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Abstract

During recent years, it has been shown that a number of problems in matrix theory are NP-hard, including robust nonsingularity,
robust stability, robust positive semide"niteness, robust bounded norm, state feedback stabilization with structural and norm
constraints, etc. In this paper, we use standard bounds on empirical probabilities as well as recent results from statistical learning
theory on the VC-dimension of families of sets de"ned by a "nite number of polynomial inequalities, to show that for each of the above
problems, as well as for still more general and more di$cult problems, there exists a polynomial-time randomized algorithm that can
provide a yes or no answer to arbitrarily small levels of accuracy and con"dence. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During recent years, several researchers have explored
the computational complexity of various problems aris-
ing in robust control theory and in matrix theory. Owing
to these e!orts, it is now known that several problems in
matrix theory are NP-hard.� A survey of computational
complexity results in systems and control can be found in
Blondel and Tsitsiklis (2000). We give below a partial
catalog of some such NP-hard problems. These problems
can be grouped naturally into two categories: Problems
of analysis, and problems of synthesis. Both types of
problems are stated in terms of `interval matricesa, which
are de"ned next.

Given an integer n, let > denote the subset of R���

de"ned by

> :"�(�
��
, �

��
), i, j"1,2, n: �

��
, �

��
3Q ∀i, j�,

where Q denotes the set of rational numbers. Let y3> be
a typical element. The corresponding set Ay is de"ned by

Ay :"�A3R���: �
��

)a
��

)�
��

∀i, j�.

Now let

>
�
:"�y3>: �

��
"�

��
and �

��
"�

��
∀i, j�.

For a typical element y3>
�
, de"ne

A
��y
:"�A3R���: A is symmetric and

�
��

)a
��

)�
��

∀i, j�.

The set Ay is referred to as an `interval matrixa while
A

��y
is a `symmetric interval matrixa.

With this notation we can now state several NP-hard
problems, all of which pertain to analysis.

1. Robust stability: Given an element y3>, determine
whether every matrix in the set Ay is stable, in the sense
that all of its eigenvalues have negative real parts.
2. Robust positive semidexniteness: Given a vector

y3>
�
, determine whether every symmetric matrix in

A
��y

is positive semide"nite.

0005-1098/01/$ - see front matter � 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 0 5 - 1 0 9 8 ( 0 1 ) 0 0 0 8 9 - 9



�See Papadimitrou (1994) for the de"nition of a polynomial time
algorithm.

3. Robust norm boundedness: Given a vector y3> and
a number �'0, determine whether the l

�
-induced norm

of every matrix in Ay is less than or equal to �; that is,
determine whether ��I

�
!A�A is positive semide"nite for

every A3Ay .
4. Robust nonsingularity: Given a vector y3>, deter-

mine whether every matrix in the set Ay is nonsingular.
The NP-hardness of each of these problems is demon-

strated in Nemirovskii (1993), Poljak and Rohn (1993),
and Blondel and Tsitsiklis (1997).
Observe that the problem of robust nonsingularity can

be restated in the following equivalent form: Given the
element y, the question becomes

�a
��2a

��
(a

��
3[�

��
, �

��
])��A�"0?

where �A� denotes the determinant of the matrix A. In the
above formula, the n� parameters a

��2a
��
are `modi"ed

variablesa whereas the 2n� parameters �
��
, �

��
in y are

`constantsa. Using standard methods in quanti"er elim-
ination theory (see, e.g., Tarski (1951)), it is possible to
eliminate sequentially each of the n� variables in such
a way that the above question eventually becomes equiva-
lent to a xnite set of polynomial inequalities involving only
the 2n� constants �

��
and �

��
. Then, in principle one would

only have to substitute the speci"c values of the constants
into this "nite set of inequalities to answer the question of
robust nonsingularity. This clearly shows that the prob-
lem of robust nonsingularity is decidable. Unfortunately,
the di$culty with this approach is that general elimina-
tion algorithms take exponential time in the worst case.
The above questions all involve the analysis of an

interval matrix family. The next two questions involve
synthesis.
5. Constant output feedback stabilization with con-

straints: An instance of the constant output feedback
problem consists of three matrices A,B,C, of dimensions
n�n, n�m, and p�n, respectively. The constrained out-
put feedback question is: Does there exist anm�p output
feedback matrix K such that �

