the ’Nationwide’ data
set is close to uniform indicating that at a global scale there is
no preferred direction, which is as expected: user footprints are
essentially oriented in independent random directions. Next,
the distribution for Dallas shows a few peaks indicating a slight
preference to certain directions of travel. The peaks get more
pronounced with New York and are most evident for Seattle,
suggesting that as an ensemble, the movement pattern in this
city is highly correlated (eg., everybody uses the same set of
few roads).

Finally, Fig. 3(c) provides a sample result from comparison
of the internal structure of the location patterns in the form
of average cluster size. Interestingly, we note that some cities,
specifically, Albuquerque, Tulsa, Kansas City, Dallas and San
Francisco have very large clusters which indicates that the
popular calling ’areas’ of users have a large range. In contrast,
New York and Los Angeles have very small clusters pointing
to a user calling pattern that is more concentrated. This
differentiation in behaviour can be useful to optimize network
paging [5].

In summary, we have developed a simple methodology
to analyze the location patterns of users and applied it to a
large nationwide data set of call data records. Our observation
that many salient features of location patterns can be modeled
by a single distribution, the DPLN , is one of the main
contributions, of particular interest given the simple generative
process of that distribution. In addition, we have also provided
a sample overview of results that show how our constructs
can be used to compare and understand the difference in user
footprints across different cities.

(a) Average MABR Area (95% cut-off)

(b) Distribution of orientation of MABR for a
few locations

(c) Cluster Size

Fig. 3. Comparison of Location Patterns
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A Multi-Scale Multi-Cultural Study of Commuting Patterns Incorporating Digital Traces 
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Abstract 

In this paper, we propose an extended radiation model to predict commuting flow OD matrix by 

performing a multi-scale study. The extended radiation model overcomes the shortcomings of 

both the gravity model and the radiation model. Unlike the gravity model, it has only one 

parameter which can be determined largely just by the study region size, so that the new model 

doesn’t necessarily need empirical OD matrices for parameter calibration. The added one 

parameter makes the new model more flexible than the original radiation model and thus can be 

applied to study regions of different scales. For countries without detailed census data but with 

rich cell phone data, we propose a cell phone user OD matrix expansion method so that we could 

gain insight of these regions’ commuting patterns from cell phone records. This method is 

validated and then tested on regions in three different continents. 

The results show that as a combination of the radiation model and the gravity model, the 

extended radiation model overcomes the shortcomings of each. We show that the radiation 

model is applicable to some certain scales. But it’s not flexible enough to adjust to the 

homogeneity of opportunities and varying scales. On the other hand, because of the large number 

of parameters the doubly constrained gravity model is flexible enough to fit to most given 

datasets, but the fitted parameters cannot be applied elsewhere. In the extended radiation model 

there is only one parameter  , but it’s enough to take into account the effect of the scale and the 

opportunity heterogeneity. Unlike the doubly constrained gravity model in which the values of 

parameters are totally unpredictable, the parameter is to a large extent predictable given the size 

of the study region. The results are validated on countries from four different continents. 

We use the Bay Area as an example to demonstrate that cell phone records is an ideal alternative 

for movement pattern analysis when traditional data sources are not available. Home and work 

locations are inferred at individual level and then aggregated to show its equivalence to the 

census data. The three different models’ prediction results for cell phone users are compared at 

different countries. These results show not only the applicability of each model, but also the 

unique commuting patterns in each country. 

The automatically collected geographical information data, the point of interest, is verified to be 

a suitable proxy for commuting generation rates. The potential of both the cell phone records and 

the point of interests can be further exploited in future studies. From cell phone records we can 
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reconstruct the activity chains and regularities in daily activity patterns at individual level, which 

are very hard to acquire by traditional survey methods. Together with digital footprints such as 

the point of interest or Foursquare records, non-commuting trips, which have higher flexibility, 

can also be traced. 
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Abstract

With the increasing availability of large-scale datasets that simultaneously capture hu-

man movements and social interactions, advances in human mobility and spatial net-

works have rapidly proliferated during the past years [1, 2], impacting in a meaningful

fashion a wide range of areas, from epidemic prevention and emergency response to ur-

ban planning and traffic forecasting [3, 4]. As human mobility and spatial networks have

developed in parallel, being pursued as separate lines of inquiry, we lack any known rela-

tionships between the quantities explored by them, despite the fact that they often study

the same systems and datasets. Here, by exploiting three different cell phone datasets, we

find a set of scaling relationships, mediated by a universal flux distribution, that link the

quantities characterizing human mobility and spatial networks, showing that the widely

studied scaling laws uncovered in the two areas represent two facets of the same under-

lying phenomena.

a Corresponding authors: pierre.deville@uclouvain.be, dashunwang@gmail.com
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INTRODUCTION

Our knowledge of the interplay between individual mobility and social network is limited, partly

due to the difficulty in collecting large-scale data that record, simultaneously, dynamical traces of

individual movements and social interactions. This situation is changing rapidly, however, thanks

to the pervasive use of mobile phones. Indeed, the records of mobile communications provide

extensive proxy of mobility patterns and social ties, by keeping track of each phone call between

any two parties and the localization in space and time of the party that initiates the call. These data,

collected by telecommunication carriers in a truly objective manner, serve as an unprecedented

social microscope helping us scrutinize the mobility patterns together with social structures.

DATA

To demonstrate the practical relevance and universality of our results, we compiled three large-

scale mobile phone datasets from three different countries in two continents:D1, that contains

1.3 Million users in a western European country and covers a period of one month; D2 is the

dataset from another European country that covers one year long period of around 6 Million users;

emphD3 is collected by the largest mobile phone carrier in Africa, covering a period of four years.

These three datasets, of same level of details yet with different demographics and scales, allow

us to assess the universality of previously reported scaling laws on individual mobility and spatial

networks in a systematic manner, and most importantly, lead us to uncover the scaling relationship

between these scaling laws, establishing the first formal link between the two fields.

RESULTS

The main result is the discovery of a scaling relationship between the exponent characterizing

spatial networks (β) and the exponent characterizing human movements (α) given by

β = αθ−δ. (1)

2
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where θ and δ are exponents characterizing the relationship between social and mobility fluxes and

are constant across the datasets.

The values of the exponents in Eq. 1 can be summarized in a table for all datasets and demon-

strate a good agreement between empirical measurements and our theoretical results.

Taken together, Eq. 1 offers an explicit link between human movements and social communi-

cations, showing that the social exponents characterizing the distance distribution (βr) and rank

distribution (βs) can be expressed in terms of the mobility exponents characterizing individual

movements (αr and αs). The relationship between these classes of exponents is mediated by a

universal flux distribution, which is independent of geography. This scaling relationship directly

bridges two fields that were perceived as distinct, showing that they represent different facets of a

deeper underlying reality, and offers us a powerful framework to derive the characteristics of one

field from those of the other.

CONCLUSION

The unexpected duality between human mobility and social communications opens a new av-

enue in many areas previously improbable, making it possible, for instance, predicting traffic flows

and transportation patterns by using communication volumes alone. Indeed, as technology con-

tinues to inundate us with increasingly detailed data on individual activities, the results presented

here are expected to have an increasing value, impacting all phenomena driven by human behavior,

from epidemic spreading and emergency response to traffic forecasting, urban planning and more.

[1] Gonzalez, M. C., Hidalgo, C. A., and Barabasi, A.-L. (2008) Nature 453(7196), 779–782.

[2] Candia, J., González, M. C., Wang, P., Schoenharl, T., Madey, G., and Barabási, A.-L. (2008) Journal

of Physics A: Mathematical and Theoretical 41(22), 224015.

[3] Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J., and Vespignani, A. (2007) PLoS Medicine 4(1),

e13.

[4] Helbing, D., Farkas, I., and Vicsek, T. (2000) Nature 407(6803), 487–490.
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Abstract

Introduction. The modeling of human mobility plays an essential role in the development of
realistic mathematical and computational models for the spatial spread of infectious diseases
[1]. When available, empirical data extracted from official census surveys have been successfully
used to integrate human movements into epidemic models [2, 3]. On the other hand, a range
of mobility models, such as gravity models [4] and radiation models [5], have been developed to
predict population movements in case of missing empirical data and have been used to fill this
gap in epidemic models [2, 6]. More recently, the use of spatially explicit mobile phone data
as a tool to investigate human mobility patterns has gained great popularity, leading to the
discovery of universal characteristics of individual mobility patterns [7, 8]. Similarly to other
approaches, mobile phone data can be used as a proxy for people movements and then integrated
into epidemic models, once proper scales of time and space are defined. For instance, recent epi-
demiological studies on malaria have used mobile phone data to estimate human movements in
countries where there is limited availability of official data on human mobility [9, 10]. However,
despite the variety of approaches, the impact of using different proxies for human movements in
epidemic models is still poorly understood. In particular, a comprehensive comparison between
different methods is urgently needed in order to assess the reliability of mobile phone data as a
proxy for human mobility.

Methods. In this paper we use a metapopulation network approach to address two main issues:
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Figure 1: Mobile phone coverage. Map of the ratio between the population estimated by
mobile phone records (Nmp

i ) and the census population (N c
i ) in the subdivisions of the European

countries under study. Blue regions are undersampled by the mobile phone dataset, while regions
that appear in green to red are oversampled.

(i) evaluating the adequacy of mobile phone data as a description of commuting patterns in Eu-
rope; (ii) evaluating the impact of using mobile phone data as a proxy for human movements in
epidemic models. To this aim, we compare the commuting networks extracted from the official
census surveys of three European countries to the corresponding proxy networks extracted from
three high resolution mobile phone datasets tracking the daily movements of millions of users.
For the first time we are in the position of examining, through a detailed statistical analysis,
the ability of mobile phone data to match the empirical commuting patterns reported by census
surveys, at different geographic scales in a set of European countries. Then, we directly compare
the outcomes of stochastic epidemics simulated on a metapopulation model that is based either
on the empirical commuting networks or on the mobile phone commuting networks. In this
analysis, we focus on the differences between the modeling approaches in terms of arrival times
(i.e. time of first infection) in a subpopulation and invasion paths from the source of the infec-
tion to the rest of the network. In addition, we perform the same analyses on a set of synthetic
networks generated using the radiation model and compare the results to those obtained using

Session 6 // Mobility modelling 2
Se

ss
io

n
6

2

24



the mobile phone networks.

Results. The statistical analysis reveals that mobile phone data can well predict the total
traffic, both incoming and outgoing, of a given node. Commuting flows estimated from mobile
phones are able to reproduce the topology of the census commuting network to a high level of
detail. Commuters’ flows are generally found to be in good agreement between the two sources of
data, however the agreement is not statistically significant because of the discrepancies emerging
in the total number of commuters estimated by mobile phones tracks, due to the presence of
sampling biases in the mobile phone dataset. Indeed, mobile phone data tend to overestimate
the magnitude of commuting flows between residence and workplace, especially in those regions
that are undersampled; hence, epidemics on mobile phone networks spread usually faster than
on census networks, leading to earlier arrival times for all the subpopulations. Discounting this
effect, the general epidemic behavior of the mobile phone commuting networks and the census
commuting networks shows a good and statistically significant agreement.

Conclusions. Statistical differences between empirical census data and commuting flows in-
ferred from mobile phone users can be relevant, but they do not essentially alter the outcomes of
simulated epidemics, especially if we consider those observables that are important for evaluating
strategies for disease control. Epidemic results are comparable to those obtained using synthetic
commuting networks generated by the radiation model. Our results confirm the valuable role
of mobile phone data to estimate population movements which can be integrated into spatial
epidemic models to provide support to public health policies.
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Human mobility models have myriad uses in mobile com-
puting research and other fields of study. Models that faith-
fully reproduce the movements of real people can help an-
swer questions in areas as varied as mobile sensing, oppor-
tunistic networking, urban planning, ecology, and epidemi-
ology. For example, a model of how people move around
a city can help evaluate whether a sensing application run-
ning on mobile phones would be able to attain the desired
geographic coverage.

Our work aims to produce accurate models of how large
populations move within different metropolitan areas. In
pursuit of this general aim, we have a number of more spe-
cific goals. Our first goal is to generate sequences of loca-
tions and associated times that capture how individuals move
between important places in their lives, such as home and
work. Previous work has shown that people spend most of
their time at a few such places [3, 4, 12]. Our second goal
is to aggregate the movements of many such individuals to
reproduce human densities over time at the geographic scale
of metropolitan areas. A model that operates at these scales
can help address important societal issues such as the en-
vironmental impact of home-to-work commutes. Our third
goal is to take into account how different metropolitan ar-
eas exhibit distinct mobility patterns due to differences in
geographic distributions of homes and jobs, transportation
infrastructures, and other factors. Previous work has shown
significant differences between cities along metrics such as
commute distances [4, 5, 6, 11].

Many human mobility models that fall short on one or
more of these goals have been proposed in the past. Some
models produce random motion that does not correspond to
actual mobility patterns, e.g., [8, 10]. Their lack of memory
about recurring movement patterns and of spatiotemporal re-
alism about population densities results in unrealistic motion
of modeled individuals. Some models are tailored to a small
geographic area such as a university campus, e.g., [9]. They
do not apply to larger geographic areas with more diverse
populations. Some models aim to be universal, e.g., [3], and
thus do not adapt to different geographic areas. There re-
mains a need for a realistic model that matches empirical
observations for large and distinct geographic areas.

This paper introduces a modeling approach that takes as

input certain spatial and temporal probability distributions
drawn from large populations of real people living across
wide geographic areas. An especially good source of these
distributions are the Call Detail Records (CDRs) maintained
by cellular network operators. Billions of cellphone users
worldwide keep their phones near them most of the time,
and the networks need to know the rough location of all ac-
tive phones to provide them with voice and data services.
CDRs contain information such as the time a voice call was
placed or a text message was received, as well as the iden-
tity of the cell tower with which the phone was associated
at that time. When joined with information about the loca-
tions of those towers, CDRs can serve as sporadic samples
of the approximate locations of the phone’s owner. A grow-
ing body of work has shown that information derived from
anonymized CDRs can accurately characterize many aspects
of human mobility [1, 2, 3, 4, 5, 6, 12].

With cellular network data becoming more available, it is
tempting to think that creating human mobility models from
such data should be easy. However, this is not the case. For
example, while CDRs readily yield insights into aggregate
population densities, they do not convey whether their as-
sociated locations correspond to home, work, or other im-
portant places for particular cellphone users. Without such
semantic information, it is difficult to abstract CDRs into
models applicable to scenarios, regions, or populations that
vary from those for which the real-life CDR data was col-
lected. Furthermore, both the spatial and temporal granular-
ity of CDR data is quite coarse. Spatially, CDRs are only ac-
curate to the granularity of celltower spacings. Temporally,
CDRs are only generated when phones are actively involved
in a voice call or text message. Our work makes key con-
tributions in overcoming the challenges stemming from lack
of semantic information and coarse granularity, to produce
usefully accurate models for arbitrary metropolitan regions.

Our modeling approach intelligently samples the spatial
and temporal probability distributions from CDRs, or other
population data, to generate sequences of locations and times
for any number of synthetic people in any region for which
the required distributions can be obtained. A generative model
derived from CDRs has flexibility, compactness, and avail-
ability advantages over using CDRs directly. First, our mod-
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Figure 1: Overview of the WHERE modeling approach.

els offer the option of perturbing the input distributions to
evaluate what-if scenarios, for example to consider how the
addition of a new residential or employment area might change
traffic patterns. In contrast, the original CDRs are difficult
to manipulate in meaningful ways. Second, our model for
a metropolitan area with a 50-mile radius can be stored as
a set of histograms that fit within 2 gigabytes. In contrast,
an anonymized CDR dataset for the same area occupied ap-
proximately 100 gigabytes. Finally, our models can be made
available to a larger research community because they do
not to reproduce the mobility pattern of any individual real
person. They thus avoid many of the privacy concerns asso-
ciated with source CDRs.

The final stage of our modeling approach produces loca-
tions and times in the form of synthetic CDRs. These syn-
thetic CDRs have the same format and call/text frequency
characteristics of real CDRs. They are modeled to approxi-
mate the actual movement patterns of users. Increased model
complexity results in more accurate movement patterns, which
in turn produces higher-fidelity synthetic CDRs. We chose
the CDR output format for several pragmatic reasons. One,
we can compare this output directly against real CDRs, our
best source of location information for large populations and
regions. Two, this output can plug in directly into the grow-
ing body of analysis software that uses CDRs as input.

In our full paper [7], we propose and evaluate WHERE
(“Work and Home Extracted REgions”), a region-scale mod-
eling approach. First, we identify the key properties of hu-
man movement, such as important locations and commute
distances, that need to be represented as probability distri-
butions. Then, we describe how these probability distribu-
tions can be used to generate synthetic CDRs for an arbitrary
number of synthetic people. Figure 1 summarizes the overall
flow of our approach.

We validate our approach by comparing the spatiotempo-
ral dynamics of synthetic populations generated by WHERE
to those of real populations. In particular, we use Earth
Mover’s Distance (EMD) as a metric to compare the spa-

tial population densities on an hourly basis for synthetic and
real CDR sequences. Our validation begins with stylized ex-
amples that confirm our models’ fidelity both quantitatively
and visually. We validate both at the aggregate level, where
simpler models may perform well, as well as at a finer gran-
ularity, which exposes the advantages of WHERE compared
to other models considered. We then scale up our validation
to large datasets containing real anonymized CDRs for the
Los Angeles (LA) and New York City (NY) metropolitan
areas. Our LA and NY datasets each span three months of
activity for hundreds of thousands of phones, yielding bil-
lions of location samples.

Recognizing that real CDRs are not available to all re-
searchers, we also evaluate models in which the same input
distributions are derived from publicly available US Census
data [13]. We show that models based on real CDRs closely
approximate the real populations and movements of these
cities. Models based on census data are also viable, but at a
loss of significant accuracy.

Finally, we present example applications of our modeling
approach. We create models for the LA and NY metropoli-
tan areas and use the resulting synthetic CDRs to perform
calculations that one may wish to perform on real CDRs.
We show that calculations performed on the WHERE model
produce far more accurate results than those performed on
more naive models. For example, we can calculate daily
ranges of travel that agree with real ranges, as well as per-
form more complex tasks such as investigating opportunistic
message propagation in large urban environments.

The overall contributions of our work are:

• We introduce an approach to modeling human mobility
patterns by generating fully synthetic CDRs from real-
world probability distributions.

• Our approach works at the scale of large metropolitan
areas and accounts for mobility differences between
metropolitan areas.

• We show that our technique is extensible to greater lev-
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els of precision by providing it more complete input
probability distributions (at the cost of increased model
complexity). For example, we can create WHERE2
models with only home and work locations, and WHERE3
models that include an additional important location.

• We validate our approach against large-scale location
datasets drawn from two major US metropolitan areas.
We compare our generated CDRs against real CDRs,
and show that our location distributions achieve more
than 4 times error reduction compared to a Random
Waypoint (RWP) model. Figure 2 shows these results
for the NY region.

• As an example of how our models can help answer
concrete questions about human mobility, we use our
synthetic CDRs to compute daily ranges of travel. Our
synthetic CDRs exhibit error at the median of less than
0.8 and 1 mile for NY and LA residents, respectively.
This accuracy constitutes a more than 14 times im-
provement over a Weighted Random Waypoint (WRWP)
model. Figure 3 shows these results for the NY region.

Please see our full paper [7] for additional details.
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Geographic Similarity Within Social Networks
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Civil and Environmental Engineering, MIT, Cambridge, MA 02139

I. INTRODUCTION

Each day over 3.5 billion people wake up in a city. They
commute to work, schedule meetings, and convene with
friends for dinner. Mobile phones are increasingly used
to coordinate these behaviors and they are collecting and
storing massive amounts of data along the way. Origi-
nally designed as communication devices, mobile phones
are exceptionally well-suited to measure social behaviors
such as who a person talks to, how often, and when. Now
innovations in hardware and software make it possible for
phones to provide high-resolution data on the geographic
location of their users. To better understand how cities
function and the behavior of those living in them, this
work analyzes social and geographic data collected by
roughly 800,000 mobile phones in two large cities in a
European country over a 15 month period. The goal is
to shed light on a simple, but important question: How
does a person’s social network affect how much and to
where they travel?

Much research has approached social behavior and mo-
bility separately. Studies have mapped the local and
global structure of large call networks [1, 2] and used
this structure to predict characteristics and activity pat-
terns of individuals [3]. Geographic data on its own
has revealed universal patterns of human mobility and
a surprisingly high amount of predictability to a person’s
movement [4–6]. Recent efforts have combined the two
data types. Correlations between the proximity of two
individuals and the likelihood they are friends [7, 8] have
proven especially important in the diffusion of informa-
tion [9, 10]. Moreover, predictions of where an individual
will be in the future are improved by incorporating in-
formation on the whereabouts of friends [11, 12]. Results
confirm humans as a social species, willing to travel to
be with friends and family [13].

However, these studies have been limited in their ap-
proach, seeking to predict movement to and from only a
small subset of places using only a few good friends. This
work addresses builds upon previous studies to more fully
understand the complexities of social behavior and mo-
bility.
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FIG. 1: A) We construct a social network where nodes
are users and links are weighted by the number of calls
between two individuals. For each user, E, we con-
struct an ego-network and rank social contacts based
on the number of calls with the ego. B) A location vec-
tor is constructed for each user by counting the num-
ber of calls made at each tower in the region. In this
diagram, four uses (including the ego) record calls at
3 locations. C) Finally, we measure the similarity be-
tween the movement of two users by calculating the co-
sine similarity of their location vectors. Users who visit
the same locations with the same relative frequency
will have locations vectors which point in the same di-
rection, thus giving a cosine similarity value of 1 while
users that do not share any visited locations in common
have a cosine similarity of 0.

II. METHODS

Figure 1 diagrams our metrology. For each city, we
begin by constructing a social network where links be-
tween two users are weighted by the number of calls be-
tween them. Locally, we construct an ego network con-
sisting of all users called by an individual and rank each
of these contacts by the number of calls between them
(Figure 1A). Globally, we assess how the geodesic dis-
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tance between two individuals relates to the similarity
of two user’s movement. To describe the mobility of a
person in a city, we construct it location vectors for each
individual. Given a set of T locations (in this case mobile
phone towers) in a city, construct a T-dimensional vector,
~u for each user where element ui is given by the number
of times a user calls from location i(Figure 1B). To assess
the similarity between the mobility patterns of two indi-
viduals, we compute the cosine similarity between their
vectors in this location space (Figure 1C).

III. RESULTS

We measure how the similarity of users changes with
the social relationship between them. Figure 2A shows
the average cosine similarity between two users separated
by a given geodesic distance d in the call network. The
similarity of location vectors for direct neighbors is 10
times that of two randomly chosen individuals. Signifi-
cantly higher similarity values are only measured between
individuals separated by up to three degrees (d = 3) in
the network.

Interpretation of these results is complicated by the
fact that individuals who live in an area are likely to
have access to similar places as well as being far more
likely to be friends. In order to measure the contribu-
tions of social and geographic proximity to similarity, we
compare four combinations of two variables: sharing or
not-sharing the same home and work locations and are
being or not-being direct neighbors in the call graph. We
find that sharing the same home and work locations with
a user contributes only slightly more to the similarity of
visits to other places than being direct contacts (Table
I).

TABLE I: Four groups are constructed from combina-
tions of (not) sharing the same home and work loca-
tions (+/-HW) and (not) making calls between them
(+/-F)

Similarity +HW -HW

+F 0.44 0.19

-F 0.25 0.04

Next, we explore how similarity changes with tie
strength and relative location importance. The insert
in Figure 2B shows that tie strength is highly correlated
with location similarity. An individual is nearly twice as
similar to the contact they call the most than to the 30th

ranked social contact. Furthermore, by randomizing lo-
cation data we find that having one-half to two-thirds of
the similarly between contacts is related to placing the
same relative importance on locations rather than simply
visiting the same places (regardless of how often).

The relative importance of a place is also correlated
with the social rank of a contact. We begin by calculating
the average similarity between a user and each of her 30
people she makes the most calls to. We then successively
remove locations from each user’s location vectors based
on importance and recalculate similarity. For example,
the first step sets the number of visits to each user’s most
visited location to 0, before recalculating similarity. The
second step sets visits to the top two most visited loca-
tions of all users to 0, and so on. Figure 2B shows that re-
moving the most visited location of all users dramatically
decreases the similarity between a person and their top 4
social contacts, but increases their similarity to contacts
5-30 (and to a random user). This suggests that indi-
viduals share their most visited location with their top
4 friends. Moreover, we see non-monotonic changes in
similarity over successive removals. We hypothesis that
regimes featuring increasing similarity reflect locations
that are not shared with social contacts (thus removing
them makes a user more similar to a contact), while the
reverse is true for regimes featuring decreasing similar-
ity. Moreover, these dynamics appear robust to changes
in the size of the space of possible locations to visit.

Finally, having explored the relationship between an
individual’s social behavior and where he or she moves,
we quantify the correlation between social behavior and
how much movement takes place. We focus on three
mobility metrics, the radius of gyration, number of towers
visited, and the entropy of those visits. As the degree of
an individual in the call network increases from 0 to 70,
we find that individuals travel farther, to more places,
and with in less predictability. However, this affect is
inverted for users with degree beyond 70. Moreover, we
find that, unlike other forms of social contagion [14], it
is only the number of connections that correlates with
mobility and not the structural diversity of them.

IV. FUTURE WORK

For future work, we hope to relate these findings to
the predictability of users in order to develop an ana-
lytic model that reproduces these patterns. We will also
explore the sensitivity of our measurements to the di-
mension of the location space and the length of the time
periods used.
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Late for Good
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In this work, we perform a large-scale experiment on human mobility by using smartphones as
sensors. To do so, we have developed an app continuously tracking significant displacements of
phones and providing in return to their user an attractive service. Contrary to standard tracking
procedures based on Call Detail Records, our methods offers the advantage of collecting data in
real-time, in an anonymous way, and without the constraints usually imposed by mobile phone
operators.

The last few years have witnessed the increasing use
of mobile phone devices as a way to collect social data
at a large-scale [1, 2]. Each of us carries a mobile phone,
almost continuously, and its sensors and online services
provide a more and more complete view on our life and
our environment. Our phone knows our whereabouts,
our friends, where we meet, our taste in music, etc. The
integration and monetization of these data by corpora-
tions raises alarming privacy issues. Yet, when treated
ethically and used for the common good, they also have
the potential to provide innovative ways to solve prob-
lems in areas such as public health, ecology or urban
planning [3, 4]. Examples include the automatic detec-
tion of dysfunctions in the transport infrastructure, and
the participatory report of ecological or epidemiological
data.

In the particular case of mobility tracking, two differ-
ent types of approach have been developed to extract
individual trajectories from mobile phone data. The first
approach exploits data already routinely collected by cel-
lular network or by online services. Examples include
Foursquare check-in data [5], or Call Detail Records of a
phone connecting to a cell tower [6, 7]. These data have
the advantage of being acquired for free and of being
analyzed at virtually no cost, but they have the disad-
vantage of being proprietary, often with strict confiden-
tiality agreements, and of variable quality. For instance,
CDRs are known to provide a sparse and heterogeneous
sampling of the trajectories, with a fairly poor spatial
resolution.

The second approach aims at tracking mobility in a
more controlled way, either by handing mobile devices to
a limited number of users, or by distributing software,
typically downloadable apps, tracking motion. However,
this approach either relies on ad-hoc infrastructure or on
the active participation of users, and it has, as a con-
sequence, been limited to small sample sizes so far [8].
The aim of our work is to address this limitation and
to explore the possibility to attract a large number of
individuals in a mobility tracking experiment. Because
the deployment of infrastructure is prohibitively expen-
sive at this scale, we focus on the development of apps
and their adoption by the broader public [9, 10]. To be
installed, an app needs to compete against thousands of
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FIG. 1: Time evolution of the total number of users and sub-
mitted delays. After an initial rapid growth, we are in a
steady regime, where the number of new users and delays is
roughly constant.

others and, typically, to be run continuously in the back-
ground of the phone OS despite its energy cost. To be
successful, the deployment of a tracking experiment thus
requires proper incentives for a user to participate. For
this reason, a majority of experiments have failed to reach
a large part of the population, and they have typically
been limited to circles of geeks, students and researchers.

In this work, we have developed an app for iPhones and
Android devices, called lateforgood [13], where we offer an
attractive service to the user, and not only the prospect
of participating in a research experiment. The app is ded-
icated to Belgian train users, and helps them keep track
of their train delays and submit a form for financial com-
pensation to the national train company [14]. Incentives
for the user are thus: money (paid by the train company
for delays), time and convenience (the otherwise tedious
form is automatically filled on our servers) but also the
important feeling of being heard by the train company
as a collective voice (the punctuality of train delays has
been the subject of animated debates in Belgium in the
last years).

In practice, the app works as follows. When it is first
opened, it starts tracking the motion of the user, in or-
der to detect closeby train stations. The app runs in
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FIG. 2: Geographical representation of train delays. Two
train stations are connected when a delay has been notified.
Darker lines correspond to more delays.

the background on the mobile device, using a technology
similar to the one used by openpath [11] to minimize im-
pact on battery life: the app does not record the position
continuously via GPS, but tracks only significant changes
in position determined by the device API, via GPS, WI-
FI access and triangulation of cell phone towers. When
the user re-opens the app to declare a train delay, a list
of likely official train schedules is proposed, based on re-
cent mobility patterns, and a delay can be declared and
uploaded to the user profile. When a sufficient number
of delays has been accumulated, a compensation form is
pre-filled and ready for download. Let us also stress that
the app uploads data to our servers only when the app is
used by its user. Moreover, the issue of privacy has been
considered carefully as no personal information is hold:
on our side, it is as if mobility patterns of anonymous
mobile phones were collected.

The experiment is still in its acquisition phase. Since
the launch of our service in November 2012, around 3500
users have downloaded it, among which 40% use it ac-
tively (Fig. 1). During this time period around 4000 de-
lays have been submitted, leading to 600000 data points
for the position of the users, and providing us with in-
formation on the main train lines in Belgium (Fig. 2).
We are currently developing algorithms to distinguish
between car and train mobility, to properly assign sam-
pled trajectories to train routes [12], including connec-
tions between train lines, and to uncover a list of train
lines and/or stations particularly affected by delays.
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Nowadays, the huge worldwide mobile-phone penetration is increasingly turning the mobile network into a

gigantic ubiquitous sensing platform, enabling large-scale analysis and applications. In recent years, mobile data-

based research reaches important conclusions about various aspects of human mobility patterns and trajectories.

But how accurately do these conclusions reflect the reality?

In order to evaluate the difference between the reality and the approximation methods, we study the error between

real human trajectory and the one obtained through mobile phone data using different interpolation methods (linear,

cubic, nearest, spline interpolations) and taking into consideration mobility parameters.

We use for this aim a dataset consisting of anonymous cellular phone signaling data, it consists of location

estimations for about one million devices in the Boston metropolitan area.

To evaluate the error between real human trajectories and the estimated ones, we fine-select data of those

smartphones holders with a lot of samplings, typically those data-plan users with persistent Internet connectivity due

to applications such as e-mail synch. Then, in order to reproduce artificial “normal user” sampling, we subsample

real data-plan smartphone quasi-continuous traces according to an experimental inter-event statistical distribution.

Therefore, we extract, from the real trajectory, a first random position then the corresponding next positions are

extracted according to the inter-event time distribution values.

Hence, given a real trajectory with a high number of positions, and its subsampling that reproduces normal user’s

activity, we apply an interpolation method to estimate the trajectory across the given points. Given the real trajectory

points Pi, we estimate its corresponding position in time in the estimated trajectory: P ′
i . Then we determine the

deviation between the two points]as the distance separating the exact position Pi to the estimated position P ′
i in

the interpolating curve joining the samples. To take into account mobility habits, we categorise the users depending

on their “radius of gyration” defined by the deviation of user positions from the user centroid position.

From extensive evaluations based on real cellular network data of the Boston metropolitan area, we show that

the linear interpolation offers the best estimation for sedentary people (with a small radius of gyration) and the

cubic one for commuters (having a big radius of gyration). Moreover, the nearest interpolation appears as the best
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(a) rg<=3km (b) 3km<rg<=10km

(c) 10km<rg<=32km (d) rg>32km

Fig. 1: Boxplots of trajectory error

Fig. 2: Probability density function of error

one for “ordinary people” doing regular stops and standard displacements (Figure 1).

Another important experimental finding is that trajectory estimation methods show different error regimes whether

used within or outside the “territory” of the user defined by the radius of gyration. The distribution of errors over

all users’ positions is approximated by a combination of two power law distributions joined by a breakpoint

(approximately equal to 2.2) for the different interpolation methods (Figure 2).

As a future work we aim to estimate the positions of hotspots in a region knowing only the mobility characteristics

of its residents.
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Abstract

Today, the urban computing scenario is emerging as a concept where human can be used as a component to  
probe city dynamics. The urban activities can be described by the close integration of ICT devices and  
humans. In the quest for creating sustainable livable cities, the deep understanding of urban mobility and 
space syntax is crucial importance. This research aims to explore and demonstrate the vast potential of using  
large mobile GPS dataset for the analysis of human activity and urban connectivity. The new type of mobile 
sensing data called “Auto-GPS” has been anonymously collected from 1.5 million people for a period of one 
year  in  Japan.  The  analysis  delivers  some  insights  on  interim  evolution  of  population  density,  urban 
connectivity and commuting choice. The results enable planner to better understanding of urban organism 
with more complete inclusion of urban activities and their evolution through space and time.

1    Introduction

How new technology can help cities manage and deliver a sustainable future. In the past few years, it has 
become possible to explicitly represent and account for time-space evolution of the entire city organism.  
Information and communication technology (ICT) has the unique capability of being able to capture the  
ever-increasing  amounts  of  information  generated  in  the  world  around  us,  especially  the  longitudinal  
information that enables us to investigate patterns of human mobility over time. Thus, the use of real-time 
information to manage and operate the city is no longer just an interesting experience but a viable alternative 
for future urban development.

In this research,  the analysis of mobile phone location,  namely “Auto-GPS”, has been used to serve as  
frameworks for the variety of measures of effective city planning. More specifically, we explore the use of 
location  information  from Auto-GPS to characterize  human  mobility  in  two major  aspects.  First  is  the 
commuting statistics and second is the city activity, how the change of activities in part of urban space can be 
detected over times.   

2      Dataset 

There were two datasets used in this study. The main dataset were collected from approximately 1.5 million 
mobile Auto-GPS users of a certain mobile phone service provided by a leading mobile phone operator in 
Japan. Under this service, handsets provide a regular stream of highly accurate location data, and thereby 
enable support services that are closely linked with the user’s behavior. Technically, an Auto-GPS-enabled 
handset position is measured within 5 min and sent through a network of registered services. (Fig.1) The data 
was recorded from August  2010 to October 2011.   In order to preserve user privacy,  Auto-GPS data is  
provided in a completely anonymous form to ensure privacy of personal information. 

Fig. 1 shows a graph of the average number of GPS points per day in this dataset.  A small sample of the raw  
data is shown in Fig 3.
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Fig. 1. The average number of GPS points per day is 37, indicating that Japanese users spent approximately  
3 hours traveling with their handset each day.

3  Results and Discussions

Finding the urban descriptive knowledge such as where/how/when/why of the people who use the area is one 
of the most important information for urban planners. Our first result attempted to explain where the people 
come from.  We constructed multiple criteria to define visitors in the area. We used the minimum stay of 30  
minutes and excluded people who have home and work location in the area. The maximum annual visit is set  
to 8 times as it  is the third quartile of the entire dataset.   The total annual visitors to Odaiba area was 
estimated at 80,463 people from 1.5 million total samples or 5.36% of the population.  Fig. 2 shows the 
choropleth map of estimate annual visitor. As expected, the closer prefecture the most likely people come  
from. There are some exception for the big cities such as Nagoya, Osaka, Fukuoka and Hokkaido where air  
transport services are operated  more often.

Fig. 2.  Estimate annual visitor to the Odaiba area by prefecture. 

  We continue observed the number of visitors in Odaiba per day,  it appears that the area are more popular  
during summer. This is because of the big event arranged by Fuji TV. The highest visit to Odaiba is on  
August  14  when  the  Tokyo  Bay  Grand  Fireworks  Festival  was  held.  The  second  most  visit  is  on  the 
Christmas Eve as the area is known as couple-y place. We notice a significant distinct drop in the number of  
visitors suddenly in March 11. It was the day of the earthquake magnitude 9.0 hit Japan in 2011, followed  
with the "radiation leakage" of 2 nuclear power plants in Fukushima prefecture.  We could captured 3 weeks 
of anomaly reduction in visiting the area before it returned to the normal situation.
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Fig. 3. Estimate daily visit to Odaiba area. The magnitude of anomalies can vary greatly between events,  
and this could lead to composite dominated by a few major events. 

Next, we visualized how different the activities between weekday and weekend by overlaid weekday stay 
points over the weekend. (Fig. 4) Surprisingly, there are several clusters that highly dominate over others at  
particular location.  By incorporating prior knowledges of the area and collection of news, it revealed clear  
evidence how the patterns created.  The location marked with “a” are complex buildings where shopping  
malls, hotels and restaurants are located in. This yield the similar distribution of both weekday and weekend. 
The “b” mark is an open space where we can see half of the area are more active during the weekend. This is  
because of the special events are usually held only on the weekend. The area in upper part are served as  
outdoor parking space and is the main area of Fuji TV summer event. This event is usually held for 3 months  
in summer regardless weekend or weekday. The “c” areas are event spaces that mainly occupied during 
weekend. The “d” areas are office building that is more dominant in weekend.  Please note that the d1 area is  
a construction area during our data collection period.

Fig.  5  provides  valuable  population  count 
information in each building of the entire year. The 
hight of 3D building corresponded to the number of 
visitors.  It  is  clear  that  Shopping malls,  restaurant 
and complex type buildings are the most destination 
place in Odaiba area.  All of them are 10 times more 
visitors than the office area.

6  Conclusions

 This  study explores  the potential  of  using  mobile 
Auto-GPS enables  in the new context  and broader 
advances  towards  the  understanding  of  today’s 
excessive  mobility.  The  finding  of  this  remarkable 
dataset is to capture the urban evolution from the real 
movement of people. The results display summarizes 
the  findings  of  the  comprehensive  and  creative 
process  using  Auto-GPS  data.  Finally,  the 
importance of this research ultimately lies on how it 
can  be  practically  applied  and  utilized  massive 
amount  of  high  accurate  GPS  data  for  future 
sustainable urban development.

Fig.  4.  Comparison  of  estimated  people  activities 
between weekday (yellow) and weekend (red).
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Introduction 

Interpretative tools for the identification of mobility 

practices in the contemporary metropolis are needed, 

not only for the some known limitations of traditional 

data sources but also because new forms of mobility 

are emerging, describing new city dynamics and time-

variations in the use of urban spaces by temporary 

populations. In Italy, the traditional data sources for 

urban and mobility investigations (ie surveys, census) 

have some known limitations, including the high cost 

of surveys, the difficulty of data updating, the 

difficulty of describing city dynamics and time 

dependent variations in intensity of urban spaces 

usages by temporary populations at different scales. 

New forms of mobility are changing the way in which 

urban spaces are used. They are characterized both by 

being based on the use of transportation system, and 

by the efficient appropriation of information 

technologies (internet, mobile phones). As underlined 

by some authors (Ehrenberg, 1995; Urry, 2000; 

Kaufmann, 2002; Ascher, 2004; Bourdin, 2005; 

Scheller et al. 2006), changes in management of 

mobility in contemporary cities are a useful key for 

understanding the transformations of times, places 

and modes of social life and work programs, 

structuring the metropolitan areas. 

Considering the role of mobility practices in social and 

spatial differentiation, it becomes important to 

formulate pertinent analytical approaches, aimed at 

describing the different densities of use of the city as a 

new challenge and a prerequisite for understanding 

the city and its dynamics. 

Hence, from an analytical point of view, it becomes 

important to accompany the traditional quantitative 

approaches referred to a geographic displacement 

that tends to focus on movement in space and time, in 

an aggregate way and for limited periods, with data 

sources able to describing fine grain over-time 

variation in urban movements. 

In this direction, an interesting contribution may 

come from mobile phone network data as a potential 

tool for the development of real-time monitoring, 

useful to describe the urban dynamics as it has been 

tested in several experimental studies (Ahas et al., 

2005; Ratti et al., 2006; Gonzales et al., 2008). 

In this general context, we used mobile phone data 

provided by Telecom Italia, the main Italian operator, 

in form of aggregated mobility traces in order to test 

the potentialities of this information to identify 

temporary populations and different forms of mobility 

that structure the relationships in the contemporary 

city and to propose diversified management policies 

and mobility services that city users require, 

increasing the efficiency of the supply of public 

services. 

Methodology 

Milan is placed in an urban region which goes far 

beyond its administrative boundaries (fig.1). The core 

city and the whole urban area have been affected in 

the last 20 years by changes in their spatial structures 

and have generated new relationships between the 

centre and suburbs. At the moment, the urban region 

of Milan is a densely populated, integrated area where 

4.000.000 inhabitants live, where there are 370.000 

firms and large flows of people moving daily in this 

wide area (Balducci et al., 2010). 

 
Figure 1 - Map of built-up areas in the Milan urban 

region (2007). 

We used localized and aggregated tracks of 

anonymized mobile phone users. The data set was 

collected in different working days (five Wednesday 

in July, August, September, October and November 

2012). In this case the available information was the 

geolocation of users’ mobile phone activity in time 

and in space. With mobile phone activity we intend 

each interaction of the device with the mobile phone 

network (i.e. calls received or made, SMSs sent or 

Session 7 // Trajectories and regularities 4
Se

ss
io

n
7

4

42



received, internet connections, etc..). This information 

was available at the level of the antenna which 

handled the activity. 

We performed an aggregation of the information 

related to individual cells (antennas) in order to 

obtain useful polygon elements which could gave us 

the possibility to map and to interpret main spatial 

patterns of mobile phone users’ mobility. The 

aggregation was determined by means of the 

application of an algorithm of hierarchical clustering 

of the location of the antennas, resulting in 526 

polygons. The final zoning has been obtained by 

calibrating the algorithm in order to reach sufficiently 

balanced clusters (i.e. with an homogeneous number 

of antennas per polygon). Through a process of 

tessellation, we defined a set of polygons and it was 

therefore possible to map the direction and the 

intensity of mobile phone users’ movements at an 

hourly basis. Using this data, we performed an 

analysis aimed at evaluating the overall mobility of 

cell phone users in the Lombardia region. 

Aggregated tracks of mobile phone users 

The analysis of the activity of mobile phone users 

permitted to put in evidence the main hourly 

distribution of origin – destination movements of a 

huge sample of people (more than one million per 

day). 

We started from an hourly origin destination matrix 

(OD) of mobile phone users among the 526 zones 

obtained through the automatic clustering of 

antennas. For each zone it was available a set of 

directed connections towards the other zones of the 

aggregation and for each connection it was available 

the number of traced users.  

Our goal was to display prevalent fluxes of mobility at 

different hour of a typical working day through a 

visualisation of the sum vector moving from each 

zone. The sum vector is the single vector resulting 

from the sum of all the single connections between 

each zone and the others and is characterized by two 

dimensions: the magnitude, which is function of the 

magnitudes of the original vectors and the angle 

which expresses the direction of the flux. The sum 

vectors have been finally applied to each zone of the 

automatic clustering of antennas. 

A set of maps of the sum vector moving from each 

zone at different hours has been produced in order to 

highlight the main patterns of mobility during a 

typical working day. In the maps the dimension of the 

arrow is proportional to the absolute value of the sum 

vector and is therefore related to the prevalent fluxes 

of mobile phone users at specific hours. 

The convergence of travels toward the main centres 

during the morning, the more complex direction of 

movements during the afternoon, are some 

interesting phenomena emerging from our analysis.  

A broad use of the territory and an articulation of 

daily moves are visible every hour. The maps can be 

used as meaningful tools for monitoring the use of the 

infrastructural networks and of the urban spaces. On 

the one hand, the morning map (9pm; fig 2) confirm a 

polarization of movements towards the main centres 

offering job opportunities and highlights also the most 

commonly used infrastructures. On the other hand, 

the aggregated flows of mobile phone users in the 

afternoon (at 5 pm; fig 3, fig. 4) allow to recognize 

significant places for shopping and leisure, that are 

attended after work. This type of information is 

difficult, if not impossible, to monitor through 

conventional data at a comparable spatial and 

temporal resolution. 

Our analysis shows, in synthesis, a wide and dense use 

of the territories of the Milan urban region, a region in 

which the attractiveness of new places emerges from 

the mobility practices. The multi-directional mobility 

intensifies and describes a complex network of 

relationships such as the growing transversal travels 

that define a not hierarchical system of relationships 

in the most dynamic territories of the Milan urban 

region. 

 
Figure 2 - Aggregated flows of mobile phone users: 9 

am – 2011-10-19 

 

Figure 3 - Aggregated flows of mobile phone users: 5 

pm – 2011-10-19 
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Figure 4 – Milan city aggregated flows of mobile 

phone users: 5 pm – 2011-10-19 

The interested reader can visit our interactive web 

version of the map showing prevalent fluxes of 

mobility in a working day at the following URL: 

http://www.ladec.polimi.it/maps/od/fluxes.html . 

