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Numerical Linear Algebra (NLA) problems

≡

Optimization on Manifold problems.
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Problem 1 : Minor Eigenvector Computation

Given n × n matrix A = AT with (unknown)

eigen-decomposition

A [v1| . . . |vn] = [v1| . . . |vn] diag(λ1, . . . , λn)

[v1| . . . |vn]T [v1| . . . |vn] = I, λ1 < λ2 ≤ . . . ≤ λn.

The problem is to compute the minor eigenvector ±v1.
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Optimization problem on the unit sphere

Rayleigh quotient cost function:

f : Sn−1 → R : y 7→ yT Ay,

where Sn−1 is the unit sphere {y ∈ Rn : yT y = 1}.

Useful properties:

• The stationary points of f are the eigenvectors of A.

• The local (and global) minima of f are ±v1.
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Optimization problem on the real projective space

Rayleigh quotient cost function:

f : RPn−1 → R : span(y) 7→
yT Ay

yT y
,

where RPn−1 is the real projective space,

RPn−1 = {span(y) : y ∈ Rn \ {0}}.

Useful properties:

• The stationary points of f are the “eigendirections” of A.

• The local (and global) minimum of f is span(v1).
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Problem 2 : Minor Eigenspace Computation

Given n × n matrix A = AT with (unknown)

eigen-decomposition

A [v1| . . . |vn] = [v1| . . . |vn] diag(λ1, . . . , λn)

[v1| . . . |vn]T [v1| . . . |vn] = I, λ1 ≤ . . . ≤ λp < λp+1 ≤ . . . ≤ λn.

The problem is to compute the minor p-dimensional eigenspace

span(v1| . . . |vp).
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Optimization problem on the Grassmann manifold

Rayleigh quotient cost function:

f : Grass(p, n) → R : span(Y ) 7→ trace(Y T AY (Y T Y )−1),

where Grass(p, n) is the set of p-dimensional subspaces of Rn.

Useful properties:

• The stationary points of f are the eigenspaces of A.

• The local (and global) minimum of f is span(v1| . . . |vp).
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Problem 3 : Minor Eigenspace of Matrix Pencil

Given n × n matrix pencil (A, B), A = AT , B = BT Â 0 with

(unknown) eigen-decomposition

A [v1| . . . |vn] = B [v1| . . . |vn] diag(λ1, . . . , λn)

[v1| . . . |vn]T [v1| . . . |vn] = I, λ1 < λ2 ≤ . . . ≤ λn.

Given integer p with 0 < p < n.

The problem is to compute the minor p-dimensional eigenspace

span(v1| . . . |vp).
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Optimization problem on the Grassmann manifold

Rayleigh quotient cost function:

f : Grass(p, n) → R : span(Y ) 7→ trace(Y T AY (Y T BY )−1),

where Grass(p, n) is the set of p-dimensional subspaces of Rn.

Useful properties:

• The stationary points of f are the eigenspaces of (A, B).

• The local (and global) minimum of f is span(v1| . . . |vp).
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Numerical linear algebra problems

Several problems in numerical linear algebra can be expressed

as finding a minimizer of a well-chosen cost function on a

certain manifold. Examples:

• Full EVD. Full SVD.

• Full SVD.

• Balanced factorization.

• Nonlinear eigenvalue problem.

• Low rank approximation.

• ...

See Helmke and Moore [HM94], Lippert and Edelman [LE00]

and references therein.
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Manifolds

Roughly speaking, a manifold is a set that looks locally like Rn.

Local mappings from the manifold to Rn are called charts, and

the inverse mappings are called parameterizations or systems of

coordinates.

A Riemannian manifold is a manifold with a inner product on

the tangent spaces, that varies in a smooth way.

References: do Carmo [dC92], Boothby [Boo75]...
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Manifolds (cont’d)

The following manifolds are involved in the differential

geometric approach to numerical linear algebra problems:

• Orthogonal group.

• Stiefel manifold: n × p orthonormal matrices.

• Grassmann manifold: p-dimensional subspaces in Rn.

• Oblique manifold: matrices with normalized columns.

• Ellipsoids: {Y ∈ Rn×p : XT RX = I}.

• Products of these manifolds.

All these manifolds can be turned into Riemannian manifolds

by smoothly defining an inner product on the tangent spaces.
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Structure of the cost functions

Many cost functions related to linear algebra problems have:

• one or a few local minima which are also global minima,

• several other stationary points (i.e., critical points) that

are either saddle points or local maxima.

We assume that only local minima are sought, although the

other stationary points are sometimes interesting, too.