��
)k

��
)�

��
∀i, j, and

such that A#BKC is a stable matrix? As shown in
Blondel and Tsitsiklis (1997), this problem is NP-hard
when C is the identity matrix, and so it certainly remains
NP-hard when C is part of the problem instance. It is as
yet unknown if there exists a polynomial time algorithm
for the problem of knowing whether or not there exists
an unconstrained matrix K such that A#BKC is stable.
This problem is shown to be decidable in Anderson,
Bose, and Jury (1975) but the solution procedure given
there is based on Tarski's elimination procedure and is
not guaranteed to run in polynomial time.
6. Simultaneous stabilization using constant output feed-

back: Suppose one is given, not just one triplet of matrices
(A,B,C), but rather a family of such triplets (not necessar-
ily "nite), where each matrix A

�
has dimension n�n, each

matrix in B
�
has dimension n�m and each matrix C

�
has

dimension p�n. The problem now is to determine

whether there exists an m�n `state feedbacka matrix
K such that A

�
#B

�
KC

�
is a stable matrix for each i. It is

shown in Blondel and Tsitsiklis (1997) that this problem
is NP-hard.

In the face of these and other negative results, one is
forced to make some compromises in the notion of `solv-
inga a problem. An approach that is recently gaining
popularity is the use of randomized algorithms, which are
not required to work `alla of the time, only `mosta of the
time. Speci"cally, the probability that the algorithm fails
can be made arbitrarily small (but of course not exactly
equal to zero). In return for this compromise, one hopes
that the algorithm is ezcient, i.e., runs in polynomial-
time.� The idea of using randomization to solve control
problems is suggested, among other places, in Ray and
Stengel (1991) and Marrison and Stengel (1994). In
Khargonekar and Tikku (1996) and Tempo, Bai, and
Dabbene (1997), randomized algorithms are developed
for a general function minimization problem, and these
are then applied to a few speci"c problems such as: (i)
determining whether a given controller stabilizes every
plant in a structured perturbation model, (ii) determining
whether there exists a controller of a speci"ed order that
stabilizes a given "xed plant, and so on.
The objective of the present paper is to show that it is

possible to develop polynomial-time (often abbreviated as
`polytimea) algorithms for each of the above NP-hard
problems. In the case of Problems 1}4, which are prob-
lems of analysis, the randomized algorithms are based on
a well-established classical result known as the Cherno!
bound. In the case of Problem 6, which is a problem in
synthesis, the randomized algorithm is based on recent
results from statistical learning theory on the VC-dimen-
sion of a family of sets de"ned by a "nite number of
polynomial inequalities. Note that Problem 5 is not
studied separately since it is a special case of Problem 6.
The present paper actually develops a broad framework
for deriving such polytime randomized algorithms for
any problem where the decision question to be answered
yes or no can be posed in terms of a "nite number of
polynomial inequalities. Hence, the approach is not lim-
ited to the speci"c problems discussed here. No doubt
other researchers would be able to apply this approach to
other problems as well.

2. Cherno4 bounds and Vapnik}Chervonenkis theory

In this section, a very brief overview is given of
a powerful theory often referred to as Vapnik}Cher-
vonenkis (VC) theory after its originators. Book-length
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treatments of VC theory can be found in Vapnik (1982),
Vapnik (1995), and Vidyasagar (1997a).
We begin with a classical result that forms the basis

of Monte Carlo simulation. Suppose X is a set, P is a
probability measure onX, and A is a (measurable) subset
of X. Suppose it is desired to estimate the measure P(A).
A popular method of doing this is to generate inde-
pendent and identically distributed (i.i.d.) samples
x
�
,2,x

�
3X distributed according to P, and to de"ne

PK (A;x) :"
1

m

�
�
���

I
�
(x

�
), (1)

where x3X� denotes the m-tuple [x
�
2x

�
]� and I

�
( ) ) is

the indicator function of the set A de"ned by

I
�
(x) :"�

1 if x3A,

0 if x�A.