Implications for Policies  

The research allowed us to test the potential of mobile 

phone data in explaining relevant urban usage and 

mobility patterns at the Milan urban region scale that 

can be hardly intercepted through traditional data 

source. This opens new implications for the urban 

research community which needs to elaborate new 

strategies to integrate traditional data with user 

generated data, such as mobile phone activity, in 

order to achieve a better comprehension of urban 

usages, in time and in space. Describing the trends of 

use of the urban spaces, the maps of mobile phone 

data give important information for mobility policies: 

the lack of coincidence between the mobility practices 

in the peak hours in the morning and in the afternoon 

when the chains of displacements are very articulate 

and complex, allows to recognize not only the 

variability in mobility practices, but also the places 

where these practices are occurring. 

The commuters between 8 am and 9 am, become city 

users between 5 pm and 7 pm. This phenomenon 

strictly affects land use and can pose new questions 

and indications also for transport policy. 

Indeed, if we overlaid the boundary of the 

institutional management of local public transport in 

the Milan area with the areas of mobility practices, 

taken from the mobile phone data, we could observe 

the "deep structural effects of the mobility of people 

on urban policies" and the obvious disconnection 

between fixed jurisdictions and “mobile factors" 

(Estèbe, 2008). 

The same data helps us to question some 

interpretations in the literature on the erratic 

behaviors of metropolitan populations and on the 

nomadism that characterizes the contemporary 

practices, that surveys on mobile phone data have 

already undertaken (Gonzales et al., 2008). 
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I. I NTRODUCTION

Analyzing the mobility patterns of cellphone users is a
challenging task, but also a great opportunity to better un-
derstand the human dynamics in a covered area. Although
recent studies show that human mobility in urban areas can
be predictable considering daily routines [1], cellphone carriers
still have difficulties for planning the necessary communication
infrastructure to support the unusual workload that arises
during large-scale events [2]. Such events typically involve
a large number of people within an urban area, such as the
final match of a soccer championship, a major rock concert
(e.g., Rock in Rio), New Year’s Eve celebrations, a religious
pilgrimage, political manifestations, or the Olympics.

We here consider a large-scale event to be characterized
by a huge number of people with similar interests directly
related to the event’s main subject who move towards/from
a specific place in order to participate on a set of collective
activities during a period of time. Even though many of these
large-scale events are scheduled and planned in advance, and
are expected to cause collective changes in the mobile phone
workload [3], it remains common to notice the congestion of
the carrier’s resources during them.

In this paper, we present our on-going work towards un-
derstanding the human mobility and the workload dynamics of
mobile phone networks due to large-scale events. To that end,
we analyze the impact of some types of large-scale events on
the workload of a mobile phone network. We use our recently
proposed methodology [4], applying it to real anonymized
mobile phone datasets provided by a major mobile operator in
Brazil. Whereas in [4] the methodology was applied to datasets
collected during major Brazilian soccer matches, we here apply
it to a different type of large-scale event: New Year’s Eve
celebrations in three large Brazilian cities. Our results could
be used to improve the understanding of human mobility in
urban areas due to large-scale events, thus contributing tothe
network management of the mobile phone operators and also
to the development of new applications and devices.

II. RELATED WORK

Better understanding the dynamics of the workload im-
posed on mobile phone networks is increasingly gaining
attention from different research efforts [5]. The prediction
of user mobility patterns can help, for instance, detecting
routine patterns [6], urban planning efforts (e.g., urban traffic
planning [7]), and public health management (e.g., disease
spread control [8]). Other authors argue that characteristics of
the network workload can be exploited to identify the kind
of events users are experiencing (e.g., an emergency or a
concert) [3].

Two previous studies are particularly related to our project.
Batty et al. [9] analyze human dynamics and social interactions
of mobile phone users during large-scale events and Cal-
abrese et al. [10] investigate the relationship between different
types of events and the home area of the attendees.

We have recently developed a methodology to analyze the
workload dynamics of a mobile phone network during large-
scale events, with an initial focus on soccer matches [4]. In
that work, we characterized how mobile phone users move
during part of the day, around the time and location where
major soccer matches took place. We analyzed soccer matches
in the same location (one soccer stadium) on different days,
aiming at comparing the workloads imposed on the carrier’s
infrastructure (the same set of antennas near the stadium) on
days with and without matches. The analysis from a single
point of interest also makes it easier to determine how people
move towards the stadium before the match starts and where
they go afterwards, following an approach similar to [10].

In this paper, we apply our proposed methodology to
analyze another kind of large-scale event, i.e. New Year’s Eve
celebrations, similar to what has been done by [9]. We also
include in our study the analysis of three new metrics: (i) call
durations, (ii) call inter-arrival, and (iii) call inter-departure
times, extending what was done in our previous work [4].
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Fig. 1. Timeline adopted in our methodology.

III. PROPOSED METHODOLOGY

Our proposed methodology [4] aims at providing insights
for better management and capacity planning of the carrier’s
infrastructure to support the demands of cellphone users due
to their mobility during large-scale events. Basically, our
methodology is designed with the purpose of answering three
main questions: (i)who moved towards the surroundings of
the large-scale event when it took place?(ii) where did they
come from?and (iii) where did they go after the event?

Towards answering such questions, we restrict our analysis
to cellphone calls made during a period of time around the
event time. Specifically, we adopt thetimelinenotation shown
in Figure 1, which is discussed next.

The first step of our methodology is to identify the antennas
that cover the region where the event was held. We then select
the users who made at least one cellphone call in one of
the selected antennas before and after the event. To that end,
we define thePre-Eventand Post-Eventperiods as the time
intervals that cover thek minutes preceding the beginning
of the event and following its end, respectively. We refer
to the period from the beginning ofPre-Eventuntil the end
of Post-Event, including the event’s total duration, astevent.
Users who made at least one call duringtevent in one of the
selected antennas are consideredattendees. The durations of
these time intervals, i.e., determiningk, somewhat depends on
local aspects and on the event characteristics.

In the second step, we identify the subset of event attendees
who also made calls before the beginning (i.e., beforePre-
Event) or after the end (i.e., afterPost-Event) of the event.
These calls allow us to track the movements of these users
before or after the event duration. Thus, our analysis of mobil-
ity patterns focuses on these selected users. To identify these
users, we define two other periods (tarrival and tdeparture)
corresponding to the time intervals before and after thetevent

period, respectively, during which people are moving towards
and arriving at the event place as well as departing from the
location.

At this point, the third and last step of our methodology,
we use the geolocation of the antennas to locate where each
call started and ended, thus determining from where the event
attendees (identified in the previous step) came and to where
they moved after the event. Ultimately, this enables us to
analyze the workload dynamics of the antennas located along
the main routes to and from where the large-scale event
takes place. To visualize such dynamics, we useheat maps1

to represent the intensity of activity in the mobile phone
network (the darker the color in the heat map, the larger the
number of calls received by the antenna in this area).

1Heat maps are generated using the Google Maps Javascript APIV3.

TABLE I. OVERVIEW OF THE DATASETS(EVENT DAYS IN BOLD).

# Calls Average
City Day done by # Attendees Calls per

Attendees Attendees
BH Dec 31, 2011 5187 1938 2.7
BH Jan 03, 2012 779 365 2.1

Recife Dec 31, 2011 9951 3566 2.8
Recife Jan 03, 2012 924 444 2.1

Salvador Dec 31, 2011 12826 7458 1.7
Salvador Jan 03, 2012 1019 689 1.5

Rio Dec 04, 2011 4284 1754 2.4
Rio Oct 30, 2011 1270 691 1.8

IV. RESULTS

Our methodology was applied to datasets containing mo-
bile phone calls made during the 2012 New Year’s Eve
celebrations in three large Brazilian cities: Belo Horizonte
(BH), Recife, and Salvador. The datasets contain for each call a
unique user identifier2, the geographical locations (latitude and
longitude) of the antennas where the call started and ended,as
well as the time instants when it started and ended.

To define the event location and associated antennas, we
considered large-scale New Year’s Eve celebrations organized
in each city, such as a celebration on a beach in Salvador which
received, reportedly, one million attendees. Six antennascov-
ered this area. The celebrations in BH and Recife, hosted in an
area covered by 3 antennas each, received around 100,000 and
10,000 people, respectively. Regarding the proposed timeline,
we considered the total period from 9:45PM to 2:30AM, with
the event starting at 11:15PM and lasting for 105 minutes.
We set the durations oftarrival, tdeparture, Pre-Eventand
Post-Eventto 45 minutes each. For comparison purposes, we
also analyzed other datasets from the same cities, collected
on January 3rd, 2012 (a day without event) using the same
antennas and timeline. Similarly, we compared these results
with those obtained for another type of large-scale event - a
soccer match in Rio on December 4th 2011 - reported in [4].
The antennas covering the location (stadium) of the match and
the timeline were defined using the same methodology, taking
the time and soccer match stadium into account. As basis for
comparison, we also analyzed data collected on October 30th
corresponding to the same antennas and timeline of the match.

Table I summarizes the analyzed datasets, presenting the
total numbers of calls and attendees. Note that the numbers
of calls are increased by a factor between 6.7 and 12.6 during
the New Year’s Eve celebrations (BH, Recife, and Salvador),
comparing with the numbers of a day without event at each
city. This could be expected if we consider the time (late at
night), the event nature, and the huge number of attendees.
Note also that the growth factor of the number of calls during
the soccer match, comparing with a day with no events in
Rio (two last rows of Table I), is lower (factor of 3.4).
This indicates the importance of the event nature for better
understanding the human mobility and the workload dynamics
of the mobile phone network.

To further understand the characteristics of the workload
imposed on the selected antennas during each event, Figure
2 shows the numbers of calls made by attendees of the

2This id is generated by the cellphone carrier. It is completely anonymized,
and thus, cannot be used for identifying the user; although,it allows us to
identify multiple calls made by the same user in different points in time.
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Fig. 2. Calls made by attendees of Recife’s New Year’s Eve (Dec 31, 2011),
at one soccer match in Rio (Dec 04, 2011), and on two days with no large-scale
event in Rio (Oct 30, 2011) or in Recife (Jan 03, 2012).

celebration in Recife, in successive 15-minute time bins during
tevent. For comparison purposes, corresponding results for a
day with a soccer match (Dec 04, 2011) and two days without
event (Oct 30, 2011 in Rio and Jan 03, 2012 in Recife) are
also shown in Figure 2. This figure shows that, for the day of
Recife’s New Year’s Eve, the number of calls peaks at around
midnight (bins 6–8), dropping quickly after the celebration
finishes. For a soccer match and regular days, instead, the
number of calls shows different patterns, decreasing sharply
in the ending oftevent. Results for the other cities are very
similar, being thus omitted.

Call durations, inter-arrival times (IAT), and inter-departure
times (IDTs) are key metrics for capacity management and
planning as they allow us to assess whether an antenna
throughput is meeting its imposed load. We computed all
these metrics over 15-minute intervals for each New Year’s
Eve celebration and soccer matches. In general, all events are
typically composed of a large volume of short calls. We also
observed that the average of IATs and IDTs are similar for each
celebration and slightly different of days with soccer matches.
This also points out the difference of the workload imposed
on a mobile phone network during events of distinct nature.

Finally, in our methodology, we use heat maps to analyze
the mobility of event attendees before, during and after the
analyzed events, which allows us to infer the most used access
routes to/from the event’s location. Figures 3 and 4 show the
heat maps produced for thetarrival and tevent periods of the
New Year’s Eve celebration in Salvador. The observation of
these heat maps in sequence illustrates human mobility towards
the location of the large-scale event.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we extended our recently proposed method-
ology [4], applying it to analyze human mobility and the
workload dynamics of a mobile phone network during large-
scale events. Our results show that user behavior patterns that
arise during different kinds of events can be used to analyze
phenomena related to human mobility due to such events. As
future work, we intend to expand our analysis to include other
types of large-scale events, like major concerts. We believe
that identifying mobility patterns based on cellphone calls
during large-scale events can drive the development of target
applications and gadgets tailored for such events.

Fig. 3. Heat map of New Year’s Eve at Salvador during itstarrival.

Fig. 4. Heat map of New Year’s Eve at Salvador during itstevent .
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The Social Amplifier – Reaction of Human
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Alfred Bruckstein, Alex (Sandy) Pentland and David Lazer

I. INTRODUCTION

Imagine a scenario where some set of individuals witness
an extraordinary event which impels them to communicate
regarding that event to other individuals, who in turn will
communicate with yet others. In this scenario, it is possible
for an external observer to witness the fact of communication,
but not the content. How might that observer effectively make
the inference that an extraordinary event has occurred?

This is in fact a plausible scenario, with the existence of
communication systems (most notably phones) where timing
and volume of traffic is observed, but (typically) not content.
Mobile phones are particularly notable in this regard, because
of how pervasive they are. Here we build on work examining
detection of anomalous events in networks [2], but with the
focus on how to aggregate those signals in a computationally
efficient fashion. That is, if one cannot observe all nodes and
edges, how best to sample the network?

Analyzing the spreading of information has long been the
central focus in the study of social networks for the last
decade [4], [5]. One of the main challenges associated with
modeling of behavioral dynamics in social communities with
respect to anomalous external events stems from the fact that
it often involves stochastic generative processes. A further
challenge is the trade off that exists between coverage and pre-
diction accuracy [1]. While simulations on realizations from
these models can help explore the properties of networks [3],
a theoretical analysis is much more appealing and robust. The
results presented in this work are based on a pure theoretical
analysis, validated both by extensive simulations as well as by
real world data derived from a unique dataset.
Contribution: In this work we present an innovative approach
for studying the network dimension of the changes that take
place in social communities in the presence of emergencies.
We do so using a mechanism we call a “Social Amplifier” –
a method for analyzing local sub-networks spanning certain
high-volume network nodes. The innovation in our proposed
approach is twofold: (a) using a non-uniform sampling of the
network (namely, focusing on activity in the social vicinity of

Y. Altshuler, E. Shmueli and A. Pentland are with MIT Media Lab. E-mail:
{yanival,shmueli,sandy}@media.mit.edu.

M. Fire and Y. Elovici are with Deutsche Telekom Lab & Depart-
ment of Information Systems Engineering, Ben-Gurion University. E-mail:
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A.M. Bruckstein is with Computer Science Department, Technion. E-mail:
freddy@cs.technion.ac.il

D. Lazer is with College of Computer and Information Science & Depart-
ment of Political Science, Northeastern University. E-mail: d.lazer@neu.edu

network hubs), and (b) projecting the network activity into a
multi-dimensional feature space spanned around a multitude of
topological network properties. We show using both simulation
and real world data that starting certain coverage level of the
network, our method outperforms the use of either random
sampling, as well as single signal analysis.

II. THE SOCIAL AMPLIFIER

The proposed method is comprised of three stages as
follows.

In the initial stage, we track the traffic volume in the
network’s nodes, looking for hubs – nodes with high traffic
(either incoming or outgoing). The rationale behind the use
of hubs is that hubs are highly likely to be exposed to new
information, due to their high degree.

Given available resources ε, we select network nodes,
v1, . . . , vn such that those nodes have the highest degrees in
the network and the set SM =

⋃
1≤i≤nE

1.5(vi) does not
contain more than ε portion of the edges, where E1.5(v) denote
the 1.5 ego-network around node v, that is – the edges between
v and all of v’s neighbors, as well as the edges between v’s
neighbors and themselves.

The use of the 1.5 ego-network is required in order to
analyze not only the overall number of calls in the network
(sampled by the hubs), as done in works such as [2], but
rather to generate the actual networks around the hubs, in
order to enable their in-depth analysis. More specifically,
analyzing only the overall number of calls, can only detect
massive global events, but not local ones (unless the local
events are known in advance, and the local data is analyzed
in retrospective).

In the second stage, for each day during the test period, and
each phone social network, we extract a set of 21 topological
features, such as the In Degree, Out Degree, Number of Strong
Connected Components, Subgraph Density, etc.

In the third stage, we detect anomalies in the dynamics of
the social network around the network hubs, using the Local-
Outlier-Factor (LOF) algorithm. Applying the LOF algorithm
on each hub, detects days which anomaly features occurred.
Then, by using ensemble of all the hubs, we detect which
dates have the highest probability for anomaly.

We do so by ranking each day according to the number of
hubs that reported it as anomalous. Then, for each day we
look at the 29 days that preceded it, and calculate the final
score of the day by its relative position in terms of anomaly-
score within those 30 days. Namely, a day would be reported
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as anomalous (e.g., likely to contain some emergency) if it is
“more anomalous” compared to the past month, in terms of the
number of hubs-centered social networks influenced during it.
Each day is given a score between 0 and 1, stating its relative
“anomaly location” within its preceding 30 days.

III. VALIDATION

A. Analytic Evaluation

Alongside its increased sensing capability, our proposed
mechanism has also an additional overhead, in terms of
additional edges that should be monitored, compared to the
standard approach of “number of calls analysis”. This is the
result of the following two reasons:
• Hubs: Due to their high degree, whenever the edges asso-

ciated with an additional hub are added to the monitored
edges set they increase its size substantially (unlike the
addition of a randomly selected node, that is expected to
be of a much lower degree).

• 1.5 Ego-Network: For some node v, although the number
of nodes in its 1 ego-network equals exactly the number
of nodes in its 1.5 ego-network, the latter is usually
expected to have substantially larger amount of edges.

We therefore write the utilization of the Social Amplifier
mechanism as follows :

E = EINITIAL + EAMPLIFIER + EDETECT (1)

whereas E is the “energy” supplied to the system for monitor-
ing some k edges, EINITIAL is the overhead spent on moni-
toring the first few hubs until we achieve good topographical
coverage of the network, EAMPLIFIER is the energy spent
on maintaining a 1.5 ego-network closure (that is, the number
of edges of the 1.5 ego-network minus the number of edges
at the 1 ego-network), and EDETECT denotes the resources
spent on the actual detection of the signal.

We note that EINITIAL decreases with the time it takes the
detection process to complete. In other words, as the event to
be detected is more explicit and broadly observed, it will be
detected using a shorter time, which implicitly increases the
relative portion of EINITIAL. We can therefore write :

EINITIAL ≈ α · E

for α ∈ [0, 1] the exposure coefficient of the event.
Notice that as the exposure coefficient of an event decreases,

it means that additional edges (and nodes) are required in order
to detect the event. For extreme low values of the exposure
coefficient there is no longer much difference between adding
“hubs” and adding random nodes (in terms of their degrees) to
the monitored set of nodes. This means that the ratio between
the number of edges between hubs’ neighbors and the edges
to and from the hubs increases, resulting in an increase in
EAMPLIFIER.

Namely, for high exposure coefficient values the ratio
between EAMPLIFIER and EDETECT is proportional to
the ratio between the average aggregate degrees of hubs’
neighbors and the average degree of the hubs themselves. For

low exposure coefficient values this ratio converges to 1
<k>

(denoting by < k > the average degree of the network) :

λ

kMAX
≤ EAMPLIFIER

EDETECT
≤ λ

< k >

denoting by kMAX the maximal degree, and for λ ≥ 1 being
the Social Amplification Constant of the network.

The same effect is obtained when the portion of the edges
being monitored ε changes, as low values for ε cause the ratio
EAMPLIFIER

EDETECT
to decrease, and very high values of it cause it

to converge to λ
<k> . We can therefore write :

EAMPLIFIER ≈
λ · EDETECT

< k > +αε(kMAX− < k >)
≈

≈ λ · EDETECT
< k > (1− αε) + αεkMAX

We shall therefore rewrite Equation 1 as follows :

EDETECT =
E · (1− α)

1 + λ
<k>(1−αε)+αεkMAX

(2)

Figure 1 illustrates the behavior of EDETECT as a function
of the changes in the exposure coefficient α and in the portion
of edges being monitored ε. Notice how EDETECT has a non-
monotonous dependency on α, obtaining a global maximum
for intermediate values.

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

Exposure coefficientPortion of edges under coverage

E
D

E
T

E
C

T

Fig. 1. The dependency of EDETECT on the exposure coefficient α and
on the number of edges being monitored. The illustration assumed kMAX =
10· < k >.

B. Simulation

The goal of our simulation was to check how the two
methods for selecting the subset of monitored edges (i.e. Social
Amplifier vs. Random) influence the time required to detect an
event. In order to achieve this goal we simulated the spreading
of events in generated scale-free graphs and measured the
time taken to detect those events when using the two different
methods for selecting the subset of monitored edges.

Our simulation included a tremendously large number of
executions (≈ 106) and used different parameters:
• cp - the coverage percentage of the mobile operator.
• w - the number of initial witnesses to the event.
• c - the confidence level, i.e., the minimum number of

“spreading edges” that need to be sensed in order to be
confident that an event has occurred.
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Following the analysis in Section III-A, we defined the
exposure coefficient, denoted by α, as α = log2(c)/w.

Fig. 2 shows the influence of α and cp on ∆(α, cp) where
∆(α, cp) is the mean difference in detection time (between
the two methods) over all executions with the given cp
and log2(c)/w = α. (Note that the original results were
smoothened with R = 0.804 and R2 = 0.646.) As shown in
the figure, for medium α values, the Social Amplifier method
outperforms the Random method. In addition, we observe that
in this range of medium α values, the advantage of the Social
Amplifier method increases with larger cp values.
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Fig. 2. The influence of α and cp on ∆(α, cp) as evaluated using simulative
environment. ∆(α, cp) is represented by the red area in the figure. The dark
grid represents the fixed z = 0 plane. Positive values of ∆(α, cp) mean an
advantage for the Hubs method.

Note that the efficiency of our method as illustrated in
Figure 2 closely resembles that of our analytic model, as
discussed in Section III-A (Equation 2 and Figure 1).

C. Real World Data

We also validated our method using a comprehensive
dataset, containing the entire internal calls as well as many of
the incoming and outgoing calls within a major mobile carrier
in a west European country, for a period of roughly 3 years.
During this period that mobile users have made approximately
12 billion phone calls. We used the company’s log files,
providing all phone calls (initiator, recipient, duration, and
timing) and SMS/MMS messages that the users exchange
within and outside the company’s network. All personal details
have been anonymized, and we have obtained IRB approval
to perform research on it.

For evaluating the Social Amplifier technique as an en-
hanced method for anomalies detection we have used a series
of anomalous events that took place in the mobile network
country, during the time where the call logs data was recorded.

We have divided the anomalies into the following three
groups : (1) “Concerts and Festivals” Events that are anoma-
lous, but whose existence is known in advance to a large
enough group of people; (2) “Small exposure events” Anoma-
lous events whose existence is unforeseen, and that were
limited in their effect; and (3) “Large exposure events”
Anomalous events whose existence is unforeseen, that affected
a large population.

For each of the events we used the method described in Sec-
tion II in order to rank each day between 0 and 1, according to
its “anomalousness”. This was done for increasingly growing
number of monitored edges, in order to track the evolution
of the detection accuracy. The result of this process was a
series of numeric vectors pairs: (VBASE ,VAMPLIFIED)|E|,
corresponding to the two networks used (e.g. the random
network sampling for VBASE and the social-amplified hubs-
sampling for VAMPLIFIED), for |E| edges which were mon-
itored. In addition, we created a binary vector V̂ having ‘1’
for anomalous days and ’0’ otherwise.

For |E| edges which were monitored we denote by
δ|E| the difference between the correlation coefficient of
VAMPLIFIED and V̂ , and the correlation coefficient of
VBASE and V̂ , namely :

δ|E| = CORR(VAMPLIFIED, V̂)− CORR(VBASE , V̂)

for (VBASE ,VAMPLIFIED)|E|, and for CORR(x, y) the
correlation coefficient function.

Notice that whereas δ|E| measures the delta in detection
accuracy, it has somewhat similar meaning to ∆(α, cp), which
measures delta in detection speed.

Figure 3 presents the values of δ|E| for number of monitored
edges between 300 and 800, for the three types of events.
Notice how the results strongly coincide with the analytic
model as is illustrated in Figure 1, as concerts and events have
the highest exposure value a, and the small exposure events
have the lowest value.
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Fig. 3. The changes in the value of δ|E| for growing numbers of edges being
analysed, segregated by the type of event detected. Notice how concerts and
festivals that have high exposure value a generate relatively lower values of
δ|E| (but still monotonously increase with |E|), while the small exposure
events are characterized by the highest values of δ|E|, specifically for low
values of |E|. It is important to note that a low value of δ|E| does not imply
that the accuracy of the detection itself is low, but rather that the difference
in accuracy is small.
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Detecting Face-to-face Meetings using Smartphone
Sensors
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Figure 1: The network composed of 466 most active dyads. 366 of them are among most active both on and outside of the campus
(orange edges), while 50 are only significantly active on (blue edges) and 50 outside of the campus (green edges). The campus-
centered subset is a good approximation of the whole network, but note that the bridging edges between distinct communities
occur only outside of the campus

ABSTRACT
Face-to-face meetings are used in computational social sci-
ence as one of the most prominent signals for discovering
social ties. Different methods have been used for recording
such meetings, for example video analysis, infrared sensors,
or more recently Bluetooth scanning using mobile phones. In
this paper we examine data collected during large computa-
tional social science study deployment (N=130 people). The
data is recorded using Funf framework[1] running on partic-
ipants’ smartphones. We perform Bluetooth and WiFi scan-
ning, location readings, and cell tower tracing, as well as data
collection from a campus-wide WiFi system.

Using a curated Bluetooth signal as a ground truth for face-
to-face meetings, we examine how this signal can be recov-
ered from other channels. Our main result is that interactions,
which occur on campus (and can thus be discovered using
the system WiFi), constitue a relevant approximation of all
the interactions among the participants. These findings may
be beneficial for 1) discovering co-location networks in con-
texts, where a WiFi system is already deployed, and using
additional mobile devices is not feasible, such as university
and company campuses, schools, and other institutions, 2)
planning more energy-efficient deployments of experiments
involving mobile devices, and 3) understanding how different
signals may introduce bias into analysis and conclusions.

Further, this contribution reports on a thorough examination
of the data in search of quality deficits, biases, and interplay
between the information channels and argue this to be cru-
cial step, before the data can be used to generate and verify
scientific hypotheses.

RESULTS OVERVIEW
We use our real world data to show the following:

• Interactions between the students, which can be observed
through a campus-only system WiFi network, can be suc-
cessfully used to estimate the proximity networks emerg-
ing between the participants also outside of campus, see
Figure 1. This finding indicates a possibility of deploying
co-location based studies in environments featuring a WiFi
network, without a need for buying additional hardware.

• User perspective WiFi is a rich source of information, be-
cause of inherent oversampling (Android forces often WiFi
scans whenever WiFi is enabled), giving comparable re-
sults accross participants (contrary to GSM towers where
the visibility dependents on the provider, users see the
same WiFi access points in the same location), and easy
recognition of dynamic and static contexts.

• GPS based location estimation has a low recall and pre-
cision in face-to-face meeting detection, due to transient
nature of contexts where the GPS signal is available.
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• GSM towers are a poor medium to study social interaction,
due to lack of data about their geographical position, incon-
sistent identifiers across providers, and very low precision.

• In an experiment where three phones located close to each
other periodically scan Bluetooth environment, a success-
ful diadic discovery between them occurs with a rate of ap-
prox. 75%. Thus, Bluetooth scan results cannot be directly
treated as ground truth without sensible preprocessing.
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1. INTRODUCTION
Being a large-scale ubiquitous mobility sensor, the mobile cellular
network provides valuable data for human mobility modeling [3]
and vehicular traffic analysis. So far, road traffic has been mainly
monitored by means of static sensors or derived from floating car
data. These approaches are either costly or significantly suffer from
the low fraction of vehicles captured.

In our study, we analyze the mobile cellular network signaling
data to infer road status and, specifically, congestion events in real-
time. One major novelty compared to most previous studies on the
topic [5] that considered only mobile phone data related to ‘active’
terminals (Call Detail Records), is the use of the more complete
signaling data provided by the network links near the Radio Ac-
cess Network (RAN) of the cellular network. This way, also the
position of ‘idle’ terminals can be observed on Location Area (LA)
level. On the downside, the LA level provides only coarse grained
location information. However, the overwhelming majority of the
mobile terminal population can be included leading to a much bet-
ter coverage of moving vehicles. This property is crucial, as we
have shown in [2, Section 4] that the exclusive observation of ‘ac-
tive’ terminals produces a biased picture of the overall human mo-
bility.

By validating our approach against four different data monitor-
ing datasets on a sample highway in Vienna, Austria (see Fig-
ure 1), over one month, we show that our method can indeed detect
congestions very accurately and in a timely manner. The cellular
dataset used comprises anonymized mobile cellular data of the sig-
naling traffic from 2G/3G cells of a real operational network over
31 days. For details of our work, refer also to [4].

2. METHODOLOGY
Our method builds mainly on leveraging location area and routing
area (for simplicity, we use LA to refer to both) updates to detect
congestion events; this part is termed ‘stage 1’. Additionally, we
introduced also a second stage (‘stage 2’) to include cell handovers
of ‘active’ terminals in order to localize congestions events more
precisely [4]. This second stage has the potential to differentiate
between congestions types as identified in road traffic research [6].

Figure 1: Excerpt of the sample highway, Vienna, Austria: to-
pography, cellular network, and traditional road sensors. De-
vices are tracked across LA2 based on events triggered in the
entry cells (south) of LA2 (start border area LA1/LA2) and the
entry cells (south) of LA3 (arrival border area LA2/LA3).

The stages differ in type and amount of cellular network signaling
events that are considered, and in terms of length and granularity
of the considered road section. Stage 1 offers a continuous estima-
tion of the travel times at large-scale with good terminal coverage
but with spatial accuracy limited by the large radii of LAs (up to
several kms), in urban areas comparatively small (5-10 km on our
target highway). Stage 2 offers higher spatial accuracy (up to few
hundred meters) but less terminal coverage. We remark that, in
general, it is not sufficient to rely exclusively on active terminals as
the coverage is too low. Stage 2 can be used to further localize the
area of congestion, but only after the congestion has been detected.

We will now focus on stage 1. The calculation of the travel time t
of one mobile terminal is processed as follows: Every time the mo-
bile terminal attaches to a cell belonging to a new LA, it emits an
LA update event. In order to identify the terminals traveling along
a target road segment, a suitable set of cells is pre-selected meeting
the following criteria: (i) the cells are located at the border of two
LAs and (ii) they are in close proximity of the target highway. We

Session 8 // Social data collection 2
Se

ss
io

n
8

2

54



Figure 2: Visualization of one day (June 30th, 2011): comparison of estimated travel times for mobile cellular data and speed
measured through fixed sensors during the day.

term these cells entry cells. Let now LA1, LA2, and LA3 be three
adjacent LAs crossed in sequence by a mobile terminal. The set of
entry cells of LA2 indicating a change from LA1 to LA2 is termed
border area LA1/LA2while the set of entry cells of LA3 indicating
a change from LA2 to LA3 is termed LA2/LA3.The mobile termi-
nal (vehicle) traveling from LA1 to LA3 will generate at least one
event in LA1/LA2 and one in LA2/LA3. The travel time estimate
of the terminal is now simply calculated as t = ta − ts, where ta
is the time of the first event in LA2/LA3 and ts is the time of the
last event in LA1/LA2. Hereby, we assumed that the highway is
the fastest connection between the start and arrival area, i.e., the
fastest mobile device users are all traveling on the target highway
(see Figure 1).

A congestion is detected by evaluating the travel time of fastest
users. Due to the nature of the cellular network and to the hetero-
geneity of mobile terminals, one cannot predict exactly at which
position a cell change occurs, and thus, the length of the segment
under investigation. As a consequence, it is difficult to determine
the minimum travel time. Instead of using a possibly imprecise
static estimate for the minimal travel time, we adapt the set of
fastest users by introducing an adjustable parameter κ: The travel
time of the κ-quantile of all users is used to estimate the minimum
travel time.

3. DATASETS
We apply or methods to anonymized traces of 2G/3G signaling traf-
fic observed in an operational cellular network of a major Austrian
mobile operator. We evaluate our results by comparing them to
results achieved by major traditional sources for traffic estimation.

Cellular data
The anonymized traces consist of 400–500 million events on av-
erage per day, and contain signaling messages for both the packet
switched and circuit switched domains. To preserve user privacy,
all sensitive identifiers are removed from the traces. Distinct users
are discriminated only by means of pseudonyms computed via a
one-way hash function. The pseudonyms are changed every 24
hours. The event-based tickets used contain information such as:
anonymous_ID of the user generating the event, timestamp of
the event, cell information including the LAC (Location Area Code)
and Cell_ID, the coordinates, type, etc. of the base station
antenna, information about the event such as type_of_event,
etc.

Validation data
We validate the results of our approach against various datasets
originating from traditional road monitoring sources. We use road
sensors as point-based road monitoring data (measuring speed of
passing vehicles, in our investigation nine road sensors covered the
highway and the measurement frequency is once per 60 seconds)
and toll gantries monitoring trucks via RFID-based transponders to
estimate the average travel time of trucks between two toll gantries
(every 15 minutes). Further, taxi floating car data provide GPS po-
sitions of taxis and, thus, average taxi speed. Additionally, we use
radio events, that are radio broadcasts about road incidents reported
by registered drivers.

4. ANALYSIS RESULTS
The sample period stretches over 31 days. While the mobile cel-
lular data are available for all days, the validation data are only
partially available due to the nature of the sensors or temporary
faults: toll data are partly not available on weekends (due to ban of
trucks), sensor data are missing for eight days (due to a problem
in the recording system), and concerning the taxi data, only half of
period is provided. Radio data are available throughout the whole
period. The target highway stretches over 32 km from a rural area
into the center of Vienna, Austria. It is covered by four different
LAs.

Detecting congestions
As there is no general agreement in the literature about the defini-
tion of a traffic congestion [1], we adopt the following definition: a
road segment is marked as congested if the estimated speed of the
fastest vehicles considered falls below half the speed limit (i.e., the
travel time is doubled). We mark a congestion event in our dataset
if at least one data source out of toll, sensors, or taxi triggers the
above condition. In this way, 74 congestion events could be identi-
fied over the sample period, and 58 of them were sent as broadcast
also via radio. All events in the radio dataset could be detected by
at least one of the other three validation sources. We refer to our ap-
proach with the term mobile. We analyze the quality of congestion
estimation based on cellular data vs. other data sources in terms of
the number of detected congestions and the estimation delay.

Let us first exemplify the analysis with a comparison related to
a single congestion. Figure 2 shows the estimated travel times
through a given area on our target highway over a whole day for
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cellular data vs. the speed estimates for fixed sensor data. A se-
vere congestion is visible in the afternoon and a less severe in the
morning. The morning and afternoon incidents were also visible in
toll and taxi data, the incident in the afternoon was broad-casted on
radio at 15:33 h (‘heavy traffic’).

Our results of the full month period are summarized in Table 1. The
average advance (“-”) or delay (“+”) of mobile against each valida-
tion data source is reported. κ determines the fraction of users con-
sidered as being in the set of fastest users (upper κ-quantile of all
users). Here, smaller values of κ (0.03 or 0.04) make the approach
aggressive as it identifies congestions fast, but with an increase in
false positive classifications. Setting κ = 0.05 is a good trade-off
between FPs, FNs and advance over other data sources.

Table 1: Delay of mobile vs. validation data [in s]: number of
comparable events (i.e., identified by both data sources) is given
in brackets. Correct, false positive (FP), and false negative (FN)
classifications are shown at the bottom of the table.

κ 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Toll: -533 -282 -152 0 +72 +175 +196
(66) (66) (65) (62) (62) (61) (61)

Sensors: -586 -377 -259 -93 -15 +37 +79
(25) (25) (24) (22) (22) (22) (22)

Taxi: -583 -383 -311 -182 -113 -11 +7
(25) (25) (25) (24) (24) (23) (23)

Radio: -451 -195 -177 +5 +77 +197 +217
(58) (58) (57) (57) (57) (56) (56)

Numbers of identified congestions for mobile data

Correct: 74 74 73 70 70 68 68
FN / FP: 0 / 65 0 / 19 1 / 3 4 / 2 4 / 1 6 / 1 6 / 0

5. CONCLUSION
We presented a novel approach for estimating vehicular travel times
based on anonymous location area updates of mobile phones col-
lected from an operational mobile cellular network. Although spa-
tially coarse, mobility data from all terminals (most of which in
idle state) can be exploited to detect speed deviations at long road
sections and congestion events.

Experiments on a major traffic route in Austria showed that our
method yields higher detection success rates and at least a similar
detection delay when compared to traditional road monitoring sen-
sory technologies. Thus, we conclude that cellular network data
are a valuable source for accurate traffic monitoring. At the same
time, our approach does not require investments in a new infras-
tructure but leverages the mobile cellular network – as a large-scale
mobility sensor.
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The first requirement a road network needs to fulfill is overall connectivity: there must be an 

adequately functioning path between any two places. Roads have limited capacity and queues of 

vehicles accumulate; therefore it is of great interest to study the effect of both network topology and 

travel demand on traffic flow leading to the emergence of congestion. Upon a certain threshold in the 

number of vehicles, the capacity of the roads is exceeded, retarding the efficient functioning of the 

whole network. In analyzing congestion, estimation of the demand is of prime importance.

Transition to congestion emerges for the rate of trips starting per time step, R, exceeding a certain 

threshold Rc. A network is considered to remain functional if an equilibrium in the number of vehicles 

travelling at any time is reached. First, we study the influence of the network topology on the 

emergence of congestion. Inspired by models investigating network resilience in the context of 

information packets and of the Internet, we propose a model to analyze the resilience of urban road 

networks described as follows: At each time step R vehicles with assigned sources and destinations 

enter the system. Roads have different capacities for delivering vehicles, at each time step every 

segment can deliver at most C vehicles one step towards their destinations following a fixed routing 

table.  A vehicle, upon reaching its destination, is removed from the system.

We are interested in the critical value Rc, measured by the number of trips beginning at each time step, 

at which a phase transition takes place from free flow to congested traffic. This critical value reflects 

the network’s capability of handling its traffic demand. Particularly, for R < Rc, the numbers of starting 

and completed trips are balanced, leading to a free traffic flow. For R > Rc, traffic congestion occurs as 

the number of accumulated vehicles increases with time simply because the capacity of the roads is 

exceeded.

The travel time dimension is incorporated into this model using a point-queue (PQ) macroscopic link 

model. Vehicles move along the road at the speed limit before they reach its end where a point queue 

is formed if the traffic arriving is greater than the capacity at the exit. The PQ model is enhanced to a 

spatial PQ model (SPQ) by limiting the number of vehicles a road segment can contain at once. 

We analyze both theoretical and real road networks by performing simulations on periodic and non-

periodic lattices, random networks as well as on the real San Francisco road network. Our analytical 

and numerical findings indicate that the critical point of the transition is determined by the ratio of the 
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capacity to a modified maximum betweenness centrality. Moreover, the network response can be 

analytically obtained by iteratively solving a set of coupled equations. We also show that at Rc, the 

timespans during which the congested road operates at its flow capacity exhibit no characteristic time 

scale, as the timespan distribution follows a power law with an exponent around -0.5.

To estimate realistic demand, we use a dataset of mobile phone activity for the Bay Area, California. 

Using the tower scale and the timestamps we generate trajectories, which are then matched onto the 

road network. The trajectories are scaled using census data and aggregated to form realistic origin-

destination matrices. The real demand distribution is applied on the San Francisco road network to 

analyze congestion and its emergence. It is found that the emergence of congestion based on demand 

distributions obtained from mobile phone users arises not from lack of outflow capacities of the road 

segments but from lack of volume capacities, namely, the number of vehicles that can simultaneously 

use the segment. This suggests that congestion is inherent in downtown areas where road segments are 

short and dense.

           

4

FIG. 3. (a) Timespans through which the congested element operates at its outflow capacity at Rc. (b) Distributions of these
timespans for the IM and (c) PQM model. Distributions exhibit no characteristic time scale and follow a power law with the
specified exponents.

FIG. 4. The critical loading rate Rc for non-periodic lattices
with n = 400, n = 625, n = 900 and for various V

C
values.

The relationship is linear for V < C, and then settles to the
critical value of the PQM. Rc is found to decay exponentially
for decreasing volume levels.
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FIG. 5. The transitions for the San Francisco road network
for (a) the PQM and (b) the SPQM.

capacities at the time of this snapshot, for R = 0.98Rc

and 1.02Rc, respectively. A slight change in travel de-
mand results in an explosion of queues in the downtown
area, and the spillback of congestion to the arteries that
enter the downtown area can be observed.

In summary, we introduced the PQM and SPQM mod-

els as a continuation to the widely used internet models
in the literature to capture the spatial properties of trans-
portation networks. Transitions in the IM and PQM are
simulated and analytical solutions that perfectly mimic
the network response for a range of loading rates are ob-
tained. The fluctuations around the critical point ex-
hibited no timescale as critical elements were operating
at their outflow capacities with a distribution that fol-
lowed a power law with exponents specific to the models.
SPQM was used to measure the change in Rc in lat-
tices for varying levels of volume, and it was found that
the critical load per outflow capacity decay exponentially
for volume to outflow capacity ratios below 4. Finally,
SPQM was applied on the San Francisco road network
and results suggested that congestion in San Francisco
arose, not from inadequacy of outflow capacities, but
from lack of volume capacities. This finding emphasizes
the role of high density of road segments in downtown
areas in the emergence of congestion.
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FIGURE. The transitions for the San Francisco road network for (a)  PQM with Rc=40 (14400 
vehicles/hr) and (b)  SPQM with Rc=32 (11520 vehicles/hr). (c)  Network response as red points 
representing the locations of the queues of links that are above 90% of their volume capacities at the 
time of this snapshot, for R=0.98Rc and (d)  R=1.02Rc, respectively. A slight increase in travel demand 
results in an explosion of queues in the downtown area, and the spillback of congestion to the arteries 
that enter the downtown area can be observed.
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In this study, we demonstrate how mobile phone datasets can be used to generate indicators of 

wealth, economic diversity and economic segregation in the African country of Côte d’Ivoire. We are 

missing statistical information for many African countries. We illustrate in this paper how mobile 

phone data sets can be used to infer rough economic parameters without having to carry large and 

expensive surveys.  

We use anonymized Call Detail Records (CDRs) and top-up history from a major cellular network 

company for a period of seven months‡. Most mobile phone subscriptions in Côte d’Ivoire are pre-

paid subscriptions. The top-up history of a user gives a complete description of every credit addition 

on the user’s subscription. The top-up amounts and frequency may be used as an indicator of a user 

wealth. The CDRs include, for each call or text message, the caller and callee number, the location of 

the tower where the call originated, the date and hour of the call/text message and, if it is a call, its 

length in seconds. These CDRs allows us to use the method described in [1] to localize a user’s home 

cell and to construct a social graph of users. 

We notice that a user’s top-up history is often quite stable; users tend to buy credit in chunks of the 

same amount. This stable behavior allows us to assign an average top-up amount to every user 

without losing much information. We hypothesize that the wealth of a user is correlated with his or 

her recharging habit: someone richer will be able to buy larger amounts of phone credit at a time. 

Further analysis would be needed to assess the quality of this indicator.  

We represent on Figure 1 the average user top-up in the different regions of the country. We may 

also quantify the wealth diversity in the regions by computing the variance of the average top-up 

(Figure 2). As expected, the region of Abidjan is the wealthiest and most diverse. Some border 

regions also stand out as wealthier than the rest of the country but with a lower diversity. The 

administrative capital Yamoussoukro stands out in terms of its economic diversity but not by its 

wealth. Finally, the typical rural regions are poor and have limited diversity.  

After constructing a social graph based on the CDRs, we identify communities in the social graph 

using the Louvain Method described in [2]. We then look at how many people have an average top-

up close to their community’s average top-up. This gives an indication of how economically diverse 

                                                           
‡
 Although the dataset is for Côte d’Ivoire, this is not the dataset used for the D4D challenge organized by 

Orange. The data comes from another mobile phone operator in Côte d’Ivoire. 
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communities are. In order to give a representation of this diversity in the country, we consider only 

those communities whose members all live in the same region and we compute for every region the 

average of diversity of all communities in the region. The result is represented on Figure 3.  We find 

that regions with high variability in top-up behavior often show higher levels of diversity within 

communities. In other regions, high variability in top-up behavior is accompanied by low diversity 

within communities. This may be seen as an indication of segregation between social classes in the 

corresponding regions. 

Figure 1 – Average of top-up behavior for each region, which we interpret 
as an indicator of wealth for each region. 

Figure 2 – Standard deviation of top-up behavior for each region, which 
we interpret as an indicator of wealth diversity for each region. 
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Figure 3 – Average Coefficient of Variation (CV) of the top-up 
behavior within all communities in each region, darker means that 
communities are less economically diverse. 
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Abstract—Census maps contain important socio-economic in-
formation regarding the population of a country. Computing
these maps is critical given that policy makers often times make
important decisions based upon such information. However, the
compilation of census maps requires extensive resources and
becomes highly expensive, especially for emerging economies with
limited budgets. On the other hand, the ubiquitous presence
of cell phones, both in developed and emerging economies, is
generating large amounts of digital footprints. These footprints
can reveal human behavioral traits related to specific socio-
economic characteristics. In this paper we propose a new tool,
CenCell, to approximate census information from behavioral pat-
terns collected through cell phone call records. The tool provides
affordable census information by accurately classifying socio-
economic levels from cell phone call records with classification
rates of up to 70%.

