
Michael W. Berry and Malu Castellanos, Editors

Survey of Text Mining:
Clustering, Classification, and
Retrieval, Second Edition

September 30, 2007

Springer

Preface

As we enter the third decade of the World Wide Web (WWW), the textual revolution
has seen a tremendous change in the availability of online information. Finding infor-
mation for just about any need has never been more automatic — just a keystroke or
mouseclick away. While the digitalization and creation of textual materials continues
at light speed, the ability to navigate, mine, or casually browse through documents
too numerous to read (or print) lags far behind.

What approaches to text mining are available to efficiently organize, classify,
label, and extract relevant information for today’s information-centric users? What
algorithms and software should be used to detect emerging trends from both text
streams and archives? These are just a few of the important questions addressed at the
Text Mining Workshop held on April 28, 2007, in Minneapolis, MN. This workshop,
the fifth in a series of annual workshops on text mining, was held on the final day of
the Seventh SIAM International Conference on Data Mining (April 26–28, 2007).

With close to 60 applied mathematicians and computer scientists representing
universities, industrial corporations, and government laboratories, the workshop fea-
tured both invited and contributed talks on important topics such as the application of
techniques of machine learning in conjunction with natural language processing, in-
formation extraction and algebraic/mathematical approaches to computational infor-
mation retrieval. The workshop’s program also included an Anomaly Detection/Text
Mining competition. NASA Ames Research Center of Moffett Field, CA, and SAS
Institute Inc. of Cary, NC, sponsored the workshop.

Most of the invited and contributed papers presented at the 2007 Text Mining
Workshop have been compiled and expanded for this volume. Several others are
revised papers from the first edition of the book. Collectively, they span several major
topic areas in text mining:

I. Clustering,
II. Document retrieval and representation,

III. Email surveillance and filtering, and
IV. Anomaly detection.

vi Preface

In Part I (Clustering), Howland and Park update their work on cluster-preserving
dimension reduction methods for efficient text classification. Likewise, Senellart and
Blondel revisit thesaurus construction using similarity measures between vertices
in graphs. Both of these chapter were part of the first edition of this book (based
on a SIAM text mining workshop held in April 2002). The next three chapters are
completely new contributions. Zeimpekis and Gallopoulos implement and evaluate
several clustering schemes that combine partitioning and hierarchical algorithms.
Kogan, Nicholas, and Wiacek look at the hybrid clustering of large, high-dimensional
data. AlSumait and Domeniconi round out this topic area with an examination of
local semantic kernels for the clustering of text documents.

In Part II (Document Retrieval and Representation), Kobayashi and Aono re-
vise their first edition chapter on the importance of detecting and interpreting minor
document clusters using a vector space model based on principal component anal-
ysis (PCA) rather than the popular latent semantic indexing (LSI) method. This is
followed by Xia, Xing, Qi, and Li’s chapter on applications of semidefinite program-
ming in XML document classification.

In Part III (Email Surveillance and Filtering), Bader, Berry, and Browne take
advantage of the Enron email dataset to look at topic detection over time using
PARAFAC and multilinear algebra. Gansterer, Janacek, and Neumayer examine the
use of latent semantic indexing to combat email spam.

In Part IV (Anomaly Detection), researchers from the NASA Ames Research
Center share approaches to anomaly detection. These techniques were actually en-
tries in a competition. held as part of the workshop. The top three finishers in the
competition were: Cyril Goutte of NRC Canada, Edward G. Allan, Michael R. Hor-
vath, Christopher V. Kopek, Brian T. Lamb, and Thomas S. Whaples of Wake Forest
University (Michael W. Berry of the University of Tennessee was their advisor), and
an international group from the Middle East led by Mostafa Keikha. Each chapter
provides an explanation of its approach to the contest.

This volume details the state-of-the-art algorithms and software for text min-
ing from both the academic and industrial perspectives. Familiarity or coursework
(undergraduate-level) in vector calculus and linear algebra is needed for several of
the chapters. While many open research questions still remain, this collection serves
as an important benchmark in the development of both current and future approaches
to mining textual information.

Acknowledgments

The editors would like to thank Murray Browne of the University of Tennessee and
Catherine Brett of Springer UK in coordinating the management of manuscripts
among the authors, editors, and the publisher.

Michael W. Berry and Malu Castellanos
Knoxville, TN and Palo Alto, CA

August 2007

Contents

Preface . v

Contributors . viii

Part I Clustering

1 Cluster-Preserving Dimension Reduction Methods for Document
Classification
Peg Howland, Haesun Park . 3

2 Automatic Discovery of Similar Words
Pierre Senellart, Vincent D. Blondel . 25

3 Principal Direction Divisive Partitioning with Kernels and k-Means
Steering
Dimitrios Zeimpekis, Efstratios Gallopoulos . 45

4 Hybrid Clustering with Divergences
Jacob Kogan, Charles Nicholas, Mike Wiacek . 65

5 Text Clustering with Local Semantic Kernels
Loulwah AlSumait, Carlotta Domeniconi . 87

Part II Document Retrieval and Representation

6 Vector Space Models for Search and Cluster Mining
Mei Kobayashi, Masaki Aono . 109

7 Applications of Semidefinite Programming in XML Document
Classification
Zhonghang Xia, Guangming Xing, Houduo Qi, Qi Li . 129

viii Contents

Part III Email Surveillance and Filtering

8 Discussion Tracking in Enron Email Using PARAFAC
Brett W. Bader, Michael W. Berry, Murray Browne . 147

9 Spam Filtering Based on Latent Semantic Indexing
Wilfried N. Gansterer, Andreas G.K. Janecek, Robert Neumayer 165

Part IV Anomaly Detection

10 A Probabilistic Model for Fast and Confident Categorization of
Textual Documents
Cyril Goutte . 187

11 Anomaly Detection Using Nonnegative Matrix Factorization
Edward G. Allan, Michael R. Horvath, Christopher V. Kopek, Brian T. Lamb,
Thomas S. Whaples, Michael W. Berry . 203

12 Document Representation and Quality of Text: An Analysis
Mostafa Keikha, Narjes Sharif Razavian, Farhad Oroumchian,
Hassan Seyed Razi . 219

Appendix: SIAM Text Mining Competition 2007 . 233

Index . 237

Contributors

Edward G. Allan
Department of Computer Science
Wake Forest University
P.O. Box 7311
Winston-Salem, NC 27109
Email: allaeg3@wfu.edu

Loulwah Alsumait
Department of Computer Science
George Mason University
4400 University Drive MSN 4A4
Fairfax, VA 22030
Email: lalsumai@gmu.edu

Masaki Aono
Department of Information and Computer Sciences, C-511
Toyohashi University of Technology
1-1 Hibarigaoka, Tempaku-cho
Toyohashi-shi, Aichi 441-8580
Japan
Email: aono@ics.tut.ac.jp

Brett W. Bader
Sandia National Laboratories
Applied Computational Methods Department
P.O. Box 5800
Albuquerque, NM 87185-1318
Email: bwbader@sandia.gov
Homepage: http://www.cs.sandia.gov/˜bwbader

Michael W. Berry
Department of Electrical Engineering and Computer Science
University of Tennessee
203 Claxton Complex
Knoxville, TN 37996-3450
Email: berry@eecs.utk.edu
Homepage: http://www.cs.utk.edu/˜berry

x Contributors

Vincent D. Blondel
Division of Applied Mathematics
Université de Louvain
4, Avenue Georges Lemaı̂tre
B-1348 Louvain-la-neuve
Belgium
Email: blondel@inma.ucl.ac.be
Homepage: http://www.inma.ucl.ac.be/˜blondel

Murray Browne
Department of Electrical Engineering and Computer Science
University of Tennessee
203 Claxton Complex
Knoxville, TN 37996-3450
Email: mbrowne@eecs.utk.edu

Malú Castellanos
IETL Department
Hewlett-Packard Laboratories
1501 Page Mill Road MS-1148
Palo Alto, CA 94304
Email: malu.castellanos@hp.com

Pat Castle
Intelligent Systems Division
NASA Ames Research Center
Moffett Field, CA 94035
Email: pcastle@email.arc.nasa.gov

Santanu Das
Intelligent Systems Division
NASA Ames Research Center
Moffett Field, CA 94035
Email: sdas@email.arc.nasa.gov

Carlotta Domeniconi
Department of Computer Science
George Mason University
4400 University Drive MSN 4A4
Fairfax, VA 22030
Email: carlotta@ise.gmu.edu
Homepage: http://www.ise.gmu.edu/˜carlotta

Contributors xi

Efstratios Gallopoulos
Department of Computer Engineering and Informatics
University of Patras
26500 Patras
Greece
Email: stratis@hpclab.ceid.upatras.gr
Homepage: http://scgroup.hpclab.ceid.upatras.gr/faculty/stratis/stratise.html

Wilfried N. Gansterer
Research Lab for Computational Technologies and Applications
University of Vienna
Lenaugasse 2/8
A - 1080 Vienna
Austria
Email: wilfried.gansterer@univie.ac.at

Cyril Goutte
Interactive Language Technologies
NRC Institute for Information Technology
283 Boulevard Alexandre Taché
Gatineau, QC J8X 3X7
Canada
Email: cyril.goutte@nrc-cnrc.gc.ca
Homepage: http://iit-iti.nrc-cnrc.gc.ca/personnel/goutte cyril f.html

Michael R. Horvath
Department of Computer Science
Wake Forest University
P.O. Box 7311
Winston-Salem, NC 27109
Email: horvmr5@wfu.edu

Peg Howland
Department of Mathematics and Statistics
Utah State University
3900 Old Main Hill
Logan, UT 84322-3900
Email: peg.howland@usu.edu
Homepage: http://www.math.usu.edu/˜howland

xii Contributors

Andreas G. K. Janecek
Research Lab for Computational Technologies and Applications
University of Vienna
Lenaugasse 2/8
A - 1080 Vienna
Austria
Email: andreas.janecek@univie.ac.at

Mostafa Keikha
Department of Electrical and Computer Engineering
University of Tehran
P.O. Box 14395-515, Tehran
Iran
Email: m.keikha@ece.ut.ac.ir

Mei Kobayashi
IBM Research, Tokyo Research Laboratory
1623-14 Shimotsuruma, Yamato-shi
Kanagawa-ken 242-8502
Japan
Email: mei@jp.ibm.com
Homepage: http://www.trl.ibm.com/people/meik

Jacob Kogan
Department of Mathematics and Statistics
University of Maryland, Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250
Email: kogan@math.umbc.edu
Homepage: http://www.math.umbc.edu/˜kogan

Christopher V. Kopek
Department of Computer Science
Wake Forest University
P.O. Box 7311
Winston-Salem, NC 27109
Email: kopecv5@wfu.edu

Brian T. Lamb
Department of Computer Science
Wake Forest University
P.O. Box 7311
Winston-Salem, NC 27109
Email: lambbt5@wfu.edu

Contributors xiii

Qi Li
Department of Computer Science
Western Kentucky University
1906 College Heights Boulevard #11076
Bowling Green, KY 42101-1076
Email: qi.li@wku.edu
Homepage: http://www.wku.edu/˜qi.li

Robert Neumayer
Institute of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstraße 9-11/188/2
A - 1040 Vienna
Austria
Email: neumayer@ifs.tuwien.ac.at

Charles Nicholas
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250
Email: nicholas@cs.umbc.edu
Homepage: http://www.cs.umbc.edu/˜nicholas

Farhad Oroumchian
College of Information Technology
University of Wollongong in Dubai
P.O. Box 20183, Dubai
U.A.E.
Email: farhadoroumchian@uowdubai.ac.ae

Matthew E. Otey
Intelligent Systems Division
NASA Ames Research Center
Moffett Field, CA 94035
Email: otey@email.arc.nasa.gov

Haesun Park
Division of Computational Science and Engineering
College of Computing
Georgia Institute of Technology
266 Ferst Drive
Atlanta, GA 30332-0280
Email: hpark@cc.gatech.edu
Homepage: http://www.cc.gatech.edu/˜hpark

xiv Contributors

Houduo Qi
Department of Mathematics
University of Southampton, Highfield
Southampton SO17 1BJ, UK
Email: hdqi@soton.ac.uk
Homepage: http://www.personal.soton.ac.uk/hdqi

Narjes Sharif Razavian
Department of Electrical and Computer Engineering
University of Tehran
P.O. Box 14395-515, Tehran
Iran
Email: n.razavian@ece.ut.ac.ir

Hassan Seyed Razi
Department of Electrical and Computer Engineering
University of Tehran
P.O. Box 14395-515, Tehran
Iran
Email: seyedraz@ece.ut.ac.ir

Pierre Senellart
INRIA Futurs & Université Paris-Sud
4 rue Jacques Monod
91893 Orsay Cedex
France
Email: pierre@senellart.com
Homepage: http://pierre.senellart.com/

Ashok N. Srivastava
Intelligent Systems Division
NASA Ames Research Center
Moffett Field, CA 94035
Email: ashok@email.arc.nasa.gov

Thomas S. Whaples
Department of Computer Science
Wake Forest University
P.O. Box 7311
Winston-Salem, NC 27109
Email: whapts3@wfu.edu

Mike Wiacek
Google, Inc.
1600 Amphitheatre Parkway
Mountain View, CA 94043
Email: mjwiacek@google.com

Contributors xv

Zhonghang Xia
Department of Computer Science
Western Kentucky University
1906 College Heights Boulevard #11076
Bowling Green, KY 42101-1076
Email: zhonghang.xia@wku.edu
Homepage: http://www.wku.edu/˜zhonghang.xia

Guangming Xing
Department of Computer Science
Western Kentucky University
1906 College Heights Boulevard #11076
Bowling Green, KY 42101-1076
Email: guangming.xing@wku.edu
Homepage: http://www.wku.edu/˜guangming.xing

Dimitrios Zeimpekis
Department of Computer Engineering and Informatics
University of Patras
26500 Patras
Greece
Email: dsz@hpclab.ceid.upatras.gr

Part I

Clustering

1

Cluster-Preserving Dimension Reduction Methods for
Document Classification

Peg Howland and Haesun Park

Overview

In today’s vector space information retrieval systems, dimension reduction is im-
perative for efficiently manipulating the massive quantity of data. To be useful, this
lower dimensional representation must be a good approximation of the original doc-
ument set given in its full space. Toward that end, we present mathematical models,
based on optimization and a general matrix rank reduction formula, which incor-
porate a priori knowledge of the existing structure. From these models, we develop
new methods for dimension reduction that can be applied regardless of the rela-
tive dimensions of the term-document matrix. We illustrate the effectiveness of each
method with document classification results from the reduced representation. After
establishing relationships among the solutions obtained by the various methods, we
conclude with a discussion of their relative accuracy and complexity.

1.1 Introduction

The vector space information retrieval system, originated by Gerard Salton [Sal71,
SM83], represents documents as vectors in a vector space. The document set com-
prises anm×n term-document matrix, in which each column represents a document,
and the (i, j)th entry represents a weighted frequency of term i in document j. Since
the data dimensionmmay be huge, a lower dimensional representation is imperative
for efficient manipulation.

Dimension reduction is commonly based on rank reduction by the truncated sin-
gular value decomposition (SVD). For any matrix A ∈ Rm×n, its SVD can be de-
fined as

A = UΣV T , (1.1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, Σ = diag(σ1 · · ·σp) ∈ Rm×n
with p = min(m,n), and the singular values are ordered as σ1 ≥ σ2 ≥ · · ·σp ≥ 0
[GV96, Bjö96]. Denoting the columns of U , or left singular vectors, by ui, and the
columns of V , or right singular vectors, by vi, and the rank of A by q, we write

4 P. Howland, H. Park

A =
q∑
i=1

σiuiv
T
i . (1.2)

For l < q, the truncated SVD

A ≈
l∑
i=1

σiuiv
T
i

provides the rank-l approximation that is closest to the data matrix in L2 norm or
Frobenius norm[GV96]. This is the main tool in principal component analysis (PCA)
[DHS01], as well as in latent semantic indexing (LSI) [DDF+90, BDO95] of docu-
ments.

If the data form clusters in the full dimension, the goal may change from find-
ing the best lower dimensional representation to finding the lower dimensional rep-
resentation that best preserves this cluster structure. That is, even after dimension
reduction, a new document vector should be classified with the appropriate cluster.
Assuming that the columns of A are grouped into clusters, rather than treating each
column equally regardless of its membership in a specific cluster, as is done with
the SVD, the dimension reduction methods we will discuss attempt to preserve this
information. This is important in information retrieval, since the reduced representa-
tion itself will be used extensively in further processing of data.

In applied statistics/psychometrics [Har67, Hor65], techniques have been devel-
oped to factor an attribute-entity matrix in an analogous way. As argued in [HMH00],
the components of the factorization are important, and “not just as a mechanism for
solving another problem.” This is one reason why they are well suited for the prob-
lem of finding a lower dimensional representation of text data. Another reason is
their simplicity—having been developed at a time when additions and subtractions
were significantly cheaper computations than multiplications and divisions—their
creators used sign and binary vectors extensively. With the advent of modern com-
puters, such methods have become overshadowed by more accurate and costly al-
gorithms in factor analysis [Fuk90]. Ironically, modern applications often have to
handle very high-dimensional data, so the accuracy of the factors can sometimes be
compromised in favor of algorithmic simplicity.

In this chapter, we present dimension reduction methods derived from two per-
spectives. The first, a general matrix rank reduction formula, is introduced in Sec-
tion 1.2. The second, linear discriminant analysis (LDA), is formulated as trace op-
timization, and extended in Section 1.3 using the generalized singular value decom-
position (GSVD). To reduce the cost of the LDA/GSVD algorithm, we incorporate
it as the second stage after PCA or LSI. We establish mathematical equivalence in
Section 1.4 by expressing both PCA and LSI in terms of trace optimization. Finally,
Section 1.5 combines the two perspectives by making a factor analysis approxima-
tion in the first stage.

1 Cluster-Preserving Dimension Reduction Methods 5

1.2 Dimension Reduction in the Vector Space Model (VSM)

Given a term-document matrix

A = [a1 a2 · · · an] ∈ Rm×n,

we want to find a transformation that maps each document vector aj in the m-
dimensional space to a vector yj in the l-dimensional space for some l� m:

aj ∈ Rm×1 → yj ∈ Rl×1, 1 ≤ i ≤ n.

The approach we discuss in Section 1.3 computes the transformation directly fromA.
Rather than looking for the mapping that achieves this explicitly, another approach
rephrases dimension reduction as an approximation problem where the given matrix
A is decomposed into two matrices B and Y as

A ≈ BY (1.3)

where bothB ∈ Rm×l with rank(B) = l and Y ∈ Rl×n with rank(Y) = l are to be
found. This lower rank approximation is not unique since for any nonsingular matrix
Z ∈ Rl×l,

A ≈ BY = (BZ)(Z−1Y),

where rank(BZ) = l and rank(Z−1Y) = l.
The mathematical framework for obtaining such matrix factorizations is the Wed-

derburn rank reduction formula [Wed34]: If x ∈ Rn and y ∈ Rm are such that
ω = yTAx 6= 0, then

E = A− ω−1(Ax)(yTA) (1.4)

has rank(E) = rank(A)− 1. This formula has been studied extensively in both the
numerical linear algebra (NLA) [CF79, CFG95] and applied statistics/psychometrics
(AS/P) [Gut57, HMH00] communities. In a 1995 SIAM Review paper [CFG95], Chu,
Funderlic, and Golub show that for x = v1 and y = u1 from the SVD in Eq. (1.2),

E = A− (uT1 Av1)
−1(Av1)(uT1 A) = A− σ1u1v

T
1 .

If repeated q = rank(A) times using the leading q singular vectors, this formula
generates the SVD of A.

In general, starting with A1 = A, and choosing xk and yk such that ωk =
yTk Akxk 6= 0, the Wedderburn formula generates the sequence

Ak+1 = Ak − ω−1
k (Akxk)(yTk Ak).

Adding up all the rank one updates, factoring into matrix outer product form, and
truncating gives an approximation A ≈ BY . The question becomes: what are good
choices for xk and yk?

One answer was provided by Thurstone [Thu35] in the 1930s, when he applied
the centroid method to psychometric data. To obtain an approximation of A as BY ,

6 P. Howland, H. Park

the method uses the rank one reduction formula to solve for one column of B and
one row of Y at a time. It approximates the SVD while restricting the pre- and post-
factors in the rank reduction formula to sign vectors. In Section 1.5, we incorporate
this SVD approximation into a two-stage process so that knowledge of the clusters
from the full dimension is reflected in the dimension reduction.

1.3 Linear Discriminant Analysis and Its Extension for Text Data

The goal of linear discriminant analysis (LDA) is to combine features of the orig-
inal data in a way that most effectively discriminates between classes. With an ap-
propriate extension, it can be applied to the goal of reducing the dimension of a
term-document matrix in a way that most effectively preserves its cluster structure.
That is, we want to find a linear transformation G whose transpose maps each doc-
ument vector a in the m-dimensional space to a vector y in the l-dimensional space
(l� m):

GT : a ∈ Rm×1 → y ∈ Rl×1.

Assuming that the given data are already clustered, we seek a transformation that
optimally preserves this cluster structure in the reduced dimensional space.

For simplicity of discussion, we will assume that data vectors a1, . . . , an form
columns of a matrix A ∈ Rm×n, and are grouped into k clusters as

A = [A1, A2, · · · , Ak], Ai ∈ Rm×ni ,

k∑
i=1

ni = n. (1.5)

Let Ni denote the set of column indices that belong to cluster i. The centroid c(i) is
computed by taking the average of the columns in cluster i; i.e.,

c(i) =
1
ni

∑
j∈Ni

aj

and the global centroid c is defined as

c =
1
n

n∑
j=1

aj .

Then the within-cluster, between-cluster, and mixture scatter matrices are defined
[Fuk90, TK99] as

1 Cluster-Preserving Dimension Reduction Methods 7

Sw =
k∑
i=1

∑
j∈Ni

(aj − c(i))(aj − c(i))T ,

Sb =
k∑
i=1

∑
j∈Ni

(c(i) − c)(c(i) − c)T

=
k∑
i=1

ni(c(i) − c)(c(i) − c)T , and

Sm =
n∑
j=1

(aj − c)(aj − c)T ,

respectively. The scatter matrices have the relationship [JD88]

Sm = Sw + Sb. (1.6)

Applying GT to the matrix A transforms the scatter matrices Sw, Sb, and Sm to the
l × l matrices

GTSwG, GTSbG, and GTSmG,

respectively.
There are several measures of cluster quality that involve the three scatter matri-

ces [Fuk90, TK99]. When cluster quality is high, each cluster is tightly grouped, but
well separated from the other clusters. Since

trace(Sw) =
k∑
i=1

∑
j∈Ni

(aj − c(i))T (aj − c(i))

=
k∑
i=1

∑
j∈Ni

‖aj − c(i)‖22

measures the closeness of the columns within the clusters, and

trace(Sb) =
k∑
i=1

∑
j∈Ni

(c(i) − c)T (c(i) − c)

=
k∑
i=1

∑
j∈Ni

‖c(i) − c‖22

measures the separation between clusters, an optimal transformation that preserves
the given cluster structure would be

max
G

trace(GTSbG) and min
G

trace(GTSwG). (1.7)

Assuming the matrix Sw is nonsingular, classical LDA approximates this simul-
taneous trace optimization by finding a transformation G that maximizes

8 P. Howland, H. Park

J1(G) = trace((GTSwG)−1GTSbG). (1.8)

It is well-known that the J1 criterion in Eq. (1.8) is maximized when the columns of
G are the l eigenvectors of S−1

w Sb corresponding to the l largest eigenvalues [Fuk90].
In other words, LDA solves

S−1
w Sbxi = λixi (1.9)

for the xi’s corresponding to the largest λi’s. For these l eigenvectors, the maximum
achieved is J1(G) = λ1 + · · ·+ λl. Since rank(Sb) of the eigenvalues of S−1

w Sb are
greater than zero, if l ≥ rank(Sb), this optimal G preserves trace(S−1

w Sb) exactly
upon dimension reduction.

For the case when Sw is singular, [HJP03] assumes the cluster structure given in
Eq. (1.5), and defines the m× n matrices

Hw = [A1 − c(1)e(1)
T

, A2 − c(2)e(2)
T

, . . . , Ak − c(k)e(k)
T

] (1.10)

Hb = [(c(1) − c)e(1)
T

, (c(2) − c)e(2)
T

, . . . , (c(k) − c)e(k)
T

]

Hm = [a1 − c, . . . , an − c] = A− ceT , (1.11)

where e(i) = (1, . . . , 1)T ∈ Rni×1 and e = (1, · · · , 1)T ∈ Rn×1. Then the scatter
matrices can be expressed as

Sw = HwH
T
w , Sb = HbH

T
b , and Sm = HmH

T
m. (1.12)

Another way to define Hb that satisfies Eq. (1.12) is

Hb = [
√
n1(c(1) − c),

√
n2(c(2) − c), . . . ,

√
nk(c(k) − c)] (1.13)

and using this m×k form reduces the storage requirements and computational com-
plexity of the LDA/GSVD algorithm.

As the product of an m × n matrix and an n ×m matrix, Sw is singular when
m > n [Ort87]. This means that J1 cannot be applied when the number of available
data points is smaller than the dimension of the data. In other words, classical LDA
fails when the number of terms in the document collection is larger than the total
number of documents (i.e., m > n in the term-document matrix A). To circumvent
this restriction, we express λi as α2

i /β
2
i , and the eigenvalue problem in Eq. (1.9)

becomes
β2
iHbH

T
b xi = α2

iHwH
T
wxi. (1.14)

This has the form of a problem that can be solved using the GSVD of the matrix pair
(HT

b ,H
T
w), as described in Section 1.3.1.

1.3.1 Generalized Singular Value Decomposition

After the GSVD was originally defined by Van Loan [Loa76], Paige and Saunders
[PS81] defined the GSVD for any two matrices with the same number of columns,
which we restate as follows.

1 Cluster-Preserving Dimension Reduction Methods 9

Theorem 1.3.1 Suppose two matrices HT
b ∈ Rk×m and HT

w ∈ Rn×m are given.
Then for

K =
(
HT
b

HT
w

)
and t = rank(K),

there exist orthogonal matrices U ∈ Rk×k, V ∈ Rn×n,W ∈ Rt×t, andQ ∈ Rm×m
such that

UTHT
b Q = Σb(WTR︸ ︷︷ ︸

t

, 0︸︷︷︸
m−t

)

and
V THT

wQ = Σw(WTR︸ ︷︷ ︸
t

, 0︸︷︷︸
m−t

),

where

Σb
k×t

=

 Ib
Db

Ob

 , Σw
n×t

=

Ow
Dw

Iw

 ,

and R ∈ Rt×t is nonsingular with its singular values equal to the nonzero singular
values of K. The matrices

Ib ∈ Rr×r and Iw ∈ R(t−r−s)×(t−r−s)

are identity matrices, where

r = t− rank(HT
w) and s = rank(HT

b) + rank(HT
w)− t,

Ob ∈ R(k−r−s)×(t−r−s) and Ow ∈ R(n−t+r)×r

are zero matrices with possibly no rows or no columns, and

Db = diag(αr+1, . . . , αr+s)

and
Dw = diag(βr+1, . . . , βr+s)

satisfy

1 > αr+1 ≥ · · · ≥ αr+s > 0, 0 < βr+1 ≤ · · · ≤ βr+s < 1, (1.15)

and α2
i + β2

i = 1 for i = r + 1, . . . , r + s.

This form of GSVD is related to that of Van Loan [Loa76] as

UTHT
b X = (Σb, 0) and V THT

wX = (Σw, 0), (1.16)

where

X
m×m

= Q

(
R−1W 0
0 Im−t

)
.

This implies that

10 P. Howland, H. Park

XTHbH
T
b X =

(
ΣT
b Σb 0

0 0

)
and

XTHwH
T
wX =

(
ΣT
wΣw 0

0 0

)
.

Letting xi represent the ith column of X , and defining

αi = 1, βi = 0 for i = 1, . . . , r

and
αi = 0, βi = 1 for i = r + s+ 1, . . . , t,

we see that Eq. (1.14) is satisfied for 1 ≤ i ≤ t. Since

HbH
T
b xi = 0 and HwH

T
wxi = 0

for the remainingm−t columns ofX , Eq. (1.14) is satisfied for arbitrary values of αi
and βi when t+ 1 ≤ i ≤ m. The columns of X are the generalized singular vectors
for the matrix pair (HT

b ,H
T
w). They correspond to the generalized singular values,

or the αi/βi quotients, as follows. The first r columns correspond to infinite values,
and the next s columns correspond to finite and nonzero values. The following t −
r − s columns correspond to zero values, and the last m− t columns correspond to
the arbitrary values. This correspondence between generalized singular vectors and
values is illustrated in Figure 1.1(a).

(a) Applied to A (b) After PCA→ rank(Hm)

Fig. 1.1. Generalized singular vectors and their corresponding generalized singular values.

1 Cluster-Preserving Dimension Reduction Methods 11

1.3.2 Application of the GSVD to Dimension Reduction

A question that remains is which columns of X to include in the solution G. If Sw
is nonsingular, both r = 0 and m − t = 0, so s = rank(HT

b) generalized singular
values are finite and nonzero, and the rest are zero. The generalized singular vectors
are eigenvectors of S−1

w Sb, so we choose the xi’s that correspond to the largest λi’s,
where λi = α2

i /β
2
i . When the GSVD construction orders the singular value pairs

as in Eq. (1.15), the generalized singular values, or the αi/βi quotients, are in non-
increasing order. Therefore, the first s columns of X are all we need.

When m > n, the scatter matrix Sw is singular. Hence, the eigenvectors of
S−1
w Sb are undefined, and classical discriminant analysis fails. [HJP03] argues in

terms of the simultaneous optimization Eq. (1.7) that criterion J1 is approximating.
Letting gj represent a column of G, we write

trace(GTSbG) =
∑

gTj Sbgj

and
trace(GTSwG) =

∑
gTj Swgj .

If xi is one of the leftmost r vectors, then xi ∈ null(Sw) − null(Sb). Because
xTi Sbxi > 0 and xTi Swxi = 0, including this vector in G increases the trace we
want to maximize while leaving the trace we want to minimize unchanged. On the
other hand, for the rightmost m − t vectors, xi ∈ null(Sw) ∩ null(Sb). Adding the
column xi to G has no effect on these traces, since xTi Swxi = 0 and xTi Sbxi = 0,
and therefore does not contribute to either maximization or minimization in Eq. (1.7).
We conclude that, whether Sw is singular or nonsingular, G should be comprised of
the leftmost r + s = rank(HT

b) columns of X , which are shaded in Figure 1.1(a).
As a practical matter, the LDA/GSVD algorithm includes the first k− 1 columns

ofX inG. This is due to the fact that rank(Hb) ≤ k−1, which is clear from the def-
inition ofHb given in Eq. (1.13). If rank(Hb) < k−1, including extra columns inG
(some of which correspond to the t−r−s zero generalized singular values and, possi-
bly, some of which correspond to the arbitrary generalized singular values) will have
approximately no effect on cluster preservation. As summarized in Algorithm 1.3.1,
we first compute the matrices Hb and Hw from the data matrix A. We then solve for
a very limited portion of the GSVD of the matrix pair (HT

b ,H
T
w). This solution is ac-

complished by following the construction in the proof of Theorem 1.3.1 [PS81]. The
major steps are limited to the complete orthogonal decomposition [GV96, LH95] of

K =
(
HT
b

HT
w

)
,

which produces orthogonal matrices P and Q and a nonsingular matrix R, followed
by the singular value decomposition of a leading principal submatrix of P , whose
size is much smaller than that of the data matrix. (This k × t submatrix is specified
in Algorithm 1.3.1 using the colon notation of MATLAB1.) Finally, we assign the
leftmost k − 1 generalized singular vectors to G.
1 http://www.mathworks.com

12 P. Howland, H. Park

Algorithm 1.3.1 LDA/GSVD
Given a data matrix A ∈ Rm×n with k clusters and an input vector a ∈ Rm×1, compute the
matrix G ∈ Rm×(k−1) that preserves the cluster structure in the reduced dimensional space,
using

J1(G) = trace((GT SwG)−1GT SbG).

Also compute the k − 1 dimensional representation y of a.

1. Compute Hb and Hw from A according to

Hb = (
√

n1(c
(1) − c),

√
n2(c

(2) − c), . . . ,
√

nk(c(k) − c))

and Eq. (1.10), respectively. (Using this equivalent but m × k form of Hb reduces com-
plexity.)

2. Compute the complete orthogonal decomposition

P T KQ =

„
R 0
0 0

«
, where K =

„
HT

b

HT
w

«
∈ R(k+n)×m

3. Let t = rank(K).
4. Compute W from the SVD of P (1 : k, 1 : t), which is

UT P (1 : k, 1 : t)W = ΣA.

5. Compute the first k − 1 columns of X = Q

„
R−1W 0
0 I

«
, and assign them to G.

6. y = GT a

1.4 Equivalent Two-Stage Methods

Another way to apply LDA to the data matrixA ∈ Rm×n withm > n (and hence Sw
singular) is to perform dimension reduction in two stages. The LDA stage is preceded
by a stage in which the cluster structure is ignored. A common approach [Tor01,
SW96, BHK97] for the first part of this process is rank reduction by the truncated
singular value decomposition (SVD). A drawback of these two-stage approaches
is that experimentation has been needed to determine which intermediate reduced
dimension produces optimal results after the second stage.

Moreover, since either PCA or LSI ignores the cluster structure in the first stage,
theoretical justification for such two-stage approaches is needed. Yang and Yang
[YY03] supply theoretical justification for PCA plus LDA, for a single discriminant
vector. In this section, we justify the two-stage approach that uses either LSI or PCA,
followed by LDA. We do this by establishing the equivalence of the single-stage
LDA/GSVD to the two-stage method, provided that the intermediate dimension af-
ter the first stage falls within a specific range. In this range Sw remains singular, and
hence LDA/GSVD is required for the second stage. We also present a computation-
ally simpler choice for the first stage, which uses QR decomposition (QRD) rather
than the SVD.

1 Cluster-Preserving Dimension Reduction Methods 13

1.4.1 Rank Reduction Based on the Truncated SVD

PCA and LSI differ only in that PCA centers the data by subtracting the global cen-
troid from each column of A. In this section, we express both methods in terms of
the maximization of J2(G) = trace(GTSmG).

If we let G ∈ Rm×l be any matrix with full column rank, then essentially J2(G)
has no upper bound and maximization is meaningless. Now, let us restrict the solu-
tion to the case whenG has orthonormal columns. Then there existsG′ ∈ Rm×(m−l)

such that
(
G, G′

)
is an orthogonal matrix. In addition, since Sm is positive semidef-

inite, we have

trace(GTSmG) ≤ trace(GTSmG) + trace((G′)TSmG′)
= trace(Sm).

Reserving the notation in Eq. (1.1) for the SVD of A, let the SVD of Hm be
given by

Hm = A− ceT = ŨΣ̃Ṽ T . (1.17)

Then
Sm = HmH

T
m = ŨΣ̃Σ̃T ŨT .

Hence the columns of Ũ form an orthonormal set of eigenvectors of Sm corre-
sponding to the non-increasing eigenvalues on the diagonal of Λ = Σ̃Σ̃T =
diag(σ̃2

1 , . . . , σ̃
2
n, 0, . . . , 0). For p = rank(Hm), if we denote the first p columns

of Ũ by Ũp, and let Λp = diag(σ̃2
1 , . . . , σ̃

2
p), we have

J2(Ũp) = trace(ŨTp SmŨp)

= trace(ŨTp ŨpΛp)

= σ̃2
1 + · · ·+ σ̃2

p

= trace(Sm). (1.18)

This means that we preserve trace(Sm) if we take Ũp as G. Clearly, the same is true
for Ũl with l ≥ p, so PCA to a dimension of at least rank(Hm) preserves trace(Sm).

Now we show that LSI also preserves trace(Sm). Suppose x is an eigenvector of
Sm corresponding to the eigenvalue λ 6= 0. Then

Smx =
n∑
j=1

(aj − c)(aj − c)Tx = λx.

This means x ∈ span{aj − c|1 ≤ j ≤ n}, and hence x ∈ span{aj |1 ≤ j ≤ n}.
Accordingly,

range(Ũp) ⊆ range(A).

From Eq. (1.1), we write

A = UqΣqV
T
q for q = rank(A), (1.19)

14 P. Howland, H. Park

where Uq and Vq denote the first q columns of U and V , respectively, and Σq =
Σ(1 : q, 1 : q). Then range(A) = range(Uq), which implies that

range(Ũp) ⊆ range(Uq).

Hence
Ũp = UqW

for some matrix W ∈ Rq×p with orthonormal columns. This yields

J2(Ũp) = J2(UqW)
= trace(WTUTq SmUqW)

≤ trace(UTq SmUq)
= J2(Uq).

Since J2(Ũp) = trace(Sm) from Eq. (1.18), we preserve trace(Sm) if we take Uq
as G. The same argument holds for Ul with l ≥ q, so LSI to any dimension greater
than or equal to rank(A) also preserves trace(Sm).

Finally, in the range of reduced dimensions for which PCA and LSI preserve
trace(Sm), they preserve trace(Sw) and trace(Sb) as well. This follows from the
scatter matrix relationship in Eq. (1.6) and the inequalities

trace(GTSwG) ≤ trace(Sw)
trace(GTSbG) ≤ trace(Sb),

which are satisfied for anyGwith orthonormal columns, since Sw and Sb are positive
semidefinite. In summary, the individual traces of Sm, Sw, and Sb are preserved by
using PCA to reduce to a dimension of at least rank(Hm), or by using LSI to reduce
to a dimension of at least rank(A).

1.4.2 LSI Plus LDA

In this section, we establish the equivalence of the LDA/GSVD method to a two-
stage approach composed of LSI followed by LDA, and denoted by LSI + LDA.
Using the notation of Eq. (1.19), the q-dimensional representation of A after the LSI
stage is

B = UTq A,

and the second stage applies LDA to B. Letting the superscript B denote matrices
after the LSI stage, we have

HB
b = UTq Hb and HB

w = UTq Hw.

Hence
SBb = UTq HbH

T
b Uq and SBw = UTq HwH

T
wUq.

Suppose

1 Cluster-Preserving Dimension Reduction Methods 15

SBb x = λSBwx;

i.e., x and λ are an eigenvector-eigenvalue pair of the generalized eigenvalue problem
that LDA solves in the second stage. Then, for λ = α2/β2,

β2UTq HbH
T
b Uqx = α2UTq HwH

T
wUqx.

Suppose the matrix
(
Uq, U

′
q

)
is orthogonal. Then (U ′q)

TA = (U ′q)
TUqΣqV

T
q =

0, and accordingly, (U ′q)
THb = 0 and (U ′q)

THw = 0, since the columns of both Hb

and Hw are linear combinations of the columns of A. Hence

β2

(
UTq

(U ′q)
T

)
HbH

T
b Uqx =

(
β2UTq HbH

T
b Uqx

0

)
=
(
α2UTq HwH

T
wUqx

0

)
= α2

(
UTq

(U ′q)
T

)
HwH

T
wUqx,

which implies
β2HbH

T
b (Uqx) = α2HwH

T
w (Uqx).

That is, Uqx and α/β are a generalized singular vector and value of the gen-
eralized singular value problem that LDA solves when applied to A. To show
that these Uqx vectors include all the LDA solution vectors for A, we show that
rank(SBm) = rank(Sm). From the definition in Eq. (1.11), we have

Hm = A− ceT = A(I − 1
n
eeT) = UqΣqV

T
q (I − 1

n
eeT)

and
HB
m = UTq Hm,

and hence
Hm = UqH

B
m.

Since Hm and HB
m have the same null space, their ranks are the same. This means

that the number of non-arbitrary generalized singular value pairs is the same for
LDA/GSVD applied to B, which produces t = rank(SBm) pairs, and LDA/GSVD
applied to A, which produces t = rank(Sm) pairs.

We have shown the following.

Theorem 1.4.1 If G is an optimal LDA transformation for B, the q-dimensional
representation of the matrix A via LSI, then UqG is an optimal LDA transformation
for A.

In other words, LDA applied to A produces

Y = (UqG)TA = GTUTq A = GTB,

which is the same result as applying LSI to reduce the dimension to q, followed by
LDA. Finally, we note that if the dimension after the LSI stage is at least rank(A),
that is B = UTl A for l ≥ q, the equivalency argument remains unchanged.

16 P. Howland, H. Park

1.4.3 PCA Plus LDA

As in the previous section for LSI, it can be shown that a two-stage approach in
which PCA is followed by LDA is equivalent to LDA applied directly to A. From
Eq. (1.17), we write

Hm = ŨpΣ̃pṼ
T
p for p = rank(Hm), (1.20)

where Ũp and Ṽp denote the first p columns of Ũ and Ṽ , respectively, and Σ̃p =
Σ̃(1 : p, 1 : p). Then the p-dimensional representation of A after the PCA stage is

B = ŨTp A,

and the second stage applies LDA/GSVD to B. Letting the superscript B denote
matrices after the PCA stage, we have

SBm = ŨTp SmŨp = Σ̃2
p , (1.21)

which implies LDA/GSVD applied to B produces rank(SBm) = p non-arbitrary
generalized singular value pairs. That is the same number of non-arbitrary pairs as
LDA/GSVD applied to A.

We have the following, which is proven in [HP04].

Theorem 1.4.2 If G is an optimal LDA transformation for B, the p-dimensional
representation of the matrixA via PCA, then ŨpG is an optimal LDA transformation
for A.

In other words, LDA applied to A produces

Y = (ŨpG)TA = GT ŨTp A = GTB,

which is the same result as applying PCA to reduce the dimension to p, followed by
LDA. Note that if the dimension after the PCA stage is at least rank(Hm), that is
B = ŨTl A for l ≥ p, the equivalency argument remains unchanged.

An additional consequence of Eq. (1.21) is that

null(SBm) = {0}.

Due to the relationship in Eq. (1.6) and the fact that Sw and Sb are positive semidef-
inite,

null(SBm) = null(SBw) ∩ null(SBb).

Thus the PCA stage eliminates only the joint null space, as illustrated in Fig-
ure 1.1(b), which is why we don’t lose any discriminatory information before ap-
plying LDA.

1 Cluster-Preserving Dimension Reduction Methods 17

1.4.4 QRD Plus LDA

To simplify the computation in the first stage, we use the reduced QR decomposition
[GV96]

A = QR,

where Q ∈ Rm×n and R ∈ Rn×n, and let Q play the role that Uq or Ũp played be-
fore. Then the n-dimensional representation ofA after the QR decomposition (QRD)
stage is

B = QTA,

and the second stage applies LDA to B. An argument similar to that for LSI [HP04]
yields Theorem 1.4.3.

Theorem 1.4.3 IfG is an optimal LDA transformation forB, the n-dimensional rep-
resentation of the matrix A after QRD, then QG is an optimal LDA transformation
for A.

In other words, LDA applied to A produces

Y = (QG)TA = GTQTA = GTB,

which is the same result as applying QRD to reduce the dimension to n, followed by
LDA.

1.5 Factor Analysis Approximations

In this section, we investigate the use of the centroid method as the first step of a
two-step process. By using a low-cost SVD approximation, we can avoid truncation
and reduce no further than the theoretically optimal intermediate reduced dimension.
That is, the centroid approximation may be both inexpensive and accurate enough to
outperform an expensive SVD approximation that loses discriminatory information
by truncation.

Thurstone [Thu35] gives a complete description of the centroid method, in which
he applies the Wedderburn rank reduction process in Eq. (1.4) to the correlation ma-
trixR = AAT . To approximate the SVD, a sign vector (for which each component is
1 or −1) x is chosen so that triple product xTRx is maximized. This is analogous to
finding a general unit vector in which the triple product is maximized. At the kth step,
a single factor loading vector is solved for at a time, starting with xk = (1 · · · 1)T .
The algorithm changes the sign of the element in xk that increases xTkRkxk the most,
and repeats until any sign change would decrease xTkRkxk.

The rank-one reduction formula is

Rk+1 = Rk −
(
Rkxk√
lk

)(
Rkxk√
lk

)T
where lk = xTkRkxk is the triple product. If rank(R) = r, then a recursion yields

18 P. Howland, H. Park

R = [R1v1 · · ·Rrvr]

1
l1

. . .
1
lr

 vT1 R1

...
vTr Rr

=
[
R1v1√
l1
· · · Rrvr√

lr

]
vT
1 R1√
l1
...

vT
r Rr√
lr

 .

In factor analysis, Rkxk√
lk

is called the kth factor loading vector.
In [Hor65], the centroid method is described for the data matrix itself. That is, to

approximate the SVD of A, sign vectors y and x are chosen so that the bilinear form
yTAx is maximized. At the kth step, the method starts with xk = yk = (1 · · · 1)T .
It alternates between changing the sign of the element in yk that increases yTk Akxk
most, and changing the sign of element in xk that increases it most. After repeating
until any sign change would decrease yTk Akxk, this process yields

A =
∑

(Akxk)(yTk Akxk)
−1(yTk Ak),

where (yTk Akxk)
−1 is split so that yTk Ak is normalized.

Chu and Funderlic [CF02] give an algorithm for factoring the correlation matrix
AAT without explicitly forming a cross product. That is, they approximate SVD of
AAT by maximizing xTAATx over sign vectors x. Their algorithm uses pre-factor
xk and post-factor ATk xk as follows:

Ak+1 = Ak − (Ak(ATk xk))(x
T
kAk(A

T
k xk))

−1(xTkAk).

This yields

A =
∑

(Ak
ATk xk
‖ATk xk‖

)(
xTkAk
‖ATk xk‖

)

They also claim that if truncated, the approximation loses statistical meaning unless
the rows of A are centered at 0. Finally, they show that the cost of computing l
terms of the centroid decomposition involves O(lm2n) complexity for an m × n
data matrix A.

Our goal is to determine how effectively the centroid method approximates the
SVD when used as a first stage before applying LDA/GSVD. Toward that end, we
have initially implemented the centroid method as applied to the data matrix. To
further reduce the computational complexity of the first stage approximation, we
will also implement the implicit algorithm of Chu and Funderlic.

1.6 Document Classification Experiments

The first set of experiments were performed on five categories of abstracts from
the MEDLINE2 database. Each category has 500 documents. The dataset was di-
2 http://www.ncbi.nlm.nih.gov/PubMed

1 Cluster-Preserving Dimension Reduction Methods 19

Table 1.1. MEDLINE training data set

Class Category No. of documents
1 heart attack 250
2 colon cancer 250
3 diabetes 250
4 oral cancer 250
5 tooth decay 250

dimension 22095× 1250

Table 1.2. Classification accuracy (%) on MEDLINE test data

Dimension reduction methods
Classification Full LSI→ 1246 LSI→ 5 LDA/GSVD
methods 22095×1250 1246×1250 5×1250 4×1250
Centroid (L2) 85.2 85.2 71.6 88.7
Centroid (cosine) 88.3 88.3 78.5 83.9
5NN (L2) 79.0 79.0 77.8 81.5
15NN (L2) 83.4 83.4 77.5 88.7
30NN (L2) 83.8 83.8 77.5 88.7
5NN (cosine) 77.8 77.8 77.8 83.8
15NN (cosine) 82.5 82.5 80.2 83.8
30NN (cosine) 83.8 83.8 79.8 83.8

vided into 1250 training documents and 1250 test documents (see Table 1.1). After
stemming and removal of stop words [Kow97], the training set contains 22,095 dis-
tinct terms. Since the dimension (22,095) exceeds the number of training documents
(1250), Sw is singular and classical discriminant analysis breaks down. However,
LDA/GSVD circumvents this singularity problem.

Table 1.2 reports classification accuracy for the test documents in the full space as
well as those in the reduced spaces obtained by LSI and LDA/GSVD methods. Here
we use a centroid-based classification method [PJR03], which assigns a document
to the cluster to whose centroid it is closest, and K nearest neighbor classification
[TK99] for three different values ofK. Closeness is determined by both the L2 norm
and cosine similarity measures.

Since the training set has the nearly full rank of 1246, we use LSI to reduce to
that. As expected, we observe that the classification accuracies match those from
the full space. To illustrate the effectiveness of the GSVD extension, whose opti-
mal reduced dimension is four, LSI reduction to dimension five is included here.
With the exception of centroid-based classification using the cosine similarity mea-
sure, LDA/GSVD results also compare favorably to those in the original full space,
while achieving a significant reduction in time and space complexity. For details, see
[KHP05].

To confirm our theoretical results regarding equivalent two-stage methods, we
use a MEDLINE dataset of five categories of abstracts with 40 documents in each.

20 P. Howland, H. Park

Table 1.3. Traces and classification accuracy (%) on 200 MEDLINE documents

Traces & Dimension reduction methods
classification Full LSI PCA QRD
methods 7519× 200 198× 200 197× 200 200× 200

Trace(Sw) 73048 73048 73048 73048
Trace(Sb) 6229 6229 6229 6229
Centroid (L2) 95% 95% 95% 95%
1NN (L2) 60% 60% 60% 59%
3NN (L2) 49% 48% 49% 48%

Table 1.4. Traces and classification accuracy (%) on 200 MEDLINE documents

Two-stage methods
LSI→ 198 PCA→ 197 QRD→ 200 Centroid→ 198

Traces & + + + +
classification LDA/GSVD LDA/GSVD LDA/GSVD LDA/GSVD LDA/GSVD
methods 4× 200 4× 200 4× 200 4× 200 4× 200

Trace(Sw) 0.05 0.05 0.05 0.05 0.05
Trace(Sb) 3.95 3.95 3.95 3.95 3.95
Centroid (L2) 99% 99% 99% 99% 99%
1NN (L2) 99% 99% 99% 99% 99%
3NN (L2) 98.5% 98.5% 98.5% 99% 98.5%

There are 7519 terms after preprocessing with stemming and removal of stop words
[Kow97]. Since 7519 exceeds the number of documents (200), Sw is singular, and
classical discriminant analysis breaks down. However, LDA/GSVD and the equiva-
lent two-stage methods circumvent this singularity problem.

Table 1.3 confirms the preservation of the traces of individual scatter matrices
upon dimension reduction by the methods we use in the first stage. Specifically,
since rank(A) = 198, using LSI to reduce the dimension to 198 preserves the val-
ues of trace(Sw) and trace(Sb) from the full space. Likewise, PCA reduction to
rank(Hm) = 197 and QRD reduction to n = 200 preserve the individual traces.
The effect of these first stages is further illustrated by the lack of significant differ-
ences in classification accuracies resulting from each method, as compared to the full
space. Closeness is determined by L2 norm or Euclidean distance.

To confirm the equivalence of the two-stage methods to single-stage LDA/GSVD,
we report trace values and classification accuracies for these in Table 1.4. Since Sw
is singular, we cannot compute trace(S−1

w Sb) of the J1 criterion. However, we ob-
serve that trace(Sw) and trace(Sb) are identical for LDA/GSVD and each two-stage
method, and they sum to the final reduced dimension of k − 1 = 4. Classification
results after dimension reduction by each method do not differ significantly, whether
obtained by centroid-based or KNN classification.

Finally, the last column in Table 1.4 illustrates how effectively the centroid
method approximates the SVD when used as a first stage before LDA/GSVD.

1 Cluster-Preserving Dimension Reduction Methods 21

1.7 Conclusion

Our experimental results verify that maximizing the J1 criterion in Eq. (1.8) ef-
fectively optimizes document classification in the reduced-dimensional space, while
LDA/GSVD extends its applicability to text data for which Sw is singular. In addi-
tion, the LDA/GSVD algorithm avoids the numerical problems inherent in explicitly
forming the scatter matrices.

In terms of computational complexity, the most expensive part of Algorithm
LDA/GSVD is step 2, where a complete orthogonal decomposition is needed. As-
suming k ≤ n, t ≤ m, and t = O(n), the complete orthogonal decomposition of K
costs O(nmt) when m ≤ n, and O(m2t) when m > n. Therefore, a fast algorithm
needs to be developed for step 2.

Since K ∈ R(k+n)×m, one way to lower the computational cost of LDA/GSVD
is to first use another method to reduce the dimension of a document vector from
m to n, so that the data matrix becomes a roughly square matrix. For this reason,
it is significant that the single-stage LDA/GSVD is equivalent to two-stage methods
that use either LSI or PCA as a first stage. Either of these maximizes J2(G) =
trace(GTSmG) over all G with GTG = I , preserving trace(Sw) and trace(Sb).
The same can be accomplished with the computationally simpler QRD. Thus we
provide both theoretical and experimental justification for the increasingly common
approach of either LSI + LDA or PCA + LDA, although most studies have reduced
the intermediate dimension below that required for equivalence.

Regardless of which approach is taken in the first stage, LDA/GSVD provides
both a method for circumventing the singularity that occurs in the second stage and
a mathematical framework for understanding the singular case. When applied to the
reduced representation in the second stage, the solution vectors correspond one-to-
one with those obtained using the single-stage LDA/GSVD. Hence the second stage
is a straightforward application of LDA/GSVD to a smaller representation of the
original data matrix. Given the relative expense of LDA/GSVD and the two-stage
methods, we observe that, in general, QRD is a significantly cheaper first stage for
LDA/GSVD than either LSI or PCA. However, if rank(A)� n, LSI may be cheaper
than the reduced QR decomposition, and will avoid the centering of the data required
in PCA. Therefore, the appropriate two-stage method provides a faster algorithm for
LDA/GSVD.

We have also proposed a two-stage approach that combines the theoretical ad-
vantages of linear discriminant analysis with the computational advantages of factor
analysis methods. Here we use the centroid method from factor analysis in the first
stage. The motivation stems from its ability to approximate the SVD while simplify-
ing the computational steps. Factor analysis approximations also have the potential
to preserve sparsity of the data matrix by restricting the domain of vectors to consider
in rank reduction to sign or binary vectors. Our experiments show that the centroid
method may provide a sufficiently accurate SVD approximation for the purposes of
dimension reduction.

Finally, it bears repeating that dimension reduction is only a preprocessing stage.
Since classification and document retrieval will be the dominating parts computation-

22 P. Howland, H. Park

ally, the expense of dimension reduction should be weighed against its effectiveness
in reducing the cost involved in those processes.

Acknowledgment

This work was supported in part by a New Faculty Research Grant from the Vice
President for Research, Utah State University.

References

[BDO95] M.W. Berry, S.T. Dumais, and G.W. O’Brien. Using linear algebra for intelligent
information retrieval. SIAM Review, 37(4):573–595, 1995.

[BHK97] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fisherfaces:
recognition using class specific linear projection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):711–720, 1997.

[Bjö96] Å. Björck, Numerical Methods for Least Squares Problems. SIAM, 1996.
[CF79] R.E. Cline and R.E. Funderlic. The rank of a difference of matrices and associated

generalized inverses. Linear Algebra Appl., 24:185–215, 1979.
[CF02] M.T. Chu and R.E. Funderlic. The centroid decomposition: relationships between

discrete variational decompositions and svd. SIAM J. Matrix Anal. Appl., 23:1025–
1044, 2002.

[CFG95] M.T. Chu, R.E. Funderlic, and G.H. Golub. A rank-one reduction formula and its
applications to matrix factorizations. SIAM Review, 37(4):512–530, 1995.

[DDF+90] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by
latent semantic analysis. Journal of the American Society for Information Science,
41(6):391–407, 1990.

[DHS01] R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, Inc.,
New York, second edition, 2001.

[Fuk90] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,
Boston, second edition, 1990.

[Gut57] L. Guttman. A necessary and sufficient formula for matric factoring. Psychome-
trika, 22(1):79–81, 1957.

[GV96] G. Golub and C. Van Loan. Matrix Computations. John Hopkins University Press,
Baltimore, MD, third edition, 1996.

[Har67] H.H. Harman. Modern Factor Analysis. University of Chicago Press, second edi-
tion, 1967.

[HJP03] P. Howland, M. Jeon, and H. Park. Structure preserving dimension reduction for
clustered text data based on the generalized singular value decomposition. SIAM
J. Matrix Anal. Appl., 25(1):165–179, 2003.

[HMH00] L. Hubert, J. Meulman, and W. Heiser. Two purposes for matrix factorization: a
historical appraisal. SIAM Review, 42(1):68–82, 2000.

[Hor65] P. Horst. Factor Analysis of Data Matrices. Holt, Rinehart and Winston, Inc.,
1965.

[HP04] P. Howland and H. Park. Equivalence of several two-stage methods for linear
discriminant analysis. In Proceedings of Fourth SIAM International Conference
on Data Mining, 2004.

1 Cluster-Preserving Dimension Reduction Methods 23

[JD88] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

[KHP05] H. Kim, P. Howland, and H. Park. Dimension reduction in text classification with
support vector machines. Journal of Machine Learning Research, 6:37–53, 2005.

[Kow97] G. Kowalski. Information Retrieval Systems : Theory and Implementation. Kluwer
Academic Publishers, Boston, 1997.

[LH95] C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. SIAM, 1995.
[Loa76] C.F. Van Loan. Generalizing the singular value decomposition. SIAM J. Numer.

Anal., 13(1):76–83, 1976.
[Ort87] J. Ortega. Matrix Theory: A Second Course. Plenum Press, New York, 1987.
[PJR03] H. Park, M. Jeon, and J.B. Rosen. Lower dimensional representation of text data

based on centroids and least squares. BIT Numer. Math., 42(2):1–22, 2003.
[PS81] C.C. Paige and M.A. Saunders. Towards a generalized singular value decomposi-

tion. SIAM J. Numer. Anal., 18(3):398–405, 1981.
[Sal71] G. Salton. The SMART Retrieval System. Prentice-Hall, Englewood Cliffs, NJ,

1971.
[SM83] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, New York, 1983.
[SW96] D.L. Swets and J. Weng. Using discriminant eigenfeatures for image retrieval.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):831–836,
1996.

[Thu35] L.L. Thurstone. The Vectors of Mind: Multiple Factor Analysis for the Isolation of
Primary Traits. University of Chicago Press, Chicago, 1935.

[TK99] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, 1999.
[Tor01] K. Torkkola. Linear discriminant analysis in document classification. In IEEE

ICDM Workshop on Text Mining, San Diego, 2001.
[Wed34] J.H.M. Wedderburn. Lectures on Matrices, Colloquium Publications, volume 17.

American Mathematical Society, New York, 1934.
[YY03] J. Yang and J.Y. Yang. Why can LDA be performed in PCA transformed space?

Pattern Recognition, 36(2):563–566, 2003.

2

Automatic Discovery of Similar Words

Pierre Senellart and Vincent D. Blondel

Overview

The purpose of this chapter is to review some methods used for automatic extraction
of similar words from different kinds of sources: large corpora of documents, the
World Wide Web, and monolingual dictionaries. The underlying goal of these meth-
ods is in general the automatic discovery of synonyms. This goal, however, is most
of the time too difficult to achieve since it is often hard to distinguish in an automatic
way among synonyms, antonyms, and, more generally, words that are semantically
close to each others. Most methods provide words that are “similar” to each other,
with some vague notion of semantic similarity. We mainly describe two kinds of
methods: techniques that, upon input of a word, automatically compile a list of good
synonyms or near-synonyms, and techniques that generate a thesaurus (from some
source, they build a complete lexicon of related words). They differ because in the
latter case, a complete thesaurus is generated at the same time while there may not
be an entry in the thesaurus for each word in the source. Nevertheless, the purposes
of both sorts of techniques are very similar and we shall therefore not distinguish
much between them.

2.1 Introduction

There are many applications of methods for extracting similar words. For example, in
natural language processing and information retrieval, they can be used to broaden
and rewrite natural language queries. They can also be used as a support for the
compilation of synonym dictionaries, which is a tremendous task. In this chapter we
focus on the search of similar words rather than on applications of these techniques.

Many approaches for the automatic construction of thesauri from large corpora
have been proposed. Some of them are presented in Section 2.2. The interest of
such domain-specific thesauri, as opposed to general-purpose human-written syn-
onym dictionaries, will be stressed. The question of how to combine the result of
different techniques will also be broached. We then look at the particular case of the

26 P. Senellart, V.D. Blondel

World Wide Web, whose large size and other specific features do not allow it to be
dealt with in the same way as more classical corpora. In Section 2.3, we propose
an original approach, which is based on a monolingual dictionary and uses an algo-
rithm that generalizes an algorithm initially proposed by Kleinberg for searching the
Web. Two other methods working from a monolingual dictionary are also presented.
Finally, in light of this example technique, we discuss the more fundamental rela-
tions that exist between text mining and graph mining techniques for the discovery
of similar words.

2.2 Discovery of Similar Words from a Large Corpus

Much research has been carried out about the search for similar words in textual
corpora, mostly for applications in information retrieval tasks. The basic assumption
of most of these approaches is that words are similar if they are used in the same
contexts. The methods differ in the way the contexts are defined (the document, a
textual window, or more or less elaborate grammatical contexts) and the way the
similarity function is computed.