Note that PK (A; x) is just the fraction of the i.i.d. samples
x
�
,2,x

�
that belong to A. The number PK (A;x) is refer-

red to as the empirical probability of the set A based on
the multisample x, and is itself a random variable on the
product space X�. A classical result known as the
Cherno! bound (see Cherno! (1952)) states that, for each
�'0,

P��x3X�:PK (A;x)!P(A)'��)exp(!2m��),

P��x3X�:P(A)!PK (A;x)'��)exp(!2m��), (2)

P��x3X�:�PK (A;x)!P(A)�'��)2exp(!2m��).

In other words, after m i.i.d. samples have been drawn, it
can be asserted with con"dence 1!2e����� that the
empirical probability PK (A;x) is within the speci"ed accu-
racy � of the true probability P(A). Note that this bound
is completely independent of the nature of the underlying
set X. In particular, if X is a subset of a Euclidean space
R� for some integer k, then the number of samples is
completely independent of the dimension k. In contrast, if
`griddinga methods are used to estimate P(A), then the
number of grid points is exponential in k.
The above method, known as Monte Carlo simulation,

is absolutely standard. Now we come to some recent
results. Suppose we are given, not a single set A-X, but
a family A of (measurable) subsets of X. Given a multi-
sample x

�
,2,x

�
3X�, let us de"ne the empirical probabil-

ity PK (A; x) of each set A3A as in (1) above. Next, de"ne

q(m, �;A) :"P��x3X�: �A3A

s.t. �PK (A;x)!P(A)�'��. (3)

Thus, after m i.i.d. samples have been drawn, it can be
asserted with con"dence 1!q(m, �;A) that every empiri-
cal probability PK (A;x) is within � of the corresponding
true probability P(A), for each A3A.

De5nition 1. The family of sets A is said to have the
property of Uniform Convergence of Empirical Probabilit-
ies (UCEP) if q(m, �;A)P0 as mPR for each �'0.

Note that ifA is a "nite set, then it follows by repeated
application of the Cherno! bound that

q(m, �; A))2�A�exp(!2m��).

Hence, every "nite collection of sets has the UCEP prop-
erty. However, in"nite collections of sets need not have
this property. See Vidyasagar (1997a), Section 3.1 for
several examples of in"nite collections of sets that do not
possess the UCEP property.
In a seminal paper, Vapnik and Chervonenkis (1971)

gave necessary and su$cient conditions for a given col-
lection of sets to have the UCEP property in terms of the
expected value of a combinatorial parameter now known
as the Vapnik}Chervonenkis (VC)-dimension, which is
de"ned next.

De5nition 2. Let X be a given set and let A be a collec-
tion of subsets of X. A set S"�x

�
,2,x

�
�-X is said to

be shattered by A if, for every subset B-S, there exists
a set A3A such that S�A"B. The Vapnik}Chervonen-
kis dimension of A, denoted by <C-dim(A), equals the
largest integer n such that there exists a set of cardinality
n that is shattered by A.

Thus, if VC-dim(A)"d, then (i) there exists at least
one set of cardinality d that is shattered by A, and (ii)
every set of cardinality greater than d fails to be shattered
by A. See Vidyasagar (1997a), Section 4.1 for several
examples of the computation of the VC-dimension of
various collections of sets.
The main theorem proved in Vapnik and Chervonen-

kis (1971) is the following. See also Vidyasagar (1997a),
Theorem 7.2, p. 198, and Theorem 10.2, p. 302.

Theorem 1. 1. Suppose A has xnite VC-dimension, say
<C-dim(A))d. Then

q(m,�;A))4�
2em

d �
	
exp(!m��/8),

∀m*d, �'0,P. (4)

Thus, A has the property of distribution-free uniform
convergence of empirical probabilities. Moreover, the
inequality

q(m, �;A))	

is satisxed provided at least

m*max�
16

��
ln
4

	
,
32d

��
ln
32e

�� �
samples are drawn.
2. Conversely, suppose A has the property of distribu-

tion-free uniform convergence of empirical probabilities;
then the VC-dimension of A is xnite.
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In view of Theorem 1, it is clear that it is of paramount
importance (i) to be able to show that a given collection
of sets has "nite VC-dimension, and (ii) furthermore, to
obtain either exact values, or failing that, reasonably
good upper bounds for the VC-dimension. During the
past few years, several researchers (working mostly
though not exclusively in the "eld of neural networks)
have derived several useful results along precisely these
lines. Section 10.3 of Vidyasagar (1997a) contains a fairly
complete summary of many of the known results. How-
ever, there is one result that is particularly appropriate
for the class of problems studied here; it is presented next.
SupposeX-R�,Z-R
 for some integers k, l, respec-

