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systems
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Robotic Manipulation

The process of controlling the position (state) of one
or more objects through contact forces by a robot.

Q:  Where can a robot place a part?

Standard answer:  Pick-and-place
—kinematic workspace, dexterous workspace

Other answers:  Allow pushing, rolling, throwing,
striking...

—dynamic workspace?

Quasistatic Pushing Mechanics

Limit surface
determined by
friction between
object and
support surface

(Goyal, Ruina,
Papadopoulos
1991)

Motion Planning

Allows placing parts by open-loop stable pushing
(Lynch and Mason 1996)
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Local Controllability

Depends on:
l Part geometry
l Support friction

(friction centroid)
l Pushing friction

coefficient

part velocities must
positively span a plane
(not ω = 0)

Almost every part is locally controllable
by pushing w ith a 2-DOF pushing point

Underactuated Manipulation

Underactuated robotic manipulation occurs when a
robot controls more degrees-of-freedom of an object
(or objects) than the robot has actuators.

Extra object DOF:  rolling, slipping, flight

Examples:
—Robot assembly
—Parts feeders
—Batting, juggling, pushing, rolling, throwing
—Flexible objects

Why?
—Inexpensive, low-DOF robots
—Shift system complexity from hardware to motion planning and

control

Examples

  1 joint rolling and throwing arm
(automatically planned, open loop)

Conveyor-based parts feeder

Sony AP OS parts feeder

Planar juggling

Related Work

l Rolling
Montana (1988) Li and Canny (1990)
Dai and Brockett (1991) Bicchi and Sorrentino (1995)

Hristu-Varsakelis (2001) Choudhury and Lynch (2002)

l Juggling
Buhler and Koditschek (1990) Rizzi and Koditschek (1993)
Schaal and Atkeson (1993) Bishop and Spong (1999)

Brogliato and Zavala-Rio (2000) Lynch and Black (2001)

l Tapping
Higuchi (1985) Huang and Mason (1998)

l Pushing
Mason (1986) Peshkin and Sanderson (1988)

Alexander and Maddocks (1993) Lynch and Mason (1996)

l Slipping
Trinkle (1992) Erdmann (1996)

Underactuated Manipulation

l Mechanics (nonprehensile manipulation)

—Pushing, rolling, slipping, throwing, batting

—Friction, restitution, Newton s laws
—Object geometry, manipulator shape and motion

constraints, unilateral constraints, changing dynamics
(hybrid)

l Controllability
—Reachability, feedability

l Motion Planning
l Feedback Control

Hand controls ball
Environment
controls ballNonprehensile manipulation

Controllability

Robot state:  zR = (qR, dqR /dt) ∈  MR = TCR

Part state:  zP = (qP, dqP /dt) ∈  MP = TCP

System state:  z = (zR, zP) ∈  MR × MP

Underactuated manipulation:  dim(CR) < dim(CP)

Given initial state z and time T, what is the set of
reachable states R(z,T)?

Part only:  RP(z,T)
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Controllability (cont.)

l Accessible:  RP(z,†T) is a full-dimensional subset
of TzP 

MP for some T>0.

l Feedable:  zPg ∈  RP(z,†T) for some T>0 and any
z ∈  U, the set of initial possible states.

l Controllable: zPg ∈  RP(z,T) for some finite T and
any z, zPg.

l Locally controllable: zP ∈  int(RP(z,†T)) for all zP
and T>0.  (Only possible at zero velocity.)

l Equilibrium controllable: RP(z,†T) contains a
neighborhood of qP at zero velocity.

Controllability (cont.)
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l Locally controllable: zP ∈  int(RP(z,†T)) for all zP
and T>0.  (Only possible at zero velocity.)
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Controllability (cont.)

l Accessible:  RP(z,†T) is a full-dimensional subset
of TzP 

MP for some T>0.

l Feedable:  zPg ∈  RP(z,†T) for some T>0 and any
z ∈  U, the set of initial possible states.

l Controllable: zPg ∈  RP(z,T) for some finite T and
any z, zPg.

l Locally controllable: zP ∈  int(RP(z,†T)) for all zP
and T>0.  (Only possible at zero velocity.)

l Equilibrium controllable: RP(z,†T) contains a
neighborhood of qP at zero velocity.