Depending on the type of corpus, we may obtain different emphasis in the re-
sulting lists of synonyms. The thesaurus built from a corpus is domain-specific to
this corpus and is thus more adapted to a particular application in this domain than
a general human-written dictionary. There are several other advantages to the use of
computer-written thesauri. In particular, they may be rebuilt easily to mirror a change
in the collection of documents (and thus in the corresponding field), and they are not
biased by the lexicon writer (but are of course biased by the corpus in use). Obvi-
ously, however, human-written synonym dictionaries are bound to be more liable,
with fewer gross mistakes. In terms of the two classical measures of information re-
trieval, we expect computer-written thesauri to have a better recall (or coverage) and
a lower precision (except for words whose meaning is highly biased by the applica-
tion domain) than general-purpose human-written synonym dictionaries.

We describe below three methods that may be used to discover similar words. We
do not pretend to be exhaustive, but have rather chosen to present some of the main
approaches, selected for the variety of techniques used and specific intents. Variants
and related methods are briefly discussed where appropriate. In Section 2.2.1, we
present a straightforward method, involving a document vector space model and the
cosine similarity measure. This method is used by Chen and Lynch to extract infor-
mation from a corpus on East-bloc computing [CL92] and we briefly report their
results. We then look at an approach proposed by Crouch [Cro90] for the automatic
construction of a thesaurus. The method is based on a term vector space model and
term discrimination values [SYY75], and is specifically adapted for words that are
not too frequent. In Section 2.2.3, we focus on Grefenstette’s SEXTANT system
[Gre94], which uses a partial syntactical analysis. We might need a way to combine
the result of various different techniques for building thesauri: this is the object of
Section 2.2.4, which describes the ensemble method. Finally, we consider the par-

2 Automatic Discovery of Similar Words 27

ticular case of the World Wide Web as a corpus, and discuss the problem of finding
synonyms in a very large collection of documents.

2.2.1 A Document Vector Space Model

The first obvious definition of similarity with respect to a context is, given a collec-
tion of documents, to say that terms are similar if they tend to occur in the same doc-
uments. This can be represented in a multidimensional space, where each document
is a dimension and each term is a vector in the document space with boolean entries
indicating whether the term appears in the corresponding document. It is common
in text mining to use this type of vector space model. In the dual model, terms are
coordinates and documents are vectors in term space; we see an application of this
dual model in the next section.

Thus, two terms are similar if their corresponding vectors are close to each other.
The similarity between the vector i and the vector j is computed using a similarity
measure, such as cosine:

cos(i, j) =
i · j√

i · i× j · j
where i · j is the inner product of i and j. With this definition we have |cos(i, j)| ≤ 1,
defining an angle θ with cos θ = cos(i, j) as the angle between i and j. Similar terms
tend to occur in the same documents and the angle between them is small (they tend
to be collinear). Thus, the cosine similarity measure is close to ±1. On the contrary,
terms with little in common do not occur in the same documents, the angle between
them is close to π/2 (they tend to be orthogonal), and the cosine similarity measure
is close to zero.

Cosine is a commonly used similarity measure. However, one must not forget
that the mathematical justification of its use is based on the assumption that the axes
are orthogonal, which is seldom the case in practice since documents in the collection
are bound to have something in common and not be completely independent.

Chen and Lynch compare in [CL92] the cosine measure with another measure,
referred to as the cluster measure. The cluster measure is asymmetrical, thus giving
asymmetrical similarity relationships between terms. It is defined by:

cluster(i, j) =
i · j
‖i‖1

where ‖i‖1 is the sum of the magnitudes of i’s coordinates (i.e., the l1-norm of i).
For both these similarity measures the algorithm is then straightforward: Once

a similarity measure has been selected, its value is computed between every pair of
terms, and the best similar terms are kept for each term.

The corpus Chen and Lynch worked on was a 200-MB collection of various text
documents on computing in the former East-bloc countries. They did not run the
algorithms on the raw text. The whole database was manually annotated so that ev-
ery document was assigned a list of appropriate keywords, countries, organization

28 P. Senellart, V.D. Blondel

names, journal names, person names, and folders. Around 60, 000 terms were ob-
tained in this way and the similarity measures were computed on them.

For instance, the best similar keywords (with the cosine measure) for the keyword
technology transfer were: export controls, trade, covert, export, import, micro-
electronics, software, microcomputer, and microprocessor. These are indeed related
(in the context of the corpus) and words like trade, import, and export are likely to
be some of the best near-synonyms in this context.

The two similarity measures were compared on randomly chosen terms with
lists of words given by human experts in the field. Chen and Lynch report that the
cluster algorithm presents a better recall (that is, the proportion of relevant terms
that are selected) than cosine and human experts. Both similarity measures exhibit
similar precisions (that is, the proportion of selected terms that are relevant), which
are inferior to that of human experts, as expected. The asymmetry of the cluster
measure here seems to be a real advantage.

2.2.2 A Thesaurus of Infrequent Words

Crouch presents in [Cro90] a method for the automatic construction of a thesaurus,
consisting of classes of similar words, with only words appearing seldom in the cor-
pus. Her purpose is to use this thesaurus to rewrite queries asked to an information
retrieval system. She uses a term vector space model, which is the dual of the space
used in previous section: Words are dimensions and documents are vectors. The pro-
jection of a vector along an axis is the weight of the corresponding word in the doc-
ument. Different weighting schemes might be used; one that is effective and widely
used is the “term frequency inverse document frequency” (tf-idf), that is, the number
of times the word appears in the document multiplied by a (monotonous) function of
the inverse of the number of documents the word appears in. Terms that appear often
in a document and do not appear in many documents have therefore an important
weight.

As we saw earlier, we can use a similarity measure such as cosine to characterize
the similarity between two vectors (that is, two documents). The algorithm proposed
by Crouch, presented in more detail below, is to cluster the set of documents, accord-
ing to this similarity, and then to select indifferent discriminators from the resulting
clusters to build thesaurus classes.

Salton, Yang, and Yu introduce in [SYY75] the notion of term discrimination
value. It is a measure of the effect of the addition of a term (as a dimension) to
the vector space on the similarities between documents. A good discriminator is a
term that tends to raise the distances between documents; a poor discriminator tends
to lower the distances between documents; finally, an indifferent discriminator does
not change much the distances between documents. Exact or even approximate com-
putation of all term discrimination values is an expensive task. To avoid this problem,
the authors propose to use the term document frequency (i.e., the number of docu-
ments the term appears in) instead of the discrimination value, since experiments
show they are strongly related. Terms appearing in less than about 1% of the doc-
uments are mostly indifferent discriminators; terms appearing in more than 1% and

2 Automatic Discovery of Similar Words 29

less than 10% of the documents are good discriminators; very frequent terms are
poor discriminators. Neither good discriminators (which tend to be specific to sub-
parts of the original corpus) nor poor discriminators (which tend to be stop words or
other universally apparent words) are used here.

Crouch suggests using low-frequency terms to form thesaurus classes (these
classes should thus be made of indifferent discriminators). The first idea to build
the thesaurus would be to cluster together these low-frequency terms with an ade-
quate clustering algorithm. This is not very interesting, however, since, by defini-
tion, one has not much information about low-frequency terms. But the documents
themselves may be clustered in a meaningful way. The complete link clustering al-
gorithm, presented next and which produces small and tight clusters, is adapted to
the problem. Each document is first considered as a cluster by itself, and, iteratively,
the two closest clusters—the similarity between clusters is defined as the minimum
of all similarities (computed by the cosine measure) between pairs of documents in
the two clusters—are merged together, until the distance between clusters becomes
higher than a user-supplied threshold.

When this clustering step is performed, low-frequency words are extracted from
each cluster, thus forming corresponding thesaurus classes. Crouch does not describe
these classes but has used them directly for broadening information retrieval queries,
and has observed substantial improvements in both recall and precision, on two clas-
sical test corpora. It is therefore legitimate to assume that words in the thesaurus
classes are related to each other. This method only works on low-frequency words,
but the other methods presented here do not generally deal well with such words for
which we have little information.

2.2.3 Syntactical Contexts

Perhaps the most successful methods for extracting similar words from text are based
on a light syntactical analysis, and the notion of syntactical context: For instance, two
nouns are similar if they occur as the subject or the direct object of the same verbs.
We present here in detail an approach by Grefenstette [Gre94], namely SEXTANT
(Semantic EXtraction from Text via Analyzed Networks of Terms); other similar
works are discussed next.

Lexical Analysis

Words in the corpus are separated using a simple lexical analysis. A proper name
analyzer is also applied. Then, each word is looked up in a human-written lexicon
and is assigned a part of speech. If a word has several possible parts of speech, a
disambiguator is used to choose the most probable one.

Noun and Verb Phrase Bracketing

Noun and verb phrases are then detected in the sentences of the corpus, using starting,
ending, and continuation rules. For instance, a determiner can start a noun phrase, a

30 P. Senellart, V.D. Blondel

noun can follow a determiner in a noun phrase, an adjective cannot neither start, end,
or follow any kind of word in a verb phrase, and so on.

Parsing

Several syntactic relations (or contexts) are then extracted from the bracketed sen-
tences, requiring five successive passes over the text. Table 2.1, taken from [Gre94],
shows the list of extracted relations.

Table 2.1. Syntactical relations extracted by SEXTANT

ADJ an adjective modifies a noun (e.g., civil unrest)
NN a noun modifies a noun (e.g., animal rights)

NNPREP a noun that is the object of a proposi-
tion modifies a preceding noun

(e.g., measurements along the crest)

SUBJ a noun is the subject of a verb (e.g., the table shook)
DOBJ a noun is the direct object of a verb (e.g., he ate an apple)
IOBJ a noun in a prepositional phrase mod-

ifying a verb
(e.g., the book was placed on the table)

The relations generated are thus not perfect (on a sample of 60 sentences Grefen-
stette found a correctness ratio of 75%) and could be better if a more elaborate parser
was used, but it would be more expensive too. Five passes over the text are enough
to extract these relations, and since the corpus used may be very large, backtracking,
recursion or other time-consuming techniques used by elaborate parsers would be
inappropriate.

Similarity

Grefenstette focuses on the similarity between nouns; other parts of speech are not
dealt with. After the parsing step, a noun has a number of attributes: all the words
that modify it, along with the kind of syntactical relation (ADJ for an adjective, NN
or NNPREP for a noun and SUBJ, DOBJ or IOBJ for a verb). For instance, the
noun cause, which appears 83 times in a corpus of medical abstracts, has 67 unique
attributes in this corpus. These attributes constitute the context of the noun, on which
similarity computations are made. Each attribute is assigned a weight by:

weight(att) = 1 +
∑

noun i

patt,i log(patt,i)
log(total number of relations)

where
patt,i =

number of times att appears with i
total number of attributes of i

The similarity measure used by Grefenstette is a weighted Jaccard similarity
measure defined as follows:

2 Automatic Discovery of Similar Words 31

jac(i, j) =

∑
att attribute of both i and j weight(att)∑
att attribute of either i or j weight(att)

Results

Table 2.2. SEXTANT similar words for case, from different corpora

1. CRAN (Aeronautics abstract)
case: characteristic, analysis, field, distribution, flaw, number, layer, problem

2. JFK (Articles on JFK assassination conspiracy theories)
case: film, evidence, investigation, photograph, picture, conspiracy, murder

3. MED (Medical abstracts)
case: change, study, patient, result, treatment, child, defect, type, disease, lesion

Grefenstette used SEXTANT on various corpora and many examples of the re-
sults returned are available in [Gre94]. Table 2.2 shows the most similar words of
case in three completely different corpora. It is interesting to note that the corpus
has a great impact on the meaning of the word according to which similar words are
selected. This is a good illustration of the interest of working on a domain-specific
corpus.

Table 2.3. SEXTANT similar words for words with most contexts in Grolier’s Encyclopedia
animal articles

species bird, fish, family, group, form, animal, insect, range, snake
fish animal, species, bird, form, snake, insect, group, water
bird species, fish, animal, snake, insect, form, mammal, duck
water sea, area, region, coast, forest, ocean, part, fish, form, lake
egg nest, female, male, larva, insect, day, form, adult

Table 2.3 shows other examples, in a corpus on animals. Most words are closely
related to the initial word and some of them are indeed very good (sea, ocean, lake
for water; family, group for species. . .) There remain completely unrelated words
though, such as day for egg.

Other Techniques Based on a Light Syntactical Analysis

A number of works deal with the extraction of similar words from corpora with the
help of a light syntactical analysis. They rely on grammatical contexts, which can be
seen as 3-tuples (w, r, w′), where w and w′ are two words and r characterizes the
relation between w and w′. In particular, [Lin98] and [CM02] propose systems quite
similar to SEXTANT, and apply them to much larger corpora. Another interesting

32 P. Senellart, V.D. Blondel

feature of these works is that the authors try to compare numerous similarity mea-
sures; [CM02] especially presents an extensive comparison of the results obtained
with different similarity and weight measures.

Another interesting approach is presented in [PTL93]. The relative entropy be-
tween distributions of grammatical contexts for each word is used as a similarity
measure between these two words, and this similarity measure is used in turn for a
hierarchical clustering of the set of words. This clustering provides a rich thesaurus
of similar words. Only the DOBJ relation is considered in [PTL93], but others can
be used in the same manner.

2.2.4 Combining the Output of Multiple Techniques

The techniques presented above may use different similarity measures, different
parsers, or may have different inherent biases. In some contexts, using a combination
of various techniques may be useful to increase the overall quality of lists of similar
words. A general solution to this problem in the general context of machine learn-
ing is the use of ensemble methods [Die00]; these methods may be fairly elaborate,
but a simple one (Bayesian voting) amounts to performing some renormalization
of the similarity scores and averaging them together. Curran uses such a technique
in [Cur02] to aggregate the results of different techniques based on a light parsing;
each of these uses the same similarity measure, making the renormalization step use-
less. Another use of the combination of different techniques is to be able to benefit
from different kinds of sources: Wu and Zhou [WZ03] extend Curran’s approach to
derive a thesaurus of similar words from very different sources: a monolingual dictio-
nary (using a method similar to the distance method of Section 2.3.3), a monolingual
corpus (using grammatical contexts), and the combination of a bilingual dictionary
and a bilingual corpus with an original algorithm.

2.2.5 How to Deal with the Web

The World Wide Web is a very particular corpus: Its size simply cannot be compared
with the largest corpora traditionally used for synonym extraction, its access times
are high, and it is also richer and more lively than any other corpus. Moreover, a
large part of it is conveniently indexed by search engines. One could imagine that its
hyperlinked structure could be of some use too (see the discussion in Section 2.3.7).
And of course it is not a domain-specific source, though domain-specific parts of
the Web could be extracted by restricting ourselves to pages matching appropriate
keyword queries. Is it possible to use the Web for the discovery of similar words?
Obviously, because of the size of the Web, none of the above techniques can apply.

Turney partially deals with the issue in [Tur01]. He does not try to obtain a list of
synonyms of a word i but, given a word i, he proposes a way to assign a synonymy
score to any word j. His method was validated against synonym recognition ques-
tions extracted from two English tests: the Test Of English as a Foreign Language
(TOEFL) and the English as a Second Language test (ESL). Four different synonymy

2 Automatic Discovery of Similar Words 33

scores are compared, and each of these use the advanced search capabilities of the
Altavista search engine (http://www.altavista.com/).

score1(j) =
hits(i AND j)

hits(j)

score2(j) =
hits(i NEAR j)

hits(j)

score3(j) =
hits ((i NEAR j) AND NOT ((iOR j) NEAR not))

hits (j AND NOT(j NEAR not))

score4(j) =
hits ((i NEAR j) AND context AND NOT ((iOR j) NEAR not))

hits (j AND context AND NOT(j NEAR not))

In these expressions, hits(·) represents the number of pages returned by Altavista
for the corresponding query, AND, OR, and NOT are the classical boolean opera-
tors, NEAR imposes that the two words are not separated by more than ten words,
and context is a context word (a context was given along with the question in ESL,
the context word may be automatically derived from it). The difference between
score2 and score3 was introduced in order not to assign a good score to antonyms.

The four scores are presented in increasing order of quality of the corresponding
results: score3 gives the right synonym for 73.75% of the questions from TOEFL
(score4 was not applicable since no context was given) and score4 gives the right
synonym in 74% of the questions from ESL. These results are arguably good, since,
as reported by Turney, the average score of TOEFL by a large sample of students is
64.5%.

This algorithm cannot be used to obtain a global synonym dictionary, as it is too
expensive to run for each candidate word in a dictionary because of network access
times, but it may be used, for instance, to refine a list of synonyms given by another
method.

2.3 Discovery of Similar Words in a Dictionary

2.3.1 Introduction

We propose now a method for automatic synonym extraction in a monolingual dic-
tionary [Sen01]. Our method uses a graph constructed from the dictionary and is
based on the assumption that synonyms have many words in common in their defi-
nitions and are used in the definition of many common words. Our method is based
on an algorithm that generalizes the HITS algorithm initially proposed by Kleinberg
for searching the Web [Kle99].

Starting from a dictionary, we first construct the associated dictionary graph G;
each word of the dictionary is a vertex of the graph and there is an edge from u to
v if v appears in the definition of u. Then, associated to a given query word w, we
construct a neighborhood graph Gw that is the subgraph of G whose vertices are
those pointed to by w or pointing to w. Finally, we look in the graph Gw for vertices
that are similar to the vertex 2 in the structure graph

34 P. Senellart, V.D. Blondel

1 −→ 2 −→ 3

and choose these as synonyms. For this last step we use a similarity measure between
vertices in graphs that was introduced in [BGH+04].

The problem of searching synonyms is similar to that of searching similar pages
on the Web, a problem that is dealt with in [Kle99] and [DH99]. In these references,
similar pages are found by searching authoritative pages in a subgraph focused on the
original page. Authoritative pages are pages that are similar to the vertex “authority”
in the structure graph

hub −→ authority.

We ran the same method on the dictionary graph and obtained lists of good hubs
and good authorities of the neighborhood graph. There were duplicates in these lists
but not all good synonyms were duplicated. Neither authorities nor hubs appear to
be the right concept for discovering synonyms.

In the next section, we describe our method in some detail. In Section 2.3.3, we
briefly survey two other methods that are used for comparison. We then describe
in Section 2.3.4 how we have constructed a dictionary graph from 1913 Webster’s
dictionary. We compare next the three methods on a sample of words chosen for
their variety. Finally, we generalize the approach presented here by discussing the
relations existing between the fields of text mining and graph mining, in the context
of synonym discovery.

2.3.2 A Generalization of Kleinberg’s Method

In [Kle99], Jon Kleinberg proposes the HITS method for identifying Web pages that
are good hubs or good authorities for a given query. For example, for the query
“automobile makers,” the home pages of Ford, Toyota and other car makers are good
authorities, whereas Web pages that list these home pages are good hubs. To identify
hubs and authorities, Kleinberg’s method exploits the natural graph structure of the
Web in which each Web page is a vertex and there is an edge from vertex a to vertex
b if page a points to page b. Associated to any given query word w, the method first
constructs a “focused subgraph” Gw analogous to our neighborhood graph and then
computes hub and authority scores for all vertices of Gw. These scores are obtained
as the result of a converging iterative process. Initial hub and authority weights are all
set to one, x1 = 1 and x2 = 1. These initial weights are then updated simultaneously
according to a mutually reinforcing rule: The hub score of the vertex i, x1

i , is set
equal to the sum of the authority scores of all vertices pointed by i and, similarly,
the authority scores of the vertex j, x2

j , is set equal to the sum of the hub scores of
all vertices pointing to j. Let Mw be the adjacency matrix associated to Gw. The
updating equations can be written as(

x1

x2

)
t+1

=
(

0 Mw

MT
w 0

)(
x1

x2

)
t

t = 0, 1, . . .

2 Automatic Discovery of Similar Words 35

It can be shown that under weak conditions the normalized vector x1 (respec-
tively, x2) converges to the normalized principal eigenvector of MwM

T
w (respec-

tively, MT
wMw).

The authority score of a vertex v in a graphG can be seen as a similarity measure
between v in G and vertex 2 in the graph

1 −→ 2.

Similarly, the hub score of v can be seen as a measure of similarity between v in G
and vertex 1 in the same structure graph. As presented in [BGH+04], this measure
of similarity can be generalized to graphs that are different from the authority-hub
structure graph. We describe below an extension of the method to a structure graph
with three vertices and illustrate an application of this extension to synonym extrac-
tion.

Let G be a dictionary graph. The neighborhood graph of a word w is constructed
with the words that appear in the definition of w and those that use w in their defi-
nition. Because of this, the word w in Gw is similar to the vertex 2 in the structure
graph (denoted P3)

1 −→ 2 −→ 3.

For instance, Figure 2.1 shows a part of the neighborhood graph of likely. The
words probable and likely in the neighborhood graph are similar to the vertex 2 in
P3. The words truthy and belief are similar to, respectively, vertices 1 and 3. We say
that a vertex is similar to the vertex 2 of the preceding graph if it points to vertices
that are similar to the vertex 3 and if it is pointed to by vertices that are similar to the
vertex 1. This mutually reinforcing definition is analogous to Kleinberg’s definitions
of hubs and authorities.

invidious

truthy

verisimilar

likely

probable

adapted

giving

belief

probably

Fig. 2.1. Subgraph of the neighborhood graph of likely.

The similarity between vertices in graphs can be computed as follows. To every
vertex i of Gw we associate three scores (as many scores as there are vertices in the
structure graph) x1

i , x
2
i , and x3

i and initially set them equal to one. We then iteratively
update the scores according to the following mutually reinforcing rule: The score x1

i

is set equal to the sum of the scores x2
j of all vertices j pointed by i; the score x2

i

36 P. Senellart, V.D. Blondel

is set equal to the sum of the scores x3
j of vertices pointed by i and the scores x1

j of
vertices pointing to i; finally, the score x3

i is set equal to the sum of the scores x2
j

of vertices pointing to i. At each step, the scores are updated simultaneously and are
subsequently normalized:

xk ← xk

‖xk‖
(k = 1, 2, 3).

It can be shown that when this process converges, the normalized vector score x2

converges to the normalized principal eigenvector of the matrix MwM
T
w +MT

wMw.
Thus, our list of synonyms can be obtained by ranking in decreasing order the entries
of the principal eigenvector of MwM

T
w +MT

wMw.

2.3.3 Other Methods

In this section, we briefly describe two synonym extraction methods that will be
compared to ours on a selection of four words.

The Distance Method

One possible way of defining a synonym distance is to declare that two words are
close to being synonyms if they appear in the definition of many common words and
have many common words in their definition. A way of formalizing this is to define
a distance between two words by counting the number of words that appear in one
of the definitions but not in both, and add to this the number of words that use one
of the words but not both in their definition. Let A be the adjacency matrix of the
dictionary graph, and i and j be the vertices associated to two words. The distance
between i and j can be expressed as

d(i, j) = ‖(Ai,· −Aj,·)‖1 + ‖(A·,i −A·,j)T ‖1

where ‖ · ‖1 is the l1-norm. For a given word i we may compute d(i, j) for all j and
sort the words according to increasing distance.

Unlike the other methods presented here, we can apply this algorithm directly
to the entire dictionary graph rather than on the neighborhood graph. However, this
gives very bad results: The first two synonyms of sugar in the dictionary graph
constructed from Webster’s Dictionary are pigwidgeon and ivoride. We shall see in
Section 2.3.5 that much better results are achieved if we use the neighborhood graph.

ArcRank

ArcRank is a method introduced by Jannink and Wiederhold for building a thesaurus
[JW99]; their intent was not to find synonyms but related words. The method is based
on the PageRank algorithm, used by the Web search engine Google and described
in [BP98]. PageRank assigns a ranking to each vertex of the dictionary graph in the

2 Automatic Discovery of Similar Words 37

following way. All vertices start with identical initial ranking and then iteratively
distribute it to the vertices they point to, while receiving the sum of the ranks from
vertices they are pointed to by. Under conditions that are often satisfied in practice,
the normalized ranking converges to a stationary distribution corresponding to the
principal eigenvector of the adjacency matrix of the graph. This algorithm is actually
slightly modified so that sources (nodes with no incoming edges, that is words not
used in any definition) and sinks (nodes with no outgoing edges, that is words not
defined) are not assigned extreme rankings.

ArcRank assigns a ranking to each edge according to the ranking of its vertices.
If |as| is the number of outgoing edges from vertex s and pt is the page rank of vertex
t, then the edge relevance of (s, t) is defined by

rs,t =
ps/|as|
pt

Edge relevances are then converted into rankings. Those rankings are computed
only once. When looking for words related to some word w, one selects the edges
starting from or arriving to w that have the best rankings and extract the correspond-
ing incident vertices.

2.3.4 Dictionary Graph

Before proceeding to the description of our experiments, we describe how we con-
structed the dictionary graph. We used the Online Plain Text English Dictionary
[OPT], which is based on the “Project Gutenberg Etext of Webster’s Unabridged
Dictionary,” which is in turn based on the 1913 U.S. Webster’s Unabridged Dic-
tionary. The dictionary consists of 27 HTML files (one for each letter of the al-
phabet, and one for several additions). These files are available from the Web-
site http://www.gutenberg.net/. To obtain the dictionary graph, several
choices had to be made.

• Some words defined in Webster’s dictionary are multi-words (e.g., All Saints,
Surinam toad). We did not include these words in the graph since there is no
simple way to decide, when the words are found side-by-side, whether or not
they should be interpreted as single words or as a multi-word (for instance, at
one is defined but the two words at and one appear several times side-by-side in
the dictionary in their usual meanings).

• Some head words of definitions were prefixes or suffixes (e.g., un-, -ous), these
were excluded from the graph.

• Many words have several meanings and are head words of multiple definitions.
For, once more, it is not possible to determine which meaning of a word is em-
ployed in a definition, we gathered the definitions of a word into a single one.

• The recognition of inflected forms of a word in a definition is also a problem. We
dealt with the cases of regular and semiregular plurals (e.g., daisies, albatrosses)
and regular verbs, assuming that irregular forms of nouns or verbs (e.g., oxen,
sought) had entries in the dictionary. Note that a classical stemming here would

38 P. Senellart, V.D. Blondel

not be of use, since we do not want to merge the dictionary entries of lexically
close words, such as connect and connection).

The resulting graph has 112,169 vertices and 1,398,424 edges, and can be down-
loaded at http://pierre.senellart.com/stage maitrise/graphe/.
We analyzed several features of the graph: connectivity and strong connectivity, num-
ber of connected components, distribution of connected components, degree distri-
butions, graph diameter, etc. Our findings are reported in [Sen01].

We also decided to exclude stop words in the construction of neighborhood
graphs, that is words that appear in more than L definitions (best results were ob-
tained for L ≈ 1, 000).

2.3.5 Results

To be able to compare the different methods presented above (Distance, ArcRank,
and our method based on graph similarity) and to evaluate their relevance, we ex-
amine the first ten results given by each of them for four words, chosen for their
variety.

disappear a word with various synonyms such as vanish.
parallelogram a very specific word with no true synonyms but with some similar

words: quadrilateral, square, rectangle, rhomb. . .
sugar a common word with different meanings (in chemistry, cooking, di-

etetics. . .). One can expect glucose as a candidate.
science a common and vague word. It is hard to say what to expect as syn-

onym. Perhaps knowledge is the best option.

Words of the English language belong to different parts of speech: nouns, verbs,
adjectives, adverbs, prepositions, etc. It is natural, when looking for a synonym of a
word, to get only words of the same kind. Websters’s Dictionary provides for each
word its part of speech. But this presentation has not been standardized and we
counted no less than 305 different categories. We have chosen to select five types:
nouns, adjectives, adverbs, verbs, others (including articles, conjunctions, and inter-
jections), and have transformed the 305 categories into combinations of these types.
A word may of course belong to different types. Thus, when looking for synonyms,
we have excluded from the list all words that do not have a common part of speech
with our word. This technique may be applied with all synonym extraction methods
but since we did not implement ArcRank, we did not use it for ArcRank. In fact,
the gain is not huge, because many words in English have several grammatical na-
tures. For instance, adagio or tete-a-tete are at the same time nouns, adjectives, and
adverbs.

We have also included lists of synonyms coming from WordNet [Wor], which is
human-written. The order of appearance of the words for this last source is arbitrary,
whereas it is well defined for the distance method and for our method. The results
given by the Web interface implementing ArcRank are two rankings, one for words
pointed by and one for words pointed to. We have interleaved them into one ranking.

2 Automatic Discovery of Similar Words 39

We have not kept the query word in the list of synonyms, since this has not much
sense except for our method, where it is interesting to note that in every example we
have experimented with, the original word appeared as the first word of the list (a
point that tends to give credit to the method).

To have an objective evaluation of the different methods, we asked a sample of
21 persons to give a mark (from 0 to 10, 10 being the best one) to the lists of syn-
onyms, according to their relevance to synonymy. The lists were of course presented
in random order for each word. Tables 2.4, 2.5, 2.6, and 2.7 give the results.

Table 2.4. Proposed synonyms for disappear

Distance Our method ArcRank WordNet
1 vanish vanish epidemic vanish
2 wear pass disappearing go away
3 die die port end
4 sail wear dissipate finish
5 faint faint cease terminate
6 light fade eat cease
7 port sail gradually
8 absorb light instrumental
9 appear dissipate darkness
10 cease cease efface

Mark 3.6 6.3 1.2 7.5
Std dev. 1.8 1.7 1.2 1.4

Concerning disappear, the distance method (restricted to the neighborhood
graph) and our method do pretty well. vanish, cease, fade, die, pass, dissipate,
faint are very relevant (one must not forget that verbs necessarily appear without their
postposition). dissipate or faint are relevant too. However, some words like light
or port are completely irrelevant, but they appear only in 6th, 7th, or 8th position. If
we compare these two methods, we observe that our method is better: An important
synonym like pass takes a good ranking, whereas port or appear go out of the top
ten words. It is hard to explain this phenomenon, but we can say that the mutually
reinforcing aspect of our method is apparently a positive point. On the contrary, Arc-
Rank gives rather poor results with words such as eat, instrumental, or epidemic
that are out of the point.

Because the neighborhood graph of parallelogram is rather small (30 vertices),
the first two algorithms give similar results, which are not absurd: square, rhomb,
quadrilateral, rectangle, and figure are rather interesting. Other words are less rel-
evant but still are in the semantic domain of parallelogram. ArcRank, which also
works on the same subgraph, does not give as interesting words, although gnomon
makes its appearance, since consequently and popular are irrelevant. It is interest-
ing to note that WordNet here is less rich because it focuses on a particular aspect
(quadrilateral).

40 P. Senellart, V.D. Blondel

Table 2.5. Proposed synonyms for parallelogram

Distance Our method ArcRank WordNet
1 square square quadrilateral quadrilateral
2 parallel rhomb gnomon quadrangle
3 rhomb parallel right-lined tetragon
4 prism figure rectangle
5 figure prism consequently
6 equal equal parallelepiped
7 quadrilateral opposite parallel
8 opposite angles cylinder
9 altitude quadrilateral popular
10 parallelepiped rectangle prism

Mark 4.6 4.8 3.3 6.3
Std dev. 2.7 2.5 2.2 2.5

Table 2.6. Proposed synonyms for sugar

Distance Our method ArcRank WordNet
1 juice cane granulation sweetening
2 starch starch shrub sweetener
2 cane sucrose sucrose carbohydrate
4 milk milk preserve saccharide
5 molasses sweet honeyed organic compound
6 sucrose dextrose property saccarify
7 wax molasses sorghum sweeten
8 root juice grocer dulcify
9 crystalline glucose acetate edulcorate
10 confection lactose saccharine dulcorate

Mark 3.9 6.3 4.3 6.2
Std dev. 2.0 2.4 2.3 2.9

Once more, the results given by ArcRank for sugar are mainly irrelevant (prop-
erty, grocer. . .) Our method is again better than the distance method: starch, su-
crose, sweet, dextrose, glucose, and lactose are highly relevant words, even if the
first given near-synonym (cane) is not as good. Its given mark is even better than for
WordNet.

The results for science are perhaps the most difficult to analyze. The distance
method and ours are comparable. ArcRank gives perhaps better results than for other
words but is still poorer than the two other methods.

As a conclusion, the first two algorithms give interesting and relevant words,
whereas it is clear that ArcRank is not adapted to the search for synonyms. The vari-
ation of Kleinberg’s algorithm and its mutually reinforcing relationship demonstrates
its superiority on the basic distance method, even if the difference is not obvious for
all words. The quality of the results obtained with these different methods is still
quite different from that of human-written dictionaries such as WordNet. Still, these
automatic techniques show their interest, since they present more complete aspects

2 Automatic Discovery of Similar Words 41

Table 2.7. Proposed synonyms for science

Distance Our method ArcRank WordNet
1 art art formulate knowledge domain
2 branch branch arithmetic knowledge base
3 nature law systematize discipline
4 law study scientific subject
5 knowledge practice knowledge subject area
6 principle natural geometry subject field
7 life knowledge philosophical field
8 natural learning learning field of study
9 electricity theory expertness ability
10 biology principle mathematics power

Mark 3.6 4.4 3.2 7.1
Std dev. 2.0 2.5 2.9 2.6

of a word than human-written dictionaries. They can profitably be used to broaden a
topic (see the example of parallelogram) and to help with the compilation of syn-
onym dictionaries.

2.3.6 Perspectives

A first immediate improvement of our method would be to work on a larger subgraph
than the neighborhood subgraph. The neighborhood graph we have introduced may
be rather small, and therefore may not include important near-synonyms. A good ex-
ample is ox, of which cow seems to be a good synonym. Unfortunately, ox does not
appear in the definition of cow, neither does the latter appear in the definition of the
former. Thus, the methods described above cannot find this word. Larger neighbor-
hood graphs could be obtained either as Kleinberg does in [Kle99] for searching sim-
ilar pages on the Web, or as Dean and Henzinger do in [DH99] for the same purpose.
However, such subgraphs are not any longer focused on the original word. That im-
plies that our variation of Kleinberg’s algorithm “forgets” the original word and may
produce irrelevant results. When we use the vicinity graph of Dean and Henzinger,
we obtain a few interesting results with specific words: For example, trapezoid ap-
pears as a near-synonym of parallelogram or cow as a near-synonym of ox. Yet
there are also many degradations of performance for more general words. Perhaps a
choice of neighborhood graph that depends on the word itself would be appropriate.
For instance, the extended vicinity graph may be used either for words whose neigh-
borhood graph has less than a fixed number of vertices, or for words whose incoming
degree is small, or for words who do not belong to the largest connected component
of the dictionary graph.

One may wonder whether the results obtained are specific to Webster’s dictio-
nary or whether the same methods could work on other dictionaries (using domain-
specific dictionaries could for instance generate domain-specific thesauri, whose in-
terest was mentioned in Section 2.2), in English or in other languages. Although the
latter is most likely since our techniques were not designed for the particular graph

42 P. Senellart, V.D. Blondel

we worked on, there are undoubtedly differences with other languages. For example,
in French, postpositions do not exist and thus verbs do not have as many different
meanings as in English. Besides, it is much rarer in French to have the same word for
the noun and for the verb than in English. Furthermore, the way words are defined
vary from language to language. Despite these differences, preliminary studies on a
monolingual French dictionary seem to show equally good results.

2.3.7 Text Mining and Graph Mining

All three methods described for synonym extraction from a dictionary use classi-
cal techniques from text mining: stemming (in our case, in the form of a simple
lemmatization), stop-word removal, a vector space model for representing dictio-
nary entries. . . But a specificity of monolingual dictionaries makes this vector space
very peculiar: Both the dimensions of the vector space and the vectors stand for the
same kind of objects—words. In other words, rows and columns of the correspond-
ing matrix are indexed by the same set. This peculiarity makes it possible to see the
dictionary, and this vector space model, as a (possibly weighted) directed graph. This
allows us to see the whole synonym extraction problem as a problem of information
retrieval on graphs, for which a number of different approaches have been elaborated,
especially in the case of the World Wide Web [BP98, DH99, Kle99]. Thus, classical
techniques from both text mining (distance between vectors, cosine similarity, tf-idf
weighting. . .) and graph mining (cocitation count, PageRank, HITS, graph similarity
measures. . .) can be used in this context. A study [OS07] on the Wikipedia on-line
encyclopedia [Wik], which is similar to a monolingual dictionary, compares some
methods from both worlds, along with an original approach for defining similarity in
graphs based on Green measures of Markov chains.

A further step would be to consider any text mining problem as a graph min-
ing problem, by considering any finite set of vectors (in a finite-dimensional vector
space) as a directed, weighted, bipartite graph, the two partitions representing respec-
tively the vectors and the dimensions. Benefits of this view are somewhat lower, be-
cause of the very particular nature of a bipartite graph, but some notions from graph
theory (for instance, matchings, vertex covers, or bipartite random walks), may still
be of interest.

2.4 Conclusion

A number of different methods exist for the automatic discovery of similar words.
Most of these methods are based on various text corpora, and three of these are
described in this chapter. Each of them may be more or less adapted to a specific
problem (for instance, Crouch’s techniques are more adapted to infrequent words
than SEXTANT). We have also described the use of a more structured source—a
monolingual dictionary—for the discovery of similar words. None of these methods
is perfect and in fact none of them favorably competes with human-written dictionar-
ies in terms of liability. Computer-written thesauri, however, have other advantages

2 Automatic Discovery of Similar Words 43

such as their ease to build and maintain. We also discussed how different methods,
with their own pros and cons, might be integrated.

Another problem of the methods presented is the vagueness of the notion of
“similar word” that they use. Depending on the context, this notion may or may
not include the notion of synonyms, near-synonyms, antonyms, hyponyms, etc. The
distinction between these very different notions by automatic means is a challenging
problem that should be addressed to make it possible to build thesauri in a completely
automatic way.

Acknowledgment

We would like to thank Yann Ollivier for his feedback on this work.

References

[BGH+04] V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren. A mea-
sure of similarity between graph vertices: applications to synonym extraction and
Web searching. SIAM Review, 46(4):647–666, 2004.

[BP98] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[CL92] H. Chen and K.J. Lynch. Automatic construction of networks of concepts charac-
terizing document databases. IEEE Transactions on Systems, Man and Cybernet-
ics, 22(5):885–902, 1992.

[CM02] J.R. Curran and M. Moens. Improvements in automatic thesaurus extraction. In
Proc. ACL SIGLEX, Philadelphia, July 2002.

[Cro90] C.J. Crouch. An approach to the automatic construction of global thesauri. Infor-
mation Processing and Management, 26(5):629–640, 1990.

[Cur02] J.R. Curran. Ensemble methods for automatic thesaurus extraction. In Proc. Con-
ference on Empirical Methods in Natural Language Processing, Philadelphia, July
2002.

[DH99] J. Dean and M.R. Henzinger. Finding related pages in the world wide web. In
Proc. WWW, Toronto, Canada, May 1999.

[Die00] T.G. Dietterich. Ensemble methods in machine learning. In Proc. MCS, Cagliari,
Italy, June 2000.

[Gre94] G. Grefenstette. Explorations in Automatic Thesaurus Discovery. Kluwer Aca-
demic Press, Boston, MA, 1994.

[JW99] J. Jannink and G Wiederhold. Thesaurus entry extraction from an on-line dictio-
nary. In Proc. FUSION, Sunnyvale, CA, July 1999.

[Kle99] J.M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46(5):604–632, 1999.

[Lin98] D. Lin. Automatic retrieval and clustering of similar words. In Proc. COLING,
Montreal, Canada, August 1998.

[OPT] The online plain text English dictionary. http://msowww.anu.edu.au/
∼ralph/OPTED/.

[OS07] Y. Ollivier and P. Senellart. Finding related pages using Green measures: An illus-
tration with Wikipedia. In Proc. AAAI, Vancouver, Canada, July 2007.

44 P. Senellart, V.D. Blondel

[PTL93] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of english words. In
Proc. ACL, Columbus, OH, June 1993.

[Sen01] P. Senellart. Extraction of information in large graphs. Automatic search for syn-
onyms. Technical Report 90, Université catholique de Louvain, Louvain-la-neuve,
Belgium, 2001.

[SYY75] G. Salton, C.S. Yang, and C.T. Yu. A theory of term importance in automatic text
analysis. Journal of the American Society for Information Science, 26(1):33–44,
1975.

[Tur01] P.D. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In
Proc. ECML, Freiburg, Germany, September 2001.

[Wik] Wikipedia. The free encyclopedia. http://en.wikipedia.org/.
[Wor] WordNet 1.6. http://wordnet.princeton.edu/.
[WZ03] H. Wu and M. Zhou. Optimizing synonym extraction using monolingual and bilin-

gual resources. In Proc. International Workshop on Paraphrasing, Sapporo, Japan,
July 2003.

3

Principal Direction Divisive Partitioning with Kernels
and k-Means Steering

Dimitrios Zeimpekis and Efstratios Gallopoulos

Overview

Clustering is a fundamental task in data mining. We propose, implement, and eval-
uate several schemes that combine partitioning and hierarchical algorithms, specifi-
cally k-means and principal direction divisive partitioning (PDDP). Using available
theory regarding the solution of the clustering indicator vector problem, we use 2-
means to induce partitionings around fixed or varying cut-points. 2-means is applied
either on the data or over its projection on a one-dimensional subspace. These tech-
niques are also extended to the case of PDDP(l), a multiway clustering algorithm
generalizing PDDP. To handle data that do not lend themselves to linear separabil-
ity, the algebraic framework is established for a kernel variant, KPDDP. Extensive
experiments demonstrate the performance of the above methods and suggest that it
is advantageous to steer PDDP using k-means. It is also shown that KPDDP can
provide results of superior quality than kernel k-means.

3.1 Introduction

Clustering is a major operation in text mining and in a myriad of other applications.
We consider algorithms that assume the vector space representation for data objects
[SB88], modeled as feature-object matrices (term-document matrices in text mining,
hereafter abbreviated as tdms). Data collections are represented as m × n matrices
A, where aij measures the importance of term i in document j. Two broad cate-
gories of clustering algorithms are partitional (the best known being k-means) and
hierarchical, the latter being very desirable for Web-type applications[Ber06].

The k-means algorithm models clusters by means of their centroids. Starting
from some initial guess for the k centroids, say {ci}ki=1, representing the clus-
ters, it iterates by first reclustering data depending on their distance from the cur-
rent set of centroids, and then updating the centroids based on the new assign-
ments. The progress of the algorithm can be evaluated using the objective function

46 D. Zeimpekis, E. Gallopoulos∑k
i=1

∑
aj∈cluster(i) d(ci, aj), where d is some distance metric, e.g., quadratic Eu-

clidean distance [Kog07]. This minimization problem for the general case is NP-
hard. Two well-known disadvantages of the algorithm are that the generated clusters
depend on the specific selection of initial centroids (e.g., random, in the absence of
any data or application related information) and that the algorithm can be trapped
at local minima of the objective function. Therefore, one run of k-means can easily
lead to clusters that are not satisfactory and users are forced to initialize and run the
algorithm multiple times.

On the other hand, a highly desirable feature, especially for Web-based applica-
tions, is the clustering structure imposed by hierarchical clustering algorithms (di-
visive or agglomerative), such as Single Link [SKK00]. Bisecting k-means is a di-
visive hierarchical variant of k-means that constructs binary hierarchies of clusters.
The algorithm starts from a single cluster containing all data points, and at each step
selects a cluster and partitions it into two subclusters using the classical k-means for
the special case of k = 2. Unfortunately, the weaknesses of k-means (cluster quality
dependent upon initialization and trappings at local minima) remain.

One particularly powerful class of clustering algorithms, with origins in graph
partitioning ([DH73]), utilizes spectral information from the underlying tdm.1 These
algorithms provide the opportunity for the deployment of computational technolo-
gies from numerical linear algebra, an area that has seen enormous expansion in
recent decades. In this paper we focus on principal direction divisive partitioning
(PDDP), a clustering algorithm from this class that can be interpreted using princi-
pal component analysis (PCA). The algorithm first proposed by D. Boley [Bol98]
is the primary source. PDDP can be quite effective when clustering text collections
as it exploits sparse matrix technology and iterative algorithms for very large eigen-
value problems. See [Bol01, LB06, SBBG02, ZG03] as well as the recent monograph
[Kog07] and references therein that present several variants of PDDP. At each iter-
ation, PDDP selects one of the current clusters and partitions it into two subclusters
using information from the PCA of the corresponding tdm. In fact, the basic PDDP
algorithm can be viewed as a special case of a more general algorithm, PDDP(l), that
constructs 2l-ary cluster trees. PDDP is known to be an effective clustering method
for text mining, where tdms are very large and extremely sparse. The algorithm re-
quires the repeated extraction of leading singular vector information from the tdm2

and submatrices thereof via the singular value decomposition (SVD). Even though,
in general, the SVD is an expensive computation, it has long been known that signif-
icant savings can result when seeking only selected singular triplets from very sparse
tdms [Ber92]. PDDP, however, is typically more expensive than k-means. Further-
more, the partitioning performed at each step of PDDP is duly determined by the
outcome of the partial SVD of the cluster tdm (Section 3.2). Despite the convenient
1 See Chris Ding’s collection of tutorials and references at https://crd.lbl.gov/∼
cding/Spectral.

2 More precisely, from the matrix resulting from the tdm after centering it by subtracting
from each column its centroid.

3 k-Means Steering of Spectral Divisive Clustering Algorithms 47

deterministic nature of this step, it is easy to construct examples where PDDP pro-
duces inferior partitionings than k-means.

For some time now, we have been studying the characteristics of PDDP and have
been considering ways to improve its performance. An early contribution in this
direction was PDDP(l) ([ZG03]), a generalization along the lines of early work in
multiway spectral graph partitioning [AKY99, AY95, HL95]. Our first original con-
tribution here is to show how to leverage the power of k-means and some interesting
recent theory ([DH04, ZHD+01]) in order to better steer the partitioning decision
at each iteration of PDDP. Our results confirm that such an approach leads to better
performance compared to standard PDDP, in which the decision criteria are readily
available from the spectral characteristics of the tdm.

Our second contribution is that we combine PDDP with kernel techniques, mak-
ing the algorithm suitable for datasets not easily linearly separable. Specifically, we
establish the necessary algebraic framework and propose KPDDP, a kernel version
of PDDP as well as variants that we analyze and demonstrate that they return results
of high quality compared to kernel k-means, albeit at higher cost.

The chapter is organized as follows. Section 3.2 describes algorithms that gen-
eralize PDDP and introduces the concept of k-means steering. Section 3.3 reviews
kernel PCA, and Section 3.4 discusses the kernel versions of the above algorithms.
Finally, Section 3.5 contains extensive experimental results.

As is frequently done, we will be using capital letters to denote matrices, lower-
case letters for (column) vectors, and lower-case Greek letters for scalars. When
referring to specific matrix elements (scalars), we will use the lower case Greek
letter corresponding to the Latin capital letter. When referring to vectors (rows or
columns) of a matrix, we will use the corresponding lower case Latin letter. We also
use diag(·) to denote the diagonal of its argument.

3.2 PDDP Multipartitioning and Steering

It has long been known that the effectiveness of clustering algorithms depends on the
application and data at hand. We focus on PDDP as an example of a spectral cluster-
ing algorithm that has been reported to be quite effective for high dimensional data,
such as text, where standard density-based algorithms, such as DBSCAN, are not
as effective because of their high computational cost and difficulty to achieve effec-
tive discrimination [BGRS99, SEKX98]. PDDP, on the other hand, extracts spectral
information from the data and uses it to construct clusterings that can be of better
quality than those provided by k-means. PDDP can be quite efficient in comparison
to other agglomerative hierarchical algorithms and can be used either as an indepen-
dent clustering tool or as a “preconditioning tool” for the initialization of k-means.

We next highlight some features of PDDP that motivate the proposals and vari-
ants of our chapter. At each step of PDDP, a cluster is selected and then partitioned in
two subclusters using information from the PCA of the matrix corresponding to the
data points belonging to the cluster. In this manner, the algorithm constructs a binary

48 D. Zeimpekis, E. Gallopoulos

tree of clusters. More precisely, let p indicate the cluster node selected for parti-
tioning at step ip, A(p) the corresponding matrix (i.e., a submatrix of A with n(p)

columns), c(p) its column centroid, and C(p) = (A(p) − c(p)e>)(A(p) − c(p)e>)>

the corresponding covariance matrix. During the split process, ordinary PDDP uses
the first principal component of A(p). Equivalently, if [u(pi), σ(pi), v(pi)] is the ith
singular triplet of the centered matrix B(p) = (A(p) − c(p)e>), the two subclusters
are determined by the sign of the projection coefficients of each centered data point
into the first principal component, (u(p1))>(a(pj)− c(p)) = σ(p1)v(p1j), i.e., the sign
of the corresponding element of v(p1), since σ(p1) > 0.

Geometrically, the points (u(p1))>(z − c(p)) = 0 define a hyperplane pass-
ing through the origin and perpendicular to u(p1). Each data element is classified
to one of two hyperplane-defined half-spaces. This can be extended to an 2l-way
partitioning strategy, based on information readily available from l ≥ 1 singular
vectors [ZG03]. This method, named PDDP(l), classifies data points to one of 2l or-
thants, based on the specific sign combination of the vector (U (p)

l)>(a(pj)− c(p)) =
Σ

(p)
l (V (p)

l (j, :))>, where U (p)
l Σ

(p)
l (V pl)> is the l-factor truncated SVD of B(p).

Each one of (u(pi))>(z − c(p)) = 0 defines a hyperplane passing through the origin
orthogonal to u(pi). In the sequel it would be useful to note that PDDP(l) reduces to
the original PDDP algorithm when l = 1. Moreover, l is the dimension of the space
in which lie the projection coefficients used to decide upon the splitting at each step
of the algorithm. Finally, since PDDP(l) immediately classifies data into 2l clusters,
it can be used to partition k = 2l clusters in one single step.

Note that throughout our discussion, the cluster selected for partitioning will
be the one with maximum scatter value, defined as sp = ‖A(p) − c(p)e>‖2F . This
quantity is a measure of coherence, and it is the same as the one used by k-means
[KMN+02, Llo82]. For convenience, we tabulate PDDP(l) in Algorithm 3.2.1.

Algorithm 3.2.1 Algorithm PDDP(l).
Input: Feature×object matrix A (tdm), desired number

of clusters k, number of principal components l
Output: Structure of pddp tree, withl

k−1
2l−1

m
(2l − 1) + 1 leaves

Initialize pddp tree(A);

for i = 1 :
l

k−1
2l−1

m
Select a cluster node p to split with n(p) elements;
Let A(p) be the tdm of cluster node p, c(p) the corresponding centroid;
Compute the leading l singular triplets [u(pj), s(pj), v(pj)],

j = 1, ..., l of (A(p) − c(p)e>);
Assign each column a(pj) of A(p) to node 2 + (i− 2)2l + j,

j = 0 : 2l − 1 according to the signs of row j of [v(p1), ..., v(pl)];
Update pddp tree;

end

3 k-Means Steering of Spectral Divisive Clustering Algorithms 49

We have seen that with some work, PDDP classifies data from the cluster under
consideration (possibly the entire dataset) into 2l subclusters at the end of the first
iteration. As outlined above, data are classified based on their orthant address, ob-
tained from the corresponding sign combination of the l right singular vectors of the
tdm. As we will see, there are cases where the sign combination is not a good cluster
predictor and alternative classification techniques must be sought.

k-Means Steered PDDP

We next show how k-means can provide an effective steering mechanism for the
partitioning at each step of PDDP(l). As we will see there are several alternatives;
we first describe them in the context of the simplest version of PDDP. There, cluster
membership of each datapoint is based on the sign of the corresponding element
of the leading (l = 1) right singular vector of the centered tdm. Restating slightly,
membership is decided based on whether the aforementioned element of the singular
vector is smaller or larger than some “cut-point,” which in this case is selected to be
zero.

We call the “cluster indicator vector problem” the computation of an indicator
vector d with elements δi ∈ {±1}, whose values could imply a specific cluster
assignment, for example, assigning data element i to cluster C1 (resp. C2) if δi = 1
(resp. “-1”). We make use of the following result:

Theorem 1 ([DH04]). Let A ∈ Rm×n be the tdm. For k-means clustering where
k = 2, the continuous solution of the cluster indicator vector problem is the leading
principal component, r = [ρ1, ..., ρn]>, of A, that is, data will be assigned to each
of the two clusters according to the following index partitioning: C1 = {i|ρi ≤
0}, C2 = {i|ρi > 0}, where i = 1, ..., n.

The above theorem suggests that if we relax the condition that δi ∈ {±1} and
allow the elements of the indicator vector to take any real value, the resulting vector
would be r. Therefore, one partitioning technique could be to classify every data
element in the cluster that is a candidate for splitting based on the position of the
corresponding element of r relative to 0. Theorem 1 suggests that splitting the data
vectors according to r could be a good initialization for bisecting k-means. This
technique can also be viewed as a refinement of the basic PDDP, in which 2-means
is applied to ameliorate the initial splitting. We refer to this approach as PDDP-
2MEANS.

Initial centroids of 2-means are given by the ordering of r, that is,

c1 = (1/n1)
∑
i:ρi≤0

ai and c2 = (1/n2)
∑
i:ρi>0

ai,

where n1, n2 denote respectively the numbers of negative or zero and positive ele-
ments of r. Therefore, the nondeterminism in (bisecting) k-means is eliminated.

We next note that even though r gives the solution of the relaxed problem, zero
might not be the best cut-point. Indeed, Theorem 1 provides only an ordering for

50 D. Zeimpekis, E. Gallopoulos

the data vectors, but not necessarily the best solution for the relaxed problem. In
particular, another cut-point could lead to a smaller value for the k-means objective
function. Specifically, we can check all possible splittings using the ordering implied
by r, and select the one that optimizes the k-means objective function.

Lemma 1. Let A ∈ Rm×n and let (j1, j2, . . . , jn) be an ordering of its columns.
Then the optimal cut-point for 2-means can be obtained at cost O(mn).

Proof. Let {aj1aj2 . . . ajn} the ordering of A’s columns and C1 = {aj1 . . . ajl},
C2 = {ajl+1 . . . ajn} a partition. The objective function value of C1, C2 is

s1 =
jl∑
i=j1

‖ai − c1‖2 =
jl∑
i=j1

‖ai‖2 − l‖c1‖2

s2 =
jn∑

i=jl+1

‖ai − c2‖2 =
jn∑

i=jl+1

‖ai‖2 − (n− l)‖c2‖2

while the objective function value for the clustering is given by s = s1+s2. Consider
now the partition C1 = {aj1 . . . ajlajl+1}, C2 = {ajl+2 . . . ajn}. The new centroid
vectors are given by

ĉ1 =
lc1 + ajl+1

l + 1
, ĉ2 =

lc2 − ajl+1

n− l − 1

while

ŝ =
jn∑
i=j1

‖ai‖2 − (l + 1)ĉ1 − (n− l − 1)ĉ2.

Clearly, the update of the centroid vectors requires O(m) operations as well as the
computation of the new value of the objective function. This operation is applied
n− 1 times and the proof follows.

Based on the above proof, we can construct an algorithm to determine the optimal
cut-point corresponding to the elements of the leading principal component ofA. The
resulting splitting can be used directly in PDDP; alternatively, it provides a starting
point for the application of 2-means. We refer to the algorithms corresponding to
these two options as PDDP-OC and PDDP-OC-2MEANS respectively. The above
techniques can be extended to the case of PDDP(l).

We next note that in the course of their 2-means phase, all the above enhance-
ments of PDDP (PDDP-2MEANS, PDDP-OC, PDDP-OC-2MEANS) necessitate
further operations between m-dimensional data vectors. Despite the savings im-
plied by Lemma 1, costs can quickly become prohibitive for datasets of very high-
dimensionality. On the other extreme, costs would be minimal for datasets consisting
of only one feature. We can thus consider constructing algorithms in which we ap-
ply the above enhancements, not on the original dataset but on some compressed

3 k-Means Steering of Spectral Divisive Clustering Algorithms 51

representation. We know, for example, that in terms of the Euclidean norm, the op-
timal unit rank approximation of the centered tdm can be written as σ1u1v

>
1 , where

{σ1, u1, v1} is its largest singular triplet. Vector v1 contains the coefficients of the
projection of the centered tdm on the space spanned by u1 and can be used as a one-
dimensional encoding of the dataset. We further refine the usual PDDP policy, which
utilizes zero as the cut-point, that is, employs a sign-based splitting induced by this
vector. In this manner, however, the magnitude of the corresponding elements plays
no role in the decision process.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

35

40

45

Fig. 3.1. Histogram of the projection coefficients employed by PDDP.

To see that this could lead to an inferior partitioning, we depict in Fig. 3.1 a his-
togram of the elements of v1 corresponding to part of the Reuters-21578 collection.
Many elements cluster around the origin; however, a value near −0.1 appears to be
a more reasonable choice for cut-point than 0. Our next proposal is an algorithm
that addresses this issue in the spirit of the previous enhancements of PDDP. Specif-
ically, we propose the application of the 2-means algorithm on the elements of v1. A
key feature of this proposal is the fact that 2-means is applied on a one-dimensional
dataset. We can thus evade NP-hardness, in fact we can compute the optimal cut-
point so that the centroids of the two subsets of data points on either side of this
point maximize the objective function of 2-means. To accomplish this, it is sufficient
to sort the elements of v1 and examine all possible partitions. Since the objective
function for each attained partitioning can be computed in constant time and there
are only n − 1 possible partitions, the entire process can be completed at a cost of
only O(n) operations. Note that this is a direct extension of Lemma 1 for the case of
one-dimensional datasets.

We can apply the same principle to PDDP(l), where l > 1, by identifying the
optimal cut-point along each one of the l leading principal components (equivalently,
the leading right singular vectors). If z := [ζ1 . . . ζl]> consists of the l cut-points
that are optimal for each dimension, we can apply the basic PDDP(l) procedure by

52 D. Zeimpekis, E. Gallopoulos

first shifting the origin by z. We denote by PDDP-OCPC the implied technique.
Note that all the above policies eliminate the random start from 2-means and make it
deterministic.

It is fair to mention here that the potential for alternative partitioning strategies
was already mentioned in the original PDDP paper.3 Two related approaches are
[Dhi01] and [KDN04]. The former paper proposes the use of k-means to best assign
scalar data into k clusters, the case k = 2 being the most prominent. In the lat-
ter, an algorithm called spherical PDDP (sPDDP for short) is proposed, employing
l = 2 principal components during the split procedure and computing the optimal
separation line into the circle defined by the normalized vectors of the projection
coefficients.

We finally note that PDDP could be deployed as a preconditioner, to determine
the k initial clusters necessary to start the iterations of k-means. This idea was de-
scribed in [XZ04] and also resolves the indeterminacy in k-means but is fundamen-
tally different from our proposed k-means steered PDDP variants.

3.3 Kernel PCA

The key idea in kernel learning methods is the mapping of a set of data points into
a more informative high-dimensional feature space through a nonlinear mapping.
Using Mercer kernels, any algorithm that can be expressed solely in terms of inner
products, can be applied without computing explicitly the mapping. Kernel meth-
ods have been used widely in support vector machine (SVM) research [CST00].
In the context of clustering, Finley and Joachims in [FJ05] and Ben-Hur et al. in
[BHHSV01] propose some SVM based clustering algorithms. Schölkopf et al. in
[SSM98] and Camastra and Verri in [CV05] propose the kernel k-means algorithm,
while Zhang and Chen in [ZC03] propose a kernel fuzzy c-means variant. Dhillon
et al. in [DGK04] provide a useful connection between kernel k-means and spectral
clustering.

PCA is an important statistical tool used in a wide range of applications where
there is a need for dimensionality reduction. Kernel PCA (KPCA) is an extension of
PCA that is applied to a vector space defined by a nonlinear mapping and has been
used with success in a wide range of applications (e.g., [KS05, MMR+01, SM97,
SSM98, YAK00]). In particular, let φ be a general mapping, φ : X → F , mapping
input vectors x ∈ X to vectors φ(x) ∈ F . We assume that X is a subset of Rm.
KPCA amounts to the application of standard PCA to a new vector space, called
feature space. Let 〈·, ·〉 denote the Euclidean inner product. Inner products in F can
be computed via the “kernel trick,” that is, by defining an appropriate symmetric
kernel function, k(x, y) over X×X , which satisfies Mercer’s theorem ([CST00]) so
that
3 As stated in [Bol98], “... the values of the singular vector are used to determine the splitting

... in the simplest version of the algorithm we split the documents strictly according to the
sign ...”

3 k-Means Steering of Spectral Divisive Clustering Algorithms 53

k(x(i), x(j)) := 〈φ(x(i)), φ(x(j))〉 (3.1)

for x(i), x(j) ∈ X . There are various kernel functions, with the polynomial, k(x, y) =
(x>y + 1)d, and Gaussian, k(x, y) = exp(−‖x − y‖2/σ2), being two of the most
common. It then becomes possible to express algorithms over F that use only inner
products via kernels, specifically without ever computing the φ(x(i))’s.

Assume for now that the φ(x(i))’s are already centered. The covariance matrix
of Ã = [φ(x(1)) . . . φ(x(n))] is

C̃ =
n∑
i=1

φ(x(i))φ(x(i))> = ÃÃ>.