tively, and suppose 

�
(x, z),2,


�
(x, z) are polynomials in

x, z. For each x3X, z3Z, each polynomial inequality
`


�
(x, z)'0a evaluates to either `truea or `falsea. Now,

suppose �(x, z) is a Boolean formula obtained from the
expressions `


�
(x, z)'0a using the standard logical con-

nectives � (not), � (or), � (and) and N (implies).
Let 1 correspond to `truea, 0 to `falsea, and de"ne, for

each z3Z,

A
�
:"�x3X: �(x, z)"1�, and A :"�A

�
: z3>�.

Then,A is a collection of subsets ofX. The objective is to
obtain an upper bound for the VC-dimension of A.
The following theorem is a re"nement of a result from

Karpinski and Macintyre (1995, 1997), and is proved in
this re"ned form in Vidyasagar (1997a), Corollary 10.2,
p. 330.

Theorem 2. With all symbols as above and e"2.71822,
we have

VC-dim(A))2l lg(4ert), (5)

where lg denotes the logarithm to the base 2.

3. Randomized algorithms for matrix problems: analysis

In this section, we present some randomized algo-
rithms for Problems 1}4. These algorithms are based on
the Cherno! bound, and are in contrast with those in
Section 4 which make use of the more advanced VC
theory.
Consider "rst the robust stability problem. Recall that

the problem is as follows: Given an element y3>, deter-
mine whether or not every matrix A3Ay is stable. For
this purpose, we begin by introducing a probability
measure Py on Ay ; the signi"cance of this probability
measure becomes clear later. Generate i.i.d. matrices
A

�
,2,A

�
3Ay , which are distributed according to Py .

Test each of these matrices for stability. If any one
matrix is unstable, then declare that the answer
to the robust stability problem is no; if every matrix is
stable, declare that the answer to the robust stability
problem is yes.

The above is an example of a randomized algorithm,
because the outcome of the algorithm depends on the
randomly generated matricesA

�
,2,A

�
3Ay . Thus, if the

algorithm is repeated several times, there is no guarantee
that the outcome would be the same each time. Using
the one-sided Cherno! bound, it is possible to analyze
the error probability of this randomized algorithm. There
are two types of errors that need to be analyzed, namely:
the false positive and the false negative. A false positive
occurs when the correct answer to the decision problem
is no, but the algorithm declares that the answer is yes;
a false negative is just the opposite.
It is clear that the above randomized algorithm will

never declare a false negative. Suppose that every matrix
in Ay is indeed stable; then in particular every randomly
generated matrix A

�
will also be stable. Hence, the algo-

rithmwill always declare a yes answer if that is indeed the
correct answer. To analyze the probability of a false
positive, de"ne

Sy :"�A3Ay : A is stable�.

Note that if every one of the randomly generated
matrices A

�
is stable, then the empirical probability PK (Sy )

is equal to one. Now, it is easy to show that, if the
empirical probability of a set is equal to one, then it can
be said with con"dence

q)(1!�)�

that its true probability is at least equal to 1!�. To see
this, apply Lemma 11.1, p. 357 of Vidyasagar (1997a,b)
with X"Ay , P"Py , and let the function f be the indi-
cator function of the complement of Sy ; the details are
easy and are left to the reader. Hence, in order to bring
q below some prespeci"ed con"dence threshold 	, it
su$ces to ensure that

(1!�)�)	.