I. INTRODUCTION

Census maps gather large amounts of information regarding
the socio-economic status of households at a national scale. These
maps contain information that characterizes various social and
economic aspects like the educational level of the citizens or
the access to electricity. Such information is aggregated and
reported at various granularity levels, from a national scale,
to states, all the way down to urban geographic areas of a
few square kilometers. The accuracy of these maps is critical
given that many policy decisions made by governments and
international organizations are based upon variables measured
through census maps. National Statistical Institutes compute such
maps every five to ten years, and typically require a large
number of enumerators that carry out interviews gathering
information pertaining the main socio-economic characteristics
of each household. All these prerequisites make the computation
of census maps highly expensive, especially for budget-constraint
emerging economies. To reduce costs, countries have made cuts
both in the number of interview questions and in the number of
citizens interviewed, which unfortunately impacts the quality of
the final census information.

On the other hand, the ubiquitous presence of cell phones
in emerging economies is generating large datasets of digital
footprints. Data mining techniques applied to such datasets can
be used to reveal cell phone usage patterns specific to socio-
economic levels. Previous research has already shown that cell
phone-based behavioral patterns might be correlated to specific
socio-economic characteristics [1], [2]. For example, Eagle et
al. showed correlations between the size of a cell phone social
network and the socio-economic level of a person, and Frias
et al. observed strong relationships between mobility and socio-
economic indices [3].

In this paper, we propose a new tool for governments and
policy makers that allows to compute affordable census maps
by decreasing the number of geographical areas that need to be
interviewed by the enumerators. The tool, called CenCell, is de-
signed to allow institutions to approximate the census information

Fig. 1. CenCell Architecture.

of areas not covered by the enumerators using anonymized cell
phone call records gathered by telecommunication companies.
At its core, CenCell consists of a classification algorithm that
determines the socio-economic level of a region based on the
aggregated cell phone behavioral patterns of its citizens. Thus,
CenCell significantly decreases the workload of the enumerators
that carry out the interviews and as such, allows to reduce the
budget allocated for the computation of census maps.

II. CENCELL: GENERAL ARCHITECTURE

Figure 1 shows the general architecture of the tool. It consists
of two main components: (1) the calibration phase, which needs
to be executed only once to set up the system for a region;
and (2) the classification phase, which is executed every time
census information is required for a specific geographical area
in the region that was not covered by the enumerators through
household surveys.

The calibration phase needs two datasets, one containing
anonymized cell phone call records for the region under study
and another one containing the regional socio-economic levels
computed by the local National Statistical Institute through
household surveys. This phase first computes a set of cell phone
usage behavioral patterns from call records. Next, it combines
both datasets to obtain a map that associates to each cellular
tower in the region under study a set of cell phone behavioral
variables and a socio-economic level. This map is used to train a
classification model that will output the socio-economic levels of
the areas not covered by the enumerators based on the cell phone
behavioral patterns of its citizens (classification phase). It has
to be noted that CenCell uses anonymized aggregated patterns
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of behavior so no individual information is used to build the
classification models.

During the calibration phase CenCell tests the classification
accuracy of a battery of supervised and unsupervised algorithms
and selects the one with the best results, which will be used
in the classification phase. Previous work explored the use of
supervised techniques (SVMs and Random Forests) to forecast
socio-economic levels from cell phone records [2]. However, given
that CenCell computes the socio-economic levels (SELs) for each
cellular tower based on a weighted average of overlay maps,
the final values might be smoothed or blurred depending on
the information distribution in the original maps. In an attempt
to overcome this problem, CenCell also explores unsupervised
techniques to identify groups of cell phone behaviors without
prior knowledge of their socio-economic values. Sections IV
and V cover details about the different techniques explored by
CenCell and its results. Additionally CenCell’s calibration phase,
computes classification models for different socio-economic level
granularities. Although the SEL is a continuous variable, it is
often times expressed as a discrete value through a letter (A,
B, C, etc.). The granularity of the SELs i.e., the number of
SEL classes in which the continuous values are divided into,
varies a lot across studies. Some researchers differentiate three
socio-economic levels while others prefer to use a larger range
of values in their analyses. To account for this need, CenCell
outputs the best predictive technique for each granularity value
in the calibration phase. As such, CenCell provides a knob that
allows researchers to select a specific granularity depending on
the classification error they are willing to accept. In Section V,
we delve more into results and implications of this approach.
Finally, it is important to highlight that in order to build accurate
classification models the tool needs that: (i) the area selected
for the calibration phase is representative of the different socio-
economic levels of the country and (ii) both call records and
socio-economic variables correspond to a similar period in time.

On the other hand, the classification phase uses the models
generated by the calibration phase to compute the socio-economic
level of the geographical areas in the region that were not covered
by the enumerators. This phase, which only requires access to
anonymized aggregated calling records, can be executed as many
times as needed and allows policy makers to compute affordable
census maps without the need to held household surveys across all
the region under study but rather in a few areas. Next, Sections
III and IV describe the calibration phase in detail.

III. DATASETS AND INFORMATION MERGING

Call Detail Records
Cell phone networks are built using a set of base transceiver

station (BTS) towers that are responsible for communicating cell
phone devices within the network. Each BTS or cellular tower is
identified by the latitude and longitude of its geographical loca-
tion. The area of coverage of a BTS can be approximated using
Voronoi tesselation. Call Detail Records (CDRs) are generated
whenever a cell phone connected to the network makes or receives
a phone call or uses a service (e.g., SMS, MMS). In the process,
the BTS details are logged, which gives an indication of the
geographical position of the user at the time of the call. From all
the information contained in a CDR, CenCell only considers the
encrypted originating number, the encrypted destination number,
the time and date of the call, the duration of the call, and the BTS
that the cell phone was connected to when the call took place.
Using call detail records, CenCell computes three sets of variables
per subscriber so as to model cell phone usage: (1) consumption
variables; (2) social network variables and (3) mobility variables.
The consumption variables characterize the general cell phone
use statistics, measuring, among others, the number of input or
output calls, the duration of the calls or the expenses. The social
network variables compute measurements relative to the social

network of each subscriber. These variables include the input and
output degree of the social network, the social distance between
contacts (diameter of the social network) or the strength of the
communication ties. Finally, the mobility variables characterize
the geographic areas where a person typically spends most of
his/her work and leisure time as well as the spatio-temporal
mobility patterns. In total, CenCell computes 69 consumption
variables, 192 social network variables and 18 mobility variables.

Census Data
CenCell uses the census maps collected by National Statistical

Institutes (NSI) to gather socio-economic information about the
population under study. NSIs carry out individual and household
surveys at a national level every five to ten years. These surveys
employ a large staff of enumerators that are responsible for
interviewing every household head within their assigned geo-
graphical area. The enumerators have been especially trained
to be able to gather all the required information in a proper
manner. Although in some cities in emerging economies the
census information is collected with laptops, in general, paper
survey forms are still very common, which makes the collection
process even more expensive and time consuming. Given the
private nature of the individual census information, NSIs only
make public average values over specific geographical areas.
These areas might represent states, cities, neighborhoods or
geographical units (GUs), the smallest geographical division,
which divides cities into small areas of up to a few square
kilometers (approximately blocks). The census variables gathered
by NSIs are usually divided into three groups: education variables,
demographic variables and goods’ ownership variables. With this
information NSIs compute the socio-economic level (SEL) of a
region as a weighted average of all the census variables. As
mentioned earlier, SEL values are typically represented as a set
of discrete values typified through letters.

Merging Call Records with Census Data
The objective of the calibration phase is to build a socio-

economic classification model from cell phone records. To do
so, we need to compute a training set that associates to each
BTS cell tower: (1) aggregated cell phone behavioral variables
for the citizens that live within the cell tower coverage area and
(2) the corresponding socio-economic level (SEL) for that same
area. However, given that call records are gathered per BTS area
and that the census information is reported per geographical
unit (GU), the tool uses a three step protocol to merge the
two sources of information [4]: (Step 1) Associate the residential
location of each subscriber to a BTS area; (Step 2) Compute the
overlapping between Voronoi diagrams and Geographic Units
(GUs). This mapping allows us to merge census and BTS maps
so as to associate socio-economic levels to each BTS coverage
area; and finally, (Step 3) For each BTS, compute the aggregated
consumption, social and mobility variables of all the subscribers
whose residential location is within that area. These three steps
produce a map that associates to each BTS a socio-economic level
as well as a set of variables (features) characterizing the average
cell phone usage for that area. Next, we explain the machine
learning techniques used in the calibration phase.

IV. CLASSIFICATION MODEL GENERATION

The generation of the Classification Model represents the last
step in the calibration phase. It builds a model that will allow
the classification phase to approximate the socio-economic level of
geographical areas that have not been covered by the evaluators
to save budget. Specifically, it takes as input the (SEL, features)
dataset for a specific region and identifies the best classification
technique for each socio-economic granularity. CenCell considers
four different SEL granularities: three, four, five and six ranges

5 Session 8 // Social data collection
Session

8
5

63



3

(classes). For six SEL classes A covers range [100 − 83), B
[83−66.4), C [66.4−49.8), D [49.8−33.2), E [33.2−16.6) and
F [16.6−0]. Smaller granularities follow a similar distribution in
ranges. In terms of the features (cell phone variables), having a
large number might boost classification, but it can also generate
a lot of noise (the curse of high dimensional datasets). For that
reason, CenCell first identifies the significance of each feature and
applies classification techniques on the features ordered by their
relevance. Specifically, it evaluates two different feature selection
techniques: maxrel and mRMR (as difference mRMR-MID or
quotient mRMR-MIQ). Once the features have been ordered
according to their significance, CenCell tests supervised SVMs
as well as unsupervised EM Clustering. We selected SVMs since
they have been successfully used in similar classification problems
[5]. On the other hand, unsupervised EM clustering was selected
among all clustering unsupervised techniques, since populations
have been previously shown to follow Gaussian distributions in
terms of socio-economic variables [6]. CenCell evaluates each
combination of technique and granularity and outputs the one
that has the best predictive power for each SEL granularity.
As a result, the tool provides policy makers with the possibility
of selecting a granularity and classification quality according to
their own interests.

This step first partitions the BTS dataset with the ordered
features and SELs for training and testing, containing 2/3 and 1/3
respectively. Using each supervised and unsupervised technique,
CenCell computes the classification rate for each SEL granularity,
from three classes (A, B and C) to six (A, B, C, D, E and F ), and
for each subset of ordered features in n = {1, . . . , 279} produced
by Maxrel, mRMR-MIQ and mRMR-MID. CenCell implements
the SVM using a Gaussian RBF kernel and identifying its two
parameters (C and γ) through a 5-fold cross-validation over the
training set for each combination of technique, granularity, and
subset of features. As for EM clustering, CenCell computes a
mixture Gaussian models for each socio-economic level, granu-
larity and subset of features until the log-likelihood values are
maximized. During testing, each final cluster is labeled with the
dominating socio-economic level.

V. EXPERIMENTAL EVALUATION

The objective of this section is to evaluate the classification
power of CenCell to determine the socio-economic level of regions
that are not covered by household surveys to save budget. Our
CDR dataset contains 6 months of cell phone calls, SMSs and
MMSs from over 500, 000 pre-paid and contract subscribers from
a large city in an emerging economy in Latin America. The
city has a total of 920 BTS cellular towers and the subscribers
represent a 20% of the total population. On the other hand,
the census information was acquired from the local NSI and
contained a total of 1200 GUs with their SEL expressed as
a continuous value between 0 and 100. The city was selected
because it covered all ranges of SELs. Our final dataset consists
of 920 pairs (SEL, features) that we divide into training (552
pairs) and testing sets (368 pairs).

The classification accuracies for each pair of technique and
socio-economic granularity explored by CenCell are presented in
Figure 2. We observe that SVMs achieve classification rates of
up to 76% when differentiating three SEL classes and the top 38
ordered features selected by mRMR-MIQ. We also notice that as
we increase the granularity of the SEL, the classification accuracy
decreases reaching a value of 57% for six SEL classes and the
top 19 features. On the contrary, EM clustering achieves worse
classification rates than SVM for granularities three, four and
five. However, EM clustering yields better results when six socio-
economic levels are differentiated. It shows accuracies of 63%
compared to the 57% reached by SVMs, with 6 clusters and the
top 20 features. We hypothesize that as the socio-economic gran-
ularity increases, the map-overlay technique in (Step 2) generates
more blurred SEL levels thus making unsupervised techniques

(a) SVM

(b) EM Clustering

Fig. 2. Accuracy for (a) SVM and (b) EM clustering with mRMR.

a more adequate approach. At the end of the calibration phase,
CenCell would select SVMs as classification tools for granularities
three, four and five; and would select EM clustering when six
socio-economic levels are differentiated. To understand better the
nature of the classification errors, we analyzed the confusion
matrices for the best approaches selected by CenCell. These
confusion matrices revealed that when incorrectly predicted, the
output SEL class tends to be adjacent to the correct one. Such
errors reflect an implicit order between the SELs which limits
the impact of the errors on the computation of the maps.
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Mobile Call Data Records (CDRs) have been widely used for the last 15 years for the purpose of Social 

Network Analysis (SNA). Typical questions are about the structural organization of these networks 

[1], the detection of leaders among the nodes [2] or the spreading of information [3]. In a majority of 

the research published in this topic, the analysed CDRs are related to private accounts and the 

analyses are mostly focused on social interactions such as friendships or families. Little research has 

been conducted so far on the structure of such communication networks in corporate environments 

(see related work for studies of face-to-face communications [4], email networks [5] or in political 

environments [6]).  

In business networks, we state the principle of leadership in a different way, which is bound to the 

way companies tend to work. We will highlight the differences between our B2B decision makers’ 

discovery method and the existing leadership algorithms. We use this method to score the entire 

network of B2B customers. This allows the operator to prioritize some lines in order to offer to 

decision makers an optimal experience, which is especially relevant in emerging markets where the 

growth of the customer base has often outpaced the investments in the underlying network that is 

often the cause of poor experience, call quality, slow data transfer speed.  

We study a network built on two months of call data records of approximately six million business 

customers from one large Brazilian operator. For each customer, the company ID is known allowing 

us to segment the network into subnetworks corresponding to the internal communication inside the 

company. The initial communication network is hence splitted into 334,000 networks representing 

each one company, with sizes ranging from 1 to 58,000 nodes.  

The original CDRs consist of about 2.3 billions calls, SMS and MMS (in 2 months), which result into an 

undirected weighted network where links are weighted by the number of calls, SMS and MMS that 

have been exchanged by both numbers. It has often been pointed out that a preliminary filtering of 

the network allows to remove fake calls and non-social interactions [7], however we decided not to 

apply such a filtering, given that calls between two employees of the same company is a priori 

expected to be a meaningful interaction. 

Previous research about networks in a corporate environment has been mostly focused on searching 

information in the network structure about the company’s organization. Here, we go a step further 

into the analysis by searching how to find to infer leadership from the network structure. Leadership 

in social networks has been a long-studied topic and can be defined in various ways. In social 

networks, leaders may be individuals being in the centre of dense parts of the network [2], 

individuals being referenced by others, or hubs instead, that are sources of useful references [8]. In 
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business networks, we state the principle of leadership in a different way, which is bound to the way 

companies tend to work.  

While communication is crucial for an organization to work correctly, it is observed that most 

companies work as silos: a large fraction of the communication stays inside departments and only 

few calls are passed across different departments. In such a configuration, managers and team 

leaders are located in a central position of the network, and act as bridges of information across 

departments. We propose a centrality measure that integrates these hypotheses and works similarly 

to Google’s PageRank measure. We first estimate the structure of departments inside each company 

communication network using the Louvain method with standard modularity. The choice of using the 

standard modularity instead of a scaled variant of this quality measure [9,10] is made on purpose; 

the standard modularity suffers of the so-called resolution limit [11] which makes the sizes of the 

communities dependent of the size of the network. While this limit is often seen as a problem, in our 

case we use it to our advantage: in small companies, we will detect small departments, while in large 

companies, the Louvain method returns large communities, hence large departments. 

Using the communities as approximation of the departmental structure of the company, when 

calculate the leadership measure of each node using the following two assumptions: 

 Leaders communicate often with leaders of other departments 

 Leaders communicate with most of the departments of the company 

Based on these assumptions, we calculate recursively the leadership measure  ( ) of each node with 

 ( )  
 

| |   
∑  (  ( ))

       

  

where   is the set of all communities in the network,    is the community index of node  , and   ( ) 

returns the node of community   that has the strongest connection with node  . In other words, the 

leadership of a node is the average of the leadership of his closest connection in each community 

different of his own community. If a node does not communicate with one or several communities, 

his leadership level is hence penalized in comparison to nodes that communicate to all other 

communities. We apply this computation recursively and normalize the leadership values at the end 

of each iteration such that the highest leader in each community has a leadership measure of 1. After 

the convergence of the iterative process, we recover the leadership measure for all nodes of the 

network. 

We have tested this measure on the internal communication network of a part of the operator’s 

employees, consisting of approximately 1,000 individuals for which the department and the position 

in the company have been made available. As a first result, we observe that the detected 

communities and the exact departments have a very significant overlap. Moreover, we used the 

leadership measure in conjunction with several other network variables such as the core number in a 

data mining model, and managed to predict correctly over 70% of the leaders in the company. 
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Although the leadership measure is 

based on a community detection 

algorithm that has a non-deterministic 

component, the obtained scores remain 

consistent when the communities 

returned by the detection method differ 

one from another.  

We score the entire network of B2B 

customers, and observe that decision 

makers are a useful source of 

information about the structure of the 

network. Their communication patterns 

provide information on the company’s 

way of working. On a commercial side, 

we show how leaders act as drivers of 

adoption for several products offered by 

the operator: if the decision maker of a 

community is adopting a product, the members of his department are more likely to adopt this 

product as well. Finally, decision makers help as well the operator to rank lines that are out of his 

network based on the leadership score of his own customers. 
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Figure 1: network of the operator’s internal communications, colors 
correspond to communities and overlap strongly with the actual 

company’s departments. 
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1 Introduction
It is an intuitive idea that social relationships between people, arise out of meetings and shared activities
in common spaces. Scott Feld’s theory of the focused organization of social ties posits that friendships
form between individuals whose interactions are organized around extra-network foci, which can include
physical places. In the paper outlining this theory [Feld1981], Feld discusses the implications of this theory
for the structure of social networks, and shows how commonly observed structural properties could arise
from the formation of social ties in the way he describes.

Empirical investigation of Feld’s theory has traditionally been difficult and time-consuming, requiring
interviews with and observation of necessarily small groups of people, and these difficulties have meant that
it has been impossible to test on a large scale. However, the recent widespread adoption of location-based
online social services has provided us with a huge volume of data both about the structure of people’s social
networks, as described by social ties explicitly declared by users of these services, and about their activi-
ties and meetings at places in their local environment, thanks to the location-sharing dimension. We now
therefore have an unprecedented opportunity to investigate the role that places may play in the formation of
the structure of social networks on a scale not previously possible. Furthermore, the semantic information
about places available in location-based online social services allows us to investigate for the first time the
relationship between the categories of places where people meet and the likelihood that those people are
friends. This is a great advantage offered by these services, where user position is becoming available when
they use the respective service similarly to cellular datasets, yet compared to the latter, the combination of
multiple layers of data opens new avenues for addressing previously unanswered research questions.

In this work, we study a large dataset from Foursquare, the most popular location-based online social
network, which has over 35 million users as of January 2013, analyzing the social and spatial properties
of social networks in cities. We then use our observations to present a model for social network formation
based on Feld’s focused organization theory, and show that the model produces networks with the structural
properties expected of social networks. Our work makes the following contributions:

• We first define and analyze place-based social networks at the city scale, to answer the question:
what do intra-city social networks look like, and do they have common structural characteristics?
We show that the social networks in the Foursquare dataset have the structural properties observed
by sociologists studying real-world social networks, namely a power-law degree distribution, small-
world properties (high clustering and small diameter), and strong community structure. While the
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global properties of online and offline social networks have previously been analyzed, we believe
that our work is the first to examine and compare the structures of place-based social networks within
different cities and to show these common structural properties.

• We then address the question: does this large location-based social dataset support Feld’s theory
of focused tie organization? Exploiting the combination of social information and specific semantic
information available in the Foursquare dataset, we are able to investigate for the first time the rela-
tionship between the category of a place where people meet and the probability of friendship. We
find that the type of a place where people meet has a strong influence on the likelihood that they are
friends, which provides support for Feld’s theory of focused organization at a scale not previously
possible.

• Inspired by Feld’s theory, we present a model for the formation of a social network in a city based
around meetings at places, and show that this model is able to produce networks with the structural
properties observed in real social networks. The fact that this model is able to reproduce empirically
observed social network features represents a computational validation of the focused organization
theory, and supports its suggested mechanisms for the formation of friendship between individuals.

We believe that our work has intrinsic interest, as we investigate an area largely unexplored, namely, that
of the structural similarities between social networks at the city scale within different cities, and demon-
strate that the networks in different cities show striking similarities. Furthermore, our model demonstrates
computationally that Feld’s theory of the focused organisation of social ties, with places as foci, results in
networks with the structural features commonly observed in social networks.

From a practical perspective, our observation that the type of a place where people meet strongly affects
the probability of friendship could be useful to online location-based social services such as Foursquare.
For example, one important application in location-based social networks is the recommendation to users of
venues they might want to visit [Berjani and Strufe2011, Long, Jin, and Joshi2012, Noulas et al.2012]. Our
finding that the type of place where people meet has a strong influence on friendship suggests that different
recommendations would be appropriate depending on the other users present.

This has potential applications in the development of smarter privacy controls in location-based online
social networks: Page et al. found that people’s concerns about privacy in location-sharing services center
around the desire to preserve one’s existing offline relationship boundaries [Page, Kobsa, and Knijnenburg2012],
and our observations suggest that these boundaries might be reflected in the types of places where friends
meet (for example, closer friends at homes and nightlife spots, less close acquaintances only at professional
venues or transport spots). Use of this information could enable services such as Foursquare to adjust the
default audience of a check-in, for example, based on relationship semantics inferred using meeting places.
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A Comparative Study of Decentralized Routing in Social Network Based on Mobile
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In this work we focus on the study of social networks
extracted from mobile phone data. The data has been
�ltered in such a way that the nodes are a subset of the
mobile phone users and the links represent a social inter-
action that indicates an acquaintance or a friendship as
opposed to just an occasional phone call. This is possible
because our current data spans over a period of at least
six months in each of the countries we study (displayed
in Fig. 1).
The main idea behind this work is based on the famous
small-world experiment performed by the social psychol-
ogist Stanley Milgram [1] in the 1960s. Milgram's exper-
iment led to two striking discoveries, of which the exis-
tence of short paths was only the �rst. The second was
that people in society were collectively able to forward a
letter to a distant unknown target surprisingly fast with
knowledge of only their own personal acquaintances (lo-
cal information) and only the name, location and the
profession of the target.
Many interesting questions remain open in relation to

Milgram's, experiment, such as why should a social net-
work contain such short paths and how people are able to
select among hundreds of acquaintances the correct per-
son to form the next link in the chain. To answer these
questions several works have been carried out, both em-
pirically and mathematically. Dodds et al. [2] repeated
Milgram`s experiment at large scale with e-mails, provid-
ing con�rmation that geographical position of the nodes
has a crucial role in the possibility of the network to be
searchable. On the other hand, Lieben-Nowell et al. [3]
proved a simple geo-greedy algorithm is able to e�ciently
route a message between di�erent cities using the social
network, with data from an online blog community where
users declare the city where they live. Watts and Strogatz
[4, 5] proposed a hierarchical network model that present
the small world e�ect and high clustering. Kleinberg [6]
has proposed several analytical treatable network models
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Permanent address: Universidad Politécnica de Madrid, 28040

Madrid, Spain
† Email: schnechr@mit.edu
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Figure 1. The social communities in the three studied coun-
tries and their capitols. While on the country level the com-
munities divide di�erent regions, within cities the geographi-
cal separation collapse and it reveal social groups.

in which actors are capable of �nding short paths with
high probability just by using local information.
The goal of this research is to understand how people are
able to deliver a message within a small number of hops
from a source user to a target user whose location is given
in terms of his/her coordinates in a city of the country
under study. Therefore, we study di�erent strategies for
the case of limited information (without global knowl-
edge of the social network), just using local information
such as the identities and connectivity of a node's neigh-
bors based on the structure of the real social networks.
This study is performed in di�erent countries and both
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at the inter-city and at the intra-city levels demonstrat-
ing that decentralized search algorithm can work well on
real friendship networks on both levels. We use three
di�erent large data sets corresponding to six months of
anonymized mobile phone calls of three European coun-
tries (France, Portugal, and Spain) with over 7 billion
of calls. The data sets include information of the most
used tower coordinates (France and Portugal), or billing
zip codes (Spain) for each of the users present in the call
data. From these data sets we construct the friendship
networks based on reciprocal communications taking into
account the user location.
First we show the existence of short paths with an av-

erage length of 7.75, 7.44, and 9.2 for France, Portugal
and Spain, respectively. We further simulate delivering a
message from a source user to a target user whose loca-
tion is given in terms of his/her coordinates in a city of
the country using only information of the source's neigh-
bors. We report the success of three di�erent decentral-
ized routing strategies based on: random information,
geographical information, and community information.
Finally, we connect the results with the underlying so-
cial network structure and conclude that both informa-
tion Milgram provided (geography and profession) are
required to successfully route to an unknown person.
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Abstract:

What is the e�ect of migration on ethnic segregation in urban areas? The manner in which individuals

segregate along ethnic lines has important economic and social consequences, a�ecting employment and

education decisions, processes of information creation and di�usion, and several other aspects of society.

Yet, due in part to data constraints, little is known about the extent and dynamics of migrant integration

within and across ethnicities. We exploit a novel source of communications data that allows us to observe

the ethnicity of hundreds of thousands of mobile phone subscribers in Estonia, a country with a history of

tense ethnic relations. In addition to containing detailed information about inter- and intra-ethnic network

structure, we are able to observe the migration and movement of each individual using mobile positioning

data. We can thereby infer, for each individual, whether a migration takes place, the extent to which the

migrant communicates with coethnics and non-coethnics pre- and post-migration, and whether the migrant

is physically proximate to coethnics and non-coethnics. Our study contains three related sets of results:

(i) Whether the average migrant integrates within or across ethnicities, (ii) How quickly integration with

coethnics and non-coethnics occurs for di�erent types of migrants; and (iii) Aggregate e�ects of migration

and urbanization on city- and country-wide levels of ethnic segregation.

Keywords: Segregation, Migration, Homophily, Urbanization and Cities, Mobile Phones; Estonia.

∗The authors are grateful for thoughtful comments from Rein Ahas, Matthew Jackson, Frederico Finan, Tyler McCormick,
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1 Introduction

Ethnic segregation is a common phenomenon in many of the world's cities, and a prominent feature of

most developing economies (Taeuber and Taeuber, 1965; Massey and Denton, 1993). The consequences of

segregation are far-reaching, a�ecting investment in human capital, the structure of labor markets, levels of

violence and corruption, inequality, and patterns of prejudice and discrimination (Easterly and Levine, 1997;

Miguel and Gugerty, 2005; Cutler and Glaeser, 2007; Bayard, Hellerstein, Neumark, and Troske, 1999).

Internal migration plays a critical role in both short- and long-term dynamics of segregration and integra-

tion. Migrants often choose to migrate to areas where their networks are stronger (Munshi, 2003), existing

residents often strive to keep out dissimilar immigrants (Schelling, 1971), and political and institutional forces

often prevent integration of migrants across ethnic lines (Yinger, 1986; Clark, 1986). However, due largely

to shortcomings in the data used in the analysis of migration and segregation, very little is known about

the extent to which migrants integrate into communities in the location of destination, and whether recent

migrants a�ect aggregate levels of segregation. The vast majority of empirical studies on segregation rely

on census or household survey data that is sampled infrequently, and which is notoriously bad at tracking

domestic migration. These studies almost invariably focus on segregation at the place of residence, ignoring

segregation in other aspects of life, such as place of work and leisure time (van Ham and Manley, 2010).

2 Context and Data

Estonia is an ethnically fractured society that provides an ideal context for studying patterns of ethnic

segregation through mobile phone datasets. Besides native Estonians, the country houses a large and rel-

atively homogeneous Russian-speaking population. The relationship between these two ethnic groups is a

fragile one, with the tensions culminating in �Bronze Soldier� riots in 2007. In previous work, we have used

the call data to show that ethnic Estonians and ethnic Russians remain highly segregated in major urban

areas (Toomet, Silm, Saluveer, Tammaru, and Ahas, 2012) and in their respective communication network

(Toomet, van der Leij, and Rolfe, 2012).

A unique feature of the data at our disposal is the fact that we observe the language spoken by each

subscriber in the dataset. In Estonia, a bilingual economy where native Estonians speak Estonian and

native Russians speak Russian, this allows us to very accurately infer the ethnicity of each subscriber. As

with other Call Detail Records used in recent research (cf. Gonzalez et al. 2008, Song et al. 2010), we

additionally observe the complete communication records of each individual, as well as a long history of

passive positioning data, which indicates for each phone call and text message, the time and location of

the subscriber involved in the event. The location is speci�ed by the cell tower, which gives us a spatial

resolution ranging between many kilometers in rural areas to a few hundred meters in dense urban settings.

3 Measuring segregation and migration from mobile call data

Our approach allows us to measure several types of segregation simultaneously, over a period of multiple

years.1 For the long-run data, we rely on the call records to infer the location of each individual throughout

1Census and survey data typically only permit the measurement of segregation at the place of residence. However, segregation
is more complex, as important parts of our life are spent at work, school, and in places where we pursue various leisure activities.
These various types of segregation are correlated (Schnell and Yoav, 2001), as employment opportunities are a�ected by local
ethnic networks (Edin, Fredriksson, and Åslund, 2003), and by the fact that similar people tend to cluster into similar jobs
(Sørensen, 2004). Still, Åslund and Skans (2010) �nd that, in Sweden, workplaces are less segregated than residences.
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Figure 1: Relationship between the homophily at the home neighborhood as a function of the corresponding
ethnic composition (Toomet, Silm, Saluveer, Tammaru, and Ahas, 2012). Group percentage is calculated
from 2000 census. Points represent average values for residents in the corresponding Tallinn municipality
districts. Circles represents ethnic Estonians; triangles ethnic Russians.

the day. This allows us to observe at which times of the day individuals of similar and dissimilar ethnicities

are close to each other. Formally, we measure copresence from the passive positioning data. The �same�

place and �same� time must be operationalized to timeframes, where we specify what is the required spatial

proximity (for instance, a city tract) and time interval (for instance, 1 hour). We de�ne copresence between

individuals i and j, pij , as pij =
∑

k 1(cjk ∈ Ci), where 1(·) is the indicator function, cjk is timeframe of

call k of individual j, and Ci is the set of all timeframes of individual i. Copresence can be understood as

the meeting potential between given two individuals and hence treated as a (proxy for a) social tie.

In addition to the positioning data, we observe the actual call graph, as determined by the calls made

between individuals in the dataset. Knowing the ethnicity of the caller and recipient allows us to measure the

social segregation in the call network, which we take as a proxy for underlying patterns of ethnic segregation.

We can further infer the strength of each network edge using the the volume and length of calls between each

dyad. Formally, homophily for individual i is de�ned as hi = si

si+di
, where s denotes the measure of contacts

with the same-language individuals, and d that with the di�erent-language ones. s and d are de�ned through

copresence as

si =
∑

j∈1
j ̸=i

1(λj = λi) · pij and di =
∑

j∈1
j ̸=i

1(λj ̸= λi) · pij , (1)

where λi denotes the preferred language of individual i. As we have shown in prior work, the homophily in

the location of residence follows the population percentage rather closely (see Figure 1), while at workplace

and during free-time the relationship is much weaker (Toomet, Silm, Saluveer, Tammaru, and Ahas, 2012).

Given a continuous sequence of locations for all individuals over several years, we can similarly iden-

tify the home and work (geographic) locations for cellphone users using the anchor-point methodology

of Ahas, Silm, Järv, Saluveer, and Tiru (2010). This permits us to identify both short and long-distance

movers, and those who change their workplace while remaining settled in the same area. We are then able to

classify these moves as temporary or permanent migrations, and thus construct a binary indicator variable

Mit that indicates for each individual i whether he/she migrated at time t.

Using the above measure of homophily hit as an indicator of the extent to which individual i prefers to
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associate with coethnics over non-coethnics at time t, and taking Mit to be a binary indicator of whether

i migrates at time t, a basic �xed-e�ects model can be used to study the e�ect of the migration on i's

preference for coethnics.

hit = α1 +
T∑

s=0

βsMi(t−s) + µi + πt + ϵit (2)

where µi is an individual-speci�c �xed e�ect that accounts for the fact that each individual may have a

di�erent preference for segregation at baseline, and πt is a time-speci�c �xed e�ect to reduce bias caused by

common trends across all individuals over time. The coe�cients on the βs thus indicate the extent to which

migrations in the past T periods (for s = 0,1,...,T ) lead to changes in observed homophily for the average

migrant. It is these estimated βs coe�cients that reveal whether migrants tend to be more segregated in the

place of destination or of origin.

Adding heterogeneous e�ects to Model 2 permits us to identify which types of migrants are more or

less likely to be integrated into communities of coethnics and non-coethnics. Letting Xi denote a vector

individual characteristics that vary between individuals but which are constant over time, we estimate

hit = α2 +
T∑

s=0

βsMi(t−s) +
T∑

s=0

γs(Mi(t−s) ∗ Xi) + µi + πt + ϵit (3)

As before, the βs indicate the extent to which past migrations a�ect current homophily, and now the γs

estimate the extent to which individuals of di�erent Xi are more or less likely to be a�ected through the

migration. As an example, if Xi includes a measure of the homophily of i prior to migration, then γs

indicates whether migrants who are more integrated across ethnic lines pre-migration are more or less likely

to integrate post-migration.

Figure 2: Inbreeding homophily, a measure of co-ethnic bias, as a function of the relative group size, for
several hundred municipalities in Estonia. Red dots represent Russian speakers; black dots represent Estonian
speakers. Solid dots correspond to outgoing calls; hollow dots to incoming calls.
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Why does my phone always ring when I am about to make a call?
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In large social structures, a tendency for individuals
to form links with people similar to themselves has been
observed. This is known as the homophily principle [1, 2].

Recently, there has been a lot of focus on the structural
and dynamic properties of social networks. The increased
availability of large sets of data on communication pat-
terns has made it possible to study human interaction on
a scale and at a level of detail not previously possible [3].
In particular, mobile phone call records have been used
to investigate human mobility, responses to emergencies,
and the formation of new social ties [4–6]. The number
of people an individual has links to and the strength of
these links characterize the topology of a social network
and are important for understanding the formation of
communities and the spread of information through the
network [7, 8].

We studied the communication habits of 2.5 million
mobile phone users over a year. We used a large dataset
of 3 billion calls to examine their call profiles, defined as
the fraction of outgoing calls made during each hour of
the week. By grouping users according to gender, age,
and geographical region we were able to identify charac-
teristic call profiles for different demographics. We in-
troduced a distance measure, based on the area of non-
overlap between individual call profiles (see Fig. 1), and
examined its distribution for different groups of users.

Interestingly, we find that the distance distribution for
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Figure 1: Mobile phone users can be characterized by their
call profiles, defined as the fraction of calls made during each
hour of the week. We introduce a distance measure between
users as the non-overlap between individual call profiles.

friends, defined as users with reciprocal calls, is centered
at lower values than can be explained by gender, age,
or regional similarity. Furthermore, weighting the dis-
tance measure according to the frequency of reciprocal
calls shifts the distribution to even lower values (see Fig.
2). That is, close friends will have a tendency to make
calls at the same times during the week. This could in-
dicate the existence of a new of type of communication
homophily. We explore the alternative hypothesis that
friends establish mutual norms for phone usage and that
this can account for the alignment effect observed for the
call profiles of users who phone each other frequently.
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Figure 2: The distance between call profiles of mobile phone
users with reciprocal calls (friends) is significantly smaller
than between random pairs of user (top) or users of the same
age (bottom), gender, or geographical area.
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Models of human mobility have wide applicability in fields
such as infrastructure and resource planning, analysis of in-
fectious disease dynamics, and ecology. The abundance of
spatio-temporal data from cellular telephone networks af-
fords opportunities to construct such models. However, this
data consists of individuals’ locations and cellular phone ac-
tivities, thus raising privacy concerns that have prevented
the release and wider use of such models. In response to such
privacy concerns, our work seeks to to adapt the WHERE [9]
approach for modeling human mobility in metropolitan ar-
eas to be differentially private.

Differential privacy [4, 5] is a notion of privacy receiving in-
creasing attention. It makes privacy a mathematical require-
ment on the results of interactions with data. It captures the
intuition that an individual’s risk of being identified should
be almost the same whether or not they participate in a
database. This is a strong notion of privacy that makes no
assumptions about the power or background knowledge of a
potential adversary.

Starting with Call Detail Records (CDRs) from a cellular
telephone network that have gone through a straightforward
anonymization procedure, WHERE [9] produces synthetic
CDRs for a synthetic population. WHERE has been ex-
perimentally validated against billions of location samples
for hundreds of thousands of cell phones in the New York
and Los Angeles metropolitan areas. To ensure that the re-
sulting synthetic CDR’s are provably private, we propose to
modify WHERE to be differentially private. The aim is to
enable the creation and possible release of synthetic CDRs
that capture the mobility patterns of real metropolitan pop-
ulations while preserving individual privacy.

To the best of our knowledge, the problem of making human
mobility models (based on sensitive spatio-temporal data)
differentially private has not been studied before. Differen-
tial privacy has been examined in other contexts of spatio-
temporal data. Chen et al. [3] study the problem of pub-
lishing a differentially private version of the trajectory data
of commuters in Montreal. They then evaluate the utility of
published private data in terms of count queries and frequent
sequential pattern mining. WHERE does not directly model
the sequentiality of the spatio-temporal data at the level of
an individual. However, it would be interesting to compare
the two approaches. Similarly, Ho and Ruan [7] consider the
problem of location pattern mining with differential privacy

∗Partially supported by NSF award CCF-1018445.

for spatial databases. Andrés et al. [1] introduce the notion
of geo-indistinguishability in location-based systems, which
protects the exact location of a user while allowing release
of information needed to gain access to a service.

1. BACKGROUND
Consider a database D of m simplified CDRs containing n
distinct users. Each row of the database corresponds to a
voice call or text message (hereafter both referred to inter-
changeably as calls) and includes the following attributes:

user-id date time lat long

Each user is indexed by a unique user ID in the set [n] =
{1, 2, . . . n}. For each user, home and work locations are esti-
mated according to earlier techniques [8]. We assume these
two locations are appended to each row of D.

1.1 WHERE
WHERE works with a CDR databaseD representing calls in
a given metropolitan area that has been divided into smaller
geographic areas by imposing a rectangular grid of granu-
larity d × d. To model the users in D, WHERE computes
six types of spatial and temporal distributions:

Home and Work. For each grid cell, all users who have
home and work locations in that area are counted. Next, the
number of home and work locations in that area is divided
by the total number of users in the database, thus giving a
probability for the home and work locations for each area of
interest. To construct a synthetic user, WHERE creates a
cumulative distribution function (CDF) of the home or work
probability for every possible area, randomly picks a number
uniformly between 0 and 1, and selects the corresponding
area as the synthetic home or work.

CommuteDistance. For each grid cell, we compute a distri-
bution on home-to-work commuting distances of people who
live in that cell. There are a total of d2 of these Commute-
Distance distributions.

CallsPerDay. For each user in the CDR, we calculate the
mean (µ) and standard deviation (σ) for the number of calls
made per day. Now, a two-dimensional histogram is con-
structed for the various values of µ and σ. Each user’s µ
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and σ is rounded to the tenths place. A two-dimensional
matrix M is maintained, in which an appropriate cell in-
dexed by a user’s µ and σ is incremented. Then, dividing
each cell by the total number of users gives a 2-D probability
distribution function (that is, the sum of all the cells adds to
1) called CallsPerDay. We can traverse the matrix in either
row or column major order to construct a CDF which can
be easily sampled from and converted back into the µ and σ
that index to the random cell. When determining how many
calls a synthetic user makes on a particular day, WHERE
samples a number uniformly at random between 0 and 1 and
locate the (rounded) µ and σ that this number corresponds
to in the CDF of CallsPerDay. A number sampled from a
normal distribution determined by this µ and σ gives the
number of calls that the user makes.

CallTime. For each user in the CDR database, WHERE
computes the distribution of calls over the day. However, us-
ing X-Means clustering, user call-behavior can be clustered
into two classes [9]. Subsequently, using the CDR database,
per-minute call probability distributions are computed sep-
arately for each user class. From this, a probability distribu-
tion CallTime, for each hour of the day, for each user class
is constructed. Previous work [9] showed that while both
classes exhibit diurnal patterns in the calling behavior, one
class favors evening calls while the other favors afternoon.

During the creation of a synthetic call by a synthetic user,
WHERE first determines the number of calls made per day
using CallsPerDay as described above. After assigning a
user to one of the two user-classes, it uses the relevant Call-
Time distribution to synthesize call times.

Hourly. For every hour, WHERE computes a distribution
of calls made over every latitude-longitude area (grid cell)
in the grid. There are 24 distributions over the metropoli-
tan area, one for each hour. Each distribution reflects the
probability of people being at a specific location at a specific
time. It is not explicitly tied to either a user or a home or
work location.

1.2 Differential Privacy
Differential privacy rests on the guarantee that an individ-
ual’s risk of being identified is almost the same whether or
not the individual participates in a database, even for in-
dividuals with unique or outlier behaviors. To formalize
this we need the notion of neighborhood [5] of two CDR
databases. We introduce two notions of neighborhood: call-
level and user-level.

Def. 1 (Neighbors). Two CDR data-
bases D and D′ are call-level neighbors if |D ⊕D′| = 1. D
and D′ are user-level neighbors if for all CDRs, c ∈ D⊕D′,
user-id (c) = k, for some k ∈ [n].

In other words, neighboring CDR databases D and D′ are
call-level neighbors if they differ in exactly one CDR. They
are user-level neighbors if they differ in the records of exactly
one user (who may have made many calls).

We will also make use of the concept of the global sensitivity
of a function of the database [5]. This is the maximum

change in the function over all neighboring databases.

Def. 2 ([5]). The global sensitivity of a function of a
database D, f : D → R` is

GSf := max
D,D′

‖f(D)− f(D′)‖1

where D and D′ are (user or call-level) neighbors.

Known results show that differential privacy can be achieved
by adding noise to the outcome of f that is proportional to
the global sensitivity of f [5].

2. DIFFERENTIALLY PRIVATE WHERE
We discuss modifications to the distributions described in
Section 1.1 to make them differentially private.

2.1 Probability Distributions
Home and Work . We need to compute a differentially pri-
vate CDF for the Home and Work distributions. Let ε be
the privacy level we want to achieve. (Values like 0.1 or 1 are
typically used in practice.) Let Lap(0, λ) denote a Laplacian
distribution with mean 0 and standard deviation λ. Assume
a row or column major ordering of the d2 grid cells.

Let CountNum(home, i) be a function that returns the num-
ber of distinct people in the database D with homes in
grid cell i in this ordering. Then, applying standard noise
adding techniques [5], using Algorithm 2.1 provides an ε-
differentially private approximation of the CDF. It has an
error proportional to

√
d2.

Algorithm 2.1: DPhomeCDF(D, ε)

Count← 0
for i← 1 to d2

do





Count← Count+
CountNum(home, i)+

Lap(0,
√
2
ε
).

CDF[i]← Count .
return (CDF)

The error can be improved by McSherry and Mahajan’s
method [11] to publish a CDF with error proportional to
(log d2)3/2. Moreover, the noisy CDF does not correspond to
a legitimate probability distribution since the noisy counts
are not necessarily non-decreasing. We can use Hay et al.’s
post-processing techniques [6] to “clean-up” this noise and
create a legitimate CDF.

CommuteDistance. Assume a min and max for the commut-
ing distance of people living in each grid cell. Let Range =
max−min+1. Let CountCommute(i,dist) count the num-
ber of people living in grid cell i who commute a distance of
dist. Then Algorithm 2.2 provides an ε-differentially private
computation of the original CommuteDistance distribution.

For each grid cell, the CommuteDistance distribution can
be computed independent of the distribution for other cells.
Applying the parallel composition theorem [10], the d2 in-
vocations of Algorithm 2.2, are still ε-differentially private.
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Algorithm 2.2: commuteCDF(D, cor, ε)

Count← 0
for i← 1 to Range

do





Count← Count+
CountCommute(cor, i)+

Lap(0,
√
2
ε
).