The principal components of Ã are the eigenvectors of C̃, that is, the solutions
of C̃v = λv. Each v can be expressed as a linear combination of the columns
of Ã, i.e., v =

∑n
i=1 ψiφ(x(i)). The latter can be rewritten as v = Ãy, where

y = [ψ1, ..., ψn]>; therefore, projecting the eigenvalue problem into each column
of Ã, it turns out that the PCA of Ã amounts to an eigenvalue problem for the Gram
matrix, namely solutions of Ky = λy where (K)i,j := κij = 〈φ(x(i)), φ(x(j))〉.
This can be solved using Eq. (3.1) without forming the φ(x(i))’s, assuming that the
Gram matrix K is available. The last step is the normalization of the eigenvectors
y(j), j = 1, . . . , n. This is necessary since 〈v(j), v(j)〉 = 1 must hold:

1 = 〈v(j), v(j)〉 = 〈
n∑
i=1

ψ
(j)
i φ(x(i)),

n∑
r=1

ψ(j)
r φ(x(r))〉

=
n∑

i,r=1

y
(j)
i ψ(j)

r 〈φ(x(i)), φ(x(r))〉

= 〈y(j),Ky(j)〉 = λj〈y(j), y(j)〉 = λj‖y(j)‖22.

So, the final step is the normalization of y(j) according to

‖y(j)‖2 =
1√
λj
. (3.2)

The coefficients of the projection of a column φ(x(r)) of Ã into an eigenvector v(j)

of C̃ are given by

〈v(j), φ(x(r))〉 =
n∑
i=1

y
(j)
i 〈φ(x(i)), φ(x(r))〉 = (y(j))>K:,r

where K:,r denotes the rth column of the Gram matrix.
Setting Yk to be the matrix formed by the k leading eigenvectors of K, Y >k K

contains a k-dimensional representation for each vector φ(x(j)). If the φ(x(i))’s are
not centered, it was shown in [SSM98] that the principal components of C̃ are given
by the eigenvectors of

54 D. Zeimpekis, E. Gallopoulos

K̃ = K − 1
n
ee>K − 1

n
Kee> +

1
n2
ee>Kee>. (3.3)

After some algebraic manipulation, K̃ can be expressed as (I−P)K(I−P), where
P := ee>/n is an orthogonal projector. In this case the projection coefficients of the
data points into the first k principal components are Y >k K̃, where Yk consists of the
leading k eigenvectors of K̃.

3.4 Kernel Clustering

Our proposal is to use KPCA in place of PCA during the splitting step of PDDP.
Assuming that, based on scatter, p is the cluster node selected for partitioning at
step ip, we accomplish this using information from the KPCA of the corresponding
matrix A(p), i.e., from the linear PCA of B̂(p) = Φ(B(p)) = Φ(A(p) − c(p)e>),
where Φ(·) denotes the matrix Φ(X)(j) = φ(x(j)) and φ(·) a nonlinear mapping
(e.g., polynomial kernel).

As indicated in Eq. (3.3), the principal components of B̂(p) are given by the
eigenvectors of

K̂(p) = K(p) −MK(p) −K(p)M +MK(p)M (3.4)

where M = 1
n(p) ee

> and [K(p)
ij] = [〈φ(a(pi) − c(p)), φ(a(pj) − c(p))〉], the Gram

matrix corresponding to cluster p. The projection coefficients of B̂(p) into the top l
eigenvectors of the covariance matrix (B̂(p))(B̂(p))> are given by

(V (p)
l)>B̂(p) ∈ Rl×n

(p)
(3.5)

where V (p)
l are the l leading eigenvectors of [K(p)

ij]. Note that the normalization con-
dition for the eigenvectors of K̂(p) also causes the normalization of V (p)’s columns
according to Eq. (3.2).

3 k-Means Steering of Spectral Divisive Clustering Algorithms 55

Algorithm 3.4.1 Algorithm KPDDP(l).
Input: Feature×object matrix A (tdm), desired number

of clusters k, number of principal components l
Output: Structure of pddp tree, withl

k−1
2l−1

m
(2l − 1) + 1 leaves

Initialize pddp tree(A);

for i = 1 :
l

k−1
2l−1

m
Select a cluster node p to split according to (3.6); Let A(p) be the tdm

of cluster p, c(p) the corresponding centroid;
Form the Gram matrix K(p);
Compute the leading l eigenvectors and eigenvalues of K̂(p);
Normalize the eigenvectors V (pi), i = 1, . . . , l of K(p) according to (3.2);
Assign each column a(pj) of A(p) to cluster node 2 + (i− 2)2l + j,

j = 0 : 2l − 1 according to the signs of row j of (V
(p)

l)>B̂(p);
Update pddp tree;

end

Regarding the cluster selection step, note that

spφ
= ‖Φ(A(p))− ĉ(p)(e(p))>‖2F

=
n(p)∑
j=1

‖â(pj) − ĉ(p)‖2F =
n(p)∑
j=1

‖â(pj) − ĉ(p)‖22

where ĉ(p) the centroid of Φ(A(p)) into the feature space defined by φ(·). Since
‖x − y‖22 = 〈x, x〉2 + 〈y, y〉2 − 2〈x, y〉, it follows that the scatter value can be
computed from

spφ
=

n(p)∑
j=1

‖φ(a(pj))‖22 +
n(p)∑
j=1

‖ĉ(p)‖22 − 2
n(p)∑
j=1

〈φ(a(pj)), ĉ(p)〉

=
n(p)∑
j=1

〈φ(a(pj)), φ(a(pj))〉+ n(p)〈Φ(A(p))e
n(p)

,
Φ(A(p))e
n(p)

〉

−2
∑
〈φ(a(pj)), Φ(A(p))e(p)〉

=
n(p)∑
j=1

〈φ(a(pj)), φ(a(pj))〉+ ‖K̄
(p)e‖1
n(p)

− 2
‖K̄(p)e‖1
n(p)

where K̄(p)
ij = 〈φ(a(pi)), φ(a(pj))〉 denotes the Gram matrix of A(p). Therefore,

spφ
= trace(K̄(p))− 2

‖K̄(p)e‖1
n(p)

. (3.6)

56 D. Zeimpekis, E. Gallopoulos

We call the proposed algorithm KPDDP(l) (Kernel PDDP(l)). The algorithm is
tabulated in Algorithm 3.4.1. As in the basic algorithm, at each step the cluster node
p with the largest scatter value [Eq. (3.6)] is selected and partitioned into 2l subclus-
ters. Each member of the selected node is classified into the subcluster defined by the
combination of its projection coefficients [Eq. (3.5)] into the l principal components
of B̂(p). In our implementation, we experimented with polynomial and Gaussian
kernels. Our formulation, however, is general and can be applied for any kernel. The
leading eigenpairs of the covariance matrix were computed from the SVD of the
centered tdm using PROPACK [Lar]. This consists of a very efficient MATLAB im-
plementation that applies Lanczos bidiagonalization with partial reorthogonalization
to compute selected singular triplets. The algorithm requires access to a routine to
form matrix-vector productsK(p)x, but does not necessitate the explicit construction
of the Gram matrix K̂(p).

Kernel k-Means

Kernel learning has already been applied in k-means clustering; e.g., [CV05, SSM98]
outline efficient implementations. As in the linear case, each cluster is represented by
its centroid into the new feature space, ĉ(p) = 1

np
(φ(ap1) + . . .+ φ(apn)); however,

there is no need to compute ĉ(p)’s. In particular, the algorithm operates iteratively as
k-means by assigning each data point to the nearest cluster and updates centroids
using the last assignment. The norm of the Euclidean distance of x, y equals to
‖x − y‖22 = 〈x, x〉 + 〈y, y〉 − 2〈x, y〉. Denoting by K the Gram matrix of A and
using MATLAB notation, the distance of a single data point aj from a centroid ĉ(p)

is 〈aj , aj〉+diag(K)p1 ... pn
− 2Kj,(p1 ... pn). 〈aj , aj〉’s can be computed initially,

and then during each iteration the cluster membership indication matrix can be com-
puted as P = ex> + ye> − 2Z, where x contains the norms of A’s columns, y the
norms of centroids computed from a partial sum of K’s elements once in each itera-
tion, and Z the k × n matrix with elements ζi,k = 〈ĉ(i), aj〉. The algorithm assigns
each element j to cluster ij = arg{mini P (i, j)}.

k-means can be extended as in the linear case in order to get a hierarchical cluster-
ing solution (kernel bisecting k-means). Furthermore, using the same reasoning, we
can combine the kernel versions of PDDP and k-means in order to derive more effec-
tive clustering solutions. In particular, we propose the use of the kernel 2-means al-
gorithm during the splitting process of KPDDP (we refer to it as KPDDP-2MEANS).
Finally, we can extend the PDDP-OCPC variant in the kernel learning framework.4

3.5 Experimental Results

We next conduct extensive experiments in order to evaluate the impact of the pro-
posed techniques. For this purpose, we use the well known Reuters-21578, Ohsumed
4 We note that methods PDDP-OC and PDDP-OC-2MEANS can also be extended in kernel

variants (see Theorem 3.5 in [DH04]); however, we observed that this results in a high
computational overhead that makes these approaches prohibitive.

3 k-Means Steering of Spectral Divisive Clustering Algorithms 57

(part of the TREC filtering track), and CLASSIC3 (a merge of MEDLINE, CRAN-
FIELD, and CISI) collections. For the linear case, we use the ModApte split of
the Reuters-21578 collection as well as part of the Ohsumed collection composed
of those documents that belong to a single cluster. Furthermore, we use CLAS-
SIC3 for a toy example. For the nonlinear case, we use four datasets, named REUTj
(j = 1, ..., 4), constructed from the ModApte split with varying number of clusters
and cluster sizes.5 Table 3.1 depicts the characteristics of those collections. TMG
[ZG06] has been used for the construction of the tdms. Based on [ZG06], we used
logarithmic local term and IDF global weightings with normalization, stemming,
and stopword removal, removing also terms that appeared only once in the collec-
tion. Our experiments were conducted on a Pentium IV PC with 1-GB RAM using
MATLAB.

Table 3.1. Dataset statistics

Feature MODAPTE OHSUMED CLASSIC3 REUT1 REUT2 REUT3 REUT4
Documents 9,052 3,672 3,891 840 1,000 1,200 3,034
terms 10,123 6,646 7,823 2,955 3,334 3,470 5,843
Terms/document 60 81 77 76 75 60 78
tdm nonzeros (%) 0.37 0.76 0.64 1.60 1.43 0.37 84
Number of clusters 52 63 3 21 10 6 25

In the following discussion, we denote by k the sought number of clusters. For
each dataset we ran all algorithms for a range of k. In particular, denoting by r the
true number of clusters for a dataset, we ran all algorithms for k = 4 : 3 : kmax

and k = 8 : 7 : kmax for some kmax > r in order to record the results of PDDP(l)
and related variants for l = 1, 2, 3. For all k-means variants we have conducted 10
experiments with random initialization of centroids and recorded the minimum, max-
imum, and mean values of attained accuracy and run time. Although we present only
mean-value results, minimum and maximum values are important to the discussion
that follows. For the SVD and eigendecomposition we used the MATLAB interface
of the PROPACK software package [Lar]. For the algorithms’ evaluation, we use the
objective function of k-means (and PDDP), the entopy and run-time measures.

Fig. 3.2 depicts the objective function, entropy values, and run time for all vari-
ants, for the linear case and datasets MODAPTE and OHSUMED. Although k-means
appears to give the best results between all variants and all measures, we note that
these plots report mean values attained by k-means and related variants. In practice,
a single run of k-means may lead to poor results. As a result, a “good” partitioning
may require several executions of the algorithm. Compared to the basic algorithm, its
hierarchical counterpart (bisecting k-means) appears to degrade the quality of clus-
tering and suffers from the same problems as k-means. On the other hand, PDDP
appears to give results inferior to k-means. Regarding the proposed variants, we note
that all techniques always improve PDDP and bisecting k-means in most cases, while
5 We will call the ModApte and Ohsumed datasets as MODAPTE, OHSUMED.

58 D. Zeimpekis, E. Gallopoulos

0 10 20 30 40 50 60 70
7500

7600

7700

7800

7900

8000

8100

8200

8300

8400

8500

Number of clusters

O
bj

ec
tiv

e
fu

nc
tio

n

Objective function versus number of clusters for MODAPTE (mean values for k−means)

K−MEANS
BISECTING K−MEANS
PDDP(1)
PDDP_2−MEANS
PDDP_OC
PDDP_OC_2−MEANS
PDDP_OCPC

0 10 20 30 40 50 60 70 80
3050

3100

3150

3200

3250

3300

3350

3400

3450

3500

3550
Objective function versus number of clusters for OHSUMED (mean values for k−means)

Number of clusters

O
bj

ec
tiv

e
fu

nc
tio

n

K−MEANS
BISECTING K−MEANS
PDDP(1)
PDDP_2−MEANS
PDDP_OC
PDDP_OC_2−MEANS
PDDP_OCPC

0 10 20 30 40 50 60 70
10

−1

10
0

10
1

10
2

10
3

Number of clusters

R
un

 ti
m

e
(s

ec
)

Run time versus number of clusters for MODAPTE (mean values for k−means)

K−MEANS
BISECTING K−MEANS
PDDP(1)
PDDP_2−MEANS
PDDP_OC
PDDP_OC_2−MEANS
PDDP_OCPC

0 10 20 30 40 50 60 70 80
10

−1

10
0

10
1

10
2

Run time versus number of clusters for OHSUMED (mean values for k−means)

Number of clusters

R
un

 ti
m

e
(s

ec
)

K−MEANS
BISECTING K−MEANS
PDDP(1)
PDDP_2−MEANS
PDDP_OC
PDDP_OC_2−MEANS
PDDP_OCPC

0 10 20 30 40 50 60 70
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Number of clusters

E
nt

ro
py

Entropy versus number of clusters for MODAPTE (mean values for k−means)

K−MEANS
BISECTING K−MEANS
PDDP(1)
PDDP_2−MEANS
PDDP_OC
PDDP_OC_2−MEANS
PDDP_OCPC

0 10 20 30 40 50 60 70 80
1

1.5

2

2.5

3

3.5

4

4.5

5
Entropy versus number of clusters for OHSUMED (mean values for k−means)

Number of clusters

E
nt

ro
py

K−MEANS
BISECTING K−MEANS
PDDP(1)
PDDP_2−MEANS
PDDP_OC
PDDP_OC_2−MEANS
PDDP_OCPC

Fig. 3.2. Objective function, entropy values, and run time for k-means, PDDP, and variants.

approaching the clustering quality of k-means. PDDP-OC-2MEANS and PDDP-OC
appear to give the best results; however, their high run times make them relatively
expensive solutions. On the other hand, PDDP-2MEANS and PDDP-OCPC provide
results similar to k-means without impacting significantly the overall efficiency of
PDDP.

Fig. 3.3 (upper) depicts the quality of clustering of PDDP-OCPC vs. PDDP(l) for
l = 1, 2, 3. PDDP-OCPC appears to improve significantly the efficiency of PDDP(l)

3 k-Means Steering of Spectral Divisive Clustering Algorithms 59

0 10 20 30 40 50 60 70
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
Entropy of PDDP(l) versus number of clusters for MODAPTE

Number of clusters

E
nt

ro
py

PDDP(1)
PDDP_OPC(1)
PDDP(2)
PDDP_OPC(2)
PDDP(3)
PDDP_OPC(3)

0 10 20 30 40 50 60 70 80
1.5

2

2.5

3

3.5

4

4.5

5

5.5
Entropy of PDDP(l) versus number of clusters for OHSUMED

Number of clusters

E
nt

ro
py

PDDP(1)
PDDP_OPC(1)
PDDP(2)
PDDP_OPC(2)
PDDP(3)
PDDP_OPC(3)

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4
Entropy of KPDDP(l) (polynomial) versus number of clusters for REUT−1

Number of clusters

E
nt

ro
py

KPDDP(1)
KPDDP_OPC(1)
KPDDP(2)
KPDDP_OPC(2)
KPDDP(3)
KPDDP_OPC(3)

0 5 10 15 20 25 30
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Entropy of KPDDP(l) (gaussian) versus number of clusters for REUT−2

Number of clusters

E
nt

ro
py

KPDDP(1)
KPDDP_OPC(1)
KPDDP(2)
KPDDP_OPC(2)
KPDDP(3)
KPDDP_OPC(3)

Fig. 3.3. Objective function and entropy values for PDDP and PDDP-OCPC and l = 1, 2, 3,
linear (upper) and nonlinear (lower) case.

Table 3.2. Confusion matrices for CLASSIC3 for PDDP (upper left quadrant for k = 3 and
right for k = 4) and PDDP-OCPC (lower left quadrant for k = 3 and right for k = 4)

Cluster 1 2 3 1 2 3 4
Class 1 12 6 1,015 12 1,015 4 2
Class 2 1,364 14 20 1,364 20 8 6
Class 3 2 1,392 66 2 66 788 604
Class 1 0 9 1,024 0 1,024 7 2
Class 2 1,253 29 116 1,253 116 23 6
Class 3 0 1,431 29 0 29 917 514

for equal values of parameter l. A simple example that demonstrates the success of
PDDP-OCPC is given in Table 3.2, where we give the confusion matrices for PDDP
and PDDP-OCPC for CLASSIC3 and k = 3, 4. PDDP-OCPC appears to approximate
better the cluster structure of the collection by producing “cleaner” clusters.

In Figs. 3.4, 3.5 (polynomial and gaussian kernels, respectively) we give the re-
sults for the kernel versions of the algorithms for datasets REUT1-REUT4. As in the
linear case, kernel k-means appears to give better results than kernel PDDP. However,

60 D. Zeimpekis, E. Gallopoulos

0 5 10 15 20 25 30
2150

2200

2250

2300

2350

2400

2450
Objective function (polynomial) versus number of clusters for REUT−1

Number of clusters

O
bj

ec
tiv

e
fu

nc
tio

n

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
3050

3100

3150

3200

3250

3300

3350

3400

3450
Objective function (polynomial) versus number of clusters for REUT−3

Number of clusters

O
bj

ec
tiv

e
fu

nc
tio

n

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
Run time (polynomial) versus number of clusters for REUT−1

Number of clusters

R
un

 ti
m

e
(s

ec
)

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Run time (polynomial) versus number of clusters for REUT−3

Number of clusters

R
un

 ti
m

e
(s

ec
)

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4
Entropy (polynomial) versus number of clusters for REUT−1

Number of clusters

E
nt

ro
py

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
Entropy (polynomial) versus number of clusters for REUT−3

Number of clusters

E
nt

ro
py

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

Fig. 3.4. Objective function, entropy values and runtime for kernel versions of k-means, PDDP
and variants (polynomial kernels).

our hybrid schemes appear to improve even the k-means algorithm at low additional
run time. Fig. 3.3 (lower) depicts the quality of clustering of the kernel versions
PDDP-OCPC vs. PDDP(l) for l = 1, 2, 3. As in the linear case, PDDP-OCPC ap-
pears to provide significant improvements over PDDP. It is worth noting that in our
experiments, results with the linear versions appeared to be uniformly better than
results with the kernel implementations. This does not cause concern since our goal

3 k-Means Steering of Spectral Divisive Clustering Algorithms 61

0 5 10 15 20 25 30
600

610

620

630

640

650

660

670
Objective function (gaussian) versus number of clusters for REUT−2

Number of clusters

O
bj

ec
tiv

e
fu

nc
tio

n

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
1900

1950

2000

2050
Objective function (gaussian) versus number of clusters for REUT−4

Number of clusters

O
bj

ec
tiv

e
fu

nc
tio

n

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Run time (gaussian) versus number of clusters for REUT−2

Number of clusters

R
un

 ti
m

e
(s

ec
)

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
0

10

20

30

40

50

60
Run time (gaussian) versus number of clusters for REUT−4

Number of clusters

R
un

 ti
m

e
(s

ec
)

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3
Entropy (gaussian) versus number of clusters for REUT−2

Number of clusters

E
nt

ro
py

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4
Entropy (gaussian) versus number of clusters for REUT−4

Number of clusters

E
nt

ro
py

K_K−MEANS
K_BISECTING K−MEANS
KPDDP
KPDDP_OCPC
KPDDP_2−MEANS

Fig. 3.5. Objective function, entropy values and runtime for kernel versions of k-means, PDDP
and variants (gaussian kernel).

was to improve kernel k-means algorithm along deterministic approaches that are
expected to give better results in case there are strong nonlinearities in the data at
hand.

The above results indicate that our hybrid clustering methods that combine k-
means and PDDP can be quite successful in addressing the nondeterminism in k-
means, while achieving at least its “average-case” effectiveness. The selection of a

62 D. Zeimpekis, E. Gallopoulos

specific technique can be dictated by the quality or run-time constraints imposed by
the problem. Furthermore, we proposed a kernel version of the PDDP algorithm,
along some variants that appear to improve kernel version of both PDDP and k-
means. The implications on memory caused by the use of the tdm Gramian in kernel
methods are currently under investigation.

Acknowledgments

An earlier version of this paper was presented at and included in the proceedings of
the Text Mining Workshop held during the 2007 SIAM International Conference on
Data Mining. The workshop was organized by Michael Berry and Malu Castellanos.
We thank them and Murray Browne for inviting us to contribute to the current vol-
ume. We also thank Dan Boley and Jacob Kogan for discussions on topics related
to the subject of this paper. Part of this work was conducted when the authors were
supported by a University of Patras K. Karatheodori grant (no. B120).

References

[AKY99] C.J. Alpert, A.B. Kahng, and S.-Z. Yao. Spectral partitioning with multiple eigen-
vectors. Discrete Applied Mathematics, 90:3–26, 1999.

[AY95] C.J. Alpert and S.-Z. Yao. Spectral partitioning: the more eigenvectors, the better.
In Proc. 32nd ACM/IEEE Design Automation Conf., pages 195–200. ACM Press,
1995. Available from World Wide Web: http://doi.acm.org/10.1145/
217474.217529.

[Ber92] M.W. Berry. Large scale singular value decomposition. Int’l. J. Supercomp.
Appl., 6:13–49, 1992.

[Ber06] P. Berkhin. A survey of clustering data mining techniques. In J. Kogan,
C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent
Advances in Clustering, pages 25–72. Springer, Berlin, 2006.

[BGRS99] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neigh-
bor” meaningful? In Lecture Notes in Computer Science, volume 1540, pages
217–235. Sprnger, London, 1999.

[BHHSV01] A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support vector cluster-
ing. Machine Learning Research, 2:125–137, 2001.

[Bol98] D. Boley. Principal direction divisive partitioning. Data Mining and Knowledge
Discovery, 2(4):325–344, 1998.

[Bol01] D. Boley. A scalable hierarchical algorithm for unsupervised clustering. In
R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors,
Data Mining for Scientific and Engineering Applications. Kluwer Academic Pub-
lishers, Norwell, MA, 2001.

[CST00] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Base Learning Methods. Cambridge University Press, Cam-
bridge, UK, 2000.

[CV05] F. Camastra and A. Verri. A novel kernel method for clustering. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 27(5):801–804, 2005.

3 k-Means Steering of Spectral Divisive Clustering Algorithms 63

[DGK04] I.S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and
normalized cuts. In Proc. 10th ACM SIGKDD, pages 551–556, ACM Press, New
York, 2004.

[DH73] W.E. Donath and A.J. Hoffman. Lower bounds for the partitioning of graphs.
IBM J. Res. Develop., 17:420–425, 1973.

[DH04] C. Ding and X. He. Cluster structure of k-means clustering via principal com-
ponent analysis. In PAKDD, pages 414–418, 2004. Available from World Wide
Web: http://springerlink.metapress.com/openurl.asp?
genre=article&issn=0302-9743&volume=3056&spage=414.

[Dhi01] I.S. Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning. In Proc. 7th ACM SIGKDD, pages 269–274, ACM Press, New York,
2001.

[FJ05] T. Finley and T. Joachims. Supervised clustering with support vector machines.
In ICML ’05: Proceedings of the 22nd international conference on Machine
learning, pages 217–224, New York, 2005.

[HL95] B. Hendrickson and R. Leland. An improved spectral graph partitioning algo-
rithm for mapping parallel computations. SIAM J. Sci. Comput., 16(2):452–
469, 1995. Available from World Wide Web: citeseer.nj.nec.com/
hendrickson95improved.html.

[KDN04] J. Kogan, I.S. Dhillon, and C. Nicholas. Feature selection and document cluster-
ing. In M. Berry, editor, A Comprehensive Survey of Text Mining. Springer, New
York, 2004.

[KMN+02] T. Kanungo, D.M. Mount, N.S. Netanyahu, D. Platko, and A.Y. Wu. An efficient
k-means clustering algorithm: analysis and implementation. IEEE Trans. PAMI,
24(7):881–892, 2002.

[Kog07] J. Kogan. Introduction to Clustering Large and High-Dimensional Data. Cam-
bridge University Press, New York, 2007.

[KS05] E. Kokiopoulou and Y. Saad. PCA and kernel PCA using polynomial filtering: a
case study on face recognition. In SIAM Conf. on Data Mining, 2005.

[Lar] R.M. Larsen. Propack: a software package for the symmetric eigenvalue prob-
lem and singular value problems on Lanczos and Lanczos bidiagonalization
with partial reorthogonalization. Available from World Wide Web: http:
//sun.stanford.edu/∼rmunk/PROPACK/. Stanford University.

[LB06] D. Littau and D. Boley. Clustering very large datasets with PDDP. In J. Kogan,
C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent
Advances in Clustering, pages 99–126. Springer, New York, 2006.

[Llo82] S.P. Lloyd. Least squares quantization in PCM. IEEE Trans. Information Theory,
28:129–137, 1982.

[MMR+01] K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction
to kernel-based learning algorithms. IEEE Transactions on Neural Networks,
12(2):181–202, 2001.

[SB88] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

[SBBG02] S. Savaresi, D. Boley, S. Bittanti, and G. Gazzaniga. Choosing the cluster to
split in bisecting divisive clustering algorithms. In Second SIAM International
Conference on Data Mining (SDM’2002), 2002.

[SEKX98] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spa-
tial databases: the algorithm GDBSCAN and its applications. Data Mining and
Knowledge Discovery, 2(2):169–194, 1998.

64 D. Zeimpekis, E. Gallopoulos

[SKK00] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document cluster-
ing techniques. In 6th ACM SIGKDD, World Text Mining Conference, Boston,
MA, 2000. Available from World Wide Web: citeseer.nj.nec.com/
steinbach00comparison.html.

[SM97] A.J. Schölkopf, B. Smola and K.R. Müller. Kernel principal component analysis.
In Proc. International Conference on Artificial Neural Networks, pages 583–588,
1997.

[SSM98] B. Schölkopf, A.J. Smola, and K.R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[XZ04] S. Xu and J. Zhang. A parallel hybrid Web document clustering algorithm and
its performance study. J. Supercomputing, 30(2):117–131, 2004.

[YAK00] M.H. Yang, N. Ahuja, and D.J. Kriegman. Face recognition using kernel eigen-
faces. In Proc. International Conference on Image Processing, 2000.

[ZC03] D.Q. Zhang and S.C. Chen. Clustering incomplete data using kernel-based fuzzy
c-means algorithm. Neural Processing Letters, 18(3):155–162, 2003.

[ZG03] D. Zeimpekis and E. Gallopoulos. PDDP(l): towards a flexible principal direction
divisive partitioning clustering algorithm. In D. Boley, I. Dhillon, J. Ghosh, and
J. Kogan, editors, Proc. Workshop on Clustering Large Data Sets (held in con-
junction with the Third IEEE Int’l. Conf. Data Min.), pages 26–35, Melbourne,
FL, November 2003.

[ZG06] D. Zeimpekis and E. Gallopoulos. TMG: A MATLAB toolbox for generat-
ing term-document matrices from text collections. In J. Kogan, C. Nicholas,
and M. Teboulle, editors, Grouping Multidimensional Data: Recent Advances in
Clustering, pages 187–210. Springer, New York, 2006.

[ZHD+01] H. Zha, X. He, C. Ding, M. Gu, and H. Simon. Spectral relaxation for k-
means clustering. In NIPS, pages 1057–1064, 2001. Available from World
Wide Web: http://www-2.cs.cmu.edu/Groups/NIPS/NIPS2001/
papers/psgz/AA41.ps.gz.

4

Hybrid Clustering with Divergences

Jacob Kogan, Charles Nicholas, and Mike Wiacek

Overview

Clustering algorithms often require that the entire dataset be kept in the computer
memory. When the dataset is large and does not fit into available memory, one has to
compress the dataset to make the application of clustering algorithms possible. The
balanced iterative reducing and clustering algorithm (BIRCH) is designed to operate
under the assumption that “the amount of memory available is limited, whereas the
dataset can be arbitrarily large” [ZRL97]. The algorithm generates a compact dataset
summary minimizing the I/O cost involved. The summaries contain enough informa-
tion to apply the well-known k-means clustering algorithm to the set of summaries
and to generate partitions of the original dataset. (See [BFR98] for an application of
quadratic batch k-means, and [KT06] for an application of k-means with Bregman
distances to summaries.) An application of k-means requires an initial partition to
be supplied as an input. To generate a “good” initial partition of the summaries, this
chapter suggests a clustering algorithm, PDsDP, motivated by PDDP [Bol98]. We re-
port preliminary numerical experiments involving sequential applications of BIRCH,
PDsDP, and k-means/deterministic annealing to the Enron email dataset.

4.1 Introduction

Clustering very large datasets is a contemporary data mining challenge. A number
of algorithms capable of handling large datasets that do not fit into memory have
been reported in the literature (see [Ber06]). A sequence of algorithms such that the
output of algorithm i is the input to algorithm i+1 may be useful in this context (see
[KNV03]). For example, a sequential application of clustering procedures that first
compress dataA, then cluster the compressed data B, and finally recover a partition-
ing of the original dataset A from the partitioning of the compressed dataset B has
been reported, for example, in [BFR98, LB06, KNW07].

BIRCH [ZRL97] is one of the first clustering algorithms that computes sum-
maries (or sufficient statistics), and uses summaries instead of the original dataset

66 J. Kogan, C. Nicholas, M. Wiacek

for clustering. An application of the classical batch k-means to summaries is reported
in [BFR98]. The proposed algorithm clusters summaries, and, through association,
partitions the original dataset without access to its elements.

The choice of a “good” initial partition for k-means is an additional clustering
challenge. The principal direction divisive partitioning (PDDP) introduced by D. Bo-
ley [Bol98] can be used to address this task. PDDP substitutes for the original dataset
A the one-dimensional “approximation” A′, bisects A′ into two clusters, and recov-
ers the induced two-cluster partition of A. The algorithm is then applied to each of
these two clusters recursively. The subdivision is stopped when, for example, the
desired number of clusters is generated for the dataset A.

When applying PDDP to the summaries, B one should keep in mind that each
summary represents a vector set, hence the approximation B′ should reflect the size,
the “quality,” and the “geometry” of the vector set. In this chapter we present the
principal directions divisive partitioning (PDsDP), a computationally efficient pro-
cedure to build the approximation set B′. The algorithm applies the building block
of PDDP to each summary separately.

The chapter is organized as follows. Section 4.2 introduces centroids and two
specific families of distance-like functions. In Section 4.3 we briefly review the
well-known clustering algorithms BIRCH, k-means, and DA. The principal direc-
tions divisive partitioning algorithm (which is the main contribution of the chapter)
is introduced in detail. Section 4.4 reports on numerical experiments with the Enron
email datasets. The particular distance-like function d(x,y) we use for numerical
experiments is a combination of weighted squared Euclidean distance and Kullback–
Leibler divergence. Section 4.5 indicates how the clustering strategy can be modified
to reduce its computational complexity and better fit the data, and concludes the
chapter.

4.2 Distance-Like Functions and Centroids

We start with some preliminary notations. For a finite vector set π ⊂ Rn and a
distance-like function d(x,y), we define the centroid c(π) as a solution of the mini-
mization problem:

c (π) = arg min

{∑
a∈π

d(x,a), x ∈ C

}
, (4.1)

where C is a specified subset of Rn (as, for example, Rn
+, or an n − 1 dimensional

sphere S = {x : ‖x‖ = 1}). The quality of π is defined by

Q (π) =
∑
a∈π

d (c (π) ,a) . (4.2)

For a datasetA = {a1, . . . ,am} ⊂ Rn the quality of partitionΠ = {π1, . . . , πk},
πi ∩ πj = ∅ if i 6= j, π1 ∪ · · · ∪ πk = A is given by

4 Hybrid Clustering with Divergences 67

Q (Π) =
k∑
i=1

Q (πi) . (4.3)

The degree of difficulty involved in solving (4.1) depends on the function d(·, ·),
and the set C. In this chapter we shall be concerned with two specific families of
distance-like functions: the Bregman and Csiszár divergences.

4.2.1 Bregman Divergence

Let ψ : Rn → (−∞,+∞] be a closed proper convex function. Suppose that ψ
is continuously differentiable on int(dom ψ) 6= ∅. The Bregman divergence Dψ :
dom ψ × int(dom ψ)→ R+ is defined by

Dψ(x,y) = ψ(x)− ψ(y)−∇ψ(y)(x− y) (4.4)

where ∇ψ is the gradient of ψ. This function measures the convexity of ψ, that is,

−1 0 1 2 3
−1

0

1

2

3

4

5

Convex function and tangent

y

ψ(y)

x

ψ(x)

−1 0 1 2 3
−1

0

1

2

3

4

5

Bregman distance

y

ψ(y)

x

ψ(x)

Dψ(x,y)

Fig. 4.1. Bregman divergence.

Dψ(x,y) ≥ 0 if and only if the gradient inequality for ψ holds, that is, if and only
if ψ is convex. With ψ strictly convex one has Dψ(x,y) ≥ 0 and Dψ(x,y) = 0 iff
x = y (see Figure 4.1).

Note thatDψ(x,y) is not a distance (it is, in general, not symmetric and does not
satisfy the triangle inequality). The well-known examples of Bregman divergences
are:

1. The squared Euclidean distance Dψ(x,y) = ‖x − y‖2 (with ψ(x) = ‖x‖2),
and

2. The Kullback–Leibler divergence

Dψ(x,y) =
n∑
j=1

x[j] log
x[j]
y[j]

+ y[j]− x[j]

68 J. Kogan, C. Nicholas, M. Wiacek

(with ψ(x) =
n∑
j=1

x[j] log x[j]− x[j]).

For additional interesting examples we refer the reader to [BMDG04], [TBD+06].
Bregman divergences are convex with respect to the first argument, hence centroids
(solutions for minimization problem (4.1)) can be computed efficiently. Since the
function Dψ(x,y) is not symmetric, by reversing the order of variables in Dψ , that
is,

←−
Dψ(x,y) = Dψ(y,x) = ψ(y)− ψ(x)−∇ψ(x)(y − x), (4.5)

one obtains a different distance-like function (compare with (4.4)). For example,
using the kernel

ψ(x) =
n∑
j=1

x[j] log x[j]− x[j], (4.6)

we obtain

←−
Dψ(x,y) = Dψ(y,x) =

n∑
j=1

[
y[j] log

y[j]
x[j]

+ x[j]− y[j]
]
, (4.7)

a distance-like function popular in clustering research.

While in general distances
←−
Dψ(x,y) given by (4.5) fail to be convex with re-

spect to the first variable, the following surprising result was recently reported in
[BMDG04].

Theorem 1. If d(x,y) is given by (4.5), π = {a1, . . . ,am} ⊂ dom ψ, and
a1 + · · ·+ am

m
∈ int(dom ψ)

⋂
C, then the solution for (4.1) is

c (π) = c (π) =
a1 + · · ·+ am

m
=

1
|π|
∑
a∈π

a, (4.8)

where |π| is the size of π.

Switching the variables has the potential to change the result. Indeed, for d(x,y) =
←−
Dψ(x,y) = Dψ(y,x) =

n∑
j=1

[
y[j] log

y[j]
x[j]

+ x[j]− y[j]
]

, the centroid is given by

the arithmetic mean. On the other hand, if d(x,y) = Dψ(x,y) =
n∑
j=1

x[j] log
x[j]
y[j]

+

y[j]− x[j], then the centroid is given by the geometric mean (see [TBD+06]).

4.2.2 Csiszár Divergence

Let Φ = {ϕ : R→ (−∞,+∞]} be the class of functions satisfying (1)–(4) below.
We assume that for each ϕ ∈ Φ one has dom ϕ ⊆ [0,+∞), ϕ(t) = +∞ when t < 0
and ϕ satisfies the following:

4 Hybrid Clustering with Divergences 69

1. ϕ is twice continuously differentiable on int(dom ϕ) = (0,+∞).
2. ϕ is strictly convex on its domain.
3. lim

t→0+
ϕ′(t) = −∞.

4. ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) > 0.

Given ϕ ∈ Φ, for x,y ∈ Rn we define dϕ(x,y) by

dϕ(x,y) =
n∑
j=1

y[j]ϕ
(

x[j]
y[j]

)
. (4.9)

The function dϕ(x,y) is convex with respect to x and with respect to y.1 Recall that
centroid computations require us to solve a minimization problem (4.1) involving
dϕ. Assumptions (1) and (2) above ensure existence of global minimizers, and as-
sumption (3) enforces the minimizer to stay in the positive octant. Condition (4) is
a normalization that allows for the handling of vectors in Rn

+ (rather than probabili-
ties).

The functional dϕ enjoys basic properties of a distance-like function, namely
∀(x,y) ∈ Rn ×Rn. One has:

dϕ(x,y) ≥ 0 and dϕ(x,y) = 0 iff x = y.

Indeed, the strict convexity of ϕ and Assumption 4 above imply

ϕ(t) ≥ 0, and ϕ(t) = 0 iff t = 1.

The choice ϕ(t) = − log t+ t− 1, with domϕ = (0,+∞) leads to

dϕ(x,y) ≡ KL(y,x) =
n∑
j=1

[
y[j] log

y[j]
x[j]

+ x[j]− y[j]
]
. (4.10)

The above examples show that the functions

d(x,y) = ‖x− y‖2, and d(x,y) =
n∑
j=1

[
y[j] log

y[j]
x[j]

+ x[j]− y[j]
]

are Bregman divergences convex with respect to both variables. In the numerical
experiments section we work with the Bregman divergence

d(x,y) =
ν

2
‖x− y‖2 + µ

n∑
j=1

[
y[j] log

y[j]
x[j]

+ x[j]− y[j]
]
, ν ≥ 0, µ ≥ 0.

(4.11)
In the next section we review briefly two well known clustering algorithms, and

introduce the PDsDP algorithm that mimics PDDP [Bol98].
1 In [Ros98] and [WS03] the function d(x,y) is required to be convex with respect to x.

Csiszár divergences are natural candidates for distance-like functions satisfying this re-
quirement.

70 J. Kogan, C. Nicholas, M. Wiacek

4.3 Clustering Algorithms

We start with a brief review of the BIRCH algorithm.

4.3.1 BIRCH

Let Π = {π1, . . . , πM} be a partition of A = {a1, . . . ,am}. For i = 1, . . . ,M we
denote by

1. bi the centroid c(πi) of πi,
2. mi or m(bi) the size of πi,
3. qi the quality Q(πi) of the cluster πi.

For proof of the next result, consult [TBD+06]:

Q (Π) =
k∑
i=1

Q (πi) +
k∑
i=1

mid(c,bi) =
k∑
i=1

Q (πi) +
k∑
i=1

mi [ψ(bi)− ψ (c)]

(4.12)
where

c = c (A) =
m1

m
b1 + · · ·+ mk

m
bk, and m = m1 + · · ·+mk.

Formula (4.12) paves the way to approach the clustering of A along the two lines:

• Given a positive real constant R (which controls the “spread” of a cluster), an
integer L (which controls the size of a cluster), p already available clusters
π1, . . . πp (i.e., p summaries (mi, qi,bi)), and a vector a ∈ Rn, one can compute
Q (πi ∪ {a}), i = 1, . . . , p using a and summaries only. If for some index i

Q (πi ∪ {a}) = qi + d
(

a+mibi

1+mi
,a
)

+mid
(

a+mibi

1+mi
,bi
)
< R

and
mi + 1 ≤ L

(4.13)

then a is assigned to πi, and the triplet (mi, qi,bi) is updated. Otherwise {a}
becomes a new cluster πp+1 (this is the basic BIRCH construction).
An alternative “greedy” and computationally more expensive strategy is to as-
sign a to the cluster π that satisfies (4.13) and minimizes “average quality”
Q (πi ∪ {a})
mi + 1

over all clusters πi satisfying (4.13). In the numerical experiments

presented in Section 4.4 we follow the “greedy” approach.
• Once a partitionΠ = {π1, . . . , πM} ofA is available, one can cluster the setB =
{b1, . . . ,bM}. Note that the M cluster partition {π1, . . . , πM} of A associates
each subset πB ⊆ B with a subset πA ⊆ A through

πA =
⋃

bj∈πB
πj .

4 Hybrid Clustering with Divergences 71

Hence a k cluster partition ΠB = {πB1 , . . . , πBk } of the set B is associated with a
k cluster partition ΠA = {πA1 , . . . , πAk } of the set A through

πAi =
⋃

bj∈πBi

πj , i = 1, . . . , k. (4.14)

One can, therefore, apply k-means to the smaller dataset B to generate a parti-
tion of the dataset A (this approach is suggested in [BFR98] for batch k-means
equipped with d(x,y) = ‖x− y‖2).

Consider a k cluster partition ΠB = {πB1 , . . . , πBk } of the set B and the associated
k cluster partition ΠA = {πA1 , . . . , πAk } of the set A. Consider, for example, πB1 =
{b1, . . . ,bp} with c

(
πB1
)

and the corresponding cluster πA1 = π1 ∪ · · · ∪ πp. Due
to (4.12) one has

Q
(
πA1
)

=
p∑
j=1

Q(πj) +
∑

b∈πB1

m(b)d
(
c
(
πB1
)
,b
)
.

Repetition of this argument for other clusters πBi and summing the corresponding
expressions leads to

k∑
i=1

Q
(
πAi
)

=
M∑
l=1

Q(πl) +
k∑
i=1

∑
b∈πBi

m(b)d
(
c
(
πBi
)
,b
)
. (4.15)

We set QB (ΠB) =
k∑
i=1

∑
b∈πBi

m(b)d
(
c
(
πBi
)
,b
)
, note that

M∑
l=1

Q(πl) = Q(Π) is a

constant, and arrive at the following formula

Q (ΠA) = Q(Π) +QB (ΠB) . (4.16)

We next describe PDsDP–a deterministic algorithm that generates partitions of the
set B (these partitions will be fed to a k-means–type algorithm at the next step of the
clustering procedure).

4.3.2 PDsDP

The PDDP algorithm approximates the dataset A by the projection of the set on the
line l that provides the best least squares approximation forA (see [Bol98]). The line
is defined by the arithmetic mean c of A, and the principal eigenvector of the matrix

M =
∑
a∈A

(ai − c) (ai − c)T . (4.17)

An application of BIRCH to the original datasetA generates a partition {π1, . . . , πM}
and only the sufficient statistics (|πi|, Q(πi),bi), i = 1, . . . , k are available (see Fig-
ure 4.2). To apply PDDP to the set {b1, . . . ,bM}, one has to take onto account each

72 J. Kogan, C. Nicholas, M. Wiacek

−2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

BIRCH partition of dataset A

a
1

a
2

a
3

a
4

a
5

a
6

a
7

−2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

Dataset B

b
1

b
2

Fig. 4.2. BIRCH 2 cluster partition of dataset A, and the summaries B.

cluster size |πi| as well as the spatial distribution of the cluster’s elements. Figure 4.3
shows that the triplets (|πi|, Q(πi),bi) alone do not capture the information required
to generate the best least squares approximation line l for the set A.

Indeed, consider the following two different datasets:

A1 =
{[

1
0

]
,

[
−1

0

]
,

[
2
0

]}
, and A2 =

{[
1√
2

1√
2

]
,

[
− 1√

2

− 1√
2

]
,

[
2
0

]}
.

While the corresponding best least squares approximation lines l are different (see
Figure 4.3), the sufficient statistics (|πi|, Q(πi),bi), i = 1, 2 for the BIRCH-
generated partitions Π1 =

{
π1

1 , π
1
2

}
and Π2 =

{
π2

1 , π
2
2

}
(see Table 4.1) are identi-

Table 4.1. Different datasets with identical sufficient statistics

π1
1 π1

2 π2
1 π2

2»
1
0

–
,

»
−1

0

–ff »
2
0

–ff ("
1√
2

1√
2

#
,

"
− 1√

2

− 1√
2

#) »
2
0

–ff

cal. They are (
2, 2,

[
0
0

])
and

(
1, 0,

[
2
0

])
.

Reconstruction of the best least squares approximation lines l based on triplets
(|πi|, Q(πi),bi) alone is therefore not possible.

4 Hybrid Clustering with Divergences 73

To build the principal direction, most of the iterative algorithms compute the
product Mx. Formula (4.17) indicates that access to the entire datasetA = {a1, . . . ,am}

−2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Two Clusters

a
1

a
2

a
3

 l

−2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Two Clusters

a
1

a
2

a
3

 l

Fig. 4.3. Two BIRCH-generated clusters with identical sufficient statistics and different lines
l.

is needed to determine the projection line l. When the dataset A does not fit into
memory, we propose to approximateA by the datasetA′ = {a′1, . . . ,a′m} and to use
the covariance matrix

M′ =
m∑
i=1

(a′i − c′) (a′i − c′)T . (4.18)

While the size of A′ is identical to the size of A, to compute the product M′x, in
addition to the triplets (|πi|, Q(πi), c (πi)), one needs to know only M additional
vectors x1i and scalars λ1i (see Theorem 2).

The suggested approximations is motivated by PDDP. For each i = 1, . . . ,M ,
we propose to identify the principal eigenvector x1i and the corresponding largest
eigenvalue λ1i of the covariance matrix corresponding to the cluster πi:

Mi =
|πi|∑
a∈πi

(a− bi) (a− bi)
T (4.19)

(see Figure 4.4, top left). For a ∈ π the vector a′ is defined as the orthogonal projec-
tion of a on the line li = {bi + x1it, −∞ < t <∞} defined by the mean bi and
the cluster’s principal direction vector x1i (see Figure 4.4, bottom center).

Theorem 2. The matrix vector product M′x =

[∑
a′∈A′

(a′ − c) (a′ − c)T
]
x is

given by

74 J. Kogan, C. Nicholas, M. Wiacek

−2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

Line approximation of BIRCH partition of A

a
1

a
2

a
3

a
4

a
5

a
6

a
7

−2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

Cluster projection onto one−dimensional line

a
1

*a
1
‘

a
2

*
a

2
‘

a
3

*a
3
‘

a
4

*
a

4
‘

a
5

*a
5
‘

a
6

*
a

6
‘

a
7

*a
7
‘

−2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

Dataset A‘

*a
1
‘

*
a

2
‘

*a
3
‘

*
a

4
‘

*a
5
‘ *

a
6
‘

*a
7
‘

Fig. 4.4. Principal directions (top left), projections (top right), and “linear” approximation A′
(bottom center).

M′x =
M∑
i=1

bimi

(
bTi x

)
+

M∑
i=1

x1iλ1i

(
xT1ix

)
−mc

(
cTx

)
.

Hence, in addition to sufficient statistics (|πi|, Q(πi),bi), i = 1, . . . ,M required by
BIRCH, computation of M′x requires the eigenvectors x1i along with the eigenval-
ues λ1i, i = 1, . . . ,M .

Proof. For a ∈ πi the vector a′ is the projection of a on the line defined by a unit
norm vector xi and the centroid bi of the cluster πi, that is,

4 Hybrid Clustering with Divergences 75

a′ = bi + xit(a), t(a) = xTi (a− bi)

with∑
a∈πi

t(a) = 0, and
∑
a∈πi

t2(a) = λi

(4.20)

(when πi contains mi identical copies of bi we set xi = 0, and λi = 0). A straight-
forward substitution completes the proof.

We note that in information retrieval (IR) applications with data vectors a ∈ Rn
+,

the vector xi is as sparse as bi. Hence when high-quality BIRCH-generated clusters
containing documents with many words in common are available, the centroids bi
as well as principal direction vectors x1i are sparse.

Let λ1i, λ2i, . . . , λNi and x1i,x2i, . . . ,xNi be the N largest eigenvalues of the
cluster πi covariance matrix along with the corresponding eigenvectors. Let a′ be
an orthogonal projection of a ∈ πi on the affine subspace passing through bi and
spanned by the N eigenvectors x1i,x2i, . . . ,xNi. A straightforward computation
immediately leads to the following generalization of Theorem 2.

Theorem 3. The matrix vector product M′x =

[∑
a′∈A′

(a′ − c) (a′ − c)T
]
x is

given by

M′x =
M∑
i=1

bimi

(
bTi x

)
+

N∑
j=1

[
M∑
i=1

xjiλji
(
xTjix

)]
−mc

(
cTx

)
.

As N increases the quality of the approximation a′ improves. Additional memory
is needed to accommodate N eigenvectors and N eigenvalues for each BIRCH-
generated cluster πi, i = 1, . . . ,M . Provided the centroids bi are sparse, and N
is not too large, this memory requirement may be negligible.

While this chapter focuses on high-dimensional IR applications, when the vector
space dimension n is relatively small, Theorem 3 opens the way to computation of
the dataset A principal direction when only summaries (|πi|, Q(πi),bi) along with
n eigenvectors and eigenvalues are available for each BIRCH-generated cluster πi.

To indicate the number of eigenvectorsN used to generate the approximations a′,
we shall refer to the algorithm as PDsNDP. Numerical results reported in Section 4.4
are generated by PDs1DP and PDs2DP.

4.3.3 k-Means

First we briefly recall batch and incremental k-means (see [DHS01]).
The batch k–means algorithm is an iterative two-step procedure. An iteration of

the algorithm transforms a partition Π into a partition Π ′ so that Q(Π) ≥ Q(Π ′) ≥
0. The iterations run as long as Q(Π)−Q(Π ′) exceeds a user specified tol ≥ 0.

The two-step procedure that buildsΠ ′ fromΠ = {π1, . . . , πk} is briefly outlined
next.

76 J. Kogan, C. Nicholas, M. Wiacek

1. Use (4.1) to compute centroids c (πi), i = 1, . . . , k.
2. For a set of k “centroids” {c1, . . . , ck}, build the updated partition Π ′ =
{π′1, . . . , π′k}:

π′i = {a : a ∈ A d (ci,a) ≤ d (cl,a) for each l = 1, . . . , k} (4.21)

(we break ties arbitrarily). Note that, in general, c (πi) 6= ci (π′i).

This popular clustering algorithm was outlined already in the 1956 work of Steinhaus
[Ste56]. While fast and simple to implement, this two-step procedure ignores the
difference between the “old” and “new” centroids, and often “misses” better quality
partitions (for a discussion see [TBD+06]).

An iteration of incremental k-means examines partitions Π ′ generated from Π
by removing a single vector a from cluster πi and assigning it to cluster πj . If the
reassignment leads to a better partition, then the obtained partition becomes the itera-
tion outcome. Otherwise a different reassignment is examined. The stopping criterion
for this algorithm is the same as for the batch k–means algorithm.

While each iteration of incremental k-means changes the cluster affiliation of
a single vector only, the iteration is based on the exact computation of Q(Π) and
Q(Π ′). An application of a sequence of batch k-means iterations followed by a sin-
gle incremental k-means iteration combines the speed of the former and the accuracy
of the later. The computational cost of the additional incremental step depends on
the specific distance-like function and may come virtually for free (see [DKN03],
[TBD+06]). We shall refer to the merger of the batch and incremental k-means as
just the k-means clustering algorithm. The “merger” algorithm was recently sug-
gested in [ZKH99], [HN01], and [Kog01]. Since the number of different partitions
of a finite set A is finite, one can safely run k-means with tol = 0 (and we select
tol = 0 for numerical experiments described in Section 4.4).

An application of quadratic batch k-means to summaries generated by BIRCH is
reported in [BFR98], and k-means equipped with Bregman divergences and applied
to summaries is reported in [KT06].

A different approach to clustering transforms k-means into a finite dimensional
optimization problem, and opens the way to application of available optimization
algorithms.

4.3.4 smoka

Rather than focusing on partitions, one can search for the set of k “centroids”
{x1, . . . ,xk} ⊂ Rn, or the vector x = (x1, . . . ,xk) ∈ Rnk = RN . Since the
“contribution” of the data vector ai to the partition cost is min

1≤l≤k
d (xl,ai), we con-

sider the objective function F (x) =
m∑
i=1

min
1≤l≤k

d (xl,ai). The clustering problem is

now reduced to a continuous optimization problem in a finite dimensional Euclidean
space RN :

min
x∈RN

F (x). (4.22)

4 Hybrid Clustering with Divergences 77

This is a nonconvex and nonsmooth optimization problem. Approximation of F by
a family of smooth functions Fs as a way to handle (4.22) was suggested recently
in [TK05] specifically for d(x,a) = ‖x− a‖2, and in [Teb07] for general distance-
like functions (mathematical techniques dealing with smooth approximations can be
traced to the classic manuscript [HLP34]). The particular choice of the family Fs(x)
given by

Fs(x) =
m∑
i=1

−s log

(
k∑
l=1

e−
d(xl,ai)

s

)
(4.23)

leads to a special case of a simple iterative algorithm smoothed k−means algorithm
(smoka) that generates a sequence of centroids x(t) with

Fs(x(t)) ≥ Fs(x(t+ 1)) ≥ −sm log k.

The iterations run until Fs(x(t)) − Fs(x(t + 1)) ≥ tol, where tol > 0 is user
specified [TK05].

Due to the lack of convexity, smoka convergence to a global minimum is not
guaranteed (in general smoka converges to a critical point only). The computational
effort of one iteration of smoka does not exceed that of k-means [Teb07] (hence in
Section 4.4 we report and compare the number of iterations).

In 1990 Rose, Gurewitz, and Fox [RGF90] introduced a remarkable clustering
algorithm called deterministic annealing (DA). The algorithm focuses on centroids
rather than on partitions. The algorithm is inspired by principles of statistical me-
chanics. DA is used in order to avoid local minima of the given nonconvex objective
function (see [RGF90]). Simulated annealing (SA, see [KGV83]) is a well-known
method for solving nonconvex optimization problems. This stochastic method is mo-
tivated by its analogy to statistical physics and is based on the Metropolis algorithm
[MRR+53]. Unlike simulated annealing, the DA algorithm replaces the stochastic
search by a deterministic search, whereby the annealing is performed by minimizing
a cost function (the free energy) directly, rather than via stochastic simulations of the
system dynamics. Building on this procedure, global minima is obtained by mini-
mizing the cost function (the free energy) while gradually reducing a parameter that
plays the role of “temperature” (smoothing parameter s of smoka). The “right” rate
of temperature change should lead to the global minimum of the objective function.

Among other things DA offers “the ability to avoid many poor local optima” (see
[Ros98], p. 2210). More recently [Ros98], the DA has been restated within a purely
probabilistic framework within basic information theory principles. The annealing
process consists of keeping a system at equilibrium given by the minimum of the free
energy while gradually reducing the temperature, so that the ground state is achieved
at the limit of a low temperature. Many reports in the literature have indicated that the
DA algorithm outperforms the standard k-means clustering algorithm, and it can be
also used in the context of other important applications (see [Ros98] and references
therein). The “right” rate of temperature decrease still remains an open problem.

The clustering algorithm smoka equipped with the quadratic Euclidean distance
coincides with the deterministic annealing with fixed temperature. The numerical

78 J. Kogan, C. Nicholas, M. Wiacek

results collected in Section 4.4 provide insight into the performance of smoka vs.
k-means. Several additional contributions consider k-means as a finite dimensional
optimization problem (see [NK95], [ZHD99], [Kar99], [Yu05]).

Note that while clustering summaries B = {b1, . . . ,bM}, one has to modify
F (x) and Fs(x) as follows:

F (x) =
M∑
i=1

mi min
l
d (xl,bi) , Fs(x) = −s

M∑
i=1

mi log

(
k∑
l=1

e−
d(xl,bi)

s

)
. (4.24)

Implementation of an algorithm minimizing the modified Fs(x) is identical to
smoka.

4.4 Numerical Experiments

In this section we report on numerical experiments with the Enron email dataset.2

The dataset contains 517,431 email messages located in 3501 subdirectories. There
are 14 large (over 300 kb) files that apparently contain attachments.3 We remove
these large files from the collection, and process the remaining 517417 files.

In all the experiments 5000 “best” terms are selected (see [TBD+06] for the
term selection procedure) to represent the documents in the vector space model (see
[BB99]), and the tfn is applied to normalize the vectors (see [CK99]). In what
follows we refer to a clustering algorithm equipped with the distance-like function
(4.11) as “(ν, µ) clustering algorithm.”

The three-step clustering procedure includes:

1. (ν, µ) BIRCH (to generate a set of summaries),
2. PDs1DP or PDs2DP (to generate an initial partition for k-means/smoka),
3. (ν, µ) k-means/smoka (to partition the summaries B and, by association, the

original dataset A).

In experiments reported below, k-means, applied to a finite set of partitions, runs
with tol = 0, while smoka, minimizing functions of a vector variable, runs with
tol = 0.0001, and s = 0.0001. The choice of s is motivated by the bound

0 ≤ F (x)− Fs(x) ≤ sm log k

where m is the dataset size, and k is the desired number of clusters [Teb07]. We
run the experiments with two extreme weights (2, 0), (0, 1), and the mixed weight
(50, 1) (this weight is selected to equate contributions of quadratic and logarithmic
parts of Q(A)).

Since each email message contains a time stamp, in an attempt to simulate a data
stream and to improve BIRCH clustering, we sort the messages with respect to time
and feed them in this order to BIRCH.
2 Available at http://www.cs.cmu.edu/˜enron/
3 For example \maildir\dorland-c\deleted−items\20

4 Hybrid Clustering with Divergences 79

The upper bound for BIRCH generated cluster size is L = 100, and the upper

bound for cluster average quality
Q(π)
|π|

as a fraction of
Q(A)
|A|

, the maximal cluster

average quality, is reported in Table 4.2 for the three choices of parameters (ν, µ)
along with additional characteristics of the collections A and B.

Table 4.2. Collection: Enron email dataset; size, upper bound for cluster average quality, av-
erage cluster size, and sparsity for the original dataset A, and (ν, µ) BIRCH generated vector
sets B

Dataset/(ν, µ) A B/(2, 0) B/(0, 1) B/(50, 1)

Size 517,417 6073 6185 5322
Max clus. av. quality na 0.9 0.8 0.9
Av. clus. size na 85.19 83.65 97.22
Sparsity 1.5% 25% 25% 28%

We compute sparsity of a vectors set {a1, . . . ,ap} ∈ Rn as
1

n · p

p∑
i=1

n(ai),

where n(a) is the number of nonzero entries of a vector a.
In these experiments PDsNDP, N = 1, 2 generate 10 clusters. Results of se-

quential applications of (2, 0) BIRCH, PDs1DP/PDs2DP, and (2, 0) k-means/smoka
are reported in Table 4.3. The results collected in Table 4.3 show that two dimen-

Table 4.3. Collection: Enron email dataset; number of iterations and quality Q of 517, 417
vector datasetA partition generated by (2,0) BIRCH, PDs1DP/PDs2DP, (2,0) k-means, and
(2,0) smoka; the size of the dataset B is 6073, the vector space dimension is 5000, total of 10
clusters

Algorithm PDs1DP (2, 0) batch k-means (2, 0) k-means (2, 0) smoka
of iterations na 7 1389 28
Quality 499,485 498,432 497,467 497,466
Algorithm PDs2DP (2, 0) batch k-means (2, 0) k-means (2, 0) smoka
of iterations na 11 1519 36
Quality 499,044 498,092 497,334 497,385

sional approximations provided by PDs2DP generate better partitions than those
provided by PDs1DP. The results also indicate that smoka generates clustering re-
sults of quality comparable with those generated by k-means.

The number of iterations performed by smoka is a fraction of the number of
iterations performed by k-means. Note that distance computations are the most nu-
merically expensive operation performed by k-means. In addition to computing the
distances between high-dimensional vectors and centroids performed by k-means,

80 J. Kogan, C. Nicholas, M. Wiacek

each iteration of smoka also computes exponents of the distances. This additional
computational effort is negligible as compared to that required to compute the dis-
tances. Moreover, for distance-like functions other than the quadratic Euclidean dis-
tance the incremental step may require as much computation as the batch step. In
contrast smoka does not perform incremental iterations. In this case the compu-
tational cost of a single smoka iteration requires about 50% of the computational
effort required by one iteration of the k-means algorithm.