To apply this inequality, suppose that one is given speci-
"c values for � and 	, and wishes to determine how many
samples m are su$cient to be able to say with con"dence
1!	 that Py (Sy )*1!�. The above inequality shows
that it is enough to draw at least

m*

ln(1/	)
ln(1/(1!�))

stable matrices.
Now, let us consider a slightly di!erent version of the

robust stability problem. Suppose a number �'0 is
speci"ed, and it is desired to know whether or not
Py (Sy )*1!�. This is also a decision problem for each
�, in the sense that the answer is either yes or no. How-
ever, it is not known to which complexity class this
problem belongs. Now a randomized algorithm is pre-
sented for answering this decision problem.
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Select an accuracy parameter �(�, and generate
i.i.d. samples A

�
,2,A

�
3Ay at random, distributed ac-

cording to Py . Then proceed as follows:

1. If PK (Sy)'1!�#�, declare that the answer to the
decision problem is yes.

2. If PK (Sy)(1!�!�, declare that the answer to the
decision problem is no.

3. If PK (Sy )3[1!�!�,1!�#�], draw more samples.

The error probability of this algorithm can be analyzed
using the one-sided Cherno! bound. If Py(Sy ))1!�,
then the probability that PK (Sy )(1!�#� is at most
e�����. Similarly, if Py (Sy )*1!�, then the probability
that PK (Sy )(1!�!� is at most e�����. As these are
mutually exclusive events, the probability that either
Step 1 or Step 2 will generate an incorrect answer is at
most equal to e�����. Now what about Step 3? As
mPR, PK (S

�
) converges almost surely to Py (Sy).

Hence, unless Py (Sy) is exactly equal to 1!�, which is a
zero probability event if � is chosen at random according
to some nonatomic measure, it follows that Step 3 will
eventually not get invoked for su$ciently large values
of m.
A related issue is the amount of computational re-

quired to generate these i.i.d. matrices. Note that the
interval matrix Ay is just an n�-fold Cartesian product of
intervals of the form [�

��
, �

��
]. Thus, if the measure Py is

also an n�-fold product measure, then the problem nat-
urally decomposes into a much simpler problem of
generating n� real numbers, distributed in the intervals
[�

��
,�

��
]. For other choices of Py , the generation of the

i.i.d. sample matrices could itself be a di$cult task; see
Cala"ore, Dabbene, and Tempo (1999) for further dis-
cussion on this topic.
Using entirely similar reasoning, it is possible to devel-

op e$cient algorithms for the problems of robust posit-
ive semide"niteness and robust norm boundedness. In
the case of the robust nonsingularity problem, there is an
additional feature. Note that the determinant of A is
a polynomial of degree n in the elements of the n�n
matrix A. Thus the relation detA"0 de"nes a
polynomial variety in the set of all matrices. Thus the
set of singular matrices always has measure zero if
Py is the uniform measure, for example. In order for
this question to be meaningful, one should instead
choose a `tolerancea �, and study the set of interval
matrices

NSy�� :"�A3Ay : �det(A)�*��.

Now the question of robust nonsingularity can be modi-
"ed as follows: Given the element y and the constant �, is
it true that the magnitude of the determinant of every
matrix A3Ay is at least equal to �? A randomized algo-
rithm can be developed for this problem along by now
familiar lines.

Thus, in summary, it has been shown in this section
that, for each of the NP-hard problems Nos. 1}4, it is
possible to put forward e$cient probabilistic algorithms
that never give a false negative, and whose probability of
giving a false positive can be analyzed. The chance that
the randomized algorithm might fail occasionally is the
price we pay for getting an algorithm that runs in poly-
nomial-time.

4. Randomized algorithms for matrix problems: synthesis

In the previous section, we have seen that for several
NP-hard analysis problems in matrix theory, it is possible
to derive e$cient randomized algorithms based on noth-
ing more than the simple Cherno! bound. In this section
we consider synthesis problems and present a random-
ized algorithm for the more di$cult problem of simulta-
neous stabilization using constant state feedback.
Actually, this problem is a special case of a very general

class of controller synthesis problems, including simulta-
neous stabilization (not necessarily using constant state
gain feedback), H

�
- and H

�
-optimal control, and so on.

Let us begin by modifying the problem formulation so
as to make it amenable to the randomized approach.
Recall the problem at hand: There are setsA,B,C and it
is desired to know whether or not there exists a matrix
K in some interval matrix set such that A#BKC is
stable for each triple (A,B,C) belonging toA�B�C. In
the interests of brevity, let us denote the setA�B�C by
F. Suppose P is a given probability measure on the set
F that re#ects our prior belief on how the system triples
(A,B,C) are distributed in nature. Also, to avoid con-
fusion, let us denote the interval matrix to which the state
gain matrix K must belong by the symbol Ky (as op-
posed to Ay as in earlier sections). In other words, let

Ky :"�K3R��
: �
��

)k
��

)�
��
, ∀i, j�.