CDF[i]← Count .
return (CDF)

CallsPerDay. To make the CDF of CallsPerDay differen-
tially private, we assume that the mean number of calls per
day for any user falls in the range [µmin, µmax]. Similarly
the standard deviation of the number of calls per day is in
the range [σminσmax]. Using this we have a fixed size two-
dimensional matrixM as described above and a noise matrix
Nε, such that ∀, i, j,Nε(i, j) = Lap(0,

√
2
ε
). However, after

every user’s µ and σ is used to increment the appropriate
matrix cell of M , M is replaced by M +Nε.

Now, we proceed as before with the modified M giving an
ε-differentially private CDF of CallsPerDay.

CallTime. We cluster the users into one of the two classes
using ε−differentially private k-means clustering [2]. Sub-
sequently, we compute a probability distribution CallTime,
for each hour of the day, for each user class, separately by
using a variant of randomized-response [12].

The stochastic creation of synthetic calls by synthetic users
proceeds as before. WHERE first determines the number
of calls made per day using the private CallsPerDay as de-
scribed above. After assigning a user to one of the two user-
classes, it uses the relevant private CallTime distribution to
synthesize call times.

Hourly. For every hour, the global sensitivity of the query
that counts the number of calls made over all grid cell is
maxcalls. Add noise proportional to this quantity by adding
a noise matrix Nε, where

Nε(i, j) ∼ Lap

(
0,

maxcalls
√
2

ε

)
,

yields an ε-differentially private approximation of the matrix
of calls made over the entire metropolitan over an hour. This
can then yield a differentially private Hourly probability dis-
tribution. When a synthetic call is made using the CallTime
and CallsPerDay distributions, its location is determined to
be either home or work according to the probability of a
person being in the location at that time of day using the
Hourly distribution.

2.2 Summary and Evaluation Plan
In summary, the modified WHERE approach we have out-
lined above achieves differential privacy. This privacy may
come at some accuracy cost, however, because noise is intro-
duced in each probability distribution. We plan to compare
the accuracy of the models produced by the differentially
private and original versions of WHERE. The ε parameter
offers us a “knob” by which to trade off privacy and accuracy.
Our evaluations will compare the differentially private distri-
butions to their original counterparts, using several metrics.

As in [9], we will use Earth Mover’s Distance (EMD) to com-
pare the two sets of distributions. In addition, other metrics
such as daily range can also be used. Overall, once evalu-
ated for accuracy, our work can represent a significant step
towards making large-scale well-validated mobility models
provably private and therefore easier to distribute and build
from.
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We study fifteen months of human mobility data for one and a half million individuals and

find that human mobility traces are highly unique. In fact, in a dataset where the location

of an individual is specified hourly, and with a spatial resolution equal to that given by the

carrier’s antennas, four spatio-temporal points are enough to uniquely identify 95% of the in-

dividuals. We coarsen the data spatially and temporally to find a formula for the uniqueness

of human mobility traces given their resolution and the available outside information. This

formula shows that the uniqueness of mobility traces decays approximately as the 1/10 power

of their resolution. Hence, even coarse datasets provide little anonymity. These findings rep-

resent fundamental constraints to an individual’s privacy and have important implications

for the design of frameworks and institutions dedicated to protect the privacy of individuals.

Despite its importance, privacy has mainly relied on informal protection mechanisms. For in-

stance, tracking individuals’ movements has been historically difficult, making them de-facto pri-

∗Correspondence should be addressed to Yves-Alexandre de Montjoye (email: yva@mit.edu)
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Figure 1: (A) Trace of an anonymized mobile phone user during a day. (B) The same user’s trace

as recorded in a mobility database. (C) The same individual’s trace when we lower the resolution

of our dataset through spatial and temporal aggregation.

vate. Modern information technologies such as the Internet and mobile phones, however, magnify

the uniqueness of individuals, further enhancing the traditional challenges to privacy. While in the

past, mobility traces were only available to mobile phone carriers, the advent of smartphones and

other means of data collection has made these broadly available. Mobility data is among the most

sensitive data currently being collected

A simply anonymized dataset does not contain name, home address, phone number or other

obvious identifier. Yet, if individual’s patterns are unique enough, outside information can be used

to link the data back to an individual. We study the unicity of mobility traces in a mobile phone

dataset containing 15 months of mobility data for 1.5M people, a significant and representative

part of the population of a small European country. We show that four randomly chosen points are

enough to uniquely characterize 95% of the users (E > .95), whereas two randomly chosen points

still uniquely characterize more than 50% of the users (E > .5). This shows that mobility traces

are highly unique, and can therefore be re-identified using little outside information.
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Nonetheless, E depends on the spatial and temporal resolution of the dataset. Here, we de-

termine this dependence by lowering the resolution of our dataset through spatial and temporal

aggregation. We show that it is possible to find one formula to estimate the uniqueness of traces

given both, the spatial and temporal resolution of the data, and the number of points available

to an outside observer. We show that the uniqueness of a trace decreases as the power function

E = α − xβ , for decreases in both the spatial and temporal resolution (x), and for all considered

p = 4, 6, 8 and 10. The power-law dependency of E means that, on average, each time the spatial

or temporal resolution of the traces is divided by two, their uniqueness decreases by a constant

factor ∼ (2)−β . This implies that privacy is increasingly hard to gain by lowering the resolution of

a dataset.

We also shows that E increases with p. The mitigating effect of p on E is mediated by the

exponent β which decays linearly with p: β = 0.157 − 0.007 ∗ p. The dependence of β on p

implies that a few additional points might be all that is needed to identify an individual in a dataset

with a lower resolution. Because of the functional of E on p through the exponent β, mobility

datasets are likely to be re-identifiable using information on only a few outside locations.

We showed that the uniqueness of human mobility traces is high, thereby emphasizing the im-

portance of the idiosyncrasy of human movements for individual privacy. This uniqueness means

that little outside information is needed to re-identify the trace of a targeted individual even in a

sparse, large-scale, and coarse mobility dataset. These results should inform future thinking in the

collection, use, and protection of mobility data. Going forward, the importance of location data

will only increase and knowing the bounds of individual’s privacy will be crucial in the design of

both future policies and information technologies.
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Introduction 

The  control  and  elimination  of  an  infectious 

disease  from  a  local  area  or  country  is  often 

complicated  by  human  movement  bringing 

infections in from endemic areas. In the case of 

malaria,  parasite  importation  to  transmission‐

receptive  areas has  resulted  in  the  resurgence 

and reestablishment of the disease in previously 

free  areas,  and  represents  a  significant 

challenge for the 36 countries and regions now 

planning for elimination. The design of strategic 

plans for controlling, eliminating and preventing 

malaria  reestablishment  should  therefore 

ideally  account  for  human  and  parasite 

movement  patterns.  Here  we  describe  how 

anonimized mobile phone call data records can 

be analysed  to provide  information  to  support 

planning using the example of Namibia. 

 

Data 

Mobile  phone  call  data  records  covering 

October  2010  to  September  2011  were 

provided  by  the  leading mobile  phone  service 

provider  in Namibia, MTC, who reported a 90% 

market  share.  Daily  locations  were  calculated 

for anonymous subscribers using the location of 

calls and texts at one of 402 regions across the 

country,  following  methods  outlined  in  other 

similar  studies  1‐5.  Movements  between 

locations  were  calculated  by  examining  the 

temporal  sequences  of  communications  and 

assigning a movement  to a new  location and a 

time  of  this  move  when  the  region  through 

which the call/text was routed changed. 

To  characterize  spatial  variations  in 

malaria  transmission  intensity  across  the 

country,  and  the  uncertainties  that  exist  in 

these  measurements,  25%,  50%  and  75% 

quartile  P.  falciparum  prevalence  estimates  in 

the 2‐10 year age group for 2010 were obtained 
6.  Previously  defined  mathematical  models  7 

were used to adjust the malaria risk maps to the 

15‐30 age group, to match that of the majority 

of  subscribers  and  travellers  8,  9.  To  adjust 

estimated malaria  risks  to  capture  the  strong 

seasonality  that  occurs  in  Namibia,  reported 

outputs  from  the  national  malaria  control 

program  surveillance  system  in  2011  were 

obtained  to  provide  quantitative  risk 

adjustments  for  low  and  high  transmission 

season months. 

Movements  of  infections  were 

calculated  for  two  types of  traveller,  following 

previous  approaches  5,  10:  (i)  'Returning 

residents';  Residents  of  a  location who  visited 

an  endemic  area  then  returned  to  their home 

location,  potentially  bringing  an  infection with 

them, and (ii) 'Visitors'; Residents of an endemic 

area who visited a new location and potentially 

carried an infection with them. 
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Results 

 

Human movements 

Figure  1(a)  shows  that  population movements 

in Namibia  follow patterns  seen elsewhere  1,  3, 

11, but with a deviation at around 400km from a 

smooth  power  law  distribution,  corresponding 

to  the distance apart of  the  two major  regions 

of high population density. 

 
Figure 1. (a) Plot of radius of gyration for all movements in 

Namibia,  with  inset  map  showing  movement  totals 

between regions over the Oct 2010‐Sept2011 period. Rates 

of  movement  are  coloured  from  yellow  (lowest)  to  red 

(highest). 

Communities 

Clusters of  communities  that are  connected  to 

one  another  through  high  levels  of  human  or 

malaria parasite movement were mapped to aid 

in  the  regional  planning  of  interventions, 

identifying  how  an  intervention  in  one 

community may impact imported case numbers 

in  surrounding  communities.  The  identification 

of  distinct  communities  within  the  weighted 

networks  of  human  and  malaria  parasite 

movements was undertaken using a modularity 

optimization  algorithm  12,  with  results  for 

human travel shown in figure 2. 

  

Figure 2. Mapped  communities of human  travel  ‐  regions 

mapped  with  the  same  colour  are  ones  for  which 

movements  within  them  are  stronger  than  movements 

between surrounding communities. 

Sources and sinks 

Targetting  the  largest  exporter  communities 

('sources')  of  infections  is  likely  to  have  an 

impact  on  the  numbers  of  infections  seen  in 

surrounding  areas  that  are  net  importers  of 

infections ('sinks') and be a better use of limited 

resources.  For  each  location,  the  estimated 

total  number  of  infections  exported  or 

imported  annually,  and  by month,  for  visitors 

and returning residents were summed, and the 

differences between  these values calculated  to 

assess  whether  locations  were  likely  to  be 

sources or sinks of infections (figure 3).  

 
Figure 3. Map of  'sources'  (net exporters) and  'sinks'  (net 

importers)  of malaria  infections.  Areas  coloured  red  are 

infection sources and those coloured blue are sinks. Those 

coloured green are neither sinks nor sources.   

The  likely  regional  effects  of  targeting  control 

efforts on the  largest source and sink areas are 
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shown  in  figure 4, with  substantial differences 

evident,  due  to  differing  levels  of  connectivity 

through parasite movement. 

 (a)

 

(b) 

Figure  4.  The  effects  of  human  and  parasite mobility  on 

control  targetting  effectiveness.  (a)  The  percentage 

reduction  in  estimated  imported  case  numbers  through 

reducing parasite exportation numbers to zero  in the area 

marked  with  a  star,  which  is  one  of  the  major  source 

regionsin  figure  3;  (b)  The  percentage  reduction  in 

estimated  imported  case  numbers  through  reducing 

parasite exportation numbers  to  zero  in  the area marked 

with a star, which is one of the major sink regions in figure 

3. 

Conclusions 

As  Namibia  makes  progress  towards 

elimination,  imported  cases  will  make  up  an 

increasingly  large  proportion  of  total  cases 

seen,  both  in  terms  of  cases  imported  into 

Namibia from Angola, and cases seen in districts 

close  to  elimination  that  are  imported  from 

high transmission districts. Such imported cases 

will become  increasingly  important  in  terms of 

threatening  success  in  achieving  elimination. 

With  mobile  phone  usage  proliferation 

continuing and data continually being collected 

by network providers, a huge potential exists to 

make operational use of  such  valuable data  in 

infectious disease control and elimination. 
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I
n this work we analyze a large scale mobile call dataset to investigate the temporal
evolution of the egocentric network of active individuals. We empirically observe a
simple quantitative statistical law characterizing the memory of agents and encode the

observed dynamics in a reinforcement process defining a generative computational network
model with time-varying connectivity patterns. This reinforced activity-driven network
model spontaneously generates the basic dynamic process for the differentiation between
strong and weak ties. The model is used to study the effect of time-varying heterogeneous
interactions on the spreading of information on social networks. We observe that the
presence of strong ties may severely inhibit the large scale spreading of information by
confining the process among agents with recurrent communication patterns. Our results
provide the counterintuitive evidence that strong ties may have a negative role in the
spreading of information across communities.

In the last ten years the access to high resolution
datasets from mobile devices, communication, and
pervasive technologies has propelled a wealth of de-
velopments in the analysis of social networks [1, 2, 3].
Particular efforts have been devoted to characterize
how their structure influences the critical behav-
ior of dynamical processes evolving on top of them.
However, the large majority of the approaches put
forth to tackle this subject utilise a time-aggregated
representation of the interactions and neglect their
time-varying nature. Indeed, the concurrency, and
time ordering of interactions, even if the social net-
work contains stable relationships, are crucial and
may have considerable effects [4, 5, 6].

The characterization, and modeling of time-
varying networks are still open, and active areas of
research [7]. A simplification of this framework has
been recently proposed by the activity-driven gener-
ative algorithm for time-varying networks [5]. This
approach defines the activity potential, a time invari-
ant function characterizing the agents’ interactions,
and constructs an activity-driven model capable of
encoding the instantaneous temporal description of

Figure 1: Distributions of the characteristic measures of
the aggregated mobile phone call network, and the rein-
forced activity-driven network. In panels (a), and (d) we
plot the degree distributions. In panels (b), and (e) we
plot the edge-weight distributions. Finally, in panels (c),
and (f) we plot the node-activity distributions.

the network dynamics. However, this framework is
memoryless, and it misses important features of real
world systems. In this work we propose to extend
the activity-driven modeling framework in order to
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(a) (b)

(a) (b)

Figure 2: Rumor spreading processes in (a) memoryless and (b) reinforced activity-driven networks of the same
parameters. Nodes colors assign the actual node states as ignorant (blue), spreader (red) and stifler (green) states
after the same number of evaluation steps. Node sizes, color, and width of edges represent the corresponding degrees
and weights.

explain the effect of the repetitive emergence of in-
teractions within one’s social circle. We perform a
thorough analysis of a large-scale mobile phone-call
dataset, which contains the records of time-stamped
communication events of millions of individuals. We
show that recurrence interaction of connected individ-
uals can be explained by simple memory effects syn-
thesized by non-Markovian reinforcement processes.
The introduction of this mechanism in the activity-
driven model allows us capturing the evolution of
the egocentric network of each actor in the system,
recovering also its global dynamics. In particular,
it induces the proper weight heterogeneities reduc-
ing the degree diversity of the emerging structure in
good agreement with the empirical observations as
it is shown in Fig.1.

Using this model we study the effect of repeti-
tive time-varying interactions on a family of rumor
spreading models [8]. We assume that the time scales
of the contact patterns evolution, and the spreading
process are comparable. Interestingly, our findings
clearly show that memory in the interaction dynam-
ics hamper the rumor spreading process. Strong ties
have an important role in the early cessation of the
spreading dynamics. They favor interactions with
agents already aware of the rumor and allow the ru-
mor to diffuse only locally. This is illustrated in Fig.2
where the difference in the contagion level between
the memoryless and reinforced process spreading is
apparent. This evidence points out that strong ties
may have an active role in weakening the spreading of
information by constraining the dynamical process in
clumps of strongly connected social groups. We vali-
date the basic assumption, and modeling framework

against results of data-driven simulations performed
in the actual mobile call time-varying network.
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5Instituto de Ingenieŕıa del Conocimiento, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Social connectivity is the key process that char-
acterizes the structural properties of social net-
works and in turn processes such as navigation,
influence or information diffusion. An empirical
limitation of studies to date is the definition of
what constitutes an active tie that retains capac-
ity to transfer information in the future. The
limited observational length of existing human in-
teraction datasets, together with the bursty na-
ture of dyadic communications lie at the core of
this problem, hindering the discrimination of in-
active ties from large inter-event times in active
ones. Here we develop a method for the detection
of tie activation/deactivation, and apply it to a
large longitudinal, cross-sectional communication
dataset (≈ 19 months, ≈ 20 million people). Con-
trary to the perception of ever-growing connec-
tivity, we observe that individuals exhibit a finite
communication capacity, which limits the number
of ties they can maintain active. In particular we
find that men have an overall higher communica-
tion capacity than women and that this capacity
decrease gradually for both sexes over the lifespan
of individuals (16-70 years). We are then able to
separate communication capacity from communi-
cation activity, revealing a diverse range of tie
activation patterns, from stable to exploratory.
We find that, in simulation, individuals exhibiting
exploratory strategies display longer time to re-
ceive information spreading in the network those
individuals with stable strategies. Our principled
method to determine the communication capacity
of an individual allows us to quantify how strate-
gies for human interaction shape the dynamical
evolution of social networks.

Many different forces govern the evolution of social
relationships making them far from random. In recent
years, the understanding of what mechanisms control the
dynamics of activating or deactivating social ties have un-
covered forces ranging from geography to structural posi-
tions in the social network (e.g. preferential attachment,
triadic closure), to homophily [2]. These finding are per-
vasive in empirical analyses across cultures, communica-
tion technologies and interaction environments [3–6, 10–
15].

∗ Corresponding author emoro@math.uc3m.es

However, the incorrect assumption that time, attention
and cognition are elastic resources has blurred the study
of how individuals manage their social interactions over
time [17–19]. Understanding such social strategies is not
only of paramount importance to make progress in the
characterization of human behavior, but also to improve
our current description of social networks as evolutionary
objects against the (aggregated) ever-growing or static
pictures of the social structure.

Several reasons have hampered the observation of tie
activation/deactivation dynamics in social networks at
large scale: on the one hand, studies of diffusion based
on datasets from pre-electronic eras have safely assumed
that tie activation/deactivation is a much slower process
than interactions within a tie, and thus their dynamics
might be safely neglected [20–22]. However, the current
ability to communicate faster and further than ever ac-
celerates tie dynamics in an unprecedented manner to
the point that tie activation/deactivation may rival in
time with processes like information spreading. On the
other hand, available data about how ties form or de-
cay were restricted to egocentric, small social networks
and/or short periods of time which made it difficult to
assess the universality of the results obtained and their
extension to other situations [6, 8, 9]. Finally, although in
some online social networks there are explicit rules for the
establishment of social ties, in most cases activity is the
only way to assess the existence or not of the tie [23, 24].
Online social networks are plagued with this problem due
to the cheap cost of maintaining “friends” which are in
fact already deactivated relationships [25]. However, us-
ing activity as proxy for tie presence is a problem in most
communication channels like mobile phone calls, emails,
electronic social networks etc., since tie activity is very
bursty [26] and so far there is no clear method to dis-
criminate those social ties that are already inactive from
large-inter even times within active relationships [27].

In this communication we study the formation and
decay of communication ties using a large (both cross-
sectional and longitudinal) database of of the anonymized
voice calls of about 20 million users that form 700 mil-
lion communication ties. We use a novel method to de-
termine the presence of a tie based on activity data (see
figure 1) and apply it to understand the dynamics of
formation and destruction of ties. While previous work
has analyzed datasets over insufficient time-spans (thus
confounding tie dynamics with the bursty nature of ties)
and/or small cohorts (thus unable to obtain statistically
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Figure S2: (Color online) Schematic view of the different situations of tie formation/decay and the
interplay between the tie communication patterns and tie formation/decay for a given observation
time window of length T (shadowed area). Each lines refers to a different tie while each vertical
segment indicates a communication event between i $ j and �tij is the interevent time in the i $ j

time series.

for the link. As was shown in [3, ?] the pdf for inter event times depends mostly on the average
inter-event time �tij, i.e. P(�tij) = P(�tij/�tij) where P(x) is a universal function. Thus, we could
rewrite the previous expression as

P(⌧ij|�tij) =
1

⌧ij

Z⌧ij

0

P(�tij/�tij)d�tij (2)

However, links are very heterogeneous in the sense that they have very different �tij. Or equiv-
alently, they very different weights wij = T/�tij weight. Suppose that ⇧(�tij) is the distribution
of average inter-event times across links and that each node chooses her links activities from that
distribution of �tij. Then the probability to observe one of her links at time ⌧ is given by:

P(⌧) =

Z
d�tij⇧(�tij)P(⌧|�tij) (3)

Thus, the growing function of the observed connectivity as a function of time is given by the ccf of
P(⌧).

ki(t) = ki(1)

Z t

0

P(⌧)d⌧ (4)

where ki(1) is the total connectivity of node i. Note that since P(x) and ⇧(�tij) are heavy tailed,
then P(⌧) is heavy tailed too and thus the ki(t) can show an apparent non-trivial time dependence
even if all links are open during the observation time.

Let’s do an example: assume that the distribution of inter-event times is given by the exponen-
tial pdf P(�t|�t) = e-�t/�t/�t and also that the pdf for the average inter-event time is an exponen-

Activity localization in online social networks

⌦

7 months6 months 6 months

FIG. 1. Detection of tie activation/deactivation Schematic view of the time intervals considered in our database and
the different situations of tie activation/deactivation and the interplay between the tie communication patterns and tie acti-
vation/deactivation for a given observation time window Ω of length T = 7 months (shadowed area). Each line refers to a
different tie while each vertical segment indicates a communication event between i↔ j and δtij is the inter-event time in the
i ↔ j time series. Our method is based on the observation of tie activity in a time window before/after Ω: if tie activity is
observed in the 6 months before Ω then it is considered an old tie [cases (a) and (d)]; on the other hand, if activity is observed
in the 6 months after Ω we will assume that the tie persists [cases (b) and (d)]. In any other case, we will consider that the tie
is activated and/or deactivated in Ω [cases (a), (b) and (c)].

significant results to discriminate different communica-
tion strategies), our method and extensive dataset allow
us to determine, for the first time, the social strategies
which result from the limited communication capacity of
individuals. We have also made some analysis of how so-
cial strategies depend on sex and age of the individuals
and about how the strategies are correlated with the (dy-
namical) topological structure of the network and on the
dependence of the access to information with the strategy
displayed.

Our contribution shows a number of important results
which we summarize as follows:

• We develop a new methodology to investigate tem-
poral networks, an issue which is convoluted with
the way social networks are observed and modeled,
and which has been recently been pointed out as a
problem in the field of social networks [28].

• Contrary to conventional wisdom in which social
connectivity is an ever-growing quantity, we have
found that instantaneous connectivity is bounded:
humans manage their interactions so that the num-
ber of open connections is kept constant through
time.

• We find that men have an overall higher communi-
cation capacity than women and that this capacity
decrease gradually for both sexes over the lifespan
of individuals (16-70years).

• A principled methodology to determine the com-
munication capacity of an individual enables us
to characterize individual communication strate-
gies: while some individuals are social keepers (they
maintain a clusterized static network around them)
other seem to undergo a social exploring strategy
(in which many ties are formed and destroyed in
time).

• Finally we use computer simulations to investigate
the possibility that social explorers have a compet-
itive advantage towards information advantage be-
cause of their fast and distant tie formation dynam-
ics. Counterintuitively, we found that social keep-
ers receive information before social explorers do.
The answer to this paradox is that, despite having a
large variability in the social structure around a so-
cial explorer, the amount of time allocated to their
contacts is low enough to produce countervailing
effects and hinder information diffusion.

This result is important as it provides conclusive evi-
dence for the divergence between the static and dynamic
characterizations human interaction. Fine-grained, lon-
gitudinal and cross-sectional data as the one presented in
this study are then needed to fully understand processes
such as navigation, influence and information diffusion as
they happen concurrently and possibly entangled to the
unfolding of social strategies in time.
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Is Social Influence Always Positive? Evidence from a Large Mobile

Network

Rodrigo Belo∗, Pedro Ferreira†

Carnegie Mellon University

1 Introduction

The design of a new product often involves incorpo-
rating viral features that increase the likelihood that
adopters influence their peers to adopt the product as
well (e.g., Aral and Walker, 2011). Network effects
are a specific class of viral features that are frequently
present in networked industries and more so in mo-
bile networks, where pairwise communication still rep-
resents the major form of communication. We analyze
a subset of products deployed by a large European mo-
bile carrier and look at their characteristics in terms of
viral features and network externalities. We develop a
model to help identify the incentives in the adoption of
these products.

We use randomization methods (e.g., Anagnos-
topoulos et al., 2008; La Fond and Neville, 2010; Belo
and Ferreira, 2012) to identify social influence from
observational data and find that network externalities
contribute to an increase in the adoption rate of some
products. For other products their contribution is neg-
ative.

These results have important management and pol-
icy implications. Social influence is not always posi-
tive and depends on the viral features of the products
considered. Therefore, it is important to carefully de-
sign products that exhibit the correct characteristics
for adoption to occur and spread as expected.

2 Identifying social influence

Social influence can be defined as the degree by which
an action from an individual changes the behavior of
someone else. For the purpose of this paper we look at
how the adoption of a given promotion influences peers
to adopt the same promotion. Social influence plays an
important role in many diffusion models (e.g., Kermack

∗Rodrigo Belo, CMU, rbelo@cmu.edu.
†Pedro Ferreira, CMU, pedrof@cmu.edu.

and McKendrick, 1927; Bass, 1969; Granovetter, 1978;
Watts and Dodds, 2007). Common to all these models
is the characteristic that, under the right conditions,
a small number of initial adopters may lead to a large
number of adoptions.

However, these models are also consistent with
other phenomena, such as heterogeneity in the propen-
sity to adopt, homophily, correlated unobservables, or
simultaneity. These phenomena pose significant chal-
lenges to the identification of social influence in ob-
servational data (Shalizi and Thomas, 2011). Com-
monly used identification strategies include the defini-
tion of structural models (e.g., Ma et al., 2009), the use
of instrumental variables (e.g., Tucker, 2008), propen-
sity score matching (e.g., Aral et al., 2009), and more
recently, randomization (e.g., Anagnostopoulos et al.,
2008; La Fond and Neville, 2010).

Randomization techniques consist of generating
pseudo-samples based on the original sample by selec-
tively permuting the values of some variables among
observations (Noreen, 1989), allowing for the estima-
tion of empirical distributions of a parameter of interest
under the null hypothesis of no influence (e.g., Anag-
nostopoulos et al., 2008; La Fond and Neville, 2010).
We apply these methods to assess the magnitude of
peer influence in the adoption of products and services
in a mobile network setting.

3 Incentives to adopt with network ex-
ternalities

We develop a model for how social influence can affect
the adoption rate of products that exhibit network ex-
ternalities. We focus on the specific case of free-calls
within the network and look at the adoption incentives
of two slightly different products.

By default with this carrier people pay for all the
calls they make. Received calls are free. Consider now
a product that offers free calls among members of a

1
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network for a flat rate fee.
Consider a family of products k that allow calling

for free. Type I promotions allow calling for free sub-
scribers that also adopt the same product. Type II
promotions allow calling for free any subscriber in the
same network. Subscribers can choose either of these
options. Both of them require subscribers to pay a
fixed fee.

We assume each user has a fixed number of friends.
Two subscribers are friends they exchange at least 3
calls in the same calendar month. Subscribers de-
rive utility from calling each friend, uij , independently
of how much she talks to other friends. We assume
quadratic pairwise utility for the calls between user i
and user j, cij :

ui =
∑

j∈Fi

uij =
∑

j∈Fi

[a(cij + cji)− b(cij + cji)
2 − pcij ]

where p represents the price per call. If user i adopts
type I promotion, she will pay a fixed fee, fk, and not
pay for calls:

ui|Ak =
∑

j∈Fi

[a(cij + cji)− b(cij + cji)
2]− fk

The user will choose to adopt product k if the utility
derived from adopting is higher than the utility derived
from not adopting, i.e., if ui|Ak ≥ ui. Thus, i will
adopt k iff:

dAki ≥
4b

ap
fk

where dAki represents the number of friends of i
that will eventually adopt product k. User i will adopt
if there is a minimum number of friends that will also
adopt product k.

The incentives to adopt type II products are quite
different. In this case, adoption occurs as long as there
are at least a minimum number of friends that will not
adopt:

dNki ≥
4b

ap
fk

where dNki represents the number of friends of i
that will not adopt.

Thus, apparently somewhat similar products can
generate different adoption incentives.

4 Data and Methods

We use an 11-month anonymized panel of data com-
prising of detailed information about all subscribers in
a large mobile European network provider. The data
include detailed call and SMS data records, pricing
plans, and adoption of products and promotions.

The data are comprised of detailed information
about every call and SMS originated and received by
roughly 4 million subscribers during the period of anal-
ysis. These details include, among others, origin, des-
tination, location, start time and duration of a call.
On an average day subscribers generate about 4 mil-
lion calls and exchange 40 million SMSs. Addition-
ally, the data contain information about subscribers’
pricing plans and supplementary services. At a given
moment in time each subscriber is associated with one
pricing plan, and possibly several supplementary ser-
vices. Supplementary services are à la carte add-on
services that subscribers can acquire, such as a pack of
1000 SMSs at a discounted rate, free calls on the week-
ends for a given period of time, or simply voice-mail
activation. We currently limit our analysis to a sam-
ple of 10,000 randomly selected subscribers and their
direct neighbors.

We apply the shuffle test described by Anagnos-
topoulos et al. (2008) and use randomized versions of
the data to infer an empirical distribution for the null
scenario of no influence. We then compare the coef-
ficient obtained from the original data with the null
empirical distribution. This procedure has been shown
to yield a lower bound for the magnitude of social in-
fluence and is described in detail in Belo and Ferreira
(2012).

5 Results

We identify social influence on seven different prod-
ucts, one of them corresponding to a type I product
— with free calls only to same-product adopters, while
the other six correspond to type II products — free
calls for all users in the network. Figure 1 depicts
the results for the type I product and for one of the
type II products (all other type II products are simi-
lar). Table 1 shows the total number of adopters for
each of these products, the coefficient obtained from
the original data, the average coefficient obtained from
randomization and respective standard deviation, and
our estimate of social influence.

All the empirical distributions have positive mean
and are statistically different from zero, meaning that
confounding factors, such as homophily are at play.
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Figure 1: Type I and Type II Product coefficients over
1,000 adoption date shuffles. The ‘×’ mark represents
the coefficient obtained from the original data. Dashed
lines represent 95% confidence intervals.

Despite the existence of these effects, our estimates are
aligned with the model outlined in section 3: social in-
fluence is positive for the type I product and negative
for most type II products. For instance, in the case of
the first type I product, the average coefficient obtained
from randomization is 0.00084. Given that the coeffi-

Prod. Adp. Orig. Emp. Marg. Extra
Type Coeff. Dist Eff. Adopt.

I 1126 .0019*** 8.4e-04 1.0e-3*** 148 (13%)
(4.5e-04) (2.1e-04)

II (1) 534 .004*** .0048 -8.0e-4*** -33 (-6%)
(4.4e-04) (1.7e-04)

II (2) 357 .0029*** .0036 -7.0e-4*** -22 (-6%)
(4.0e-04) (1.6e-04)

II (3) 341 .0028*** .0037 -8.0e-4*** -29 (-9%)
(5.0e-04) (2.0e-04)

II (4) 299 .0032*** .0032 -6.0e-5
(4.7e-04) (1.6e-04)

II (5) 205 .0015*** .0018 -2.5e-4** -6 (-3%)
(4.0e-04) (1.4e-04)

II (6) 110 .0015*** .0011 -3.6e-4
(4.1e-04) (2.1e-04)

Table 1: Influence estimates for type I and type II
products.

cient obtained using the original data is .0019, outside
the 95% confidence interval of the empirical distribu-
tion (see Figure 1), we conclude that social influence
plays a role in the diffusion of this product. Its total ef-
fect corresponds to 13% of the total observed adoption.
In the case of the first type II product, peer influence
reduces observed adoption in 6%.

6 Conclusion and Future Work

We show that peer influence can be either positive or
negative in the adoption of products with network ex-
ternalities. Previous literature on network externali-
ties shows that the incentive to adopt increases with
the number of friends that adopt. In this paper we
show that network externalities can also trade-off with
word-of-mouth, resulting in a decrease in the incentive
to adopt as the number of friends that adopt increases.
The direction of such incentives is partly determined
by the design of the product.

This research is work in progress and we plan to
improve on it by separating the network externalities
incentives from the effect of word-of-mouth in the adop-
tion of type II products. We intend to do this by
looking at users with a relatively large number of non-
adopter friends and test whether there is a positive to-
tal effect from social influence. In such a case the pos-
itive effect would have to come from word-of-mouth.
We also plan to analyze under which conditions type I
and type II products are profitable for the carrier, and
to find the optimal fees for such products depending
on the network topology.
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Human Mobility and Predictability enriched by Social
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2Physics Dept., Universidad de Buenos Aires, Argentina
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1 Introduction

The information collected by mobile phone opera-
tors can be considered as the most detailed infor-
mation on human mobility accross a large part of
the population [1]. The study of the dynamics of
human mobility using the collected geolocations of
users, and applying it to predict future users’ loca-
tions, has been an active field of research in recent
years [2, 3].

In this work, we study the extent to which social
phenomena are reflected in mobile phone data, fo-
cusing in particular in the cases of urban commute
and major sports events. We illustrate how these
events are reflected in the data, and show how in-
formation about the events can be used to improve
predictability in a simple model for a mobile phone
user’s location.

2 Mobile Data Source

Our data source is anonymized traffic informa-
tion from a mobile operator in Argentina, focusing
mostly in the Buenos Aires metropolitan area, over
a period of 5 months. We use Call Detail Records
(CDR) including time of the call, users involved,
direction of the call (incoming/outgoing), the an-
tenna used in the communication, and its position.
The raw data logs contain around 50 million calls
per day. CDRs are an attractive source of location
information since they are collected for all active
cellular users (about 40 million users in Argentina),
and creating additional uses of CDR data incur lit-
tle marginal cost.

3 Mobility Model

To predict a user’s position, we use a simple model
based on previous most frequent locations. In or-
der to compute these locations, we split the week in
time slots, one for each hour, totalizing 7∗24 = 168
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Figure 1: Users’ location predictability by time slot.
Blue: Outgoing calls. Red: Incoming calls. Green:
All calls.

slots per week. Since humans tend to have very
predictable mobility patterns [1, 4, 5], this simple
model turns out to give a good predictability base-
line, achieving an average of around 35% correct
predictions for a period of 2 weeks, training with 15
weeks of data, including peaks of above 50% pre-
dictability. This model was used as a baseline in [6],
with which our results agree. In Figure 1 we show
the average predictability for all time slots.

It is important to notice that it is possible to
improve the accuracy of this simple model by clus-
tering antennas, instead of defining each antenna as
a location.

4 Urban Commute

The phenomenon of commuting is prevalent in large
metropolitan areas (often provoking upsetting traf-
fic jams and incidents), and naturally appears in
mobile phone data. For instance, in [7] the authors
study commute distances in Los Angeles and New
York areas. Mobile data can lead to quantification
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(a) 6 a.m. (b) 8 a.m. (c) 10 a.m.

(d) 5 p.m. (e) 7 p.m. (f) 8 p.m.

Figure 2: Commute to Buenos Aires city from the surrounding areas on a weekday, for different hours.
Red color corresponds to a higher number of calls, whereas blue corresponds to an intermediate number
of calls and light blue to a smaller one.

of this phenomenon in terms of useful quantities,
which are much harder to measure directly. We in-
clude a series of call patterns illustrating the Buenos
Aires commute in Figure 21.

From the data, we can estimate the radius of the
commute (the average distance traveled by com-
muters). Considering the two most frequently used
antennas as the important places for each user
(home and work, see [8]), we get an average com-
mute radius of 7.8 km (as a comparison, the diam-
eter of the city is about 14 km, and the diameter of
the considered metropolitan area is 90 km).

5 Sports Events

As in the urban commute case, we study human
mobility in sports events as seen through mobile
phone data. In Figure 3, we show how assistants to
a Boca Juniors soccer match converge to the sta-
dium in the hours prior to the game, and disperse
outwards1.

Note that postselecting the users attending the
event necessarily produces the effect of having no
calls outside the chosen area during the match, how-
ever, the convergence pattern observed is markedly
different from the one seen for the same time slot
of the week on a day with no match.

1 Greater resolution versions of these maps, as well as
additional figures, are available in the Labs section at www.

grandata.com.

Improving Predictability with Exter-
nal Data

So far, our results allow us to understand (and
quantify) social events through the analysis of mo-
bile phone data. This understanding can be in turn
used to improve the mobility model. Social rela-
tions among individuals have been used to improve
predictability in mobility models before, as in [6],
where social links learned from the mobile phone
records are used to this end. Here, instead of peer
to peer links learned from the mobile data, we show
how an external data source can be used to improve
the model.

We illustrate this effect using as proof of con-
cept the case study of soccer matches. By taking
the soccer fixture, we tag users as “Boca Juniors
fans” if they make calls using antennas around the
stadium and time slot where Boca plays for three
consecutive matches (which include both home and
away matches). Using this tagging, we can dramat-
ically improve predictability for this group of Boca
fans, even predicting positions that had never been
visited by a user before. The predictability of the
model for these users considering the fixture data
rises for the matches to 38% – which doubles the
19% accuracy achieved by our previous model for
the same set. Moreover, the initial model is only
able to make predictions in 63% of events in the
given set (as a consequence of a lack of information
from the training set data), whereas the socially
enriched model tries to predict 100% of the events
during match days, which make the previous results
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(a) 5 hours before (b) 1 hour before (c) 1 hour after (d) 3 hours after

Figure 3: Convergence to Boca Juniors stadium on hours prior to a soccer match, and dispersal after
its end. Red color corresponds to a higher number of calls, whereas blue corresponds to an intermediate
number of calls and light blue to a smaller one.

even more significant.
In order to understand these results, we illustrate

with an example where the enriched model outper-
forms the simple model: the simple model would
rarely predict a user’s location on a different city,
whereas the enriched model would do so if the user
is a Boca fan, and Boca has an away match in that
city.

6 Conclusion

We illustrated how social phenomena can be stud-
ied through the lens of mobile phone data, which
can be used to quantify different aspects of these
phenomena with great practicity. Furthermore, we
showed how including external information about
these phenomena can improve the predictability of
human mobility models.

Although we showed this in a specific case as a
proof of concept experiment, we note that this pro-
cedure can be extended to other settings, not re-
stricted to sports but including cultural events, va-
cation patterns and so on (see [3] for a specially rel-
evant application). The tagging obtained is useful
on its own and is of great value for mobile phone
operators. The big challenge in this line of work
is to manage to include external data sources in a
systematic way.

Lastly, the tag-based predictions can be taken to
the community level. Defining, for instance, the
“Boca Juniors fans” community, we can predict
that if some users of this community make or re-
ceive calls in a certain location, other users in the
community will do it as well.
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Abstract
The necessity to improve the management of the resources,
urged many local governments to adhere to European ini-
tiatives in the context of competitiveness and sustainabil-
ity, for creating the right balance between the welfare of
tourists, the needs of the natural and cultural environment
and the development and competitiveness of destinations
and businesses. For many Italian Municipalities, this re-
quirements become concrete with the establishment of a
tourism monitoring systems that aims at survey these phe-
nomenon through the analysis of heterogeneous data rang-
ing from information of the territory, energy consumption,
use of the land, and linked data (arrival and departure from
the airport, bus, hotels etc). We describe the permanent
observatory of touristic fluxes we realized in the town of
Pisa where the standard indicators have been extended with
an indicator of people presence extracted from mobile GSM
call data and other exploratory analyses made by using the
mobile phone data.we developed a method to partition the
users into residents, commuters, in transit and visitors start-
ing from a spatio-temporal profile inferred from people call
habits.

Extending the TFO with GSM-based analysis
Art cities attract many tourists and visitors and these in-
coming flows concur to consume the cities resources both
natural (energy, water, air, . . . ) and of services (parkings,
public transportations, garbage collectors, . . . ). For these
reasons some conflicts with residents and visitors can arise in
the use of the limited resources. It is an hard task and a duty
for the local administrations to guarantee general welfare for
both citizen and visitors and the Sustainable Tourism Plan-
ning is more and more implemented in order to preserve
local resources. In general, not only the tourism but also
commuters flows cause criticism in the typical dynamics of
a city (traffic increasing, public transportation congestion,
pollution).
The Tourism Fluxes Observatory (TFO) carried out in co-
operation with the Municipality of Pisa, aims at studying
the fluxes of tourist visiting the town in order to evaluate
the overall quality of the reception system on the territory.
This is supposed to be a means of support for the Admin-
istrations and the private operators in assessing the overall
quality of the reception system planning.
The data used in a TFO come from heterogeneous sources
and represent observations of several socio-economic and en-
vironmental phenomena. Some of the indicators included in
the TFO are directly or indirectly influenced by the pres-
ence of tourists on the territory like the number of tourist

buses that stop at a parking, the consumption of water and
energy, or the presence at the hotels.
The TFO we realized in Pisa enriches the standard studies of
tourists flows integrating and using unconventional data like
GSM and Social Media data (e.g. Flickr, Facebook, Twitter
data). The use of these data supply a different view of the
phenomena related to behaviors or cultural interests of the
individuals (e.g., the call habits or the shared photos of the
visited places).
It is known from the literature the ability of these new data
to give quali-quantitative estimations of several phenomena
as for example the traffic flows [1], the city dynamics, and
an estimation of people presence at the points of interest [2].
Furthermore the use of GSM and Social Media data is par-
ticularly interesting because they overcome the problems of
the massive data collection as for example the high costs for
surveys and the limitation related to the availability of both
huge amount and up-to-date data.
Besides the quantitative indicators extracted from the data
provided by the local administrations and operators in the
tourism sector, we extended the TFO with a set of analysis
conduced on a GSM dataset. This dataset consists of Call
Data Records (CDR) collected in the urban area of Pisa of
about 232.200 users with a national mobile phone contract
(no roaming users are included in the dataset). These users
have been observed from January 9th to February 8th 2012,
and generated around 7.8 million of tracks.
A CDR records is recorder for each call fo the user and has
the following information:
<Caller ID, ID Cell Start, Start Time, ID Cell End,Duration>

where: Caller ID is the anonymous identifier of the caller,
ID Cell Start and ID Cell End are the identifiers of the cell
where the call starts and ends respectively, Start Time is
the date and time when the call starts, and Duration is the
call duration.