In all experiments reported in this chapter smoka converges roughly as fast
as batch k-means, and generates superior results. Convergence for (2, 0) k-means,
(2, 0) batch k-means, and (2, 0) smoka applied to the initial partition generated by
PDs1DP is shown in Figure 4.5. While smoka stops after 28 iterations, already af-

−5 0 5 10 15 20 25 30
5

5.05

5.1

5.15

5.2

5.25
x 10

4 Smoka vs k−means

Iteration

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Fig. 4.5. Collection: Enron email dataset; quality QB of partitions generated by the first 28
iterations of (2, 0) k-means (batch iterations are marked by “*”, incremental iterations are
marked by “o”), and (2, 0) smoka (marked by “x”).

ter the first eight iterations the smoka corresponding lower branch of the graph is
almost flat.

Table 4.4 reports results for the purely logarithmic distance-like function

d(x,y) =
n∑
j=1

[
y[j] log

y[j]
x[j]

+ x[j]− y[j]
]
.

In contrast to the quadratic case (reported in Table 4.3) PDs1DP outperforms
PDs2DP. Nonetheless, the final partition generated by BIRCH, PDs2DP, and k-
means/smoka is of about the same quality as that generated by BIRCH, PDs1DP,
and k-means/smoka.

Finally Table 4.5 displays results for the logarithmic function augmented with
the quadratic weight:

4 Hybrid Clustering with Divergences 81

Table 4.4. Collection: Enron email dataset; number of iterations and quality Q of 517, 417
vector dataset A partitions generated by (0,1) BIRCH, PDs1DP/PDs2DP, (0,1) k-means,
and (0,1) smoka; the size of the dataset B is 6185, the vector space dimension is 5000, total
of 10 clusters

Algorithm PDs1DP (0, 1) batch k-means (0, 1) k-means (0, 1) smoka
of iterations na 34 2661 29
Quality 1.3723e+07 1.36203e+07 1.34821e+07 1.35365e+07
Algorithm PDs2DP (0, 1) batch k-means (0, 1) k-means (0, 1) smoka
of iterations na 41 2717 33
Quality 1.37277e+07 1.36271e+07 1.34821e+07 1.35316e+07

d(x,y) =
50
2
‖x− y‖2 +

n∑
j=1

[
y[j] log

y[j]
x[j]

+ x[j]− y[j]
]
.

Table 4.5. Collection: Enron email dataset; number of iterations and quality Q of
517, 417 vector dataset A 10 cluster partition partitions generated by (50,1) BIRCH,
PDs1DP/PDs2DP, (50,1) k-means, and (50,1) smoka; the size of the dataset B is 5322,
the vector space dimension is 5000, total of 10 clusters

Algorithm PDs1DP (50, 1) batch k-means (50, 1) k-means (50, 1) smoka
of iterations na 2 4388 26
Quality 2.65837e+07 2.65796e+07 2.6329e+07 2.63877e+07
Algorithm PDs2DP (50, 1) batch k-means (50, 1) k-means (50, 1) smoka
of iterations na 2 4371 27
Quality 2.6599e+07 2.659449e+07 2.63247e+07 2.63903e+07

In this case initial partitions generated through PDs1DP are superior to those
generated through PDs2DP.

4.5 Conclusion

The chapter presented a three-step clustering procedure based on BIRCH, PDsDP,
and k-means or smoka algorithms running with divergences. Our numerical exper-

iments show that the fraction
λj1 + λj2

Λj
varies from 0.95 to 0.1 (here Λj is the total

sum of the eigenvalues of cluster πj , so that Λj = Q(πj) when d(x,y) = ‖x−y‖2).
This observation suggests that N , the dimension of cluster πj approximation gener-
ated by PDsNDP, should be cluster dependent. This has the potential to improve the
quality of final partition and, at the same time, to bring additional memory savings.

82 J. Kogan, C. Nicholas, M. Wiacek

The trade-off between the computational cost of high-dimensional approximations
and the quality of the final partitions will be investigated.

Good-quality BIRCH-generated clusters are paramount for consequent PDsNDP
and k-means type clustering. A theoretical foundation for applications of BIRCH
with Csiszár divergences is already available. The k-means algorithm with Csiszár
divergence tends to build clusters with many words in common (see [KTN03],
[TBD+06]). Application of BIRCH equipped with Csiszár divergence may lead to
clusters with sparse centroids, and this approach will be examined.

In an attempt to speed up BIRCH clustering, one may consider selecting only a
fraction of the existing clusters for an assignment of a “new” vector. A number of
selection techniques have been reported recently in [Wia07].

The numerical experiments conducted by these authors indicate that smoka gen-
erates clustering results of quality comparable with those generated by k-means. At
the same time the number of iterations performed by smoka is a fraction of the num-
ber of iterations performed by k-means. Moreover, the experiments show a sharp

decrease in
of smoka iterations

of k-means iterations
with the growing size of the dataset. Table 4.6

shows the ratio for some of the results reported in this section as well as for results
reported in [TK05],[Kog07].

Table 4.6. Examples of iteration ratio per dataset size and distance-like function

Dataset Number (2,0) smoka

(2,0) k−means
(0,1) smoka

(0,1) k−means
(20,1) smoka

(20,1) k−means
(50,1) smoka

(50,1) k−means

of iteration iteration iteration iteration
size clusters ratio ratio ratio ratio
3891 3 0.08 0.04 0.02
5322 10 0.0059
6101 10 0.033
6185 10 0.01
9469 20 0.015
19997 20 0.0087 0.0029 0.0025

Acknowledgment

Kogan’s work was supported in part by the United States–Israel Binational Science
Foundation (BSF).

4 Hybrid Clustering with Divergences 83

References

[BB99] M.W. Berry and M. Browne. Understanding Search Engines: Mathematical Mod-
eling and Text Retrieval. SIAM, Philadelphia, 1999.

[Ber06] P. Berkhin. A survey of clustering data mining techniques. In J. Kogan,
C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent
Advances in Clustering, pages 25–72. Springer, Berlin, 2006.

[BFR98] P.S. Bradley, U.M. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, pages 9–15, AAAI Press, Menlo Park, CA, 1998.

[BMDG04] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman
divergences. In Proceedings of the 2004 SIAM International Conference on Data
Mining, pages 234–245. SIAM, Philadelphia, 2004.

[Bol98] D. Boley. Principal direction divisive partitioning. Data Mining and Knowledge
Discovery, 2(4):325–344, 1998.

[CK99] E. Chisholm and T. Kolda. New term weighting formulas for the vector space
method in information retrieval, 1999. Report ORNL/TM-13756, Computer Sci-
ence and Mathematics Division, Oak Ridge National Laboratory.

[DHS01] R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, Inc.,
New York, second edition, 2001.

[DKN03] I. S. Dhillon, J. Kogan, and C. Nicholas. Feature selection and document cluster-
ing. In M.W. Berry, editor, Survey of Text Mining, pages 73–100. Springer, New
York, 2003.

[HLP34] G. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge University
Press, Cambridge, 1934.

[HN01] P. Hansen and N. Mladenovic. J-Means: a new local search heuristic for minimum
sum of squares clustering. Pattern Recognition, 34:405–413, 2001.

[Kar99] N.B. Karayiannis. An axiomatic approach to soft learning vector quantization and
clustering. IEEE Transactions on Neural Networks, 10(5):1153–1165, 1999.

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671–680, 1983.

[KNV03] J. Kogan, C. Nicholas, and V. Volkovich. Text mining with hybrid clustering
schemes. In M.W.Berry and W.M. Pottenger, editors, Proceedings of the Work-
shop on Text Mining (held in conjunction with the Third SIAM International Con-
ference on Data Mining), pages 5–16, 2003.

[KNW07] J. Kogan, C. Nicholas, and M. Wiacek. Hybrid clustering of large high dimen-
sional data. In M. Castellanos and M.W. Berry, editors, In Proceedings of the
Workshop on Text Mining (held in conjunction with the SIAM International Con-
ference on Data Mining). SIAM, 2007.

[Kog01] J. Kogan. Means clustering for text data. In M.W.Berry, editor, Proceedings of
the Workshop on Text Mining at the First SIAM International Conference on Data
Mining, pages 47–54, 2001.

[Kog07] J. Kogan. Introduction to Clustering Large and High-Dimensional Data. Cam-
bridge University Press, New York, 2007.

[KT06] J. Kogan and M. Teboulle. Scaling clustering algorithms with Bregman distances.
In M.W. Berry and M. Castellanos, editors, Proceedings of the Workshop on Text
Mining at the Sixth SIAM International Conference on Data Mining, 2006.

[KTN03] J. Kogan, M. Teboulle, and C. Nicholas. The entropic geometric means algorithm:
an approach for building small clusters for large text datasets. In D. Boley et al,

84 J. Kogan, C. Nicholas, M. Wiacek

editor, Proceedings of the Workshop on Clustering Large Data Sets (held in con-
junction with the Third IEEE International Conference on Data Mining), pages
63–71, 2003.

[LB06] D. Littau and D. Boley. Clustering very large datasets with PDDP. In J. Kogan,
C. Nicholas, and M. Teboulle, editors, Grouping Multidimensional Data: Recent
Advances in Clustering, pages 99–126. Springer, New York, 2006.

[MRR+53] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.
Equations of state calculations by fast computing machines. Journal of. Chemical
Physics, 21(6):1087–1091, 1953.

[NK95] O. Nasraoui and R. Krishnapuram. Crisp interpretations of fuzzy and possibilistic
clustering algorithms. In Proceedings of 3rd European Congress on Intelligent
Techniques and Soft Computing, pages 1312–1318, ELITE Foundation, Aachen,
Germany, April 1995.

[RGF90] K. Rose, E. Gurewitz, and G. Fox. A deterministic annealing approach to cluster-
ing. Pattern Recognition Letters, 11(11):589–594, 1990.

[Ros98] K. Rose. Deterministic annealing for clustering, compression, classification,
regression, and related optimization problems. Proceedings of the IEEE,
86(11):2210–2239, 1998.

[Ste56] H. Steinhaus. Sur la division des corps matèriels en parties. Bulletin
De L’Acadēmie Polonaise Des Sciences Classe III Mathematique, Astronomie,
Physique, Chimie, Geologie, et Geographie, 4(12):801–804, 1956.

[TBD+06] M. Teboulle, P. Berkhin, I. Dhillon, Y. Guan, and J. Kogan. Clustering with
entropy-like k-means algorithms. In J. Kogan, C. Nicholas, and M. Teboulle,
editors, Grouping Multidimensional Data: Recent Advances in Clustering, pages
127–160. Springer, Berlin, 2006.

[Teb07] M. Teboulle. A unified continuous optimization framework for center-based clus-
tering methods. Journal of Machine Learning Research, 8:65–102, 2007.

[TK05] M. Teboulle and J. Kogan. Deterministic annealing and a k-means type smoothing
optimization algorithm for data clustering. In I. Dhillon, J. Ghosh, and J. Kogan,
editors, Proceedings of the Workshop on Clustering High Dimensional Data and
its Applications (held in conjunction with the Fifth SIAM International Conference
on Data Mining), pages 13–22, SIAM, Philadelphia 2005.

[Wia07] M. Wiacek. An implementation and evaluation of the balanced iterative reduc-
ing and clustering algorithm (BIRCH). Technical Report TR-CS-07-02, CSEE
Department, UMBC, Baltimore, MD, March 2007.

[WS03] S. Wang and D. Schuurmans. Learning continuous latent variable models
with Bregman divergences. In Lecture Notes in Artificial Intelligence, vol-
ume 2842, pages 190–204, 2003. Available from World Wide Web: http:
//www.cs.ualberta.ca/∼dale/papers.html,http://www.cs.
ualberta.ca/%7Eswang/publication/publication.html.

[Yu05] J. Yu. General C-Means Clustering Model. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(8):1197–1211, 2005.

[ZHD99] B. Zhang, M. Hsu, and U. Dayal. K-harmonic means — a data clustering algo-
rithm. Technical Report HPL-1999-124 991029, HP Labs, Palo Alto, CA, 1999.

[ZKH99] B. Zhang, G. Kleyner, and M. Hsu. A local search approach to K-clustering.
HP Labs Technical Report HPL-1999-119, HP Labs, Palo Alto, CA, 1999.
Available from World Wide Web: citeseer.ist.psu.edu/article/
zhang99local.html.

4 Hybrid Clustering with Divergences 85

[ZRL97] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A new data clustering al-
gorithm and its applications. Journal of Data Mining and Knowledge Discovery,
1(2):141–182, 1997.

5

Text Clustering with Local Semantic Kernels

Loulwah AlSumait and Carlotta Domeniconi

Overview

Document clustering is a fundamental task of text mining, by which efficient or-
ganization, navigation, summarization, and retrieval of documents can be achieved.
The clustering of documents presents difficult challenges due to the sparsity and the
high dimensionality of text data, and to the complex semantics of natural language.
Subspace clustering is an extension of traditional clustering that is designed to cap-
ture local feature relevance, and to group documents with respect to the features (or
words) that matter the most.

This chapter presents a subspace clustering technique based on a locally adap-
tive clustering (LAC) algorithm. To improve the subspace clustering of documents
and the identification of keywords achieved by LAC, kernel methods and semantic
distances are deployed. The basic idea is to define a local kernel for each cluster by
which semantic distances between pairs of words are computed to derive the clus-
tering and local term weightings. The proposed approach, called semantic LAC, is
evaluated using benchmark datasets. Our experiments show that semantic LAC is
capable of improving the clustering quality.

5.1 Introduction

With the astonishing expansion of the internet, intranets, and digital libraries, bil-
lions of electronic text documents are made available. Extracting implicit, nontrivial,
and useful knowledge from these huge corpora is essential for applications such as
knowledge management in large business enterprises, semantic web, and automatic
processing of messages, emails, surveys, and news.

Document clustering is a fundamental task of text mining by which efficient or-
ganization, navigation, summarization, and retrieval of documents can be achieved.
Document clustering seeks to automatically partition unlabeled documents into
groups. Ideally, such groups correspond to genuine themes, topics, or categories of
the corpus [TSK06].

88 L. AlSumait, C. Domeniconi

The classical document representation is a word-based vector, known as the vec-
tor space model (VSM) [STC04]. According to the VSM, each dimension is associ-
ated with one term from the dictionary of all the words that appear in the corpus. The
VSM, although simple and commonly used, suffers from a number of deficiencies.
Inherent shortages of the VSM include breaking multi-word expressions, like ma-
chine learning, into independent features, mapping synonymous words into different
components, and treating polysemous as one single component. Although traditional
preprocessing of documents, such as eliminating stop words, pruning rare words,
stemming, and normalization, can improve the representation, it is still essential to
embed semantic information and conceptual patterns in order to enhance the predic-
tion capabilities of clustering algorithms.

Moreover, the VSM representation of text data can easily result in hundreds of
thousands of features. As a consequence, any clustering algorithm would suffer from
the curse of dimensionality. In such sparse and high-dimensional space, any distance
measure that assumes all features to have equal importance is likely to be ineffective.
This is because points within the same cluster would at least have a few dimensions
on which they are far apart from each other. As a result, the farthest point is expected
to be almost as close as the nearest one. Since feature relevance is local in nature
(e.g., a single word may have a different importance across different categories),
global feature selection approaches are not effective, and may cause a loss of crucial
information. To capture local feature relevance, local operations that embed different
distance measures in different regions are required. Subspace clustering is an exten-
sion of traditional clustering that is designed to group data points, i.e. documents,
with respect to the features (or words) that matter the most.

In this chapter, a subspace clustering technique based on the locally adaptive
clustering (LAC) algorithm [DGM+07] is used. To improve the subspace clustering
of documents and the identification of keywords achieved by LAC, kernel methods
and semantic distances are deployed. The idea is to define a local kernel for each
cluster, by which semantic distances between pairs of words are computed to derive
the clustering and local term weightings.

The chapter is organized as follows. Some background on kernel methods for text
is provided in Section 5.2. The LAC algorithm is briefly described in Section 5.3. In
Sections 5.4 and 5.5, we present our approach, the experimental design, and results.
A review of recent work on the application of semantic information in kernel-based
learning methods is provided in Section 5.6. Our final conclusions and suggestions
for future work are discussed in Section 5.7.

5.2 Kernel Methods for Text

Kernel methods are a promising approach to pattern analysis. Formally, the VSM
can be defined as the following mapping:

φ : d 7→ φ(d) = (tf(t1, d), tf(t2, d), . . . , tf(tD, d)) ∈ RD

5 Text Clustering with Local Semantic Kernels 89

where tf(ti, d) is the frequency of term ti in document d, and D is the size of the
dictionary.

To represent the whole corpus of N documents, the document-term matrix , D,
is introduced. D is a N × D matrix whose rows are indexed by the documents and
whose columns are indexed by the terms [STC04].

The basic idea of kernel methods is to embed the data in a suitable feature space,
such that solving the problem in the new space is easier (e.g., linear). A kernel rep-
resents the similarity between two objects (e.g., documents or terms), defined as
dot-product in this new vector space. The kernel trick allows keeping the mapping
implicit. In other words, it is only required to know the inner products between the
images of the data items in the original space. Therefore, defining a suitable kernel
means finding a good representation of the data objects.

In text mining, semantically similar documents should be mapped to nearby po-
sitions in feature space. To address the omission of semantic content of the words in
the VSM, a transformation of the document vector of the type φ̃(d) = φ(d)Sem is
required, where Sem is a semantic matrix. Different choices of the matrix Sem lead
to different variants of the VSM. Using this transformation, the corresponding vector
space kernel takes the form

k̃(d1, d2) = φ(d1)SemSem>φ(d2)> (5.1)
= φ̃(d1)φ̃(d2)>

Thus, the inner product between two documents d1 and d2 in feature space can be
computed efficiently directly from the original data items using a kernel function.
The semantic matrix Sem can be created as a composition of successive embeddings,
which add additional refinements to the semantics of the representation. Therefore,
Sem can be defined as:

Sem = RP

where R is a diagonal matrix containing the term weightings or relevances, while P
is a proximity matrix defining the semantic similarities between the different terms
of the corpus. One simple way of defining the term-weighting matrix R is to use
the inverse document frequency (idf) . In this chapter, a new weighting measure,
dynamically learned by means of the LAC algorithm, is used to construct R.

P has nonzero off-diagonal entries, Pij > 0, when the term i is semantically
related to the term j. Embedding P in the vector space kernel corresponds to rep-
resenting a document as a less sparse vector, φ(d)P , which has nonzero entries for
all terms that are semantically similar to those present in document d. There are
different methods for obtaining P . A semantic network, like WordNet, which en-
codes relationships between words of a dictionary in a hierarchical fashion, is one
source of term similarity information. An alternative, the proximity matrix, can be
computed using latent semantic indexing (LSI). The singular value decomposition
(SVD) of the matrix D> is calculated to extract the semantic information, and to
project the documents onto the space spanned by the first k eigenvectors of theD>D
matrix. The corresponding kernel is called latent semantic kernel (LSK). The sim-
plest method to compute P , and used in this chapter, is the generalized vector space

90 L. AlSumait, C. Domeniconi

model (GVSM) [WZW85]. This technique aims at capturing correlations of terms
by investigating their co-occurrences across the corpus. Two terms are considered
semantically related if they frequently co-occur in the same documents. Thus, a doc-
ument is represented by the embedding

φ̃(d) = φ(d)D>

and the corresponding kernel is

k̃(d1, d2) = φ(d1)D>Dφ(d2)> (5.2)

where the (i, j)th entry of the matrix D>D is given by

(D>D)ij =
∑
d

tf(ti, d)tf(tj , d)

The matrix DTD has a nonzero entry (DTD)ij if there is a document d in which the
corresponding terms ti and tj co-occur, and the strength of the relationship is given
by the frequency and the number of their co-occurrences.

5.3 Locally Adaptive Clustering (LAC)

As mentioned earlier, clustering suffers from the curse of dimensionality problem in
high-dimensional spaces. Furthermore, several clusters may exist in different sub-
spaces, comprised of different combinations of features. In many real-world prob-
lems, in fact, some points are correlated with respect to a given set of dimensions,
and others are correlated with respect to different dimensions. Each dimension could
be relevant to at least one of the clusters.

To capture the local correlations of data, a proper feature selection procedure
should operate locally in the input space. Local feature selection allows one to em-
bed different distance measures in different regions of the input space; such distance
metrics reflect local correlations of data. LAC [DGM+07] (a preliminary version
appeared in [DPGM04]) is a soft feature selection procedure that assigns (local)
weights to features. Dimensions along which data are loosely correlated receive a
small weight, which has the effect of elongating distances along that dimension.
Features along which data are strongly correlated receive a large weight, which has
the effect of constricting distances along that dimension. Figure 5.1 gives a simple
example. The upper plot depicts two clusters of data elongated along the x and y
dimensions. The lower plot shows the same clusters, where within-cluster distances
between points are computed using the respective local weights generated by our al-
gorithm. The weight values reflect local correlations of data, and reshape each cluster
as a dense spherical cloud. This directional local reshaping of distances better sepa-
rates clusters, and allows for the discovery of different patterns in different subspaces
of the original input space.

Thus, LAC discovers weighted clusters. A weighted cluster is a subset of data
points, together with a weight vector w, such that the points are closely clustered

5 Text Clustering with Local Semantic Kernels 91

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

y

x

Cluster0 in original input space
Cluster1 in original input space

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

y

x

Cluster0 transformed by local weights
Cluster1 transformed by local weights

Fig. 5.1. (Top) Clusters in original input space. (Bottom) Clusters transformed by local
weights.

according to the corresponding weighted Euclidean distance. The wj measures the
degree of participation of feature j to the cluster. The objective of LAC is to find
cluster centroids and weight vectors.

The partition induced by discovering weighted clusters is formally defined as
follows. Given a set S ofN points x ∈ RD, a set of k centers {c1, ..., ck}, cj ∈ RD,
j = 1, ..., k, coupled with a set of corresponding weight vectors {w1, ...,wk},wj ∈
RD, j = 1, ..., k, partition S into k sets:

Sj = {x|(
D∑
i=1

wji(xi − cji)2)
1
2 < (

D∑
i=1

wqi(xi − cqi)2)
1
2 ,∀q 6= j}

where wji and cji represent the ith components of vectors wj and cj , respectively.
The set of centers and weights is optimal with respect to the Euclidean norm, if

they minimize the error measure:

E1(C,W) =
k∑
j=1

D∑
i=1

(wji
1
|Sj |

∑
x∈Sj

(cji − xi)2)

92 L. AlSumait, C. Domeniconi

subject to the constraints ∀j
∑
i wji = 1. C and W are (D × k) matrices whose

columns are cj and wj , respectively, that is, C = [c1...ck] and W = [w1...wk], and
|Sj | is the cardinality of set Sj . The solution

(C∗,W ∗) = arg min
C,W

E1(C,W)

will discover one-dimensional clusters: it will put maximal (unit) weight on the fea-
ture with smallest dispersion 1

|Sj |
∑

x∈Sj
(cji − xi)2, within each cluster j, and zero

weight on all other features. To find weighted multidimensional clusters, where the
unit weight gets distributed among all features according to the respective dispersion
of data within each cluster, LAC adds the regularization term

∑D
i=1 wji logwji. This

term represents the negative entropy of the weight distribution for each cluster. It pe-
nalizes solutions with maximal weight on the single feature with smallest dispersion
within each cluster. The resulting error function is

E(C,W) =
k∑
j=1

D∑
i=1

(wji
1
|Sj |

∑
x∈Sj

(cji − xi)2 + hwji logwji)

subject to the constraints ∀j
∑
i wji = 1. The coefficient h ≥ 0 is a parameter of the

procedure; it controls the strength of the incentive for clustering on more features.
Increasing its value will encourage clusters on more features, and vice versa. By
introducing the Lagrange multipliers, the solution of this constrained optimization
problem is

w∗ji =

exp

(
− 1
|Sj |

∑
x∈Sj

(cji − xi)2
/
h

)
D∑
i=1

exp

(
− 1
|Sj |

∑
x∈Sj

(cji − xi)2
/
h

) (5.3)

c∗ji =
1
|Sj |

∑
x∈Sj

xi (5.4)

To find a partition that identifies the clustering solution, a search strategy that pro-
gressively improves the quality of initial centroids and weights is proposed. The
search starts with well-scattered points in S as the k centroids, and weights equally
set to 1/D. Then, for each centroid cj , the corresponding sets Sj are computed as
previously defined. Next, the average distance of the points in Sj to the centroid cj ,
along each dimension, is computed. The smaller the average, the stronger the degree
of participation of feature i to cluster j. To credit weights to features (and to clus-
ters), the average distances are used, as given above. Consequently, the computed
weights are used to update the sets Sj , and therefore the centroids’ coordinates. The
procedure is iterated until convergence is reached.

5 Text Clustering with Local Semantic Kernels 93

5.4 Semantic LAC

The local weights provided by LAC are exploited to identify the keywords specific
to each topic (cluster). To improve the subspace clustering of documents and the
computation of local term weights, the learning paradigm of kernel methods is used.
The idea is to use a semantic distance between pairs of words by defining a local
kernel for each cluster, derived from Equation (5.1), as follows:

Kj(d1, d2) = φ(d1)SemjSem
>
j φ(d2)>, (5.5)

where Semj = RjP . Rj is a local term-weighting diagonal matrix corresponding
to cluster j, and P is the proximity matrix between the terms. The weight vector that
LAC learns is used to construct the weight matrix R for each cluster. Formally, Rj
is a diagonal matrix where rii = wji, that is, the weight of term i for cluster j, for
i = 1, . . . , D, and can be expressed as follows:

Rj =

wj1 0 ... 0
0 wj2 . . . 0
...

...
...

...
0 0 . . . wjD

To compute P , the GVSM is used. Since P holds a similarity figure between words
in the form of co-occurrence information, it is necessary to transform it to a distance
measure before utilizing it. To this end, the values of P are recomputed as follows:

P disij = 1− (Pij/max(P)),

where max(P) is the maximum entry value in the proximity matrix.
Consequently, a semantic dissimilarity matrix for cluster j is a D × D matrix

given by
Ŝemj = RjP

dis

which represents semantic dissimilarities between the terms with respect to the local
term weightings. Thus, by means of local kernels driven by dissimilarity matrices,
the new representation of documents highlights terms or dimensions that have higher
degree of relevance for the corresponding cluster, as well as terms that are semanti-
cally similar.

Such transformation enables the kernels to be plugged-in directly in the dynamic
of LAC. This results in our proposed semantic LAC algorithm.

5.4.1 Semantic LAC Algorithm

Similarly to the LAC algorithm described earlier in Section 5.3, semantic LAC starts
with k initial centroids and equal weights. It partitions the data points, recomputes the
weights and data partitions accordingly, and then recomputes the new centroids. The
algorithm iterates until convergence, or a maximum number of iterations is exceeded.

94 L. AlSumait, C. Domeniconi

Semantic LAC uses a semantic distance. A point x is assigned to the cluster j that
minimizes the semantic distance of the point from its centroid. The semantic distance
is derived from the kernel in Eq. (5.5) as follows:

Lw(cj ,x) = (x− cj)ŜemjŜem
>
j (x− cj)>.

Thus, every time the algorithm computes Sj’s, the semantic matrix must be com-
puted by means of the new weights. The resulting algorithm, called semantic LAC,
is summarized in Algorithm 5.4.1.

Algorithm 5.4.1 Semantic LAC
Input: N points x ∈ RD , k, and h
1. Initialize k centroids c1, c2, . . . , ck

2. Initialize weights: wji = 1
D

, for each centroid cj , j = 1, . . . , k,
and for each feature i = 1, . . . , D

3. Compute P ; then compute P dis

4. Compute Ŝem for each cluster j: Ŝemj = RjP
dis

5. For each centroid cj , and for each point x, set:
Sj = {x|j = arg minl Lw(cl,x)},
where Lw(cl,x) = (x− cl)ŜemlŜem

>
l (x− cl)

>

6. Compute new weights:
for each centroid cj , and for each feature i:

w∗ji =

exp

− 1

|Sj |

X
x∈Sj

(cji − xi)
2
.

h

!
DX

i=1

exp

− 1

|Sj |
X
x∈Sj

(cji − xi)
2
.

h

! ;

7. For each centroid cj :
Recompute Ŝemj matrix using new weights;

8. For each point x:
Recompute Sj = {x|j = arg minl Lw(cl,x)}

9. Compute new centroids:

cj =

P
x x1Sj

(x)P
x 1Sj

(x)
for each j = 1, . . . , k,

where 1s(.) is the indicator function of set S
10. Iterate 5–9 until convergence, or

maximum number of iterations is exceeded

The running time of one iteration of LAC is O(kND), where k is the number of
clusters, N is the number of data, and D is the number of dimensions. For semantic
LAC, local kernels are computed for each cluster, based on semantic distances be-
tween pairs of terms. Thus, the running time of one iteration becomes O(kND2).
However, we perform feature selection in our experiments, and reduce D to the hun-
dreds. In addition, as discussed later, semantic LAC reaches better solutions in fewer
iterations than LAC in general. Thus, by stopping the execution of semantic LAC

5 Text Clustering with Local Semantic Kernels 95

when a maximum number of iterations is reached, we are able to limit the computa-
tional burden without affecting accuracy.

5.5 Experimental Results

5.5.1 Datasets

The datasets used in our experiments (see Table 5.1) were preprocessed according to
the following steps: removal of stop words, stemming of words to their root source,
and removal of rare words that appeared in less than four documents. A global feature
selection algorithm, called DocMine, which is based on frequent itemset mining, was
also performed [BDK04]. Briefly, DocMine mines the documents to find the frequent
itemsets, which are sets of words that co-occur frequently in the corpus, according
to a given support level (SL). In principle, the support level is driven by the target
dimensionality of the data. The union of such frequent items is used to represent each
document as a bag of frequent itemsets. The weight of the new entry is the frequency
of the corresponding word in the document [KDB05, BDK04]. In the following, we
provide a short description of the datasets.

Email-1431. The original Email-1431 corpus consists of texts from 1431 emails
manually classified into three categories: conference (370), job (272), and spam
(789). The total dictionary size is 38713 words. In this chapter, we consider a two-
class classification problem by combining the conference and job emails into one
class (NS = Non Spam). In addition, the set with 285 features, that corresponds to
10% support level, is used.

Ling-Spam. This dataset is a mixture of spam messages (453) and messages (561)
sent via the linguist list, a moderated list concerning the profession and science of
linguistics. The original size of the dictionary is 24627. In our experiments, the sets
with 350, 287, 227, and 185 features were used, corresponding to 7%, 8%, 9%, and
10% support level, respectively.

20NewsGroup. This dataset is a collection of 20,000 messages collected from
20 different net-news newsgroups. In this chapter, two-class classification problems
are considered using the following two categories: auto (990 documents) and space
(987 documents); electronics (981 documents) and medical (990 documents). The
dimension of the former set is 166, which correspond to 5% support level, while the
latter set has 134 features with 5% support level.

Classic3. This dataset is a collection of abstracts from three categories: MED-
LINE (1033 abstracts from medical journals), CISI (1460 abstracts from IR papers),
and CRANFIELD (1399 abstracts from aerodynamics papers). We consider four
problems constructed from the Classic3 set, which consist of 584 (SL = 2%), 395
(SL = 3%), 277 (SL = 4%), and 219 (SL = 5%) features, respectively.

5.5.2 Results

We ran LAC six times on all the datasets for 1/h = 1, . . . , 6. Table 5.2 lists aver-
age error rates, standard deviations, and minimum error rates obtained by running

96 L. AlSumait, C. Domeniconi

Table 5.1. Characteristics of the datasets

Dataset k SL D N points/class
Email1431 2 10 285 1431 S(789), NS(642)
Ling-Spam(10%) 2 10 185 1014 S(453), NS(561)
Ling-Spam(9%) 2 9 227 1014 S(453), NS(561)
Ling-Spam(8%) 2 8 287 1014 S(453), NS(561)
Ling-Spam(7%) 2 7 350 1014 S(453), NS(561)
Auto-Space 2 5 166 1977 A(990), S(987)
Medical-Elect. 2 5 134 1971 M(990), E(981)
Classic3(5%) 3 5 219 3892 Med(1033), Cran(1399), Cisi(1460)
Classic3(4%) 3 4 277 3892 Med(1033), Cran(1399), Cisi(1460)
Classic3(3%) 3 3 395 3892 Med(1033), Cran(1399), Cisi(1460)
Classic3(2%) 3 2 584 3892 Med(1033), Cran(1399), Cisi(1460)

Table 5.2. Experimental results of semantic LAC, LAC, and k-means

LAC Sem LAC k-means
clustering clustering clustering

Ave Std Min Ave Std Min Ave Std Min
Dataset error dev error error dev error error dev error
Email1431 2.12 0.45 1.54 1.7 0.21 1.50 42.85 3.95 40.01
Ling-Spam 10% 6.33 0.28 5.96 4.67 0.26 4.24 20.07 19.16 6.31
Ling-Spam 9% 10.8 12.7 5.3 3.63 0.08 3.55 23.47 19.78 8.97
Ling-Spam 8% 5.5 0.9 4.0 3.18 0.18 3.06 20.15 18.74 7.40
Ling-Spam 7% 12.2 12.1 5.2 3.1 3.06 5.4 31.69 19.09 6.71
Auto-Space 28.7 6.35 24.7 27.6 2.02 25.0 42.85 3.95 40.01
Medical-Elect. 27.47 4.37 24.7 25.67 2.61 24.35 44.83 2.96 42.89
Classic3 5% 24.54 10.97 12.25 10.79 0.32 10.38 27.22 11.44 12.79
Classic3 4% 10.18 0.81 9.0 9.36 0.33 8.99 29.05 9.24 10.63
Classic3 3% 18.28 8.49 7.24 8.46 0.45 8.04 28.44 9.59 9.27
Classic3 2% 11.8 7.3 5.9 7.15 0.5 6.45 23.03 16.13 8.58

semantic LAC on all the datasets, along with the corresponding results of the LAC
algorithm, and k-means as baseline comparison. Figures 5.2 and 5.3 illustrate the
error rates of semantic LAC and LAC as a function of the h parameter values for
the Classic3 (3%) and NewsGroup/Medical-Electronic, respectively. Error rates are
computed according to the confusion matrices using the ground truth labels.

LAC and semantic LAC provided superior partitionings of the data with respect
to k-means for all the datasets. As a further enhancement, semantic LAC provided
error rates lower than LAC for all the datasets, many of which, as in Ling-Spam and
Classic3, are with major improvements. Although, in some cases, LAC found so-
lutions with lowest minimum error rates, for example, Newsgroup/Auto-Space and
Classic3 2% and 3%, semantic LAC, on average, performed better. In addition, the
standard deviations of the error rates for semantic LAC were significantly smaller
than those of LAC, which demonstrates the stability of our subspace clustering ap-

5 Text Clustering with Local Semantic Kernels 97

proach when semantic information is embedded. The robustness of semantic LAC
with respect to the parameter h is clearly depicted in Figures 5.2 and 5.3. This is a
relevant result since the setting of the h parameter is an open problem, as no domain
knowledge for its tuning is likely to be available in practice. Furthermore, parame-
ter tuning is a difficult problem for clustering in general. Thus, the achievement of
robust clustering is a highly desirable result.

1 2 3 4 5 6

6

11

16

21

26

1/h

E
rr

or
Semantic LAC
LAC

Fig. 5.2. Error rate vs. parameter h for semantic LAC and LAC on Classic3 3%.

1 2 3 4 5 6

26

31

36

1/h

E
rr

or

Semantic LAC
LAC

Fig. 5.3. Error rate vs. parameter h for semantic LAC and LAC on NewsGroup20/Medical-
Electronics.

98 L. AlSumait, C. Domeniconi

We further investigated the behavior of semantic LAC using different support
levels. Figures 5.4 and 5.5 illustrate the error rate vs. h values for different support
levels on the Classic3 data, using semantic LAC and LAC, respectively. For increas-
ing support values, that is, decreasing number of selected features, semantic LAC
provided higher error rates. At the same time, no clear trend can be observed for LAC
(see Figure 5.5). As expected, as more features are used to represent the documents,
better clustering results are obtained with semantic LAC, and embedding semantic
information within distance metrics further enhanced the clustering quality.

1 2 3 4 5
6

7

8

9

10

11

12

1/h

E
rr

or

Classic 2%
Classic 3%
Classic 4%
Classic 5%

Fig. 5.4. Error rate vs. parameter h for different support levels on Classic3 using semantic
LAC.

Moreover, lower error rates were achieved for higher h, that is, lower 1/h (Figure
5.4), which favors multidimensional clusters. Nonetheless, the trend is slightly dif-
ferent for the Ling-Spam dataset (Figure 5.6). The error rate has the same increasing
trend with respect to the support level but, in general, lower error rates resulted from
lower h, that is, higher 1/h. In general, it is expected that the optimal dimensionality
depends on the nature of the dataset. The non-spam emails in the Ling-Spam data
come from one narrow area of linguistics, so fewer words are required to correctly
identify the class. On the other hand, Classic3, although collected from three dif-
ferent areas, is basically a collection of scientific journal abstracts. Therefore, many
words may be shared across classes, and the algorithm requires more features to
correctly identify the classes.

In addition, the performance of LAC and semantic LAC was evaluated using
the F1 measure to further investigate the quality of solutions provided by both ap-
proaches in terms of the harmonic mean of their recall and precision. The recall for
a given class is the fraction of documents of the class that was correctly clustered in
one group, over the total number of documents in the class. On the other hand, the
precision for a given class is the fraction of documents of the class that was correctly

5 Text Clustering with Local Semantic Kernels 99

1 2 3 4 5
5

10

15

20

25

30

35

40

1/h

E
rr

or

Classic 2%
Classic 3%
Classic 4%
Classic 5%

Fig. 5.5. Error rate vs. parameter h for different support levels on Classic3 using LAC.

clustered in one group, over the total number of documents assigned to that group.
Figure 5.7 shows the F1 measure, averaged over the six runs corresponding to differ-
ent h values, for semantic LAC and LAC on the four sets of the Ling-Spam data. The
exact F1 measures for different h values for the Ling-Spam 9% data set is shown in
Figure 5.8. It can be seen that the recall and precision of semantic LAC are higher
than those of LAC.

1 2 3 4 5 6

3

4

5

1/h

E
rr

or

LingSpam 7%
LingSpam 8%
LingSpam 9%
LingSpam 10%

Fig. 5.6. Error rate vs. parameter h for different support levels on Ling-Spam data using se-
mantic LAC.

Finally, we compared the convergence behavior of semantic LAC and LAC. Re-
sults are shown in Figures 5.9, 5.10, and 5.11. To partially eliminate the randomness

100 L. AlSumait, C. Domeniconi

7% 8% 9% 10%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
1

SL

LAC
Semantic LAC

Fig. 5.7. Average F1 measure for LAC and semantic LAC run on Ling-Spam sets.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
1

1/h

LAC
Semantic LAC

Fig. 5.8. F1 measure for different h values for LAC and semantic LAC run on Ling-Spam 9%.

5 Text Clustering with Local Semantic Kernels 101

of the initial centroids, the figures plot the error rate starting at iteration three for both
LAC and semantic LAC. Figure 5.9 shows the error rate at every iteration of a single
run for the Classic3 5% set. Figures 5.10 and 5.11 illustrate the error rate at each
iteration averaged over six runs for the Ling-Spam 10% and the Medical-Electronic
datasets, respectively. Although one iteration of semantic LAC requires more com-
putations, semantic LAC does converge to a stable error value in fewer iterations. In
fact, on average, semantic LAC reaches better error rates in less than six iterations. In
particular, the results reported in Table 5.2 are executed with the maximum threshold
for the number of iterations set to five. This demonstrates the potential of using local
kernels that embed semantic relations as a similarity measure.

3 4 5 6 7 8 9 10 11 12 13 14
10

11

12

13

14

15

16

Iteration

E
rr

or

LAC
Semantic LAC

Fig. 5.9. Error rate vs. number of iterations for LAC and semantic LAC on Classic3 5%.

5.6 Related Work

There are a number of subspace clustering algorithms in the literature of data
mining. Examples of such algorithms include the CLIQUE algorithm [AGGR98],
density-based optimal projective clustering (DOC) [PJAM02], and projected clus-
tering (PROCLUS) [AWY+99]. A comparative survey of subspace clustering tech-
niques can be found in [PHL04].

The problem of embedding semantic information within the document represen-
tation and/or distance metrics has recently attracted a lot of attention. Most of this
work focuses on text classification [BCM06, CSTL02, LY05]. In particular, Cris-
tianini et al. [CSTL02] introduced and developed Latent Semantic Kernels (LSK),
as described earlier, and applied their novel approach on multiclass text classifica-
tion problems. LSKs were tested using Reuters21578, and some improvement was

102 L. AlSumait, C. Domeniconi

3 4 5 6 7
4

5

6

7

8

9

10

11

12

13

14

E
rr

or

Iteration

LAC
Semantic LAC

Fig. 5.10. Average error rate vs. number of iterations for LAC and semantic LAC on Ling-
Spam 10%.

3 4 5 6 7 8
25

26

27

28

29

30

31

32

33

34

E
rr

or

Iteration

LAC
Semantic LAC

Fig. 5.11. Average error rate vs. number of iterations for LAC and semantic LAC on Medical-
Electronics.

reported. The authors in [SdB00] have combined a semantic kernel with SVMs to de-
fine a new similarity measure for text classification. To identify semantic proximities
between words, WordNet was utilized: the length of the path linking each possible
pair of words in the taxonomy was used to measure the similarity. By incorporat-
ing the proximities within the VSM, documents were represented by new less sparse
vectors and, hence, a new distance metric was induced and integrated into K-NN and
SVMs. While the work in [SdB00] reported improvement in terms of accuracy when
the semantic kernel was deployed, the task involves supervised learning.

5 Text Clustering with Local Semantic Kernels 103

Hotho et al. [HSS03] integrated conceptual account of terms found in WordNet
to investigate its effects when deployed for unsupervised document clustering. They
introduced different strategies for disambiguation, and applied bi-section k-means,
a variant of k-means clustering [SKK00], with the cosine similarity measure on the
Reuters21578 corpus. Similarly, [WH06] deployed WordNet to define a sense disam-
biguation method based on the semantic relatedness among the senses that was used
in basic document clustering algorithms, for example, k-means, bisecting k-means,
and HAC. They found that the use of senses of words can improve the clustering
performance, but the improvement was statistically insignificant.

Recently [JZNH06], a subspace clustering approach that uses an ontology-based
semantic distance has been proposed. In this approach, an ontology-based VSM is
constructed from the original term-based VSM by means of a principal-component-
analysis–like factorization of a term mutual information matrix. This approach cap-
tures the semantic relationship between each pair of terms based on the WordNet
ontology. Similarly to LAC, the work in [JZNH06] applied the new representation
to a subspace clustering algorithm, extended from the standard k-means. It identifies
clusters by assigning large weights to the features that form the subspaces in which
the clusters exist. The work in [JZNH06] generates fixed term weights prior to the
clustering process. On the other hand, our semantic distance measure is driven by
the local term weighting within each cluster, and the clusters together with the local
weights are derived and enhanced by the embedded semantic, iteratively during the
clustering process.

5.7 Conclusions and Future Work

In this chapter, the effect of embedding semantic information within subspace clus-
tering of text documents was investigated. In particular, a semantic distance based
on a GVSM kernel approach is embedded in a locally adaptive clustering algorithm
to enhance the subspace clustering of documents, and the identification of relevant
terms. Results have shown improvements over the original LAC algorithm in terms
of error rates for all datasets tested. In addition, the semantic distances resulted in
more robust and stable subspace clusterings.

The proposed approach can be explored further. In particular, in our future work
we plan to perform more experiments using different datasets and various feature se-
lection approaches. In addition, other kernel methods, for example, semantic smooth-
ing of the VSM, LSK, and diffusion kernels, may provide more sophisticated seman-
tic representations. Furthermore, an analysis of the distribution of the terms’ weights
produced by semantic LAC may identify the keywords that best represent the seman-
tic topics discussed in the documents.

Acknowledgment

This work was supported in part by National Science Foundation (NSF) CAREER
Award IIS-0447814.

104 L. AlSumait, C. Domeniconi

References

[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages
94–105, ACM Press, New York, 1998.

[AWY+99] C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, and J.S. Park. Fast algorithms
for projected clustering. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 61–72, ACM Press, New York, 1999.

[BCM06] R. Basili, M. Cammisa, and A. Moschitti. A semantic kernel to classify texts with
very few training examples. Informatica, 30:163–172, 2006.

[BDK04] D. Barbará, C. Domeniconi, and N. Kang. Classifying documents without labels.
In Proceedings of the Fourth SIAM International Conference on Data Mining,
pages 502–506, SIAM, Philadelphia, 2004.

[CSTL02] N. Cristianini, J. Shawe-Taylor, and H. Lodhi. Latent semantic kernels. Journal
of Intelligent Information Systems, 18(2-3):127–152, 2002.

[DGM+07] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and D. Papadopou-
los. Locally adaptive metrics for clustering high dimensional data. Data Mining
and Knowledge Discovery Journal, 14(1):63–97, 2007.

[DPGM04] C. Domeniconi, D. Papadopoulos, D. Gunopulos, and S. Ma. Subspace cluster-
ing of high dimensional data. In Proceedings of the Fourth SIAM International
Conference on Data Mining, pages 517–521, SIAM, Philadelphia, 2004.

[HSS03] A. Hotho, S. Staab, and G. Stumme. Wordnet improves text document clustering.
In Proceedings of the Workshop on Semantic Web, SIGIR-2003, Toronto, Canada,
2003.

[JZNH06] L. Jing, L. Zhou, M.K. Ng, and J. Zhexue Huang. Ontology-based distance mea-
sure for text clustering. In Proceedings of the Text Mining Workshop, SIAM Inter-
national Conference on Data Mining, SIAM, Philadelphia, 2006.

[KDB05] N. Kang, C. Domeniconi, and D. Barbará. Categorization and keyword identifica-
tion of unlabeled documents. In Proceedings of the Fifth International Conference
on Data Mining, pages 677–680, IEEE, Los Alamitos, CA, 2005.

[LY05] C.-H. Lee and H.-C. Yang. A classifier-based text mining approach for evaluat-
ing semantic relatedness using support vector machines. In Proceedings of the
IEEE International Conference on Information Technology: Coding and Comput-
ing (ITCC’05), pages 128–133, IEEE, Los Alamitos, CA, 2005.

[PHL04] L. Parsons, E. Haque, and H. Liu. Evaluating subspace clustering algorithms. In
Proceedings of the Fourth SIAM International Conference on Data Mining, pages
48–56, SIAM, Philadelphia, 2004.

[PJAM02] C.M. Procopiuc, M. Jones, P.K. Agarwal, and T.M. Murali. A monte carlo algo-
rithm for fast projective clustering. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 418–427, ACM Press, New
York, 2002.

[SdB00] G. Siolas and F. d’Alché Buc. Support vector machines based on a semantic kernel
for text categorization. In Proceedings of the International Joint Conference on
Neural Networks (IJCNN’00), pages 205–209, IEEE, Los Alamitos, CA, 2000.

[SKK00] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. In Proceedings of the Sixth ACM SIGKDD World Text Mining Con-
ference, Boston, MA, 2000. Available from World Wide Web: citeseer.nj.
nec.com/steinbach00comparison.html.

5 Text Clustering with Local Semantic Kernels 105

[STC04] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, Cambridge, UK, 2004.

[TSK06] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson
Addison Wesley, Boston, 2006.

[WH06] Y. Wang and J. Hodges. Document clustering with semantic analysis. In Pro-
ceedings of the Hawaii International Conference on System Sciences (HICSS’06),
IEEE, Los Alamitos, CA, 2006.

[WZW85] S.K. Michael Wong, W. Ziarko, and P.C.N. Wong. Generalized vector space model
in information retrieval. In Proceedings of the ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 18–25, ACM Press, New
York, 1985.

Part II

Document Retrieval and Representation

6

Vector Space Models for Search and Cluster Mining

Mei Kobayashi and Masaki Aono

Overview

This chapter reviews some search and cluster mining algorithms based on vector
space modeling (VSM). The first part of the review considers two methods to ad-
dress polysemy and synonomy problems in very large data sets: latent semantic in-
dexing (LSI) and principal component analysis (PCA). The second part focuses on
methods for finding minor clusters. Until recently, the study of minor clusters has
been relatively neglected, even though they may represent rare but significant types
of events or special types of customers. A novel new algorithm for finding minor
clusters is introduced. It addresses some difficult issues in database analysis, such
as accommodation of cluster overlap, automatic labeling of clusters based on their
document contents, and user-controlled trade-off between speed of computation and
quality of results. Implementation studies with new articles from Reuters and Los
Angeles Times TREC datasets show the effectiveness of the algorithm compared to
previous methods.

6.1 Introduction

Public and private institutions are being overwhelmed with processing information
in massive databases [WF99]. Since the documents are generated by different people
or by machines, they are of heterogeneous format and may contain different types of
multimedia data (audio, image, video, HTML) and text in many different languages.
A number of successful methods for retrieving nuggets of information have been de-
veloped by researchers in the data mining community.1 This chapter examines vector
space modeling (VSM), an effective tool for information retrieval (IR) [BYRN99] in-
troduced by Salton [Sal71] over three decades ago. It reviews methods for enhancing
the scalability of VSM to enable mining information from large databases on the
order of magnitude greater than originally envisioned by Salton. Several features of
VSM make an attractive method:
1 www.kdnuggets.com

110 M. Kobayashi, M. Aono

• It can handle documents of heterogeneous format.
• It can handle different types of multimedia data.
• It can facilitate processing of documents in many different languages.
• Query, search, retrieval, and ranking can be fully automated.
• Most of the computational workload is carried out during the preprocessing

stage, so query and retrieval are relatively fast.

The second part of this chapter examines methods based on VSM for finding
both major and minor clusters.2 In real-world applications, topics in major clus-
ters are often known to practitioners in the field, for example, through interactions
with customers and observations of market trends. In contrast, information in minor
clusters cannot be discerned from daily experience, and until recently, demand for
methods to facilitate their discovery and analysis has been relatively weak. Although
successful techniques have been developed for identifying major clusters, few tech-
niques have been developed for understanding smaller, minor clusters. However, the
landscape is changing.

Recently, corporate, government, and military planners are recognizing that min-
ing even a portion of the information in minor clusters can be extremely valuable
[SY02]. For example:

• Corporations may want to mine customer data to find minor reasons for customer
dissatisfaction (in addition to the major reasons), since minor clusters may rep-
resent emerging trends or long-term, small dissatisfactions that may lead users to
switch to another product.

• Credit card and insurance firms may want to better understand customer data to
set interest and insurance rates.

• Security agencies may want to use mining technologies for profile analysis.
• Scientists may want to mine weather and geographical data to refine their fore-

casts and predictions of natural disasters.

This chapter is organized as follows. Section 6.2 reviews basic terminology and
mathematical tools used in VSM, then introduces some methods for increasing the
scalability of IR systems based on VSM. Section 6.3 reviews clustering, another ap-
proach for addressing the scalability problem associated with VSMs. In particular,
it examines nonpartitioning approaches for mining clusters. Section 6.4 introduces
an algorithm for mining major and minor clusters, and then examines variations that
can significantly reduce computational and memory requirements, with only a slight
decrease in the number of retrieved clusters. Users may select the best variation for
their application based on their own cost-benefit analyses. Results from implemen-
tation studies with the algorithm and its variations are presented in Section 6.5. This
chapter concludes with a discussion of open problems and possible directions for
future research.
2 Major and minor clusters are are relatively large and relatively small clusters with respect

to a database under consideration.

6 Vector Space Models for Search and Cluster Mining 111

6.2 Vector Space Modeling (VSM)

6.2.1 The Basic VSM Model for IR

VSM has become a standard tool in IR systems since its introduction over three
decades ago [BDJ99, BDO95, Sal71]. One of the advantages of the method is its
support of relevance ranking of documents of heterogeneous format with respect to
queries. The attributes must be well-defined characteristics of the documents, such
as keywords, key phrases, names, and time stamps.

In Boolean vector models, each coordinate of a document vector is naught (when
the corresponding attribute is absent) or unity (when the corresponding attribute
is present). Term weighting is a common refinement of Boolean models that takes
into account the frequency of appearance of attributes (such as keywords and key
phrases), the total frequency of appearance of each attribute in the document set, and
the location of appearance (for example, in the title, section header, abstract, or text).

A fairly common type of term weighting is term frequency inverse document
frequency weighting (tf-idf), in which the weight of the ith term in the jth document,
denoted by weight(i, j), is defined by

weight(i, j) =
{

(1 + tfi,j) log2(N/dfi), if tfi,j ≥ 1 ,
0 , if tfi,j = 0 ,

where tfi,j is the number of occurrences of the ith term within the jth document dj ,
and dfi is the number of documents in which the term appears [MS00]. There are
many variations of the tf-idf formula. All are based on the idea that term weighting
reflects the importance of a term within a given document and within the entire doc-
ument collection. Tf-idf models assume that the importance of a term in a document
is reflected by its frequency of appearance in documents.3

In IR systems, queries are modeled as vectors using the same attribute space as
the documents. The relevancy ranking of a document with respect to a query depends
on its similarity distance to the query vector. Many systems use the cosine of the
angle defined by the query and document vectors to “measure” the similarity, because
it is relatively simple to compute,4 and implementation experiments have indicated
that it tends to lead to better IR results than the Euclidean distance (Figure 6.1).
Numerous other distances have been proposed for various applications and database
sizes [Har99].
3 Some researchers believe that this fundamental assumption of correlation between term

frequency and its importance is not valid. For example, when a document is about a single,
main subject, it does not need to be explicitly mentioned in every sentence since it is tacitly
understood. Consequently, its term frequency may be quite low relative to its importance.
However, if a document is about multiple subjects, each time the subject (person or object)
changes, it must be explicitly mentioned to avoid ambiguity, so the term frequencies of all
subjects will be very high [Kat96].

4 The cosine of the angle defined by two normalized vectors is their inner product. Since
document vectors are very sparse (usually less than 2% nonzero), the computation is fast
and simple.

112 M. Kobayashi, M. Aono

 θ
1 θ

2

 q

 d 2

 d 1

Fig. 6.1. Similarity ranking of documents d1 and d2 with respect to query q. The first document
d1 is ”closer” to the query q when the distance is defined as the cosine of the angle made
between the corresponding vectors. The second document d2 is ”closer” to the query q in the
Euclidean norm. That is, cos θ1 < cos θ2, while ‖d1 − q‖2 > ‖d2 − q‖2.

Many databases are so massive that the inner product-based ranking method re-
quires too many computations and comparisons for real-time response. Scalability of
relevancy ranking methods is a serious concern as users consistently select the most
important feature of IR engines to be a fast, real-time response to their queries.5 One
approach toward solving this problem is to reduce the dimension of mathematical
models by projection into a subspace of sufficiently small dimension to enable fast
response times, but large enough to retain characteristics for distinguishing contents
of individual documents. This section reviews and compares two algorithms for car-
rying out dimensional reduction: latent semantic indexing (LSI) and a variation of
principal component analysis (PCA). Some other approaches for reducing the di-
mension of VSM-based IR are centroid and least squares analysis [PJR01] and a
Krylov subspace method [BR01].

6.2.2 Latent Semantic Indexing (LSI)

Given a database with M documents and N distinguishing attributes for relevancy
ranking, let A denote the corresponding M -by-N document-attribute matrix model
with entries a(i, j) that represent the importance of the ith term in the jth document.
The fundamental idea in LSI is to reduce the dimension of the IR problem to k,
where k � M,N , by projecting the problem into the space spanned by the rows
of the closest rank-k matrix to A in the Frobenius norm [DDF+90]. Projection is
performed by computing the singular value decomposition (SVD) of A [GV96], and
then constructing a modified matrix Ak, from the k largest singular values σi ; i =
1, 2, . . . , k, and their corresponding vectors:

Ak = Uk Σk V
T
k .

Σk is a diagonal matrix with monotonically decreasing diagonal elements σi. The
columns of matrices Uk and Vk are the left and right singular vectors of the k largest
singular values of A.
5 Graphics, Visualization, and Usability Center of Georgia Institute of Technology (GVU)

Web users’ survey: www.gvu.gaetch.edu/user surveys

6 Vector Space Models for Search and Cluster Mining 113

Processing the query takes place in two steps: projection, followed by matching.
In the projection step, input queries are mapped to pseudo-documents in the reduced
query-document space by the matrix Uk, then weighted by the corresponding singu-
lar values σi from the reduced rank, singular matrix Σk:

q −→ q̂ = qT Uk Σ
−1
k ,

where q represents the original query vector, q̂ the pseudo-document, qT the trans-
pose of q, and (·)−1 the inverse operator. In the second step, similarities between
the pseudo-document q̂ and documents in the reduced term document space V Tk are
computed using a similarity measure, such as angle defined by a document and query
vector.

keyword i:

keyword j:

kth coordinate {(N-k) zeros

 0 0 . . . 0 . . . 0 0 0 . . . 0 * 0 . . . 0 0 . . . 0 * *

 0 0 . . . 0 . . . 0 0 0 . . . 0 * 0 . . . 0 0 . . . 0 * *

 nonzeros *

Fig. 6.2. LSI handles synonymy. Keywords i and j are synonyms that were inadvertently
selected as distinct attributes during vector space modeling. When the dimension is reduced
from N to k in LSI, the ith and jth keyword vectors are mapped to similar vectors, because
the synonyms appear in similar contexts.

The inventors of LSI claim that the dimensional reduction process reduces un-
wanted information or noise in the database, and aids in overcoming the synonymy
and polysemy problems. Synonymy refers to the existence of equivalent or similar
terms that can be used to express an idea or object in most languages, while polysemy
refers to the fact that some words have multiple, unrelated meanings [DDF+90]. For
example, LSI correctly processes the synonyms car and automobile that appear in the
Reuters news article set by exploiting the concept of co-occurrence of terms. Syn-
onyms tend to appear in documents with many of the same terms (i.e., text document
attributes), because the documents will tend to discuss similar or related concepts.
During the dimensional reduction process, co-occurring terms are projected onto the
same dimension (Figure 6.2). Failure to account for synonymy will lead to many
small, disjoint clusters, some of which should be clustered together, while failure to
account for polysemy can lead to clustering unrelated documents together.

Conversely, a word with multiple, unrelated meanings has many contexts in
which it appears. The word will be mapped to a different region for each separate
meaning and context because the existence of co-occurring terms is unlikely for doc-
uments that cover different meanings of a word (Figure 6.3). An example of poly-
semy is the word book, which may be synonymous with novel, biography, or text.

114 M. Kobayashi, M. Aono

meaning 1:

kth coordinate {(N-k) zeros

 0 0 . . . 0 . . . 0 0 0 . . . 0 * . . . 0 0 . . . 0 * *

 nonzeros *

keyword h: 0 0 . . . 0 0 . . . 0 0 0 . . . 0 * * * * 0 . . . 0 0 . . . 0 * *

 0 0 . . . 0 . . . 0 0 0 . . . 0 * * * 0 . . . meaning 2:

Fig. 6.3. LSI handles polysemy. Words with multiple meanings are mapped to distinct areas
in the LSI subspace for each meaning.

An alternate meaning is synonymous with making a reservation, as in “book a flight”
[DDF+90].

A major bottleneck in applying LSI to massive databases is efficient and accurate
computation of the largest few hundred singular values and singular vectors of a
document-attribute matrix. Even though matrices that appear in IR tend to be very
sparse (typically less than 2% nonzero), computation of the top 200 to 300 singular
triplets of the matrix using a powerful desktop PC becomes impossible when the
number of documents exceeds several hundred thousand. An algorithm presented
in the next section, overcomes some scalability issues associated with LSI, while
handling synonymy and polysemy in an analogous manner.

6.2.3 Principal Component Analysis (PCA)

The scalability issue can be resolved while effectively handling synonymy and pol-
ysemy by applying a dimensional reduction method known as principal component
analysis (PCA) [Jol02]. Invented first by Pearson [Pea01] in 1901 and independently
reinvented by Hotelling [Hot33] in 1933, PCA has several different names such as the
Kahrhunen-Loève procedure, eigenvector analysis, and empirical orthogonal func-
tions, depending on the context in which one is being used. Until recently it has been
used primarily in statistical data analysis and image processing.

We review a PCA-based algorithm for text and data mining that focuses on co-
variance matrix analysis (COV). In the COV algorithm, document and query vec-
tors are projected onto the subspace spanned by the k eigenvectors for the largest k
eigenvalues of the covariance matrix of the document vectors C, that is, the IR prob-
lem is mapped to a subspace spanned by top k principal components. Stated more
rigorously, given a very large database modeled by a set of M document vectors
{dTi | i = 1, 2, . . . , M} with N attributes, the associated document covariance
matrix is

C ≡ 1
M

M∑
i=1

did
T
i − d̄ d̄T ,

6 Vector Space Models for Search and Cluster Mining 115

where di represents the ith document vector and d̄ is the component-wise average
over the set of all document vectors [MKB79]. Since the covariance matrix is sym-
metric, positive semidefinite, it can be decomposed into the product

C = V Σ V T .