In its `purea form the question becomes: Does there exist
a matrix K3Ky such that A#BKC is stable for all
(A,B,C)3F? As in the previous section, let us modify
this question slightly. Let � be a given accuracy param-
eter. For each matrix K3Ky , de"ne

S(K) :"�(A,B,C)3F:A#BKC is stable�.

Now let us ask: Does there exist a matrix K3Ky such
that P(S(K))*1!�? In other words, a gain matrixK is
considered to be `nearly simultaneously stabilizinga if
the matrix A#BKC is stable for all triples except pos-
sibly those belonging to a set of volume no larger than �.
To put it another way, if a triple (A,B,C) is chosen at
random according to P, and if the gain matrix K stabil-
izes this triple with probability at least 1!�, then we are
satis"ed. This modi"cation is similar to asking in the
preceding section whether the volume of the set of stable
matrices is at least 1!�. One way to approach the
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problem is to maximize the quantity P(S(K)) with
respect to K and see if the maximum is at least 1!�.
Now suppose we have a `candidatea gain matrix K.

Determining whether or not P(S(K))*1!� for this
particular matrixK is not an easy task, since in general it
is not easy to compute the volume P(S(K)) exactly. unless
the families A,B,C are all "nite. Instead, we can try to
approximate this volume by empirical means. Generate
random triples (A

�
,B

�
,C

�
), i"1,2,m distributed ac-

cording to P. Given a gain matrix K, check each triple
A

�
#B

�
KC

�
for stability, and then compute what frac-

tion of the m triples are stabilized by K. This leads to an
empirical estimate PK (S(K)). Now we already know from
the Cherno! bounds that, for each xxed gain matrix K,
the quantity PK (S(K)) converges to the true value P(S(K))
as the number of samples m approaches in"nity. The
di$culty is that K is now itself a variable of design.
Consequently, if we compute the quantity PK (S(K)) for
di!erent matrices K, we cannot be sure that all of these
empirical estimates are uniformly close to the correspond-
ing true values P(S(K)). However, suppose it so hap-
pened that the collection of sets �S(K), K3Ky� had the
UCEP property, by virtue of having "nite VC-dimen-
sion. Then we would be able to state that each of the
empirical estimates PK (S(K)) is uniformly close to the
corresponding correct valueP(S(K)). Hence if we were to
go ahead and maximize the quantity PK (S(K)) with re-
spect to K, we would be fairly close to the maximum of
P(S(K)) as well. More precisely, let us choose the integer
m su$ciently large that �PK (S(K))!P(S(K))�)�/2 for
every K3Ky , with some con"dence 1!	; this can be
done using Theorem 1 once we have an upper bound for
the VC-dimension of the family �S(K), K3Ky�. Then, if
we maximize PK (S(K)) with respect to K, and if the
maximum turns out to be at least 1!�/2, then it can be
said with con"dence 1!	 that there exists a gain matrix
K such that P(S(K))*1!�. On the other hand, if this
maximum turns out to be at most 1!3�/2, then it can be
said with con"dence 1!	 that there does not exist a gain
matrixK such that P(S(K))*1!�. Thus, it follows that
it is worthwhile to know under what conditions the
collection of sets �S(K), K3Ky� has "nite VC-dimen-
sion, and to derive explicit upper bounds for this
VC-dimension.
Note that maximizing even the modi"ed objective

function PK (S(K)) with respect toK is not easy in general,
since there might not be a closed-form expression for
PK (S(K)), without which it is not possible to use e$cient
gradient-based optimization methods. It turns out
that even this maximization can be carried out using
randomized methods, using an approach advocated in
Khargonekar and Tikku (1996), Tempo et al. (1997).
These papers assume that the underlying probability
distribution function is continuous. This assumption is
removed in Vidyasagar (1997a), Lemma 11.1, p. 357.
See Vidyasagar (1997b) for full details.