Taking inspiration from the literature, we used CDRs to
estimate the presence of people in the city and to identify
which areas are particularly popular and attractive. By
studying the calls density, we are able to answer to some
non-trivial questions about people habit: How many. . . ?
(the “volume” of people in the area of interest), Where. . . ?
(the origin and destination of people), and When. . . ? (the
temporal profile).
Figure 1, shows the density of people presence in the area
of Pisa. The thick lines delimit the main districts, while the
polygons are the Voronoi tessellation of the GSM coverage.
The density is shown by using the colors in the map: the
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higher density are red. The red cells labeled with (1) contain
“Piazza dei Miracoli” (the square with the leaning Tower)
and the Hospital; the red cell labeled with (2) contains the
Galilei International Airport, and the cell labeled with (3)
contains the National Research Council (CNR). These three
areas actually attract many from tourist/visitors and work-
ers (both resident and commuters). Starting from this anal-

Figure 1: Density map in the city center of Pisa computed

with the CDRs.

ysis, giving just an idea on how people are distributed on
the territory, it is possible to focus on a particular area
(GSM cell) in order to analyse the origin and destination of
the individuals. Considering the cell numbered as (4), that
contains “Ponte di mezzo” (the Middle Bridge), we identi-
fied where people go after having traversing that area, and
where people come from. Figure 2 shows the origin and des-
tination cells involved in the movements to and from the
cell (4): the thickness of the arrows identify the flow vol-
umes, and the direction of the movements. The presence in

Figure 2: Origin and destination map of people seen in the

cell that contains Ponte di Mezzo. (Left) Cells of Origin;

(Right) Cells of the Destinations.

each area can be further investigated by time. In particu-
lar, grouping the calls per hours we can plot the chart that
represents how the presence change over the day. Figure 3
shows the variation of the presences in the cell number (4).
Each separate group is a different day of the week starting
from Monday. The presence, during each day, have the typ-
ical form with the two peaks early in the morning and in
the middle of the afternoon i.e., the hours in which people
move to reach the work/school places and when they leave.
As introduced above, an important aspect when we try to
monitor the territory is to understand what kind of people
are moving on. Very often the local Administrations do not
have exact estimations of tourist flows, but only partial data
collected from the tourist offices or census statistics. In the
TFO of Pisa we implemented a method for people profil-
ing using the CDR [3]. We identify, with a certain degree

Figure 3: Call distribution over the time, in the cell that

contains Ponte di Mezzo.

of approximation, which calls may correspond to predefined
users categories among residents, commuters, in transit and
tourists. Starting from these profiles we extract and indica-
tor of presence that enrich the set of variables of the TFO.
Identifying tourists/visitors is essential to study how the city
is receiving people from outside and how their movements
are affecting the city. Again, being able to combine the
mobility of resident population with the temporary popula-
tion (like commuters, visitors or people in transit) may give
a measure of the sustainability of the incoming population
with respect to resident one. The population on a territory
consumes resources like water, air and produces negative ef-
fects on the surroundings, like garbage, pollution, noise. In
the cases where these resources are limited, the incoming
tourist population may break the sustainable equilibrium
of such resources. Thus, the ratio between residents and
incoming people should be monitored in order to prevent
critical situations.
The profiling methodology uses an inductive machine learn-
ing step based on the SOM [4] starting from a spatio-temporal
user profiles extracted from people call habits.
Starting from the set of calls made by each user in the time
window, a Space Constrained Temporal Profile of each user
is reconstructed. According to the definition given in [3], a
Temporal Profile is a vector of call statistics according to
a given temporal discretization, and the Space constrained
Temporal Profile is a Temporal Profile where only the calls
performed in the cells contained within the a certain area,
are considered.
Since our aim is to study the mobility of residents and visi-
tors in the area of Pisa, from the whole network we first se-
lected the cells overlapping the urban area of the city (Figure
4-Left). The urban center of the city and its corresponding
cells are highlighted in pink, while the larger gray area corre-
sponds to the administrative territory of the city. The time
projection is built by performing two temporal operations
(Figure 4-Right):
1) the aggregation of the days in weekday and weekend slots;
2) the splitting of each slot in time bands representing 3 in-
teresting time windows during the day:
t1 = [00:00:00 - 07:59:59], Early in the morning when people
are usually still at home;
t2 = [08:00:00 - 18:59:59], Middle day when people are out
for work/school or other activities;
t3 = [19:00:00 - 23:59:59], Late in the evening and night
when people are back to home.
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Starting from the calls along the days, the presences over

Figure 4: (Left) GSM Cell coverage in the area of Pisa;

(Right) Reconstruction of the Temporal Profile for the users

in Pisa.

t1, t2 ,t3 are computed and then aggregated over the week-
days and the weekend summing up all of them. The result
is a sort of compact representation of the user’s behaviors
measured by his calls.
The dataset is then processed by using the SOM algorithm
in order to extract the typical global profiles. A SOM is a
type of neural network based on unsupervised learning that
produces a one/two-dimensional representation of the input
space using a neighbourhood function to preserve the topo-
logical properties of the input space [4]. In our case, the
SOM output is a set of nodes representing groups of users
with similar temporal profiles. The SOM tends to highlight

Figure 5: SOM Result: The user profiles.

similar and compatible presence profile of longer stay peo-
ple, allowing to separate commuters and residents, by ex-
ploiting the calling habits of these users in particular during
the weekends. In particular, as shown in Figure 5, on the
bottom left corner (identified with blue points) there are the
temporal profiles corresponding commuter-like pattern with
high frequency during the workdays and a smaller activity
during weekends. On the upper right, there are instead the
profiles describing residents with high presence during the
whole time windows. In the central part (identified with
yellow points) there are the profiles corresponding to short
visits of the city.
Counting the instances in each group, we estimates the per-
centage of residents, commuters and visitors as 20%, 9%,
and 45%, respectively. The 26% of the individuals are un-
clussified at first, because they do not match with any pre-
defined profiles. Carrying out a more accurate analysis of

the results, we are able to extend the cathegories with new
profiles such as for example the “Occasional visitors” and
“The night visitors”. While the former are essentially people
that come to Pisa only few times along a month, the latter
visit Pisa almost regularly but only the night (maybe for the
nightlife in the pubs).
The population rates have been integrated in the TFO as a
particular socio-demographic indicator.
The profiling methods through the SOM, permits also to
further discovery particular situation or events that can en-
rich the global description of a city dynamics. Analyzing
the different profiles we can discover special cases that can
hide interesting information, as the one shown in Figure 6
(Left). This profile groups a huge amount of people that ap-
pear in Pisa only in a unique slot. This slot corresponds to
the weekdays from Monday 23rd to Friday 27th 2012. When
plotting the daily time distributions of the calls, we discov-
ered a peak of calls during Friday 27th around 4 p.m. as
shown in Figure 6 (Right). Actually this day some minutes
before 4 p.m. a strong earthquake affected the Tuscany and
Pisa. In this case the GSM data are a good proxy to capture
extraordinary events.

Figure 6: (Left) Particular profile and the corresponding

daily time calls distribution.

Conclusions
In this abstract we sketched some features of the Tourist
Fluxes Observatory we have set up in collaboration with the
Municipality of Pisa. Apart from integrating the basic stan-
dard data like hotel and parking presence, airports arrivals
and car rentals, the main innovative point of this Observa-
tory is the ability to analyse GSM data. We have developed
mobility analysis including density based presence of people
during time, to more sophisticated analysis to infer the user
profile among residents, commuter and tourists.
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ABSTRACT
The spatial and temporal regularities are the most funda-
mental patterns in human movements. In this work, we
address the problem of analyzing human regularity in a hi-
erarchical way. Our intuition is that, a person may show
different temporal patterns with respect to locations at dif-
ferent spatial granularities. When looking at the raw tra-
jectory of a person, there could be several cities/towns that
he/she usually goes to. And the person could have yearly
regularity visiting some of these cities. And we could fur-
ther zoom into those cities and find certain specific locations
that this person frequently visits, such as home, office or lo-
cal grocery stores. Taking these locations as references, we
may further observe the daily and weekly patterns.

We propose to use reference spots, which are the frequent
locations, to observe human movements. The challenge lies
in to how to effectively detect reference spots at different
spatial granularities. To solve this, we first calculate the
density map over all locations and iteratively breaks the re-
gion into reference spots. The reference spots form a hier-
archy and the temporal patterns in a 24-hour window and
7-day window will reveal the mobility regularities respect
to a reference spot. The experiments are carried on Nokia
dataset, mainly using the GPS data. We will show some
case studies and all the results are put online.

1. INTRODUCTION
With the advanced position technology, massive amounts

of object movement data have been collected. Human move-
ment data collected from mobile phones is a particular in-
teresting moving object data. The mobility patterns mined
from human movement are useful for urban planning, traffic
forecasting, and the spread of biological and mobile viruses.

An important analysis on human movement data is to
find the locations that he/she frequently visits and show the
temporal regularity w.r.t. these locations. Intuitive exam-
ples include daily behaviors in-and-out of home and weekly
visits to local grocery store.

There are several interesting studies showing the potential
of using mobile or positioning technologies to study the hu-
man mobility regularity [2, 1, 6]. In our recent work [4], we
study the problem of detecting periods in movement data.
Our idea is to find dense regions, namely reference spots,
and examine the in-and-out pattern w.r.t. reference spots.
Periods can be detected using Fourier transform and auto-
correlation on the binary in-and-out sequences.

In this work, we will study human movement regularity
in a hierarchical structure of spatial locations. For example,

if we take a town as one big reference spot, we could find
that the person has yearly regularity visiting the town. If
we take a person’s office as one small reference spot, the
weekly regularity visiting the office could be revealed. Ref-
erence spots could be a state, a city, a downtown region, or
a building. By looking at reference spots at different spa-
tial granularity, we gain better insights into human mobility
from various aspects.

The reference spots in hierarchy are data-dependent and
should be detected automatically. Our previous work [4,
5] proposes to use kernel-based method to detect reference
spots. The method is limited to detect only one-level ref-
erence spots. Now the challenge lies in how to detect the
hierarchical structure of the reference spots. We propose to
a top-down iterative way to detect reference spots. In each
level, we first calculate the density map over all the loca-
tions. If there are more than two peaks on the density map,
we will find the lowest density threshold to break them into
separate reference spots. Then, we further look into each
reference spot and iteratively do the same for the locations
in every reference spot. Since we know human usually follow
daily or weekly calendar behavior, for each reference spot,
we will examine the regularity of the times visit this refer-
ence spot in a 24-hour window, 7-day window and all-time
window. The skewed time distribution will reveal the human
movement regularities.

2. METHOD
Let D = {(loc1, time1), (loc2, time2), . . . (locn, timen)} be

the original movement database for a moving object, where
loci is a spatial point represented as a pair (loci.x, loci.y).
A reference spot is a dense area that is frequently visited
in the movement. It is important to find reference spots at
different spatial granularities. In this section, we will first
describe how to calculate the density map and then discuss
our method to detect reference spots in a hierarchical way.

2.1 Kernel-based Density Map Calculation
Intuitively, reference spots are those dense regions con-

taining more points than the other regions. While com-
puting the density for each location in a continuous space
is computationally expensive, we discretize the space into
a regular w × h grid and compute the density for each cell.
The grid size is determined by the desired resolution to view
the spatial data.

To estimate the density of each cell, we adapt a popu-
lar kernel method [7], which is designed for the purpose of
finding home ranges of animals. If an animal has frequent
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activities at one place, this place will have higher probabil-
ity to be its home. This actually aligns very well with our
definition of reference spots.

For each grid cell c, the density is estimated using the
bivariate normal density kernel,

f(c) =
1

nγ2

n∑

i=1

1

2π
exp(−|c− loci|

2

2γ2
),

where |c − loci| is the distance between cell c and location
loci. In addition, γ is a smoothing parameter which is de-
termined by the following heuristic method [7],

γ =
1

2
(σ2

x + σ2
y)

1
2 n− 1

6 ,

where σx and σy are the standard deviations of the whole
sequence LOC in its x and y-coordinates, respectively. The
time complexity for this method is O(w · h · n).

2.2 Hierarchical Detection of Reference Spots
After obtaining the density values, a reference spot can be

defined by a contour line on the map. A contour line joins
the cells of equal density. We use contour line to define the
boundary of a reference spot. Any point within the reference
spot has higher density value than that of the boundary. So
the reference spot is essentially an area with high density.

When we set density threshold p equal to 0, all the grids
will be in one single big contour. If we gradually increase
p, the size of the contour will shrink. If there is only one
peak on the density grids, the contour with density p will
eventually shrinks to empty as p decreases. If there is more
than one peak on the density grids, there will be multiple
contours with density p when p decreases to certain value.
Therefore, we can increase p from 0 to the maximal density
value over all the grids, the first time when we get more
than one contours with density p, we take these contours as
the reference spots at the current level and further look into
each contour separately.

2.3 Summarization of Periodic Behaviors
Given a reference spot, we have a set of locations fall in

this spot: {(loci1 , timei1), (loci2 , timei2), . . . (locim , timeim)}.
Since human usually follow either daily periodicity or weekly
periodicity, we examine the time distributions of the re-
ported locations in this reference spot in a 24-hour window
and 7-day window. For example, in the 24-hour window,
if the frequency of some particular hours are significantly
higher than other hours, it means this person has high daily
regularity visiting this reference spot.

To examine the time distributions, we could look at the
frequencies per hour or per day. However, it is worth noting
that the original time distribution in the data collection is
not even. As we found in Nokia dataset, there are very few
locations reported from late night to early morning. For
example, if there are 100 locations reported at 1 a.m. in
the whole movement history, 80 out 100 are found to fall
into at one specific reference spot. Then the probability
that the person is at this reference spot is 0.8. Probabilities
normalize the the biased collection of the raw data.

3. A CASE STUDY
We analyze a user trajectory in the Nokia dataset [3]. The

raw trajectory of this user is plotted on Google Earth as

Figure 1: Raw trajectory of a person.

Figure 2: Density map of the trajectory.

shown in Figure 1. Each green pin is one recorded location
of this user. The density map over all the locations is shown
as Figure 2.

When we reach to node 1 at level 3, the density map is
shown as Figure 3(a). We see from Figure 3(b) that the
person is more likely to visit the region on weekends with
skewed time distribution in 7-day time window. When we
go to level 4, it breaks into two reference spots. And the
time distributions of these two reference spots are showing
very different characteristics. The reference spot as shown
in Figure 3(c) showing strong weekly regularity. The person
has high probability to be in this reference spot on weekends
and sometimes showing up in this spot at nights. However,
for the other reference spot as shown in Figure 3(e), the time
distribution in a 7-day window is more even and the person
is observed in that spot mostly during daytime as seen in
the 24-hour window. Therefore, we gain insights into the
mobility pattern of this person in level 4 than level 3. Only
when we treat these two reference spots separately, we will
observe this person is likely to be in Spot-Level-4-Node-1 on
weekends, which indicates this could be the region that this
person is usually spending his spare time. And Spot-Level-
4-Node-2 is likely to be a working place that this person
usually shows up at daytime.

4. CONCLUSION AND DISCUSSIONS
In this work, we present the method of analyzing human

movement in a hierarchical way. We propose using refer-
ence spots at different spatial granularities to observe hu-
man movement. The discovery of human movements can be
revealed from the temporal regularities in reference spots.

It will also be interesting to study the regularity in the
trajectory paths. This would be more challenging since the
frequent trajectory paths are more difficult to be detected
than reference spots.
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(a) Density-Level-3-Node-1 (b) Time-Level-3-Node-1

(c) Spot-Level-4-Node-1 (d) Time-Level-4-Node-1

(e) Spot-Level-4-Node-2 (f) Time-Level-4-Node-2

Figure 3: A Case Study.

In our next step, we want to integrate this method into
our online demo system, MoveMine1. Currently, MoveMine
is providing data mining functions to analyze animal move-
ments. We will implement this method to enable our system
analyze human movements regularity in a hierarchical way.
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1 Introduction

Understanding human mobility has been a long-standing subject in academic research due to the
multitude of potential applications. Those range from the better grasp of human behavior and
migration patterns, to the evolution of epidemics and spread of disease, or the understanding of
the mechanisms that shape social networks. Besides, studying human movement and geographic
activity is increasingly a focal point of research in computer sciences. The rise of the Mobile Web
and the provision of Internet scale applications and services to millions of smartphone users is
bringing geography and location to the spotlight; knowing how people move and choose to visit
specific places in a city can benefit a plethora of applications, including mobile web browsing, local
search and content discovery. Up until recently most attempts towards the analysis and modeling
of human mobility were relying on mining spatio-temporal datasets sourced from GPS sensors [3],
WiFi logs or Cellular Data [2]. These data sources describe with fine grained geographic and
temporal granularity user movements, where each data point is pair of longitudinal coordinates
coupled with a timestamp that informs us where a user is at a particular time. The existence of
these datasets has led to the development of numerous statistical frameworks that aim to predict
the whereabouts of users, the characterization of spaces based on local human activity or the
detection of significant locations in urban environments [1].

Nonetheless, with the introduction and increasing popularity of location-based services, the
opportunity to study human movement in a qualitatively different setting is provided. Mobile
applications such as Foursquare, where users check in broadcasting their visits to places, allow
us not only to know the geographic coordinates of a user at a given time, but also the exact
places they may go. As with cellular data, the position of the user is becoming known when they
explicitly use the service, yet the multiple layers of data offered open new avenues for addressing
previously unanswered research questions. A library, a cinema or an airport terminal are only
a few examples amongst the millions of places which are accessible through these services. The
knowledge about the specific places users visit, which goes beyond plain geographic coordinates,
can be exploited as an additional dimension to describe human mobility. Insights about the type
and time of users’ visits can greatly improve the development of recommendation systems. For
instance, advertisers who want to push offers to users would greatly benefit from knowing the next
location a user is going to visit, so to offer the right coupon or the right recommendation in a
timely manner. However there are many challenges involved in the prediction of the next visited
location, such as user preferences, place properties as well as spatio-temporal conditions. In this
work we address this research question by mining user data generated on a popular location-based
service and studying the predictive power that different dimensions of the data offer. We formalize
the Next Check-in Problem, where we aim to predict the exact place a user will visit next given
historical data and the current location.

The challenge posed in this context is to rank all the potential target places in the prediction
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scenario, which could easily contain thousands of candidates, so that the actual place visited next
by the user is ranked as high as possible. This represents a highly imbalanced prediction scenario,
where a single correct instance has to be found (the place a user is going to) amongst thousands of
candidate instances. We study what factors may drive user behavior by analyzing a large dataset
sourced from the most popular location-based social network, Foursquare. We have collected
approximately 35 million user check-ins over a period of 5 months in 2010, taking place over a set
of five million geo-tagged venues. We focus our prediction problem over 33 cities, the most active
in our dataset in terms of check-in number, treating each city as a different prediction scenario.
Our contributions can be summarized as follows:

• We define a set of prediction features that exploit different information dimensions about
users’ movements: those include information tailored specifically to an individual user, such
as historical visits or social ties, and features extracted by mining global knowledge about the
system such the popularity of places, their geographic distance and user transitions between
them. Moreover, we employ a set of features that leverage explicitly temporal information
about users’ movements. We assess the predictability of individual features and we discover
that the most effective features are those which leverage the popularity of target venues and
user preferences.

• We combine the predictive power of individual features in a supervised learning framework.
By training two supervised regressors, a simple linear model and M5 model trees, on past
user movements, we demonstrate how a supervised approach can significantly outperform
single features in the prediction of future user movements, indicating that user behavior in
location-based services is driven by multiple factors who may act synchronously. Notably,
M5 Model Trees rank constantly one in two user check-ins in the top 50 predicted venues.

• We study the performance of features and classifiers over time, finding that prediction per-
formance is higher over lunchtime and weekdays. In all cases, a strong temporal periodicity
is apparent in the prediction task, but features based on the geographic distance amongst
places are achieving higher scores at nighttime, unlike other features. This shows how the
factors driving human mobility can vary over time and highlights the importance adding
spatio-temporal context to the prediction task.

We envision a number of applications for which our work may prove beneficial, including mobile
recommendations and content delivery for mobile Web users. In particular, the decomposition of
users’ movements into a set of distinct features is central to our approach and evaluation strategy,
as one of the principal goals of this work is to understand how mobile users are driven by different
factors in their choice of places. Insights on this process can be offered both for research scientists
in human mobility and urban planning and for mobile application developers. In the following
sections, we begin by analyzing the Foursquare check-in dataset. Subsequently we define twelve
mobility prediction features and evaluate them individually and in a supervised learning framework.
We close with remarks on related work and conclusions.
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Abstract— Behavior analysis of mobile phone users has increased 
in importance for mobile phone carriers in accordance with mobile 
phone traffic increases. Call detail records (CDRs) known as 
cellular network data are an important data source in the inspection 
of human behavior. We propose a novel method of segmenting 
CDR time sequence into staying and moving via Mean-shift to find 
stay time intervals from CDRs. We also show accuracy through 
experiments using CDRs and web diaries obtained from the 
experimental survey conducted for 25 days with 162 examinees. 

Keywords-Call detail records, segmentation, extracting stays 

I. INTRODUCTION 

Mobile phone traffic has been increasing due to the 
widespread use of smartphones and smartphone applications. 
Mobile phone carriers have found it more important to 
continuously survey actual human behavior of using mobile 
phones in order to plan resource deployment and capacity. 

Call detail records (CDRs) known as cellular network 
data are an important data source in the inspection of human 
behavior. CDRs are recorded on cellular network equipment, 
mainly to detect and resolve problems with the equipment. 
Each record is generated through a call, sending of a text 
message, or browsing the Internet via a mobile phone, and 
the record contains a timestamp and location related to 
connected base stations. 

Global positioning systems (GPS) are an alternative way 
of acquiring locations. Although embedding GPS 
functionality into mobile phones has become common, 
issues of power consumption and indoor positioning remain. 
Furthermore, some applications using GPS functionality 
send additional traffic to cellular networks. 

We utilize CDRs to survey actual human behavior. The 
difficulty of analyzing CDRs lies in its spatiotemporal 
resolution. The temporal resolution of CDRs differs for each 
person according to the mobile phone communication pattern. 
Additionally, the spatial resolution of CDRs is lower than 
that of existing positioning devices, such as GPS, because 
such devices depend on the coverage area of base stations. 

In this paper, we focus especially on segmenting CDR 
time sequence into staying and moving because we believe 
there is a significant difference in mobile phone usage 
between the behaviors. 

  
Figure 1. An example of candidate stay locations 

 
We propose a novel method of segmenting CDR time 

sequence and extracting people’s stays, which is robust with 
regard to the spatiotemporal sparseness of CDRs. We apply 
Mean-shift to location data on time segments to find 
candidate stay time intervals and locations, and then apply 
Mean-shift again to cluster candidate stay time intervals and 
locations. The proposed method is assessed by CDRs and 
web diaries obtained from an experimental survey conducted 
for 25 days with 162 examinees. 

The remainder of this paper is as follows. In section II, 
we explain the proposed method. In section IV, we present 
the results of the experiment. In section IV, we describe 
related studies based on CDRs. Finally, in section V, we 
conclude this paper and suggest further directions for 
research. 

II. PROPOSED METHOD 

In this section, we describe our method of extracting 
stays. Our method consists of two steps: extracting candidate 
stays and clustering. Figure 1 shows an example of candidate 
stay locations for one examinee (represented by white 
markers) and the density estimated using Kernel density 
estimation via Gaussian Kernel with a bandwidth equal to 1 
km. 

A. Extracting candidate stays 

Here, we describe how to extract candidate stay time 
intervals and locations from a personal location history {p(t): 

17 km

17 km
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t = t0,…,tn}, where p(t) represents a two-dimensional spatial 
point at time t in CDRs. 

We assume that the connected base station locations are 
distributed around the stay locations while staying. In other 
words, the mode of spatial distribution of base station 
locations is supposed to be close to the stay location. Thus, 
we try to seek the mode of spatial distribution of connected 
base stations in each time interval. 

We apply a sliding time window to extract stay time 
intervals because we do not know the stay time intervals a 
priori. We employed a sliding time window with width T and 
shift S, where the first time segment is [t0, t0+T), the second 
time segment is [t0 + S, t0 + T + S), and so on. 

We apply Mean-shift [1] to each time segment which 
includes no less than N points. Mean-shift is a popular mode 
seeking method, and each iteration calculates the mean 
m(p(t)) of nearby points of p(t) within the window 
determined by the window function K(.), shifts p(t) to m(p(t)), 
and then proceeds to the next iteration. 

 ݉൫݌ሺݐሻ൯ ൌ ∑ ᇱሻݐሺ݌ሺܭ െ ∑ሻ௣ሺ௧ᇱሻݐሺ݌ሻሻݐሺ݌ ᇱሻݐሺ݌ሺܭ െ ሻሻ௣ሺ௧ᇱሻݐሺ݌  

 
As for the window function K(.), we use a rectangular 

window defined as follows: K(x) = 1 if ||x|| < th1, and 0 
otherwise. The threshold parameter th1 corresponds to a 
bandwidth of the density estimation. Convergence is checked 
by evaluating the difference in the mean points ||m(p(t)) - 
p(t)|| < th2. 

Then, we determine candidate stay time intervals as a set 
of time segments in which the resulting mean points are 
concentrated within the range of a circle with a radius of th2. 
We then determine candidate stay locations as the resulting 
mean points within each candidate stay time interval. 

B. Clustering 

Here, we describe how to cluster extracted candidate stay 
locations and time intervals. 

1) Clustering stay locations 
Extracted candidate stay locations are noisy due to few 

observed points within each time segment, and thus we apply 
Mean-shift with the same parameters as used in extracting 
candidates again to cluster stay locations. We determine stay 
locations by the resulting mean points. 

2) Clustering stay time intervals 
We determine stay time intervals as a series of time 

segments that meet the following conditions. 
a) The stay location in the first time segment and the 

one in the last time segment are equal. 
b) The stay location in the intermediate time segment 

does not belong to the stay locations other than the stay 
location determined in a) above. 

III. EXPERIMENTS 

In this section, we explain the experimental methods and 
results with practical CDRs and web diaries from an 
experimental survey. 

A. Experimental Data 

From November 28, 2011, to December 22, 2011, we 
conducted an experimental survey with 184 examinees to 
obtain activity data that included CDRs, GPS logs, actual 
activity data from a web diary and personal attributes via a 
questionnaire. Examinees consented to the privacy policy 
and terms of the experiment. The average number of 
accumulated CDRs in a day was 454.9 for each examinee. 
That is, one telecommunication event occurred every 3 
minutes. The Android application for GPS logging acquired 
positions every 5 minutes and sent logs to the web server 
every 15 minutes. 

We prepared a web diary system for examinees to 
register actual activities and to collect ground truth data. In 
order to facilitate the entry of activities, the web diary system 
automatically suggested some candidate stay locations that 
the system preliminarily estimated based on GPS logs. The 
average number of registered stay locations was 4.6 per day. 

Among 184 examinees, there were 162 examinees whose 
CDRs and activity states were both available. For the 
experiments described below, we used the available results 
of these 162 examinees. 

B. Experimental Method and Evaluation Metrics 

We compared parameter settings of our method. We 
compared settings of the sliding time window when th1 = 4 
km, th2 = 1 km, and N = 4. Additionally, we compared the 
threshold parameter th1 when (T, S) = (40, 10), th2 = 1 km, 
and N = 4. 

We also compared our method with the following 
baseline method, which was based on [2], where stay 
locations were determined by timestamps and locations 
under the following conditions. 

a) There are two or more CDR records within 24 h. 
b) Sequentially recorded positions of the base stations 

are within 4 km. 
c) Duration of sequential positions under condition b) 

is less than 20 minutes. 
We employed F-measure of stay time intervals for an 

evaluation metric. We calculated the F-measure for each 
examinee. 

Let Tw be a set of estimated stay time intervals of each 
examinee and let Tc be a set of correct stay time intervals that 
each examinee registered in the web diary; precision and 
recall are defined as follows and F-measure is the harmonic 
mean. We eliminated time intervals about which the 
examinee did not register activities from time intervals for 
evaluation. Pecision ൌ | ௪ܶ ת ௖ܶ|| ௪ܶ|  

 Recall ൌ | ௪ܶ ת ௖ܶ|| ௖ܶ|  

 F‐measure ൌ 2 · Precision · RecallሺPrecision ൅ Recallሻ 
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Figure 2. Comparison of width of sliding time window 

 

C. Experimental Results 

Figure 2 and Figure 3 show box-plots of precision, recall 
and F-measure of stay time intervals. The results shows that 
our methods exceeded the baseline except the case of a width 
equal to 40 minutes in Figure 2 and the case of a threshold 
parameter th1 equal to 2 km in Figure 3. 

With regard to settings of the sliding time window, 
Figure 2 showed that a width equal to 20 minutes was the 
best. In that case, the F-measure of stay time intervals was 
93.7% on median. The precision increased and the recall 
declined with a longer width. The width of the sliding time 
has the effect of increasing the sensitivity to switching 
between staying and moving and increasing false positive 
stays, when short. The obtained data contained a relatively 
high number of points per unit time and thus the sliding time 
window with a width equal to 20 minutes showed sufficient 
accuracy. 

The threshold parameter of Mean-shift th1 has the effect 
of decreasing false negative stays and increasing false 
positive stays, when large. Figure 3 showed that th1 equal to 
5 km was the best. In that case, the F-measure of stay time 
intervals was 93.8% on median, which is nearly the same as 
in the case of th1 equal to 4 km. 

IV. RELATED WORK 

While there are numerous studies related to mobility 
estimation using GPS logs, some studies are applicable to 
CDR-based estimation [2][3][4][5]. On the other hand, by 
regarding CDRs as footprints of personal mobility, some 
studies attempted to extract significant locations [6][7][8]. 
Among them, [6] uses Leader algorithm which is a location-
based clustering algorithm. The others apply time-based 
clustering: [7] clusters points based on distance between 
temporally adjacent points and filters small clusters where 
little time was spent, and [8] clusters points by setting a 
threshold for switching counts of cell towers. 

 
Figure 3. Comparison of threshold parameter of Mean-shift 

 

V. CONCLUSION AND FURTHER STUDY 

In this study, we attempted to estimate stay time intervals 
using CDRs. The proposed methods are assessed by CDRs 
and web diaries obtained by an experimental survey. 
According to the results, the best case was the case with a 
width of the sliding time window equal to 20 minutes and 
with a threshold parameter of Mean-shift equal to 5 km, and 
in that case, the F-measure of stay time intervals was 93.8% 
on median. 

In the future, we would like to conduct detailed 
experiments to tune our method. We would also like to try to 
estimate more detailed human behavior, such as stay 
objectives and transportation modes. 
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Abstract—Fine grained mobility information of mobile phone
users are required for many context-aware application. Most
of research in this space uses location interfaces such as GPS
and WiFi which results in high power consumption and also
have limited availability. GPS and WiFi is not available on
many low-cost phones (popularly called as feature phones).
Also, GPS does not work indoors and WiFi infrastructure is
not widespread especially in developing countries.

In this paper, we propose a framework to find different
places visited by a person solely using GSM (Cell ID) data
and then use them to build spatio-temporal mobility profiles
for the users. Also, proposed framework incorporates data from
other location data sources (i.e. WiFi) to improve the accuracy
of only Cell ID-based clustering. We have done comprehensive
evaluation of proposed algorithms on two real-world datasets
i.e. self collected dataset (16 users, 4 weeks) and Nokia MDC
dataset (45 users, 50 weeks) and found it very accurate.

I. INTRODUCTION AND MOTIVATION

A mobility profile for a user consists of all the places
visited by her with accurate arrival and departure time infor-
mation for the respective places. An accurate mobility profile
can enable many context aware applications such as location-
based notifications, targeted advertisements, content-sharing
decisions [4], pollution impact report and many others.
Mobile Phones have various kind of location interfaces such
as Global Positioning System (GPS), WiFi [3], Cell ID-
based (GSM information) [2] etc which can be used for
high resolution location tracking of users. Each of these
interfaces differ in terms of accuracy, availability, and power
consumption. Most phones in developing countries are fea-
ture phones which have limited capabilities, e.g. they lack
sensors such as Global Positioning System (GPS) and WiFi.
Due to limited capabilities, feature phones are not able to use
context aware applications which uses mobility profiles. For
smart phones too, building mobility profile using GPS and
WiFi requires continuous tracking of location which drains
the phone battery very quickly. Friedman et al [6] found that
scanning modes of WiFi and Bluetooth consume significant
power and quickly drain the battery in continuous location
sensing applications.

Researchers have worked on using GPS and WiFi data
to find places visited by the user automatically and then
building accurate spatio-temporal mobility profile. Bayir et
al [2] proposed a framework which discover places using
Cell ID data in reality mining dataset but it take help of
manually tagged Cell IDs for clustering. There is a lack of

an algorithm/framework that can discover places visited by a
user using Cell ID data without human intervention/tagging.

In this paper, we propose a framework to build mobility
profiles of users using energy-efficient and widely available
location sensing frameworks i.e. GSM (Cell ID) and WiFi
(if available). Our clustering algorithm automatically learn
places visited by a user solely using Cell ID data. Evalu-
ations on our self collected dataset 1 (Location : India, 16
users, 4 weeks of duration) showed that, framework correctly
learn places with nearly 80% accuracy when compared
to places learnt using WiFi data. Further, we develop an
algorithm which uses an initial training of WiFi data to learn
places using Cell ID data for some days and later use Cell ID
data only. With the help of WiFi training, accuracy improves
further i.e. 87% if 8 days of training is provided. Further,
we have applied same framework on a publicly available
dataset which has data of 38 users for 40 week collected
in Switzerland. In Nokia MDC datase, proposed framework
were able to find places with an accuracy of 86.06% without
any training.

II. USER MOBILITY PROFILING FRAMEWORK

A place is defined as a location, where the user stays for a
significant amount of time , e.g., “Home” and “Workplace”.
For building mobility profile, one of first step and challeng-
ing task is to find different places that a person visited using
raw location data and then use this place information to find
arrival and departure time specific to those places. In this
section, we will present algorithms to find places using GSM
information and combination of GSM and WiFi. Also, we
will use “clusters” and “places” interchangeably from here
on.
A. Cell ID (GSM) based Mobility Profiling :

Finding distinct places using only GSM information has
several challenges. Previous work [2] has shown that even if
a user stays at the same place, the Cell ID may change due
to various reasons such as network load, small time signal
fading, and inter-network (2G to 3G or vice versa) handoff.
This change in Cell ID at the same place is called as an
“oscillating effect”.

Assuming that {C1,C2,C3,....Ck} are the distinct time-
ordered Cell IDs observed in a day (Step 1 of Figure 1),
we build an undirected graph, called as movement graph,

1We will be releasing our dataset publicly very soon.
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Figure 1: A snapshot of different steps in mobility profiling
framework
G(V,E) where ∀i∈{1,k}Ci ∈ V and there exist an edge
e(Ci, Cj) between Ci and Cj , if both of the following
conditions are satisfied:

1) Ci and Cj are contiguous in time ordered cell records
2) Time difference between start time of Cj and end time

of Ci is less than α.

As an example in Figure 1, C1 and C2 occurred con-
tiguously and t2-t2≤α, so there will be an edge between
C1 and C2 in the corresponding movement graph of the
user. Multiple edges between Ci and Cj are merged into
a single edge with weight equal to the number of edges
between Ci and Cj . α ensures that an edge occurs only
across neighboring (in time) Cell IDs and other cell records,
that may be neighboring but with a high time difference
between them due to reasons such as switching off of the
phone, unavailability of the network, and loss of location
updates, are pruned. An example of movement graph created
from user X’s data is shown in step 2 of Figure 1.

As seen in step 3 of Figure 1, even same place Cell
IDs (i.e.{C1,C2,C3,C4}) have many fluctuations among
themselves (i.e. oscillating effect) which is modeled as
edge weight in the movement graph. To cluster Cell IDs,
accounting for the oscillating effect, into different places
visited by the user, we propose a three phase algorithm
as described in Algorithm 1. Graph Clustering Algorithm
takes movement graph as an input and produces Cell ID
clusters as an output, where each cluster will represent a
different place and can be used to build mobility profile
(step 4 in Figure 1). The detailed description of algorithm
can be found in [5]. Graph Clustering Algorithm also takes
two parameters into account i.e. one of them is oscillation
parameter η, which measures the number of fluctuations
between a pair of Cell IDs in a day and η′, which measures
the number of transitions from a Cell ID to any other Cell
IDs. We will empirically derive the good value of η and η′

in evaluation section.

B. WiFi Trained Cell ID Clustering (WTCA)

GCA inherently assumes that different places in a user’s
profile will have non-overlapping sets of Cell IDs. As a

Algorithm 1: Pseudocode of Graph Clustering Algo-
rithm

1 Algorithm: Graph-based Cell Clustering Algorithm
Input: Movement Graph G(V,E) where V is set of vertices and E

is the set of edges
Output: Set of Cell ID Clusters CG

2 begin
3 Rank all the edges in E into decreasing order of their weight;
4 CG = φ ;
5 while (∀ek ∈ E) AND w(ek) ≥ η do
6 if vi ∈ CGj where vi ∈ ek , i ∈ (1, 2), CGj ∈ CG then
7 CGj = CGj ∪ vk1 ∪ vk2;
8 else
9 Create new cluster CGn = vk1 ∪ vk2 and add it to

CG ;

10 while (∀vj ∈ CGk) where CGk ∈ CG do
11 if (degree(vj) ≥ η′) then
12 CGk = CGk ∪ neighbors(vj) ;

13 CG′ = φ ;
14 while (∀CGi ∈ CG) do
15 isExist = false ;
16 while (∀CGj ∈ CG′) do
17 if (CGi ∩ CGj) 6= φ then
18 CGi = CGi ∪ CGj ; isExist = true; break ;

19 if ¬(isExist) then
20 Add CGi to CG′ ;

21 while (∀vi ∈ V ) do
22 if (vi /∈ ∃CGk) where CGk ∈ CG′ then
23 Create new cluster cn = vi and add it to CG′ ;

24 return CG′ ;

result, for a person visiting distinct places that are in close
proximity, e.g. a student staying in a dorm that is close to the
academic building, GCA will merge the two different places
if a common Cell ID is observed at each of the two places.
This merging effect of GCA is also observed in our collected
data as some of our users also live in campus residence. For
instance, if an user saw Cell IDs {a,b,c,d} at P1 and Cell IDs
{d,e,f,g} at place P2. Though, Cell ID d remains overlapping
across places P1 and P2.

While such geographically close places may have overlap-
ping Cell IDs, it is unlikely that they will have overlapping
WiFi APs. Further, not all Cell IDs will overlap across
the two distinct places. In the above example, we can take
into account other Cell IDs such as a and e to distinguish
between different places. We use these two insights to extend
GCA by training it with WiFi based Cell ID clustering.
For training purpose, we take help of WiFi mobility profile
to determine corresponding Cell ID clusters, accounting for
arrival and departure time at a place. As user is likely to visit
same places again, a few days of training is sufficient to learn
conflicting Cell IDs and GCA use that input while clustering
Cell IDs. The detailed description of this algorithm is in [5].

C. Evaluation

Cellular network assigns a group of cell base station in
a location area with the same identifier, known as Location
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Area Code (LAC). One of the basic way to cluster Cell IDs
are by considering LAC information which is called as LAC-
based Clustering Algorithm [5], which will be used here
for comparison purpose. Using WiFi mobility profiles, we
associate Cell IDs with actual physical places which is used
as ground truth for evaluation of Cell ID based clustering
approaches, GCA and LCA. For instance, by using WiFi
mobility profiles, we discover that user stayed at a place Pi

from 9 : 00 AM to 5 : 00 PM, the Cell IDs which are seen
in this time duration will form a cluster.

Using WiFi mobility profile, we find equivalent Cell ID
clusters (say CW ) from one day’s Cell ID data. For GCA,
we empirically found η and η′ to be equal to 3 and used
it for performing all experiments related to GCA. For every
day, we define Cell ID clusters made using WiFi (ground
truth), GCA and LCA as CW , CG and CL respectively. We
further define a pair-wise comparison metrics, called Correct
Pair for our evaluation. A Cell ID pair (i.e. Ci and Cj) is
counted as Correct Pair, if their occurrence within the same
or across different clusters in CW is reflected accordingly
in the Cell ID based approach evaluated.

Correspondingly, to evaluate GCA, we first calculate the
% of Correct Pairs, out of total pairs, of Cell IDs across
CW and CG, and then take an average across different
days to compute the final accuracy of GCA. Similar process
is followed w.r.t CW and CL and accuracy of LCA is
computed. As shown in Figure 2, GCA produces 80.29%
correct pairs (on an average across all users and all days)
while LCA produces 70.82% correct pairs (on an average).
Errors in GCA occurred since it mistakenly merged places
that were geographically close (as discussed earlier). Our
evaluations on Nokia MDC dataset found that GCA pro-
duces 86.06% correct pairs as compared to ground truth
which was generated using GPS stay points.

With 8 days of traning, WTCA either equals or improves
% of correct pairs across all users as compared to GCA
or LCA. On an average across all users and days, WTCA
produces 87.30% correct pairs as compared to GCA which
produces 80.29% correct pairs. WTCA improves upon the
overall accuracy of clustering, when compared to GCA,
since it can split merged places and put them into different
clusters, using the training data.

III. DISCUSSION AND FUTURE WORK

Due to large heterogeneity among mobile devices and
available location interfaces on them, there is lack of a
generic method to build mobility profiles. Also, current loca-
tion interfaces are power hungry. We proposed a framework
which uses location interfaces such as GSM to build mobility
profile. There are two main advantages of using GSM based
interface for mobility profiling, (1) It consume very less
energy as compared to current alternatives (WiFi, GSM),
(2) It is available on all programmable mobile devices
and can work in smartphones as well as feature phones.

Figure 2: Comparison of GCA,WTCA, and LCA w.r.t. ground
truth in our self collected dataset. On an average, WTCA pro-
duce more correct pairs (87.30%) than GCA (80.29%) and LCA
(70.82%)

Our evaluations on two big diverse datasets confirmed that
proposed framework can work in real-world while giving
good accuracy.

We are working to create a cloud service of proposed
framework so that mobile application developers can utilize
these algorithms to build user’s mobility profiles, some of
them are following:

1) LifeMap: Logging and visualization of all the places
that a user visits with low energy. It can be fur-
ther extended with location-based reminders, meeting
scheduling, logging encounters with other users.

2) MobiShare : It is a system designed to support
opportunistic content search and sharing with limited
Internet (2G) connection. It uses proposed framework
to predict encounters between a pair of users [5].

3) Unity : A social collaborative content downloading
application which predicts the time at which a group
of friends will be co-located.

Finally, we believe that the work described in this paper
is an interesting direction and in future, we envision mo-
bile applications/systems using our energy-efficient mobility
profiling algorithms to deliver context based information to
mobile users.
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Abstract

Cell phone data has become a major source for the scientific community to analyze human
mobility behaviour. A typical task in this context is to estimate motion trajectories based on
sequences of antenna locations. In this paper we examine the question: given that a mobile
device is logged in to an antenna with known position and characteristics, what can be said
about the probability distribution of the position of the device?

We examine three datasets of trajectory data, where the location was determined using a
GPS logger. Based on this data, we give estimates on the distribution of the locations of the
users given that they are logged in to one antenna. Finally, we evaluate different strategies
for estimating user location from the antenna position.

Figure 1. GPS Positions of mobile devices, logged in to Antenna 52024

7 Poster 1 // Mobility
Poster

1
7

121



Privacy in Computational Social Science: An overview
Riccardo Pietri

Technical University of
Denmark

s110913@student.dtu.dk

Arkadiusz Stopczynski
Technical University of

Denmark
arks@dtu.dk

Sune Lehmann
Technical University of

Denmark
sljo@dtu.dk

ABSTRACT
In recent years the amount of information collected about hu-
man beings has increased dramatically. Users store their data
in online social networks or collect it for self-tracking pur-
poses; our environments sense and record us with embedded
RFIDs, WiFi access points, traffic monitoring. Concurrently,
we are seeing an increase in dedicated Computational Social
Science (CSS) studies, where researchers collect data on hu-
man behavior with unprecedented resolution and scale, pro-
viding important insights into human nature. The more pow-
erful the data collection (bitrate, number of users, duration,
etc) and analysis, the more important privacy becomes.

One serious threat to CSS as a field is a ‘privacy catastro-
phe’, where the participants’ rights or data are dramatically
compromised as a result of malevolent parties or gross mis-
understandings between researchers and experiment partici-
pants. Such a ‘catastrophe’ carries the potential lead to a loss
of public confidence and hence a decreased ability to carry
out future experiments and research. In order to avoid such a
negative scenario, we urge a renewed focus on privacy, users’
rights, and data security.

Here, we argue that the current state-of-the-art on these pri-
vacy related issues can be improved significantly. For ex-
ample, study purposes are often not made explicit, ‘informed
consent’ is difficult to define in many cases, security and shar-
ing protocols are only partially disclosed, etc. Below we pro-
vide a survey of the work related to privacy issues in CSS
studies. In particular, focus on topics of informed consent,
anonymization, and data security. We also include our re-
flections on the key problems and provide some recommen-
dations for future work.

POLICY AND INFORMED CONSENT
For CSS studies informed consent consists of an agreement
between researchers and the data producer (user, participant)
by which the latter agrees to understand the procedures ap-
plied to his data (collection, transmission, storing, sharing,
and analysis). Users need to comprehend through informed
consent which information will be collected, who will have
access to them, what is the incentive, and for which purposes
the data is used [1].

We begin by noting a scarcity of available examples and best
practices for informed consent in the literature; the major-
ity of the reviewed studies do not mention any consent pro-
cedures [2]–[7]. While this does not necessarily imply that

experiment participants did not consent to the data collec-
tion procedures, it is difficult to produce comparisons and
create useful models applicable for future studies. In cases
when the procedure for achieving informed consent was re-
ported, the agreement was carried out using forms, similar
to http://green-way.cs.illinois.edu/GreenGPS_files/
ConsentForm.pdf, containing users’ rights [8]–[10]. How-
ever, simply stating all the information does not guarantee
that informed consent is implemented sufficiently: years of
EULAs and other lengthy legal agreements show that most
individuals tend to blindly accept form that appear before
them and to unconditionally trust the validity of the default
settings which are perceived as authoritative [11]. Such an
all-or-nothing approach does not allow the user to select sub-
sets of the permissions, making it only possible to either par-
ticipate in the study fully or not at all [12].

One improvement would be to allow users to gradually grant
permission over time. The efficacy of this approach is not
clear: some studies have shown that users understand the is-
sues about security and privacy more clearly, when individual
requests are presented gradually [13]; others argue that too
many warnings distract users [12], [14]. The literature con-
tains only few analyses of whether the consenting participants
are, in fact, informed. Evaluating how people understand their
privacy conditions can be done by conducting feedback ses-
sions throughout the duration of the experiment [8]. If we
wish to increase the focus on participants’ rights, approaches
such as this should be the norm, not the exception. One option
is for participants to be more closely involved in shaping the
privacy policies. This view gains support from studies show-
ing that people do not realize smartphone sensing capabilities
nor the consequences of privacy decisions [15], [16]. Addi-
tionally, we suggest to carefully consider special cases where
the participants may not have the competence or authority to
fully understand the privacy aspects [17], [18].

Since so little is understood about the precise nature of con-
clusions that may be drawn from highly detailed data collec-
tion, we need to constantly work to improve informed consent
as our understanding continues to grow. We recommend that
the paradigm should move from a one-time static agreement
to dynamic consent management [19]. Furthermore, the con-
cerns related to privacy are context-specific and vary across
different cultures [20]. The need for a way to let the users
easily understand and specify which kinds of data they would
like to share and under what conditions was foreseen in 2002
for the Internet purposes by the W3C group, where the aim
was to define a Platform for Privacy Preferences (P3P) (sus-
pended in 2006), in 2003 by Kagal et al. [21], and also in
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2005 by Friedman et al. [1], all shaping dynamic models for
informed consent. Recent studies such as [22] have worked to
design machine learning algorithms that automatically infer
policies based on user similarities. These frameworks can be
seen as a mixture of recommendation systems and collabora-
tive policy tools where default privacy settings are suggested
to the user and then modified over time.