Here V is an orthogonal matrix that diagonalizes C so that the diagonal entries of
Σ are in monotone decreasing order going from top to bottom, that is, diag(Σ) =
(λ1, λ2, . . . , λN), where λi ≥ λi+1 for i = 1, 2, . . . , N − 1 [Par97].

To reduce the dimension of the IR problem to k � M,N , project all docu-
ment vectors and the query vector into the subspace spanned by the k eigenvectors
{v1, v2, . . . , vk} corresponding to the largest k eigenvalues {λ1, λ2, . . . , λk} of
the covariance matrix C. Relevancy ranking with respect to the modified query and
document vectors is performed in a manner analogous to the LSI algorithm, that is,
projection of the query vector into the k dimensional subspace followed by measure-
ment of the similarity.

6.2.4 Comparison of LSI and COV

Implementation studies for IR show that LSI and COV are similar. Both project a
high-dimensional problem into a subspace to reduce the computational cost of rank-
ing documents with respect to a query, but large enough to retain distinguishing
characteristics of documents to enable accurate retrieval [KAST02].

However, the algorithms differ in several ways. For instance, they use different
criteria to determine a subspace: LSI finds the space spanned by the rows of the
closest rank-k matrix to A in the Frobenius norm [EY39], while COV finds the k-
dimensional subspace that best represents the full data with respect to the minimum
square error. COV shifts the origin of the coordinate system to the “center” of the
subspace to spread apart documents to better distinguish them from one another.

A second advantage of the COV algorithm is scalability. The primary bottleneck
of COV is the computation of the largest few hundred eigenvalues and correspond-
ing eigenvectors of a square, symmetric, positive semidefinite matrix with height and
width less than or equal to the dimension of the attribute space. Because the dimen-
sion of a covariance matrix is independent of the number of documents, COV can
be used for real-time IR and data mining as long as the attribute space is relatively
small. Usually the dimension of the attribute space is less than 20,000, so computa-
tions can be performed in the main memory of a standard PC. When the dimension
of the attribute space is so large that the covariance matrix cannot fit into the main
memory, the eigenvalues of the covariance matrix can be computed using an im-
plicit construction of the covariance matrix [MKS00]. Since paging will occur, this
algorithm is much slower, especially for databases with hundreds of thousands of
documents.

An alternative method suitable for limited applications is neural networks for
estimation of the eigenvalues and eigenvectors of the covariance matrix [Hay99]. The
advantage of the neural network approach is a reduction in computational expense.

116 M. Kobayashi, M. Aono

However, the disadvantages make the method unattractive for IR. For example, it is
not clear when convergence to an eigenvector has occurred (although convergence
can be tested, to some extent, by multiplying the vector to the matrix and examining
the difference in the angle made by the input and output vectors). Also, it is not clear
which eigenvector has been found, that is, whether it is the ith or (i+1)st eigenvalue.
And sometimes the neural network is not converging toward anything at all. In short,
neural network approaches are not suitable for IR and clustering applications since
there is no guaranteed means by which the eigenvectors corresponding to the largest
k eigenvalues can be computed.

A third attractive feature of COV is an algorithm for mining information from
datasets that are distributed across multiple locations [QOSG02]. The main idea of
the algorithm is to compute local principal components for dimensional reduction
for each location. Information about local principal components is subsequently sent
to a centralized location, and used to compute estimates for the global principal com-
ponents. The advantage of this method over a centralized (nondistributed) approach
and parallel processing approach is the savings in data transmission rates. Data trans-
mission costs often exceed computational costs for large datasets [Dem97]. More
specifically, transmission rates will be of order O(sp) instead of O(np), where n is
the number of all documents over all locations, p is the number of attributes, and
s is the number of locations. According to the authors, when the dominant princi-
pal components provide a good representation of the datasets, the algorithm can be
as equally accurate as its centralized (nondistributed) counterpart in implementation
experiments. However, if the dominant components do not provide a good represen-
tation, up to 33% more components need to be computed to attain a level of accuracy
comparable to its centralized counterpart, and then the subspace into which the IR
problem will be mapped will be significantly larger.

6.3 Clustering Methods

Cluster analysis can also be used to understand topics addressed by documents in
massive databases [Ham03]. It is important to note that unlike an arithmetic computa-
tion, there is no “correct solution” to the clustering problem for very large databases.
Depending on the perspective, two documents may or may not be similar. Studies
have shown that manual clustering and human evaluation of clustering results are
riddled with inconsistencies [MBDH98]. The work provides insight into the diffi-
culty of automating this task. Nevertheless, studies have also shown that despite im-
perfections associated with automated and human clustering methods, they may still
provide valuable insights into the contents of databases.

This section focuses on clustering methods and how they handle cluster overlaps,
that is, whether or not documents are allowed to belong to more than one cluster.
From this perspective, there are at least four categories of methods:

• Hard clustering methods that require each document to belong to exactly one
cluster;

6 Vector Space Models for Search and Cluster Mining 117

• Hard clustering methods that permit each document to belong to at most one
cluster (documents can be classified as an outlier or noise, in which case they do
not belong to any cluster);

• Soft clustering methods that accommodate overlapping clusters, although they do
not actively target the discovery of overlapping clusters; and

• Soft clustering methods that actively support mining of overlapping clusters and
overlap information.

Many well-known, classic clustering algorithms are partition-based, hard cluster-
ing methods. Examples include k-means, k-medoid, k-modes, and k-prototypes algo-
rithms; agglomerative and divisive algorithms; and gravitational methods [HK00].
Variations of these hard clustering methods have been developed in which appropri-
ate documents can be classified as noise rather than be forced to be associated with
a cluster.

Soft clustering methods have been less publicized. However, they are equally im-
portant. Some classic methods that are not scalable to larger databases are reviewed
in [ELL01]. Methods that use fractional assignment of documents to more than one
cluster tend to emphasize the computation of the assignments rather than understand-
ing the contents of the database through mining information about relationships be-
tween the overlapping clusters.

More recent works on soft clustering are designed to process document collec-
tions that are many orders larger. Overlapping cluster analysis and good visualiza-
tion help users understand situations in which many categories are associated with
a set of documents: “A one-document/one-category assumption can be insufficient
for guiding a user through hundreds or thousands of articles” [Hea99]. Works from
computer science [KG99], machine learning [Bez81, PM01], and Web page min-
ing [LK01, ZE98] perspectives also advocate membership in multiple clusters with
different degrees of association.

Houle [Hou03] proposed a soft clustering method that recognizes the importance
of mining clusters overlaps, and actively looks for and accommodates their presence.
His method is based on use of a new and efficient type of data structure for fast,
approximate nearest-neighbor search. It may be implemented using VSM.

Kobayashi and Aono [KA06] proposed a soft clustering algorithm that differs
from those listed above in several respects. It appears to be the only soft clustering
algorithm for massive (non-Web) document databases that handles the synonymy and
polysemy problems to some extent and reduces the dimensionality of the problem
through projections, random sampling, and a user-specified trade-off between the
speed and accuracy of the results.

6.3.1 Minor Cluster Mining – Related Work

Implementation studies show that LSI and COV can successfully find major docu-
ment clusters [KA02]. However, they are not as successful at finding smaller, minor
clusters, because major clusters dominate the process. During dimensional reduction
in LSI and COV, documents in minor clusters are often mistaken for noise or placed
arbitrarily into any cluster.

118 M. Kobayashi, M. Aono

Ando [And00] proposed iterative rescaling, an algorithm for clustering small
collections of documents (such as personal email archives) and conducted imple-
mentation studies with a set of 683 articles from TREC.6 The main idea of the al-
gorithm is to prevent major themes from dominating the selection of basis vectors
in the subspace into which the clustering and IR problem will be mapped. A fixed,
unfavorable bias is introduced to documents that belong to clusters that are well rep-
resented by basis vectors that have already been selected. The weight for unfavorable
biasing is based on the magnitude (length in the Euclidean norm) of the residual of
each document vector.7

The algorithm is somewhat successful in detecting clusters; however, the follow-
ing problems can occur when the number of documents is large (greater than a few
thousand): fixed weighting can obscure the associations of documents that belong to
more than one cluster after one of the clusters to which it belongs is identified; all
minor clusters may not be identified; the procedure for finding eigenvectors may be-
come unstable when the scaling factor q is large; the basis vectors bi are not always
orthogonal; and if the number of documents in the database is very large, the eigen-
vector cannot be computed on an ordinary PC, because the residual matrix becomes
dense after only a few iterations, leading to a memory overflow.

Recently, Kobayashi and Aono [KA02] proposed two algorithms for identifying
(possibly overlapping) multiple major and minor document clusters that overcome
some of the difficulties associated with the iterative rescaling algorithm. Their pri-
mary new contribution, called LSI with rescaling (LSI-RS), is the introduction of
dynamic control of the weighting to reduce loss of information about minor clus-
ters. A second modification replaces the computation of eigenvectors in the iterative
rescaling algorithm with the computation of the SVD for robustness. A third modi-
fication is the introduction of modified Gram-Schmidt orthogonalization of the basis
vectors [GV96].

A second algorithm proposed in [KA02] for minor cluster identification, called
COV-rescale (COV-RS), is a modification of COV, analogous to LSI-RS and LSI. The
COV-RS algorithm computes the residual of the covariance matrix. Our implementa-
tion studies indicate that COV-RS is better than LSI, COV, and LSI-RS at identifying
large and multiple minor clusters.

Both LSI-RS and COV-RS are computationally expensive, because they require
rescaling of all document vectors before computation of each additional basis vector
for subspace projection. For even moderately large databases, after a few iterations
the document attribute matrix becomes dense so that main memory constraints be-
come a bottleneck. Details on a comparison study of LSI-RS, COV-RS, and iterative
rescaling algorithms are available in [KA02]. In the next section we propose tech-
niques for enhancing the LSI-RS algorithm to overcome the scalability issue for very
large databases.
6 Text REtrieval Competition (TREC) sponsored by the United States National Institute of

Standards and Technology (NIST): http://trec.nist.gov
7 The residual of a document vector is the proportion of the vector that cannot be represented

by the basis vectors that have been selected thus far.

6 Vector Space Models for Search and Cluster Mining 119

6.4 Selective Scaling, Sampling, and Sparsity Preservation

The basic COV algorithm is recommended for mining major clusters. This section in-
troduces COV with selective scaling (COV-SS) [KA06], a more efficient minor clus-
ter mining algorithm than COV-RS [KA02]. Like COV-RS, COV-SS allows users
to skip over iterations that find repeats of major clusters and jump to iterations to
find minor clusters. In addition, COV-SS reduces computational, storage, and mem-
ory costs by quickly testing whether rescaling is necessary. Although the savings
per iteration is modest, the total savings is large because sparsity is preserved over
several or more subsequent iterations. When random sampling is incorporated into
the COV-SS algorithm, it will increase minor cluster mining capabilities to databases
that are several orders of magnitude higher. To further increase the speed and scala-
bility of the algorithm, modifications to COV-SS may be introduced to preserve the
sparsity of the document vectors, at the expense of a slight degradation in the mining
results. Empirical observations by the authors indicate that there may be at most, a
few rare cases in which introduction of the perturbations may lead to poor results.
No cases have been reported in practice [KA06]. Since the computational reduction
is so significant, the sparsity preserving versions of the algorithm seem preferable
and advantageous for most commercial applications.

The input parameters for algorithm COV-SS are denoted as follows. A is an M -
by-N document attribute matrix for a dataset under consideration. k is the dimension
to which the VSM will be reduced (k � M,N). ρ is a threshold parameter. And µ
is the scaling offset. Initially, the residual matrix R is set to be A. Matrix R does
not need to be kept in the main memory. It suffices to keep just the N -dimensional
residual vector ri during each of the M loops. The output is the set of basis vectors
{bi : i = 1, 2, . . . , k} for the k-dimensional subspace. M is either the total number
of documents in the database or the number of randomly sampled documents from a
very large database.

Here P and Q are M -dimensional vectors; R is the residual matrix (which exists
in theory, but is not allocated in practice); ri is the ith document vector of R (an
N -dimensional vector); r̄ is the component-wise average of the set of all residual
vectors r, that is, r̄ = (1/M)

∑M
i=1 r̄; C is the N -by-N square covariance matrix; w

and t are double-precision floating point numbers; and first is a Boolean expression
initially set equivalent to true.

COV-SS selectively scales document residual vectors based on the similarity
measure P[i] of the dot product of the most recently computed basis vector and the
document vector. The user-specified threshold ρ and offset parameter µ control the
number of minor clusters that will be associated with each basis vector. A small
threshold and large offset value tend to lead to basis vectors associated with a large
number of minor clusters. Conversely, a large threshold and a small offset value tend
to lead to basis vectors with few minor clusters.

The computational work associated with the COV-based rescaling algorithms
(COV-RS and COV-SS) is significantly greater than the basic COV algorithm. Re-
scaling is computationally expensive for large databases. COV has no rescaling costs,
but it uses a moderately expensive eigenvalue-eigenvector solver for large, symmet-

120 M. Kobayashi, M. Aono

Algorithm 6.4.1 COV-SS: (A, k, ρ, µ, b)
for (int h = 1, h ≤ k, h + +) {

if (! first) for (int i = 1, i ≤ M , i + +) {
t = |ri|; (length of document vector)
if (‖ P[i] ‖ > ρ) { (dot product greater than threshold)

w = (1− ‖P[i] ‖)(t+µ) ; (compute scaling factor)
ri = riw ; (selective scaling)
continue;
}

}
C = (1/M)

PM
i=1 ri rT

i − r̄ r̄T ; (compute covariance matrix)
bh = PowerMethod(C) ; (compute λmax and its eigenvector)
bh = MGS(bh) ; (Modified Gram-Schmidt)
for (int i = 1, i ≤ M , i + +) {

Q[i] = ri · bh ; P[i] = ‖ri‖2 ;
P[i] = Q[i] /

√
P[i] ; (store dot product = similarity measure)

}
for (int i = 1, i ≤ M , i + +) ; ri = ri - Q[i] bh ; (residual)
if (first) first = false ;
}

ric positive semidefinite matrices. COV-RS and COV-SS use the accurate and inex-
pensive power method [GV96] to find the largest eigenvalue and its corresponding
eigenvector after each round of (possible) rescaling of residual vectors. A selective
scaling algorithm for LSI, which will be denoted by LSI-SS, can be constructed in
an analogous manner. It suffers from the same difficulties associated with sparsity
preservation as COV-SS.

Mining minor clusters using the selective scaling algorithm for COV becomes
prohibitively expensive if the database under consideration is large. One way to over-
come the problem is to introduce random sampling of documents. COV-SS is applied
to the covariance matrix constructed from a set of randomly selected document vec-
tors in the database. Since different results can be expected for different samples,
this process of sampling followed by selective scaling should be repeated as many
times as the stopping criterion permits. The stopping criterion may determined by
a number of factors, such as computational, memory and storage resources or the
number of new clusters found during each sampling. In setting the sample sizes, the
user needs to recognize the computational trade-off between sample sizes and the
number of times sampling must be performed to find most minor clusters. Larger
samples increase the cost of selective scaling. However, smaller samples are likely
to lead to identification of fewer clusters.

The major bottleneck in selective scaling is the conversion of sparse vectors into
dense vectors. However, many of the nonzero coordinates are very small relative to
the original nonzero coordinates. To further increase the speed and scalability of the
algorithm, additional methods for preserving the sparsity of the document vectors
may be employed. One idea is to select a threshold ε such that all nonzeros in the

6 Vector Space Models for Search and Cluster Mining 121

residual matrix smaller than εwill be reset to zero after rescaling. A larger ε threshold
will lead to greater preservation of sparsity, and hence more reduction in computa-
tion and data access times, but it will also introduce larger numerical error during
computation. Another method is to consider the very small nonzero coordinates of
a newly computed basis vector. Before rescaling the residual matrix, set the small
values in the basis vector to zero to reduce the computational cost of rescaling and
the introduction of errors. The first ε method was tested in implementation studies
that are described in the next section.

6.5 Implementation Studies

This section describes implementation studies with the LSI- and COV-based algo-
rithms described in previous sections.

6.5.1 Studies with TREC Benchmark Data Sets

Numerical experiments were carried out with LSI, COV, COV-RS, and COV-SS with
and without sampling using the Reuters and Los Angeles Times news databases from
TREC (with 21,578 and 127,742 articles, respectively) [KA06]. Results from both
the LSI- and COV-based search engines were good. In experiments with the Reuters
and Los Angeles Times articles, the LSI and COV algorithms could be used to find
major clusters, but they usually failed to find all minor clusters. The algorithms lost
information in some minor clusters, because major clusters and their large subclus-
ters dominate the subjects that will be preserved during dimensional reduction.

Table 6.1 summarizes the strengths and limitations of various cluster identifi-
cation algorithms based on theoretical considerations and results from implementa-
tion studies. For medium-size databases, major clusters should be mined using basic
COV and minor clusters using COV with selective scaling. Major cluster identifica-
tion results from LSI and COV are usually identical. However, COV usually requires
20% to 30% fewer iterations to find major clusters because it can detect clusters in
both the negative and positive directions along each basis vector, since the origin is
shifted during the dimensional reduction phase in pre-computations. LSI can only
detect clusters either in the positive direction or in the negative direction of each
basis vector, but not both.

For massive databases, major clusters should be mined using basic COV (since
LSI is not scalable to massive databases), and COV with selective scaling and sam-
pling should be used to find minor clusters. Selective scaling is preferable to com-
plete rescaling since the results from both should be similar, but selective scaling is
more computationally efficient.

Figure 6.4 shows results from cluster identification experiments with basic COV
and its variations for the Los Angeles Times dataset. It displays the number of major
and minor clusters retrieved using COV, COV with rescaling and sampling, and COV
with selective scaling and sampling with and without replacement of small nonzero
entries by zero. The computational complexity of computing 20 basis vectors from

122 M. Kobayashi, M. Aono

Table 6.1. LSI- and COV-based cluster analysis algorithms

Algorithm Scalability Clusters found
Variations DB size Speed Major Minor

LSI basic ++ ++ ++++ +
iterative RS + + ++ ++
RS + + ++++ +++
SS + ++ ++++ +++
sampling +++ +++ + +++
RS + sampling ++ ++ + +++
SS + sampling ++ +++ + +++

COV basic +++ ++ ++++ +
RS + + ++++ +++
SS + + ++++ +++
sampling +++ ++ + +++
RS + sampling +++ ++ + +++
SS + sampling +++ +++ + +++
SS + sampling w/sparsity ++++ ++++ + ++++

DB size: ++++ = very large, +++ = large, ++ = medium, + = small.
Speed: ++++ = fast, +++ = moderate, ++ = slow, + = prohibitive.
No. of clusters found: ++++ = most , +++ = many , ++ = some , + = few.

this dataset is summarized in Table 6.2. Several conclusions can be drawn from these
results:

• COV with selective scaling and sampling finds the largest number of clusters.
Straightforward COV and COV with rescaling and sampling find approximately
the same number of clusters.

• Straightforward COV finds the largest number of major clusters, and its ratio of
major to minor clusters is the largest among the three methods.

• COV with rescaling and sampling and COV with selective scaling and sampling
find approximately the same number of major clusters. However, COV with se-
lective scaling and sampling finds many more minor clusters (see Figure 6.5.)

• Overlaps between document clusters appear to be more common than isolated
clusters. Our algorithms preserve overlaps that naturally occur in databases. Fig-
ure 6.6 shows overlapping clusters in a three-dimensional slice of document
space. In some three-dimensional projected views, clusters overlap to a greater
or lesser extent, or more than one pair may overlap.

6.6 Directions for Future Work

This chapter concludes by mentioning a number of interesting questions and open
problems in information retrieval and clustering:

6 Vector Space Models for Search and Cluster Mining 123

 0

20

40

60

80

 100

 LSI COV LSI-IR COV-SR1 COV-SR2
 0% 65% 60% 100% 100%

Fig. 6.4. Clusters (major and minor combined) retrieved using COV, COV with rescaling and
sampling, and COV with selective scaling and sampling. Sampled data are averaged over three
runs.

Table 6.2. Computation time and storage for determining 20 basis vectors of an artificial
dataset (Figure 6.4)

LSI COV LSI-IR COV-SS+samp COV-SS+samp+sparse
Time (sec) 0.56 1.8 104.5 1488.9 49.1

Memory (MB) 3 3 70 65 11

• How can users determine the optimal dimension k to which the attribute space
should be reduced? Clearly, the answer will depend on the computational hard-
ware resources, the dimension of the original attribute space, the number of pol-
ysemy and synonymy problems associated with the selection of the original at-
tributes, and other factors. Some ideas for resolving this problem have been pro-
posed recently by Dupret [Dup03] and Hundley and Kirby [HK03].

• How can one determine whether a massive database is suitable for random sam-
pling? That is, are there simple tests to determine whether or not there is an
abundance of witnesses or whether the database consists entirely of noise or doc-
uments on completely unrelated topics?

• How can one devise a reliable means for estimating the optimal sampling size
for a given database? Factors to be considered are the cluster structure of the
database (the number and sizes of the clusters and the amount of noise) and the
trade-off between sample sizes and the number of samples. And are there any
advantages to be gained from dynamically changing the sample sizes based on
cluster that have already been identified?

• What is a good stopping criterion for sampling? That is, when is it appropriate
for a user to decide that it is likely that most of the major or minor clusters have
been found?

• How can the GUI effectively map identified clusters and their interrelation-
ships (subclusters of larger clusters, cluster overlap, etc.)? Some successful ap-

124 M. Kobayashi, M. Aono

 0

50

 300

 LSI COV COV-SR1 COV-SR2

 100

 150

 200

 250

 107,126 108,124 82,181 83,172 (# major, # minor)

Fig. 6.5. Major clusters (light gray bar, bottom) and minor clusters (black bar, top) retrieved
from the first 64 basis vectors computed for the Los Angeles Times news dataset using COV,
COV with rescaling and sampling, and COV with selective scaling and sampling. Sampled
data are averaged over three runs.

proaches for commercial applications have been reported by Ishii [Ish04] and
Strehl [Str02].8

The study of methods for evaluating the effectiveness of a clustering algorithm or
cluster validation is fast becoming an important area of research. Some techniques
and validity indices are surveyed and proposed in [HBV01, NJT04, ZFLW02].

Acknowledgments

The authors thank Eric Brown of the IBM T.J. Watson Lab for helping us obtain
access to TREC datasets, Michael E. Houle for technical discussions, Koichi Takeda
of IBM Japan for his thoughtful management, and anonymous referees of journals
and SIAM conferences for helpful suggestions. This work was conducted while both
authors were members of the knowledge management team at IBM Tokyo Research
Laboratory.

8 Also see KDnuggets Software Visualization:
http://www.kdnuggets.com/software/visualization.html

6 Vector Space Models for Search and Cluster Mining 125

Fig. 6.6. Two overlapping document clusters on { school council, tax, valley, California } and
{ school, art, music, film, child } from the Los Angeles Times database. The clusters consist
of 3,433 and 630 documents, respectively, and have 414 documents in common, with overlap
ratios of 12.0% and 65.7%, respectively.

References

[And00] R. Ando. Latent semantic space. In Proceedings of ACM SIGIR, pages 213–232.
ACM Press, New York, 2000.

[BDJ99] M.W. Berry, Z. Drmac, and E.R. Jessup. Matrices, vector spaces, and information
retrieval. SIAM Review, 41(2):335–362, 1999.

[BDO95] M.W. Berry, S.T. Dumais, and G.W. O’Brien. Using linear algebra for intelligent
information retrieval. SIAM Review, 37(4):573–595, 1995.

[Bez81] J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York, 1981.

[BR01] K. Blom and A. Ruhe. Information retrieval using very short Krylov sequences. In
Proceedings of Computational Information Retrieval Workshop, North Carolina
State University, pages 3–24. SIAM, Philadelphia, 2001.

[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press,
New York, 1999.

[DDF+90] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by
latent semantic analysis. Journal of the American Society for Information Science,
41(6):391–407, 1990.

[Dem97] J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.
[Dup03] G. Dupret. Latent concepts and the number of orthogonal factors in latent semantic

analysis. In Proceedings of ACM SIGIR, pages 221–226. ACM Press, New York,
2003.

[ELL01] B. Everitt, S. Landau, and N. Leese. Cluster Analysis. Arnold, London, UK,
fourth edition, 2001.

126 M. Kobayashi, M. Aono

[EY39] C. Eckart and G. Young. A principal axis transformation for non-Hermitian ma-
trices. Bulletin of the American Mathematics Society, 45:118–121, 1939.

[GV96] G. Golub and C. Van Loan. Matrix Computations. John Hopkins University Press,
Baltimore, MD, third edition, 1996.

[Ham03] G. Hamerly. Learning Structure and Concepts in Data Through Data Clustering.
PhD thesis, University of California at San Diego, CA, 2003.

[Har99] D. Harman. Ranking algorithms. In R. Baeza-Yates and B. Ribeiro-Neto (eds.),
Information Retrieval, pages 363–392, ACM Press, New York, 1999.

[Hay99] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, Upper
Saddle River, NJ, second edition, 1999.

[HBV01] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On cluster validation techniques.
Journal of Intelligent Infoormation Systems, 17(2-3):107,145, 2001.

[Hea99] M. Hearst. The use of categories and clusters for organizing retrieval results. In
T. Strzalkowski, editor, Natural Language Information Retrieval, pages 333–374.
Kluwer Academic, Dordrecht, The Netherlands, 1999.

[HK00] J. Han and M. Kamber. Data Mining: Concepts & Techniques. Morgan Kaufmann,
San Francisco, 2000.

[HK03] D. Hundley and M. Kirby. Estimation of topological dimension. In Proceed-
ings of SIAM International Conference on Data Mining, pages 194–202. SIAM,
Philadelphia, 2003.

[Hot33] H. Hotelling. Analysis of a complex of statistical variables into principal compo-
nents. Journal of Educational Psychology, 24:417–441, 1933.

[Hou03] M. Houle. Navigating massive sets via local clustering. In Proceedings of ACM
KDD, pages 547–552. ACM Press, New York, 2003.

[Ish04] Y. Ishii. Analysis of customer data for targeted marketing: case studies using
airline industry data (in Japanese). In Proceedings of ACM SIGMOD of Japan
Conference, pages 37–49, 2004.

[Jol02] I. Jolliffe. Principal Component Analysis. Springer, New York, second edition,
2002.

[KA02] M. Kobayashi and M. Aono. Major and outlier cluster analysis using dynamic re-
scaling of document vectors. In Proceedings of the SIAM Text Mining Workshop,
Arlington, VA, pages 103–113, SIAM, Philadelphia, 2002.

[KA06] M. Kobayashi and M. Aono. Exploring overlapping clusters using dynamic re-
scaling and sampling. Knowledge & Information Systems, 10(3):295–313, 2006.

[KAST02] M. Kobayashi, M. Aono, H. Samukawa, and H. Takeuchi. Matrix computations
for information retrieval and major and outlier cluster detection. Journal of Com-
putational and Applied Mathematics, 149(1):119–129, 2002.

[Kat96] S. Katz. Distribution of context words and phrases in text and language modeling.
Natural Language Engineering, 2(1):15–59, 1996.

[KG99] S. Kumar and J. Ghosh. GAMLS: a generalized framework for associative mod-
ular learning systems. Proceedings of Applications & Science of Computational
Intelligence II, pages 24–34, 1999.

[LK01] K.-I. Lin and R. Kondadadi. A similarity-based soft clustering algorithm for doc-
uments. In Proceedings of the International Conference on Database Systems for
Advanced Applications, pages 40–47. IEEE Computer Society, Los Alamitos, CA,
2001.

[MBDH98] S. Macskassy, A. Banerjee, B. Davison, and H. Hirsh. Human performance on
clustering Web pages. In Proceedings of KDD, pages 264–268. AAAI Press,
Menlo Park, CA, 1998.

6 Vector Space Models for Search and Cluster Mining 127

[MKB79] K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic Press, New
York, 1979.

[MKS00] L. Malassis, M. Kobayashi, and H. Samukawa. Statistical methods for search
engines. Technical Report RT-5181, IBM Tokyo Research Laboratory, 2000.

[MS00] C. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, MA, 2000.

[NJT04] Z.-Y. Niu, D.-H. Ji, and C.-L. Tan. Document clustering based on cluster vali-
dation. In Proceedings of ACM CIKM, pages 501–506. ACM Press, New York,
2004.

[Par97] B. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1997.
[Pea01] K. Pearson. On lines and planes of closest fit to systems of points in space. The

London, Edinburgh and Dublin Philosophical Magazine and Journal of Science,
Sixth Series, 2:559–572, 1901.

[PJR01] H. Park, M. Jeon, and J. Rosen. Lower dimensional representation of text data
in vector space based information retrieval. In M. Berry (ed.), Proceedings of the
Computational Information Retrieval Conference held at North Carolina State
University, Raleigh, Oct. 22, 2000, pages 3–24, SIAM, Philadelphia, 2001.

[PM01] D. Pelleg and A. Moore. Mixtures of rectangles: interpretable soft clustering. In
Proceedings of ICML, pages 401–408. Morgan Kaufmann, San Francisco, 2001.

[QOSG02] Y. Qu, G. Ostrouchov, N. Samatova, and A. Geist. Principal component analysis
for dimension reduction in massive distributed datasets. In S. Parthasarathy, H.
Kargupta, V. Kumar, D. Skillicorn, and M. Zaki (eds.), SIAM Workshop on High
Performance Data Mining, pages 7–18, Arlington, VA, 2002.

[Sal71] G. Salton. The SMART Retrieval System. Prentice-Hall, Englewood Cliffs, NJ,
1971.

[Str02] A. Strehl. Relationship-based clustering and cluster ensembles for high-
dimensional data mining. PhD thesis, University of Texas at Austin, 2002.

[SY02] H. Sakano and K. Yamada. Horror story: the curse of dimensionality). Information
Processing Society of Japan (IPSJ) Magazine, 43(5):562–567, 2002.

[WF99] I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, San Francisco, 1999.

[ZE98] O. Zamir and O. Etzioni. Web document clustering: a feasibility demonstration.
In Proceedings of ACM SIGIR, pages 46–54. ACM Press, New York, 1998.

[ZFLW02] O. Zaine, A. Foss, C.-H. Lee, and W. Wang. On data clustering analysis: scal-
ability, constraints and validation. In Proceedings of PAKDD, Lecture Notes in
Artificial Intelligence, No. 2336, pages 28–39. Springer, New York, 2002.

7

Applications of Semidefinite Programming in XML
Document Classification

Zhonghang Xia, Guangming Xing, Houduo Qi, and Qi Li

Overview

Extensible Markup Language (XML) has been used as a standard format for data
representation over the Internet. An XML document is usually organized by a set of
textual data according to a predefined logical structure. It has been shown that storing
documents having similar structures together can reduce the fragmentation problem
and improve query efficiency. Unlike the flat text document, the XML document has
no vectorial representation, which is required in most existing classification algo-
rithms.

The kernel method and multidimensional scaling are two general methods to
represent complex data in relatively simple manners. While the kernel method repre-
sents a group of XML documents by a set of pairwise similarities, the classical mul-
tidimensional scaling embeds data points into the Euclidean space. In both cases,
the similarity matrix constructed by the data points should be semidefinite. The
semidefniteness condition, however, may not hold due to the inference technique
used in practice, which may lead to poor classification performance.

We will find a semidefinite matrix that is the closest to the distance matrix in
the Euclidean space. Based on recent developments on strongly semismooth matrix
valued functions, we solve the nearest semidefinite matrix problem with a Newton-
type method.

7.1 Introduction

Along with dramatic growth of XML documents on the internet, it becomes more and
more challenging for users to retrieve their desirable information. The demand of ef-
ficient search tools has led to extensive research in the area of information retrieval.
XML documents are semistructured, including the logical structure and the textual
data. Structural information plays an important role in information retrieval. A word
may have different meanings depending on positions in a document. The semistruc-
tured data extracted from XML pages are usually maintained by relational database

130 Z. Xia, G. Xing, H. Qi, Q. Li

technologies [LCMY04], with which XML documents are decomposed and stored
in corresponding tables. Studies [LCMY04] show that categorizing documents and
storing their components according to their structures can reduce table fragmenta-
tion, and, thus, improve query performance.

Machine learning, building an automatic text classifier through learning pre-
labeled documents, has become a standard paradigm in this field. Among many ap-
proaches [Seb02], support vector machines (SVMs) have achieved appealing perfor-
mance in a variety of applications [Bur98, Joa98, ZI02, LCB+04]. Like other ma-
chine learning techniques, classical SVM algorithms are only applicable to vectorial
data and not suitable for XML data containing structural information. A straight-
forward solution to vectorize a Web document involves the pairwise comparison of
vector elements in which each element represents the similarity between a given
document and another document. The number of dimensions of a vector, however,
becomes huge, a so-called dimensional explosion problem when one uses this solu-
tion over a large set of documents.

Two possible solutions are the kernel method and multidimensional scaling
(MDS). The kernel method [STV04] is a potential solution to cope with data hav-
ing complex structures, for example, trees and graphs. Without vectorial formats of
training data, a kernel-based learning algorithm requires only pairwise similarities
among a set of data. These similarities are usually specified by a positive semidef-
inite matrix, called the kernel matrix. Along another direction, the MDS approach
[CC01] embeds data points into a low-dimensional Euclidean space while preserv-
ing the original metric on the input data points if such a metric exists. A problem,
however, arises when this method is applied to a set of XML documents without doc-
ument type definitions (DTDs). When the DTDs of a set of XML documents are not
provided, a common practice is to use some inference techniques (see [GGR+00]) to
infer a schema from these sample documents. However, the edit distance estimated
by inference techniques may not be Euclidean, resulting in deviation of the kernel
matrix and MDS embedding.

In this work, we propose a novel method to compute a positive semidefinite ma-
trix nearest to the estimated similarity matrix. The problem of searching a proper
kernel matrix and a MDS embedding is formulated as semidefinite programming
(SDP). Based on recent developments on strongly semismooth matrix valued func-
tions, a Newton-type method is investigated to solve the SDP. We also report a new
result characterizing the rank-deficient nearest semidefinite matrix, which is a prop-
erty often desired in problems requiring a low-rank approximation. We test the pro-
posed method on document sets selected from [DG] to justify this kernel method.
Since existing inferred techniques can hardly work on large-size datasets, we mod-
ify the Xtract scheme to make it more efficient. Experimental studies show that our
approach outperforms the algorithm with original similarity matrix in terms of the
classification accuracy.

In the next section, we review some related work on XML document representa-
tion and classification. Section 7.3 introduces the background knowledge of the SVM
classifier, the kernel method, MDS, and the measure of similarities among XML doc-
uments. In Section 7.4, we formulate the problem of finding a kernel matrix as SDP.

7 SDP in XML Document Classification 131

The Newton-type method is presented in Section 7.5. Experimental studies are pre-
sented in Section 7.6. Section 7.7 states the conclusion of this chapter.

7.2 Related Work

A vectorial representation method for an XML document has been proposed in
[GJK+06] by using a vector of similarities between the document and a set of se-
lected samples. Since an XML document can be represented by an ordered, labeled
tree, tree edit distance is a common metric to measure the similarity/dissimilarity be-
tween two documents. Various algorithms have been proposed to compute the tree-
edit distance between trees [SZ97, Che01, NJ02, CX05].

A structural rule-based classifier for XML documents is presented in [ZA03].
In the training phase, the classifier finds the structures that are most closely related
to the class variable. In the test phase, the constructed rules are used to perform
the structural classification. The proposed system is significantly more effective than
an association-based classifier due to its ability of mining discriminatory structures
in the data. [SZC+04] presented a method to optimize composite kernels for XML
document classification. The paper showed that the problem of optimizing the lin-
ear combination of kernels is equivalent to a generalized eigenvalue problem, which
leads to an efficient algorithm to construct the optimal composite kernel. Note that
formulating an XML page as a linear combination of various media components
(such as text, images) simplifies the construction of kernels since the kernel asso-
ciated with each specific component is a positive semidefinite, and so is the linear
combination. But this formulation ignores structural information of the XML data. A
Bayesian network model is considered in [DG04] for semistructured document clas-
sification. The Bayesian model adopts the discriminant features via the method of
Fisher kernel. Similar to [SZC+04], [DG04] also formulates an XML document as a
linear combination of various media components, and does not fully utilize structural
information of the XML data.

7.3 XML Document Representation and Classification

7.3.1 SVM Classifier

A binary setting of the classification problem can be described as follows. Given a set
of training data {x1, x2, . . . , xl} in some space Rp and their labels {y1, y2, . . . , yl},
where yi ∈ {−1,+1}, estimate a prediction function f such that it can classify an
unseen datapoint x.

The SVM learning algorithm aims to find a linear function of the form f(x) =
wTx+ b, with w ∈ Rp and b ∈ R such that data point x is assigned to a label +1 if
f(x) > 0, and a label −1 otherwise.

Let ξi ≥ 0, 1 ≤ i ≤ l be slack variables. Then, the linear SVM classifier can be
obtained by solving the following optimization problem:

132 Z. Xia, G. Xing, H. Qi, Q. Li

min
w,b,ξ

1
2 (||w||)2 + C

l∑
i=1

ξi

s. t. yi(wTxi + b) ≥ 1− ξi, 1 ≤ i ≤ l,
ξi ≥ 0, 1 ≤ i ≤ l,

where C is a predefined constant to control the trade-off between the gap of two
classes and errors of classification.

7.3.2 Kernel Method

The kernel method represents data objects through a set of pairwise comparisons
[STV04]. In the example of n XML documents given above, the dataset χ is rep-
resented by a n × n matrix, where the ijth element is a pairwise comparison
kij = k(xi, xj). Formally, a function k : χ × χ −→ R is called a positive def-
inite kernel if and only if it is symmetric, that is, k(x, x′) = k(x′, x) for any two
objects x, x′ ∈ χ, and positive definite, that is,

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0

for any n > 0, any choice of n objects x1, x2, . . . , xn ∈ χ, and any choice of real
numbers c1, . . . , cn ∈ R.

It is well known that for any kernel function k on a space χ, there exists a Hilbert
space F (also called the feature space) and a mapping φ : χ −→ F such that

k(x, x′) =< φ(x), φ(x′) >, for any x, x′ ∈ χ.

Hence, the similarity between x and x′ is actually measured by the inner product of
their images in the feature space F . The kernel function k allows us to calculate the
similarity without explicitly knowing the mapping φ. There are some well-known
kernels, such as linear kernel, Gaussian RBF kernel, and sigmoid kernel. However,
these kernels may not specifically adapt to XML documents.

7.3.3 MDS Method

Generally, for n data points xi, i = 1, . . . , n with dissimilarities δij , classic MDS
attempts to find their coordinates in p dimensional space such that δ2ij = (xi −
xj)T (xi − xj). These vectors can be written as a matrix X = [x1, x2, . . . , xn]T .
One first constructs a matrix A = [aij] such that aij = − 1

2δ
2
ij . Then, matrix A is

multiplied by centering matrix H = In − 1
nLL

T where L = [1, 1, . . . , 1]T , a vector
of n ones. Let B = HAH . The following theorem [Bur05] states whether there
exists a matrix X satisfying B = XXT .

Theorem 1. Consider the class of symmetric matrices A such that aij > 0, and
aii = 0, for any i, j. Then B is positive semidefinite if and only if A is a distance
matrix.

7 SDP in XML Document Classification 133

Hence, if B is symmetric, positive semidefinite, one has a diagonal matrix Λ and
matrix V whose columns are the eigenvectors of B such that B = V ΛV T . If p < n,
the rank of B is p and B has p nonnegative eigenvalues and n− p zero eigenvalues.
Let Λp = diag(λ1, . . . , λp) and Vp be the corresponding eigenvector matrix. One

has X = VpΛ
1
2
p .

7.3.4 XML Documents and Their Similarities

An XML document can be represented as an ordered, labeled tree. Each node in the
tree represents an XML element in the document and is labeled with the element
tag name. Each edge in the tree represents the element nesting relationship in the
document. Fig. 7.1. shows an example of a segment of an XML document and its
corresponding tree.

</SigmodRecord> 47

SigmodRecord

issue

volume number articles

article
11 12

title initPage authorendPage

45XML Someone

 <initPage> 45 </initPage>
 <endPage> 47 </endPage>
 <authors>
 <author> Someone </author>
 </author>

 <title> XML </title>

<SigmodRecord>
 <issue>
 <volume> 11 </volume>
 <number> 12 </number>
 <articles>
 <article>

 </article>
 </articles>
 </issue>

Fig. 7.1. SigmodRecord data and tree representation.

For the purpose of classification, a proper similarity/dissimilarity metric should
be provided. Tree edit distance, which is a natural extension of string edit distance,
can be used to measure the structural difference between two documents. Shasha and
Zhang [SZ97] proposed three types of elementary editing operations for ordered,
labeled forests: (1) insert, (2) delete, and (3) replace. Given two trees T1 and T2,
the tree edit distance, denoted by δ(T1, T2), is defined as the minimum number of
tree-edit operations to transform one tree to another.

However, using the tree edit distance between two documents directly may not be
a good way of measuring the dissimilarity. Consider two SigmodRecord documents
that contain 10 and 100 articles, respectively. To transform one tree to another, 90
insertions (or deletions) are required. Although they have similar structures, the tree
edit distance can be very large.

134 Z. Xia, G. Xing, H. Qi, Q. Li

<!ELEMENT author (#PCDATA)>

<!ELEMENT issue (volume,number,articles) >
<!ELEMENT volume (#PCDATA)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT articles (article)* >
<!ELEMENT article (title,initPage,endPage,authors) >
<!ELEMENT title (#PCDATA)>
<!ELEMENT initPage (#PCDATA)>
<!ELEMENT endPage (#PCDATA)>
<!ELEMENT authors (author)* >

 <!ELEMENT SigmodRecord (issue)* >

Fig. 7.2. An example of DTD for a SigmodRecord document.

Note that these documents may conform to the same DTD, meaning that they
can be generated by the DTD. As an example, a SigmodRecord DTD is given in
Fig. 7.2. DTD has been widely used to specify the schema of an XML document
since it provides a simple way to specify the structure of an XML document. Hence,
a potential solution to measure the dissimilarity between two documents is to use
the cost that a document conforms to the schema and generates the other document.
This cost is actually the edit distance between the document and DTD. Specifically,
given two documents xi and xj and the corresponding schemas s(xi) and s(xj),
respectively, according to [CX05], the cost that xi confirms to s(xj) is δ(xi, s(xj)).
Since this cost depends on the sizes of xi and s(xj), we normalize it as

δ̂(xi, s(xj)) =
δ(xi, s(xj))
|xi|+ |s(xj)|

.

Obviously, one has 0 ≤ δ̂(xi, s(xj)) ≤ 1. Similarly, we have normalized distance
δ̂(xj , s(xi)). Now, let’s define the dissimilarity between xi and xj by

δij =
1
2
δ̂(xi, s(xj)) +

1
2
δ̂(xj , s(xi))

and similarity by
sij = 1− δij . (7.1)

However, not all XML documents provide DTDs in practice. In this case, to
measure the similarity among documents, the inference technique [GGR+00] has
to be used to infer DTD schemas from a set of sample documents. That is, given a
collection of XML documents, find a schema s, such that these document instances
can be generated by schema s.

A schema can be represented by a tree in which edges are labeled with the cardi-
nality of the elements. As a DTD may be recursive, some nodes may lead to a infi-
nite path. A normalized regular hedge grammar [Mur00] became a common practice
rather than DTD itself. Note that the definition of an element in a schema is in-
dependent of the definitions of other elements and it restricts only the sequence of
subelements (the attributes are omitted in this work) nested within the element. Ex-
tracting a schema can be simplified by inferring a regular expression R (right linear
grammar or nondeterministic finite automata) from a collection of input sequences

7 SDP in XML Document Classification 135

I satisfying (1) R is concise, that is, the inferred expression is simple and small in
size; (2) R is general enough to accept sequences that are similar to those in I and
(3) R is precise enough to exclude sequences not similar to those in I .

Inferring regular expressions from a set of strings has been studied in the Xtract
scheme [GGR+00], which introduces minimum length description (MLD) to rank
candidate expressions. In general, the MLD principle states that the best grammar
(schema) to infer from a set of data is the one that minimizes the sum of the length
of the grammar Lg and the length of the data Ld when encoded with the grammar.
The overall goal is to minimize L = Lg + Ld.

According to our experimental studies, the Xtract scheme is not efficient for the
large set of documents. To solve this problem, we modify the Xtract scheme, and
the details will be introduced in the experimental studies when a similarity matrix is
constructed.

7.3.5 Representation of XML Documents

To classify XML documents with SVM classifiers, the first thing to be addressed
is how to represent the XML document as a standard input to SVM classifier. A
general solution to represent XML documents can be described as follows. Define a
mapping φ(x) : χ −→ F = Rp, where F is a Hilbert space, also called a feature
space, and p is the dimension of the feature space. This means, for each document
x ∈ χ, its representation can be a vector of reals in Rp. One can choose a finite
set of documents x1, x2, . . . , xp ∈ χ [STV04]. Then, any document x ∈ χ can be
represented by a vector in the feature space:

x ∈ χ 7−→ φ(x) = (s(x, x1), s(x, x2), . . . , s(x, xp))T ∈ Rp,

where s(x, y) is the similarity/dissimilarity between document x and y. The ques-
tion is whether this vectorization is Euclidean. In other words, does the Euclidean
distance between point xi and xj , denoted by dij , match the original dissimilarity
δij?

Since the schema is obtained by using an inference technique, a document may
not exactly conform to its inferred schema. Note that a metric space is a pair (X, ρ),
where X is a set and ρ : X × X → [0,∞) is a metric if it satisfies the following
three axioms:

1. ρ(u, v) = 0 if and only if u = v,
2. ρ(u, v) = ρ(v, u),
3. ρ(u, v) + ρ(v, w) ≥ ρ(u,w).

Unfortunately, the dissimilarity δ may not satisfy the third condition (i.e., the triangle
inequality).

136 Z. Xia, G. Xing, H. Qi, Q. Li

7.4 SDP Problem Formulation

We solve the problem by finding a positive semidefinite matrix nearest to the es-
timated distance matrix. Formally, given a symmetric matrix G, find a positive
semidefinite matrix K such that the following norm is minimized:

min
K�0

||G−K||2

:= min
K�0

∑
i,j

(dij − kij)2, (7.2)

whereK � 0 means thatK is a positive semidefinite symmetric matrix and the norm
is the Frobenius norm.

It is considered effective to normalize K so that all the diagonal elements are 1.
Note that there is no close-form solution to problem (7.2) if G has negative eigen-
values. An easy normalization may work as follows. Since G is symmetric, it can be
written in terms of its spectral decomposition

G = V ΛV T ,

where Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues of G, and
V = [v1, . . . , vn] is the matrix of corresponding eigenvectors. Then K ′ = V Λ̂V T ,
where Λ̂ = diag(max(λ1, 0),. . . ,max(λn, 0)), is the solution to problem (7.2). Let

kij =
k′ij√
k′iik

′
jj

,

and we have kii = 1. A potential problem with this method is that kii may be close
to 0 for some i in practice.

In summary, we formulate the nearest positive semidefinite matrix (NPSDM)
problem as follows.

min ‖G−K‖2
subject to K � 0

Kii = 1.
(7.3)

It is widely known that this problem can be reformulated as a semidefinite program-
ming problem by introducing new variables:
min t
subject to K 0 0

0 In2 vec(G)− vec(K)
0 (vec(G)− vec(K))T t

 � 0,

Kii = 1

where the vec operator stacks the columns of a matrix into one long vector. As
counted in [Hig02], in total there are n4/2 + 3n2/2 + n + 1 constraints in this
SDP formulation, where n is the number of training documents in our case. [Hig02]

7 SDP in XML Document Classification 137

further commented on this reformulation that “unfortunately, this number of con-
straints makes it impractical to apply a general semidefinite programming solver —
merely specifying the constraints (taking full advantage of their sparsity) requires
prohibitive amount of memory.” Numerical experiments with the SeDuMi package
[Stu99] against problems of n ≥ 50 confirm this conclusion.

With a semidefinite matrix K, we can apply the kernel method and MDS on
XML document representation.

7.5 Newton-Type Method

In this section, we will show how a Newton-type method in [QS06] can be applied
to the problem (7.3). Actually, problem (7.3) is another version of the low-rank ap-
proximation problem which is nonconvex and extremely hard to solve.

Given a symmetric matrix G, computing its nearest correlation matrix is recently
studied by using the projection method in [Hig02]. The projection method is known
to be linearly convergent. When the underlying problem is big, the projection method
is quite slow, requiring many iterations to terminate. To introduce the semismooth
techniques in our Newton’s method, we rewrite problem (7.3) as

min ‖G−K ‖2
s.t. Kii = 1, i = 1, . . . , n

K ∈ S+ ,
(7.4)

where S+ is the cone of positive semidefinite matrices in S, the set of n × n sym-
metric matrices.

The Newton method for (7.4) is based on its dual problem rather than on itself.
According to Rockafellar [Roc74], the dual problem is the following unconstrained
and differentiable problem:

min
z∈<n

θ(z) :=
1
2
‖ (G+A∗z)+ ‖2 − bT z, (7.5)

where A : S 7→ <n is the diagonal operator defined by A(K) = diag(K) and A∗
is its adjoint operator, b = e the vector of all ones, and for a matrix K ∈ S, K+

denotes its orthogonal projection to S+. We note that θ(·) is only once continuously
differentiable. Hence, quasi-Newton methods are suitable to find a solution of (7.5),
see [Mal05, BX05]. However, the convergence rate of these methods appears to be
only linear at best. A fast convergent method is more desirable in order to save com-
putation given that the variables are of matrices with positive semidefinite constraints
to satisfy.

The optimality condition of the dual problem (7.5) is

A (G+A∗z)+ = b, z ∈ <n. (7.6)

Once a solution z∗ of (7.6) is found, we can construct the optimal solution of (7.4)
by

138 Z. Xia, G. Xing, H. Qi, Q. Li

K∗ = (G+A∗z∗)+ . (7.7)

A very important question on K∗ is when it is of full rank (i.e., rank(K∗) =
n). Equivalently, one may ask when K∗ is rank-deficient (i.e., rank(K∗) < n). An
interesting interpretation of the rank of K∗ is that the number rank(K∗) represents
the defining factors from all n factors. These defining factors usually characterize
the fundamental structure of the space that consists of all n factors. It remains to see
how the low rank approximation K∗ can be interpreted for the problem (7.3).

To present a result characterizing the rank of K∗, we need some notations. Let

U := {Y ∈ S : Yii = 1, i = 1, . . . , n} .

Then K is a positive semidefinite matrix if and only if K ∈ S+ ∩ U . For K,Y ∈ S,
the inner product of K and Y is defined by

〈K,Y 〉 = Trace(KY).

The normal cone of the convex sets S+ and U at a point K ∈ S are given as
follows [Hig02, Lemmas 2.1 and 2.2]:

∂S+(K) = {Y ∈ S : 〈Y,K〉 = 0, Y � 0}
∂U(K) = {diag(ηi) : ηi arbitrary} .

The following result characterizes when K∗ is of full rank.

Proposition 1. Let G ∈ S be given and K∗ denotes its nearest positive semidefinite
matrix. Let C++ denote the set of all positive definite matrices and D denote the set
of all diagonal matrices. Then rank(K∗) = n if and only if

G ∈ D + C++.

Proof. It follows from [Hig02, Theorem 2.4] that a positive semidefinite matrix
K∗ solves (7.4) if and only if

K∗ = G+ (V DV T + diag(τi)),

where V ∈ <n×n has orthonormal columns spanning the null space of K∗, D =
diag(di) ≥ 0, and the τi are arbitrary.

Suppose now that rank(K∗) = n (i.e., K∗ ∈ C++), then V = 0, which yields

K∗ = G+ diag(τi).

Equivalently,
G = K∗ − diag(τi) ∈ C++ +D.

This completes the necessary part of the proof.
Now suppose we have G ∈ C++ +D. Then there exists a diagonal matrix D and

a positive definite matrix Y ∈ C++ such that

7 SDP in XML Document Classification 139

G = D + Y. (7.8)

It follows from the characterization of K∗ [Hig02, Eq. 2.4] that

G−K∗ ∈ ∂S+(K∗) + ∂U(K∗).

Hence there exists a matrix Z satisfying Z � 0 and 〈Z,K∗〉 = 0, and a diagonal
matrix D′ ∈ ∂U(K∗), such that

G−K∗ = −Z +D′.

Noting (7.8), we have
D −D′ = K∗ − Y − Z,

which gives
K∗ = D −D′ + Y + Z.

Because both K∗ and Y are positive semidefinite matrices, their diagonal elements
are all equal to 1. Hence,

D −D′ = −diag(Z),

where diag(Z) is the diagonal matrix whose diagonal elements are that of Z.
By using the relation that 〈K∗, Z〉 = 0 and relations above, we have

0 = 〈Z,K∗〉
= 〈Z,D −D′〉+ 〈Z, Y 〉+ ‖Z‖2

= −〈Z, diag(Z)〉+ 〈Z, Y 〉+ ‖Z‖2

≥ 〈Z, Y 〉.

The inequality uses the fact that ‖Z‖2 − 〈Z, diag(Z)〉 ≥ 0. Since Y is positive
definite and Z is positive semidefinite, the fact that 〈Z, Y 〉 ≤ 0 means that Z = 0,
which in turn implies D −D′ = 0. Hence

K∗ = D −D′ + Y + Z = Y

and rank(K∗) = rank(Y) = n, completing the sufficient part of the proof.
Proposition 1 provides an interesting justification on a heuristic method to find

a positive semidefinite matrix from a given matrix G. Specifically, we replace each
of the diagonal elements of G with 1, denoted by G̃, and conduct a spectral decom-
position of G̃. If G̃ is a positive semidefinite matrix, then it is all done. Otherwise
we will project G̃ to the semidefinite matrix cone S+ and get a new matrix, denoted
by G̃+. Replace all the diagonal elements of G̃+ by one and test it if it is a positive
semidefinite matrix. The procedure carries on until a positive semidefinite matrix is
found.

The method tries to solve the optimality Eq. (7.6). For notation convenience, let

F (z) := A(G+A∗z)+.

140 Z. Xia, G. Xing, H. Qi, Q. Li

Then Eq. (7.6) becomes
F (z) = b. (7.9)

Since F is not differentiable due to the projection operator (·)+, the classic Newton
method is not suitable. However, we may use the generalized Newton method to
solve it.

zk+1 = zk − V −1
k (F (zk)− b), (7.10)

Vk ∈ ∂F (zk), k = 0, 1, 2, . . .

where ∂F (z) denotes the generalized Jacobian of F , see [Cla83].
As analyzed in [QS06], the generalized Newton method has the following prop-

erties. First, the function F is strongly semismooth everywhere, a crucial property
for the method to be convergent. Due to this reason, the method (7.10) is often re-
ferred to as the semismooth Newton method. Second, every element in ∂F (z∗) is
nonsingular, where z∗ is a solution of (7.9). This nonsingularity property justifies
why we can calculate the inverse of Vk when zk is near z∗. The consequence of
these properties is Theorem 2.

Theorem 2. [QS06] The semismooth Newton method (7.10) is locally quadratically
convergent.

7.6 Experimental Studies

In this section, we examine the effectiveness of the kernel-based approaches on the
classification of structured data. The goal is to evaluate the classification accuracy
of the kernel-based approaches and compare the nearest semidefinite matrix method
with the method using the original similarity matrix without correction.

The dataset used in our experiments is obtained from the MovieDB corpus, which
was created by using the IMDB [DG] database. The dataset contains 9643 XML
documents. MovieDB is designed for both the structure only, and structure and con-
tent tasks. Since our algorithm exploits only structural information, all labels of the
documents come from 11 possible structure categories, which correspond to trans-
formations of the original data structure. There are four classification tasks, created
with different levels of noise on the structure. Training and test sets are generated by
randomly selecting samples from six of 11 categories. At two different noise levels,
we generated five training sets and five test sets, using 5, 10, 20, 30, and 40 samples
respectively in each selected categories.

To construct kernel matrices over the five sets of samples, we first infer their
schema and then compute similarities among these documents according to Eq. (7.1).
Similar to the Xtract scheme, we extract candidate regular expressions based on the
frequencies of the repeat patterns appearing in the input sequences. The candidate
regular expressions are ranked by using the MLD principle. To make the Xtract
scheme usable on large-size document sets, we modify it as follows:

7 SDP in XML Document Classification 141

1. The frequencies of the child sequences are evaluated with some victims not cov-
ered by the inferred regular expressions. The victims are those sequences that
appears very infrequently. We find that this modification can reduce the negative
effects of noises in classification.

2. The aim of the modification is to minimize L = λLg+Ld, where λ is the weight
to balance the preciseness and generality of the schema. We develop a practical
scheme to manipulate λ.

3. We use the cost of nondeterministic finite automata (NFA) simulation rather
than enumerating multiple sequence partitions to compute the minimum cost
of encoding so that the computation complexity is reduced.

After the schema have been extracted, we construct the similarity matrices by
computing the similarities among samples, resulting in five matrices (30×30, 60×60,
120× 120, 180× 180, 240× 240) for each noise level.

The implementation of the nearest semidefinite matrix method is supported
by the LibSVM software package [CL01] and codes for the Newton-type method
[QS06]. All experimental studies were carried out on a PC with Pentium IV 3.4GHz
CPU, 2 GB of memory. The results obtained for two different noise levels are given
in Table 7.1 and Table 7.2, respectively.

As we can see in Table 7.1, the accuracy of classification by MDS and the kernel
method has been improved over almost each dataset. We note that the results depend
on the number of samples available and how to select them. As shown in the table,
the correctness increases generally when the number of samples increases. However,
the accuracy for dataset 120× 120 drops a little because more noise data are chosen
in this group. The datasets in Table 7.2 are presented with more noise than those in
Table 7.1. Hence, the accuracy of each dataset in Table 7.2 is much lower than that
of Table 7.1. The results in both tables suggest that the nearest semidefinite matrix
method can improve the performance of the kernel-based SVM classifier.

Table 7.1. Classification accuracy (%) for datasets at noise level 1

Methods 30 60 120 180 240
Similarity matrix 87.23 92.67 91.33 96.67 97.33

MDS 89.33 94.0 96.67 98.33 98.33
Kernel method 94.0 96.67 94.0 97.33 100

Table 7.2. Classification accuracy (%) for datasets at noise level 3

Methods 30 60 120 180 240
Similarity matrix 63.33 68.33 71.67 70.0 73.33

MDS 66.67 73.33 73.33 71.67 73.33
NPSD matrix 71.67 73.33 76.67 71.67 80.33

142 Z. Xia, G. Xing, H. Qi, Q. Li

7.7 Conclusion and Discussion

In this chapter, we have studied two data representation methods for classifying XML
documents based on their structures. Based on the fact that many XML documents
are without schema, we first infer the document schema given a set of documents and
then estimate the similarities among the documents. Since the estimated similarity
matrix is usually not a distance matrix, it is not a well-defined kernel matrix. We
formulate the problem as a nearest semidefinite matrix problem and present a novel
Newton-type method, named NPSDM, to determine the similarity matrix for the set
of XML documents. The NPSDM is quadratically convergent and usually takes no
more than 10 iterations to converge. Using the Newton-type method, it has been
reported recently [QS06] that problems with n up to 2000 have been successfully
solved. To make use of the Newton method, we have to address how to select an
element Vk in ∂F (zk). One of the choices can be found in [QS06]. Another issue
is to globalize the method in Eq. (7.10), which in its current form is only locally
convergent as indicated in the above theorem. One globalized version can also be
found in [QS06, Algorithm 5.1].

Acknowledgment

This work was supported in part by the Kentucky Experimental Program to Stimulate
Competitive Research (EPSCoR) under grant No. 4800000786 .

References

[Bur98] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data
Min. Knowl. Discov., 2(2):121–167, 1998.

[Bur05] C.J.C. Burges. Geometric methods for feature extraction and dimensional reduc-
tion — a guided tour. In The Data Mining and Knowledge Discovery Handbook,
pages 59–92. Springer, New York, 2005.

[BX05] S. Boyd and L. Xiao. Least-squares covariance matrix adjustment. SIAM Journal
on Matrix Analysis and Applications, 27(2):532–546, 2005. Available from World
Wide Web: http://link.aip.org/link/?SML/27/532/1.

[CC01] T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Monographs on Statistics
and Applied Probability. Chapman & Hall/CRC, Boca Raton, 2nd edition, 2001.

[Che01] W. Chen. New algorithm for ordered tree-to-tree correction problem. J. Algo-
rithms, 40(2):135–158, 2001.

[CL01] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/∼cjlin/
libsvm.

[Cla83] F.H. Clark. Optimization and Nonsmooth Analysis. John Wiley and Sons, New
York, 1983.

[CX05] E.R. Canfield and G. Xing. Approximate xml document matching. In SAC ’05:
Proceedings of the 2005 ACM Symposium on Applied Computing, pages 787–788.
ACM Press, New Work, 2005.

7 SDP in XML Document Classification 143

[DG] L. Denoyer and P. Gallinari. XML Document Mining Challenge. Database avail-
able at http://xmlmining.lip6.fr/.

