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 A More Inclusive Definition of Optimal Control 

• Set up an optimization theory framework that will include
both the quality of the performance and the cost of the controller.

2. Include the costs for communication and computation
together with more traditional trajectory based performance terms.

3. We will be led to a quantitative  measure of attention, with the  
word being used in somewhat the same way as it is  psychology.

4. As presented here, both open loop control and closed loop control 
require attention. The definitions will be such that low attention 
solutions will turn out to be less “expensive” to implement.

• The best known work  in attention is associated with cognitive 
and sensory attention, priming, etc.,  but there is other work as well..



 Starting from the Familiar 

Consider the standard problem of finding u(t,x) to optimize

ẋ = Ax + bu

η =

∫ T

0
x2 + u2dt

Compare this with finding k(t) to optimize the same performance 
measure 

The solution of the  first problem can be expressed in feedback form
in such a way as to be independent of the initial condition. This is not 
possible in the second case.

ẋ = Ax + bk(t)cx

η =

∫ T

0
x2 + u2dt



 Variations on the Problem 

By specifying the way in which the control is allowed to depend on x 
we may make the control law easier to implement but at the same time
introduce a dependence on x(0).  Compare this with other ways to 
make the control law easier to implement such as limiting dk/dt or 
including the square of du/dt in the performance measure. 

The solution of this  problem  also depends on x(0).  Assuming  a 
density for x(0) makes optimization possible. 

ẋ = Ax + bk(t)cx

η =

∫ T

0
x2+u2+(k̇)2dt



 Families of Trajectories and Densities: Liouville’s Equation
Closely related to the differential equation dx/dt = f(x,u) is a 
partial differential equation,  known as the Liouville equation.

Instead of describing how a single initial condition evolves, it 
describes, in one breath, the evolution of a density of initial states.
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Densities in the
Liouville sense

∂ρ(t, x)

∂t
= −〈 ∂

∂x
, f (x, u)ρ(t, x)〉



 Example of a Solution of Liouville’s Equation

ẋ = −k(t)x ; ρ0(x) = given

∂ρ(t, x)

∂t
=

∂

∂x
k(t)xρ(t, x)

ρ(t, x) = ea(t)ρ0(e
a(t)x) ; a(t) = −

∫ t

0
k(τ )dτ

Much more general cases can be solved explicitly, including the 
general linear time invariant dx/dt =Ax+Bu.



 New Problem Formulation
To formulate a optimization problem that involves both trajectory 
terms and implementation terms, select an L so as to reflect 
implementation costs.  An example: 

ẋ = −u(t, x) ; ρ0(x) = given

∂ρ(t, x)

∂t
=

∂

∂x
u(t, x)ρ(t, x)

η =
∫ T
0

∫ ∞
−∞(x2+u2)ρ(t, x)+L(u)dxdt

This is a trajectory optimization problem with a fixed initial 
condition where  we think of the dynamics being defined by 
the given Liouville equation. 



Implementation Cost Factors:  Choice of L

1. Number of quantization levels (12 bit vs. 16 bit, single precision,
double precision, etc.) 
2. Sampling rate, 30 Hz, 100 Hz, …
3. Tolerance  to delay 20 millisecond latency, 60 millisecond latency…
4. Computational complexity of the control law
5. Quality  of sensors (speed and accuracy).

Nothing takes less attention than letting u be constant.  Adjusting u, 
as x and t change, requires attention. 

An implementation must be good for the full range of initial conditions
 and disturbances that will be confronted. The implementation is not 
adjusted in accordance with the current trajectory.  (That is, any 
“adaptation” is considered to be part of the controller.)



Implementation Cost Factors:  Choice of L

η =

∫ ∞

0

∫
Rn

α

(
∂u

∂t

)2

+β

(
∂u

∂x

)2

dxdt

η =

∫ ∞

0

∫
Rn

α

(
∂u

∂t

)2

+β

(
∂u

∂x
, f(x, u)〉

)2

dxdt

Two examples of meaningful attention functionals or given below. 
Each reflects the desirability of minimizing the change in the contro.l

Each of these separates nicely into an open loop part weighted 
by α and a closed loop part weighted by β. 



Trajectory and Implementation Costs Formulated Jointly 

We are interested in combining two types of terms:

1. A performance term that will insure stability, hitting the target, 
conserving resources, minimizing  time, etc. as dictated by the 
problem. 

2. A implementation term that assures that the control is not 
excessively sensitive to small changes in the measurements, small 
errors in the clock, does not require a high sampling rate or 
ultra fine quantization.  (Some type of regularization term.)

The inclusion of the second term will complicate the mathematics 
but can give control laws that saturate for large values and are more 
easily approximated, thus giving more flexibility in their 
implementation.



u(t, x) =
t

1 + t2
tanh x

ut =

(
1

1 + t2
− 2t2

(1 + t2)2

)
tanh x

ux =
1

1 + t2
1

cosh2 x

We can get some feeling from exploring an example. 

What kind of solution can we expect?

ẋ(t) = u(t, x)



The Change in Performance
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u(t,x)=-2t/(1+t2)  tanh(x)  restricted to a rectangle



Solving a Special Case

Consider keeping on the closed loop loop penalty and asking that the 
initial density be a delta function supported at x(0)=1

In this case we can solve for x in terms of the integral of a and 
pass directly to an Euler-Lagrange equation for A

ẋ = −a(t)x

η =

∫ ∞

0
x2(t) + β

(
∂u

∂x

)2

dt

A(t) =

∫ t

0
a(τ )dτ

βÄ − e−2A = 0



The Optimality of a/(t+b)

The rest  of the calculation goes through smoothly

This establishes a sense in which the 1/t type gains showing 
up in stochastic approximation are actually optimal.