ANONYMIZATION
The datasets created in CSS studies often contain highly sen-
sitive information about the users. Their privacy needs to
be protected either for the purpose of disclosing the data to
public scrutiny [23]–[25] or to guarantee that users can not
abuse the the provided services [6], [26], [27]. This can
be achieved by various anonymization techniques, where the
Personal Identifiable Information (PII) is removed from the
data. Making data anonymous (or de-identified) decreases the
data utility by reducing resolution or introducing noise [28].

The most common practice in the data anonymization field
is to one-way hash all the PII such as MAC addresses, net-
work identifiers, logs, names, etc. This breaks the direct
link between a user in given dataset to other, possibly public
datasets (e.g. Facebook profile). There are two main methods
to achieve this. The first - used in the LDCC study (a generic
data collector framework developed for the Lausanne Data
Collection Campaign [8])—is to upload raw data from the
smartphone to an intermediate proxy server where algorithms
hash the collected information. Once anonymized, the data
can be transferred to a second server which researcher have
access to. We argue that a less vulnerable option is to hash the
data directly on the smartphones and then upload the result
the final server for being analyzed. This alternative design has
been selected for many MIT studies [3]–[5] and for the Sensi-
bleDTU project (http://www.sensible.dtu.dk/). In princi-
ple, hashing does not reduce the quality of the data (provided
that it is consistent within the dataset), but it makes easier
to control what data is collected about the user and where it
comes from. However, it does not guarantee that users cannot
be identified in the dataset. Finally, some types of raw data -
like audio samples - can be obfuscated directly on the phone
without losing the usability before uploading [8].

Another frequent method employed for anonymization is en-
suring k-anonymity [29] for a published database. This tech-
nique ensures that is not possible to distinguish a partic-
ular user from at least k − 1 people in the same dataset.
AnonySense - a general framework for opportunistic task re-
ports [30] - and the LDCC platform both create k-anonymous
different-sized tiles to preserve users’ location privacy, out-
putting a geographic region containing at least k − 1 people
instead of single user’s location. Nevertheless, later studies
have shown how this property is not well suited as a privacy
metric [31]: first, Machanavajjhala et al. tryed to solve k-
anonymity weakneses with a different privacy notion called
l-diversity [32]; then, Li et al. proposed a third metric, t-
closeness, arguing the necessity and the efficacy of l-diversity
[33]. Although these two techniques seem to overcome most
of the previous limitations, they have not been deployed in
any practical framework to date.

A more complex option is to employ homomorphic encryp-
tion, an advanced cryptographic technique that allows an en-
tity to perform some operations on a ciphertext which cor-
responds to others on the plaintext. It allows users to send
anonymous information (the ciphertext) to a central server
which can compute meaningful operations. The results are
sent back to the users who can finally decrypt and obtain the
plaintext. In VPriv (a privacy-aware toll system) a central
server first collects anonymous tickets produced when cars
exit the highways; then by homomorphic transformations it
computes the total amount that each driver has to pay at the
end of the month [26]. Another similar example is HICCUPS
which is a health system that keeps patient records encrypted,
but at the same time gives doctors access to aggregated infor-
mation through homomorphic encryptions [34].

DATA SECURITY
The security of the collected data, although necessary for en-
suring privacy goals, is rarely discussed in the studies, with
only the most obvious issues addressed [2], [9], [10], [35].

Because it is easier to deploy for small-scale experiments,
the centralized architecture has been the preferred solution in
the surveyed frameworks [2]–[5], [8], [10], [26]. If the main
server is subject of denial-of-service attacks, it can not guar-
antee the availability of the service [30]. This might result in
the smartphones having to retain a more information locally
with consequential privacy risks. More importantly, however,
single server can compromise all user data in an instant.

A complementary approach is to deploy a decentralized ar-
chitecture where algorithms can run with inputs coming from
different nodes. One possible way to achieve this is to up-
load data from the mobile device, not to a single server, but
onto personal datasets [36], like a personal home computer, or
cloud-based virtual machines, lowering users’ concern about
systems that centralize data. On one hand, users would feel—
and possibly be—more in control of their personal data, hav-
ing this electronic aliases. On the other hand, part of the se-
curity of the data would inevitably rely on the user.

Given the amount of sensitive information present on mo-
bile devices, it is our recommendation that social science re-
searchers should team up with engineers to develop robust
portable applications in order to avoid possible privacy viola-
tions [37] due to viruses and malware. Some of the studied
frameworks reduce the time that the sensed raw information
is kept on the phone. For example, in [2] the data records
are discarded once the classification task has been performed.
Since most of the sensing applications use an opportunist way
of uploading the data to the servers they might still store quite
a lot of data temporarily on external memory [4]. This intro-
duces a security threat if the device does not procure an en-
crypted file-system by default. A possible way to tackle this
problem is employing frameworks like Funf, an open-source
sensing platform for Android devices developed in [3] and
also used in the SensibleDTU project. Funf provides the de-
velopers with a reliable storing system that encrypts the files
before moving them to special archives on the SD card. Then
an automatic process uploads what archived keeping a tempo-
rary (encrypted) backup. This layer of defense also contrasts
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unintended disclosures of information if the smartphone gets
stolen/is lost. In this case the last resort is to provide a remote
access to delete the data off the phone.
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1 Introduction
This abstract examines the behavior of the participants
in PHONELAB, a public smartphone testbed being de-
veloped at SUNY Buffalo. Currently consisting of 191
participants using Nexus S 4G smartphones, PHONE-
LAB aims to provide a combination of unique features
desirable for smartphone experimentation. This abstract
briefly introduces PHONELAB and presents some of the
early results of a usage measurement study conducted
with 115 participants.

1.1 PHONELAB Overview

PHONELAB is designed to provide the following features
necessary for smartphone research—open access, scale,
power, realism, locality, and relevance:

• Open Access: After the initial approval pro-
cess, PHONELAB allows any researcher to deploy
their research prototype on the participants’ smart-
phones.

• Scale: By 2014, PHONELAB will grow to 700 par-
ticipants already incentivized and recruited to par-
ticipate in experiments; participants of PHONELAB
receive discounted voice, data, and messaging.

• Power: By utilizing the Android open-source
smartphone platform, PHONELAB allows
application-level experiments as well as platform-
level, i.e., the OS kernel, middleware, and libraries.

• Realism: Participants use the phones as their pri-
mary device.

• Locality: Most participants live in Buffalo near
SUNY campuses, enabling research requiring
device-to-device interaction.

• Relevance: PHONELAB allows researchers to stop
relying on out-of-date datasets. Instead, new data
can be collected in the most appropriate way for the
experiment.

PHONELAB application-level experiments are dis-
tributed through the Play Store; participants are notified

Affiliation

Freshman 64 Masters 5
Sophomore 33 PhD 53
Junior 1 Faculty/Staff 29
Senior 1 None 5

Gender

Female 51 Male 140

Age

Under 18 12 30–34 15
18–19 74 35–39 6
20–21 12 40–49 13
22–24 22 50–59 7
25–29 29 60+ 1

Table 1: Demographic breakdown of 191 PHONELAB participants.
Date ranges are inclusive.

of new experiments and install the experimental applica-
tions directly from the Play Store. On the other hand,
PHONELAB platform-level experiments are distributed
through the PHONELAB control software that runs on
each participant’s phone; this control software is capable
of updating platform components, e.g., libraries and ker-
nel modules. To the best of our knowledge, PHONELAB
is the only testbed that provides all the above features
together.

1.2 PHONELAB Demographics

Currently, PHONELAB consists of 191 participants.
Roughly half of our participants are first- and second-
year undergraduates, a quarter PhD students, and a fifth
faculty, staff and other professionals. However, males
greatly outnumber females, and the young outnumber the
middle-aged and older, both unrepresentative features we
will try and rectify in the future years. For management
reasons we limited participation to people with a SUNY
Buffalo affiliation except for several exceptions: a local
reporter, a technology writer, and an international rock
star. Table 1 summarizes our demographics.

1
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Fig. 1: 3G to Wifi transition locations. The map indicates that there are several common areas where network hand-offs occur.

Testbed

20

40

60

80

100

%
%

 o
f 

T
o
ta

l

Display (45.7%)

Idle Data (19.3%)

Active CPU (11.2%)

Idle Wifi (9.4%)

Idle CPU (6.3%)

Sleep (4.2%)

Phone (3.1%)

Active Data (0.4%)

GPS (0.2%)

Bluetooth (0.0%)

Fig. 2: Power usage by component. The large bar at left shows an aggregated breakdown for all participants. The participant bars are scaled
against the participant with the most energy usage.

2 Participant Behavior
We have conducted a usage measurement study with 115
participants over 21 days. For this purpose, we have
developed a measurement application that collects all
salient features of smartphone usage: networking, mo-
bility, power consumption, and application usage.

This section presents some of the early results of this
study. We show the network transition behavior between
3G and WiFi first and the battery and charging behavior
next.

2.1 Mobile Network Transitions

Mobile devices like smartphones move through a com-
plex network environment. Providing the illusion of
seamless connectivity requires negotiating hand-offs
both between Wifi access points and between Wifi and
3G radios. We were interested in observing hand-offs
between 3G (provided by Sprint, PHONELAB’s opera-
tional partner) and Wifi and found many in the dataset
collected by our usage experiment. Since the An-
droid ConnectivityService frequently switches
network interfaces for exploration purposes, we have de-
fined a transition as two one-minute or longer sessions
on different interfaces separated by less than one minute.

We further limit ourselves to cases where we received a
location update during the transition.

Figure 1 plots the location of transitions that occurred
on or near SUNY North Campus. We notice that many
cluster in expected locations: near the entrance and exits
of buildings where participants are likely to be moving
from campus Wifi to 3G.

2.2 Energy Breakdown

A single-day component-by-component breakdown is
shown in Figure 2. Our results are similar to those re-
ported by a previous smaller-scale study [4], and indi-
cate that mobile data (labeled as “Idle data” and “Active
data” depending on the state), the screen, and CPU usage
are the main sources of smartphone power consumption.
The per-participant bars also show a great deal of varia-
tion, with differences in both the amount and the break-
down of energy consumed by each participant.

One supposedly power-hungry component that has
less of an impact than we had expected is the GPS.
This is particularly surprising given the large amount of
location-monitoring work motivated by GPS power con-
sumption. One of several factors may be at work. First,
the Android platform estimates the GPS chipset current
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consumption at 50 mA. This number is used by the stan-
dard “Fuel Gauge” battery monitor and by our calcula-
tions. However, it is lower than the data sheet for the
Broadcom 4751 GPS receiver [1] and may represent a
best-case average. Still, even if the GPS current con-
sumption is off by as much as a factor of five, it does not
represent a significant contribution. Other hypotheses
are that Android network location is providing location
with sufficient accuracy for many applications, eliminat-
ing the need for GPS, or participants and applications
may simply be conscious of GPS power consumption
and taking steps to control it.

2.3 Opportunistic Charging

One way that users work around the battery limitations
of their smartphone devices is by finding new times and
places to charge their phones: plugging in at their desk
at work, in the car during their commute, or at home be-
fore a long night out. We refer to these charging ses-
sions as opportunistic to distinguish them from habitual
nightly charging. Assuming that many smartphone users
encounter plug points throughout the day, engaging in
opportunistic charging becomes an additional sign of en-
ergy awareness, and understanding opportunistic charg-
ing becomes necessary to improving energy management
on mobile devices. Others have analyzed this behavior
before [2, 3] and our goal is to examine the battery charg-
ing behavior of PHONELAB partipants.

Figure 3 shows that many users engage in opportunis-
tic charging. We define a charging session as opportunis-
tic if is long enough to not be spurious (over 10 min-
utes) but does not bring the battery to a fully-charged
state, indicating that the user disconnected the device
before charging could finish. For a representative day
during our experiment, of the 245 charging sessions we
observed that day, 96 (39%) were opportunistic by this
definition. 50 of 95 active participants engaged in oppor-
tunistic charging at some point during our experiment an
average of once per day.

Opportunistic charging may be a response to an an-
ticipated need for more smartphone battery power: the
student who plugs her smartphone in for a brief charge
before a night out. Our data also allowed us to exam-
ine how many of these opportunistic charging sessions
were necessary to bridge the gap to the next full charge.
We found that 24 of the 96 (25%) of the opportunistic
charges we observed were necessary. We believe that
this indicates that participants have responded to their
smartphones’ battery limitations by engaging in conser-
vative charging behavior, grabbing power whenever pos-
sible even if they do not anticipate needing it later.
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Fig. 3: Patterns of opportunistic charging. Many users perform op-
portunistic charging multiple times during the day.

3 Conclusions
This abstract introduced PHONELAB, a new large-scale
programmable smartphone testbed operated by SUNY
Buffalo and presented the participant behavior in terms
of network transitions, energy, and charging.

References
[1] Broadcom BCM4751 Integrated Monolithic GPS Re-

ceiver. http://www.broadcom.com/products/GPS/
GPS-Silicon-Solutions/BCM4751.

[2] N. Banerjee, A. Rahmati, M. D. Corner, S. Rollins, and L. Zhong.
Users and Batteries: Interactions and Adaptive Energy Manage-
ment in Mobile Systems. In UbiComp, 2007.

[3] A. Rahmati, A. Qian, and L. Zhong. Understanding Human-
Battery Interaction on Mobile Phones. In MobileHCI, 2007.

[4] A. Shye, B. Scholbrock, and G. Memik. Into the Wild: Study-
ing Real User Activity Patterns to Guide Power Optimizations for
Mobile Architectures. In MICRO, 2009.

9 Poster 1 // Mobility
Poster

1
9

127
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Knowing the extent to which people make use of ur-
ban greenspace is central to our understanding of urban
ecology. While the type and location of greenspace in
urban areas is well documented, we lack accurate, quan-
titative measures of when and where people occupy it.

Cellular telephone networks can provide a wealth of
information about the use of urban greenspace. Mobile
phones are carried by a large portion of the population
and are used throughout the day. A measure of how
many phones are active in which geographic areas can
thus serve as a proxy for human density in those areas.

In this work, we use anonymous records of cellular
network activity to quantify the spatiotemporal pat-
terns of human density within a major US metropolitan
area. More specifically, we use counts of voice calls and
text messages handled by cellular antennas as a measure
of how many people are in the geographic areas covered
by those antennas. Because of the close-knit spacing of
antennas in urban areas, variations in these counts can
shed light on the use of individual green spaces.

We aim to characterize how the density of network
activity changes over time, and how these density pat-
terns relate to greenspace and microclimate. By ag-
gregating activity into density maps at different times
of day, week, and season, we hope to enhance our un-
derstanding of when people occupy different types of
greenspace. This paper presents the vision and some
early results of this effort.

1. DATASET
We have gathered from a major US communications

service provider a dataset of anonymous cellular net-
work activity in the New York metro area. We identified
the set of ZIP codes within 50 miles of downtown Man-
hattan, then obtained a list of cellular antennas that
were active in those ZIP codes during our study. We
grouped into a sector the set of antennas that reside
on the same cellular tower and that point in the same
compass direction, or azimuth. For each of those sectors
and for each minute of each day, we gathered counts of
how many new voice calls and how many text messages
were handled by the antennas in that sector.

Finally, we sum the voice calls and text messages to
arrive at a single measure of cellular network activity
that we term call volume. Similarly, we use call density
to denote call volume per geographic area, and treat
call density as a proxy for human density.

Our current dataset spans the six months between
February 1 and July 31, 2011. It contains one record
per minute for more than 12,000 sectors, yielding more
than 3 billion call-volume samples. We are currently
gathering data for a full year.

We have been careful to preserve privacy throughout
this work. In particular, this study uses only anony-
mous and aggregate data. There is no personally identi-
fying information in the data records described above.

2. TESSELLATION
Our cellular network data gives us estimates of hu-

man activity levels, but we need a way to assign that
activity to geographic areas. Voronoi tessellation has
been used to associate spatial regions with cellular tow-
ers [4, 12]. However, basing the tessellation only on
tower locations results in coarse regions, and therefore
coarse assignments of activity to geographic areas.

We have developed an algorithm that performs a finer-
grained tessellation by making use of antenna directions
in addition to tower locations. Figure 1 illustrates the
result of our refined tessellation based on sector az-
imuths, with added edges drawn as dashed lines. Mak-
ing use of the azimuth information clearly improves the
granularity. For the New York metropolitan area, the
median area of a Voronoi region resulting from the ex-
tended tessellation is roughly one quarter of the median
area resulting from the regular tessellation.

3. EOF ANALYSIS
In this study, we seek to quantify the spatiotemporal

patterns of call volumes in order to infer the spatiotem-
poral distribution of people in the New York metro
area. We can then analyze these patterns in the con-
text of the spatial distribution of greenspace and tempo-
ral variations in weather conditions. We determine the
greenspace distribution using vegetation maps derived

1
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Figure 1: Voronoi tessellation for a sample 60-
km2 area. Red crosses denote cellular tower
locations. Taking into account antennas and
their directions produces finer-grained estimates
of coverage areas.

from visible and infrared satellite imagery [9, 10]. We
capture weather variations using data from a regional
network of weather stations.

One objective of this coanalysis is to quantify the re-
lationship(s) between outdoor ambient environmental
conditions and the spatiotemporal distribution of peo-
ple within the urban area. A primary challenge in this
analysis is to distinguish between indoor and outdoor
activity. A related challenge is to distinguish between
regular patterns of activity (e.g. the dominant daily
and weekly cycles) and the variations in these patterns
that may be related to environmental conditions (e.g.
indoors on cold days, outdoors on temperate days).

We will approach both of these challenges by map-
ping deviations from regular patterns as anomalies in
time and space. We will accomplish this mapping using
Empirical Orthogonal Function (EOF) analysis, a tool
commonly used to quantify spatiotemporal patterns in
meteorology and oceanography [13]. EOF analysis is a
form of Principal Component (PC) analysis.

We will treat the call volume data as instantaneous
spatial snapshots of call volumes, then analyse the spa-
tiotemporal patterns in these time series of call vol-
ume maps. Our approach is similar to how PC anal-
ysis is used to reduce the dimensionality of multispec-
tral imagery in remote sensing applications (e.g., [3, 5,
8]). Because variables in high-dimensional data are of-
ten correlated, PC transforms provide an efficient low-
dimensional projection of the uncorrelated components
of the data. The same property applies to temporal
dimensions.

Generally, EOFs are spatial patterns intended to rep-
resent spatially continuous modes of variability of physi-
cal processes, while the PCs are the weights representing
the temporal contribution of the corresponding spatial
patterns [6, 13]. In this study, we reverse the convention

so that EOFs represent temporal patterns and PCs rep-
resent spatial weights. We consider daily, weekly, and
seasonal trends that result from deterministic processes
such as commuting, as well as higher-frequency day-to-
day variability presumably related to ambient environ-
mental conditions and isolated transient events. Addi-
tional details of the approach are given by [11].

Our EOF analysis is mathematically related to the
methods used in [2] and [7] to analyze cellular network
data. However, we use the EOFs to identify and re-
move the dominant temporal periodicities in the data—
thereby revealing any non-periodic spatial patterns re-
lated to greenspace and temporal patterns related to
weather. In addition, we are experimenting with the
combined use of EOF analyses and linear mixture mod-
els as described by [11].

4. EARLY RESULTS
We are continuing to refine our analysis approach and

apply it to our data. However, we can already see rele-
vant patterns of human behavior emerge from prelimi-
nary analysis of selected subsets of the data.

As an example of a seasonal change in human activity
around greenspace, we compared Saturday-afternoon
call density in central Manhattan between February 12
and July 9, 2011. We summed the per-minute call vol-
umes between 2pm and 3pm for each sector within this
area, then normalized by the sector area to produce
density maps for each date. Figure 2 shows these two
maps and their difference, along with a satellite image
that highlights greenspace in the same area. From win-
ter to summer, we find that density increases in the
greenspace of southern Central Park, and decreases in
the residential areas of the Upper East and West Sides.

Our analysis strategy for the complete New York metro
area is based on the identification of spatiotemporal
regularities and anomalies. We will use EOF analysis
to quantify the spatial form of the dominant daily and
weekly cycles associated with commuter migration, as
well as any seasonal components that emerge in the low-
order dimensions. Once identified, we will remove these
components by inverse transformation of the remaining
dimensions to produce a spatiotemporal representation
of any anomalies that are distinct from the dominant
periodicities. We can then directly compare the spatial
components of these anomalies to maps of greenspace
and thermal microclimate. We can likewise compare the
temporal components of the anomalies to time series of
air temperature, precipitation, and humidity, in order to
quantify whatever relationships may exist between the
residual call volumes and the spatiotemporal variations
in microclimate and ambient environmental conditions.
Please see our longer paper [1] for additional details.
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(a) Density: Feb 12, 2011, 2-3pm (b) Density: July 9, 2011, 2-3pm

(c) Density change: July minus Feb (d) Landsat 5: July 7, 2011, 11am

Figure 2: Spatiotemporal change in Saturday afternoon call density for central Manhattan. From
winter to summer, call density increases in the greenspace of Central Park, but decreases in residential
areas on the Upper East and West Sides. The visible-infrared satellite image shows parks and other
greenspace as shades of green.
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ABSTRACT
Recently, and with the penetration of the smart city paradigm,
urban mobility is becoming an active research area. More-
over, the explosion of mobile technology enables the trans-
formation of citizens into active and passive sensors increas-
ing the amount of information of our scope of study: the
city. The usage of citizens as sensors results in a low-cost
infrastructureless framework that not only profits from the
mobile facet of humans but also from their common sense la-
belling contextual information such as anomalous situations
or venue categories. These aspects are treated in two dif-
ferent scenarios specific for the city of Barcelona: one that
allows us to obtain information about the state of the public
transportation network and the other that detects clusters
of activity within the urban environment.

1. INTRODUCTION
Researchers from different scientific areas have worried

about the dynamics of urban environments, specifically fo-
cusing of how humans transit the city [2, 3, 1].

Dedicated sensors have been installed in cities to capture
some data and try to understand the behaviour of such com-
plex system, determined by the aggregation of the individual
decisions.

Moreover, in recent years with the explosion of mobile
technologies citizens have been given the capability to con-
tinuously share information anytime anywhere. This ubiq-
uitous and continuous sensing capability combined with the
humans’ “common sense” transforms any device-holder in
a potential proactive intelligent sensor, which extends the
classical continuous-sensing sensors installed in a certain lo-
cation with an specific scope.

In this extended abstract we propose two complementary
ways to exploit the human sensing capabilities in order to
understand their location in the urban environments, and
their mobility patterns within it (where do citizens go and
how they go there). Namely, the macro vision obtained
through the analysis of proactive citizen-sensed information
retrieved from social media sites (in this paper Twitter) al-
lows us to understand a wide range of aspects of the city
(because of the free text accompanied with GPS metain-

0

formation) although generated by a specific segment of the
population. Consequently this macro vision provides us with
intuitions of the mobility patterns of the city (captured with
consecutive geopositioned tweets). In order to obtain deeper
insights and representative information arises the necessity
of a dedicated sensor able to acquire more accurate and rep-
resentative information on this matter. This link with the
micro vision led us to develop Commutio, a participatory
sensing mobile app targetted for commuters. Commutio
data will provide us with real-time access to the load of
the public transportation network. This information is es-
sential (1) to have a complete overview of the public trans-
potration system dynamics, (2) recommend alternative and
more efficient trips trips for individuals, (3) and provide real-
time information of unexpected incidents and alternatives
for afected commuters.

In this contribution we describe the barriers encountered
when deploying our solution with the goal of understanding
urban processes such as the identification of transitory areas
of activity and mobility patterns in the public transportation
network (PTN).

2. URBAN MACRO VISION THROUGH SO-
CIAL NETWORKS

Because of its popularity, geo-positioning capabilities and
penetration of its mobile app1, we opted to use Twitter as
the first source of information. This social sensor provides us
with information (in the form of geolocalized tweets shared
through users mobile devices) to observe and detect alter-
ations of several parameters such as areas of activity, tem-
poral patterns or mobility routes, which define the Urban
Chronotype of the city. In order to obtain another dimen-
sion of information, we enrich the information obtained from
Twitter with information from Foursquare. This combina-
tion results in a fully crowdsourced sensor where the meta-
information provided through “tweets” is augmented with
that of “check-ins”.

The processes of tweet-collection, foursquare cross-referencing
and analysis presented certain technical barriers that have
been solved with the development of our Urban Sensing Plat-
form. This platform ensures the acquisition in near real-time
of all the tweets, without the requirement of any private
partnership with Twitter as commonly done by other re-
searchers, allowing an agile deployment in any system. The
obtained geopositioned tweets are enriched with Foursquare

1According to an study released by Semiocast in January
2013, 74% of the tweets are generated using a mobile device.
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(a) User Distribution: During the MWC2012 we detected
that the number of Twitter users providing the specific loca-
tions of their posted tweets was significantly incremented.
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(b) User Origins: The distribution of the origins of the users
changed along the three weeks of the experiments, changing
the number of tourists with respect to the locals.

(c) Tourist Behaviour with Foursquare Augmented
Info: We can quantify that during the MWC2012 (Week
1) certain venue categories activity are significantly altered,
specifically those that relate directly to such type of event.

Figure 1: Participatory Sensing during MWC2012
through Twitter and Foursquare.

data, obtaining a distribution of venue categories. More-
over, it is important to understand the relationship of our
citizen-based sensors with the city to better understand the
samples they generate. For such task, our platform has been
enriched with a semantic-intelligence module that contextu-
alize the geographical origin of users, obtained from their
Twitter profile. Categorizing users as locals or foreigners
with respect to the city of study allows for a detailed be-
havioural pattern analysis differentiating their urban habits.

We performed an experiment during the expected although
exceptional situation of the celebration of the Mobile World
Congress (MWC) in Barcelona (whose main results are pre-
sented in Fig. 1). Our knowledge about this specific event
allowed us to compare the average urban chronotype of the
city (in the normal state without external influences), with
that obtained during the event, allowing us to observe dif-
ferent behavioural patterns within the city. The empirical
results obtained have given us the possibility to mine and
compare the behavioural patterns of the city in its normal
state and during the event: the number of sensed users in-
creases during the event as it can be seen in Fig. 1(a); on
the other han, we can infer that these users attending the
event are tourists as Fig. 1(b) shows; and finally, Fig. 1(c)
shows how the types of venues change accordingly to the
type of event in the city, affecting mainly proffesional, travel
and food venues. Substantial differences have been observed
in the areas of activity of the city after applying geospatial
data mining techniques (geo-clustering), thus providing a
first proof of validity of our urban social sensing approach.
For a more descriptive explanation of this experiment and
further experimental results we refer the reader to [4].

3. URBAN MICRO VISION USING CITIZENS
AS SENSORS

However, profiting from the information proactively shared
by the citizens in social media applications only gives us ac-
cess to a restricted subset of the potential information that
represents the Urban Chronotype of the city: a partial un-
derstanding of the location of the users can be made remain-
ing still unclear how people get to those places. This is where
the macro vision of the social sensed connects with the micro
necessity of undertanding how people transit the city, specifi-
cally, what the transit dynamics of the public transportation
network are? Unfortunately, the transportation company’s
existing infrastructure cannot provide specific real-time in-
formation about the number and location of users within
the network: in cities such Barcelona it is only controlled
the access stations of travellers, but not the exits neither
the load of the vehicles or the transportation lines. Our vi-
sion assumes that citizens in the network (through the usage
of their mobile devices) can provide with this information in
a crowdsourced way. However social media applications (as
the previously used) do not provide the incentives for users
to continuously share their position within the network.

For such reasons, and to obtain more accurate real-time
information about the near real-time state of the PTN, we
have created an ad-hoc sensor in the form of a app (shown
in Fig.2) that profits from the sensing capabilities of trav-
ellers and, while open, continuously share the citizen geopo-
sition (latitude, longitude and timestamp) with our central-
ized server. However, we faced two problems: why will users
open an app that sacrifices part of their battery life? and
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Figure 2: Commutio: Through this mobile applica-
tion we are able to track Barcelona’s public trans-
portation network travellers in real-time.

Figure 3: One Metro-commuter Trace: The red
icons in the map are the position provided by the
client application to the server and the red lines are
the connections between two consecutive geoloca-
tions. These positions belong to a user that was
travelling in the metro line specified with the blue
line. We can easily notice how divergent are the ac-
quired data from that of the real user location. With
the usage of the adequately trained Case-Based Rea-
soning algorithm, our framework will be able to as-
sociate the captured GPS positions to the stations
or edges associated to each of them.

how can we obtain enough critical mass of users to make
this crowdsourced sensor work? To solve both questions we
have created an upper layer using gamification techniques.
Thanks to a competition-based real-time trivia-like game,
we incentivate our users to play with our app: the game
constitutes an individual incentive to open the app, and the
real-time competition with other users and friends ensures
the virality and the long-term usage of the app.

With the real-time data gathered from the commuters of
Barcelona we are able to understand the load of the PTN,
obtaining also a commuter behavioural profile in the system
in various situations (e.g. demonstrations, or unexpected
incidents). Our modelization using a dynamic network data
structure allows us to apply graph theory algorithms to op-
timize the behaviour of the system in several aspects and
eventually build a route recommender system. Amongst the
challenges we have faced in this project, it is interesting to
emphasize how the lack of GPS-signal in underground trans-
portations have been solved using a Case-Based Reasoning
algorithm as shown in Fig. 3.

4. CONCLUSIONS
These two specific applications have given us different but

complementing visions of the urban flows: (1) a macro vi-
sion, captured from the proactively shared social media con-
tents, allowing us to understand the location of a specific seg-
ment of the population; and a micro vision, with dedicated
apps sensing a specific subject such as the PTN, allowing us
to obtain complete information of how citizens transit the
city.

Nowadays, the concept of smart city appears with a top-
down vision where citizens receive the services implemented
by the city and the government. As we proposed, the proper
usage of the collected information would provide a more
complete picture (micro and macro) with near real-time in-
formation about the target city allowing for a significant
improvement of the urban performance, with no specific in-
vestment on hardware infrastructure.
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Research shows that human movement patterns are predictable to some extent 
[CITE2]. Finding patterns in human mobility is of interest for several reasons, e.g., 
knowledge of contacts made by humans carrying mobile devices can be used in 
making efficient routing decisions. The movement trace collected from a real 
scenario reveals several interesting statistical features present in human mobility. 
We note, however, that the extracted statistical patterns are based on the dataset 
used for analysis. As a result, observations made from one dataset may not be 
applicable to another scenario. Our recent work towards understanding human 
mobility can be found in [CITE1, CITE3]. Our submission titled “Exploring Social 
Interactions via Multi-Modal Learning” presents results obtained from the analysis of 
the Nokia Mobile Data Challenge (MDC) dataset. As part of Nokia MDC’12, we were 
released a dataset for 38 participants. (See [CITE1] for a detailed description of our 
analysis of the Nokia MDC’12 dataset.)  
 
In this work, we propose to extend our analysis done in [CITE1] and explore the 
impact of different input values used in the analysis methods. Specifically, we plan 
to analyze the Nokia MDC dataset and investigate the following research questions: 
 

1. Song et al. in [CITE2] analyzed a large dataset of human movement traces 
and concluded that while moving, humans revisit a location based on the 
probability given by Equation 1 in [CITE1]. We note that the values of 
parameters a and b (Equation 1 in [CITE1]) obtained from the Nokia MDC’12 
dataset are different than the values of a and b obtained in [CITE2]. In 
particular, a and b values extracted from Nokia dataset are 0.98 and 0.0008, 
respectively, while a and b obtained from [CITE2] are 0.6 and 0.21, 
respectively. We note that these values are based on the dataset as well as 
the definition used for a “previously visited” location. In [CITE2], the authors 
track the cell phone towers a user is connected to during his movement. 
Thus, if a user reconnects to a previously visited cell phone tower, it is 
recorded as a visit to a “previously visited” location. In [CITE1], however, we 
define X as a “previously visited” location if the user is within 5 meters of a 
location Y previously visited by him. In other words, the scale in our work in 
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[CITE1] is much more precise than in [CITE2]. In this work, we plan to extend 
our analysis by defining a “previously visited” location similar to [CITE2]. We 
then propose to compare our results with the results obtained in [CITE2] to 
validate the results in [CITE2] and our methodology in [CITE1]. 

2. In [CITE1], we analyzed the MDC’12 dataset for 38 users to explore social 
interactions among the users. (See [CITE1] for details.) During analysis, we 
found that users that belong to the same social group have a strong 
correlation between their visited locations. In other words, we found a 
significant overlap between the locations visited by users that showed strong 
social ties. In this work, we are interested in investigating the type of social 
interaction between a pair of nodes. In the MDC'12 dataset, for example, user 
94 visits 1.75% of the locations visited by user 23; however, user 23 visits 
67.44% of the locations visited by user 94. With this observation, we may 
conclude that user 94 does not move as often as user 23. For example, 
perhaps user 94 is a bank teller and user 23 is visiting the bank as a 
customer; in other words, perhaps user 94 only has a few locations that are 
visited (e.g., bank, store, home) and user 23 visits two of them (e.g., bank and 
store). Similarly, user 2 contacts user 75 more frequently than contacts user 
51 and user 68. Thus, based on the contact information (e.g., frequency of 
contacts, duration of contacts, etc.) and/or the amount of overlap between 
the locations visited by the users, we are interested in exploring the type of 
social interactions that may exist between a pair of users. 

3. We plan to simulate the Nokia MDC scenario on our mobility model called 
SMOOTH [CITE3] and then compare the movement traces generated by the 
scenario simulated on SMOOTH with the real (dataset) traces for their 
several statistical features listed in [CITE3].  

 

[CITE1] A. Munjal, T. Mota, and T. Camp. Exploring Social Interactions via Multi- Modal 
Learning. Proceedings of Mobile Data Challenge by Nokia Workshop, 2012. 

[CITE2] C. Song, T. Koren, P. Wang, and  .- .  araba  si. Modelling the scaling properties of 
human mobility. Nature Physics, pages 818–823, 2010. 

[CITE3] A. Munjal, T. Camp, and W. C. Navidi, “SMOOTH:   simple way to model human 
walks,” Proceedings of MSWiM, pp.351-360, 2011. 
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Abstract—Ubiquitous computing technologies enable capturing
large amounts of human behavioral data. The digital footprints
computed from these datasets provide information for the study of
social dynamics, including social networks and mobility patterns,
key elements for the effective modeling of virus spreading.
Traditional epidemiologic models do not consider individual
information and hence have limited ability to capture the inherent
complexity of the disease spreading process. In this paper we
propose an agent-based system that uses social interactions and
individual mobility patterns extracted from call detail re cords
to accurately model virus spreading. The proposed approachis
applied to study the 2009 H1N1 outbreak in Mexico.

I. I NTRODUCTION

Traditional epidemiological approaches base their solutions
on using differential equations that divide the population into
subgroups based on socio-economic and demographic charac-
teristics. Although these models fail to capture the complexity
and individuality of human behavior, they have been extremely
successful in guiding and designing public health policies. The
recent adoption of agent-based modeling (ABM) approaches has
allowed to capture individual human behavior and its inherent
fuzziness by representing every person as a software agent.

The adoption of ubiquitous computing technologies by very
large portions of the population (e.g. GPS devices, ubiquitous
cellular networks or geolocated services) has enabled capturing
large scale human behavioral data. These datasets contain in-
formation that is critical to accurately model the spread of a
virus, such as human mobility patterns or the social network
characteristics of each individual

In this paper, we propose an ABM system designed to simulate
virus spreading using agents that are characterized by their in-
dividual mobility patterns and social networks as extracted from
cell phone records. We carry out simulations with data collected
during the 2009 Mexican H1N1 outbreak and measure the impact
that government calls had on the mobility of individuals andthe
subsequent effect on the spread of the H1N1 virus. An extended
description of our system and its evaluation using the 2009 H1N1
outbreak can be found in [1].

We have used call detail records(CDR) to compute: (1) a
mobility user model and (2) a social user model that identifies
each agent’s social network. This approach of capturing and
modeling agent behavior from CDRs sets our work apart from
others because: (1) we model agents from real individual data
and not from census or surveys; and (2) we capture behavioral
adaptations to the spread of the disease.

II. ABM OF V IRUS SPREADING USINGCDRS

We propose an ABM architecture with two main components:
(1) a set of agents that are modeled using the information
contained in call detail records; and (2) a discrete event simulator
(DES) that simulates the virus propagation over time based on
the agents’ models.

Agent Generation
We define the behavior of each agent with three models: (1) a

mobility model extracted from CDR data; (2) a social network
model computed from CDR data; and (3) a disease model that
characterizes the progression of the disease through its various
states in each agent.

The mobility model provides the position (at the BTS level)
where the agent is at each moment in time. This model is used
by the event simulation process to predict the location of each
agent at each simulation step. We propose a mobility model that
divides each day into a setS of i non-overlapping equal-length
time slots. The mobility model of agentn, Mn, is defined as:

Mn = {Mwday
n , Mwend

n } =

{{Mwday,0
n , .., Mwday,i

n }, {Mwend,0
n , .., Mwend,i

n }} ∀i ∈ S

Mwday,i
n = {pwday,i,0

n , . . . , pwday,i,j
n } ∀j ∈ B

Mwend,i
n = {pwend,i,0

n , . . . , pwend,i,j
n } ∀j ∈ B

(1)
where B is the number of BTS towers that give coverage
to a geographic area; and pwday,i,j

n and pwend,i,j
n denote the

probability that agent n may be found at BTS j in timeslot i
during a weekday or weekend, respectively. Given a CDR dataset,
the mobility model is built by associating with each time slot i
the set of BTSs where each person has beenobserved during
weekdays or weekends during the period of time under study.

Note that each individual might be assigned to more than one
BTS in a specific time slot i. In this case, the event simulator
assigns the position of the tower with the highest probability,
i.e., the BTS that the individual has used the most over the
training period. Since people tend to show monotonic behaviors,
an average person typically has very few BTS towers in his/her
mobility model.

We compute the social network of an agent as the set of
individuals with whom there was at least one reciprocal contact
during the time period under study:

Sn = {Swday
n , Swend

n } =

Swday
n = {list of reciprocal contacts in wdays}

Swend
n = {list of reciprocal contacts in wends}
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where Swday
n is the social network during the weekdays and

Swends
n the social network during the weekends. Given the social

networks of an agent, we assume that the probability of being
physically close to another agent will be higher if that other
agent is part of its social network. To model physical proximity
within a BTS coverage area we define two probabilities: (1)p1

is the probability that two agents that are in the same BTS at
the same time of the simulation and are part of the same social
network are physically close enough for the virus to be possibly
transmitted; and (2) p2 the probability that two agents that are
in the same BTS and arenot in the same social network at the
same moment in time are physically close for the virus to be
possibly transmitted.

The disease model captures the progression of the disease in
each agent. We follow a similar approach to that of Barretet al.
[2] and define a disease model that is composed of two parts: the
between hosts transmission model and thewithin host progression
model. In Figure 1 we observe that thebetween hosts transmission
model happens at a probabilitypi and represents the probability
that an agent goes from Susceptible to Exposed. Thewithin host
model represents the evolution from Exposed to Infective ina
given period of time ǫ, and from Infected to Removed in period
of time β.

Fig. 1. Disease Model composed of Between hosts and Within hosts models.

Discrete Event Simulator
The Discrete Event Simulator (DES) simulates the evolutionof

the epidemic spreading for a set of agents over a specific period
of time. To bootstrap the epidemic spreading, we assume thatan
initial agent is Infected and starts the transmission. Specifically,
the DES does the following consecutive tasks: (1) It identifies
the geographical area (BTS) where each agent is located using
the mobility model; (2) it identifies the geographical areaswhere
there is, at least, one Infective agent; (3) for each Infective agent,
it takes all the Susceptible agents of his social network that are
located in the same geographical area (BTS coverage) and applies
probability p1 that they will be physically close for the virus
to be transmitted; (4) for each Infective agent and the rest of
Susceptible agents included in its geographical area (not part of
its social network), it applies the probability p2 that they will be
physically close for the virus to be transmitted; (5) for theset of
agents physically close obtained from steps (3) and (4), it applies
the between hosts transmission probability to go from Susceptible
to Exposed; (6) for the agents that are already in the Exposedor
Infective state of the disease model, it applies the corresponding
progression; and at last (7) it removes from the simulation all
agents that have reached the Removed state.

III. E XPERIMENTS: THE CASE OFH1N1 IN MEXICO

In case of a pandemic, the World Health Organization (WHO)
recommends authoritative bodies to consider the suspension of
activities in educational, government and business units as a

measure to reduce the transmission of the disease. The actions
implemented by the Mexican government to control the H1N1
flu outbreak of April 2009 constitute an illustrative example. The
actions consisted in three stages: (a) a medical alert issued on
Thursday, April 16th, which was triggered by the diagnosis of
the first H1N1 flu cases; followed by (b) the closing of schoolsand
universities, enacted from Monday April 27th through Thursday,
April 30th; and (c) the suspension of all non essential activities,
implemented from Friday, May 1st to Tuesday, May 5th.

Period Date Range Description
preflu 1/1 – 16/4 Period before any H1N1 case has been dis-

covered. Agents will move largely unaffected
and showing their usual mobility patterns.

alert 17/4 – 26/4 April 16th - Diagnosis of H1N1 cases and
medical alert triggered the following day.
People may be reacting to the news and
modify their usual mobility patterns.

closed 27/4 – 31/4 Schools and Universities closed. Normal be-
havior disrupted as people change their usual
mobility patterns.

shutdown 1/5 – 5/5 Closure of all non-essential activities.
reopened 6/5 – 31/5 Restrictions lifted.

TABLE I. T IME PERIODS OF STUDY.

Experimental Setting
In order to examine the impact of government restrictions

we evaluate changes in the mobility and disease models in five
chronological periods. Table I presents the timeline understudy.
We generate agents (with corresponding mobility and social
models) for each of these time periods. In order to measure
behavioral changes, we define two scenarios: abaseline scenario
and an intervention scenario. Thebaseline scenario is built using
the mobility and social models obtained during the pre-flu period,
when individuals show normal – not affected by medical alerts –
mobility behavior. The intervention scenario considers the models
that are built with data from the alert, closed, shutdown and
reopened periods. In this case, depending on the moment of the
simulation, the DES will jump from one set of models to the
next. The evaluation is done by comparing the results obtained by
both scenarios. Due to the inherent randomness of the spreading
process we run each scenario 10 times and average the results.

Generation of Agents
We collected CDRs from January1st to May 31st of 2009 of

one of the most affected Mexican cities. The dataset contains 1
billion CDRs and 2.4 million unique cell phone numbers. Eachcell
phone number is associated with one agent and we compute the
mobility, social and disease models for both thebaseline and the
intervention scenarios. The mobility models are computed with a
granularity of one hour. Following Songet al. [3], we only consider
the agents that (1) are assigned to at least two BTSs; (2) have
a minimum average calling rate of0.25 calls/hour; and (3) have
at least 20% of the hourly time slots filled. These requirements
narrow down the final number of agents to25, 000.

We also build the social network models for thebaseline and
the intervention scenarios. As part of these models, we needed to
define values for the contact probabilitiesp1 and p2. In order to
compute their values, we make use of the work by Cruz-Pacheco
et al. [4], where the authors examined the effect of the government
intervention measures on the epidemic spread using SIR. Details
can be found in [1]. Our search determined that the best values
were p1 = 0.9 and p2 = 0.1.
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To build each agent’s disease model, we use the parameters re-
ported in the literature related to the H1N1 outbreak: R0 = 1.75
(Estimated Reproduction number), ǫ = 26.4−1 hours (Expected
duration latent period), β = 60−1 hours, (Expected duration
infectious period) and ρ = 34−1 hours (Expected time before
infecting another agent). We initialize our simulations with one
infected agent on April 17th (the first day a case was detected)
[4] and run the simulation for 30 days.

Analysis of the Results

In this Section, we compare the results of theintervention
scenario with the baseline scenario from a mobility perspective
and from a disease model perspective.

Agent Mobility: In order to measure the changes in mobility
due to government mandates, we computed for each scenario the
percentage of agents that moved from one BTS coverage area
to another one at each step of the simulation (1 step = 1 hour).
Figure 2 shows the results.

Both the baseline and the intervention plots show similar
cyclical changes. However, there are a number of important
differences. There is a significant decrease in mobility on April
27th, precisely when thealert period finishes and theclose period
starts. This decrease in mobility continues until the beginning of
the shutdown period. On May 1st and throughout the shutdown
period, there is an even larger decrease in mobility (< 30%) that
lasts until all restrictions are lifted on May 6th. To sum up, during
the intervention scenario there is a reduction in the mobility of
the agents of 10% during the alert period and of up to 30%
during the closing and shutdown periods, when compared to the
baseline. These differences in the agents’ mobility disappear once
the reopen period starts (from May 6th onwards).

Fig. 2. Percentage of agents that move between BTSs for theintervention
andbaselinescenarios. The temporal granularity is1 hour.

Disease Transmission:In this section we study the evolution
of the disease focusing on the number of susceptible and infected
agents in theintervention and baseline simulations.