Single Input Systems

l Minimum actuator systems
l Often globally controllable but not locally controllable
l Drift helps!

Planar juggler (Bühler and Koditschek 
1990; Zavala-Rio and Brogliato 1999; 
Lynch and Black 2001)

1JOC conveyor parts feeder
(Akella et al. 2000)

Planar body with one
thruster (Lynch 1999)

Ball in an asymmetric bowl
(Choudhury and Lynch 2000)

Single Input Systems (cont.)

Butterfly

Repetitive
throwing and
catching

A Simple Model

Robot shapes the natural dynamics of the environment.

A simple single input model:
dz/dt = f(z) + g(z)u

z system state
f drift vector field (natural dynamics)
g control vector field
u control

(though often the systems are hybrid )
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Controllability

locally controllable

planar body, two thrusters

not locally controllable (Lewis 1997, Manikonda and
Krishnaprasad 1997), but globally controllable (Lynch 1999)

planar body, one thruster

linearly controllable

planar body, three thrusters

Global Controllability

dz/dt = f(z) + g(z) u,    z ∈  M

Involutive closure of {f, g} = Lie({f, g})

Theorem (Lian et al. 1994)   If the drift vector field f
is Weakly Positively Poisson Stable (WPPS) and
Lie({f, g}) = TzM  ∀ z ∈  M, then the system is
controllable.

Accessibility + Poisson Stability ⇒  Controllability
(Jurdjevic and Sussmann 1972; Lobry 1974; Brockett 1976; Bonnard 1981;

Jurdjevic 1997)

Poisson Stability
Flow of drift field:  Φf : M × ℜ  →M;   (z,t) → Φf (z,t)

The point z is Positively Poisson Stable (PPS) for f if
for all T>0 and any neighborhood B(z) of z, there
exists a time t>T such that Φ 

f (z,t) ∈  B(z).

f is PPS if the set of PPS points is dense in M.

f is WPPS if for all z ∈  M, any neighborhood B(z) of
z, and all T>0, there exists t>T such that
Φf (Uz ,t) ∩ B(z) ≠ ∅ .

Examples:  a swing (no damping), satellite attitude,
ball rolling in a bowl

Controllability

locally controllable 
   (Crouch 1984)

satellite attitude, two thrusters

not locally controllable, but globally 
controllable (Crouch 1984, Jurdjevic
1997)

satellite attitude, one thruster

Extension

If the drift is not WPPS, global controllability can be
established by:

Continuous fountain condition (Caines and Lemch
1999)

Locally accessible states form an open subset of the
state space.  (Neither stronger nor weaker than
local accessibility.)

Plus some form of control recurrence, e.g.,
z = Φ(z, T, u)       flow under the control u

for some control u and time T.

Global Controllability

controlled closed orbit

initial state
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Global Controllability

controlled closed orbit

accessible set
(controllable about
closed orbit)

initial state

Motion Planning and Control

A trajectory of a drift-free, controllable system is a
nonsingular loop if

1)  trajectory returns system to initial state, and

2)  system is linearly controllable about the trajectory.
(Sontag 1993; Sussmann 1993; Wen 1996)

l Similar to the controlled closed orbit of systems
with drift.

l Generic loops are nonsingular for strongly
accessible systems (Sontag 1993).

Control Algorithm

Given:
l Control parameterization u = (u1, u2, , uk) ∈  U

l End-state map z2 = f(z1,u)
l Goal state zg

l Cost function V(z)   (control Lyapunov function)

1.  Calculate recurrent control ur(z).
2.  u  = ur - α (∂V(f(z,u)) / ∂u) | u=ur, α > 0.

3.  Execute control u .
4.  Go to 1.

Summary

D is an open connected subset of M such that
∃  ur(z) ∈  int(U) ∀  z ∈  D.

Controllability on D
z ∈  int { f(z,u) | u ∈  B(ur(z)) }

B(ur(z)) is any neighborhood of ur(z)

Stabilization of any point in D
l Define a distance between current and goal state.
l Perturb ur(z) to reduce the distance.

l Asymptotic stabilization if ur(z) gives nonsingular
loops.