Manifold

R

Saddle point

Local minimum

Local maximum
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Outline (Part 1)

Numerical Linear Algebra (NLA) problems

≡

Optimization on Manifold problems.

• Motivating example: Minor Component Analysis.

• ‘Conventional’ methods: simple vector iterations.

• ‘Unconventional’ methods: optimization on manifold (here,

the sphere).

• Need for a more efficient method with detailed convergence

analysis.
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Motivating problem : Minor Eigenvector Computation

Given n × n matrix A = AT with (unknown)

eigen-decomposition

A [v1| . . . |vn] = [v1| . . . |vn] diag(λ1, . . . , λn)

[v1| . . . |vn]T [v1| . . . |vn] = I, 0 < λ1 < λ2 ≤ . . . ≤ λn.

The problem is to compute the minor eigenvector ±v1.
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Outline (Part 1)

Numerical Linear Algebra (NLA) problems

≡

Optimization on Manifold problems.

• Motivating example: Minor Component Analysis.

• ‘Conventional’ methods: simple vector iterations.

• ‘Unconventional’ methods: optimization on manifold (here,

the sphere).

• Need for a more efficient method with detailed convergence

analysis.
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Simple vector iterations: Inverse Iteration

yk+1 =
A−1yk

‖A−1yk‖

Properties:

• Global convergence to {±v1, . . . ,±vn}.

• Stable convergence to ±v1 only.

• Local linear convergence, with ratio λ1

λ2
.

Exemple: n = 100, λi = i/n (evenly spaced eigenvalues on

(0, 1]). Then λ1

λ2
= 0.5.

Possible evolution: error(1)=0.1, error(2)=0.05,

error(3)=0.0025,...,error(27)' 1.4 · 10−9.

• Computing a new iterate is expensive.
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Simple vector iterations: Rayleigh Quotient Iteration (RQI)

ρk =
yT

k Ayk

yT
k yk

yk+1 =
(A − ρkI)−1yk

‖(A − ρkI)−1yk‖

Properties:

• Converges to “nearest” eigenvector.

• Cubic local convergence.

Possible evolution: error(1)=0.1, error(2)= 10−3,

error(3)= 10−9.

• Computing a new iterate is expensive.
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Simple vector iterations : illustrations

InvIt RQI

v2v1

v3

v1 v2

v3

19



The ideal minor component algorithm

Given A = AT Â 0, with eigenvalues 0 < λ1 ≤ . . . λn and

associated eigenvectors v1, . . . , vn.

1. Convergence to some eigenvector for all initial conditions.

2. Stable convergence to the minor eigenvector ±v1 only.

3. Superlinear (cubic) local convergence to ±v1.

4. No factorization of A.

Matrix A only utilized as operator x 7→ Ax.

5. Minimal storage space required.
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Outline (Part 1)

Numerical Linear Algebra (NLA) problems

≡

Optimization on Manifold problems.

• Motivating example: Minor Component Analysis.

• ‘Conventional’ methods: simple vector iterations.

• ‘Unconventional’ methods: optimization on manifold (here,

the sphere).

• Need for a more efficient method with detailed convergence

analysis.
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Optimization problem on the unit sphere

Rayleigh quotient cost function:

f : Sn−1 → R : y 7→ yT Ay,

where Sn−1 is the unit sphere {y ∈ Rn : yT y = 1}.

Useful properties:

• The stationary points of f are the eigenvectors of A.

• The local (and global) minima of f are ±v1.
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Available optimization methods on manifolds

A few references: Gabay [Gab82], Udrişte [Udr94],

Smith [Smi94], Edelman et al. [EAS98], Manton [Man02].

It seems that all currently available methods on manifolds are

either

• globally convergent but slow (linear), for example gradient

descent methods; or

• fast but not (provably) globally convergent, for example

the Newton method.

Moreover, exact Newton steps are expensive to compute.
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Requirements on the optimization method

To achieve the “ideal minor component method”, we need an

optimization method with the following properties:

1. Global convergence to stationary points.

2. Stable convergence to local minima only.

3. Superlinear local convergence.

4. No factorization of the Hessian.

5. Minimal storage space needed.
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Outline (Part 1)

Numerical Linear Algebra (NLA) problems

≡

Optimization on Manifold problems.

• Motivating example: Minor Component Analysis.

• ‘Conventional’ methods: simple vector iterations.

• ‘Unconventional’ methods: optimization on manifold (here,

the sphere).

• Need for a more efficient method with detailed convergence

analysis.
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In Rn: Yes!