Figure 3 displays the percentage of the population that is in
the susceptible stage of the disease model for a specific dateand
time. Results are shown for both theintervention and the baseline
scenarios. We observe that at the beginning of the simulation
all agents are susceptible of being infected. As time passes, the
evolution of susceptible agents is described by a sigmoid function.
The number of susceptible agents decreases faster in thebaseline
scenario, i.e. the number of infected agents grows faster than
in the intervention scenario. This result supports the hypothesis
that the government measures taken during theintervention
scenario had an impact on the agents’ mobility patterns and hence

managed to reduce the number of infected agents when compared
to the baseline scenario. The largest difference between both
sigmoid functions takes place during the peak of the epidemic,
with approximately a 10% less of susceptible agents in the
intervention scenario.

Figure 4 shows the percentage of infected agents during the
simulation for both scenarios. We observe that the peak of the
epidemic in the intervention scenario happenslater in time than
in the baseline, and has asmaller absolute value. The reduction
in mobility and the closure of public buildings delayed the peak
of the epidemic by 40 hours. Also, in our simulations, the total
number of infected agents was reduced by10% in the peak of
the epidemic in the intervention scenario when compared to the
baseline scenario. These results are in agreement with the ones
reported in [4].

Fig. 3. Fraction of susceptible agents in the population over time. These
curves are an average of all simulation runs.

Fig. 4. Fraction of infected agents over time. These curves are an average
of all simulation runs.
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Abstract 

The stochastic actor-based model (SABM) has been widely used to explore the co-

evolution of friendship networks and behavior dynamics simultaneously in recent 

years.  This study analyzes data from the Netsense project, a longitudinal survey and 

smartphone data collection of 196 college students over 4 semesters since 2011.  And we 

find that selection effects play an important and consistent role in creating peer clusters 

with similar political tastes in a dynamic context, but friends were not found to influence 

political tastes, net of other sociodemographic, network, or family factors.  In case of 

obesity contagion both selection and influence effect are detected: friendships are more 

likely to be found among those with similar body mass index (BMI) and friendships also 

drive those involving in them to have similar BMIs.  We also study the network-behavior 

dynamics of academic achievement, smoking behavior, drinking behavior, depressive 

feeling, and religious preferences. 
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In the last decade the accessibility of large-scale social
interaction data has led to an explosion of research in
the field of social networks (Jackson, 2008).

In particular, a substantial body of work has focused
on telecommunication data, e.g., (Eagle et al., 2009;
Hill et al., 2006; Nanavati et al., 2006; Richter et al.,
2010). A common approach in this research is to rely
on a static call graph constructed from aggregates of
calls given in Call Data Records (CDRs), which
record, among other details, the calling and called
numbers of the subscribers. This graph contains nodes
that represent different subscribers and edges that con-
nect subscribers that have social relation. The exis-
tence of a meaningful social connection between users
A and B is assumed if the total interaction of calls be-
tween these two subscribers over some period of time
is significant. The volume of calls can be measured,
e.g., by the total number of calls over a designated pe-
riod, the total duration of calls, or a fraction of calls
made by user A to user B out of calls made by user
A. The edges in the call graph can be directed and
undirected depending on the context. It was shown in
Eagle et al. (2009) that this graph accurately approx-
imates the actual social network.

However, this approach disregards the information en-
capsulated in the dynamics of the interactions. In con-
trast, we focus on the actual sequences of information-
passing events.

We propose a method to identify sequences of calls
that are likely to be related to the same topic or prop-
agate the same information. It is evident that with-
out knowledge of the actual content of these calls, this
task is impossible. Therefore we heuristically confine
our search to a specific mode of information diffusion
in which once the information is received, it is either
transferred to somebody else during a relatively short
period of time or not transferred to anyone. We re-
fer to this mode of information propagation as Rapid
Propagation of Information (RPI). As an illus-
tration of RPI, one can consider the following two se-

quences of information diffusion calls:
Scenario 1. The sequence begins with Alice calling
Bob. Once their conversation is over, Bob immedi-
ately calls Clare. Shortly after the end of the second
call, Clare dials Daniel and so on. Assuming that this
chain of calls is long enough and that time intervals
between consecutive calls are short, this sequence rep-
resents a rare event. In this scenario, calls seem to
trigger other calls, hence could be related to the same
topic.
Scenario 2. In this scenario, Alice makes calls to all
of her friends within a relatively short period of time.
Our measurements show that such a “burst” of calls is
a very unusual subscriber behavior that might suggest
that Alice transfers the same piece of information to
all of her friends, e.g., an invitation to a party.

We design an algorithm for identification of RPIs in
the call data records and apply this method to data
sets DS-1 and DS-2 from two providers from differ-
ent parts of the world. Data set DS-1 contained all
calls logged by an operator in a country with popula-
tion of over 7 million people in a period of 35 days.
The data contains more than 600 million calls involv-
ing approximately 3 million distinct subscribers from
the analyzed operator and over 5 million subscribers
belonging to other service providers. Data set DS-2
contained calls in a city with a population of over 2
million people in 24 days out of period. The data con-
tains more than 50 million calls involving 5.4 million
distinct subscribers, out which approximately 2.1 mil-
lion belong to the analyzed operator.

We study the properties of RPIs found in these data
sets and compare them. In particular, we consider
the properties of information flow trees, namely,
the paths in which information propagates from one
subscriber to another within RPI. We show that the
typical topologies of these trees are the same in both
data sets (see Figure 1), indicating that these topolo-
gies represent universal modes of information propaga-
tion. However, the fractions of RPIs belonging to each
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(1) (2) (3) (4)

Figure 1. Typical topologies of information flow trees. Ar-
rows point from parent node to child node.

of these topologies differs between two data sets. We
conjecture that this difference can be attributed to the
difference in the type of clients (pre-paid vs. post-paid
customers, private vs. business clients). We further
show that a significant fraction of RPIs have a single
subscriber propagating the information to majority of
other users. We refer to these users as “dissemination-
leaders” and conjecture that they play a significant
role in diffusion of information in the mobile phone
network.

We develop two generative models of RPIs that have
a relatively small number of parameters. The first
model generates sequences of calls that yield an RPI.
The second model describes the emergence of differ-
ent topologies of information flow trees. We show that
these models accurately predict features of RPIs found
in the real-world data. The simplicity and locality of
these models allows them to be a computationally sim-
ple way to generate synthetic call data records that
capture the RPI phenomenon.

We justify our heuristic definition of RPI by providing
evidence that some of the RPIs propagate geo-spatial
information. In particular, we show that appearance
in the same RPI increases the chances that two sub-
scribers will visit the same geographical location dur-
ing the same day.

Finally, we consider the problem of churn predic-
tion, namely, identification of subscribers that are
considering transferring their business to a competing
mobile phone service provider. Since it is usually sig-
nificantly cheaper to retain an existing subscriber than
to acquire a new one, churn prediction has become a
central business intelligence application for telecom-
munication operators (Fildes & Kumar, 2002).

The mainstream approach to churn prediction (e.g.,
Coussement & Van den Poel (2008); Datta et al.
(2000)) considers each customer separately. Essen-
tially, each subscriber is characterized by a numerous
features based on their socio-economic characteristics
and call behavior. These features are then used by
some learning regression algorithm to calculate sub-
scriber’s likelihood to churn.

One drawback of this approach is fairly obvious: it
relies on the assumption that the decision to churn is
made by each user individually and is not affected by
a subscriber’s social circle. However, it is well-known
that there are social aspects to churn. E.g., Nitzan
& Libai (2010) considered a social network of mobile
phone subscribers and showed that having a neighbor
that churned increases the chances of churn by 80%.
Thus, it seems that leveraging social relations may lead
to churn prediction systems with better performance.
While commercial solutions have started exploring this
direction, to the best of our knowledge the only pub-
lished work directly in this context is the diffusion-
based algorithm introduced in Dasgupta et al. (2008)
and machine-learning based algorithm in Richter et al.
(2010).

Dasgupta et al. (2008) introduced the Spreading Ac-
tivation algorithm (SPA). Its underlying assump-
tion is that recent churners are known and they are
likely to affect the churning decisions of their social
neighborhood. The network of subscribers is then
modeled as a weighted directed call graph. Next, a
diffusion process is used to model the flow of churn
propensity from recent churners to their social envi-
ronment. Specifically, each node in the call graph that
corresponds to a recent churner is assigned an initial
weight which propagates to the call graph network ac-
cording to a decaying diffusion process. Once diffusion
process converges, each subscriber in the call graph has
some associated weight corresponding to the amount
of churn propensity that has reached him. The indi-
vidual churn scores, namely, the likelihood of a user
to churn, are then derived directly from these weights.

The method proposed by Richter et al. (2010) is called
Group-First Churn Prediction (GFCP) and proceeds
in the following manner. It employs an information-
theory based measure to quantify the strength of the
social connection between pairs of subscribers. By
keeping only the strongest connection, this algorithm
identifies closely-knit groups of subscribers and the
leader of each group. GFCP then establishes a churn
score for each group using a novel group Key Perfor-
mance Indicators. It finally assigns individual churn
score to each subscriber based on the corresponding
group churn score and subscriber’s personal charac-
teristics.

We propose a new churn prediction method that relies
on subscribers’ behaviors in RPIs. We thus introduce
the first algorithm for churn prediction that is based
on subscribers’ dynamic, rather than static, social be-
havior. Our algorithm proceeds through the following
steps. It receives call data records (CDRs) of all calls
made over an input period of several days, along
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with identities of all users that churned during this
period. Our goal is to accurately identify users that
will churn in the prediction period that follows the
input period.

As the first step, we identify RPIs in the input pe-
riod data. We then characterize all subscribers that
belong to the analyzed carrier with attributes of their
behavior in RPIs. E.g., we count the number of RPIs
the user participated in, whether the user had a cen-
tral location in one or more information flow tree, the
number of churners that participated in the same RPIs
etc.

As the second step, we use a pre-trained regression-
classification tree (Duda et al., 2001) to map be-
tween the values of these features of the user and
the churn score. This churn score indicates the likeli-
hood of a user to churn during the prediction period.
The regression-classification tree mentioned above is
trained using historical data. Namely, we designate
input and prediction periods in data from the past.
We use CDRs from the input period to extract sub-
scribers’ features and use the 0 − 1 churn signal ob-
served during the prediction period as the desired out-
put of the trained tree. The regression-classification
tree is trained once and used in all future predictions.

We compared the performance of our algorithm (RPI-
CP) to the performance of the SPA algorithm that
assumes knowledge of similar information. We show
that the RPI-CP algorithm outperforms the SPA al-
gorithm on both data sets. In particular, we take the
top 1% of subscribers, as ranked most likely to churn
by each algorithm, and we check the actual number of
churners in each set. In DS-1, the RPI-CP algorithm
finds five times more actual churners than the SPA
algorithm. In DS-2, the RPI-CP algorithm finds 1.5
times more actual churners than the SPA algorithm.

Further work of immediate interest includes leveraging
geographical information to get additional insights on
the social structure of mobile call networks. We also
note that the actual content of calls was unavailable to
us, therefore our research was solely based on tempo-
ral features of calls. However, there exist other social
media, e.g. Twitter, in which both temporal and con-
tent data are available. The extension of our approach
to these media can provide us with additional insights
to dynamics of RPI.
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Using telephone network data to study the effects of socio demographics on ego 
network structure 

by 

Binh Phan1, Kenth Engø-Monsen2, and Øystein D. Fjeldstad1 

Abstract 

The effects of socio demographics on ego network structure have captured much research attention 

in the 1980s and 1990s (such as, Beggs, Haines and Hurlbert (1996), Marsden (1987)). The network 

data in these studies was collected using interviews (survey). Extant research has shown issues 

associated with such a network data. Specifically, people face memory constraints which make 

them report much less partners than they actually have (Marsden, 1993, 2003), and are biased 

toward recent events, physically proximate and close partners (Eagle, Pentland, & Lazer, 2009).  

With the support of technology, recent social network studies use automatically recorded 

communication networks, such as an email correspondence network (Ebel, Mielsch, & Bornholdt, 

2002; Guimera, Danon, Díaz-Guilera, Giralt, & Arenas, 2003), and a telephone network (Eagle et 

al., 2009; Lambiotte et al., 2008; Onnela et al., 2007), as reliable proxies for real social networks. 

The use of these networks partly overcomes the issues associated with the survey network data. 

Among recorded communication networks, the telephone network, including fixed-line call, mobile 

phone call and SMS networks, is considered to be a better proxy for the real social network 

(Hidalgo & Rodriguez-Sickert, 2008; Onnela et al., 2007; Pool & Kochen, 1978) because the 

mobile phone call service has been used as one of the main communication mediums in societies 

over decades (Kwan, 2007), and has the high penetration rate, almost 100 percent in developed 

countries and more than 90 percent in fast-growing countries.3 

In this study, we examine the effects of socio demographics with a sample of 509 anonymous 

mobile users which was randomly collected in Norway in 2010. We use the telephone network as a 

proxy for the social network, and Ordinary Least Squared (OLS) estimation. This network data 

consists of 12529 nodes and 17737 ties. We found that (i) age has a U-shaped effect on ego network 

clustering and an inverse U-shaped effect on ego network size, (ii) geographic centrality has a 

negative effect on ego network clustering but no effect on ego network size. 

Our findings, although generally consistent with prior research using survey data, nuances prior 

findings. The effects of age and geographic location have been examined in the studies of Marsden 

                                                            
1 Department of Strategy and Logistics, BI Norwegian Business School, 0484 Oslo, Norway. Emails: 
tbinhphan@yahoo.com and oystein.fjeldstad@bi.no  
2 Telenor Group, Research and Future Studies, Snarøyveien 30, N-1331 Fornebu, Norway. Email: Kenth.Engo-
Monsen@telenor.com   
3 According to International Telecommunication Union (ITU):http://www.itu.int/ITU-D/ict/facts/2011/index.html 
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(1987) and  Beggs et al. (1996). These studies used the 1985 General Social Survey (GSS)’s 

network data in the US. In this data, interviewees were asked to give the names of five or more 

people whom they discusses “important matters” with and provide the information about the 

connections among partners. In this data, the average size and clustering of ego networks are 3.01 

and 0.61 respectively (Marsden, 1987). In our data, the average size and clustering of ego networks 

are 23.48 and 0.37 respectively. Marsden (1987) found that age has a positive effect on ego network 

clustering and has a inverse U-shaped effect on ego network size. Marsden (1987)’s finding 

suggests that at early ages, people have small and sparse ego networks. This is probably because in 

the data, nearly a quarter of respondents report to have ego networks of size 0 or 1 (Marsden, 1987). 

Such a small size is not adequate to construct ego network clustering. In our data, all ego networks 

have a size of at least 5 alters, which is adequate to capture the true ego network clustering 

(Marsden, 1993). With a different type of data, our findings extend the findings of Marsden (1987) 

by showing that at early ages, people have small and clustered ego networks.  

Further, our findings and Beggs et al. (1996)’s findings are consistent on a negative effect of 

geographic centrality on ego network clustering. Beggs et al. (1996) found a significantly positive 

effect of geographic centrality on ego network size while we find no support. This difference is 

conceivably due to the different time points of data collection and the different types of network 

data used. Networking is costly (Burt, 1992). People face a physical constraint on networking, 

especially with geographically distant partners. The cost of networking and the physical constraints 

limit the number of ties that people can maintain (Burt, 1992: 17). Communication technologies 

reduce the cost of networking and the physical constraint (Wellman, Haase, Witte, & Hampton, 

2001). Beggs et al. (1996) used the GSS data collected in 1985, when the gap of the use of 

communication technologies was significant between rural and urban areas. The use of 

communication services, especially mobile services, in rural areas has been recently dramatically 

growing. This gap in developed countries remains, but has been significantly mitigated over time 

(LaRose, Gregg, Strover, Straubhaar, & Carpenter, 2007). The significant mitigation in the gap 

would reduce the difference in ego network size between urban and rural people. The use of the 

telephone network in this study is able to capture the effect of this gap mitigation. Moreover, the 

individual participation to social and non-economic organizations and associations where people 

can establish and maintain non-work ties has been shown to decline over the past 40 years (Putnam, 

2010). This decline is especially high in urban areas where people face a large pressure of money 

and work (Gellis, Kim, & Hwang, 2004). This high decline in urban areas significantly reduces the 

number of non-work ties in the ego networks of people in these areas. People in rural areas with a 

less pressure of money and work can remain a high participation to these non-economic 
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organizations and associations, and therefore maintain a significant number of non-work ties. The 

combination of these two reasons may explain why a positive effect was found to be significant 

with the data collected in 1985, but is non-significant with the data collected in 2010. 

In summary, our findings imply that the use of the telephone network data as a proxy for the social 

network in the research on the antecedents of social network structure may extend the findings of 

prior studies using the survey network data, and is also able to capture the effects of communication 

technologies on people’s networking and network structure. We call for future research to use the 

telephone network data to reexamine the origins and effects of social network structure. 
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Abstract: 

In this paper, the drivers of social influence in a social network during a phone-tracked intervention 

will be investigated. The funf dataset
1
, which comprises detailed high-frequency data gathered from 25 

mobile phone-based signals from 130 people over a period of 15 months, will be used to test the 

hypothesis that people who are closer to each other have a greater ability to influence each other. 

Various metrics of closeness will be investigated such as self-reported friendships (collected through 

surveys), call logs and Bluetooth co-location signals. A graph of all participants is then created using 

such metrics as edge weights, and the network constraint
2
 of each pair of participants is calculated as a 

measure of not only the direct friendship (or number of calls or Bluetooth co-locations) between two 

participants but also the indirect friendships through intermediate connections that form closed triads 

with both the participants being assessed. To measure influence, the results of the live funf intervention 

will be used where behavior change of each participant to be more physically active was rewarded - the 

reward being calculated live. There were three variants of the reward structure: one where each 

participant was rewarded for her own behavior change without seeing that of anybody else (the 

control), one where each participant was paired up with two 'buddies' whose behavior change she could 

see live but she was still rewarded based on her own behavior, and one where each participant who was 

paired with two others was paid based on their behavior change that she could see live. As a metric for 

social influence, it will be considered how the change in slope and average physical activity levels of 

one person follows the  change in slope and average physical activity levels of the buddy who saw her 

data and/or was rewarded based on her performance. Finally, a linear regression model that uses the 

various types the network constraints (self-reported friendship, call logs, Bluetooth) will be created to 

predict the behavior change of one participant based on her closeness with her buddy. In addition to 

explaining and demonstrating the causes of social influence with unprecedented detail, this paper will 

also briefly discuss the policy implications of this technology such as privacy, moral hazard, misuse 

and effectiveness in the long term.  

                                                 

1 Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A., & Nadav Aharony, Wei Pan, Cory Ip, Inas Khayal, A. P. (2011). 

Social fMRI: Investigating and shaping social mechanisms in the real world. Pervasive and Mobile Computing, 7(6), 

643–659. doi:10.1016/j.pmcj.2011.09.004 

2 Burt, Ronald S. 1992. Structural Holes: The Social Structure of Competition. Cambridge, MA: Harvard University 

Press. 
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For many in Asia, the mobile phone is their only gateway to 

the Web. The penetration of internet in these countries 

is nevertheless very small, causing a large digital discrepancy 

between more and less developed countries - the so 

called  digital divide. Increased mobile internet adoption may 

help to bridge this gap.  

In this talk we examine how viral campaigns can boost the 

mobile internet adoption in one developing Asian country. By 

sending a unique offer code to 70 000 people, forwardable to 

friends, we are able to observe how the offer spreads from 

customer to customer. The spreading can be observed by 

coupling adoption data with call data records, which can 

provide a good proxy for the social network. By counting both 

direct and indirect hits we observe a strong adoption rate of 

53%. On average we find that each person recruits 8.3 other 

customers, while the most extreme people recruit over 

350 others. 

We also introduce molecular targeting - where we aim to 

reach socially connected pairs of people. Our results indicate 

that individuals in these ‘molecules’ adopt more often together 

than expected from the single-individual hit rate - leading us 

to believe that the  neighbours boost each other’s awareness of 

mobile internet, due to the so called “up-in-air effect”.  Early 

results also  indicate that this approach increases the overall 

spreading as measured by the indirect hitrates.                .    

 

 
Fig 2 The extreme case where one single customer (in 

green) recruits 360 other customers.  The missing links 

indicate that the offer is also spread via other channels 

(which our call data does not pick up) 

 

 

 

 

 

 
 

Fig 3 Molecular targeting: A component where two 

customers  (hexagons) are targeted  with an offer. They 

both adopt, and also recruit 12 other customers.  

 
 

Fig 1 The social network among the mobile internet 

adopters 5 days after campaign launch. 45% of the 

connected adopters can be found in the largest connected 

component. The connections are based on voice + SMS 

communication.  
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ABSTRACT
Subscriber churn is a top challenge for wireless carriers. Un-
derstanding the determinants of churn is key for carriers
to identify potential churners and apply effective retention
strategies to reduce subscriber loss. In this paper, we ap-
ply generalized propensity score matching to separate peer
influence from other confounding factors that might affect
churn. Our empirical analysis, developed over a large scale
wireless network, confirms that peer influence plays a role
in churn. The estimated marginal influence of having a first
friend churn is roughly 3%. While the marginal effect of
friends’ churn decreases significantly as more friends do so,
contagious churn is still a significant part of the story beyond
high churn rates in the mobile industry.

1. INTRODUCTION
In today’s competitive wireless industry, subscriber churn
is considered to be the “biggest issue for all wireless carri-
ers” [7]. Preserving the existing subscriber base is of crucial
importance for carriers to ensure their profitability. Under-
standing determinants of churn becomes fundamental for
carriers so that they can identify potential churners and
apply appropriate retention strategies to reduce subscriber
loss. However, the complex nature of churn poses significant
challenges to carriers that pursue effective churn manage-
ment solutions to deal with all kinds of churn problems. As
a consequence, most carriers focus only on retaining their
most valuable subscribers.

Advances in studying the effect of social influence on sub-
scriber churn in wireless networks have received much at-
tention in recent times. [5] found that the likelihood of
churn increases with the number of friends who have al-
ready churned. [6] also confirmed that the “word-of-mouth”
effect has a positive impact on subscriber’s churn. How-
ever, work that identifies contagious churn on a causal sense
and separates it from confounding effects such as homophily
still lacks. Correlation in the behavior among people who
share social ties can be explained by both peer influence and
their inherent similarities [10]. Therefore, misattribution of

∗Support for this research was provided by the Fundação
para a Ci̊encia e a Tecnologia (Portuguese Foundation for
Science and Technology) through the Carnegie Mellon Por-
tugal Program under Grant No. SFRH/BD/51153/2010.

homophily to contagion, or-and vice versa, needs to be care-
fully thought from an empirical point of view.

Numerous studies on identification of peer influence in other
networked context have been proposed (e.g. [1, 4, 13]). [2]
used dynamic propensity score matching (PSM) to estimate
the effect of contagion in the adoption of an online service by
analyzing a community of instant messenging users. Their
findings suggest that homophily accounted for much of the
adoption previously perceived as peer influence. However,
[2] dichotomize the treatment due to the binary nature of
treatment regime. The applicability of PSM therefore is
confined, as effects of different numbers of adopter friends
are overlapped. To overcome this problem, in this paper,
we apply a generalized propensity score matching (GPSM)
method to separate peer influence from homophily. We per-
form our empirical analysis on a massive dataset from a
major European wireless carrier (hereafter refer to as EU-
RMO). We have call detail records (CDR) and tariff plan
information from EURMO. The GPSM method allows us
to estimate the magnitude of the contagion effect given dif-
ferent numbers of friends who churn. This can provide us
with more information on the marginal effect of peer influ-
ence and thus help us better understand the role of peer
influence on churn.

2. DATA
The EURMO dataset includes CDRs for roughly 4 million
prepaid subscribers between August 2008 and June 2009.
For each call we know the caller and the callee, the duration
and time of the call. For each SMS we know the sender and
receiver and the time of the SMS. Subscribers are identified
by their anonymized phone number. For each subscriber,
we know their tariff plan at all times. Understanding sub-
scriber churn for prepaid consumers is quite different from
postpaid subscribers. First, we have little demographic in-
formation on prepaid subscribers. Second, the usage pat-
tern of prepaid subscribers is more irregular than that of
postpaid subscribers. Third, prepaid subscribers churn by
ceasing usage whereas postpaid subscribers explicitly inform
the carrier when they want to do so. After consulting with
the carrier, we use its definition of churn and thus assume
that a prepaid subscriber churns if she does not place a call
or sends a SMS for three consecutive months.

Poster 2 // Network 20
Po

st
er

2
20

150



Variable Description MD C SD C MD NC SD NC
Time Invariant Individual

PLAN ID The ID for the tariff plan 1.09 1.15 1.35 1.95
Time Variant Individual

#CALL Number of calls made or received per day 0.24 2.29 1.41 3.16
AIRTIME Duration of calls made or received (in min) 0.22 4.68 1.59 7.32

#NEIGHBOR Number of friends 10 46.37 64 104.40
#SMS Number of SMS sent or received 0.012 4.51 0.30 20.14

LIFETIME Duration since subscription to carrier (in month) 3.67 12.08 15.37 18.58
RCO Ratio of calls to other networks 0.2 0.31 0.15 0.23

Table 1: List of covariates extracted from EURMO, MD is median and SD is standard deviation, C stands for churner and
NC stands for non-churner

We use a random sample of 10,000 subscribers together with
their 690,000 friends (430,000 in the same network). Two
subscribers are called friends if at least they exchange one
call in the same calendar month. We observe network dy-
namics: every month new subscribers join EURMO, existing
subscribers leave EURMO and subscribers call and/or text
different friends. Therefore, we aggregate time-varying in-
dividual subscriber usage and time-invariant characteristics
at the monthly level (Table 1). Over the eleven months in
our period of analysis, the 10,000 subscribers in our sample
placed 6.5 million calls. 2,282 of them left EURMO, which
amounts to an average monthly churn rate of 2.07%.

We find that the subscribers that churn have much less us-
age and fewer friends than the subscribers who do not both
in terms of number of calls and airtime. Moreover, we also
observe that both subscribers who churn and do not have
much more usage within the network. This is sensible be-
cause calls across carriers cost more as carriers pass on to
subscribers part of the interconnection charges. We also find
that the conditional churn probability decreases with the
subscriber’s lifetime with the carrier. One possible explana-
tion can be that subscribers become loyalty to carriers over
time. We also note that subscribers exhibit a significantly
higher churning rate during the first three months they sign
up with the carrier. This implies that carriers should pay
particularly attention to these subscribers who just join the
network and thus build up good customer relationships with
them to keep them in the firm, as they become more valuable
with time.

3. METHODOLOGY
Propensity Score Matching (PSM) is a widely used method
to evaluate the causal treatment effect from observational
data in various empirical research fields [11], in particular
when the assignment of a binary treatment is not random
and counterfactual outcomes are unavailable. With PSM
units from a treated group are matched to those in a control
group using a propensity score. Differences in the behav-
ior of these pairs of units measure the effect of the treat-
ment. [8] extended and proposed this framework to allow
for continuous levels of treatment. Formally, consider a set
of N subscribers and let i denote a single subscriber. Let
P = {1, . . . p} represent a set of time periods. We observe
a vector of pre-treatment covariates Xip as shown in Table
1 at each time period. We define the treatment at each pe-
riod for each subscriber as her exposure to a certain number
of friends who churned in the last time period τip−1. Very

few subscribers in our sample have more than 3 friends who
churn. Therefore, we decided to use four levels of treat-
ment: T ∈ {0, 1, 2, 3}, to indicate whether 0, 1, 2 or 3 or
more friends churn, respectively. The outcome of interest is
whether subscriber i churns in time period p: Yip ∈ {0, 1}.

GPSM requires weak unconfoundedness: Y (t) ⊥⊥ T |X. In
our case, though the number of friends who churn at time
p−1 is not randomly assigned, we observed all variables that
can affect both the subscriber’s churn at time p and the like-
lihood of receiving treatment (justification of this assump-
tion is discussed in the next section). We estimate the condi-
tional distribution of the number of friends who churn given
these covariates to estimate the generalized propensity score
(GPS) for each subscriber, Ri (we assume that the logarithm
of the number of friends who churn is normally distributed).
We also investigate the balancing property for our covari-
ates adjusted by GPS by testing whether the mean of one of
the four treatment levels was different from the mean of the
other three treatment levels. We generally observe moder-
ate evidence against the balancing properties according to a
two-sided t-test.

We denote the dose response function as a set of potential
outcomes given the treatment level t: {Yip(t)t∈T } where T is
the set of potential treatment values. Then the conditional
expectation of churn is a function of number of friends who
churn T and of the GPS R:

β(t, r) = E[Yip(t)|r(t,Xip) = r] = E[Yi|Tip−1 = t, Ri = r]

We use a polynomial approximation of order two to regress
the subscribers’ churn Yi on the number of churned friends
Ti, and the GPS Ri.

Yi = α0 + α1Ti + α2T
2
i + α3Ri + α4R

2
i + α5TiRi

Therefore, the effect of peer influence on churn is the average
conditional expectation over GPS at a particular number of
friends who churn:

µ(t) = E[β(t, r(t,Xi))]

Taking derivatives, we can easily obtain the marginal effect
associated with one more friend churn on the subscriber’s
churn for different levels of treatment.

4. RESULTS AND DISCUSSIONS
For each month we evaluate the dose response function sep-
arately (we use the Stata package provided by [3]). We use
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Figure 1: Dose response function and treatment effect func-
tion in October 2008

bootstrapping to calculate the asymptotic standard errors
and confidence intervals. Figure 1 shows the average dose
response and treatment effect for October 2008 (estimates
for other months exhibit similar characteristics). The figure
on the left shows that the effect on subscribers churn in-
creases with the number of friends who churn. For example,
the probability of churn for subscribers who have two friends
who churned in September 2008 is 4% higher than that for
subscribers who had no friends who churned in September
2008. The figure on the right shows that the marginal in-
fluence (the effect of having one more friend who churns)
decreases as more friends churn. For example, having one
friend who churns compared to having no friends who do so
will lead to an increase of 3% in the probability of churn but
having two or more friends who churn compared to having
one friend who churns will increase the probably of churn
by only 1%. Our results confirm the positive effect of peer
influence on churn. When we remove the selection bias due
to the homophily, we still observe contagious churn.

We notice the argument made by [12] that the plausibility
of the unconfoundedness assumption remains unidentifiable
from observational data. As long as there are systematic dif-
ferences in unobserved covariates, we cannot safely conclude
that the unconfoundedness assumption holds. Therefore, we
acknolwedge that our results may still be biased. As future
work, we will perform sensitivity analysis to check the ro-
bustness of our results. One possible way to do so is to
relax the unconfoundedness assumption, introduce an arti-
ficial unobserved variable and reestimate the dose response
function to check whether the presence of unobserved het-
erogeneity may significantly change our results [9].
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I. INTRODUCTION
Wireless service providers would like to learn more about

how users respond to prices and the utility users derive
from various network transactions. This kind of information
is valuable in developing models of user behavior and in
designing pricing schemes, especially dynamic pricing plans
[2],[3].

However, obtaining such information is difficult, because
in today’s wireless networks users rarely make a separate
payment for each network transaction (e.g., voice call, SMS, or
data download), nor are transactions offered at multiple price
points. Instead, users pay for a quota, which can take two
forms. With a prepaid plan, the user pays for a certain quantity
of voice or data service, which can then be consumed over a
flexible time frame. Alternatively, with a capped plan, the user
pays a flat fee for a fixed voice or data quota, and any unused
quota at the end of the month perishes.

The idea we explore here is to see how much of what we
would like to know about users can be obtained via a study
of quota dynamics: the change in user behavior as a function
of quota balance and/or time to the end of the quota period.
For example, in a prepaid voice plan, how does a user’s call
frequency change with decreasing balance? Or, in a capped
data plan, how much of a user’s quota is typically wasted in
each period?

Understanding the dynamics of such quota use can (i)
provide insights into user price sensitivity, (ii) enable us to
develop models of user behavior that can be fed into a variety
of pricing models (like the two-sided pricing model in [1]),
and (iii) shed light on the underlying utility that end users
apply to different network transactions.

Our work on quota dynamics has two parts. First (Sec-
tion II), we have performed data analysis on call detail records
(CDRs) from an operator that services prepaid voice and SMS
users. This analysis shows that user behavior changes markedly
as the remaining quota gets low. Second, we have developed
user models to describe the observed behavior. In the first
model (Section III-A), there is an underlying set of “potential”
network transactions. The probability that the user actually
performs a transaction depends on the current balance as well
as the time to the end of the quota period. In the second model
(Section III-B), we aim to explain this type of behavior via a
utility maximization framework where the user has different
utilities for different types of transactions and her goal is to
maximize the total utility received over the quota period.

We believe that, although our existing CDR data set is for
voice and SMS users only, an equivalent analysis could be
carried out for wireless data users. Moreover, that setting is
likely to give richer behavior due to the greater heterogeneity
of content. We are in discussions with an operator to obtain

H. Lee’s work was supported by the Seoul Metropolitan Government R&BD
Program WR080951. The authors would like to thank J. Borger, A. Grover
and K. Nithi for valuable conversations.

CDRs for mobile data users in order to perform such a study.

II. DATA ANALYSIS
We consider CDRs from a population of prepaid wireless

users that make both voice calls and SMSs. The data set spans
6 weeks and corresponds to about 1.6 million subscribers.
However, some of the subscribers have complex plans with
various types of “free” calls that are bundled in with the
monthly subscription. For simplicity, we focus on users whose
plan has a simple monetary quota. For these users, the data
set contains about 60 million outgoing calls and 150 million
SMSs. Each voice call or SMS decrements the balance by a
predetermined amount. In the remainder of this section we
discuss how call duration, inter-call time and inter-SMS time
vary as a function of remaining balance.

Fig. 1 (top) shows how call duration varies with current
user balance. Clearly, call duration decreases as the balance
gets low. The spikes around the balances 1,000, 1,700, and
2,000 are closely related to the most frequent top-up amounts.
One could conclude that the first call after top-up typically
lasts longer than any other calls.

There are different price rates for a single call depending
on subscribers’ plans. Among them, the price rates 1.0 and
0.5 monetary units per second appear most frequently in the
data. (We use the term “monetary unit” so as not to hint
at the source of data.) Fig. 1 (middle) depicts the behavior
of subscribers under different price rates. The longer call
durations of subscribers with the lower price rate is obvious.
Note however that the half-price rate does not give a two-
fold increase in duration, but extends call duration by about
50%. Nevertheless, this behavior suggests some degree of price
sensitivity among the users.

Users’ different responses to remaining balances is ob-
served in Fig. 1 (bottom). In order to differentiate responses,
each user’s call duration is modeled as a power function of
remaining balance. The exponent is estimated from each indi-
vidual’s call history, and then used as a classifier. The figure
only includes the individuals whose history of call durations
can successfully yield parameters of the model. Group number
1, 2, and 3 stands for the group having approximately zero,
positive, and negative exponent, respectively. Each point for a
group in the figure is the average of all call durations for that
group. Note that all three groups behave similarly when the
balance is low, particularly below 1,000. However, the usage
patterns show different trends as the balance increases. In
particular, Group 2 continues responding to increasing balance
by having longer calls. This demonstrates there are different
responses to remaining balance within the user population and
this suggests different price sensitivities for different users.

Fig. 2 shows the time between consecutive outgoing-calls
(blue) and outgoing-SMSs (red) as a function of current user
balance. Sharply increasing inter-call time indicates the users’
reluctance for topping up. For the inter-SMS time, since the
raw data is noisy, we applied a smoothing filter based on
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Fig. 1: Call durations (top), call durations at different rates
(middle), and call durations of different user groups (bottom)

the Bartlett window function with window size 51. The inter-
SMS time decreases as current user balance decreases. This
is exactly the opposite of the trend for the inter-call time and
indicates that users consider an SMS as a cheap substitute to
a call when their balance is low. (For the plans we consider,
the cost of an SMS is about the same as a one or two-second
call.) Overall, the behavior observed in Fig. 2 provides further
empirical guidance in developing models of user behavior
responding to the current balance.

III. USER MODELING
In this section we present models that could be used to

explain user behavior under prepaid and capped pricing plans.
A main difference between these two kinds of plans is that,
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Fig. 2: Inter-call time (blue) and inter-SMS time (red)

in a capped plan, wireless usage is a perishable good: what is
not used at the end of the billing period is lost. Thus, one way
to try to learn about users’ price sensitivities is to examine
how much of their quota is typically “wasted”. On the other
hand, the two kinds of plans both have a notion of balance.
In the prepaid case, balance is the monetary balance in a user
account; in the capped case, balance is the amount of service
remaining for the billing period. In both cases we might expect
usage to decline as the balance decreases.

A. Modeling Usage Directly
We begin describing the model for the prepaid pricing

case, and then discuss how it can be extended to capped
plans for voice and data. Let us consider a user who feels the
need/urge to make calls that arrive following a Poisson process
with rate λ ≥ 0 per day. Each need is either satisfied with
probability p(q), which is a function of the remaining balance
q, or not satisfied with probability 1-p(q). We assume p(q) is
nondecreasing in q and the probability becomes 1 beyond a
threshold: p(q) = 1 for q ≥ q0. In other words, the user does
not take the balance into account and satisfies all calling needs
provided that the balance is high enough. It can be shown that
the expected inter-call time for a given q, denoted by τ̄(q),
is the inverse of λp(q). If the urge/need is satisfied, the call
duration is X(q), which is a non-negative random variable with
a known distribution.

Depending on the service (voice/data, prepaid/capped),
p(q) may take different forms for q < q0. Next, we analyze the
data from Section II to estimate the parameters of the model
described above. Fig. 2 gives the inter-call times as a function
of q, which we use to estimate p(q). More explicitly,

τ̄(q) =
1

λ

1

p(q)

is utilized to estimate the probabilities and the arrival rate.
A log-log plot suggests a power law between the probability
of acceptance and the remaining balance. Thus, the particular
form of p(q) for the prepaid call data is

Pr{accept|q} = p(q) =

{
aqb if q < q0
1 if q ≥ q0

where a, b, and q0 are parameters to be estimated. We fit the
data with nonlinear least squares method that yields a = 0.097,
b = 0.296, q0 = 2656, and λ = 7.142. Also, we can use the
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data for Fig. 1 (top) to fit a model for call duration X(q),
which we omit due to space restrictions.

The model described here can be extended to model usage
in capped voice or data services. Now, the probability of
satisfying a need/urge to use the service is a function of the
remaining quota q and the remaining time in the billing cycle
t. We expect p(q, t) to increase as q increases and decrease
as t increases. For capped data services, we can enrich the
model by incorporating how the usage pattern of different
applications (web surfing, video, e-mail, etc.) change in the
course of a billing cycle. One way to accomplish this with our
model is to assume two arrival streams for the need/urge to
access the network: λ1 for low bandwidth applications like
e-mail and λ2 for high bandwidth applications like video.
The probability to satisfy the need/urge can be considerably
different for each stream within the billing cycle. Moreover, if
satisfied, each need would consume highly different amounts
from the remaining quota, X1(r, t) and X2(r, t) for low and
high bandwidth applications, respectively.

B. Modeling Usage Via Utility
So far we have assumed that the need to access the network

is an exogenous process. We now discuss how this need can be
explained and modeled by the actions of a utility-maximizing
user. Our second model focuses on usage under capped plans.
The intuition behind the model is that users know the utility
they will derive from a service at the current time, but uncertain
about this utility in the future, since they do not know with
certainty which content they might want to access. A user’s
pattern of consumption over the billing cycle follows from the
user attempting to maximize the total expected utility for the
billing cycle in the face of this uncertainty.

We formalize the model as a Markov Decision Process
(MDP). Recall that an MDP consists of states, actions, a state
transition function, and a reward function. Here, a state consists
of quota balance q, a number i of points remaining in the quota
period, and a parameter c of utility function uc(x) = 1−e−cx.
An action a (with a ≤ q) is the amount of voice or data
consumed by a user at a state. If i > 0 (so that the quota
period is not finished), the probability of of a transition from
a state (q, i, c) to a state (q−a, i−1, c′) on action a is simply
the probability Pr(c′) that the utility function parameter takes
value c′, based on a discrete prob. mass function. In other
words, an amount a is consumed of the balance, the next time
period is reached, and the utility function of the next time
period is established. The reward with an action a is the utility
uc(a), regardless of source or destination state.

In this framework, the problem we solve is to compute a
user strategy that will maximize the expected utility over the
quota period. We do this by solving a set of Bellman equations,
working backward from the end of the quota period.

We have run simulations to see how patterns of user
consumption are affected by the probability distribution of
utility function parameter c. We observed that the average
consumption pattern does not depend on the distribution for c.
In every distribution we have tested, the average consumption
at each point in the quota period is approximately equal. Fig. 3
(top) shows simulated consumption over 30 quota periods, for
a uniform distribution over five possible values of c.

Thus, by varying the distribution over c, we were unable
to generate user behaviors similar to Fig. 1. However, such
patterns of consumption can be generated by our model by

Fig. 3: Data consumption under uncertain utility (top), and by
an “underestimating” user (bottom)

allowing users to be mistaken about the actual distribution over
parameter c. For example, Fig. 3 (bottom) shows the pattern of
user consumption when an approximately normal distribution
is used to guide decision making, but a distribution skewed
towards higher values of c is used to determine the actual c
values encountered by the user. In other words, in this scenario
the user underestimates the utility she will obtain from data
at a future point within the quota period and therefor uses up
too much of her quota earlier in the period.

In our utility-maximizing model, a rational user will con-
sume all available service in every billing period. This is
contrary to everyday experience. We are investigating exten-
sions to our model to account for wasted quota, including
negative utility (sometimes the work to use a service outweighs
the derived benefit) and partially-observed state (users don’t
always know their balance or the date at which the quota period
ends).
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Abstract—Mobile phones are now equipped with an increas-
ingly large number of built-in sensors, that can be utilized
to collect long-term socio-temporal data of social interactions.
Moreover, the data from different built-in sensors can be com-
bined to predict social interactions. In this paper, we perform
quantitative analysis of 6 famous community detection algorithms
to uncover the community structure from the mobile data. We
use Bluetooth, WLAN, GPS, and contact data for analysis, where
each modality is modelled as an undirected weighted graph.
We evaluate community detection algorithms across 6 inter-
modality pairs, and use well-know partition evaluation features
to measure clustering similarity between the pairs. We compare
the performance of different methods based on the delivered
partitions.

I. INTRODUCTION

The problem of finding community structures within a
complex network is familiar in social sciences, and different
community detection methods have been introduced to ac-
complish this task. However, the methods developed till now
are not acknowledged to be fully reliable, due to the lack of
shared definition of the term community and partition. Mostly
community detection algorithms are analysed on benchmark
datasets [2]. To our knowledge, there has been no work
done on the evaluation of community detection methods on
real networks data. Community structures in a real world
environment can change abruptly, and benchmark datasets lack
the skewness found in real networks. Generally, real networks
lack reference community structures to evaluate algorithms.
To collect the complete ground truth from a large number
of participants is an inefficient and impractical solution. A
possible alternative is to utilize different built-in sensors within
mobile phones. Combining the data from different sensors can
provide points to the possible structures, and the possibility of
more accurate prediction.

In this paper, we are interested in quantitative analysis of
community detection methods on the Nokia Mobile Dataset
[1]. The provided data does not have complete reference
structure of the community. We utilize Bluetooth, WLAN,
GPS, and contact data of the participants. We have anonymized
Bluetooth MAC address and mobile number of the participants.
Our goal is to model graphs for different modalities, apply
community detection methods and determine the partition sim-
ilarity of different modality combinations. We utilize certain
attributes from each modality to build their graphs. Later on,
we test them with community detection methods. We evaluate
the partition results across 6 different pairs (Bluetooth and

GPS, Bluetooth and contact, Bluetooth and WLAN, GPS and
contact, GPS and WLAN, contact and WLAN). We compare
the partition results from every pair to measure clustering
similarity. Figure 1 shows the overview of our approach. For
the detailed discussion of creating graphs for each modality,
we refer the reader to our previous work [3].

II. RESULTS AND DISCUSSIONS

The plots of Figure 2 and 3 illustrate the experimental
results for the pair of modalities and the community detection
methods. In the figures, each column represent the community
detection method and each row represent the combination of
modalities. BT and CT in the figures represent Bluetooth and
contact. To measure the similarity between modalities, we
created different pairs of modalities and later tested clustering
evaluation features against them. The blue bars represents com-
puted Rand indices, green bars represents the Jaccard indices,
red bars represents the distance measures, and small blank
spaces between the measures are given for the convenience
of the readers. We performed tests on the weighted and un-
weighted graphs to evaluate the performance of the community
detection methods under different conditions. We found that
the weighted graphs have better community structures and
indices values are higher than the unweighted graphs. The
communities detected by dynamic algorithms have followed
the power law distribution, one or two large communities along
with many small communities were detected. Modularity opti-
mization techniques have performed well for some modalities.
Similarly, edge betweenness and infomap have detected either
a single big outlier or a big group with many isolated nodes for
all modalities. We will discuss every method and the effect of
adding and removing weights upon the communities detected.