Example:  Juggling

Point mass puck,
zero thickness batter.

z = (x, y, x , y )

One bat:
zj+1 = f1(zj,u1)  u1 = (t1, ω1, tf )

       t = flight time, ω = impact vel

Two bats:
zj+2 = f2(zj,u2)  u2 = (t1, ω1, t2, ω2, tf )

D is the set of reversible states; puck can be batted
back and forth along the trajectory.

Reversible impact states:  x x  + y y  = 0.     (*)

(Buhler and Koditschek 1990;
Zavala-Rio and Brogliato 1999)

Reversible States

(*) is cubic in flight time.  At most three real solutions
to reversing impact states.

Bold:  reversible states

Circles:  impact points
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Reversible States

DA 3-D open set of
reversible apex states

D 4-D open set of
reversible states

g = -981 cm/s2

          (-gx2/2|x |) > y > (-3(x|x |g)2/3 - 2|x |2)/(2g)

apex velocity |x’|

Controllability and Stabilization

Proposition   The point mass puck is controllable on D.

Follows from rank(∂f2 / ∂u)|u
2

r  = 4.

Proposition  Under the two-bat control law, the system
asymptotically converges to zg = (xg,yg,0,0) ∈  D from
any z ∈  D for any positive definite V(z) where
∂V/ ∂z = 0 only at zg.

Proof:  ∂V/ ∂u = (∂V/ ∂z) (∂f2 / ∂u)

One Bat Control Law

For a single bat, u1
r(z) is a reversing control if

rev(z) = (x,y,-x ,-y ) = f1(z,u1
r(z)).

Choose V(z) = (z - zg )T W (z - zg )
V(rev(z)) = V(z)

Just three controls:   rank(∂f1 / ∂u) |u
1
r = 3 < 4.

May not be able to reduce distance to goal after a
single bat.

Stabilizability

Lemma  For all z0 ∈  D, z0 ≠ zg , if (∂V/ ∂u1) |u
1
r = 0 at

z0, then (∂V/ ∂u1) |u
1
r ≠ 0 at rev(z0 ).

Proposition  Under the one-bat control law, the
system asymptotically converges to
zg = (xg,yg,0,0) ∈  D from any z ∈  D.

Control by Optimization
•  Object state z
¥  Finite parameterization of the control u
¥  Define an endpoint mapping f, zf = f(zi,u)
¥  Define an objective function V(zf ) 
¥  Given an initial control, iteratively modify u to minimize V(f(zi,u)) 
    using the gradient ∇ u V and possibly the Hessian ∇ 2

uu V

Initial control guess:  ur (reversing control)

Variants of this approach (continuation, homotopy methods, MPC)
Divelbiss and Wen 1992
Sontag 1993
Sussmann 1993
Fernandes, Gurvits, and Li 1994
Zefran and Kumar 1995
Lizarralde and Wen 1997
Lynch and Mason 1997

Details

l Goal apex state:  zg = (xg, yg, x’g, y’g ) = (xg, yg, 0, 0)

l Control u1:  pre-impact flight time, impact speed,
post-impact flight time

—implemented by 4th-order polynomial arm trajectory

l Endpoint mapping f1  based on Poisson restitution
(Wang and Mason 1992) with known restitution

l Quadratic cost function

        V(zf ) = (zf - zg )
TW (zf - zg )
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Experimental Setup
Cognachrome 60 Hz vision system; reoptimize control at 60 Hz

adjustable
gravity

Experiment

Plastic disk, radius = 3.8 cm, Gravity = g sin 5o

Arm width = 5 cm, length = 60 cm
Friction coefficient = 0.1, restitution coefficient = 0.45

One-bat Convergence
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Discussion

Advantages
l Provably stable
l Estimation of the basin of attraction
l Controllability and stabilization closely tied

Limitations

l Real-time calculation of forward dynamics and
gradient

l How to find recurrent control?

Conclusion

l Minimize actuation and hardware
l Reduce cost
l Transfer complexity from hardware to control

Drawbacks
l Slower

l Heavier computational demand (and possibly
sensory)

l More complex control