5. Bounds on the VC-dimension for speci5c families

In order for the randomized algorithm suggested in the
preceding section to work, it is necessary that the collec-
tion of sets �S(K), K3Ky� have the UCEP property.
A su$cient (and necessary, if we insist that P could be
any probability measure) condition for this collection to
have the UCEP property is that the VC-dimension of
�S(K), K3Ky� be "nite. Using Theorem 2, we now
derive an upper bound for this VC-dimension. It turns
out that Theorem 2 is a very versatile tool that can be
used to derive such upper bounds for a wide variety of
controller synthesis problems, such as simultaneous sta-
bilization (not necessarily using constant gain state feed-
back), H

�
- and H

�
-optimal control, and so on. See

Vidyasagar (1997b) for details.
Let us begin by recalling the Hurwitz stability test for

the stability of a polynomial, which is equivalent to the
Routh test that is more familiar to control engineers
(and which is almost universally mislabelled as the
`Routh}Hurwitz testa). In the case where the coe$cients
of the polynomial are constants, there is not much di!er-
ence between the Hurwitz test and the Routh test; how-
ever, in the case where the coe$cients of the polynomial
are functions of some parameter (as is the case here), it
turns out that the Hurwitz test leads to more economical
estimates. The Hurwitz test as described below can be
found in many places, for example, Gantmacher (1959),
Chapter XV, pp. 190!.

Lemma 1. Let

a(s) :"a
�
s�#a

�
s���#2#a

���
s#a

�
"

�
�
���

a
�
s���.

Suppose without loss of generality that a
�
'0. Dexne the

Hurwitz determinants

H
�
:"�

a
�

a
�

a
	 2 a

����
a
�

a
�

a

 2 a

����
0 a

�
a
� 2 a

����
� � � 2 �

0 0 0 2 a
�
�, i"1,2, n,

where a
�

is taken as zero if i'n. Then a( ) ) is a stable
polynomial (i.e., all of its zeros have negative real parts) if
and only

H
�
'0, i"1,2, n.

Now suppose that each coe$cient a
�
is in fact a func-

tion of some parameter p, and that a
�
(p) is a polynomial

in p of degree no larger than k. Then it is easy to see that
H

�
is also a polynomial in p, and that the degree of H

�
(p)

is no larger than ki.
In contrast, if one were to form the Routh array of the

polynomial a(s), then the polynomial is stable if and only
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if the elements in the "rst column of the Routh array are
all of the same sign. Now it is well-known (see e.g.,
Gantmacher, 1959) that the "rst element in the ith row of
the Routh array (call it R

�
) is the product of the "rst

i Hurwitz determinants. Thus, in the case where the
coe$cients of the polynomial a(s) are themselves poly-
nomials in an auxiliary parameter p of degree no larger
than k, the ith Hurwitz determinant has degree no larger
than ki with respect to p, whereas the Routh array ele-
mentR

�
has degree no larger than ki(i#1)/2 with respect

to p.
Next, consider the case of matrices F(p)"

[ f
��
(p)]3R���, where each f

��
(p) is a polynomial in p of

degree no larger than k. Let

�(s, p) :"det(sI!F(p))"s�#
�
�
���

�
�
(p)s���

denote the characteristic polynomial of F(p). Then each
coe$cient �

�
(p) is a sum of i�iminors of F(p), and is thus

a polynomial in p of degree no larger than ki. The
Hurwitz determinant

H
�
:"�

�
�

�
�

�
	 2 �

����
�
�

�
�

�

 2 �

����
0 �

�
�
� 2 �

����
� � � 2 �

0 0 0 2 �
�
�

is a polynomial in p of degree no larger than i(i#1)k/2,
as can easily be shown by induction on i.
Now we state the main result. In the interests of simpli-

city it is assumed that p"m"n; the modi"cations in
case m(n and/or p(n are easy and left to the reader.

Theorem 3 (Simultaneous stabilization using constant
output feedback). Suppose

y :"(�
��
,�

��
), 1)i, j)n,

where �
��
,�

��
are rational numbers for all i, j. Dexne

S(K) :"�(A,B,C)3A�B�C:A#BKC is stable�.