[DG04] L. Denoyer and P. Gallinari. Bayesian network model for semistructured document
classification. Inf. Process. Manage., 40(5):807–827, 2004.

[GGR+00] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. Xtract: a system
for extracting document type descriptors from xml documents. In SIGMOD ’00:
Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, pages 165–176. ACM Press, New York, 2000.

[GJK+06] S. Guha, H.V. Jagadish, N. Koudas, D. Srivastava, and T. Yu. Integrating xml
data sources using approximate joins. ACM Trans. Database Syst., 31(1):161–207,
2006.

[Hig02] N.J. Higham. Computing the nearest correlation matrix — a problem from finance.
IMA Journal of Numerical Analysis, 22(3):329–343, 2002.

[Joa98] T. Joachims. Text categorization with suport vector machines: learning with
many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Pro-
ceedings of ECML-98, 10th European Conference on Machine Learning, vol-
ume 1398 of Lecture Notes in Computer Science, pages 137–142. Springer, New
York, 1998. Available from World Wide Web: citeseer.ist.psu.edu/
joachims97text.html.

[LCB+04] G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.I. Jordan. Learn-
ing the kernel matrix with semidefinite programming. J. Mach. Learn. Res., 5:27–
72, 2004.

[LCMY04] W. Lian, D.W. Cheung, N. Mamoulis, and S.-M. Yiu. An efficient and scal-
able algorithm for clustering xml documents by structure. IEEE Transactions on
Knowledge and Data Engineering, 16(1):82–96, 2004.

[Mal05] J. Malick. A dual approach to semidefinite least-squares problems. SIAM J. Matrix
Anal. Appl., 26(1):272–284, 2005.

[Mur00] M. Murata. Hedge automata: a formal model for XML schemata. Web
page, 2000. Available from World Wide Web: citeseer.ist.psu.edu/
article/murata99hedge.html.

[NJ02] A. Nierman and H.V. Jagadish. Evaluating structural similarity in xml documents.
In WebDB, pages 61–66, 2002.

[QS06] H. Qi and D. Sun. A quadratically convergent newton method for computing the
nearest correlation matrix. SIAM J. Matrix Anal. Appl., 28(2):360–385, 2006.

[Roc74] R.T. Rockafellar. Conjugate duality and optimization. Society for Industrial and
Applied Mathematics, Philadelphia, 1974.

[Seb02] F. Sebastiani. Machine learning in automated text categorization. ACM Comput.
Surv., 34(1):1–47, 2002.

[Stu99] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software, 11-12:625–653, 1999. Avail-
able from World Wide Web: citeseer.ist.psu.edu/sturm99using.
html. Special issue on Interior Point Methods (CD supplement with software).

[STV04] B. Schölkopf, K. Tsuda, and J.P. Vert. Kernel Methods in Computational Biology.
MIT Press, Cambridge, MA, 2004.

[SZ97] D. Shasha and K. Zhang. Approximate tree pattern matching. In Pat-
tern Matching Algorithms, pages 341–371. Oxford University Press, New
York, 1997. Available from World Wide Web: citeseer.ist.psu.edu/
shasha95approximate.html.

144 Z. Xia, G. Xing, H. Qi, Q. Li

[SZC+04] J.-T. Sun, B.-Y. Zhang, Z. Chen, Y.-C. Lu, C.-Y. Shi, and W.-Y. Ma. Ge-cko:
A method to optimize composite kernels for web page classification. In WI ’04:
Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intel-
ligence, pages 299–305, 2004.

[ZA03] M.J. Zaki and C.C. Aggarwal. Xrules: an effective structural classifier for xml data.
In KDD ’03: Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 316–325. ACM Press, New York,
2003.

[ZI02] T. Zhang and V.S. Iyengar. Recommender systems using linear classifiers. J. Mach.
Learn. Res., 2:313–334, 2002.

Part III

Email Surveillance and Filtering

8

Discussion Tracking in Enron Email Using PARAFAC

Brett W. Bader, Michael W. Berry, and Murray Browne

Overview

In this chapter, we apply a nonnegative tensor factorization algorithm to extract and
detect meaningful discussions from electronic mail messages for a period of one
year. For the publicly released Enron electronic mail collection, we encode a sparse
term-author-month array for subsequent three-way factorization using the PARAl-
lel FACtors (or PARAFAC) three-way decomposition first proposed by Harshman.
Using nonnegative tensors, we preserve natural data nonnegativity and avoid sub-
tractive basis vector and encoding interactions present in techniques such as princi-
pal component analysis. Results in thread detection and interpretation are discussed
in the context of published Enron business practices and activities, and benchmarks
addressing the computational complexity of our approach are provided. The result-
ing tensor factorizations can be used to produce Gantt-like charts that can be used
to assess the duration, order, and dependencies of focused discussions against the
progression of time.

8.1 Introduction

When Enron closed its doors on December 2, 2001, and filed for Chapter 11
bankruptcy, it began a turn of events that released an unprecedented amount of infor-
mation (over 1.5 million electronic mail messages, phone tapes, internal documents)
into the public domain. This information was the cornerstone of the Federal Energy
Regulatory Commission’s (FERC) investigation into the global energy corporation.
The original set of emails was posted on FERC’s Web site [Gri03], but it suffered
document integrity problems, and attempts were made to improve the quality of the
data and remove sensitive and irrelevant private information. Dr. William Cohen
of Carnegie-Mellon University oversaw the distribution of this improved corpus—
known as the Enron email sets. The latest version of the Enron email sets1 (dated
1 http://www-2.cs.cmu.edu/∼enron

148 B.W. Bader, M.W. Berry, M. Browne

March 2, 2004) contains 517, 431 email messages of 150 Enron employees cover-
ing a period from December 1979 through February 2004, with the majority of the
messages spanning the three years of 1999, 2000, and 2001.

For the most part, the emails reflect the day-to-day activities of America’s sev-
enth largest company, but certain distinct topics of discussion are linked to Enron.
One involved Enron’s development of the Dabhol Power Company (DPC) in the In-
dian state of Maharashtra, an endeavor awash in years of logistical and political prob-
lems. Another topic was the deregulation of the California energy market, which led
to rolling blackouts during the summer of 2000—a situation that Enron (and other
energy companies) took advantage of financially. Eventually a combination of greed,
overspeculation, and deceptive accounting practices snowballed into an abrupt col-
lapse in the fourth quarter of 2001, which again is reflected in the emails. The Enron
email sets provide a unique opportunity not only to study the mechanics of a sizable
email network, but it also offers a glimpse of the machinations of how huge global
corporations operate on a day-to-day basis.

In this research, we seek to extract meaningful threads of discussion from a sub-
set of the Enron email set. The idea underlying our thread extraction is as follows.
Suppose we have a collection of q emails from n authors over a period of p months
(or similar unit of time). In aggregate, there are a collection of m terms parsed from
the q emails. From these data, we create an m × n × p term-author-month array2

X. We then decompose X using PARAFAC or a nonnegative tensor factorization to
track discussions over time.

In the next section we provide background information on tensor decompositions
and related work. Section 8.3 provides a formal discussion of the notations used to
define these decompositions and algorithms that are given in Section 8.4. Details
of the specific Enron subset used in this study are provided in Section 8.5, and our
observations and results in applying PARAFAC to this subset of emails follow in
Section 8.6. Finally, a brief summary of future work in the use of nonnegative tensor
factorization for discussion tracking is given in Section 8.7.

8.2 Related Work

Tensor decompositions date back 40 years [Tuc66, Har70, CC70], and they have
been used extensively in a variety of domains, from chemometrics [SBG04] to signal
processing [SGB00]. PARAFAC is a three-way decomposition that was proposed by
Harshman [Har70] using the name PARAllel FACtors or PARAFAC. At the same
time, Carroll and Chang [CC70] published the same mathematical model, which
they call canonical decomposition (CANDECOMP).

The use of multidimensional models is relatively new in the context of text anal-
ysis. Acar et al. [AÇKY05] use various tensor decompositions of (user × key word
× time) data to separate different streams of conversation in chatroom data. Several
2 Note that the array X is generally sparse due to the word distribution used by each author

over time.

8 Discussion Tracking 149

Web search applications involving tensors relied on query terms or anchor text to
provide a third dimension. Sun et al. [SZL+05] apply a three-way Tucker decom-
position [Tuc66] to the analysis of (user × query term × Web page) data in order
to personalize Web searches. Kolda et al. [KBK05] and Kolda and Bader [KB06]
use PARAFAC on a (Web page × Web page × anchor text) sparse, three-way ten-
sor representing the Web graph with anchor-text-labeled edges to get hub/authority
rankings of pages related to an identified topic.

8.3 Notation

Multidimensional arrays and tensors are denoted by boldface Euler script letters, for
example, X. Element (i, j, k) of a third-order tensor X is denoted by xijk.

The symbol ◦ denotes the tensor outer product,

A1 ◦B1 =

A11B11 · · · A11Bm1

...
. . .

...
Am1B11 · · · Am1Bm1

 .

The symbol ∗ denotes the Hadamard (i.e., elementwise) matrix product,

A ∗B =

 A11B11 · · · A1nB1n

...
. . .

...
Am1Bm1 · · · AmnBmn

 .

The symbol ⊗ denotes the Kronecker product,

A⊗B =

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 .

The symbol � denotes the Khatri-Rao product (columnwise Kronecker) [SBG04],

A�B =
(
A1 ⊗B1 · · · An ⊗Bn

)
.

The concept of matricizing or unfolding is simply a rearrangement of the entries
of X into a matrix. Although different notations exist, we are following the notation
used in [SBG04]. For a three-dimensional array X of size m × n × p, the notation
X(m×np) represents a matrix of sizem×np in which the n-index runs the fastest over
the columns and p the slowest. Other permutations, such as X(p×nm), are possible
by changing the row index and the fast/slow column indices.

The norm of a tensor, ‖X ‖, is the same as the Frobenius norm of the matricized
array, that is, the square root of the sum of squares of all its elements.

150 B.W. Bader, M.W. Berry, M. Browne

= ...+ +

Fig. 8.1. PARAFAC provides a three-way decomposition with some similarity to the singular
value decomposition.

8.4 Tensor Decompositions and Algorithms

Suppose we are given a tensor X of size m × n × p and a desired approximation
rank r. The goal is to decompose X as a sum of vector outer products as shown in
Figure 8.1. It is convenient to group all r vectors together in factor matrices A,B,C
each having r columns. The following mathematical expressions of this model use
different notations but are equivalent:

xijk ≈
r∑
l=1

AilBjlCkl,

X ≈
r∑
l=1

Al ◦Bl ◦ Cl, (8.1)

X(m×np) ≈ A(C �B)T .

PARAFAC may apply to general N -way data, but because our application pertains
only to three-way data, we are considering only the specific three-way problem at
this time.

Without loss of generality, we typically normalize all columns of the factor ma-
trices to have unit length and store the accumulated weight (i.e., like a singular value)
in a vector λ:

X ≈
r∑
l=1

λl(Al ◦Bl ◦ Cl)

Moreover, we typically reorder the final solution so that λ1 ≥ λ2 ≥ · · · ≥ λr. In
the following subsections, we describe general algorithms for the model without λ
because this normalization can be performed in a postprocessing step.

Our goal is to find the best-fitting matrices A,B, and C in the minimization
problem:

min
A,B,C

∥∥∥∥∥X−
r∑
l=1

Al ◦Bl ◦ Cl

∥∥∥∥∥
2

. (8.2)

It is important to note that the factor matrices are not required to be orthogonal.
Under mild conditions, PARAFAC provides a unique solution that is invariant to
factor rotation [Har70]. Hence, the factors are plausibly a valid description of the
data with greater reason to believe that they have more explanatory meaning than a
“nice” rotated two-way solution.

8 Discussion Tracking 151

Given a value r > 0 (loosely corresponding to the number of distinct topics or
conversations in our data), the tensor decomposition algorithms find matrices A ∈
Rm×r, B ∈ Rn×r, and C ∈ Rp×r, to yield Equation (8.1). Each triad {Aj , Bj , Cj},
for j = 1, . . . , r, defines scores for a set of terms, authors, and time for a particular
conversation in our email collection; the value λr after normalization defines the
weight of the conversation. (Without loss of generality, we assume the columns of
our matrices are normalized to have unit length.) The scales in C indicate the activity
of each conversation topic over time.

8.4.1 PARAFAC-ALS

A common approach to solving Equation (8.2) is an alternating least squares (ALS)
algorithm [Har70, FBH03, TB05], due to its simplicity and ability to handle con-
straints. At each inner iteration, we compute an entire factor matrix while holding all
the others fixed.

Starting with random initializations for A,B, and C, we update these quantities
in an alternating fashion using the method of normal equations. The minimization
problem involving A in Equation (8.2) can be rewritten in matrix form as a least
squares problem [FBH03]:

min
A

∥∥∥X(m×np) −AZ
∥∥∥2

, (8.3)

where Z = (C �B)T .
The least squares solution for Equation (8.3) involves the pseudo-inverse of Z:

A = X(m×np)Z†.

Conveniently, the pseudo-inverse of Z may be computed in a special way that avoids
computing ZTZ with an explict Z [SBG04], so the solution to Equation (8.3) is
given by

A = X(m×np)(C �B)(BTB ∗ CTC)−1.

Furthermore, the product X(m×np)(C � B) may be computed efficiently if X is
sparse [KB06] by not forming the Khatri-Rao product C � B. Thus, computing A
essentially reduces to several matrix inner products, sparse tensor-matrix multiplica-
tion of B and C into X, and inverting an R×R matrix.

Analogous least-squares steps may be used to update B and C.

8.4.2 Nonnegative Tensor Factorization

We also considered a PARAFAC model with nonnegativity constraints on the fac-
tor matrices. Because we are dealing with nonnegative data in X, it often helps to
examine decompositions that retain the nonnegative characteristics of the original
data. Modifications to the ALS algorithm are needed, and we use the multiplica-
tive update introduced in [LS99] and adapted for tensor decompositions by Mørup

152 B.W. Bader, M.W. Berry, M. Browne

[Mør05, MHA06]. We also incorporate the addition of ε for stability as was done in
[BB05a]. Overall, the approach is similar to PARAFAC-ALS except that the factor
matrices are updated differently.

First, we note that residual norm of the various formulations of the PARAFAC
model are equal:

||X(m×np) −A(C �B)T ||F =
||X(n×mp) −B(C �A)T ||F =
||X(p×mn) − C(B �A)T ||F .

Each of these matrix systems is treated as a nonnegative matrix factorization (NMF)
problem and solved in an alternating fashion. That is, we solve for A using the mul-
tiplicative update rule holding B and C fixed, and so on:

Aiρ ← Aiρ
(X(m×np)Z)iρ
(AZTZ)iρ + ε

, Z = (C �B)

Bjρ ← Bjρ
(X(n×mp)Z)jρ
(BZTZ)jρ + ε

, Z = (C �A)

Ckρ ← Ckρ
(X(p×mn)Z)kρ
(CZTZ)kρ + ε

, Z = (B �A)

Here ε is a small number like 10−9 that adds stability to the calculation and guards
against introducing a negative number from numerical underflow.

As was mentioned previously, X is sparse, which facilitates a simpler compu-
tation in the procedure above. Each matricized version of X (which has the same
nonzeros but reshaped) is a sparse matrix. The matrix Z from each step should not
be formed explicitly because it would be a large, dense matrix. Instead, the prod-
uct of a matricized X with Z should be computed specially, exploiting the inherent
Kronecker product structure in Z so that only the required elements in Z need to be
computed and multiplied with the nonzero elements of X. See [KB06] for details.

8.5 Enron Subset

For a relevant application, we consider the email corpus of the Enron corporation
that was made public during the federal investigation. The whole collection is avail-
able online [Coh] and contains 517,431 emails stored in the mail directories of 150
users. We use a smaller graph of the Enron email corpus prepared by Priebe et
al. [PCMP06] that consists of messages among 184 Enron email addresses plus 13
more that have been identified in [BB05a] as interesting. We considered messages
only in 2001, which resulted in a total of 53,733 messages over 12 months (mes-
sages were sent on a total of 357 days).

An obvious difficulty in dealing with the Enron corpus is the lack of information
regarding the former employees. Without access to a corporate directory or orga-
nizational chart of Enron at the time of these emails, it is difficult to ascertain the

8 Discussion Tracking 153

validity of our results and assess the performance of the PARAFAC model. Other
researchers using the Enron corpus have had this same problem, and information on
the participants has been collected slowly and made available.

The Priebe dataset [PCMP06] provided partial information on the 184 employ-
ees of the small Enron network, which appears to be based largely on information
collected by Shetty and Adibi [SA05]. It provides most employees’ position and
business unit. To facilitate a better analysis of the PARAFAC results, we collected
extra information on the participants from the email messages themselves and found
some relevant information posted on the FERC Web site [Fed]. To help assess our
results, we searched for corroborating information of the preexisting data or for new
identification information, such as title, business unit, or manager. Table 8.1 lists 11
of the most notable authors (and their titles) whose emails were tracked in this study.

Table 8.1. Eleven of the 197 email authors represented in the term-author-time array X

Email account
Name (@enron.com) Title
Richard Sanders b..sanders VP Enron Wholesale Services
Greg Whalley greg.whalley President
Jeff Dasovich jeff.dasovich Employee Government Relationship

Executive
Jeffery Skilling jeff.skilling CEO
Steven Kean j..kean VP and Chief of Staff
John Lavorato john.lavorato CEO Enron America
Kenneth Lay kenneth.lay CEO
Louise Kitchen louise.kitchen President Enron Online
Mark Haedicke mark.haedicke Managing Director Legal Department
Richard Shapiro richard.shapiro VP Regulatory Affairs
Vince Kaminski vince.kaminski Manager Risk Management Head,

Enron Energy Services

Of the 197 authors whose emails were tracked (in the year 2001), there were a
few cases of aliasing. That is, different email accounts of the form

employee id@enron.com
were used by the same employee. A few sample aliases from the 11 notable authors
in Table 8.1 are David Delaney (david.delainey, w..delainey) and Vince
Kaminski (j.kaminski, j..kaminski, vince.kaminski).

8.5.1 Term Weighting

We considered two datasets: monthly and daily time periods. The monthly data cor-
respond to a sparse adjacency array X of size 69157 × 197 × 12 with 1,042,202
nonzeros, and the daily data correspond to a sparse adjacency array Y of size
69157×197×357 with 1,770,233 nonzeros. The 69,157 terms were parsed from the
53,733 messages using a master dictionary of 121,393 terms created by the General

154 B.W. Bader, M.W. Berry, M. Browne

Text Parser (GTP) software environment (in C++) maintained at the University of
Tennessee [GWB03]. This larger set of terms was previously obtained when GTP
was used to parse 289,695 of the 517,431 emails defining the Cohen distribution at
Carnegie-Mellon (see Section 8.1). To be accepted into the dictionary, a term had to
occur in more than one email and more than 10 times among the 289,695 emails.

Unique to previous parsings of Enron subsets by GTP (see [BBL+07, SBPP06,
BB05b]), a much larger stoplist of unimportant words was used to filter out the
content-rich 69,157 terms for the X and Y arrays. This stoplist of 47,154 words was
human-generated by careful screening of the master (GTP-generated) dictionary for
words with no specific reference to an Enron-related person or activity.

We scaled the nonzero entries of X and Y according to a weighted frequency:
xijk = lijkgiaj ,

yijk = lijkgiaj ,

where lijk is the local weight for term i written by author j in month/day k, gi is the
global weight for term i, and aj is an author normalization factor.

Let fijk be the number of times term i is written by author j in month/day k, and
define hij =

P
k fijkP
jk fijk

. The specific components of each nonzero are listed below:

Log local weight lijk = log(1 + fijk)

Entropy global weight gi = 1 +
n∑
j=1

hij log hij
log n

Author normalization aj = 1vuuut
∑
i,k

(lijkgi)

These weights are adapted from the well-known log-entropy weighting scheme
[BB05c] used on term-by-document matrices. The log local weight scales the raw
term frequencies to diminish the importance of high-frequency terms. The entropy
global weight attempts to emulate an entropy calculation of the terms over all mes-
sages in the collection to help discriminate important terms from common terms.
The author normalization helps to correct imbalances in the number of messages
sent from each author. Without some type of normalization, discussions involving
prolific authors would tend to dominate the results.

8.6 Observations and Results

In this section we summarize our findings of applying PARAFAC and nonnega-
tive tensor factorization (NNTF) on the Enron email collection. Our algorithms
were written in MATLAB, using sparse extensions of the Tensor Toolbox [BK06a,
BK06b]. All tests were performed on a dual 3-GHz Pentium Xeon desktop computer
with 2 GB of RAM.

8 Discussion Tracking 155

8.6.1 PARAFAC

We computed a 25-component (r = 25) decomposition of the term-author-month
array X using PARAFAC. One ALS iteration of PARAFAC took about 22.5 seconds,
requiring an average of 27 iterations to satisfy a tolerance of 10−4 in the change of
fit. We chose the smallest minimizer from among ten runs starting from random
initializations. The relative norm of the difference was 0.8904.

We also computed a 25-component (r = 25) decomposition of the term-author-
day array Y using PARAFAC. For this larger dataset, one ALS iteration of PARAFAC
took 26 seconds, requiring an average of 13 iterations to satisfy a tolerance of 10−4

in the change of fit. We chose the smallest minimizer from among ten runs starting
from random initializations. The relative norm of the difference was 0.9562.

8.6.2 Nonnegative Tensor Decomposition

We computed a 25-component (r = 25) nonnegative decomposition of the term-
author-month array X. One iteration took about 22 seconds, and most runs required
less than 50 iterations to satisfy a tolerance of 10−4 in the relative change of fit. We
chose the smallest minimizer from among ten runs from random starting points, and
the relative norm of the difference was 0.8931.

We also computed a 25-component (r = 25) nonnegative decomposition of the
larger term-author-day array Y. One iteration took about 26 seconds, and the average
run required about 17 iterations to satisfy a tolerance of 10−4 in the relative change
of fit. We chose the smallest minimizer from among ten runs from random starting
points, and the relative norm of the difference was 0.9561.

8.6.3 Analysis of Results

PARAFAC is able to identify and track discussions over time in each triad {Aj , Bj , Cj},
for j = 1, . . . , r. A discussion is associated with the topic and primary participants
identified in the columns of A and B, respectively, and the corresponding column
of C provides a profile over time, showing the relative activity of that discussion
over 12 months or over 357 days. Figures 8.2 and 8.3 present a histogram (or Gantt
chart) of the monthly activity for each discussion identified by the classical and non-
negative PARAFAC models, respectively. Similarly, Figures 8.4 and 8.5 present line
charts of the daily activity for each discussion identified by the classical and nonneg-
ative PARAFAC models, respectively. We first discuss the monthly results, and then
describe the finer grained details uncovered in the daily results.

156 B.W. Bader, M.W. Berry, M. Browne

Group Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

College Football

India

College Football

Key

Bars
[.01,0.1) [0.1, 0.3)Interval [-1.0,.01) [0.3, 0.5) [0.5, 0.7) [0.7,1.0)

(Gray = unclassified topic)

24

25

 Downfall

18

15

16

17

23

12

13

22

Education (Kaminski)

11

14

19

20

21

9

10

5

6

7

8

California

1

2

3

4

Fig. 8.2. Six distinguishable discussions among the 25 extracted by classic PARAFAC. Diag-
onal shading of cells is used to indicate negative components in the tensor groups.

8 Discussion Tracking 157

Group Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Key

Interval
Bars

[.01,0.1) [0.1, 0.3) [0.3, 0.5) [0.5, 0.7) [0.7,1.0)

(Gray = unclassified topic)

24

25

 Downfall Newsfeeds

 California Energy

College Football

Fastow Companies

18

15

16

17

23

12

13

14

19

20

21

22

India

Education (Kaminski)

11

5

6

7

8

9

10

Downfall

India

1

2

3

4

Fig. 8.3. Eight distinguishable discussions among the 25 extracted by nonnegative PARAFAC.

158 B.W. Bader, M.W. Berry, M. Browne

Qualitatively, the results of the nonnegative decomposition are the same as the
standard three-way PARAFAC results. The difference between the two models was in
the ability to interpret the results. In the 25 discussion groups depicted in Figure 8.2,
only six of the groups have any discernible meaning based on our knowledge of
the events surrounding Enron [ME03]. In comparison, the nonnegative PARAFAC
model revealed eight group discussions that could be interpreted.

The topics generated by the nonnegative PARAFAC model do reflect the events
of the year 2001, a tumultuous one for the global energy corporation, to say the least.
In the first quarter of the year, the company was still dealing with the fallout of the
2000 California energy crisis. Discussions about the federal and California state gov-
ernments’ investigation of the California situation showed up in emails during this
time frame. Another ongoing and ever-present topic was Enron’s attempted devel-
opment of the Dabhol Power Company (DPC) in the Indian State of Maharashtra.
The company’s efforts in India had been ongoing for several years, and the emails
of the early half of 2001 reflect some of the day-to-day dealings with the less-than-
profitable situation in India.

By October 2001, Enron was in serious financial trouble, and when a merger with
the Dynegy energy company fell through, Enron was forced to file for Chapter 11
bankruptcy. Many of the emails of this time frame (more specifically in October and
November) were newsfeeds from various news organizations that were being passed
around Enron. Because it was learned at this time that Chief Financial Officer Andy
Fastow was heavily involved with the deceptive accounting practices (by setting up
sham companies to boost Enron’s bottom line), it is not surprising a thread on this
topic (Fastow companies) emerged. Predictably, the College Football topic emerges
in late fall as well. One of the surprise topics uncovered was the Education topic,
which reflects the interests and responsibilities of Vince Kaminski, head of research.
Kaminski taught a class at nearby Rice University in Houston in the spring of 2001,
and was the focal point of emails about internships, class assignments, and résumé
evaluation.

The fact that at most eight of the 25 topics had any discernible meaning reflects
the nature of topic detection. A significant amount of noise or undefined content
may permeate the term-author-month arrays. Sometimes, as shown by the height of
the gray bars in Figures 8.2 and 8.3, there are indicators of a possible thread of some
kind (not necessarily directly related to Enron), but further inspection of those emails
reveals no identifiable topic of discussion.

The daily results provided a similar interpretation as the monthly results but at a
finer resolution. In general, there were four types of profiles over time: (1) discus-
sions centered largely on one or a few days, resulting in a single spike (see, e.g.,
Figures 8.4 and 8.5); (2) continual activity, represented as multiple weekly spikes
throughout the year; (3) continual activity with lulls, where a period of calm sepa-
rates bursts of discussion; and (4) a series of weekly spikes usually spanning three or
more months.

Of the 25 groups found with the PARAFAC model, roughly half were single
spikes. We have identified three of these groups of particular significance in Fig-
ure 8.4. The first identifies a flood of emails about the possible Dynegy/Enron merger

8 Discussion Tracking 159

(November 11 and 12), which was something new. This merger topic was found in
[BB05a], but this topic did not show up previously in our monthly results. The second
is a topic on January 7 that the Enron employees (Kean, Hughes, and Ambler) were
discussing India based on an article published by Reuters and another media report
that required some attention by the Enron executives. The third group also matches
what happened on August 27, when discussion was centered on the U.S. Court of
Appeals ruling on section 126 of an Environmental Protection Agency code. This
specific topic concerning compliance of emission limitations had not yet surfaced
anywhere before in our analysis.

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

Month

A
ct

iv
ity

 L
ev

el Aug. 27 (U.S. Court of Appeals/Sec 126)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

Month

A
ct

iv
ity

 L
ev

el Jan. 07 (India/Reuters article)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

0.5

1

Month

A
ct

iv
ity

 L
ev

el Nov. 11 (Dynegy/Enron merger)

Fig. 8.4. Three daily discussions among the 25 extracted by PARAFAC.

The nonnegative PARAFAC model identified the same temporal patterns as
PARAFAC, with a majority being a series of weekly spikes spanning three or more
months. Roughly one third are single-spike patterns, and just two discussions are of
the bimodal type with a lull. We mention three of the more interesting groups from
single-spike discussions, shown in Figure 8.5. The first group of the nonnegative
model is interesting because it either reveals a potentially new topic or a specific
occurrence of a general topic. On August 22, there was a flurry of emails and re-
sponses to an Email called California Campaign Closeout. Richard Shapiro praised
the employees working in California and many responded to his acknowledgment. A
second group is a very strong cluster pointing to college football with terms like Ne-
braska, Sooners, bowl, Cougars, and Tennessee. These were sent by Matthew Motley

160 B.W. Bader, M.W. Berry, M. Browne

on November 20. Finally, a third group was influenced heavily by Enron’s final im-
plosion in and around October 25 and 26. There were many news wire stories about
the plight of Enron during this time. PARAFAC had found this topic but had identi-
fied the time period 2 days earlier. We believe this difference is a result of the random
initialization that both were provided.

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2
0.4
0.6
0.8

Month

A
ct

iv
ity

 L
ev

el Aug. 22 (California Campaign Closeout)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2
0.4
0.6
0.8

Month

A
ct

iv
ity

 L
ev

el Nov. 19 (College Football/Nebraska/Sooners)

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2
0.4
0.6
0.8

Month

A
ct

iv
ity

 L
ev

el Oct. 25 (Enron implodes/news wires)

Fig. 8.5. Three daily discussions among the 25 extracted by nonnegative PARAFAC.

8.7 Future Work

As demonstrated by this study, nonnegative tensor factorization (implemented by
PARAFAC) can be used to extract meaningful discussions from email communica-
tions. The ability to assess term-to-author (or term-to-email) associations both se-
mantically and temporally via three-way decompositions is an important advance-
ment in email surveillance research. Previously reported clusters of Enron emails us-
ing nonnegative matrix factorization (i.e., two-way decompositions) [BB05b, BBL+07,
SBPP06] were unable to extract discussions such as the Education thread mentioned
in Section 8.6.2 or sequence the discussion of the company’s downfall by source
(news feeds versus employee-generated). The optimal segmentation of time as the
third dimension for email clustering may be problematic. Grouping emails by month
may not be sufficient for some applications, and so more research in the cost-benefit

8 Discussion Tracking 161

trade-offs of finer time segmentation (e.g., grouping by weeks, days, or even minutes)
is needed. Determining the optimal tensor rank r for models such as PARAFAC is
certainly another important research topic. Term weighting in three-way arrays is
also an area that greatly influences the quality of results but is not yet well under-
stood.

Acknowledgments

This research was sponsored by the United States Department of Energy and by San-
dia National Laboratory, a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy under
contract DE–AC04–94AL85000.

References

[AÇKY05] E. Acar, S.A. Çamtepe, M.S. Krishnamoorthy, and B. Yener. Modeling and mul-
tiway analysis of chatroom tensors. In ISI 2005: IEEE International Conference on
Intelligence and Security Informatics, volume 3495 of Lecture Notes in Computer
Science, pages 256–268. Springer, New York, 2005.

[BB05a] M.W. Berry and M. Browne. Email surveillance using non-negative matrix factor-
ization. In Workshop on Link Analysis, Counterterrorism and Security, SIAM Conf.
on Data Mining, Newport Beach, CA, 2005.

[BB05b] M.W. Berry and M. Browne. Email surveillance using nonnegative matrix factor-
ization. Computational & Mathematical Organization Theory, 11:249–264, 2005.

[BB05c] M.W. Berry and M. Browne. Understanding Search Engines: Mathematical Mod-
eling and Text Retrieval. SIAM, Philadelphia, second edition, 2005.

[BBL+07] M.W. Berry, M. Browne, A.N. Langville, V.P. Pauca, and R.J. Plemmons. Algo-
rithms and applications for approximate nonnegative matrix factorization. Compu-
tational Statistics & Data Analysis, 52(1):155–173, 2007.

[BK06a] B.W. Bader and T.G. Kolda. Efficient MATLAB computations with sparse and fac-
tored tensors. Technical Report SAND2006-7592, Sandia National Laboratories,
Albuquerque, New Mexico and Livermore, California, December 2006. Avail-
able from World Wide Web: http://csmr.ca.sandia.gov/∼tgkolda/
pubs.html#SAND2006-7592.

[BK06b] B.W. Bader and T.G. Kolda. Matlab tensor toolbox, version 2.1. http://csmr.
ca.sandia.gov/∼tgkolda/TensorToolbox/, December 2006.

[CC70] J.D. Carroll and J.J. Chang. Analysis of individual differences in multidimensional
scaling via an N-way generalization of ‘Eckart-Young’ decomposition. Psychome-
trika, 35:283–319, 1970.

[Coh] W.W. Cohen. Enron email dataset. Web page. http://www.cs.cmu.edu/
∼enron/.

[FBH03] N.M. Faber, R. Bro, and P.K. Hopke. Recent developments in CANDE-
COMP/PARAFAC algorithms: a critical review. Chemometr. Intell. Lab.,
65(1):119–137, January 2003.

162 B.W. Bader, M.W. Berry, M. Browne

[Fed] Federal Energy Regulatory Commission. FERC: Information released in En-
ron investigation. http://www.ferc.gov/industries/electric/
indus-act/wec/enron/info-release.asp.

[Gri03] T. Grieve. The decline and fall of the Enron empire. Slate, October 14 2003. Avail-
able from World Wide Web: http://www.salon.com/news/feature/
2003/10/14/enron/index\ np.html.

[GWB03] J.T. Giles, L. Wo, and M.W. Berry. GTP (General Text Parser) Software for Text
Mining. In H. Bozdogan, editor, Software for Text Mining, in Statistical Data
Mining and Knowledge Discovery, pages 455–471. CRC Press, Boca Raton, FL,
2003.

[Har70] R.A. Harshman. Foundations of the PARAFAC procedure: models and con-
ditions for an “explanatory” multi-modal factor analysis. UCLA Working Pa-
pers in Phonetics, 16:1–84, 1970. Available at http://publish.uwo.ca/
∼harshman/wpppfac0.pdf.

[KB06] T.G. Kolda and B.W. Bader. The TOPHITS model for higher-order web
link analysis. In Workshop on Link Analysis, Counterterrorism and Security,
2006. Available from World Wide Web: http://www.cs.rit.edu/∼amt/
linkanalysis06/accepted/21.pdf.

[KBK05] T.G. Kolda, B.W. Bader, and J.P. Kenny. Higher-order web link analysis using
multilinear algebra. In ICDM 2005: Proceedings of the 5th IEEE International
Conference on Data Mining, pages 242–249. IEEE Computer Society, Los Alami-
tos, CA, 2005.

[LS99] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factor-
ization. Nature, 401:788–791, 1999.

[ME03] B. Mclean and P. Elkind. The Smartest Guys in the Room: The Amazing Rise and
Scandalous Fall of Enron. Portfolio, New York, 2003.

[MHA06] M. Mørup, L. K. Hansen, and S. M. Arnfred. Sparse higher order non-negative
matrix factorization. Neural Computation, 2006. Submitted.

[Mør05] M. Mørup. Decomposing event related eeg using parallel factor (parafac). Presen-
tation, August 29 2005. Workshop on Tensor Decompositions and Applications,
CIRM, Luminy, Marseille, France.

[PCMP06] C.E. Priebe, J.M. Conroy, D.J. Marchette, and Y. Park. Enron dataset. Web page,
February 2006. http://cis.jhu.edu/∼parky/Enron/enron.html.

[SA05] J. Shetty and J. Adibi. Ex employee status report. Online, 2005. http:www.
isi.edu/∼adibi/Enron/Enron Employee Status.xls.

[SBG04] A. Smilde, R. Bro, and P. Geladi. Multi-Way Analysis: Applications in the
Chemical Sciences. Wiley, West Sussex, England, 2004. Available from
World Wide Web: http://www.wiley.com/WileyCDA/WileyTitle/
productCd-0471986917.html.

[SBPP06] F. Shahnaz, M.W. Berry, V.P. Pauca, and R.J. Plemmons. Document clustering
using non-negative matrix factorization. Information Processing & Management,
42(2):373–386, 2006.

[SGB00] N.D. Sidiropoulos, G.B. Giannakis, and R. Bro. Blind PARAFAC receivers for
DS-CDMA systems. IEEE Transactions on Signal Processing, 48(3):810–823,
2000.

[SZL+05] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen. CubeSVD: a novel approach to
personalized Web search. In WWW 2005: Proceedings of the 14th International
Conference on World Wide Web, pages 382–390. ACM Press, New York, 2005.

[TB05] G. Tomasi and R. Bro. PARAFAC and missing values. Chemometr. Intell. Lab.,
75(2):163–180, February 2005.

8 Discussion Tracking 163

[Tuc66] L.R. Tucker. Some mathematical notes on three-mode factor analysis. Psychome-
trika, 31:279–311, 1966.

9

Spam Filtering Based on Latent Semantic Indexing

Wilfried N. Gansterer, Andreas G.K. Janecek, and Robert Neumayer

Overview

In this chapter, the classification performance of latent semantic indexing (LSI) ap-
plied to the task of detecting and filtering unsolicited bulk or commercial email
(UBE, UCE, commonly called “spam”) is studied. Comparisons to the simple vector
space model (VSM) and to the extremely widespread, de-facto standard for spam
filtering, the SpamAssassin system, are summarized. It is shown that VSM and LSI
achieve significantly better classification results than SpamAssassin.

Obviously, the classification performance achieved in this special application
context strongly depends on the feature sets used. Consequently, the various clas-
sification methods are also compared using two different feature sets: (1) a set of
purely textual features of email messages that are based on standard word- and token-
extraction techniques, and (2) a set of application-specific “meta features” of email
messages as extracted by the SpamAssassin system. It is illustrated that the latter
tends to achieve consistently better classification results.

A third central aspect discussed in this chapter is the issue of problem reduction
in order to reduce the computational effort for classification, which is of particular
importance in the context of time-critical on-line spam filtering. In particular, the
effects of truncation of the SVD in LSI and of a reduction of the underlying feature
set are investigated and compared. It is shown that a surprisingly large amount of
problem reduction is often possible in the context of spam filtering without heavy
loss in classification performance.

9.1 Introduction

Unsolicited bulk or commercial email (UBE, UCE, “spam”) has been a severe prob-
lem on the Internet in the last several years. Although many strategies for addressing
this problem have been proposed, we are still far away from a satisfactory and fun-
damental solution. In part, this is due to the fact that many of the methods proposed

166 W.N. Gansterer, A.G.K. Janecek, R. Neumayer

and developed into concepts usable in practice have an ad-hoc nature and lack a last-
ing effect. Those individuals who make a profit based on the spam phenomenon (the
“spammers”) can easily find ways to circumvent the proposed methods.

The problem of filtering spam is a binary classification problem in the sense that
every incoming email has to be classified as “spam” or “not spam.” The investiga-
tions summarized here were motivated by the general assumption that spam email
messages tend to have several semantic elements in common, which are usually
not present in regular email (commonly called “ham”). This assumption is plausi-
ble due to the economic aspects underlying the spam phenomenon (see, for example,
[ISGP06] for a discussion). However, the common semantic elements are hard to pin-
point comprehensively, because they are not fully known, not always explicit, or may
change dynamically. In other words, they are in some sense implicit or latent. Some
approaches that were developed have tried to concentrate on some specific properties
of (current) spam and to design anti-spam methods based thereon. However, due to
the difficulties in identifying a comprehensive set of properties that unambiguously
characterize spam, these approaches have not led to fundamental and persistent anti-
spam strategies.

9.1.1 Approaches Investigated

In this chapter, the classification performance of a vector space model (VSM) and
latent semantic indexing (LSI) applied to the task of spam filtering are studied. Based
on a feature set used in the extremely widespread, de-facto standard spam filtering
system known as SpamAssassin and also on subsets selected from this feature set,
a vector space model and latent semantic indexing are applied for classifying email
messages as spam or not spam. The test datasets used are partly from the official
TREC 2005 dataset and partly self-collected.

The investigation of LSI for spam filtering summarized here evaluates the re-
lationship between two central aspects: (i) the truncation of the SVD in LSI, and
() the resulting classification performance in this specific application context. It is
shown that a surprisingly large amount of truncation is often possible without heavy
loss in classification performance. This forms the basis for good and extremely fast
approximate (pre-) classification strategies, which are very useful in practice. The
approaches investigated in this chapter are shown to compare favorably to two im-
portant alternatives, in that they achieve better classification results than SpamAssas-
sin, and (2) they are better and more robust than a related LSI-based approach using
textual features, which has been proposed earlier.

The low-rank approximation of the feature-document matrix within LSI is one
possibility to reduce the potentially huge size of the classification problem. As an
alternative, we investigate strategies for reducing the feature set before the classi-
fication process. Compared to the LSI truncation process on a full feature set, this
approach can potentially reduce the computing time as the matrices in the time-
consuming SVD computation become smaller. The classification performances of
these two approaches to problem size reduction are investigated and compared.

9 Spam Filtering Based on Latent Semantic Indexing 167

9.1.2 Background and Related Work

Existing anti-spam methods can be categorized according to their point of action in
the email transfer process. Consequently, three classes of approaches can be distin-
guished (for details, see [GIL+05]). Pre-send methods act before the email is trans-
ported over the network, whereas post-send methods act after the email has been
transferred to the receiver. A third class of approaches comprises new protocols,
which are based on modifying the transfer process itself. Pre-send methods (see,
for example, [Bac02] or [GHI+05]) are very important because of their potential
to avoid the wasting of resources (network traffic, etc.) caused by spam. However,
the efficiency of pre-send methods and of new protocols heavily depends on their
widespread deployment. It is unrealistic to expect global acceptance and widespread
use of these new methods in the near future, and thus the third group of methods,
post-send spam filtering methods, will continue to be the “workhorse” in spam de-
fense.

Many of the spam filtering concepts currently used in practice are mostly static in
nature, such as black- and whitelisting or rule-based filters. A de-facto standard of a
rule-based spam filtering system is SpamAssassin [Apa06]. SpamAssassin extracts a
multitude of features from incoming email messages, comprising pieces of informa-
tion from header, body, and the full text of the message. One of the tests integrated
into SpamAssassin is a Bayesian classifier, a statistical approach exclusively based
on textual features. An example of its application to the scenario of spam filtering is
given in [AKCS00]. The underlying idea is to compute a conditional probability for
an email being spam based on the words (tokens) it contains. From the point of view
of the individual user, these and similar filtering methods may achieve reasonably
satisfactory results provided they are trained, tuned, and maintained permanently.
The user effort required for sustaining satisfactory performance is one of the disad-
vantages of almost all existing filtering methods.

The application of state-of-the-art information retrieval and text-mining tech-
niques to the tasks of spam filtering and email classification is a topic of current
research. An approach closely related to the methods investigated in this chapter has
been proposed by Gee [Gee03], where an LSI-based classifier is used for spam filter-
ing. However, in contrast to the investigations summarized here, Gee’s approach is
exclusively based on textual features of the email messages. One of the main motiva-
tions for our work was to investigate the influence of the choice of different feature
sets on the performance of VSM- and LSI-based spam filtering. In particular, our
objective was to extend Gee’s approach (LSI on text-based features), to evaluate the
classification performance achieved with LSI on a set of “meta features,” such as
those used in SpamAssassin, and to quantify the influence of feature set reductions
on the classification results.

9.1.3 Synopsis

In Section 9.2, the basic principle of LSI is reviewed briefly, and in Section 9.3 its
adaptation to the context of spam filtering is discussed. Section 9.4 describes our

168 W.N. Gansterer, A.G.K. Janecek, R. Neumayer

implementation of this concept and summarizes a set of experiments performed with
two email test sets. In Section 9.5, conclusions are drawn and future work in this
context is outlined.

9.2 Classification Methodology

In this section, the standard VSM and LSI methods—as, for example, used in Web
search engines [LM04]—are reviewed briefly. Their adaptation and application to
the task of spam filtering is discussed in Section 9.3.

9.2.1 The Basic Vector Space Model

In information retrieval, a vector space model (VSM) is widely used for represent-
ing information. Documents and queries are represented as vectors in a potentially
very high dimensional metric vector space. The distance between a query vector and
the document vectors is the basis for the information retrieval process, which we
summarize here very briefly in its standard form (for more details see, for example,
[Lan05]).

Generally speaking, a vector space model for n documents is based on a certain
set F of f features, F = {F1, F2, . . . , Ff}. A feature extraction component has to be
available to extract the values vij for each of these features Fi from each document
j. The f -dimensional (column) vector Vj with the components vij , i = 1, 2, . . . , f ,
then represents document j in the VSM. The f × n feature-document matrix M (in
other contexts called the term-document matrix) is composed using all the vectors Vj
as columns.

Given a query vector q of length f , the distances of q to all documents represented
in M can then be measured (for example) in terms of the cosines of the angles be-
tween q and the columns of M . The column with the smallest angle (largest cosine
value) represents the closest match between the document collection and the query
vector.

9.2.2 LSI

Latent semantic indexing (LSI) or latent semantic analysis (LSA) is a variant of
the basic vector space model. Instead of the original feature-document matrix M it
operates on a low-rank approximation toM . More specifically, based on the singular
value decomposition of M , a low-rank approximation Mk is constructed:

M = UΣV > ≈ UkΣkV >k =: Mk, (9.1)

whereΣk contains the k largest singular values ofM and k < f . Technically, this ap-
proximation replaces the original matrix M by another matrix whose column space
is a subspace of the column space of M .

9 Spam Filtering Based on Latent Semantic Indexing 169

LSI Truncation

We call the approximation process (9.1) LSI truncation and denote the amount of
truncation as a percentage value: If Σk contains only those k singular values of M
that are greater than p percent of the maximum singular value ofM , then the approx-
imation is called “LSI p%” truncation. If, for example, the maximum singular value
of M is 100, then for “LSI 2.5%” all k singular values that are greater than 2.5 are
used in the approximation of M . Note that as the truncation parameter p increases,
the rank of the approximation matrix decreases.

One of the main drawbacks of LSI is the rather large (sometimes even pro-
hibitive) computational cost required for computing the singular value decomposi-
tion. On the other hand, it has advantages in terms of storage requirements and com-
putational cost for determining the distances between the query vector q and the doc-
uments. These and other considerations are discussed in greater detail in [BDJ99].

9.3 VSM and LSI for Spam Filtering

The main focus of this section is the application of VSM and LSI to the task of spam
filtering. In this context, each document is an email message that is represented by a
vector in the vector space model.

To construct this vector space model, each email message has to be represented
by a set of feature values determined by a feature extraction component. This leads to
two central questions arising in the context of spam filtering methodology: (1) Which
features of email data are (most) relevant for the classification into spam and ham
(textual features, header information, etc.) ? (2) Based on a certain set of features,
what is the best method for categorizing email messages into spam and ham? In
the remainder of this section, we will mainly focus on the former question. The
evaluation of VSM and LSI summarized in Section 9.4 is an attempt to contribute to
answering the latter question.

9.3.1 Feature Sets

In this study, we consider and compare two types of features that are very important
and widely used in the context of spam filtering. On the one hand, we use the features
extracted by the state-of-the-art spam filtering system SpamAssassin. This feature
set is denoted by “F SA” in the following. On the other hand, we use a comparable
number of purely text-based features. This feature set is denoted by “F TB” in the
following. First, these two types of feature sets and their extraction are discussed.
Then, we discuss feature/attribute selection methods for investigating a controlled
reduction of the number of features in each set.

SpamAssassin Features

For our first feature set we use the SpamAssassin system [Apa06] to extract their
values from each message. SpamAssassin applies many tests and rules (795 in the

170 W.N. Gansterer, A.G.K. Janecek, R. Neumayer

version used) to extract these features from each email message. Different parts of
each email message are tested, comprising the message body (56% of all tests) and
the message header (36% of the tests). Moreover, there are URI checks (5% of the
tests) as well as rawbody tests (multimedia email (MIME) checks, 2% of the tests)
and blacklist tests (1% of the tests). Tests acting on the message body comprise
Bayesian classifiers, language-specific tests, tests searching for obfuscated words,
html tests, and many others (for a complete list, see http://spamassassin.
apache.org/tests\ 3\ 1\ x.html).

Each test is assigned a certain value. This value is a positive real number if the
test points to a spam message, and a negative real number if the test points to a ham
message. The specific values have been derived by the SpamAssassin team using a
neural network trained with error back propagation. In the SpamAssassin system,
the overall rating of a message is computed by summing up all values assigned to
the tests. If this sum exceeds a user-defined threshold (the default threshold is set to
5), a message is classified as spam. Increasing the threshold will decrease the spam
detection rate but will also reduce the false-positive rate, whereas decreasing it will
increase the spam detection rate but also the false-positive rate.

Although the number of features extracted from each email message by the
SpamAssassin system is very large, experimental analysis shows that only a rela-
tively small subset of these features provides widely applicable useful information.
More specifically, for our datasets (see Section 9.4.1) only about half of all Spam-
Assassin tests triggered at least once, and only about 4% of the tests triggered for
more than 10% of the messages. Besides the Bayesian classifier (which returns
a value for every message) the SpamAssassin tests triggering most often for our
datasets are the “all trusted” test, which checks whether a message has only passed
through trusted SMTP relays (this test points to ham), as well as the “razor2” real-
time blacklist test (this test points to spam). A more detailed list of the tests triggering
most often for the datasets used in this work can be found in [GIJ+06].

It should be mentioned that the SpamAssassin feature set is “unbalanced” in the
sense that about 96% of all tests check for a feature that points to spam and only
about 4% of the tests point to ham. Another potential problem is that some of the
SpamAssassin tests tend to trigger incorrectly. For our test data, 11 tests triggered
wrongly for more than 2% of the messages, and seven of them triggered wrongly
more often than correctly (see [GIJ+06]). Obviously, this tends to have a negative
impact on the classification performance achieved. However, most of these problem-
atic tests are assigned only a low default score, and therefore their impact on the
overall classification result is not too strong in practice.

In the work summarized here, we selected those 377 and 299 SpamAssassin fea-
tures, respectively, which triggered at least once for both of the datasets used (see
Section 9.4.1) as a first starting point. We used the features in binary form and also
the original values assigned by SpamAssassin. In some cases, using binary features,
turned out to yield only slightly better classification results than using the original,
weighted values. The experimental results shown in Section 9.4 are based on binary
feature values. The shortcomings of the SpamAssassin feature set mentioned above

9 Spam Filtering Based on Latent Semantic Indexing 171

motivated our investigation of improved feature selection and extraction strategies
summarized later in this section.

Text-Based Features

The classic alternative, which is used widely, not only in text mining but also in the
area of spam filtering, is a purely text-based feature set. Consequently, we consider
a second feature set, which consists of words extracted from the email messages.
Document frequency thresholding is used for reducing the potentially prohibitive
dimensionality.

Dimensionality Reduction

When tokenizing text documents, one often faces very high dimensional data. Tens
of thousands of features are not easy to handle; therefore, feature selection plays a
significant role. Document frequency thresholding achieves reductions in dimension-
ality by excluding terms having very high or very low document frequencies. Terms
(words, tokens) that occur in almost all documents in a collection do not provide
any discriminating information. A good overview of various term selection methods
explaining their advantages and disadvantages is given in [YP97].

It is usually possible to scale down the dimensionality to about 300 features.
Document frequency thresholding is often used as a first step to reduce the dimen-
sionality. Furthermore, techniques such as information gain can be used to select the
most important features from that “pre-selection” in order to further reduce compu-
tational cost.

Document Frequency Thresholding

Document frequency thresholding is even feasible for unsupervised data. The basic
assumption is that very frequent terms are less discriminative when trying to dis-
tinguish between classes (a term occurring in every single spam and ham message
would not contribute to differentiate between them). The majority of tokens (words),
however, tends to occur only in a very small number of documents. The biggest ad-
vantage of document frequency thresholding is that class information is not needed.
It is therefore mainly used for clustering applications where the data consists only
of one class or where no class information is available at all. Besides, document fre-
quency thresholding is relatively inexpensive in terms of computational cost. In the
context considered here it can be used for dimensionality reduction, for clustering,
and to compare the classification results obtained by more sophisticated approaches.
Document frequency thresholding proceeds as follows:

• First, the upper threshold is fixed to 0.5, hence all terms that occur in more than
half of the documents are omitted.

• Then, the lower threshold is dynamically adapted in order to achieve a predefined
desired number of features.

172 W.N. Gansterer, A.G.K. Janecek, R. Neumayer

Information Gain

Information gain (IG) is a technique originally used to compute splitting criteria for
decision trees. The basic idea behind IG is to find out how well each single feature
separates the given dataset.

The overall entropy I for a given dataset S is computed according to the follow-
ing equation:

I = −
C∑
i=1

pi log2 pi, (9.2)

where C denotes the total number of classes and pi the portion of instances that
belong to class i. Now, the reduction in entropy or gain in information is computed
for each attribute A or token according to

IG(S,A) = I(S)−
∑
vεA

|Sv|
|S|

I(Sv), (9.3)

where v is a value of A and Sv is the number of instances where A has that value v
(i.e., the number of instances A occurs in).

According to Eq. (9.3), an information gain value can be computed for each
token extracted from a given document collection. Documents are then represented
by a given number of tokens having the highest information gain values.

Feature/Attribute Selection Methods Used

We used various feature/attribute selection methods to reduce the number of features
within both feature sets introduced before. On that basis, we create different feature
subsets comprising only the top discriminating features for both feature sets. This
feature reduction reduces the computational effort in the classification process for
each message and therefore saves computing time.

The features within the text-based feature set are already ranked based on infor-
mation gain. We applied information gain attribute selection to the SpamAssassin
feature set as well. The computation of the information gain for each SpamAssassin
feature can be performed similarly to the computation of the information gain for
each token for the text-based features (cf. Eq. (9.2) and (9.3)). Based on the resulting
ranking of features, two subsets containing the top 50 and the top 10 features, respec-
tively, were selected for both feature sets, text-based and SpamAssassin features.

For the SpamAssassin feature set, we used two more feature selection strate-
gies for comparison purposes—χ2 attribute selection and an intuitive strategy: (1)
The χ2 attribute selection evaluates the significance of an attribute by computing the
value of the χ2 statistic with respect to the class. (2) As an intuitive strategy, we
extract two feature subsets containing only the top 50 and the top 10 triggering fea-
tures, respectively (i.e., those SpamAssassin tests that have triggered most often for
all email messages within our training data).

For the computation of the information gain and χ2 attribute selection we used
the publicly available machine learning software WEKA [WEK06]. Applying the

9 Spam Filtering Based on Latent Semantic Indexing 173

χ2 attribute selection to the text-based features (which have already been ranked
by information gain did) not change the order of the features. When comparing
the three feature selection methods for the SpamAssassin feature set, eight Spa-
mAssassin features occur in all three top 10 subsets extracted. These comprise
Bayesian classifiers (“bayes 00” and “bayes 99”), special black- and whitelist tests
(“razor2 cf range 51 100” and “razor2 check”), tests that check whether the mes-
sage body contains an URL listed in a special URL blacklist (“uribl ws surbl” and
“uribl ob surbl”), a test that checks whether all headers in the message were inserted
by trusted SMTP relays (“all trusted”), and a test that checks whether the message
contains html tags (“html message”).

9.3.2 Training and Classification

The application of VSM and LSI to spam filtering investigated here involves two
phases: a training phase and the actual classification phase. The training phase com-
prises the indexing of two known datasets (one consisting of spams and one consist-
ing of hams) and, in the case of LSI, the computation of the singular value decom-
position of the feature- or term-document matrix. The classification phase comprises
the query indexing and the retrieval of the closest message from the training sets. A
newly arriving message can be classified by indexing it based on the feature set used
and comparing the resulting query vector to the vectors in the training matrices. If the
closest message is contained in the spam training set, then the query message is clas-
sified as spam, otherwise it is classified as ham. The distance measurement is based
on the angles between the query vector and the training vectors and is computed
analogously to standard VSM (see [Lan05]).

9.3.3 Performance Metrics

In the context of spam filtering, a “positive” denotes an email message that is clas-
sified as spam and a “negative” denotes an email message that is classified as ham.
Consequently, a “true positive” is a spam message that was (correctly) classified as
spam, and a “false positive” is a ham message that was (wrongly) classified as spam.

The main objective is to maximize the rate of “true positives” and to minimize
rate of “false positives” simultaneously (in order not to lose ham messages). Some-
times, these two metrics are aggregated into a single one, for example, by computing
the overall percentage of correctly classified messages (correctly classified spams
plus correctly classified hams) in all messages classified (see Figures 9.3 and 9.6).

9.4 Experimental Evaluation

The concepts and methods discussed before have been implemented and evaluated
experimentally in the context of spam filtering. The results achieved are summarized
in this section.

174 W.N. Gansterer, A.G.K. Janecek, R. Neumayer

9.4.1 Data Sets

For the experiments we used two different datasets, one consisting of a part (25%)
of the TREC 2005 spam and ham corpus. This dataset is denoted as “S1” in the fol-
lowing and is publicly available [CL05]. The other dataset consists of self-collected
email messages and is denoted as “S2” in the following. The messages in S2 have
been collected recently over a period of several months from several sources in order
to achieve as much diversity as possible. Spam was mostly collected from various
spam traps, and ham came from volunteers (mainly private email). S1 contains 9,751
ham messages and 13,179 spam messages. S2 contains 5,502 ham messages and
5,502 spam messages.

9.4.2 Experimental Setup

We performed two different cross-validations for our datasets, a threefold cross-
validation for the larger sample S1 and a tenfold cross-validation for the smaller
sample S2. For an n-fold cross-validation, we split each of our samples randomly
into n parts of roughly equal size and used alternately n−1 of these parts for training
and one of them for testing. The true/false-positive rates and the true/false-negative
rates were measured and the aggregated classification results were computed from
these results. The cross-validations were performed for six different LSI truncations
using the feature sets F SA and F TB as defined in Section 9.3.

The experiments involved processing a large amount of data and a variety of
different parameter settings. We used six different machines for the test runs, ranging
from a Sun Sparc 64-bit multiprocessor running SunOS v5.10 to standard desktop
PCs running Windows XP or Linux Ubuntu 4.0.3.

9.4.3 Analysis of Data Matrices

The average ranks k of the truncated SVD matrices for both datasets and both feature
sets are listed in Tables 9.1 and 9.2.

Table 9.1. Rank k of the truncated SVD matrices for different cut-off values in the singular
values for S1

Truncation: 0.0% 2.5% 5.0% 10.0% 25.0% 50.0%
Features F SA

kHam: 377 24 12 5 1 1
kSpam: 377 94 47 23 6 1

Features F TB
kHam: 377 83 37 14 4 3
kSpam: 377 86 50 19 7 2

9 Spam Filtering Based on Latent Semantic Indexing 175

Table 9.2. Rank k of the truncated SVD matrices for different cut-off values in the singular
values for S2

Truncation: 0.0% 2.5% 5.0% 10.0% 25.0% 50.0%
Features F SA

kHam: 299 31 15 7 3 1
kSpam: 299 79 42 17 5 2

Features F TB
kHam: 299 53 26 14 4 2
kSpam: 299 55 27 11 4 2

50 100 150 200 250 300 350

-14

-12

-10

-8

-6

-4

-2

0

2

number of singular value

lo
g1

0
of

 s
in

gu
la

r v
al

ue

Ham
Spam

Fig. 9.1. Singular values in vector space models for sample S1 using feature set F SA.

50 100 150 200 250 300 350

-14

-12

-10

-8

-6

-4

-2

0

2

4

number of singular value

lo
g1

0
of

 s
in

gu
la

r v
al

ue

Ham
Spam

Fig. 9.2. Singular values in vector space models for sample S1 using feature set F TB.

176 W.N. Gansterer, A.G.K. Janecek, R. Neumayer

The distribution of the singular values in the vector space models for sample S1 is
illustrated in Figures 9.1 and 9.2. The sharp decline in the magnitude of the singular
values for both classes (ham and spam) is very interesting.

Comparing Figures 9.1 and 9.2, it can be observed that the singular values for
feature set F TB tend to be significantly larger than the singular values for feature
set F SA. Until the sharp decline at about singular value number 250 (for both ham
and spam features), all singular values for the feature set F TB are larger than 5,
whereas the majority of the singular values for feature set F SA is much smaller than
5 (93% for the ham sample and 66% for the spam sample, respectively). Moreover,
the largest singular values for the feature set F TB are about 8 to 10 times larger
than the largest singular values for the feature set F SA. Looking at Figure 9.1, it is
clearly visible that the singular values for the ham messages are significantly smaller
than those for the spam messages.

This analysis of the data matrices forms the basis for understanding and explain-
ing the observations summarized in the following sections: when using feature set
F SA, very low-rank approximations of the feature-document matrix (even k = 1)
still achieve a very good classification quality—partly even better than standard
SpamAssassin (see Figure 9.3 and Tables 9.1 and 9.2 for feature set F SA and LSI
50%).