A(t) =

∫ t

0
a(τ )dτ

βÄ − e−2A = 0

a(t) =
1

t +
√

β



 What can we learn from other fields about choosing L 

Books on neuroscience, such as those of M. Ito on the cerebellum,
 contain many references to feedback control and have many block 
diagrams.  There are also a number of disclaimers because the 
feedback loops depend on higher level cognitive processes. The 
reader from control will conclude that our theories, while useful, do 
not  have enough generality to provide the right tools.  

Robotics has been a successful application of control theory at 
the hardware level, but the more important problem is software
and we have not yet provided much in the way of theory for 
language driven systems.

The inspiration will not come from  “cost is no issue” solutions  but 
rather the  “just enough control” solutions  as found in   in washing 
machines and humans.  





Hermann von Helmholtz, 1821-1894

“Theoretical natural science must, therefore, if it is not to rest
content with a partial view of the nature of things, take a position
in harmony with the present conception of simple forces and the
consequences of this conception. Its task will be completed when
the reduction of phenomena to simple forces is completed…”



Helmholtz, 1894

The famous Holmholtz experiment showing that humans can
direct visual attention without physical motion.
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Representation of the values of u(t,x) and the tiling of space-time 
that is implicit in any implementation of computer control.



If u(y,t) is the desired control then the magnitudes of the partial 
derivatives ux(x,t) and ut(x,t) give an indication of how hard it will 
be to approximate u with a piecewise constant function.

Bridging the Gap Between the Continuous and the Discrete



We can save resources with little loss in performance by non-uniform 
quantization when u(t,x) changes slowly outside the normal range of 
the variables.



Relationship with Stochastic Control

Suppose that the model is a  stochastic differential equation. In this 
case  the density does not evolve according to a Liouville equation 
but rather according to a refinement,  the Fokker-Planck equation.

In the case where x can be observed perfectly, the  problem might
be to pick u(t,x) so as to minimize 

η =
∫ T
0

∫ ∞
−∞(x2 + u2)ρ(t, x)dxdt

dx = f (x, u)dt + gdw

∂ρ(t, x)

∂t
= −〈 ∂

∂x
, f (x, u)ρ(t, x)〉+1

2

∑ ∂

∂x

T
ggT ∂

∂x



Multiple Trajectories and the Fokker-Planck Equation

If we add noise to the equation dx/dt = f(x,u) then the partial
differential equation for the evolution of the density of states is

The presence of the second order derivative leads to additional 
smoothness as characterized by diffusion processes. 

Adriaan
Fokker

Max
Planck

∂ρ(t, x)

∂t
= −∇Tf(x, u)ρ(t, x)+

1

2
∇TggT∇



Controlling the Whole Set of  Behaviors

The performance measure is

The boundary condition are

ρ(0, x) = ρ0(x) ; u(t, 0) = 0 ; u(0, x) = 0

η =

∫ ∞

0

∫ ∞

−∞
β(u2(t, x) + x2)ρ(t, x) +

(
∂u

∂x

)2

+

(
∂u

∂t

)2

dxdt

∂ρ(t, x)

∂t
= −∇Tf(x, u)ρ(t, x)+

1

2
∇TggT∇



The Singular Limits

The variational equation associated with the square of the gradient is 
just Laplace’s Equation.  This corresponds to the limit when the
trajectories are ignored completely.

The variational equation corresponding to trajectory term with no 
importance being associated to the attention term yields the usual 
optimal trajectory problem.

These two limits do not seem to offer much insight.  In the first case
 the performance is not just bad, it is infinitely bad.  In the second case 
the attention required is infinite.





Limitations of Linearity

Because of saturation we can assert that there are no linear systems.
Even so, linear models are very useful and their properties offer 
considerable insight.  We can design a control law as if linear 
implementation were possible and let the hardware do the truncation. 
Or, we can acknowledge the limitations it in the design process. 

It makes little sense to model many on-off systems such as those that 
find wide use in low tech control such as the electric valves in dish 
washers and gasoline pumps as linear systems.

The outcome of a measurement is often a go/no-go  decision.  In such 
cases it makes little sense to regard the measurement as being linear.

The default assumption of linearity can be misleading either because 
of saturation or because of discontinuity, or both. 



A Way to Think about Learning and Practice

The optimization problem posed here involves a trade-off between
The quality of the trajectory and the implementation costs.  The 
latter involves a trade-off between open loop cost measured by 
ut and closed loop costs measured by ux.  A model for what happens 
when one practices a task is to imagine that the weighting shifts from 
the open loop term to the closed loop term and from the implementation 
cost to the trajectory cost.  



Conclusions

1. We have framed the problem of optimizing the implementation
cost in terms of an optimization problem involving variational
problems on (t,x)-space.

2. The solution of such problems will generally lead to less control
“activity”,  saturating control laws, and require nonlinearity. .

3. The smallness of the partial derivatives implies that the control
law will change slowly, be relatively insensitive to error, and lend
itself to roughly quantized, slowly sampled implementations.

4. These ideas have been useful to us in thinking about the how
achieve good control with limited resources in terms of
communication and computation.
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