Edge betweenness has a poor overall performance for both
weighted and unweighted graphs. For some modalities a single
super community, and for some single big outlier along with
many isolated nodes were detected. The plots for the weighted
and unweighted graphs shows Rand and Jaccard indices have
fluctuated values. The higher values come from the result
of comparing two super communities with many common
nodes, and lower values represent cases of comparing super
communities with not too many common nodes. Similarly, it
shows individual big bars along many small ones for distance
measure. Normally, edge betweenness produces fair results for
a sparse graph or graphs with an average degree of 16, but in
our case the graphs are more dense with the minimum average
degree of 15 for single modality, and up to 29 for contact
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Fig. 1: Overview of our method. After preprocessing the raw data, a graph is generated for each modality that is used as an
input for community detection methods to detect the community structures. The community structures results of inter-modality
pairs are evaluated by partitioning measures to find the clustering similarity.

modality. Additionally, to study the effect of the number
of clusters on the grouping formed and indices, we varied
the number of clusters. The results showed no significant
improvements. For the unweighted graphs, the results are no
more different than for the weighted graph. The detected
groups were of bigger size along with many individual isolated
communities except for the contacts, where only a single big
group was detected.

The Fast greedy method has produced heterogeneous
groups for some modalities, with some small and a single
or two large communities for modalities. For the contacts
modality; however, a single super community was detected.
The most probable reason could be due to a well known
resolution limit, that is biasness of the modularity towards
the bigger communities, which often yield a poor values of
the modularity maxima. The rand indices for the weighted
graph are between 0.47 and 0.57. For the combinations of
BT/WLAN, the Rand index is slightly higher, and distance
measure shows many similar clusters.

The Louvain method has performed better on weighted
graphs. The detected community structures followed the power
law, except for contact modality. For contact modality, a single
super group was detected. It has higher Rand and Jaccard index
of 0.68, and 0.66 for the combination of ’GPS and WLAN’,
similarly distance measure shows many groups with similarity
around 0.40. The Rand indices for the remaining combinations
ranges between 0.50 and 0.68. For distance measure, detected
groups have the similarity around 0.30. For the unweighted
graph, the detected groups were slightly bigger in size. The
average values for Rand and Jaccard indices have come down
for the combinations. The only exception can be found for the

case of ‘GPS and BT‘, where the Rand index value is 0.65.

Infomap has produced weak results for weighted and
unweighted graphs. For the weighted graph, lots of small
groups were detected, Rand and Jaccard indices values were
very low. The detected groups have very small similarity. For
the unweighted graph, for every combination a single big
community was detected and this fact be easily observed in
fig 3 .

Walktrap has fair results for weighted and unweighted
graphs. The Rand indices for combinations, such as GPS/BT,
GPS/WLAN, and WLAN/BT, are 0.61, 0.62, 0.75 respectively.
The distance measure for those combinations were around
44%. The detected groups for WLAN, BT, GPS were almost
the same; however, there was a single big community for
contacts, and that resulted in comparatively lower indices
values for those combinations. For the unweighted graph, for
contacts and WLAN super communities with many isolated
nodes were identified. The overall performance for weighted
graphs were better as compare to unweighted graphs. The
length of random walks to perform can be a decisive factor
for the performance of this method. The variation of the length
showed that for larger steps single big communities with many
isolated nodes were detected and similarly for smaller value
of steps a single big community was detected.

Spinglass has performed efficiently for the unweighted
and weighted graph. The Rand, Jaccard indices, and distance
measure for both weighted and unweighted graphs are the
almost same. We change some parameters of the algorithm
to find its effects on the results. We found for the lower spin
states, bigger communities were detected. By increasing the
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Fig. 2: Community detection methods and the applied modality combinations for weighted graphs.
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Fig. 3: Community detection methods and the applied modality combinations for unweighted graphs.

spin states, the size of the groups tends to be smaller. Until a
certain point there was a changing behavior in the formation
of the clusters, but then the detected groups were the same and
the only difference was in orders. The maximum value of the
rand, and Jaccard indices were found for BT/WLAN modality
with 0.68 and 0.65, and similarly the distance measure also
represents matches amongst the groups. We tested graphs
against the negative implementation, which assigns negative
values to the edges. The computation time was slightly higher.
For our particular case, negative edge implementation had a
poor performance and for most of the modalities single bigger
communities were produced. We also verified the effect of
updating the spins of the vertices in parallel on the results, and
we found that it effected the results by predicting single super

communities. For the unweighted graph, we found similar
results for the Rand, Jaccard indices, and distance measure.
The communities detected for the unweighted graphs were
slightly bigger than the weighted graphs.

In conclusion, our evaluation shows that spinglass has
produced better results for mobile data. It has performed
equally better for weighted and unweighted graphs. This fact
is further cemented by the higher values of Rand, Jaccard
indices and a consistent similarity found by distance measure.
Walktrap has also performed good; however, the number of
random walks are a crucial factor for the clustering. Then
at the third and fourth place comes Louvain and fast greedy
methods. These methods have performed for some modalities,
but they have also produced outliers for some modalities.

Poster 2 // Network 22
Po

st
er

2
22

158



Infomap and edge betweenness performed poor as compared to
the other methods. Pairwise combinations of GPS, Bluetooth,
and WLAN data provide points about reference structures.
For the combination of modalities, we found that GPS/BT,
WLAN/GPS, BT/ WLAN have the best results. Mostly features
have given a higher value for the pairs of these modalities.
Table I features some key results from our observations. It
represents results only from weighted graphs.

GPS/BT WLAN/GPS BT/WLAN
RI JI RI JI RI JI

Spinglass 0.63 0.608 0.64 0.62 0.68 0.65
Walktrap 0.61 0.59 0.62 0.605 0.75 0.72

Louvain Method 0.55 0.535 0.68 0.66 0.59 0.56
Fast Greedy 0.47 0.42 0.48 0.46 0.51 0.49

TABLE I: Key results derived from the results (JI, and RI
stands for Jaccard and Rand Index).
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Abstract

Modern technologies not only provide a variety of communication modes, e.g., texting, cellphone

conversation, and online instant messaging, but they also provide detailed electronic traces of these

communications between individuals. These electronic traces indicate that the interactions occur in

temporal bursts. Here, we study the inter-call durations of the 100,000 most-active cellphone users

of a Chinese mobile phone operator. We confirm that the inter-call durations follow a power-law

distribution with an exponential cutoff at the population level but find differences when focusing

on individual users. We apply statistical tests at the individual level and find that the inter-call

durations follow a power-law distribution for only 3460 individuals (3.46%). The inter-call durations

for the majority (73.34%) follow a Weibull distribution. We quantify individual users using three

measures: out-degree, percentage of outgoing calls, and communication diversity. We find that the

cellphone users with a power-law duration distribution fall into three anomalous clusters: robot-

based callers, telecom frauds, and telephone sales. This information is of interest to both academics

and practitioners, mobile telecom operator in particular. In contrast, the individual users with a

Weibull duration distribution form the fourth cluster of ordinary cellphone users. We also discover

more information about the calling patterns of these four clusters, e.g., the probability that a user

will call the cr-th most contact and the probability distribution of burst sizes. Our findings may

enable a more detailed analysis of the huge body of data contained in the logs of massive users.
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1 Introduction

The detection of communities is an important tool
used to analyze the social graph of mobile phone
users. Within each community, customers are sus-
ceptible of attracting new ones, retaining old ones
and/or accepting new products or services through
the leverage of mutual influences [1]. The communi-
ties of users are smaller units, easier to grasp, and
allow for example the computation of role analy-
sis – based on the centrality of an actor within his
community.

The problem of finding communities in static
graphs has been widely studied (see [2] for a survey).
However, from the point of view of a telecom ana-
lyst, to be really useful, the detected communities
must evolve as the social graph of communications
changes over time – for example, in order to per-
form marketing actions on communities and track
the results of those actions over time. Addition-
ally the behaviors of communities of users over time
can be used to predict future activity that interests
the telecom operators, such as subscriber churn or
handset adoption [3]. Similary group evolution can
provide insights for designing strategies, such as the
early warning of group churn.

Stability is a crucial issue: the analysis performed
on a given community will be lost, if the analyst
cannot keep track of this community in the follow-
ing time steps. This is the particular use case that
we tackle in this paper: tracking the evolution of
communities in dynamic scenarios with focus on
stability.

We propose two modifications to a widely used
static community detection algorithm. We then de-
scribe experiments to study the stability and qual-
ity of the resulting partitions on real-world social
networks, represented by monthly call graphs for
millions of subscribers.

2 Data Sources

Our raw data source is anonymized traffic informa-
tion from a mobile operator. The analyzed informa-
tion ranges from January 2012 to January 2013, and
contains for each communication the origin, target,

date and time of the call or sms, and duration in
the case of calls.

For each month T , we construct a social graph
GT =< NT , ET >. This graph is based on the ag-
gregation of the traffic of several months, more con-
cretely GT depends on the traffic of three months:
T , T − 1 and T − 2. The raw aggregation of the
calls and messages gives a first graph with around
92 M (million) nodes and 565 M edges (on a typi-
cal month). The voice communications contribute
413 M edges and the messages contribute 296 M
edges to this graph.

We then perform a symmetrization of the graph,
keeping only the edges (A,B) whenever there are
communications from A to B and from B to A.
This new graph has around 56 M nodes and 133 M
(undirected) edges, and represents stronger social
interactions between nodes. Additionally we filter
nodes with high degree (i.e. degree greater than
200) since we are interested in the communications
between people (and not call centers or platform
numbers).

3 Dynamic Louvain Method

Our first experiment to detect evolving communi-
ties was to run the original Louvain algorithm [4] on
the graphs at time T and T + 1, and compare the
two partitions, method that resulted very unstable.
Our second experiment was to run the Louvain al-
gorithm modified by Aynaud and Guillaume [5] to
obtain a more stable evolution. As we show in Sec-
tion 4 the results were still unsatisfying in terms of
stability.

In our use case (e.g. telecom analysts perform-
ing actions on the communities), the stability of
the partition is our main concern. With this goal
in mind, we propose two modifications to the Lou-
vain method, that give the partition at the previous
time step a sort of “momentum”, and make it more
suitable to track communities in dynamic graphs.

Before describing them, we introduce some nota-
tions. As stated in the previous section, we con-
sider snapshots of the social graph constructed at
discrete time steps (in our case every month). Let
GT =< NT , ET > be a graph that has already
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been analyzed and partitioned in communities. Let
Γ =< C1, . . . , CR > be such partition in R commu-
nities. Given a new graph GT+1 =< NT+1, ET+1 >
our objective is to find a partition of GT+1 which is
stable respect to Γ.

The first idea is to have a set of fixed nodes F .
Let R = NT ∩NT+1 be the set of nodes that remain
from time T to T + 1. The set F is a subset of R,
whose nodes are assigned to the community they
had at time T . In other words, noting γ the function
that assigns a community to each node, we require:
γT+1(x) = γT (x) ∀x ∈ F .

We experimented with different distributions of
the fixed nodes, ranging from no fixed nodes (F =
∅) to all the remaining nodes (F = R). For the
experimental results, we used a parameter p that
represents the probability that a node belongs to F
(i.e. |F| = p · |R|).

The second idea is to add a probability q of “pref-
erential attachment” to pre-existing communities.
With probability q, the new nodes will prefer to at-
tach to a community existing at time T instead of
attaching to a community formed at time T+1. We
give the details below.

The Louvain Method [4] is a hierarchical greedy
algorithm, composed of two phases. During phase
1, nodes are considered one by one, and each one
is placed in the neighboring community (including
its own community) that maximizes the modular-
ity gain. This phase is repeated until no node is
moved (that is when the decomposition reaches a
local maximum). Then phase 2 consists in building
the graph between the communities obtained during
phase 1. Then the algorithm starts phase 1 again
with the new graph, in the next hierarchical level of
execution, and continues until the modularity does
not improve anymore.

We construct a set P ⊆ NT+1 such that |P| =
q · |NT+1|. For every node x, we consider its neigh-
bors that belong to a community existing at time
T , that is the set A(x) = {z ∈ NT+1 | (x, z) ∈
ET+1 ∧ γT+1(z) ∈ ΓT }. During phase 1 of the first
iteration of the algorithm (i.e. during the first hier-
archical level of execution), the inner loop is modi-
fied. For all node x ∈ NT+1, if x ∈ P and A(x) 6= ∅
then place x in the community of A(x) which max-
imizes the modularity gain (whereas if A(x) = ∅
proceed as usual).

4 Experimental Results

In our experiments, we computed the social graph
(constructed as described in Section 2). Since we
are interested in the real-world application of our
method, we preferred to evaluate it on real data.

Given two months T and T + 1, we calculated a
partition in communities of GT using the Louvain
Method (with the modification of [5]) that we note

Figure 1: Mutual Information as a function of p and
q (expressed as percentages).

Figure 2: Matching communities.

Γ =< C1, . . . , CR >; and a partition of GT+1 us-
ing our dynamic version of the Louvain Method,
with different values of the parameters p and q. Let
Γ′ =< C ′

1, . . . , C
′
S > be the partition of GT+1. We

are interested in comparing Γ and Γ′ in terms of sta-
bility and quality of the partition. To this end, we
measure: (i) the mutual information between the
two partitions; (ii) the number of matching com-
munities (i.e. such that the proportion of nodes in
common is greater than a parameter r); (iii) the
final modularity of Γ′ (as defined in [6]).

The number of matching communities is com-
puted as follows: for each community C ′

j ∈ Γ′, we
evaluate whether there is a community Ci ∈ Γ such
that |Ci∩C ′

j | > r·|Ci| and |Ci∩C ′
j | > r·|C ′

j |, where r
is a fixed parameter verifying r > 0.50 (for instance
we used r = 0.51). In that case, we say that C ′

j

matches Ci. The matching communities are of par-
ticular interest, because C ′

j can be considered as the
evolution of Ci (although the community may have
grown or shrank) and can be individually followed
by a human analyst.

The mutual information for two partitions of
communities (see [7, 3] for definitions1) is computed

1Since nodes can change between time T and T + 1, we
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Figure 3: Modularity.

as:

MI(Γ,Γ′) =

R∑

i=1

S∑

j=1

P (Ci, C
′
j) log

P (Ci, C
′
j)

P (Ci) · P (C ′
j)
.

To analyze the effect of p and q, we made those
parameters vary from 0 to 1. The baseline, for p = 0
and q = 0, corresponds to the Louvain Method with
the modifications of [5].

Fig. 1 shows the effect on the mutual informa-
tion between the two partitions. We can clearly
observe that the mutual information increases as p
increases, and reaches its maximal values at p =
100%. The effect of varying q is not so clear, since
it produces fluctuations of the mutual information
without a marked tendency.

Fig. 2 shows the number of matching communi-
ties (according to our criterion). In this graph we
see that the number of matching communities in-
creases dramatically when p approaches 100%. The
effect of varying q is again not clearly marked, al-
though the increase of q produces higher matching
communities for smaller values of p.

Fig. 3 shows the effect on the modularity of the
new partition. We can observe that the modularity
decreases slightly as p increases for small values of
q. For greater values of q (closer to 100%), varying
p produces fluctuations with a decreasing tendency.

As a conclusion, we can see that increasing the
probability p of fixed nodes has a clear effect on
increasing the mutual information between the two
partitions, and the number of matching communi-
ties. The trade-off with quality is good, since the
decrease in modularity is relatively low.

On the other side, increasing the probability q
of preferential attachment to pre-existing commu-
nities has not a clear effect on mutual information
or matching communities. It does not seem advis-
able to use this second modification for generating
evolving communities.

only consider the intersection NT ∩ NT+1 for the mutual
information computation.

5 Conclusion and Future
Steps

The detection of evolving communities is a subject
that still requires further study from the scientific
community. We propose here a practical approach
for a particular version of this problem where the
focus is on stability. The introduction of fixed nodes
(with probability p) increases significantly the sta-
bility of successive partitions, at the cost of a slight
decrease in the final modularity of each partition.

As future steps of this research, we plan to: (i)
study the evolution of communities with finer grain,
using smaller time steps; (ii) evaluate the proposed
method on publicly available datasets, to facilitate
the comparison of our results; (iii) refine the match-
ing criteria, and consider additional events in the
evolution of dynamic communities (such as birth,
death, merging, splitting, expansion and contrac-
tion [3]).
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We	
  are	
  seeing	
  the	
  development	
  of	
  a	
  large	
  number	
  of	
  applications	
  for	
  smart	
  phones	
  that	
  
focus	
  on	
  the	
  needs	
  of	
  people	
  in	
  developing	
  countries	
  (Alam,	
  Khanam,	
  &	
  Khan,	
  2010).	
  These	
  
developments	
  promise	
  to	
  provide	
  users	
  with	
  a	
  wide	
  spectrum	
  of	
  services	
  and	
  functionality	
  
ranging	
  from	
  m-­‐health,	
  to	
  agricultural	
  information,	
  the	
  ability	
  to	
  report	
  problems	
  and	
  the	
  
ability	
  to	
  participate	
  in	
  political	
  life	
  (Kulkarni	
  &	
  Agrawal,	
  2008).	
  A	
  critical	
  issue	
  in	
  this	
  
situation	
  is,	
  however,	
  limited	
  access	
  to	
  smart-­‐phones	
  that	
  can	
  use	
  these	
  applications.	
  It	
  is	
  
not	
  clear	
  as	
  to	
  whether	
  people	
  in	
  developing	
  countries	
  have	
  access	
  to	
  these	
  devices.	
  	
  

In	
  this	
  paper	
  we	
  examine	
  the	
  degree	
  to	
  which	
  smart	
  phones	
  are	
  used	
  in	
  a	
  developing	
  
country	
  (Bangladesh)	
  among	
  strong-­‐tie	
  clusters.	
  The	
  experience	
  of	
  adoption	
  in	
  developed	
  
countries	
  shows	
  that	
  there	
  are	
  strong	
  network	
  effects	
  when	
  considering	
  the	
  diffusion	
  of	
  
smart	
  phones	
  (Sundsøy	
  et	
  al.,	
  2011).	
  	
  Analysis	
  shows	
  that	
  in	
  developing	
  countries,	
  there	
  are	
  
few	
  smart	
  phones.	
  In	
  the	
  Scandinavian	
  countries	
  the	
  adoption	
  of	
  smart	
  phones	
  (here	
  
defined	
  as	
  having	
  an	
  open	
  OS	
  and	
  using	
  GPRS),	
  has	
  reached	
  approximately	
  60%	
  of	
  users.	
  By	
  
contrast,	
  in	
  the	
  poorer	
  countries	
  of	
  southern	
  Asia	
  there	
  are	
  only	
  about	
  3%	
  of	
  the	
  users	
  who	
  
have	
  a	
  smart	
  phone	
  (Telenor,	
  2012).	
  This	
  has	
  implications	
  in	
  relation	
  to	
  the	
  functionality	
  of	
  
apps	
  that	
  are,	
  in	
  some	
  cases,	
  the	
  threshold	
  for	
  use	
  of	
  m-­‐health	
  services,	
  m-­‐agriculture	
  and	
  
m-­‐inclusion.	
  	
  

In	
  this	
  paper	
  we	
  examine	
  the	
  degree	
  to	
  which	
  the	
  existing	
  users	
  of	
  smartphones	
  in	
  
Bangladesh	
  are	
  clustered.	
  To	
  do	
  this	
  we	
  will	
  examine	
  the	
  adoption	
  of	
  smart	
  phones	
  among	
  
100	
  000	
  users	
  in	
  Bangladesh	
  to	
  determine	
  the	
  current	
  adoption	
  rates.	
  Further	
  we	
  will	
  
examine	
  the	
  adoption	
  of	
  smart	
  phones	
  for	
  the	
  10	
  top	
  links	
  for	
  each	
  of	
  these	
  users.	
  Our	
  
hypothesis	
  is	
  that	
  smart	
  phone	
  users	
  cluster	
  with	
  other	
  smart	
  phone	
  users	
  As	
  we	
  move	
  
down	
  the	
  scale	
  from	
  smart	
  phones	
  to	
  feature	
  phones	
  and	
  to	
  basic	
  phones	
  that	
  there	
  will	
  be	
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decreased	
  clustering.	
  We	
  will	
  examine	
  this	
  clustering	
  in	
  the	
  light	
  of	
  subscription	
  type,	
  
urban/rural	
  location	
  and	
  intensity	
  of	
  use.	
  	
  

This	
  analysis	
  will	
  provide	
  a	
  baseline	
  from	
  which	
  to	
  examine	
  the	
  diffusion	
  of	
  this	
  technology.	
  
Also	
  it	
  will	
  help	
  us	
  to	
  understand	
  the	
  potential	
  for	
  app	
  adoption	
  and	
  use.	
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Abstract 

 

Mobile phone traffic data sets provide much-needed information on actual usage of mobile 
phones, such as the type, volume, place and time of usage. However, compared with 
traditional survey studies, traffic data involves only a small amount of information on users’ 
socio-economic background (e.g. they do not say anything about users’ education, marital 
status, occupation, income, family type or place of residence) and in some cases information 
on users, for instance their age, may be unreliable as Ling, Bertel and Sundsøy (2012) have 
shown. Furthermore, traffic data typically contains no motivational and attitudinal material. It 
is against this backcloth, that we will build our study on the analysis of two consecutive 
telephone surveys funded by Telecom Italia. These surveys, based on the same questionnaire 
(the questionnaire was slightly updated for the second survey) were carried out in Italy, 
France, the United Kingdom, Germany and Spain (EU5 countries) in 1996 (N=6,609) and 
2009 (N=7,255). What makes these data sets rich is that they contain much cross-national 
information and allow a comparison between 1996 and 2009 in EU5 countries.  

In this paper we will investigate, with a special focus on mobile phones, if it makes sense to 
talk about digital generations in EU5 countries. Several studies have already questioned 
whether the difference between digital native and digital immigrant generations, originally 
proposed by Prensky (2001), is justified (e.g. Herold 2012). It has been shown that both 
groups are internally incoherent, and other factors (e.g. breadth of use, experience, gender, 
education) have expressed in some cases more predictive power than age/generation (Selwyn 
2004; Hargittai 2010; Helsper 2010; Helsper & Eynon 2010). In addition, it has been 
proposed that a so-called second generation of digital natives (born after 1990) could be 
separated from the first generation of natives (born in the 1980s) owing to their greater 
immersion in the social media (Helsper & Eynon 2010; Fortunati 2011). The above-
mentioned studies have typically dealt with single countries and have been premised on 
cross-sectional data sets.  

This study aims to see, firstly, whether the first generation of digital natives was the most 
technologically equipped generation in 1996 and did its relative position sustain until 2009.  
Secondly, we investigate if the first and second generation of digital natives differ from each 
other as regards to the use of digital technologies, especially mobile phones. We will use both 
bivariate statistics and Multiple Regression Analysis to analyse the data sets. 

With regard to the first aim, our preliminary results show that the youngest respondents were 
the most equipped with mobile phones (and personal computers) in 1996, but no longer in 
2009. Instead, it seems that the youth and young adults, who belong to the first generation of 
digital natives – and who also were the first group to adopt these devices in 1996 – 
maintained their position in 2009. With regard to the second aim, our data shows that there 
were actually no substantial differences between digital natives and immigrant adults in 
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relation to the made/received mobile (and fixed) phone calls in 1996. However, it appears 
that in 2009 the first generation of natives made and received more mobile phone calls and 
send more SMS than the second generation of natives.  
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Malicious mobile applications pose a serious 

risk to cellular networks because 

compromised mobile devices operating as a 

collaborated group can lead to denial of 

service attacks against parts of the cellular 

network infrastructure.  

In this study we propose mitigating attacks 

against the cellular network by load 

balancing the signaling traffic between cells. 

The proposed method was evaluated using 

two datasets: User's movement data set 

(containing  195,691 users and 04,,244,6 

movement records), and an Antenna's 

location and orientation data set (containing 

24,462 antenna locations from the Verizon 

wireless provider). The evaluation results 

demonstrate the feasibility of such attacks 

even after load balancing the signaling load 

between the cells. The evaluation also 

demonstrates how changing dynamically the 

cell’s location can prevent overloading the 

network when there is high signaling traffic 

in parts of the network. This mitigation 

method is used to create a mechanism, 

which allows for the natural immunity of 

the network, prevents the denial of service 

on parts of the cellular network and 

therefore increases the network’s resistance 

to signaling attacks launched via malicious 

mobile applications. 

 

Mobile devices permit the downloading of 

many apps from various repositories, and 

therefore make the task of spreading new and 

possibly malicious applications extremely easy 

[3]. While a single compromised device 

threatens a single user, a large number of 

infected devices become a threat to the cellular 

network operator infrastructure. 

Malicious and ill programmed mobile 

applications can cause serious damage to the 

cellular networks by performing many kinds of 

attacks as described in [2]. In fact, any 

application that runs on many mobile devices 

may cause DOS (denial of service) to users in 

the cellular network.  

The GSM networks contain many cell sites, 

which sometimes called a "cell towers", Base 

Transceiver Stations (BTS), or "base stations". 

A base station is a physical structure that holds 

radio antennas, and a sector refers to a 

direction from a given cell tower.  

When a mobile device attempt to establish 

a connection with the network (i.e., initiate a 

service), the base station assigns Standalone 

Dedicated Control Channels (SDCCH), over 

which the signaling with the HLR (Home 

Location Register) itself is performed. This 

resource is shared between all devices in an 

area [6]. 

In each cell in the cellular network, many 

devices are able to communicate 

simultaneously with the base station. Each cell 

has a fixed maximum service range of 35 

kilometers. As the user moves with his/her 

mobile device, different cells connect him/her 

to the cellular network; hence the same device 

can overload different base stations while the 

user is moving to another location.  

Researchers have already suggested 

different protections mechanisms against 

denial of service attacks on the cellular 

network at the device level, where each device 

"decides" on its own, the level of the signaling 

allowed without taking into consideration the 

threat coming from other nearby mobile 

devices (which seriously impacts the overall 

risk level on the close cellular infrastructure) 

and the movement of other users. We argue 

that a collaborative approach aimed at load 

balancing the signaling traffic between the 

cells will reduce overload and prevent 

blocking legitimate users from getting service 

much more effectively than limiting the 

signaling at the device level.  

We took several assumptions in our work. 

One of them is that each mobile device 

equipped with a malicious application causes 

the same damage to the cellular network. 

Moreover, we assume that the accumulated 

damage of all the infected mobile devices is 

the sum of each one of them in a given time 

slot (i.e. the diminishing marginal proceeds 

law is not taken into consideration in our 

model). We also assume no dependency 

between users, which means that the only way 
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users can get a malicious application is by 

downloading it from the market independently; 

therefore users do not infect each other by 

Bluetooth or MMS messages, etc. Our last 

assumption is that users can get service from 

each base station in the radius of 35km without 

taking into consideration the height of the base 

stations and other factors, which may affect the 

working range of the cell site – the range 

within which mobile devices can connect to it 

reliably. 

In our study, according to [7], we first 

balanced the signaling traffic between the 

cells, i.e. we found the optimum base station 

for each mobile device at a specific time in a 

specific location. Then, we assessed the 

feasibility and potential damage of the attacks 

caused by mobile applications on the cellular 

network infrastructure. At last, we suggested 

how to mitigate the risks caused by mobile 

applications on the cellular network 

infrastructure by changing part of the cell's 

locations, i.e. attack oppression is performed 

based on data on users’ movement and the 

spread of the malicious mobile application. 

The mitigation method provided in this study 

is very useful and prevents DOS attacks on the 

cellular network infrastructure and assures that 

users will receive service in any place at any 

time. 

Most of the signaling services provided by 

the cellular network can be delivered over 

either the CCH (Common Control Channel) or 

the DCH (Data Channel). One of the most 

critical wireless bottlenecks is the Standalone 

Dedicated Control Channels (SDCCH). If 

available, the base station assigns an SDCCH, 

over which the signaling with the HLR itself is 

performed. By repeatedly triggering radio 

channel allocations and revocations to 

complete the data transfer a DOS attack may 

occur.  

Sectors in a cellular network typically 

allocate 8 or 12 SDCCHs. The hold time of 

this channel is 2.7 seconds (as modeled by 

previous researches), so 0.37 users hold this 

channel every second. Each base station has 3 

sectors, for each sector 12 SDCCH channels 

and each one of these channels is occupied by 

0.37 users every second. Therefore the number 

of signaling messages per second over which 

an attack may be distributed in each base 

station is calculated as follows:  

 

        
             

      
 
    

   
 

 

In order to assess the feasibility and 

potential damage of the attacks caused by 

mobile applications on the cellular network 

infrastructure, we used a mathematical 

optimization technique. This gives us precise 

mathematical formulations for the practical 

performance optimization task of load 

balancing, and the ability to create sensitivity 

analysis automatically. We introduce the 

following method, which is formalized as an 

integer linear program (d - device, s – BTS):  

 
Figure 1- Input and output of the method 

 

Each value in the available service matrix 

is a function of the distance between the 

antenna si and the device di (i.e. the value will 

be higher as di is closer si). The malware 

existence matrix describes which of the 

devices are infected by malware (1 for 

infected). The proposed target matrix indicates 

which base station si gives service to each 

device di.  

Based on optimization techniques we found 

for each device the closest base station 

possible, under the constraints regarding 

limitations of the cellular network, without 

overloading base stations. The optimization 

allows us to balance the load automatically, 

using mathematical tools. It also provides us 

the ability to make a sensitivity analysis and to 

understand the relationships between input and 

output variables in the model (i.e. how many 

cells required to deal with the given load, how 

each cell loads the network etc). We calculated 

the percentages of overloaded base stations for 

each percentage of users running the malicious 

applications, and the percentages of legitimate 

users affected by the DOS attack for each 

percentage of users running the malicious 

applications. The evaluation results based on 

mobile phone dataset are summarized in 

Figure 2 and Figure 3 respectively: 

 

 

Figure 2- Percentage of overload base stations for a 

given percentage of users running the malicious 

applications. 
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Figure 3 - Percentages of legitimate users under DOS 

attack for a given percentages of users running the 

malicious applications. 

After evaluating the potential damage of 

such attacks, we would like to ensure that each 

user will get service at any place and any time, 

and in order to do so we need to add antennas 

in specific places and in accordance to the 

timing of attacks. 

If we add antennas to each base station 

under attack, we will use an unnecessary 

amount of resources instead of simply moving 

antennas from one base station to another base 

station at a different time, according to the 

users' movement. To evaluate the exact 

number of cellular antennas required to 

mitigate such attacks, we used an algorithm, 

which takes as input the time of the attack, 

base station's locations and number of antennas 

to add to each overloaded base station. The 

results are described in Figure 4 (no time to 

move antenna from S2 to S3).  

 

Figure 4 – Base stations under attack Graph, the 

connectivity of this graph determine whether it is 

possible to transfer antennas to other base stations 

according to the time and distance.  

 

Our method was applied on our mobile 

phone dataset and returns the minimum 

number of cellular antennas that we need to 

add in order to immunize the network and 

prevent it from being overloaded, and their 

paths (movement of antennas from one 

location to another).   Figure 5 present a small 

example of the algorithm result, where each 

base station needs amount of added antennas 

(described in parentheses) to deal with the 

overload in the specific time mentioned. The 

number on each arrow presents the number of 

antennas moving in that path. 

 
Figure 5 – Output of the mobility algorithm. It 

determines the amount of cellular antennas to add and 

their paths. 

The outcome of this research will provide 

advanced tools and methodology, which will 

allow us to evaluate the loads caused by 

mobile applications on the cellular network. 

These results will include a demonstration of 

possible denial of service attacks against the 

cellular network infrastructure for a given 

movement data and antennas' locations and 

their potential damage. This can be represented 

by heat maps of signaling traffic loads on the 

mobile infrastructure. 

The findings of this work can be used in 

cases of abnormal signaling traffic to block 

attacks and improve the quality of user data 

communications. Moreover, the outcome of 

this research can be formulated as a set of 

actionable insights, which can be taken into 

account on to the everyday activity of any 

cellular provider. 
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Abstract

This paper presents current state-of-the-art diffusion model used in churn prediction modelling and faces with
some of its drawbacks. A more sophisticated approach to determining initial energy of users is proposed, based
on direct connections between users with focus on maximal sociometric cliques. The proposed approach is
experimentally evaluated on real world data from Slovenian mobile service provider. Results indicate that
substantially improved performance is achieved using proposed approach for initial energy determination in
SPA model compared to the basic model.

I. Introduction

The area of churn prediction modelling has re-
ceived much attention in the last two decades,
especially in the telco market. The first known
approach in this area uses machine learning
through data mining techniques [5]. A predic-
tion model is constructed based on previous user
behaviour and used to predict events, such as
churn. An exhaustive overview of these tech-
niques is presented in [7]. The problem of this
approach is that it only considers individual user
attributes. It is believed that user decisions such
as churn are commonly influenced by other con-
nected users.

With the evolving of social networks in the
recent years considering social ties has proven
to be very promising in churn prediction. Some
researchers in this area recommended and eval-
uated the usage of diffusion models for the pur-
pose of modelling influence spread and conse-
quently spread of churn. Dasgupta et al. [3]
proposed a spreading activation-based technique
(further addressed as "SPA" algorithm) that pre-
dicts potential churners based on their corre-
sponding social network, including information
on users that already churned. The idea is that
users, who recently churned, influenced with
their decisions the other users in their social
neighbourhood. Underlying algorithm assigns

all recent known churner the same initial positive
non-zero energy (e.g. 1) while all other users start
with zero energy. An energy spreading technique
is then initialized where in each iteration active
nodes (with non-zero energy) transfer a portion
of their energy to their neighbours, relative to the
strength of connections between nodes. Overall
amount of energy stays the same throughout the
whole process. Iterating process continues until
a stable state is achieved. Afterwards a simple
threshold-based technique is used where a thresh-
old T is fixed and nodes with energy greater than
T are labelled as potential churners while other
are labelled as non-churners.

II. Methods

Presented SPA algorithm is an effective approach
to determining potential churners influenced by
recent churners that are strongly connected to
them. However certain issues arise after a de-
tailed study of SPA algorithm. One of the issues
we address and try to solve in this paper is that
all seed churners are assigned the same energy
on the beginning. It is known that users have
very different influence in their corresponding
social neighbourhoods [4] which means that start-
ing energy should be different among users. An
old saying says that it is better to have a few true
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friends than lots of fake friends. In that aspect we
hypothesise that users with fewer connections are
more influential than users with many connec-
tions. This is already partially implemented in
original SPA diffusion model at transfers of seed-
node energy to their connections, where smaller
number of connected nodes means more trans-
ferred energy per user, but our results show that
influence transfer ratio between less and more
connected users should be greater.

Users churn because of different reasons. Rea-
sons can be basically divided into two categories,
local reasons (e.g. non-optimal price, poor cov-
erage) and social reasons (influence from other
users in social network). We believe that if user’s
reasons to churn are social, these users will also
have greater influence on other users in their
neighbourhood as opposed to users that churned
due to local reasons. This is our second hypothe-
sis.

Our third hypothesis says that even if users
have many connections, they can also have a few
very good friends that have considerably greater
influence on each another than on other users
outside their small groups. These groups can
be determined by searching maximal cliques [1]
on a corresponding social network graph. In the
area of graph theory, cliques are such subsets of
undirected graphs that every two nodes in the
subset are connected by an edge. Furter maxi-
mal clique is a clique that cannot be extended
by including another adjacent node. In a social
network of people where connections represent
acquaintances, a clique is a group of people who
all know each other. Social science theory states
that people in the same clique have greater influ-
ence on each other than on or from connections
outside cliques [2]. In this paper we propose
a more sophisticated approach to determining
initial energy of users, based on their direct con-
nections with focus on maximal cliques. The goal
of this paper is to introduce and evaluate the im-
provement of SPA model using the application
of social science clique theory for initial energy
determination.

Our proposed model assigns all users three
different types of contribution to initial en-
ergy where each contribution is given as a pair
(energy, weight):

1. self contribution

2. clique contribution

3. out-of-clique contribution

Self contribution is the same energy contri-
bution as in original SPA model, i.e. if a user re-
cently churned, we assign him a self-contribution
energy Esel f = 1, else Esel f = 0. Weight of a self
contribution is determined as 1.

Clique contribution is an energy contribu-
tion from all maximal cliques a user is a part
of. Due to simplicity reasons we further address
maximal cliques only as cliques. Energy contri-
bution of each user in a clique is determined by
equation (1)

Ecln = 2
nc

nu
− 1 (1)

where nc is the number of churners in a clique
and nu in the number of all users in a clique. Each
clique assigns a separate contribution to the en-
ergy of a user. Weight of a clique contribution
is usually greater than 1 (e.g. proportional to
number of users in a clique).

Out-of-clique contribution is an energy con-
tribution of all users that are not in any clique.
Out-of-clique energy contribution is also calcu-
lated by equation (1), where a user with its di-
rectly connected nodes is considered instead of
a clique. We determine the value of weight of
an out-of-clique contribution as 1. Users that are
members of at least one clique do not have an
out-of-clique contribution.

Ecln in equation (1) can take values on interval
[−1, 1] where value -1 describes a clique without
churners and value 1 describes a clique with all
churners. As a consequence a negative influence
is also introduced, which symbolically spreads
influence against churn decision.

When all the contributions are assigned, an
initial energy value is calculated as a scalar prod-
uct of energy- and weight-vector (2)

E0 = e · w (2)

where e is an energy vector e =
[esel f , e1, e2, ..., en] and w is a weight vector w =
[wsel f , w1, w2, ..., wn]. The sign of initial energy
symbolically determines positive and negative
churn influence.
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Figure 1: F-measure values in each iteration of SPA

III. Results

In this study, we compare the classification per-
formance of SPA model using original initial en-
ergy determination as in [3], and in this paper
proposed algorithm. We evaluate the results us-
ing standard evaluation method, F-measure (or
F-score).

For our experiment we used the data from the
largest Slovenian mobile service provider with
more than one million users. Due to the compu-
tational complexity of the problem only a subset
of over 5000 connected users was used in our ex-
periment. A social graph was constructed from
a one month period call detail records (CDR)
where nodes presented users and connections
presented communication between users. Con-
nections were weighted by sum of successful
calls and sent short text messages where only
connections with both-way communication were
included (i.e. user A at least once called or sent
an SMS to user B, and vice versa).

Evaluation of both approaches is presented in
figure 1. Figure presents how optimal F-measure
value changes with the number of SPA iterations
applied.

IV. Discussion

Our preliminary results clearly show a significant
improved in churn prediction compared to basic
SPA diffusion model. An inspection of original
SPA model trend line in figure 1 shows that high-
est prediction value is already achieved after first
iteration. This indicates that users are consider-

ably more influenced by their directly connected
users rather than other users that are not in their
neighbourhood. Iterating original SPA diffusion
model until convergence is therefore not optimal.

Prediction evaluation of our approach is al-
ready relatively high when using initial values
as prediction scores. After running first few iter-
ations of SPA algorithm using our initial values
prediction result also slightly improves. We be-
lieve that improvement of our algorithm can be
made where the best prediction accuracy will
be achieved before applying a process of energy
spreading.

In computer science, finding cliques in a
graph is known to be NP-hard problem. There-
fore even by avoiding an iterative process of SPA
algorithm completely, clique discovery still re-
mains computationally most expensive part of
algorithm. Using advanced fast algorithms for
finding cliques in social graphs addresses this
issue [6].
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Abstract

The connection between human mobility and social networks has gained much
attention lately, but research in this area is limited due to lack of adequate data that
describes both mobility and social interactions. In this work, we characterize spatio-
temporal features of social networks taken from a comprehensive, national-wide dataset
of cell phone records. Our results show a non-trivial dependence between social net-
work structure and the spatial distribution of its elements (Fig 1., left panel). Moreover,
we describe and quantify precisely the probability of parties in a call to be at a given
distance. Our results show that this probability is well described by the framework of
gravity models, but with different decaying rates at urban and interurban scales (Fig.
1, right panel). Finally, we discuss how the structural information gained may be used
to estimate a class of unknown features of the network.
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Figure 1: Left panel: Probability distribution of the mean number of calls n̄i given that
ki ≥ 45 (open dots) and ki ≤ 3 (solid dots). Right panel: Probability distribution of the
distance di js (in km) associated to a call. The region approximately between 1 km and 10
km may be described by a power-law decay with exponent α = −0.77, while the region
from 10 km onward shows a faster decay consistent with an exponent α =−1.5.
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Abstract  

Ethnic segregation remains a topical issue, with globalisation leading to increasing migration 
flows and ethnic tensions escalating in a number of regions. The need to examine the entire 
scope of activities of individuals in segregation studies is often emphasised by scientists and 
policy makers. We used mobile phone Call Detail Records (CDR) for one year to compare the 
spatial mobility of native Estonians and the Russian-speaking minority in Estonia and 
international travel. The results show that ethnicity has a significant influence on the spatial 
mobility of individuals in Estonia. The biggest differences between the two population groups 
occur in Estonia outside the respondents' home city of Tallinn where the Russian minority 
were found to visit 45% fewer districts than Estonians. For international travel, the Russian-
speaking minority visit fewer countries and have a 3.6 times higher probability of visiting 
former Soviet Union countries than Estonians. Our results show that ethnic segregation has 
less effect on everyday  spatial mobility and a greater influence on the choices made regarding 
long-distance travel. 
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  Network	
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Cell	
   phones	
   have	
   become	
   an	
   important	
   platform	
   for	
   the	
   understanding	
   of	
   social	
  
dynamics	
   and	
   influence,	
   because	
   of	
   their	
   pervasiveness,	
   sensing	
   capabilities,	
   and	
  
computational	
  power.	
  Many	
  applications	
  have	
  emerged	
  in	
  recent	
  years	
  in	
  mobile	
  health,	
  
mobile	
  banking,	
  location	
  based	
  services,	
  media	
  democracy,	
  and	
  social	
  movements.	
  With	
  
these	
  new	
  capabilities,	
  we	
  can	
  potentially	
  be	
  able	
   to	
   identify	
  exact	
  points	
  and	
  times	
  of	
  
infection	
   for	
   diseases,	
   determine	
   who	
   most	
   influences	
   us	
   to	
   gain	
   weight	
   or	
   become	
  
healthier,	
   know	
   exactly	
   how	
   information	
   flows	
   among	
   employees	
   and	
   productivity	
  
emerges	
  in	
  our	
  work	
  spaces,	
  and	
  understand	
  how	
  rumors	
  spread.	
  
	
  
There	
   remain,	
   however,	
   significant	
   challenges	
   to	
  making	
  mobile	
   phones	
   the	
   essential	
  
tool	
  for	
  conducting	
  social	
  science	
  research	
  and	
  also	
  supporting	
  mobile	
  commerce	
  with	
  a	
  
solid	
  social	
  science	
  foundation.	
  Perhaps	
  the	
  greatest	
  challenge	
  is	
  the	
  lack	
  of	
  data	
  in	
  the	
  
public	
  domain,	
  data	
  large	
  and	
  extensive	
  enough	
  to	
  capture	
  the	
  disparate	
  facets	
  of	
  human	
  
behavior	
  and	
  interactions.	
  Another	
  major	
  challenge	
  lies	
  in	
  the	
  interdisciplinary	
  nature	
  of	
  
conducting	
   social	
   science	
   research	
   with	
   mobile	
   phones.	
   Software	
   engineers	
   need	
   to	
  
work	
  collaboratively	
  alongside	
  social	
  scientists	
  and	
  data	
  miners	
  in	
  various	
  fields.	
  
	
  
In	
  an	
  attempt	
   to	
  address	
   these	
  challenges,	
  we	
  release	
  several	
  mobile	
  data	
  sets	
  here	
   in	
  
"Reality	
   Commons"	
   that	
   contain	
   the	
   dynamics	
   of	
   several	
   communities	
   of	
   about	
   100	
  
people	
  each.	
  We	
  invite	
  researchers	
  to	
  propose	
  and	
  submit	
  their	
  own	
  applications	
  of	
  the	
  
data	
  to	
  demonstrate	
  the	
  scientific	
  and	
  business	
  values	
  of	
  these	
  data	
  sets,	
  suggest	
  how	
  to	
  
meaningfully	
  extend	
  these	
  experiments	
  to	
  larger	
  populations,	
  and	
  develop	
  the	
  math	
  that	
  
fits	
  agent-­‐based	
  models	
  or	
  systems	
  dynamics	
  models	
  to	
  larger	
  populations.	
  	
  Data,	
  code,	
  
and	
  documentation	
  can	
  be	
  found	
  at	
  	
  http://realitycommons.media.mit.edu	
  	
  
	
  
These	
  data	
   sets	
  were	
  collected	
  with	
   tools	
  developed	
   in	
   the	
  MIT	
  Human	
  Dynamics	
  Lab	
  
and	
   are	
   now	
   available	
   as	
   open	
   source	
   projects	
   (see	
   the	
   funf	
   open-­‐source	
   sensing	
  
platform	
  for	
  Android	
  phones,http://funf.media.mit.edu)	
  or	
  at	
  cost	
  (e.g.,	
  the	
  sociometric	
  
badges	
  for	
  sensing	
  organizational	
  behavior,	
  see	
  http://sociometricsolutions.com	
  )	
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