9.4.4 Aggregated Classification Results

Figure 9.3 depicts the aggregated classification results for both datasets used. Six
different LSI truncations are shown for the two feature sets F SA and F TB. As
mentioned in Section 9.3.1, SpamAssassin assigns positive values to features point-
ing to spam and negative values to features pointing to ham. Classification is then
performed based on a threshold value, the standard (and rather conservative) default
value being 5. To compare our results to a standard approach the classification re-
sults of SpamAssassin (version 3.1) using this default threshold are also shown in
Figure 9.3 (“SA th=5”). The bar for the configuration [sample S1/LSI 50.0%/feature
set F TB] is not visible, as in this case the aggregated classification result is below
80%. It has to be pointed out that in Figure 9.3 even for low LSI truncations most
results are better than the aggregated classification results achieved by standard
SpamAssassin.

When we compare the feature sets F SA and F TB, we observe that for all LSI
truncations the classification results for F SA are significantly better than the cor-
responding results for F TB. For the LSI classification, the aggregated results for
sample S2 are better than those achieved for S1. When using SpamAssassin with
the default threshold 5 we observe the opposite—here, the results achieved for S1
exceed the results achieved for S2. Using feature set F SA, the aggregated results
for LSI 2.5% and LSI 5.0% are even slightly better than the results for LSI 0.0%
(standard VSM), where all features are used for the classification. In contrast, for
feature set F TB almost every increase of the LSI truncation (decrease in the rank
of the truncated SVD) causes a decrease in the classification result (being the case
[sample S2/LSI 50.0%]).

9 Spam Filtering Based on Latent Semantic Indexing 177

80%

85%

90%

95%

100%

S1 - F_SA S1 - F_TB S2 - F_SA S2 - F_TB

%
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 m
es

sa
ge

s

VSM LSI 2.5% LSI 5.0% LSI 10.0% LSI 25.0% LSI 50.0% SA th=5

Fig. 9.3. Aggregated classification results for S1 and S2.

9.4.5 True/False-Positive Rates

In contrast to Figure 9.3, Figures 9.4 and 9.5 show true- and false-positive rates
separately. The SpamAssassin threshold was again set to 5. Using a more aggres-
sive threshold for SpamAssassin would increase both the false-positive rate and the
true-positive rate (e. g., for sample S1 a SpamAssassin threshold of 3 achieved a
true/false-positive rate of 93.89% and 1.94%, respectively).

SA - true pos.

SA - false pos.

80%

85%

90%

95%

100%

SA (th
=5

)
VSM

LSI 2
.5%

LSI 5
.0%

LSI 1
0.0

%

LSI 2
5.0

%

LSI 5
0.0

%

tr
ue

 p
os

iti
ve

 ra
te

0%

5%

10%

15%

20%

fa
ls

e
po

si
tiv

e
ra

te

F_SA - true positive rate F_TB - true positive rate
F_SA - false positive rate F_TB - false positive rate

Fig. 9.4. True- and false-positive rates for sample S1.

Both figures show a similar behavior of the true/false-positive rates for F SA
and F TB and indicate a significantly higher false-positive rate when using fea-
ture set F TB. In particular, for sample S1 the false-positive rate of F TB is quite

178 W.N. Gansterer, A.G.K. Janecek, R. Neumayer

SA - true pos.

SA - false pos.

80%

85%

90%

95%

100%

SA (th
=5

)
VSM

LSI 2
.5%

LSI 5
.0%

LSI 1
0.0

%

LSI 2
5.0

%

LSI 5
0.0

%

tr
ue

 p
os

iti
ve

 ra
te

0%

5%

10%

15%

20%

fa
ls

e
po

si
tiv

e
ra

te

F_SA - true positive rate F_TB - true positive rate
F_SA - false positive rate F_TB - false positive rate

Fig. 9.5. True- and false-positive rates for sample S2.

high (4.91% using VSM), although the aggregated classification result reaches a
respectable 96.80% (see Figure 9.3, F TB using VSM). The false-positive rate for
sample S2 using feature set F TB is slightly lower but still consistently higher than
when feature set F SA is used. The false-positive rates tend to remain almost constant
except for high LSI truncations where they increase significantly.

9.4.6 Feature Reduction

The low-rank approximation of the feature-document matrix M within LSI is one
way to reduce the problem size. Alternatively, one could try to reduce the number
of features before the classification process using one of the feature selection meth-
ods mentioned in Section 9.3.1. Compared to the LSI truncation process on the full
feature sets, this approach can significantly reduce the computing time as the time-
consuming SVD computation within LSI is done for smaller matrices.

To compare these two basic approaches, we evaluated the classification results
for various selected subsets of the feature sets F SA and F TB. These subsets were
extracted using the feature/attribute selection methods mentioned in Section 9.3.1.

Feature Reduction—Aggregated Results

Figure 9.6 shows the aggregated classification results using only top discriminating
subsets of features from F SA and F TB, respectively, based on a ranking of features
using information gain (see Section 9.3.1). The subsets selected contained the top 50
and the top 10 discriminating features, respectively. For classification, VSM and LSI
25% were used.

It can be observed that classification results based on a reduced number of fea-
tures are slightly worse than the results achieved with the original feature sets (ex-
cept for the top 50 F TB features for sample S1, where the classification results are

9 Spam Filtering Based on Latent Semantic Indexing 179

80%

85%

90%

95%

100%

S1 - F_SA S1 - F_TB S2 - F_SA S2 - F_TB

%
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 m
es

sa
ge

s

VSM (all feat.) VSM (50 f.) LSI 25.0% (on 50 f.) VSM (10 f.) LSI 25.0% (on 10 f.)

Fig. 9.6. Aggregated results. VSM and LSI classification on reduced feature sets using infor-
mation gain.

nearly equal). When applying LSI to reduced feature sets, only the results for feature
set F SA remain acceptable. Thus, feature set F SA turns out to be more robust in
terms of feature reduction than feature set F TB. It is also very interesting to note
that the LSI 25% classification based on 10 selected features outperforms the VSM
classification based on the same ten features for both samples and both feature sets.

Feature Reduction—True/False-Positive Rates

Figures 9.7 and 9.8 show the true/false-positive rates for samples S1 and S2, respec-
tively, using different subsets of feature set F SA. Three different attribute selection
methods have been applied to extract these subsets (see Section 9.3.1).

While the classification results for the subsets selected by information gain and
χ2 attribute selection are almost equal (except for the true-positive rate for sample
S1 in Figure 9.7), the results for the subsets containing the top triggering tests (TT)
differ slightly. All curves (except the TT true-positive rate for Figure 9.8) show
a similar behavior: When LSI 25% is applied (on the top 50 and top 10 feature
subsets, respectively) the true-positive and the false-positive rates tend to increase in
comparison to the basic VSM. Focusing on the classification results for VSM based
on the top 50 and the top 10 features, respectively, it can be observed that for all
subsets the false-positive rates are nearly equal, whereas the true-positive rates tend
to decrease when the number of features is reduced. Contrary to that, the results
for LSI 25% based on 10 features are almost equal to the results of the same LSI
truncation based on 50 features. Only for sample S1 the false-positive rate for all
three feature selection methods increases slightly when LSI 25% is based on only 10
features.

180 W.N. Gansterer, A.G.K. Janecek, R. Neumayer

Page 1

80%

85%

90%

95%

100%

VSM50 LSI25% (50 f.) VSM10 LSI25% (10 f.)

tr
ue

 p
os

iti
ve

 ra
te

0%

5%

10%

fa
ls

e
po

si
tiv

e
ra

te

TT true positive rate IG true positive rate Χ² true positive rate
TT false positive rate IG false positive rate Χ² false positive rate

Fig. 9.7. Feature selection results for sample S1 using feature set F SA.

Page 1

80%

85%

90%

95%

100%

VSM50 LSI25% (50 f.) VSM10 LSI25% (10 f.)

tr
ue

 p
os

iti
ve

 ra
te

0%

5%

10%

fa
ls

e
po

si
tiv

e
ra

te
TT true positive rate IG true positive rate Χ² true positive rate
TT false positive rate IG false positive rate Χ² false positive rate

Fig. 9.8. Feature selection results for sample S2 using feature set F SA.

9.5 Conclusions

In this chapter, the application of latent semantic indexing (LSI) to the task of spam
filtering has been investigated. The underlying vector space models are based on two
different feature sets: Purely text-based features resulting from word/token extrac-
tion (similar to the approach investigated by [Gee03]) were compared with a feature
set based on the widespread SpamAssassin system for spam filtering. Moreover, sev-
eral feature selection methods for extracting subsets of features containing the top
discriminating features from each of the feature sets have been investigated as an
alternative way of reducing the problem size. Experimental evaluations on two large
datasets showed several interesting results:

9 Spam Filtering Based on Latent Semantic Indexing 181

1. For both feature sets (F SA and F TB), VSM and LSI achieve significantly better
classification results than the extremely widespread de-facto standard for spam
filtering, SpamAssassin.

2. The classification results achieved with both VSM and LSI based on the feature
set of SpamAssassin (F SA) are consistently better than the results achieved with
purely textual features (F FB).

3. For both feature sets, VSM achieves better classification results than LSI at many
truncation levels. However, when using LSI based on the SpamAssassin feature
set, the classification results are surprisingly robust to LSI truncations with very
low rank. This indicates that LSI can provide ways for computing good (approx-
imate) “preclassifications” extremely fast, which is very useful in practice.

4. Distinguishing true- and false-positive rates, we observed that for all truncation
levels of LSI the false positive rate, which is a very important performance metric
in spam filtering, based on feature set F SA is much lower than the one based
on feature set F TB. Standard SpamAssassin also achieves a good false-positive
rate; however, its true-positive rate is rather poor compared to VSM and LSI.

5. Among the approaches for reducing the problem size and thus the computational
effort for the classification problem, LSI truncation based on the original feature
sets turned out to be more stable than VSM classification using only subsets of
the feature sets. Especially for feature set F TB, the classification results using
only the top 10 discriminating features were poor compared to the LSI 10%
classification using low-rank approximations of the original feature-document
matrix (between k = 11 and k = 19; see Tables 9.1 and 9.2).

6. The classification performance of LSI based on SpamAssassin features is also
quite robust if the number of features used is reduced significantly and still
achieves remarkably good aggregated classification results, which is not the case
for LSI based on purely textual features.

Overall, the experiments indicate that VSM and LSI are very well suited for spam
filtering if the feature set is properly chosen. In particular, we showed that the Spam-
Assassin feature set achieves better results than the commonly used purely textual
feature sets based on word- and token-extraction. Both VSM and LSI based on prop-
erly chosen small subsets of the SpamAssassin feature set are very well suited as
approximate but highly efficient preclassification strategies, which can assign a big
part of a live-stream of email messages to a given category very fast (for example,
in the context of a recently developed component-based architecture for spam filter-
ing [GJL07]).

Our current work focuses on more analysis of various feature selection and fea-
ture extraction strategies in order to further improve upon the currently used Spam-
Assassin feature set and on comparisons with other well-established classification
methods (see, for example, [CS02]) in the context of spam filtering. Moreover, an-
other important topic in our ongoing work is the utilization of special sparsity struc-
tures for classification. Applying various types of sparse matrix techniques will make
VSM highly competitive, in particular in terms of computational cost.

182 W.N. Gansterer, A.G.K. Janecek, R. Neumayer

Acknowledgments

We would like to express our gratitude to Internet Privatstiftung Austria, mobilkom
austria, and UPC Telekabel for supporting this research. We also thank the anony-
mous referees for their valuable comments, which helped us improve our work.

References

[AKCS00] I. Androutsopoulos, J. Koutsias, K. Chandrinos, and C.D. Spyropoulos. An
experimental comparison of naive bayesian and keyword-based anti-spam filtering
with personal e-mail messages. In SIGIR ’00: Proceedings of the 23rd Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 160–167, 2000. Available from World Wide Web: http:
//doi.acm.org/10.1145/345508.345569.

[Apa06] Apache Software Foundation. SpamAssassin open-source spam filter, 2006. Avail-
able from World Wide Web: http://spamassassin.apache.org/.

[Bac02] A. Back. Hashcash—a denial of service counter-measure, 2002. Available from
World Wide Web: http://www.hashcash.org/papers/hashcash.pdf.

[BDJ99] M.W. Berry, Z. Drmac, and E.R. Jessup. Matrices, vector spaces, and information
retrieval. SIAM Review, 41(2):335–362, 1999.

[CL05] G.V. Cormack and T.R. Lynam. TREC 2005 spam public corpora, 2005. Available
from World Wide Web: http://plg.uwaterloo.ca/cgi-bin/cgiwrap/
gvcormac/foo.

[CS02] N. Cristiani and B. Scholkopf. Support vector machines and kernel methods: the new
generation of learning machines. AI Magazine, 23:31–41, 2002.

[Gee03] K.R. Gee. Using latent semantic indexing to filter spam. In ACM Symposium on
Applied Computing, Data Mining Track, pages 460–464, 2003. Available from World
Wide Web: http://ranger.uta.edu/∼cook/pubs/sac03.ps.

[GHI+05] W.N. Gansterer, H. Hlavacs, M. Ilger, P. Lechner, and J. Strauß. Token buckets for
outgoing spam prevention. In M.H. Hamza, editor, Proceedings of the IASTED Inter-
national Conference on Communication, Network, and Information Security (CNIS
2005). ACTA Press, Anaheim, CA, November 2005.

[GIJ+06] W.N. Gansterer, M. Ilger, A. Janecek, P. Lechner, and J. Strauß. Final report project
’Spamabwehr II’. Technical Report FA384018-5, Institute of Distributed and Multi-
media Systems, Faculty of Computer Science, University of Vienna, 05/2006.

[GIL+05] W.N. Gansterer, M. Ilger, P. Lechner, R. Neumayer, and J. Strauß. Anti-spam
methods—state of the art. Technical Report FA384018-1, Institute of Distributed
and Multimedia Systems, Faculty of Computer Science, University of Vienna, March
2005.

[GJL07] W.N. Gansterer, A.G.K. Janecek, and P. Lechner. A reliable component-based ar-
chitecture for e-mail filtering. In Proceedings of the Second International Conference
on Availability, Reliability and Security (ARES 2007), pages 43–50. IEEE Computer
Society Press, Los Alamitos, CA, 2007.

[ISGP06] M. Ilger, J. Strauß, W.N. Gansterer, and C. Proschinger. The economy of spam.
Technical Report FA384018-6, Institute of Distributed and Multimedia Systems, Fac-
ulty of Computer Science, University of Vienna, September 2006.

9 Spam Filtering Based on Latent Semantic Indexing 183

[Lan05] A.N. Langville. The linear algebra behind search engines. In Journal of Online
Mathematics and Its Applications (JOMA), 2005, Online Module, 2005. Avail-
able from World Wide Web: http://mathdl.maa.org/mathDL/4/?pa=
content&sa=viewDocument&nodeId=636.

[LM04] A.N. Langville and C.D. Meyer. The use of linear algebra by web search engines.
IMAGE Newsletter, 33:2-6, 2004.

[WEK06] WEKA, 2006. Available from World Wide Web: http://www.cs.waikato.
ac.nz/ml/weka/. Data Mining Software in Java.

[YP97] Y. Yang and J.O. Pedersen. A comparative study on feature selection in text cat-
egorization. In Douglas H. Fisher, editor, Proceedings of ICML-97, 14th Inter-
national Conference on Machine Learning, pages 412–420, Nashville, TN, 1997.
Morgan Kaufmann Publishers, San Francisco. Available from World Wide Web:
citeseer.ist.psu.edu/yang97comparative.html.

Part IV

Anomaly Detection

10

A Probabilistic Model for Fast and Confident
Categorization of Textual Documents

Cyril Goutte

Overview

We describe the National Research Council’s (NRC) entry in the Anomaly Detec-
tion/Text Mining competition organized at the Text Mining 2007 Workshop1 (see
Appendix). This entry relies on a straightforward implementation of a probabilistic
categorizer described earlier [GGPC02]. This categorizer is adapted to handle multi-
ple labeling and a piecewise-linear confidence estimation layer is added to provide an
estimate of the labeling confidence. This technique achieves a score of 1.689 on the
test data. This model has potentially useful features and extensions such as the use of
a category-specific decision layer or the extraction of descriptive category keywords
from the probabilistic profile.

10.1 Introduction

We relied on the implementation of a previously described probabilistic categorizer
[GGPC02]. One of its desirable features is that the training phase is extremely fast,
requiring only a single pass over the data to compute the summary statistics used to
estimate the parameters of the model. Prediction requires the use of an iterative max-
imum likelihood technique (expectation maximization (EM) [DLR77]) to compute
the posterior probability that each document belongs to each category.

Another attractive feature of the model is that the probabilistic profiles associated
with each class may be used to describe the content of the categories. Indeed, even
though, by definition, class labels are known in a categorization task, those labels
may not be descriptive. This was the case for the contest data, for which only the
category number was given. It is also the case, for example, with some patent classi-
fication systems (e.g., a patent on text categorization may end up classified as “G06F
15/30” in the international patent classification, or “707/4” in the U.S.).
1 http://www.cs.utk.edu/tmw07

188 C. Goutte

In the following section, we describe the probabilistic model, the training phase,
and the prediction phase. We also address the problem of providing multiple labels
per documents, as opposed to assigning each document to a single category. We also
discuss the issue of providing a confidence measure for the predictions and describe
the additional layer we used to do that. Section 10.3 describes the experimental re-
sults obtained on the competition data. We provide a brief overview of the data and
we present results obtained both on the training data (estimating the generalization
error) and on the test data (the actual prediction error). We also explore the use of
category-specific decisions, as opposed to a global decision layer, as used for the
competition. We also show the keywords extracted for each category and compare
those to the official class description provided after the contest.

10.2 The Probabilistic Model

Let us first formalize the text categorization problem, such as proposed in the
Anomaly Detection/Text Mining competition. We are provided with a set of M doc-
uments {di}i=1...M and associated labels ` ∈ {1, . . . C}, where C is the number of
categories. These form the training setD = {(di, `i)}i=1...M . Note that, for now, we
will assume that there is only one label per document. We will address the multi-label
situation later in Section 10.2.3. The text categorization task is the following: given a
new document d̃ 6∈ D, find the most appropriate label ˜̀. There are mainly two types
of inference for solving this problem [Vap98]. Inductive inference will estimate a
model f̂ using the training data D, then assign d̃ to category f̂(d̃). Transductive
inference will estimate the label ˜̀directly without estimating a general model.

We will see that our probabilistic model shares similarities with both. We esti-
mate some model parameters, as described in Section 10.2.1, but we do not use the
model directly to provide the label of new documents. Rather, prediction is done by
estimating the labeling probabilities by maximizing the likelihood on the new docu-
ment using an EM-type algorithm, cf. Section 10.2.2.

Let us now assume that each document d is composed of a number of words
w from a vocabulary V . We use the bag-of-words assumption. This means that the
actual order of words is discarded and we use only the frequency n(w, d) of each
word w in each document d. The categorizer presented in [GGPC02] is a model of
the co-occurrences (w, d). The probability of a co-occurrence, P (w, d), is a mixture
of C multinomial components, assuming one component per category:

P (w, d) =
C∑
c=1

P (c)P (d|c)P (w|c) (10.1)

= P (d)
C∑
c=1

P (c|d)P (w|c) .

This is in fact the model used in probabilistic latent semantic analysis (PLSA)
(cf. [Hof99]), but used in a supervised learning setting. The key modeling aspect is

10 Fast and Confident Probabilistic Categorization 189

that documents and words are conditionally independent, which means that within
each component, all documents use the same vocabulary in the same way. Parame-
ters P (w|c) are the profiles of each category (over the vocabulary), and parameters
P (c|d) are the profiles of each document (over the categories). We will now show
how these parameters are estimated from the training data.

10.2.1 Training

The (log-)likelihood of the model with parameters θ = {P (d);P (c|d);P (w|c)} is

L(θ) = logP (D|θ) =
∑
d

∑
w∈V

n(w, d) logP (w, d), (10.2)

assuming independently identically distributed (iid) data.
Parameter estimation is carried out by maximizing the likelihood. Assuming that

there is a one-to-one mapping between categories and components in the model, we
have, for each training document, P (c = `i|di) = 1 and P (c 6= `i|di) = 0, for all
i. This greatly simplifies the likelihood, which may now be maximized analytically.
Let us introduce |d| =

∑
w n(w, d) the length of document d, |c| =

∑
d∈c |d| the

total size of category c (using the shorthand notation d ∈ c to mean all documents
di such that `i = c), and N =

∑
d |d| the number of words in the collection. The

maximum likelihood (ML) estimates are

P̂ (w|c) =
1
|c|
∑
d∈c

n(w, d) and P̂ (d) =
|d|
N

. (10.3)

Note that in fact only the category profiles P̂ (w|c) matter. As shown below, the
document probability P̂ (d) is not used for categorizing new documents (as it is irrel-
evant, for a given d).

The ML estimates in Eq. (10.3) are essentially identical to those of the naive
Bayes categorizer [MN98]. The underlying probabilistic models, however, are defi-
nitely different, as illustrated in Figure 10.1 and shown in the next section. One key
consequence is that the probabilistic model in Eq. (10.1) is much less sensitive to
smoothing than the naive Bayes.

It should be noted that the ML estimates rely on simple corpus statistics and
can be computed in a single pass over the training data. This contrasts with many
training algorithms that rely on iterative optimization methods. It means that training
our model is extremely computationally efficient.

10.2.2 Prediction

Note that Eq. (10.1) is a generative model of co-occurrences of words and documents
within a given collection {d1 . . . dM} with a set vocabulary V . It is not a generative
model of new documents, contrary to, for example, naive Bayes. This means that we
cannot directly calculate the posterior probability P (d̃|c) for a new document.

190 C. Goutte

d

c

w
document document

w

c

d

Our modelNaive Bayes

collection collection

Fig. 10.1. Graphical models for naive Bayes (left) and for the probabilistic model used here
(right).

We obtain predictions by folding in the new document in the collection. As doc-
ument d̃ is folded in, the following parameters are added to the model: P (d̃) and
P (c|d̃),∀c. The latter are precisely the probabilities we are interested in for predict-
ing the category labels. As before, we use a maximum likelihood (ML) approach,
maximizing the likelihood for the new document:

L̃ =
∑
w

n(w, d̃) logP (d̃)
∑
c

P (c|d̃)P (w|c) (10.4)

with respect to the unknown parameters P (c|d̃).
The likelihood may be maximized using a variant of the expectation maximiza-

tion (EM) (cf. [DLR77]) algorithm. It is similar to the EM used for estimating the
PLSA model (see [Hof99, GGPC02]), with the constraint that the category profiles
P (w|c) are kept fixed. The iterative update is given by

P (c|d̃)← P (c|d̃)
∑
w

n(w, d̃)

|d̃|
P (w|c)∑

c P (c|d̃)P (w|c)
. (10.5)

The likelihood (Eq. (10.4)) is guaranteed to be strictly increasing with every EM
step, therefore Eq. (10.5) converges to a (local) minimum. In the general case of
unsupervised learning, the use of deterministic annealing [RGF90] during parameter
estimation helps reduce sensitivity to initial conditions and improves convergence
(cf. [Hof99, GGPC02]). Note, however, that as we only need to optimize over a
small set of parameters, such annealing schemes are typically not necessary at the
prediction stage. Upon convergence, the posterior probability estimate for P (c|d̃)
may be used as a basis for assigning the final category label(s) to document d̃.

Readers familiar with nonnegative matrix factorization (NMF) (cf. [LS99]) will
have noticed that Eq. (10.5) is very similar to one of the update rules used for estimat-
ing the NMF that minimizes a KL-type divergence between the data and the model.

10 Fast and Confident Probabilistic Categorization 191

Indeed, the unsupervised counterpart to our model, PLSA, is essentially equivalent
to NMF in this context [GG05a]. Therefore, another way of looking at the catego-
rization model described in this chapter is in fact to view it as a constrained NMF
problem, with the category labels providing the constraint on one of the factors (the
loading).

The way the prediction is obtained also sheds some light on the difference be-
tween our method and a naive Bayes categorizer. In naive Bayes, a category is as-
sociated with a whole document, and all words from this document must then be
generated from this category. The occurrence of a word with a low probability in
the category profile will therefore impose an overwhelming penalty to the category
posterior P (c|d). By contrast, the model we use here assigns a category c to each
co-occurrence (w, d), which means that each word may be sampled from a differ-
ent category profile. This difference manifests itself in the re-estimation formula for
P (c|d̃), Eq. (10.5), which combines the various word probabilities as a sum. As a
consequence, a very low probability word will have little influence on the poste-
rior category probability and, more importantly, will not impose an overwhelming
penalty. This key difference also makes our model much less sensitive to probability
smoothing than naive Bayes. This means that we do not need to set extra parameters
for the smoothing process. In fact, up to that point, we do not need to set any extra
hyperparameter in either the training or the prediction phases.

As an aside, it is interesting to relate our method to the two paradigms of induc-
tive and transductive learning [Vap98]. The training phase seems typically inductive:
we optimize a cost function (the likelihood) to obtain one optimal model. Note, how-
ever, that this is mostly a model of the training data, and it does not provide direct
labeling for any document outside the training set. At the prediction stage, we per-
form another optimization, this time over the labeling of the test document. This is in
fact quite similar to transductive learning. As such, it appears that our probabilistic
model shares similarities with both learning paradigms.

We will now address two important issues of the Anomaly Detection/Text Mining
competition that require some extensions to the basic model that we have presented.
Multilabel categorization is addressed in Section 10.2.3 and the estimation of a pre-
diction confidence is covered in Section 10.2.4.

10.2.3 Multiclass, Multilabel Categorization

So far, the model we have presented is strictly a multiclass, single-label categoriza-
tion model. It can handle more than two classes (C > 2), but the random variable c
indexing the categories takes a single value in a discrete set of C possible categories.

The Anomaly Detection/Text Mining competition is a multiclass, multilabel cat-
egorization problem; that is, each document may belong to multiple categories. In
fact, although most documents have only one or two labels, one document, number
4898, has 10 labels (out of 22), and five documents have exactly nine labels.

One principled way to extend our model to handle multiple labels per document
is to consider all observed combinations of categories and use these combinations
as single “labels,” as described in [McC99]. On the competition data, however, there

192 C. Goutte

are 1151 different label combinations with at least one associated document. This
makes this approach hardly practical. An additional issue is that considering label
combinations independently, one may miss some dependencies between single cate-
gories. That is, one can expect that combinations (C4, C5, C10) and (C4, C5, C11)
may be somewhat dependent as they share two out of three category labels. This is
not modeled by the basic “all model combinations” approach. Although dependen-
cies may be introduced as described, for example, in [GG06], this adds another layer
of complexity to the system. In our case, the number of dependencies to consider
between the 1151 observed label combinations is overwhelming.

Another approach is to reduce the multiple labeling problem to a number of bi-
nary categorization problems. With 22 possible labels, we would therefore train 22
binary categorizers and use them to make 22 independent labeling decisions. This is
an appealing and usually successful approach, especially with powerful binary cat-
egorizers such as support vector machines [Joa98]. However, it still mostly ignores
dependencies between the individual labels (for example, the fact that labels C4 and
C5 are often observed together), and it multiplies the training effort by the number
of labels (22 in our case).

Our approach is actually somewhat less principled than the alternatives men-
tioned above, but a lot more straightforward. We rely on a simple threshold a ∈ [0; 1]
and assign any new document d̃ to all categories c such that P (c|d̃) ≥ a. In addition,
as all documents in the training set have at least one label, we make sure that d̃ always
gets assigned the label with the highest P (c|d̃), even if this maximum is below the
threshold. This threshold is combined with the calculation of the confidence level, as
explained in the next section.

10.2.4 Confidence Estimation

A second important issue in the Anomaly Detection/Text Mining competition is that
labeling has to be provided with an associated confidence level.

The task of estimating the proper probability of correctness for the output of
a categorizer is sometimes called calibration [ZE01]. The confidence level is then
the probability that a given labeling will indeed be correct, that is, labels with a
confidence of 0.8 will be correct 80% of the time. Unfortunately, there does not seem
to be any guarantee that the cost function used for the competition will be optimized
by a “well-calibrated” confidence (cf. Section 10.3.2 below). In fact, there is always
a natural tension between calibration and performance. Some perfectly calibrated
categorizers can show poor performance; conversely, some excellent categorizers
(for example, support vector machines) may be poorly or not calibrated.

Accordingly, instead of seeking to calibrate the categorizer, we use the provided
score function, Checker.jar, to optimize a function that outputs the confidence level,
given the probability output by the categorizer. In fields like speech recognition, and
more generally in natural language processing, confidence estimation is often done
by adding an additional machine learning layer to the model [GIY97, GFL06], using
the output of the model and possibly additional external features measuring the level
of difficulty of the task. We adopt a similar approach, but use a much simpler model.

10 Fast and Confident Probabilistic Categorization 193

Confidence vs. posterior probability

P(c|d)

C
on

fid
en

ce
0 a 1

0
b

1

label=1label=−1

Fig. 10.2. The piecewise linear function used to transform the posterior probability into a
confidence level.

The confidence layer transforms the conditional probability output by the model,
P (c|d̃), into a proper confidence measure by using a piecewise linear function with
two parameters (Figure 10.2). One parameter is the probability threshold a, which
determines whether a label is assigned or not; the second is a baseline confidence
level b, which determines what confidence we give a document that is around the
threshold. The motivation for the piecewise-linear shape is that it seems reasonable
that the confidence is a monotonic function of the probability; that is, if two docu-
ments d̃1 and d̃2 are such that a < P (c|d̃1) < P (c|d̃2), then it makes sense to give d̃2

a higher confidence to have label c than d̃1. Using linear segments is a parsimonious
way to implement this assumption.

Let us note that the entire model, including the confidence layer, relies on only
two learning parameters, a and b. These parameters may be optimized by maximizing
the score obtained on a prediction set or a cross-validation estimator, as explained
below.

10.2.5 Category Description

The model relies on probabilistic profiles P (w|c) that represent the probability of
each word of the vocabulary to be observed in documents of category c. These pro-
files allow us to identify which words are more typical of each category, and therefore
may provide a way to interpret the data by providing descriptive keywords for each
category.

Notice that the simplest way of doing this, by focusing on words w with the
highest probabilities P (w|c), is not very efficient. First of all, the probability profile
is linked to the frequency of words in the training corpus (Eq. (10.3)), and high-
frequency words tend to be grammatical (“empty”) words with no descriptive con-
tent. Even when grammatical words have been filtered out, words typical of the gen-

194 C. Goutte

eral topic of the collection (e.g., related to planes and aviation in the contest corpus,
see below) will tend to have high frequency in many categories.

To identify words that are typical of a class c, we need to identify words that are
relatively more frequent in c than in the rest of the categories. One way of doing that
is to contrast the profile of the category P (w|c) and the “profile” for the rest of the
data, that is, P (w|¬c) ∝

∑
γ 6=c P (w|γ). We express the difference between the two

distributions by the symmetrized Kullback-Leibler divergence:

KL(c,¬c) =
∑
w

(P (w|c)− P (w|¬c)) log
P (w|c)
P (w|¬c)︸ ︷︷ ︸

kw

. (10.6)

Notice that the divergence is an additive sum of word-specific contributions kw.
Words with a large value of kw contribute the most to the overall divergence, and
hence to the difference between category c and the rest. As a consequence, we pro-
pose as keywords the words w for which P (w|c) > P (w|¬c) and kw is the largest.2

In the following section, we will see how this strategy allows us to extract keywords
that are related to the actual description of the categories.

10.3 Experimental Results

We will now describe some of our experiments in more details and give some results
obtained both for the estimated prediction performance, using only the training data
provided for the competition, and on the test set using the labels provided after the
competition.

10.3.1 Data

The available training data consists of 21,519 reports categorized in up to 22 cate-
gories. Some limited preprocessing was performed by the organizers, such as tok-
enization, stemming, acronym expansion, and removal of places and numbers. This
preprocessing makes it nontrivial for participants to leverage their own in-house lin-
guistic preprocessing. On the other hand, it places contestants on a level playing
field, which puts the emphasis on differences in the actual categorization method, as
opposed to differences in preprocessing.3

The only additional preprocessing we performed on the data was stop-word re-
moval, using a list of 319 common words. Similar lists are available many places on
the Internet. After stop-word removal, documents were indexed in a bag-of-words
format by recording the frequency of each word in each document.

To obtain an estimator of the prediction error, we organized the data in a 10-
fold cross-validation manner. We randomly reordered the data and formed 10 splits:

2 Alternatively, we can rank words according to k̃w = kwsign(P (w|c)− P (w|¬c)).
3 In our experience, differences in preprocessing typically yield larger performance gaps than

differences in categorization method.

10 Fast and Confident Probabilistic Categorization 195

nine containing 2152 documents, and one with 2151 documents. We then trained a
categorizer using each subset of nine splits as training material, as described in Sec-
tion 10.2.1, and produced predictions on the remaining split, as described in Section
10.2.2. As a result, we obtain 21,519 predictions on which we optimized parameters
a and b.

Note that the 7077 test data on which we obtained the final results reported be-
low were never used during the estimation of either model parameters or additional
decision parameters (thresholds and confidence levels).

10.3.2 Results

The competition was judged using a specific cost function combining prediction per-
formance and confidence reliability. For each category c, we compute the area under
the ROC curve,Ac, for the categorizer.Ac lies between 0 and 1, and is usually above
0.5. In addition, for each category c, denote tic ∈ {−1,+1} the target label for
document di, yic ∈ {−1,+1} the predicted label and qic ∈ [0; 1] the associated
confidence. The final cost function is

Q =
1
C

C∑
c=1

(2Ac − 1) +
1
M

M∑
i=1

qicticyic . (10.7)

Given predicted labels and associated confidence, the reference script Checker.jar
provided by the organizers computes this final score. A perfect prediction with 100%
confidence yields a final score of 2, while a random assignment would give a final
score of around 0.

Using the script Checker.jar on the cross-validated predictions, we optimized
a and b using alternating optimizations along both parameters. The optimal values
used for our submission to the competition are a = 0.24 and b = 0.93, indicating
that documents are labeled with all categories that have a posterior probability higher
than 0.24, and the minimum confidence is 0.93. This seems like an unusually high
baseline confidence (i.e., we label with at least 93% confidence). However, this is
not surprising if one considers the expression of the cost function (Eq. (10.7)) more
closely. The first part is the area under the curve, which depends only on the ordering.
Although the ordering is based on the confidence levels, it only depends on the rela-
tive, not the absolute, values. For example, with our confidence layer, the ordering is
preserved regardless of the value of b, up to numerical precision.

On the other hand, the second part of the cost function (Eq. (10.7)) directly in-
volves the confidence estimates qic. The value of this part will increase if we can
reliably assign high confidence (qic ≈ 1) to correctly labeled documents (tic = yic)
and low confidence (qic ≈ 0) to incorrectly labeled documents (tic 6= yic). However,
if we could reliably detect such situations, we would arguably be better off swapping
the label rather than downplay its influence by assigning it low confidence. So as-
suming we cannot reliably do so, that is, qic and ticyic are independent, the second
part of the cost becomes approximately equal to q(2×MCE−1), with q the average
confidence and MCE the misclassification error, MCE = 1/M

∑
i(tic 6= yic). So

196 C. Goutte

a

b

0.1 0.2 0.3 0.4
0.

6
0.

7
0.

8
0.

9 Max. score
CV

Fig. 10.3. Score for various combinations of a and b. The best (maximum) test score is indi-
cated as a cross, the optimum estimated by cross-validation (CV) is a = 0.24 and b = 0.93,
indicated by a circle.

the optimal strategy under this assumption is to make q as high as possible by setting
qic as close to 1 as possible, while keeping the ordering intact. This explains why a
relatively high value of b turned out to be optimal. In fact, using a higher precision
in our confidence levels, setting b to 0.99 or higher yields even better results.4

Using the setting a = 0.24 and b = 0.93, the cross-validated cost is about 1.691.
With the same settings, the final cost on the 7077 test documents is 1.689, showing an
excellent agreement with the cross-validation estimate. To illustrate the sensitivity of
the performance to the setting of the two hyperparameters a and b, we plot the final
cost obtained for various combinations of a and b, as shown in Figure 10.3. The
optimal setting (cross) is in fact quite close to the cross-validation estimate (circle).
In addition, it seems that the performance of the system is not very sensitive to the
precise values of a and b. Over the range plotted in Figure 10.3, the maximal score
(cross) is 1.6894, less than 0.05% above the CV-optimized value, and the lowest
score (bottom left) is 1.645, 2.5% below. This means that any setting of a and b in
that range would have been within 2.5% of the optimum.

We also measured the performance using some more common and intuitive met-
rics. For example, the overall mislabeling error rate is 7.22%, and the micro-averaged
F -score is a relatively modest 50.05%.

Note, however, that we have used a single confidence layer, and in particular a
single labeling threshold a, for all categories. Closer inspection of the performance
on each category shows quite a disparity in performance, and in particular in pre-
4 Note, however, that setting b to higher value only yields marginal benefits in terms of final

cost.

10 Fast and Confident Probabilistic Categorization 197

Table 10.1. Performance of the probabilistic model: precision, recall, and F -score for each
of the 22 categories. Low (< 50%) scores are in italics and high (> 75%) scores are in bold.
Column “# docs” contains the number of test documents with the corresponding label.

Category #docs p (%) r (%) F (%)
C1 435 64.99 83.22 72.98
C2 3297 46.72 99.57 63.60
C3 222 74.06 79.73 76.79
C4 182 52.15 59.89 55.75
C5 853 80.07 75.38 77.66
C6 1598 51.33 80.98 62.83
C7 546 36.38 77.29 49.47
C8 631 55.32 67.51 60.81
C9 168 59.30 60.71 60.00

C10 349 37.21 58.74 45.56
C11 161 77.44 63.98 70.06

Category #docs p (%) r (%) F (%)
C12 918 72.02 79.08 75.39
C13 687 51.21 55.46 53.25
C14 393 68.73 70.48 69.60
C15 183 30.61 24.59 27.27
C16 314 32.93 60.83 42.73
C17 162 45.22 43.83 44.51
C18 351 57.30 58.12 57.71
C19 1767 61.54 80.42 69.73
C20 229 72.40 69.87 71.11
C21 137 78.79 56.93 66.10
C22 233 88.66 73.81 80.56

cision and recall, across the categories.5 This suggests that the common value of
the threshold a may be too high for some categories (hence low recall) and too low
for others (hence low precision). Using the cross-validated prediction, we therefore
optimized some category-specific thresholds using various metrics:

• Maximum F -score
• Break-even point (i.e., point at which precision equals recall)
• Minimum error rate

For example, for maximum F -score, we optimized 22 thresholds, one per category,
by maximizing the F -score for each category on the cross-validated predictions.

Table 10.1 shows the performance obtained on the test data for all 22 categories,
using category-specific, maximum F -score optimized thresholds. Performance is ex-
pressed in terms of the standard metrics of precision, recall, and F-score. The per-
formance varies a lot depending on the category. However, there does not seem to
be any systematic relation between the performance and the size of the categories.
The worst, but also the best performance are observed on small categories (less that
250 positive test documents). This suggests that the variation in performance may
be simply due to varying intrinsic difficulty of modeling the categories. The best F-
scores are observed on categories C3, C5, C12 and C22, while categories C15, C16,
C17, C10 and C7 get sub-50% performance.

The average performance is presented in Table 10.2 for our submission to the
competition, as well as for three different strategies for optimizing a category-per-
category threshold. One weakness of the original submission was the low recall,
due to the fact that a single threshold was used for all 22 categories. This produces
a relatively low average F -score of 50.05%. By optimizing the threshold for each
5 Precision estimates the probability that a label provided by the model is correct, while

recall estimates the probability that a reference label is indeed returned by the model
[GG05b]. F-score is the harmonic average of precision and recall.

198 C. Goutte

Table 10.2. Micro-averaged performance for our contest submission, and three threshold opti-
mization strategy. Highest is best for precision (p), recall (r), F -score (F), and final cost (Eq.
(10.7)), and lowest is best for misclassification error (MCE).

p (%) r (%) F (%) MCE (%) Final cost
Our submission 64.87 40.74 50.05 7.22 1.689
Maximum F-score 53.30 78.55 63.51 8.01 1.678
Break-even point 58.88 67.35 62.83 7.07 1.697
Minimum error 61.53 62.37 61.95 6.80 1.702

category over various performance measures, we largely improve over that. Not sur-
prisingly, optimizing the thresholds for F -scores yields the best F -score of 63.51%,
although both the misclassification error and the final cost degrade using this strat-
egy. Optimizing the threshold for reducing the misclassification error reduces the test
misclassification error6 to 6.80% and improves the final cost slightly, to 1.702. Note,
however, that despite a large impact on F -score and MCE, using category-specific
decision thresholds optimized over various thresholds seems to have little impact on
the final cost, which stays within about 0.8% of the score of our submission.

10.3.3 Category Description

The only information provided by the organizers at the time of the contest was the
labeling for each document, as a number between 1 and 22. These data, therefore,
seemed like a good test bed for applying the category description technique described
above, and to see whether the extracted keywords brought any information on the
content of the categories.

Table 10.3 shows the results we obtained on about half the categories by extract-
ing the top five keywords. For comparison, we also extracted the five words with
highest probability (first column), and we also give the official category description
from the Distributed National Aviation Safety Action Program Archive (DNAA),
which was released after the competition.

Based on only five keywords, the relevance of the keywords provided by either
highest probability or largest divergence and their mapping to the official category
descriptions are certainly open to interpretation. The most obvious problem with the
choice of the highest probability words, however, is that the same handful of key-
words seem to appear in almost all categories. The words “aircraft” is among the
top-five probability in 19 out of 22 categories! Although it is obviously a very rele-
vant and common word for describing issues dealing with aviation, it is clearly not
very useful to discriminate the content of one category versus the others. The other
frequent members of the top-five highest probability are: runway (14 times), air-
port (11), approach (11), feet (9), and land (9). These tend to “pollute” the keyword
extraction. For example, in category C8 (course deviation), three out of the five high-
est probability keywords are among these frequent keywords and bring no relevant
6 For 7077 test documents with 22 possible labels, reducing the MCE by 0.1% corresponds

to correcting 156 labeling decisions.

10 Fast and Confident Probabilistic Categorization 199

Table 10.3. Keywords extracted for 12 of the contest categories using either the highest prob-
ability words or the largest contributions to the KL divergence; for comparison, the official
description from the DNAA, released after the competition, is provided.

Category Highest
probability

Largest
divergence

Official DNAA category description

C1 aircraft
maintain
minimumequip-
mentlist
check flight

minimumequip-
mentlist
maintain
install defer
inspect

Airworthiness/documentation event: An event
involving a incorrect or incomplete airworthi-
ness or documentation requirement

C2 aircraft
runway
airport
feet
approach

security
flight
board
agent
airspace

Operation in noncompliance—FARs, pol-
icy/procedures: An event involving a viola-
tion, deviation, or noncompliance by the crew
which involved a policy, procedure, or FAR

C3 runway takeoff
aircraft clear
tower

takeoff abort
runway reject
roll

Rejected takeoff: An event involving a re-
jected takeoff

C4 runway
aircraft land
taxiway left

brake taxiway
runway
damage grass

Excursion: An event involving the loss of con-
trol or inadvertent control of an aircraft from
the designated airport surface

C5 runway
aircraft
taxiway
taxi hold

runway
taxiway
taxi hold
short

Incursion: An event involving a vehicle, per-
son, object or other aircraft that creates a col-
lision hazard or results in loss of separation
with an aircraft

C8 runway turn
airport degree
approach

degree turn
head radial
course

Course deviation: An event involving a devia-
tion from an assigned or planned course

C9 feet knot
aircraft
approach
speed

knot speed
slow knotsindi-
catedairspeed
airspeed

Speed deviation: An event involving a devia-
tion from a planned or assigned air speed

C10 aircraft
runway
approach
land feet

brake knot
wind autopilot
damage

Uncommanded/unintended state or loss of
control: An event involving an uncommanded,
unintended state or loss of control of the air-
craft

C11 approach feet
airport runway
descend

approach
groundproximi-
tywarningsys-
tem terrain feet
glideslope

Terrain proximity event: An event involving
the aircraft operating in close proximity to ter-
rain

C13 airport feet
approach
aircraft
runway

weather
turbulent cloud
encounter ice
thunderstorm

Weather issue/ weather proximity event: An
event involving a weather issue or aircraft op-
erating in proximity to weather

descriptive information. The remaining two keywords, “turn” and “degree,” on the
other hand, seem like reasonable keywords to describe course deviation problems.

200 C. Goutte

By contrast, the five words contributing to the largest divergence, “degree,” “turn,”
“head,” “radial,” and “course,” appear as keywords only for this category, and they
all seem topically related to the corresponding problem. For the largest divergence
metric, kw, the word selected most often in the top-five is “runway,” which describes
six categories containing problems related to takeoff or landing (e.g., C3, C4, C5,
and C6). Other top-five keywords appear in at most four categories. This suggests
that using kw instead of P (w|c) yields more diverse and more descriptive keywords.

This is also supported by the fact that only 32 distinct words are used in the top-
five highest probability keywords over the 22 categories, while the top-five largest
kw selects 83 distinct words over the 22 categories. This further reinforces the fact
that kw will select more specific keywords, and discard the words that are common
to all categories in the corpus.

This is well illustrated on category C13 (Weather Issue). The top-five probability
words are all among the high probability words mentioned above. By contrast, the
top-5 kw are all clearly related to the content of category C13, such as “weather,”
“cloud,” “ice,” and “thunderstorm.”

Overall, we think that this example illustrates the shortcomings of the choice of
the highest probability words to describe a category. It supports our proposition to
use instead words that contribute most to the divergence between one category and
the rest. These provide a larger array of keywords and seem more closely related to
the specificities of the categories they describe.

10.4 Summary

We have presented the probabilistic model that we used in NRC’s submission to the
Anomaly Detection/Text Mining competition at the Text Mining Workshop 2007.
This probabilistic model may be estimated from preprocessed, indexed, and labeled
documents with no additional learning parameters, and in a single pass over the data.
This makes it extremely fast to train. On the competition data, in particular, the train-
ing phase takes only a few seconds on a current laptop. Obtaining predictions for new
test documents requires a bit more calculations but is still quite fast. One particularly
attractive feature of this model is that the probabilistic category profiles can be used
to provide descriptive keywords for the categories. This is useful in the common sit-
uation where labels are known only as codes and the actual content of the categories
may not be known to the practitioner.

The only training parameters we used are required for tuning the decision layer,
which selects the multiple labels associated to each document, and estimates the
confidence in the labeling. In the method that we implemented for the competition,
these parameters are the labeling threshold and the confidence baseline. They are
estimated by maximizing the cross-validated cost function.

Performance on the test set yields a final score of 1.689, which is very close to the
cross-validation estimate. This suggests that despite its apparent simplicity, the prob-
abilistic model provides a very efficient categorization. This is actually corroborated
by extensive evidence on multiple real-life use cases.

10 Fast and Confident Probabilistic Categorization 201

The simplicity of the implemented method, and in particular the somewhat rudi-
mentary confidence layer, suggests that there may be ample room for improving the
performance. One obvious issue is that the ad-hoc layer used for labeling and esti-
mating the confidence may be greatly improved by using a more principled approach.
One possibility would be to train multiple categorizers, both binary and multicate-
gory. Then use the output of these categorizers as input to a more complex model
combining this information into a proper decision associated with a better confi-
dence level. This may be done, for example, using a simple logistic regression. Note
that one issue here is that the final score used for the competition, Eq. (10.7), com-
bines a performance-oriented measure (area under the ROC curve) and a confidence-
oriented measure. As a consequence, and as discussed above, there is no guarantee
that a well-calibrated classifier will in fact optimize this score. Also, this suggests
that there may be a way to invoke multiobjective optimization in order to further
improve the performance.

Among other interesting topics, let us mention the sensitivity of the method to
various experimental conditions. In particular, although we have argued that our
probabilistic model is not very sensitive to smoothing, it may very well be that a
properly chosen smoothing, or similarly, a smart feature selection process, may fur-
ther improve the performance. In the context of multilabel categorization, let us also
mention the possibility to exploit dependencies between the classes, for example,
using an extension of the method described in [RGG+06].

References

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society, Series B,
39(1):1–38, 1977.

[GFL06] S. Gandrabur, G. Foster, and G. Lapalme. Confidence estimation for NLP applica-
tions. ACM Transactions on Speech and Language Processing,, 3(3):1–29, 2006.

[GG05a] E. Gaussier and C. Goutte. Relation between PLSA and NMF and implications.
In Proceedings of the 28th Annual International ACM SIGIR Conference, pages
601–602, ACM Press, New York, 2005.

[GG05b] C. Goutte and E. Gaussier. A probabilistic interpretation of precision, recall and F-
score, with implication for evaluation. In Advances in Information Retrieval, 27th
European Conference on IR Research (ECIR 2005), pages 345–359. Springer, New
York, 2005.

[GG06] C. Goutte and E. Gaussier. Method for multi-class, multi-label categorization using
probabilistic hierarchical modeling. US Patent 7,139,754, granted November 21,
2006.

[GGPC02] E. Gaussier, C. Goutte, K. Popat, and F. Chen. A hierarchical model for clustering
and categorising documents. In Advances in Information Retrieval, Lecture Notes
in Computer Science, pages 229–247. Springer, New York, 2002.

[GIY97] L. Gillick, Y. Ito, and J. Young. A probabilistic approach to confidence estimation
and evaluation. In ICASSP ’97: Proceedings of the 1997 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, volume 2, pages 879–882,
IEEE, Los Alamitos, CA, 1997.

202 C. Goutte

[Hof99] T. Hofmann. Probabilistic latent semantic analysis. In K.B. Laskey and H. Prade,
editors, UAI ’99: Proceedings of the Fifteenth Conference on Uncertainty in Arti-
ficial Intelligence, pages 289–296. Morgan Kaufmann, San Francisco, 1999.

[Joa98] T. Joachims. Text categorization with suport vector machines: learning with
many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Pro-
ceedings of ECML-98, 10th European Conference on Machine Learning, vol-
ume 1398 of Lecture Notes in Computer Science, pages 137–142. Springer, New
York, 1998. Available from World Wide Web: citeseer.ist.psu.edu/
joachims97text.html.

[LS99] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factor-
ization. Nature, 401:788–791, 1999.

[McC99] A. McCallum. Multi-label text classification with a mixture model trained by EM.
In AAAI’99 Workshop on Text Learning, 1999.

[MN98] A. McCallum and K. Nigam. A comparison of event models for naive Bayes text
classification. In AAAI/ICML-98 Workshop on Learning for Text Categorization,
pages 41–48, AAAI Press, Menlo Park, CA, 1998.

[RGF90] K. Rose, E. Gurewitz, and G. Fox. A deterministic annealing approach to cluster-
ing. Pattern Recognition Letters, 11(11):589–594, 1990.

[RGG+06] J.-M. Renders, E. Gaussier, C. Goutte, F. Pacull, and G. Csurka. Categorization in
multiple category systems. In Machine Learning, Proceedings of the Twenty-Third
International Conference (ICML 2006), pages 745–752, ACM Press, New York,
2006.

[Vap98] V.N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
[ZE01] B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from deci-

sion trees and naive bayesian classifiers. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML 2001), pages 609–616, Morgan
Kaufmann, San Francisco, 2001.

11

Anomaly Detection Using Nonnegative Matrix
Factorization

Edward G. Allan, Michael R. Horvath, Christopher V. Kopek, Brian T. Lamb,
Thomas S. Whaples, and Michael W. Berry

Overview

For the Text Mining 2007 Workshop contest (see Appendix), we use the nonnega-
tive matrix factorization (NMF) to generate feature vectors that can be used to cluster
Aviation Safety Reporting System (ASRS) documents. By preserving non-negativity,
the NMF facilitates a sum-of-parts representation of the underlying term usage pat-
terns in the ASRS document collection. Both the training and test sets of ASRS
documents are parsed and then factored by the NMF to produce a reduced-rank rep-
resentation of the entire document space. The resulting feature and coefficient matrix
factors are used to cluster ASRS documents so that the (known) anomalies of train-
ing documents are directly mapped to the feature vectors. Dominant features of test
documents are then used to generate anomaly relevance scores for those documents.
The General Text Parser (GTP) software environment is used to generate term-by-
document matrices for the NMF model.

11.1 Introduction

Nonnegative matrix factorization (NMF) has been widely used to approximate high-
dimensional data comprised of nonnegative components. Lee and Seung [LS99] pro-
posed the idea of using NMF techniques to generate basis functions for image data
that could facilitate the identification and classification of objects. They also demon-
strated the use of NMF to extract concepts/topics from unstructured text documents.
This is the context that we exploit the so-called sum-of-parts representation offered
by the NMF for the Aviation Safety Reporting System (ASRS) document collection.

Several manuscripts have cited [LS99], but as pointed out in [BBL+07] there
are several (earlier) papers by P. Paatero [Paa97, Paa99, PT94] that documented the
historical development of the NMF. Simply stated, the problem defining the NMF is
as follows:

Given a nonnegative matrix A ∈ Rm×n and a positive integer k < min{m,n},
find nonnegative matrices W ∈ Rm×k and H ∈ Rk×n to minimize the functional

204 E.G. Allan, M.R. Horvath, C.V. Kopek, B.T. Lamb et al.

f(W,H) =
1
2
‖A−WH‖2F. (11.1)

The product WH is called a nonnegative matrix factorization of A, although
A is not necessarily equal to the product WH. Although the product WH is an
approximate factorization of rank at most k, we will drop the word approximate in
our NMF discussions below. The best choice for the rank k is certainly problem
dependent, and in most cases it is usually chosen such that k � min(m,n). Hence,
the product WH can be considered a compressed form of the data in A.

Another key characteristic of NMF is the ability of numerical methods that mini-
mize Eq. (11.1) to extract underlying features as basis vectors in W, which can then
be subsequently used for identification and classification. By not allowing negative
entries in W and H, NMF enables a non-subtractive combination of parts to form
a whole [LS99]. Features may be parts of faces in image data, topics or clusters in
textual data, or specific absorption characteristics in hyperspectral data. In this chap-
ter, we discuss the enhancement of NMF algorithms for the primary goal of feature
extraction and identification in text and spectral data mining.

Important challenges affecting the numerical minimization of Eq. (11.1) include
the existence of local minima due to the nonconvexity of f(W,H) in both W and
H. The nonuniqueness of its solution is easily realized by noting that WDD−1H
for any nonnegative invertible matrix D whose inverse, D−1, is also nonnegative.
Fortunately, the NMF is still quite useful for text/data mining in practice since even
local minima can provide desirable data compression and feature extraction as will
be demonstrated in this contest entry.

Alternative formulations of the NMF problem certainly arise in the literature. As
surveyed in [BBL+07], an information theoretic formulation in [LS01] is based on
the Kullback–Leibler divergence of A from WH, and the cost functions proposed in
[CZA06] are based on Csiszár’s ϕ-divergence. A formulation in [WJHT04] enforces
constraints based on the Fisher linear discriminant analysis, and [GBV01] suggests
using a diagonal weight matrix Q in the factorization model, AQ ≈ WHQ, as
an attempt to compensate for feature redundancy1 in the columns of W. For other
approaches using alternative cost functions, see [HB06] and [DS05].

To speed up convergence of Lee and Seung’s (standard) NMF iteration, various
alternative minimization strategies for Eq. (11.1) have been suggested. For example,
[Lin05b] proposes the use of a projected gradient bound-constrained optimization
method that presumably has better convergence properties than the standard mul-
tiplicative update rule approach. However, the use of certain auxiliary constraints
in Eq. (11.1) may break down the bound-constrained optimization assumption and
thereby limit the use of projected gradient methods. Accelerating the standard ap-
proach via an interior-point gradient method has been suggested in [GZ05], and a
quasi-Newton optimization approach for updating W and H, where negative values
are replaced with small positive ε parameter to enforce nonnegativity, is discussed in
1 Such redundancy can also be alleviated by using column stochastic constraints on H

[PPA07].

11 Nonnegative Matrix Factorization 205

[ZC06]. For a more complete overview of enhancements to improve the convergence
of the (standard) NMF algorithm, see [BBL+07].

Typically, W and H are initialized with random nonnegative values to start the
standard NMF algorithm. Another area of NMF-related research has focused on al-
ternate approaches for initializing or seeding the algorithm. The goal, of course, is to
speed up convergence. In [WCD03] spherical k-means clustering is used to initialize
W and in [BG05] singular vectors of A are used for initialization and subsequent
cost function reduction. Optimal initialization, however, remains an open research
problem.

11.2 NMF Algorithm

As surveyed in [BBL+07], there are three general classes of NMF algorithms:
multiplicative update algorithms, gradient descent algorithms, and alternating least
squares algorithms. For this study, we deployed the most basic multiplicative update
method (initially described in [LS01]). This approach, based on a mean squared error
objective function, is illustrated below using MATLAB R©array operator notation:

Algorithm 11.2.1 Multiplicative Update Algorithm for NMF
W = rand(m,k); % W initially random
H = rand(k,n); % H initially random
for i = 1 : maxiter

H = H .* (WTA) ./ (WTWH + ε);
W = W .* (AHT) ./ (WHHT + ε);

end

The parameter ε = 10−9 is added to avoid division by zero. As explained in
[BBL+07], if this multiplicative update NMF algorithm converges to a stationary
point, there is no guarantee that the stationary point is a local minimum for the ob-
jective function. Additionally, if the limit point to which the algorithm has converged
lies on the boundary of the feasible region, we cannot conclude that it is, in fact, a sta-
tionary point. A modification of the Lee and Seung multiplicative update scheme that
resolves some of the convergence issues and guarantees convergence to a stationary
point is provided in [Lin05a].

11.3 Document Parsing and Term Weighting

The General Text Parsing (GTP) software environment [GWB03] (written in C++)
was used to parse all the ASRS training and test documents for this contest. Let
A = [R|T] = [aij] define an m × n term-by-document matrix, where the subma-
trices R and T represent training and test documents, respectively. Each element or

206 E.G. Allan, M.R. Horvath, C.V. Kopek, B.T. Lamb et al.

component aij of the matrix A defines a weighted frequency at which term i occurs
in document j. We can define aij = lijgidj , where lij is the local weight for term i
occurring in document j, gi is the global weight for term i in the subcollection, and
dj is a document normalization factor that specifies whether or not the columns of A
(i.e., the documents) are normalized (i.e., have unit length). Let fij be the number of
times (frequency) that term i appears in document j, and define p̂ij = fij/

∑
j fij ,

that is, the empirical probability of term i appearing in document j. Using GTP, we
deploy a log-entropy term-weighting scheme whereby

lij = log(1 + fij) and gi = 1 + (
∑
j

p̂ij log(p̂ij))/ log n) .

No document normalization was used in parsing ASRS documents, that is, dj = 1
for all aij . By default, GTP requires that the global frequency of any term, that is,∑n
j=1 fij , be greater than 1 and that a term’s document frequency (or number of

documents containing that term) be greater than 1 as well. No adjustments to these
thresholds were made in parsing the ASRS documents. A stoplist of 493 words2 was
used by GTP to filter out unimportant terms. The minimum and maximum length (in
characters) of any accepted term was 2 and 200, respectively. For the initial training
set of ASRS documents, GTP extracted m = 15,722 terms from the n = 21,519
documents. The elapsed GTP parsing time was 21.335 CPU seconds on a 3.2-GHz
Intel Xeon having a 1024-KB cache and 4.1-GB RAM.

11.4 NMF Classifier

The classification of ASRS documents using NMF is outlined in Tables 11.1 and 11.2.
Let Hi denote the ith column of matrix H. Some of the constants used include

α, the threshold on the relevance score or (target value) tij for document
i and anomaly/label j;

δ, the threshold on the column elements of H, which will filter out the
association of features with both the training (R) and test (T) documents;

σ, the percentage of documents used to define the training set (or number of
columns of R).

11.4.1 Preliminary Testing

The rank or number of columns of the feature matrix factor W used to test our NMF
model (prior to contest submission) was k = 40. Hence, the W and H matrix factors
were 15,722×40 and 40×21,519, respectively. The percentage of ASRS documents
used for training (subset R) in our testing was 70% (i.e., σ = .70). Hence, 15,063
2 See SMART’s English stoplist at ftp://ftp.cs.cornell.edu/pub/smart/
english.stop.

11 Nonnegative Matrix Factorization 207

documents were used as the initial training set (R) and 6,456 documents were used
for testing (T) our NMF classifier. In step 1 of Table 11.1 we chose δ = .30 for
the columnwise pruning of the elements in the coefficient matrix H. This parameter
effectively determines the number of features (among the k = 40 possible) that
any document (training or test) can be associated with. As δ increases, so does the
sparsity of H.