Dexne Ky to be the corresponding interval matrix, that
is: Let Sy be a shorthand for the collection of sets
�S(K), K3Ky�. Then

VC-dim(Sy ))2n� log
�
[2en�(n#1)]. (6)

Proof. The theorem is an immediate consequence of
Theorem 2 and Lemma 1. Note that, for each y, the
interval matrix Ky is a subset of R���. Hence, if we can
show that the VC-dimension of the collection of sets
S :"�S(K), K3R���� is bounded as above, then the
theorem is proved, since eachSy is a subcollection ofS.
Let F :"A#BKC, and let H

�
(F) denote the ith

Hurwitz determinant of its characteristic polynomial. The

triplet (A,B,C) belongs to the set S(K) for a "xed K
if and only if A#BKC is stable. We now express
this condition as a set of polynomial inequalities and
then invoke Theorem 2. The stability of the matrix
F :"A#BKC is equivalent to H

�
(F)'0 for i"1,2, n,

where H
�
(F) denotes the ith Hurwitz determinant of F.

Note that

f
��

"a
��

#

�
�

��

�
�

���

b
�

k

�
c
��
.

Hence, each f
��
is a polynomial of degree one or less in the

elements of the matrix K. As a consequence, by the
argument preceding the statement of the theorem, each
Hurwitz determinant H

�
(F) is a polynomial of degree no

larger than i(i#1)/2 in the elements k

�
. Since i)n, the

maximum degree of these Hurwitz determinants is
n(n#1)/2. Now apply Theorem 2 with the elements of
A,B,C playing the role of the parameter vector x and the
elements of K playing the role of the parameter vector z.
Then

� l"the dimension of the parameter space"n�,
� t"the number of inequalities"n, and
� r"the maximum degree of each inequality"

n(n#1)/2.

The desired bound now follows from (5). �

In the spirit of the above theorem, we now derive
upper bounds for the VC-dimension of various types of
sets that arise in connection with interval matrices. Note
that, as of now, there is no direct application for these
bounds. Nevertheless, it is worthwhile to derive these
bounds, in case some applications for them can be found
in future. The proofs are omitted, as they follow along the
same lines as that of Theorem 3.

Theorem 4 (Stability of interval matrices). Let X"R���,
>"R���, where n is a given integer. Suppose

y :"(�
��
,�

��
), 1)i, j)n,

where �
��

)�
��

for all i, j. Dexne

Sy :�A3Ay and A is stable�, S :"�Sy : y3>�.

Let � be a given constant, and dexne

Ny :"�A3Ay : �det(A)�'��, N :"�Ny : y3>�.

Let A
��y

be as above, and dexne

PSDy :"�A3A
��y
: A is positive semide,nite�,

PSD :"�PSDy : y3>
�
�,

PDy :"�A3A
��y
: A is positive de,nite�,

PD :"�PDy : y3>
�
�.
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With these dexnitions, we have

<C-dim(S))4n� lg[4e(2n�#n)].

<C-dim(N))4n� lg[4e(2n�#1)].

<C-dim(PSD))4n� lg[4e(2n�#2�)],

<C-dim(PD))4n� lg[4e(2n�#n)].

6. Conclusions

In this paper, it has been shown that by using standard
bounds on empirical probabilities as well as recent results
in VC-dimension theory, it is possible to generate poly-
nomial-time randomized algorithms for modixed versions
of several NP-hard problems in matrix theory. Actually,
the approach described here is widely applicable. By
applying these ideas, future researchers can undoubtedly
prove many more such results.
The problems studied here have one noteworthy fea-

ture in contrast with problems in computational learning
theory, as studied in Anthony and Biggs (1992), and
Kearns and Vazirani (1994). In the type of problems
studied in the computer science literature, for each "xed
integer n, the number of problem instances is xnite, for
example, the number of 3-conjuctive normal form
Boolean formulas in n variables. In such a case, it follows
automatically that the VC-dimension of the correspond-
ing problem class is "nite for each integer n, and an issue
that merits attention is the rate at which the VC-dimen-
sion grows with respect to n. In contrast, the type of
matrix theory problems studied here have the feature
that, even for a xxed xnite integer n, the set of the problem
instances is in"nite; consequently, proving that the VC-
dimension of the set of problem instances is "nite is by
itself a nontrivial achievement. Moreover, a perusal of
Theorem 4 shows that the VC-dimension grows at most
polynomially with respect to the `sizea parameter n.
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