The α parameter specified in step 8 of Tables 11.1 and 11.2 was defined to be .40.
This is the prediction control parameter that ultimately determines whether or not
document i will be given label (anomaly) j, that is, whether pij = +1 or pij = −1
for the contest cost function

Q =
1
C

C∑
j=1

Qj , (11.2)

Qj = (2Aj − 1) +
1
D

D∑
i=1

qijtijpij , (11.3)

where C is the number of labels (anomalies) and D is the number of test documents.
As mentioned above,D = 6,456 for our preliminary evaluation of the NMF classifier
and C = 22 (as specified by the TRAINCATEGORYMATRIX.CSV file). The cost
Q given by Eq. 11.2 for our preliminary NMF testing was always in the interval
[1.28, 1.30]. To measure the quality of (anomaly) predictions across all C = 22
categories, a figure of merit (FOM) score defined by

FOM =
1
C

C∑
j=1

F − Fj
F

Qj , F =
C∑
j=1

Fj , (11.4)

where Fj denotes the frequency of documents having label (anomaly) j, and was
generated for each experiment. By definition, the FOM score will assign lower
weights to the higher frequency labels or categories. The best FOM score for σ = .70
was 1.267 to three significant decimal digits. Keep in mind that the initial matrix fac-
tors W and H are randomly generated and will produce slightly different features
(columns of W) and coefficients (columns of H) per NMF iteration.3

11.4.2 Contest Results

For the text mining contest (sponsored by NASA Ames Research Center) at the Sev-
enth SIAM International Conference on Data Mining in Minneapolis, MN (April
26–28, 2007), all contestants were provided an additional 7,077 ASRS unclassified
documents. For the NMF classifier, we treat these new documents as the test subset
T and define the training subset R as all the previously available (classified) docu-
ments (21,519 of them). Since all of the previously classified ASRS documents were
used in the term-by-document matrix A for the contest entry, the σ parameter was
3 Only five iterations were used in our preliminary study.

208 E.G. Allan, M.R. Horvath, C.V. Kopek, B.T. Lamb et al.

Table
11.1.N

M
F-based

classifierforA
SR

S
docum

ents
w

ith
corresponding

M
A

T
L

A
B

R©
functions:steps

1–6

Step
D

escription
M

AT
L

A
B

R©
function

call

1
Filterelem

ents
of

H
given

A
≈

W
H

;
h
T
h
r
e
s
h
=
a
s
r
s
T
h
r
e
s
h
o
l
d
(
H
,
D
E
L
T
A
)
;

for
i
=

1
,...,n

,determ
ine

η
i
=

m
a
x
(H

i)
and

zero
outallvalues

in
H

i less
than

η
i ×

(1
−

δ).

2
N

orm
alize

the
(new

)filtered
m

atrix
H

so
h
N
o
r
m
=
a
s
r
s
N
o
r
m
(
h
T
h
r
e
s
h
,
K
)
;

thatallcolum
n

sum
s

are
now

1.

3
G

iven
the

released
setofA

SR
S

docum
ents,generate

[
t
r
a
i
n
B
i
n
a
r
y
S
e
t
,
t
e
s
t
B
i
n
a
r
y
S
e
t
]
=

a
setofindices

(integers)thatw
illpartition

the
a
s
r
s
G
e
n
e
r
a
t
e
S
e
t
(
N
,
S
I
G
M
A
)
;

docum
ents

into
the

training
(R

)and
test(T

)
subsets.

4
G

enerate
the

corresponding
subm

atrices
ofthe

[
h
T
r
a
i
n
h
T
e
s
t
a
n
T
r
a
i
n
a
n
T
e
s
t
]
=

norm
alized

H
m

atrix
thatcorrespond

to
R

(h
T
r
a
i
n)

a
s
r
s
M
a
p
S
e
t
s
(
h
N
o
r
m
,
A
N
,

and
T

(h
T
e
s
t);generate

subm
atrices

forthe
t
r
a
i
n
B
i
n
a
r
y
S
e
t
)
;

anom
aly

m
atrix

(csv
file)so

that
a
n
T
r
a
i
n

and
a
n
T
e
s
t

are
arrays

forthe
docum

entsubsets
R

and
T

,respectively.

5
C

lusterthe
colum

ns
of

H
corresponding

to
docum

ents
h
C
l
u
s
=
a
s
r
s
C
l
u
s
(
h
T
r
a
i
n
,
K
)
;

in
the

training
set

R
by

know
n

anom
alies

(labels).

6
Sum

the
num

berofdocum
ents

associated
w

ith
each

h
C
l
u
s
A
n
o
m
=

anom
aly

perN
M

F
feature

(k
ofthem

);the
(i,j)entry

a
s
r
s
A
n
o
m
C
l
u
s
(
h
C
l
u
s
,
a
n
T
r
a
i
n
,
K
)
;

ofthe
outputarray

h
C
l
u
s
A
n
o
m

specifies
the

num
ber

ofanom
aly/label

j
docum

ents
represented

by
feature

i.

11 Nonnegative Matrix Factorization 209

Ta
bl

e
11

.2
.N

M
F-

ba
se

d
cl

as
si

fie
rf

or
A

SR
S

do
cu

m
en

ts
w

ith
co

rr
es

po
nd

in
g

M
A

T
L

A
B

R ©
fu

nc
tio

ns
:s

te
ps

7–
10

St
ep

D
es

cr
ip

tio
n

M
AT

L
A

B
R ©

fu
nc

tio
n

ca
ll

7
Fo

re
ac

h
do

cu
m

en
ti

n
su

bs
et

T
,p

ro
du

ce
a

sc
or

e
h
R
e
s
u
l
t
s
=
a
s
r
s
T
e
s
t
i
n
g
(
h
T
e
s
t
,
h
C
l
u
s
,

(o
rp

ro
ba

bi
lit

y)
th

at
th

e
do

cu
m

en
ti

s
re

le
va

nt
to

ea
ch

h
C
l
u
s
A
n
o
m
,
K
)
;

an
om

al
y;

lo
op

ov
er

th
e

nu
m

be
ro

fN
M

F
fe

at
ur

es
(k

of
th

em
)u

si
ng

th
e

co
lu

m
ns

of
th

e
h
T
e
s
t

an
d
h
C
l
u
s

ar
ra

ys
an

d
us

e
en

tr
ie

s
of
h
T
e
s
t

as
w

ei
gh

ts
on

th
e

re
la

tiv
e

fr
eq

ue
nc

y
of

an
y

an
om

al
y

fo
un

d
in

th
e

cu
rr

en
tf

ea
tu

re
.

8
U

si
ng

α
,p

ro
du

ce
th

e
re

le
va

nc
e/

ta
rg

et
sc

or
e

t i
j

[
p
r
e
d
i
c
t
i
o
n
,
c
o
n
f
i
d
e
n
c
e
]
=

fo
r(

do
cu

m
en

ti
,a

no
m

al
y

j)
pa

ir
s

us
in

g
th

e
ar

ra
y

a
s
r
s
C
o
m
p
u
t
e
P
C
(
h
R
e
s
u
l
t
s
,
A
L
P
H
A
)
;

h
R
e
s
u
l
t
s

;t
he

sc
or

e
w

ill
yi

el
d

a
po

si
tiv

e
pr

ed
ic

tio
n

if
t i

j
>

ρ
i
×

(1
−

α
),

w
he

re
ρ

i
=

m
a
x
(H

T i
),

i.e
.,

th
e

m
ax

im
um

el
em

en
to

ft
he

ro
w

of
h
R
e
s
u
l
t
s

co
rr

es
po

nd
in

g
to

do
cu

m
en

ti
;e

nt
ri

es
of

th
e

ou
tp

ut
ar

ra
y

p
r
e
d
i
c
t
i
o
n

ar
e

ei
th

er
+

1
or
−

1
to

re
fle

ct
po

si
tiv

e
or

ne
ga

tiv
e

pr
ed

ic
tio

ns
,r

es
pe

ct
iv

el
y;

th
e
c
o
n
f
i
d
e
n
c
e

ar
ra

y
co

nt
ai

ns
th

e
as

so
ci

at
ed

ta
rg

et
va

lu
es

t i
j
.

9
Pr

od
uc

e
a

co
m

po
ne

nt
-w

is
e

m
at

ri
x

of
pr

ed
ic

tio
ns

(p
ij

)
[
a
n
s
w
e
r
s
,
t
e
s
t
R
e
s
u
l
t
s
,

tim
es

co
nfi

de
nc

es
(t

ij
)i

n
th

e
ou

tp
ut

ar
ra

y
a
n
s
w
e
r
s

w
r
o
n
g
A
n
s
w
e
r
s
]
=
a
s
r
s
C
o
m
p
u
t
e
A
n
R
(

th
at

ca
n

be
vi

su
al

iz
ed

;c
re

at
e

ou
tp

ut
ar

ra
ys

of
p
r
e
d
i
c
t
i
o
n
,
c
o
n
f
i
d
e
n
c
e
,
a
n
T
e
s
t
)
;

co
rr

ec
t(
t
e
s
t
R
e
s
u
l
t
s

)a
nd

in
co

rr
ec

t(
w
r
o
n
g
A
n
s
w
e
r
s

)
an

sw
er

s
w

he
re

by
ro

w
s

co
rr

es
po

nd
to

do
cu

m
en

ts
an

d
co

lu
m

ns
co

rr
es

po
nd

to
an

om
al

ie
s

(o
rl

ab
el

s)
.

10
G

en
er

at
e

R
O

C
cu

rv
es

(a
nd

ar
ea

s
un

de
rn

ea
th

)p
er

f
o
r
i
=
1
:
N

an
om

al
y

an
d

ev
al

ua
te

th
e

co
nt

es
tc

os
tf

un
ct

io
n,

an
d

[
t
p
,
f
p
]
=
r
o
c
(
a
n
T
e
s
t
(
:
,
i
)
,

fig
ur

e
of

m
er

it
sc

or
e

h
R
e
s
u
l
t
s
(
:
,
i
)
)
;

r
o
c
a
r
e
a
(
i
)
=
a
u
r
o
c
(
t
p
,
f
p
)
;

e
n
d
;

[
c
o
s
t
,
f
o
m
]
=
a
s
r
s
C
o
s
t
(
a
n
T
e
s
t
,

p
r
e
d
i
c
t
i
o
n
,
c
o
n
f
i
d
e
n
c
e
,
r
o
c
a
r
e
a
’
)
;

210 E.G. Allan, M.R. Horvath, C.V. Kopek, B.T. Lamb et al.

set to 1.0. The other two parameters for the NMF classifier were not changed, that
is, α = 0.40 and δ = 0.30 (see Section 11.4.1). Using five iterations and k = 40
features for the multiplicative update algorithm mentioned in Section 11.2, a cost of
Q = 1.27 (see Eq. 11.2) was reported by contest officials for the NMF classifier
in mapping each of the 7,077 test documents to any of the 22 anomaly categories
was 1.27 (a second place finish). Had a tie occurred among any of the cost function
values generated by contest entries, the FOM score would have been used to break
it. For the NMF classifier, the average contest FOM score was 1.22 (slightly lower
than what was observed in the preliminary testing phase).

11.4.3 ROC Curves

Figures 11.1 through 11.5 contain the receiver operating characteristic (ROC) curves
for the NMF classifier, when applied to selected training documents in the prelimi-
nary testing phase and to the unclassified test documents in the text mining compe-
tition (see Section 11.4.2). A comparison of graphs for the preliminary testing and
the contest entry show similar performance for a majority of the 22 anomaly classes.
Some of the best curves of the true-positive rate (TPR) versus the false-positive rate
(FPR) were obtained for the following anomalies: 4, 5, 7, 11, 14, 12, 21, and 22. The
worst predictions were obviously for anomalies 2, 10, and 13. In the cases of anoma-
lies 7, 11, 15, and 18, the performance obtained in the contest entry (as measured by
the area under the respective ROC curves) was slightly better than that obtained in
the preliminary testing.

Thirteen (of the 22) event types (or anomaly descriptions) listed in Table 11.3
were obtained from the Distributed National ASAP Archive (DNAA) maintained by
the University of Texas Human Factors Research Project.4 The generality of topics
described in the ASRS reports of the Noncompliance (anomaly 2), Uncommanded
(loss of control) (anomaly 10), and Weather Issue (anomaly 13) categories greatly
contributed to the poorer performance of the NMF classifier. Additional experiments
with a larger numbers of features (k > 40) may produce an NMF model that would
better capture the diversity of contexts described by those events.

11.5 Summary and Future Work

Nonnegative matrix factorization (NMF) is a viable alternative for automated doc-
ument classification problems. As the volume and heterogeneity of documentation
continues to grow, the ability to discern common themes and contexts can be prob-
lematic. This study demonstrated how NMF can be used to both learn and assign
(anomaly) labels for documents from the ASRS. As this study was done as part of a
text mining competition and a project in a data mining course taught at Wake Forest
University, there is room for improvement in both the performance and interpretabil-
ity of the NMF. In particular, the summarization of anomalies (document classes)
4 See http://homepage.psy.utexas.edu/HomePage/Group/HelmreichLAB.

11 Nonnegative Matrix Factorization 211

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

1
2
3
4
5

(a) Preliminary training

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

1
2
3
4
5

(b) Contest performance

Fig. 11.1. ROC curves for the NSF classifier applied to anomalies (labels) 1 through 5.

212 E.G. Allan, M.R. Horvath, C.V. Kopek, B.T. Lamb et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

6
7
8
9
10

(a) Preliminary training

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

6
7
8
9
10

(b) Contest performance

Fig. 11.2. ROC curves for the NSF classifier applied to anomalies (labels) 6 through 10.

11 Nonnegative Matrix Factorization 213

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

11
12
13
14
15

(a) Preliminary training

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

11
12
13
14
15

(b) Contest performance

Fig. 11.3. ROC curves for the NSF classifier applied to anomalies (labels) 11 through 15.

214 E.G. Allan, M.R. Horvath, C.V. Kopek, B.T. Lamb et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

16
17
18
19
20

(a) Preliminary training

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

16
17
18
19
20

(b) Contest performance

Fig. 11.4. ROC curves for the NSF classifier applied to anomalies (labels) 16 through 20.

11 Nonnegative Matrix Factorization 215

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

21

22

(a) Preliminary training

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

21

22

(b) Contest performance

Fig. 11.5. ROC curves for the NSF classifier applied to anomalies (labels) 21 and 22 in the
TRAINCATEGORYMATRIX.CSV file).

216 E.G. Allan, M.R. Horvath, C.V. Kopek, B.T. Lamb et al.

Table 11.3. ROC areas versus DNAA event types for selected anomalies

ROC area
Anomaly DNAA event type Training Contest

22 Security concern/threat .9040 .8925
5 Incursion (collision hazard) .8977 .8716
4 Excursion (loss of control) .8296 .7159

21 Illness/injury event .8201 .8172
12 Traffic proximity event .7954 .7751
7 Altitude deviation .7931 .8085

15 Approach/arrival problems .7515 .6724
18 Aircraft damage/encounter .7250 .7261
11 Terrain proximity event .7234 .7575
9 Speed deviation .7060 .6893

10 Uncommanded (loss of control) .6784 .6504
13 Weather issue .6287 .6018
2 Noncompliance (policy/proc.) .6009 .5551

using k NMF features needs further work. Alternatives to the filtering of elements of
the coefficient matrix H (based on the parameter δ) could be the use of sparsity or
smoothing constraints (see [BBL+07]) on either (or both) factors W and H.

Acknowledgment

This research was sponsored by the National Aeronautics and Space Administration
(NASA) Ames Research Center under contract No. 07024004.

References

[BBL+07] M.W. Berry, M. Browne, A.N. Langville, V.P. Pauca, and R.J. Plemmons. Algo-
rithms and applications for approximate nonnegative matrix factorization. Compu-
tational Statistics & Data Analysis, 52(1):155–173, 2007.

[BG05] C. Boutsidis and E. Gallopoulos. On SVD-based initialization for nonnegative ma-
trix factorization. Technical Report HPCLAB-SCG-6/08-05, University of Patras,
Patras, Greece, 2005.

[CZA06] A. Cichocki, R. Zdunek, and S. Amari. Csiszár’s divergences for non-negative ma-
trix factorization: family of new algorithms. In Proc. 6th International Conference
on Independent Component Analysis and Blind Signal Separation, Springer, New
York, 2006.

[DS05] I.S. Dhillon and S. Sra. Generalized nonnegative matrix approximations with Breg-
man divergences. In Proceeding of the Neural Information Processing Systems
(NIPS) Conference, Vancouver, B.C., 2005.

[GBV01] D. Guillamet, M. Bressan, and J. Vitria. A weighted non-negative matrix factoriza-
tion for local representations. In Proc. 2001 IEEE Computer Society Conference on

11 Nonnegative Matrix Factorization 217

Computer Vision and Pattern Recognition, volume 1, pages 942–947, IEEE, Los
Alamitos, CA, 2001.

[GWB03] J.T. Giles, L. Wo, and M.W. Berry. GTP (General Text Parser) software for text
mining. In H. Bozdogan, editor, Software for Text Mining, in Statistical Data Min-
ing and Knowledge Discovery, pages 455–471. CRC Press, Boca Raton, FL, 2003.

[GZ05] E.F. Gonzalez and Y. Zhang. Accelerating the Lee-Seung Algorithm for Nonneg-
ative Matrix Factorization. Technical Report TR-05-02, Rice University, March
2005.

[HB06] A. B. Hamza and D. Brady. Reconstruction of reflectance spectra using ro-
bust non-negative matrix factorization. IEEE Transactions on Signal Processing,
54(9):3637–3642, 2006.

[Lin05a] C.-J. Lin. On the Convergence of Multiplicative Update Algorithms for Non-
negative Matrix Factorization. Technical Report Information and Support Services
Technical Report, Department of Computer Science, National Taiwan University,
2005.

[Lin05b] C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Tech-
nical Report Information and Support Services Technical Report ISSTECH-95-
013, Department of Computer Science, National Taiwan University, 2005.

[LS99] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factor-
ization. Nature, 401:788–791, 1999.

[LS01] D. Lee and H. Seung. Algorithms for non-negative matrix factorization. Advances
in Neural Information Processing Systems, 13:556–562, 2001.

[Paa97] P. Paatero. Least squares formulation of robust non-negative factor analysis.
Chemometrics and Intelligent Laboratory Systems, 37:23–35, 1997.

[Paa99] P. Paatero. The multilinear engine—a table-driven least squares program for solv-
ing multilinear problems, including the n-way parallel factor analysis model. Jour-
nal of Computational and Graphical Statistics, 8(4):1–35, 1999.

[PPA07] V.P. Pauca, R.J. Plemmons, and K. Abercromby. Nonnegative Matrix Factorization
Methods with Physical Constraints for Spectral Unmixing, 2007. In preparation.

[PT94] P. Paatero and U. Tapper. Positive matrix factorization: a non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics, 5:111–
126, 1994.

[WCD03] S. Wild, J. Curry, and A. Dougherty. Motivating non-negative matrix fac-
torizations. In Proceedings of the Eighth SIAM Conference on Applied Lin-
ear Algebra, SIAM, Philadelphia, 2003. Available from World Wide Web:
http://www.siam.org/meetings/la03/proceedings.

[WJHT04] Y. Wang, Y. Jiar, C. Hu, and M. Turk. Fisher non-negative matrix factorization for
learning local features. In Asian Conference on Computer Vision, Korea, January
27–30, 2004.

[ZC06] R. Zdunek and A. Cichocki. Non-negative matrix factorization with quasi-newton
optimization. In Proc. Eighth International Conference on Artificial Intelligence
and Soft Computing, ICAISC, Zakopane, Poland, June 25–29, 2006.

12

Document Representation and Quality of Text: An
Analysis

Mostafa Keikha, Narjes Sharif Razavian, Farhad Oroumchian, and
Hassan Seyed Razi

Overview

There are three factors involved in text classification: the classification model, the
similarity measure, and the document representation. In this chapter, we will focus
on document representation and demonstrate that the choice of document representa-
tion has a profound impact on the quality of the classification. We will also show that
the text quality affects the choice of document representation. In our experiments we
have used the centroid-based classification, which is a simple and robust text classi-
fication scheme. We will compare four different types of document representation:
N-grams, single terms, phrases, and a logic-based document representation called
RDR. The N-gram representation is a string-based representation with no linguis-
tic processing. The single-term approach is based on words with minimum linguistic
processing. The phrase approach is based on linguistically formed phrases and single
words. The RDR is based on linguistic processing and representing documents as a
set of logical predicates. Our experiments on many text collections yielded similar re-
sults. Here, we base our arguments on experiments conducted on Reuters-21578 and
contest (ASRS) collection (see Appendix). We show that RDR, the more complex
representation, produces more effective classification on Reuters-21578, followed by
the phrase approach. However, on the ASRS collection, which contains many syntac-
tic errors (noise), the 5-gram approach outperforms all other methods by 13%. That
is because the 5-gram approach is a robust method in presence of noise. The more
complex models produce better classification results, but since they are dependent
on natural language processing (NLP) techniques, they are vulnerable to noise.

12.1 Introduction

Text classification is the task of assigning one or more classes to a passage from
a predefined set of classes, and it can be done in different ways. The distribution
of the class members among the training and test dataset is an important factor in
determining the success of the classification algorithm.

220 M. Keikha, N. Sharif Razavian, F. Oroumchian, H. Seyed Razi

Most of the classification algorithms work based on a defined distance between
two documents, and this distance can also be computed based on different features.
The choice of the feature set has a profound effect on the quality of the classification.
Different document representation methods create different types of features.

There are many different document representations. The simplest is the N -gram
where words are represented as strings of length N . The most popular and effec-
tive representation is single words, where documents are represented by their words.
Most often the stem of the words is used instead of the words themselves. Stem-
ming the words increases the possibility of matches between the documents and the
queries or other documents. A little more sophisticated approach involves extracting
statistical or linguistic phrases and representing documents with their stemmed sin-
gle words and phrases. All the above approaches assume term independence, that is,
the relevance of one term does not provide any clues for relevance of other terms.

There are document representation models that do not assume term independence
and are able to represent term relationships. One such approach is logical imaging
[CvR95]. Other systems such as DRLINK have complex document representation
where documents are represented by several features that were extracted and repre-
sented independent of each other. For example, one of many features of the DRLINK
system [LPY94] is called subject field coder (SFC). The SFCs were codes assigned
to topics. The documents were processed using NLP techniques, and then several
SFC codes were assigned to each document. SFCs also were matched against SFCs
in other documents and queries and the result was combined with the results of other
document features to produce the final similarity weight. Some systems use logic to
represent the relationships among the words in the text. One such system is PLIR
[OO96]. PLIR uses NLP-based methods to discover the relationship among differ-
ent words or phrases in the collection. Then it uses a logical form to represent a
document. This logical representation is called rich document representation (RDR).
In this chapter we want to show that in the context of document classification, the
quality of the representation is of utmost importance. Also we want to demonstrate
that degrading the quality of text affects the finer grain representations more than the
simple and crude representations.

In Section 12.2 we will describe the vector space model with more detail. Sec-
tion 12.3 describes our classification approach, and in Section 12.4 the document
representation approaches will be discussed along with the distance and similarity
measures. Section 12.5 describes the experimental results, and Section 12.6 presents
the conclusion of the obtained results.

12.2 Vector Space Model

The vector space is one of the most common models for representing documents. In
this model, each document is represented as a vector of terms. The terms are the fea-
tures that best characterizes the document and can be anything from a string of length
N , single words, phrases, or any set of concepts or logical predicates. The VSM does
not keep any information regarding the order in which the terms occur. Often, before

12 Document Representation and Quality of Text: An Analysis 221

processing the terms, stop-words, terms with little discriminatory power, are elimi-
nated. Also it is common to use the stems of the words instead of the actual words
themselves.

All the terms in the dataset define a “space” in which each term represents one
“dimension.” For distinguishing a document from the other documents, numeric val-
ues are assigned to terms in order to show the importance of that term for that docu-
ment.

The base weighting schema in vector space model uses two main factors: the
frequency of a term in the document or term frequency (tf), and the inverse of the
number of documents containing that term or inverse document frequency (idf). The
tf factor indicates the importance of a term in the document and is a document-
specific statistic. This parameter is usually normalized. The idf factor is a global
statistic and measures how widely a term is distributed over the collection. There are
many functions for calculating tf and idf factors described in [SB88].

Another element in weighting schema is the normalization factor, which usu-
ally tries to diminish the effect of the length of the document in weighting. We will
explain our normalization factor in the weighting subsection [Gre00].

12.3 Text Classification

There is a wide range of classification methods available for the task of text classi-
fication. The support vector machines (SVM) method [YL99] is based on a learning
approach to solve the two-class pattern recognition problems. The method is defined
over a vector space where the problem is to find a decision surface that best sepa-
rates the documents into two classes. The k-nearest neighbor (kNN) method, on the
other hand, classifies documents according to the voting of its k nearest neighbor
documents, which can be discovered using a distance measure between documents
[YL99]. The neural network has also been used in classification tasks. However, Han
and Karypis showed that the two methods of SVM and kNN significantly outperform
the neural network approach when the number of the positive training instances per
category is small [HK00]. Another method is the centroid-based text classification
[HK00], which is a very simple yet powerful method that outperforms other methods
on a wide range of datasets. In this method, given a new document, D, which is to be
labeled, the system computes the similarity of D to the centroid of each of the exist-
ing classes. The centroid of a class is defined as the average of the document vectors
of that class. The following formula shows how the centroid of a class is calculated:

Ck =

∑
Di∈Classk

−→
Di

|Classk|
(12.1)

where Ck is the kth centroid, Di is the vector representation of the ith document,
and Classk is the collection of documents that are members of the kth class. Any
document that is to be classified is compared with all of the centroids of the clusters,
and receives a similarity value for each of the centroids:

222 M. Keikha, N. Sharif Razavian, F. Oroumchian, H. Seyed Razi

Sim(
−−−→
Dnew,

−→
Ci) =

−−−→
Dnew.

−→
Ci (12.2)

After comparing with all of the centroids, the system computes a score of mem-
bership for that document in each one of the classes. These scores form the category
vector for that document

A threshold could then be used in calculation of the final categories. It is notice-
able that working with category vectors enables the method to deal with multiple
categories for a document.

12.4 Document Representation Approaches

Document representation is the method of representing documents in a system. There
are many models for representing documents, which differ on the assumptions they
make about the words and documents. The two common assumptions are term inde-
pendence and document independence.

Term independence states that from the relevance of a term we cannot make any
statement about the relevance of other terms. Term independence assumes that terms
in documents of a collection have no relationship with each other. Document inde-
pendence states that the relevance of a document has no effect on the relevance of
the other documents. The validity of these assumptions or lack of it has nothing to
do with their usefulness. The simpler document representation models, by accepting
both of the above assumptions, treat documents as a bag of terms or a set of indepen-
dent features. The more complex models may accept only one or none of the above
assumptions. For example, systems that use a thesaurus accept only limited term
independence where the only accepted relationships between terms are thesaurus re-
lations such as similarity or dissimilarity. IR systems that use clustering in grouping
their output do not subscribe to document independence; therefore, they try to group
the like documents in to one group. Logic-based systems such as GRANT [KC88] do
not subscribe to neither of the assumptions. The GRANT system follows a semantic
network approach where all the terms and documents are connected to each other
through a variety of relationships.

In this chapter we investigate two questions. First, is there a relationship between
the complexity of the representation and the quality of the classification? Second, is
there a relationship between the quality of text and the performance of the document
representations? To answer these questions we will look at four different document
representations with different levels of complexity.

However, the way a system uses its document representation is also an issue. That
is, two systems with identical document representations but with different matching
techniques will perform differently. For example, RDR is a logical representation
that does not subscribe to either of the independence assumptions. The PLIR sys-
tem utilizes RDR as a document representation model. PLIR uses reasoning in order
to estimate the similarity of queries to documents or documents to each other. The
power of PLIR, which normally outperforms the best vector space models in experi-
mental conditions, comes from both its document representation and its inferences.

12 Document Representation and Quality of Text: An Analysis 223

To isolate the effect of document representation, we will apply the same weight-
ing and matching techniques to different document representation models. For this
purpose we have selected the VSM because of its simplicity. We will demonstrate
the performance of four document representation models—N -grams, single words,
single words plus phrases, and RDR—in the presence and absence of noise to show
how noise affects quality and what can be done.

12.4.1 N -Grams

In the N -gram representation approach, the text is broken down into strings of n
consecutive characters with or without regard to word length or word boundaries
[Gre00].

Zamora uses trigram analysis for spelling error detection [ZPZ81]. Damashek
uses N -grams of length 5 and 6 for clustering of text by language and topic. He uses
N = 5 for English and N = 6 for Japanese [Dam95]. Some authors [Sue79] draw
N -grams from all the words in a document but use only N -grams wholly within a
single word. Others [Dam95] use N -grams that cross word boundaries; that is, an
N -gram string could start within one word and end in another word, and include the
space characters that separate consecutive words.

A pure N -gram analysis does not use language-specific or semantic information.
Stemming, stop-word removal, syntactically based phrase detection, thesaurus ex-
pansion, etc., are ignored by this method. So, theoretically, the performance of this
approach should be lower than methods that make effective use of the language-
specific clues. However, it is a very simple and fast method, and can be a very ef-
fective in situations where the language of the document is not previously known, or
when the dataset contains textual errors. In some languages such as Persian, N -gram
methods have comparable performance to that of unstemmed single words [AHO07].
Authors of [Dam95] and [PN96] show that the performance of an N -gram system
is remarkably resistant to textual errors, for example, spelling errors, typos, errors
associated with optical character recognition, etc. In our experiments, we used 3, 4,
and 5 as N and didn’t cross the word boundaries in the creation of the N -grams.
We used words without stemming and did not remove stop words. When the n in
the N -gram method increases, the method slowly loses its N -gram characteristic,
and gains more of the characteristics of the single word representation method. For
a special dataset such as the SIAM text mining competition dataset, we noticed that
the 5-gram approach results in the best performance as explained below.

12.4.2 Single-word representation

Single words are the most common way by which to represent documents. In this
method, each document is represented as a vector of weights of its distinct words.

This method, while quite simple, is very powerful for indexing documents
[Lee94]. However, some characteristics of the documents may affect the perfor-
mance of this method. Spelling errors, for instance, cause the incorrect weights to
be assigned to words. The vector space model and the TFIDF weighting are very

224 M. Keikha, N. Sharif Razavian, F. Oroumchian, H. Seyed Razi

sensitive to weights. In these situations, errors will result in false weights [BDO94].
Preprocessing algorithms like error detection and correction can be helpful in these
situations.

12.4.3 Stemmed Single-Word Representation

Stemming is a method to improve the quality of single-word indexing by grouping
words that have the same stem. The most common stemming algorithm for English
language is the Porter algorithm [Por80]. This algorithm removes the common post-
fixes in different steps, and its simplicity and high effectiveness have caused it to
be used in many applications requiring stemming. In our experiments we used this
algorithm for stemming.

12.4.4 Phrases

Many systems index phrases along with single words. There are two ways to form
phrases. First is statistical, where co-occurrence information is used in some way to
group together words that co-occur more than usual. Second, is syntactical, where
linguistic information is used to form the phrases. For example, an adjective and a
noun together form a phrase. Normally the length of statistical phrases is two. But in
systems that use linguistic phrases the length of the phrases is one the system param-
eters. It could be two, three, or more. There is little value in using statistical phrases.
However, syntactical phrases are more widely used in conjunction with stemmed
words in order to improve the precision of the system.

12.4.5 Rich Document Representation (RDR)

Another approach in document indexing is rich document representation. In this
method, the document is represented by a set of logical terms and statements. These
logical terms and statements describe the relationships that have been found in the
text with a logical notation close to the multivalued logic of Michalski. In [JO04] it
has been reported that this kind of document indexing has improved the quality of
the document clustering.

The process of producing these logical forms is as follows: First, the text is tagged
by a part-of-speech (POS) tagger. Then a rule-based extraction process is applied to
the output of the part of speech tagger. Matched rules indicate the existence of a
special relation in the text. For example, a proposition such as “for” in the sentence
fragment such as “. . .operating systems for personal computers. . .” suggests a rela-
tionship between two noun phrases “operating systems” and “personal computers”
[RKOR06]. Then, these relations are represented with a format similar to that of
multivalued logic as used in the theory of human plausible reasoning; that is, op-
erating system(personal computers) [CM89]. In a similar way, a logical statement
such as operating system (personal computers) = Windows XP can be formed from
a sentence fragment such as “. . .Windows XP is a new operating system for personal
computers. . ..”

12 Document Representation and Quality of Text: An Analysis 225

Rich document representation represents documents by their stemmed single
terms, stemmed phrases, logical terms, and logical statements. This method pro-
vides more semantic representation for a document. PLIR system uses the RDR and
combines all the documents’ representations into a single semantic network. By do-
ing this, the information contained in documents complements other information and
creates a semantic space. PLIR applies its inferences in this semantic space to infer
relevance or closeness of documents to concepts or other documents [OO96]. The
performance of this method depends on the power of the rules and the characteristics
of the dataset. Noisy text usually misleads the part of speech tagger and the pattern
matching rules, and thus reduces the performance of the method. Also, the ambigu-
ities of the natural language text, for example, the existence of anaphora, make this
method susceptible to missing some of the relations. A higher level of text prepro-
cessing in the discourse or pragmatic level can lead to a better performance of this
representation model.

12.5 Experiments

Two set of experiments have been performed. In the first set, we used the Reuters-
21578 test collection and demonstrated that RDR has better results than N -grams,
single words, and single words plus phrases. In the second set of experiments, we
used the contest text collection (ASRS documents), and ran our tests with 3-gram,
4-gram, and 5-gram, and single word, stemmed single word, and RDR document
representations, and found out that among these experiments 5-gram was better than
the other representation methods. The main difference between the first and second
set of experiments is the presence of noise in the SIAM collection. In all experiments
we used centroid-based text classification as our classification method.

12.5.1 Experiment 1: Reuters-21578 Collection

In the first part of the experiments we used the Reuters-21578 collection. To divide
the collection into training and test sets, we used the ModLewis split. This leads to a
training set consisting of 13,625 stories and a test set consisting of 6188 stories and
135 different categories.

We created four different representations for each document including 5-gram,
single term, and phrase and logical representation. Using these representations, four
different similarities for each document and category were computed. Here we spec-
ified one category for each document, so the category with the highest similarity will
be assigned as the category of that document.

All of the experiments in this part have been done on stemmed words, based on
the Porter stemming algorithm. Stop words were also removed using Van Rijsber-
gen’s list for removing stop words [Rij79]. In the weighting step, we used the same
weighting schema for both training and test documents, namely Ltu.Ltu weight-
ing schema [Gre00], which means we used the following formulas for tf, idf , and
normalization factor (nf):

226 M. Keikha, N. Sharif Razavian, F. Oroumchian, H. Seyed Razi

tf =
1 + log(termfreq)

1 + log(average termfreq)
(12.3)

idf = ln
N

n
(12.4)

nf =
1

(slope ∗ # of unique terms) + (1− slope) ∗ pivot
(12.5)

pivot =
(# of doc unique terms)

avg(# of doc unique terms)
(12.6)

where:
termfreq is the frequency of term in the document;
N is the number of all documents in the collection;
n is the number of documents that contain that term;
of doc unique terms is the number of unique terms in the specified document;
avg(# of doc unique terms) is the average number of unique terms in all docu-
ments.

Multiplication of these three parameters for each term is the weight of that term
in the specified document. We did our experiments with two values for slope (0.25
and 0.75). Table 12.1 shows the accuracy for each indexing method. The accuracy
is defined as

accuracy =
TP

TP + FP
(12.7)

where:
TP is True Positive, which is the number of cases where the correct classification
has been identified;
FP is False Positive, which is the number of cases where the category has been
incorrectly identified.

Table 12.1 shows the performance of each method in its simplest form. Each
run uses only one type of token in its indexes. For example, Run1 reports the per-
formance of stemmed single words, Run3 uses only stemmed phrases, and Run5
contains only stemmed logical terms. Based on this table, the single-term indexing
method has the best accuracy.

Of course, more complex document representations include the simpler forms
also. Table 12.2 depicts the real performance of more complex models. Run9 shows
the performance of phrases when the document representation contains stemmed sin-
gle words and phrases. Run10 shows the performance of the RDR method, which
contains stemmed single words, stemmed phrases, and logical terms. For comput-
ing the weights for Single+Phrase and RDR, the weights of the simpler forms were
summed to produce the final similarity. The category assignment stage was repeated
for these models with these new similarities. Because the slope of 0.25 produced
the best results in Table 12.1 in the combination stage, only the similarity values
calculated with the slope of 0.25 were used for summation.

12 Document Representation and Quality of Text: An Analysis 227

Table 12.1. Accuracy of three different indexing methods

Run.ID Indexing method Slope Accuracy
1 Single 0.25 56.3
2 Single 0.75 56.0
3 Phrase 0.25 53.9
4 Phrase 0.75 53.9
5 Logic 0.25 30.9
6 Logic 0.75 30.9
7 5-Gram 0.25 47.8
8 5-Gram 0.75 47.8

Table 12.2. Accuracy of combined methods

Run.ID Combined methods Combined run.IDs Accuracy
9 Single+Phrase (1),(2) 59.9
10 RDR (1),(2),(3) 63.2

Table 12.1 demonstrates that the accuracy of the RDR method is 6.9% better than
the accuracy of the single-term indexing and 15.4% better than 5-gram and about
3.3% better than phrases. It should be noted that when more complex combinatoric
formulas are used for combining the simple similarity values, the difference between
the Single+Phrase model and RDR could be as high as 7% or 9%.

This experiment demonstrates that the more complex a document representation,
the better the performance of the categorization. In this experiment, single words out-
performs 5-grams, Single+Phrase outperforms single words, and the RDR is better
than phrases.

12.5.2 Experiment 2: SIAM Text Mining Contest Collection

In this part of the experiment we used the contest (ASRS) test collection. We in-
dexed the first 20,000 documents of training file with six different indexing schemes
discussed in Section 12.3; 3-gram, 4-gram, and 5-gram, and single-word, stemmed-
single-word, and RDR.

For indexing each document, the frequency of each term in that document
was counted as the term frequency, or termfreq of that term, and the average of
termfreq for all document terms was calculated. The final weight of a term in a
document was then calculated as

1 + log(termfreq)
1 + log(average termfreq)

(12.8)

After indexing all the documents, we also calculated the inverse document frequency
(idf) in a separate table for each of the terms. Using idf can compensate for the lack
of stop-word removal, because stop-words receive a very low idf automatically. We

228 M. Keikha, N. Sharif Razavian, F. Oroumchian, H. Seyed Razi

then updated our weight column and multiplied the idf factor to the existing tf
factor.

With the arrival of each new document, the same indexing was used to create
the new document vector. Each document vector with the above weighting was then
multiplied to the centroid vector of each class. To normalize the similarity measure,
cosine normalization was used. In cosine normalization, we divided the result of the
dot-product of two vectors by their lengths. This way, we are actually computing the
cosine of the angle between two vectors.

We used 1519 documents of the training data to test our classification. Based on
the real categories of the documents for each of the indexing methods, we calculated
the best thresholds that maximized the fraction of correct labels to incorrect labels.

Because of the differences in the distribution of the class members, we calcu-
lated the best thresholds for each of the 22 categories separately. For doing so, first
the Maxi, the maximum of the scores of all test documents in the ith class was
computed. Then we increased the threshold from 0 to Maxi in 10,000 steps, and the
calculated true-positive (TP), true-negative (TN), false-negative (FN), and false-
positive (FP) results based on that threshold. The best threshold was the one that
maximized the following formula:

TP + TN

FN + FP
. (12.9)

This helped the system to increase correct answers and decrease incorrect class as-
signments. Our initial test created the best thresholds, and we used those thresholds
to create the final categories of the contest test data.

Table 12.3 shows the accuracy calculated for each one of document represen-
tations. All the runs used the same weighting scheme and thresholds, and the only
difference is the document representation. The result obtained in this collection is
contrary to the result obtained from the Reuters-21578 collection. In the ASRS col-
lection the more complex models are the least effective and the simplest ones are
the most effective ones. In this collection, the 4-gram and 5-gram models have the
best performance. The single-term models (with and without stemming) are behind
by almost 13 points. The RDR model, which is the most complex among them, is
15 points behind and even worse than single terms without stemming. The main dif-
ference between these two sets of experiments is the presence of noise. The ASRS
collection has many spelling errors, and that is why the models that are prone to
spelling errors are not affected. On the other hand, the models that are heavily de-
pendent on POS tagging, information extraction, and other NLP methods for pro-
cessing text and creating representations are very vulnerable to textual variations.
The NASA-sponsored text mining contest uses the receiver operating characteristic
(ROC) curves for measuring the quality of the classification. These curves are two-
dimensional measures of classification performance, and show how the number of
correctly classified positive examples varies with the number of incorrectly classified
negative examples. The authors in [DG06] show that for a classification method, the
ROC curve and the classic precision/recall curve have a deep connection, and when

12 Document Representation and Quality of Text: An Analysis 229

Table 12.3. Accuracy of each method for best threshold value

Run.ID Indexing method Accuracy
11 Single 52.3
12 Stemmed Single 53.9
13 Single+Phrase 53.3
14 RDR 51.4
15 5-Gram 66.7
16 4-Gram 65.6
17 3-Gram 59.5

a classifier dominates in the ROC curve, it will dominate in the precision/recall curve
too, and vice versa.

In ROC space, one plots the false-positive rate (FPR) on the x-axis and the true-
positive rate (TPR) on the y-axis. The FPR measures the fraction of the negative
examples that are misclassified as positive. The TPR measures the fraction of positive
examples that are correctly labeled. Based on this observation, we compared our
categorization results against the real values, and drew the ROC curve for all of
them, which can be seen in Figures 12.1 and 12.2.

Here also it is evident that the 5-gram model is the one that dominates the ROC
curve. The area under the ROC curve is a standard measure of performance for clas-
sifier algorithms [DG06], and that means that the 5-gram model is the best document
representation method for this noisy dataset.

12.6 Conclusion

There are three factors in text categorization: categorization model, similarity mea-
sure, and document representation. There are many alternatives for each one of these
factors. In this chapter we focused on the document representation model and ex-
amined four different document representation techniques with different levels of
complexity. The simplest of all is the N -gram model where the words are broken
down into overlapping strings of length N . The most popular model is the single-
term approach where each word is treated as a term independent of any other term.
It is common to use word stems instead of their original surface form in order to in-
crease recall. A little more complicated model uses phrases (mostly syntactic) along
with single terms. There are many more complex approaches to document represen-
tation. Here we used a logical approach called rich document representation (RDR),
which extracts the relationships between terms and represents them as predicates.
We have demonstrated that in the context of the classification, the better document
representation produces better classification. This is not completely the same as ad-
hoc information retrieval. Over the years it has been observed that many different
systems with different document representations exhibit similar performances in the
context of TREC conferences.

230 M. Keikha, N. Sharif Razavian, F. Oroumchian, H. Seyed Razi

Fig. 12.1. ROC curve for 5-gram, single-word, stemmed single-word, and RDR indexing

Fig. 12.2. Close-up of ROC curve of Figure 12.1

12 Document Representation and Quality of Text: An Analysis 231

We have also demonstrated that the noise, the textual variations, has a grave
effect on more complex document representations. We showed that on the SIAM
dataset, which contains many spelling errors, the best models are the simplest and
more robust ones.

In that context, the 5-gram approach dominated the other methods. The worst
approach was the RDR model, which is dependent on NLP techniques to extract and
represent the relationships. In the text mining contest (ASRS) dataset, our centroid
classification method with 5-gram document representation model shows significant
improvement over the Schapire’s and Singer’s BoosTexter approach as standard ap-
proaches.

In the context of document classification, the choice of document representation
should be taken seriously. It should be decided based on two factors: first, the amount
of the noise or syntactic variations in the text collection; second, the amount of time
and resources available. The simpler models require less processing, while the more
complicated models such as RDR require POS tagging and other NLP text processing
techniques. The NLP methods and tagging are time-consuming and heavy users of
resources.

Acknowledgments

This work is partially supported by the Iranian Communication Research Center
(ITRC) under contract number 500/12204.

References

[AHO07] A. AleAhmad, P. Hakimian, and F. Oroumchian. N-gram and local context analysis
for persian text retrieval. International Symposium on Signal Processing and its
Applications (ISSPA2007), 2007.

[BDO94] M.W. Berry, S.T. Dumais, and G.W. O’Brien. Using linear algebra for intelli-
gent information retrieval. Technical Report UT-CS-94-270, University of Ten-
nessee, 1994. Available from World Wide Web: citeseer.ist.psu.edu/
berry95using.html.

[CM89] A. Collins and R. Michalski. The logic of plausible reasoning: a core the-
ory. Cognitive Science, 13(1):1–49, 1989. Available from World Wide Web:
citeseer.ist.psu.edu/collins89logic.html.

[CvR95] F. Crestani and C.J. van Rijsbergen. Probability kinematics in information re-
trieval. In Proceedings of the Eighteenth Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 291–299,
ACM Press, New York, 1995.

[Dam95] M. Damashek. Gauging similarity with n-grams: language-independent catego-
rization of text. Science, 267(5199):843, 1995.

[DG06] J. Davis and M. Goadrich. The relationship between Precision-Recall and ROC
curves. Proceedings of the 23rd International Conference on Machine Learning,
pages 233–240, ACM Press, New York, 2006.

232 M. Keikha, N. Sharif Razavian, F. Oroumchian, H. Seyed Razi

[Gre00] E. Greengrass. Information Retrieval: A Survey. IR Report, 120600, 2000.
Available from World Wide Web: http://www.csee.umbc.edu/cadip/
readings/IR.report.120600.book.pdf.

[HK00] E.H. Han and G. Karypis. Centroid-based Document Classification: Analysis and
Experimental Results. Springer, New York, 2000.

[JO04] A. Jalali and F. Oroumchian. Rich document representation for document clus-
tering. In Coupling Approaches, Coupling Media and Coupling Languages for
Information Retrieval Avignon (Vaucluse), pages 800–808, RIAO, Paris, France,
2004.

[KC88] R. Kjeldsen and P.R. Cohen. The evolution and performance of the GRANT sys-
tem. IEEE Expert, pages 73–79, 1988.

[Lee94] J.H. Lee. Properties of extended Boolean models in information retrieval. Proceed-
ings of the 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 182–190, ACM Press, New York,
1994.

[LPY94] E.D. Liddy, W. Paik, and E.S. Yu. Text categorization for multiple users based
on semantic features from a machine-readable dictionary. ACM Transactions on
Information Systems (TOIS), 12(3):278–295, 1994.

[OO96] F. Oroumchian and R.N. Oddy. An application of plausible reasoning to informa-
tion retrieval. In Proceedings of the Nineteenth Annual International ACM SIGIR
Conference on Research and Developement in Information Retrieval, pages 244–
252, ACM Press, New York, 1996.

[PN96] C. Pearce and C. Nicholas. TELLTALE: Experiments in a dynamic hypertext en-
vironment for degraded and multilingual data. Journal of the American Society for
Information Science, 47(4):263–275, 1996.

[Por80] M.F. Porter. An algorithm for suffix stripping. Information Systems, 40(3):211–
218, 1980.

[Rij79] C.J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,
MA, 1979.

[RKOR06] F. Raja, M. Keikha, F. Oroumchian, and M. Rahgozar. Using Rich Document Rep-
resentation in XML Information Retrieval. Proceedings of the Fifth International
Workshop of the Initiative for the Evaluation of XML Retrieval (INEX), Springer,
New York, 2006.

[SB88] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

[Sue79] C.Y. Suen. N-gram statistics for natural language understanding and text process-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2):164–
172, 1979.

[YL99] Y. Yang and X. Liu. A re-examination of text categorization methods. Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 42–49, ACM Press, New York, 1999.

[ZPZ81] E.M. Zamora, J.J. Pollock, and A. Zamora. The use of trigram analysis for spelling
error detection. Information Processing and Management, 17(6):305–316, 1981.

A

Appendix: SIAM Text Mining Competition 2007

Overview

The 2007 Text Mining Workshop held in conjunction with the Seventh SIAM Inter-
national Conference on Data Mining was the first to feature a text mining competi-
tion. Members of the Intelligent Data Understanding group at NASA Ames Research
Center in Moffett Field, California, organized and judged the competition. Being the
first such competition held as a part of the workshop, we did not expect the large
number of contestants that more established competitions such as KDDCUP1 have,
but we did receive five submissions, though one person later withdrew.

Matthew E. Otey, Ashok N. Srivastava
Santanu Das, and Pat Castle

A.1 Classification Task

The contest focused on developing text mining algorithms for document classifi-
cation. The documents making up the corpus used in the competition are aviation
safety reports documenting one or more problems that occurred on certain flights.
These documents come from the Aviation Safety Reporting System (ASRS), and
they are publicly available in their raw form at http://asrs.arc.nasa.gov. Since each of
these documents can describe one or more anomalies that occurred during a given
flight, they can be tagged with one or more labels describing a class of anomalies.
The goal is to label the documents according to the classes to which they belong,
while maximizing both precision and recall, as well as the classifier’s confidence in
its labeling. This second criterion concerning confidence is useful for presenting re-
sults to end-users, as an end-user may be more forgiving of a misclassification if he
or she knew that the classifier had little confidence in its labeling.
1 See http://www.kdnuggets.com/datasets/kddcup.html.

234 A Appendix: SIAM Text Mining Competition 2007

The competition entries were scored using the following cost function that ac-
counts for both the accuracy and confidence of the classifier. When describing the
cost function, we will use the following notation. Let D be the number of documents
in the corpus, and let L be the number of labels. Let Fj be the fraction of documents
having label j. Let tij ∈ {−1,+1} be the target (true) value for label j of docu-
ment i. Let pij ∈ {−1,+1} be the predicted value for label j of document i, and
let qij ∈ [0, 1] be the classifier’s confidence of the value pij. Finally, let Aj be the
area under the ROC curve for the classifier’s predictions for label j. We define the
intermediate cost function Qj for label j as

Qj = (2Aj − 1) +
1
D

D∑
i=1

qijtijpij . (A.1)

This function has a maximum value of 2. The final cost function Q is the average Qj
for all labels:

Q =
1
C

C∑
j=1

Qj . (A.2)

In case of ties, we also formulated a figure of merit (FOM), defined as

FOM =
1
C

C∑
j=1

(F − Fj)
F

Qj (A.3)

where

F =
C∑
j=1

Fj . (A.4)

This figure of merit measures the quality of predictions across all anomaly cate-
gories, giving a lower weighting to those categories making up a larger fraction of
the dataset. Hence, better FOM are achieved by obtaining higher accuracies and
confidences on rarer classes.

We wrote a small Java program implementing these functions to use during our
judging of the submissions. Before the contest deadline, we made this program and
its source code available to the contestants so that they could validate its correctness,
and so that they could use our implementation to tune their algorithms.

A.2 Judging the Submissions

A training dataset was provided over a month in advance of the deadline, giving the
contestants time to develop their approaches. Two days before the deadline we re-
leased the test dataset. Both of these datasets had been run through PLADS, a system
that performs basic text processing operations such as stemming and acronym expan-
sion. The contestants submitted their labeling of the test dataset, their confidences in
the labeling, and the source code implementing their approach. The scores of the

A.3 Contest Results 235

submissions were calculated using the score function described above. In addition to
scoring the submissions, we ran each contestant’s code to ensure that it worked and
produced the same output that was submitted, and we inspected the source code to
ensure that the contestants properly followed the rules of the contest.

A.3 Contest Results

The submissions of the contestants all successfully ran and passed our inspection,
and we announced our three winners. First place was awarded to Cyril Goutte at the
NRC Institute for Information Technology, Canada, with a score of 1.69. A team
consisting of Edward G. Allan, Michael R. Horvath, Christopher V. Kopek, Brian T.
Lamb, and Thomas S. Whaples of Wake Forest University, and their advisor, Michael
W. Berry of the University of Tennessee, Knoxville, came in second with a score of
1.27. The third place team of Mostafa Keikha and Narjes Sharif Razavian of the
University of Tehran in Iran, and their advisor, Farhad Oroumchian of the University
of Wollongong, Dubai, United Arab Emirates, scored a 0.97. At NASA, we evalu-
ated Schapire’s and Singer’s BoosTexter approach, and achieved a maximum score
of 0.82 on the test data, showing that the contestants made some significant improve-
ments over standard approaches.

Index

N -gram, 218, 221
k-means, 45, 58, 76, 96, 103

batch, 75
bisecting, 49, 58
incremental, 75
kernel, 52, 55, 60
smoothed (smoka), 76, 77

Allan, Edward, 200, 233
AlSumait, Loulwah, 85
Alternating Least Squares (ALS), 151
annealing

deterministic, 65, 77, 188
simulated, 77

anti-spam methods, 165
Aono, Masaki, 109
ArcRank, 36–41
attribute selection, 170

χ2, 170
authority, 34, 35
Aviation Safety Reporting System (ASRS),

201, 203, 217, 231

Bader, Brett, 147
bag-of-words, 186
balanced iterative reducing and clustering

(BIRCH), 65, 70
Berry, Michael W., 147, 200, 233
Blondel, Vincent, 23
BoosTexter, 233
break-even point, 195
Browne, Murray, 147

calibration, 190

CANDECOMP, 148
Castle, Pat, 231
categorization

multiclass, multilabel, 189
category description, 191
centroid, 6, 66, 219

method, 17, 219
cluster

indicator vector problem, 49
measure, 27, 28
quality, 7

clustering, 28, 29, 31, 65, 87
algorithm, 45, 65
hierarchical, 45
partitional, 45
spherical k-means, 203

co-occurrence model, 186, 187
confidence estimation, 185, 190
corpus, 25–29, 31, 32, 42

bilingual, 32
cosine, 26–29, 42
COV with selective scaling (COV-SS), 119
covariance matrix analysis (COV), 114
cross-validation, 192
curse of dimensionality, 88, 90

Das, Santanu, 231
descriptive keywords, 191
dictionary

bilingual, 32
monolingual, 25, 26, 32, 33, 42
synonym, 25, 26, 33, 41

dictionary graph, 33, 34, 36, 37, 41

238 Index

dimensionality reduction, 4, 169, 176
discriminant analysis, 6
distance, 32, 36, 39–42

semantic, 88, 93, 94
Distributed National ASAP Archive

(DNAA), 208
divergence

Bregman, 67
Csiszár, 67, 68, 202
Kullback–Leibler, 67

document
frequency thresholding, 169
representation, 218

document type definition (DTD), 130
document vector space, 26–28
Domeniconi, Carlotta, 85

eigenvalue, 53, 54, 73
eigenvector, 71, 73

principal, 34, 36
email classification, 165
Enron, 147
Enron email corpus, 65, 78, 147, 152
ensemble, 26, 32
entropy, 170

relative, 31
expectation maximization (EM), 185, 188

F1 measure, 98, 100
factor analysis, 17
false-positive rate (FPR), 175, 226
feature

reduction, 176
selection, 95, 170

figure of merit (FOM), 205, 232
Fisher linear discriminant analysis, 202
folding in, 188
frequent itemset mining, 95
function

closed, proper, convex, 67
distance-like, 69

Gallopoulos, Efstratios, 44
Gansterer, Wilfried, 162
General Text Parser (GTP), 153, 203
generalized singular value decomposition

(GSVD), 8
generalized vector space model (GVSM),

89, 93

Goutte, Cyril, 185, 233
Gram matrix, 53
grammatical context, see syntactical context
graph mining, 26, 34, 42
Green measure, 42

Hadamard product, 149
hierarchical clustering

agglomerative, 46
divisive, 46

HITS, 33, 34, 42
Horvath, Michael, 200, 233
Howland, Peg, 3
hub, 34, 35
human plausible reasoning, 222

indifferent discriminator, 28, 29
inductive inference, 186, 189
information gain, 170
information retrieval, 25, 26, 28, 29, 42, 75,

165
inverse document frequency, 219

Jaccard measure, 30
Janecek, Andreas, 162

Keikha, Mostafa, 215, 233
kernel

clustering, 54
local, 88, 93
method, 88, 93, 130, 132, 137

kernel PCA (KPCA), 52
Gaussian kernels, 52, 61
kernel trick, 52
Mercer’s Theorem, 52
polynomial kernels, 52, 60

keywords
highest probability, 196
largest divergence, 192, 196

Khatri-Rao product, 149, 151
Kobayashi, Mei, 109
Kogan, Jacob, 64
Kopek, Christopher, 200, 233
Kronecker product, 149, 152
Kullback–Leibler divergence, 202

Lamb, Brian, 200, 233
latent semantic indexing (LSI), 12, 89, 112,

163, 164, 166, 174

Index 239

truncation, 167, 174
latent semantic kernels (LSK), 89, 101
LDA/GSVD algorithm, 11
lexical analysis, 29
local

feature relevance, 88
feature selection, 90

locally adaptive clustering (LAC) algorithm,
88, 90

logical
statement, 222
terms, 222

MATLAB Tensor Toolbox, 154
matricizing, 149
matrix

covariance, 53
feature-document, 166
proximity, 89, 93
scatter, 6
semantic, 89
semantic dissimilarity, 93
term-document, 45, 57, 89

maximum F -score threshold, 195
maximum likelihood (ML), 187, 188
mean

arithmetic, 68
geometric, 68

MEDLINE, 18
Metropolis algorithm, 77
minimum error rate threshold, 195
mixture of multinomial, 186
multidimensional scaling (MDS), 130

naive Bayes, 187, 189
natural language processing (NLP), 218, 226
neighborhood graph, 33–36, 38, 39, 41
Neumayer, Robert, 162
Newton-type method, 130, 137
Nicholas, Charles, 64
nonconvexity, 202
nonnegative matrix factorization (NMF),

152, 188, 201
constrained, 189
multiplicative update, 152, 203

nonnegative tensor factorization (NNTF),
151, 155, 158

normalization factor, 219

Ohsumed collection, 56
optimization

bound-constrained, 202
quasi-Newton, 202

Oroumchian, Farhad, 215, 233
orthogonal projection, 73
Otey, Matthew, 231

PageRank, 36, 37, 42
PARAFAC, 148

model, 150
nonnegative factors, 151
uniqueness, 150

Park, Haesun, 3
part of speech, 29, 30, 38

tags, 222
partition

ΠA, ΠB, 71
quality of, 66

phrase, 218, 222
PLIR, 218, 220, 222
precision, 26, 28, 29, 98
principal component analysis (PCA), 12, 46,

52, 109, 114
principal direction divisive partitioning

(PDDP), 45, 46, 58, 59, 66, 71
k-means steering, 49
geometric interpretation, 48
KPDDP-2MEANS, 56
KPDDP-OCPC, 56
KPDDP: Kernel PDDP, 47, 54, 55, 60
PDDP(l), 48, 58
PDDP-2MEANS, 49, 58
PDDP-OC, 50, 58
PDDP-OC-2MEANS, 50, 58
PDDP-OCPC, 52, 58, 59

principal directions divisive partitioning
(PDsDP), 66, 69, 71

probabilistic
categorizer, 185
model, 186
profiles, 185, 191

probabilistic latent semantic analysis
(PLSA), 186, 188

PROPACK, 55

Qi, Houduo, 127

recall, 26, 28, 29, 98

240 Index

receiver operating characteristic (ROC), 208,
226

related words, see similar words
Reuters-21578 collection, 56, 223

Modapte split, 56
rich document representation (RDR), 217,

218, 222, 225

Salton, Gerard, 3, 109
SDP, see semidefinite programming
search engine, 32
semantic LAC algorithm, 93
semantic network, 89

WordNet, 89, 101–103
semidefinite programming (SDP), 130
Senellart, Pierre, 23
SEXTANT, 26, 29–31, 42
Seyed Razi, Hassan, 215
Sharif Razavian, Narjes, 215, 233
similar words, 25–43
similarity, 25–35, 42
singular value decomposition (SVD), 3, 46,

163, 164, 166, 174, 176
spam filtering, 164, 167
SpamAssassin, 163, 164, 167
sparsity, 79
Srivastava, Ashok, 231
stemming, 37, 42, 218, 222
stop word, 28, 38, 223

stoplist, 154, 204
stop-word, 42
subspace clustering, 88, 93, 101, 103
supervised learning, 186
support vector machine (SVM), 52, 130
synonym, 25, 26, 32–34, 36, 38, 39, 41, 43
syntactical analysis, 26, 29–32
syntactical context, 26, 29, 31

tensor
decomposition, 148
norm, 149

outer product, 149
term

discrimination value, 26, 28
frequency, 219
vector space model, 26, 28

term vector space, 27, 28
term weighting

log-entropy, 154
term-weighting, 89, 93

inverse document frequency (idf), 89
log-entropy, 204

text
categorization, 186
classification, 217

text to matrix generator (TMG), 56
tf-idf, 28, 42
thesaurus, 25, 26, 28, 29, 31, 32, 36, 42, 43
trace optimization, 7
transductive inference, 186, 189
tree edit distance, 131
true-positive rate (TPR), 175, 226

unfolding, 149
unsolicited bulk email (UBE), 163
unsolicited commercial email (UCE), 163

vector space model (VSM), 4, 45, 88, 111,
163, 164, 166, 174, 218

Wedderburn rank reduction, 5
weighted Euclidean distance, 90
weighting schema, 219
Whaples, Thomas, 200, 233
Wiacek, Mike, 64
WordNet, 38–41
World Wide Web, 25, 26, 32–34, 41, 42

Xia, Zhonghang, 127
Xing, Guangming, 127

Zeimpekis, Dimitrios, 44

Index 241