TRUST-REGION METHOD

where the trust-region subproblems are solved with a

TRUNCATED CONJUGATE-GRADIENT

algorithm.
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Outline (Part 2)

• Trust-region in Rn.

• Trust-region on Riemannian manifolds.

– Description.

– Convergence analysis.

• Application: Minor Component Analysis.

– Properties of the trust-region algorithm.

– Extensions... Competitors...

– Numerical experiments.
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Principle of Trust-Region (TR) in Rn

1. Consider a cost function f in Rn. Let xk be the current iterate.

2. Build a model mk(s) of f around xk. The model should agree to

f at xk to the first order at least, and to the second order if

superlinear convergence is sought.

3. Find (up to some precision) a minimizer sk of the model within

a “trust-region”, i.e., a ball of radius ∆k around xk.

4. Compute the ratio

ρ =
f(xk) − f(xk + sk)

mk(0) − mk(sk)

to compare the actual value of the cost function at the proposed

new iterate with the value predicted by the model.
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Principle of Trust-Region (TR) in Rn (cont’d)

5. Shrink, enlarge or keep the trust-region radius according to the

value of ρ.

6. Accept or reject the proposed new iterate xk + sk according to

the value of ρ.

7. Increment k and go to step 2.

For more detail, see e.g. [NW99, CGT00].
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Principle of Trust-Region (TR) in Rn

f (x)

xk x

mxk
(x − xk)∆k
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Principle of Trust-Region (TR) in Rn

f (x)

xxk+1

∆k+1

mxk+1
(x − xk+1)
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Principle of truncated CG (tCG)

xk

Trust region at k

Level curves of mxk

s1
k

s2
k
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Stopping criterion for tCG

Reasons for stopping tCG (inner iteration):

• The line-search algorithm hits the trust-region boundary.

(This happens in particular when the model has a negative

curvature along the current direction of search.)

• The norm of the residual has become sufficiently small.

Criterion:

‖rj‖ ≤ ‖r0‖min(‖r0‖
θ, κ).

Note that rn = 0 in exact arithmetic (theory of linear CG).

−→ Expected order of convergence:

min{θ + 1, 2}.
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Outline (Part 2)

• Trust-region in Rn.

• Trust-region on Riemannian manifolds.

– Description.

– Convergence analysis.

• Application: Minor Component Analysis.

– Properties of the trust-region algorithm.

– Extensions... Competitors...

– Numerical experiments.
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Trust-region methods on Riemannian manifolds: difficulties

In general, coordinates systems can be scaled without

restriction: If φ is a chart, then αφ is still a chart, with α ∈ R.

φ1

φ2

U1

U2
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Trust-region methods on Riemannian manifolds: remedies

To define a notion of trust-region on Riemannian manifolds,

one has to use charts with some “rigidity” property.

To assign a “locally rigid” chart to any point on a manifold M ,

we use the concept of retraction introduced (?) in Adler et

al. [ADM+02].
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Trust-region methods on Riemannian manifolds: remedies (cont’d)

Concept of retraction:

M

TxM

x

Rx

x-lift

1. Rx is defined and one-to-one in a neighbourhood of 0x in

TxM .

2. Rx(0x) = x.

3. DRx(0x) = idTxM , the identity mapping on TxM , with the

canonical identification T0x
TxM ' TxM .
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Trust-region methods on Riemannian manifolds: remedies (cont’d)

Retraction as a mapping from the tangent bundle TM to M .

R

M

TM
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Trust-region methods on Riemannian manifolds

1. Given: smooth manifold M ; Riemannian metric g; smooth

cost function f on M ; retraction R from the tangent

bundle TM to M ; current iterate xk.

1b. Lift up the cost function to the tangent space TxM :

f̂x = f ◦ Rx.

2. Build a model mk(s) of f̂x around xk.

3. Find (up to some precision) a minimizer sk of the model

within a “trust-region”, i.e., a ball of radius ∆k around xk.
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Trust-region methods on Riemannian manifolds (cont’d)

4. Compute the ratio

ρ =
f(xk) − f(Rxk

sk)

mk(0) − mk(sk)

(note the presence of Rxk
!) to compare the actual value of

the cost function at the proposed new iterate with the

value predicted by the model.

5. Shrink, enlarge or keep the trust-region radius according to

the value of ρ.

6. Accept or reject the proposed new iterate Rxk
sk according

to the value of ρ.

7. Increment k and go to step 2.
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Solving the TR subproblem: truncated CG

• Start from the point s0 = 0.

• Compute the first search direction δ0 = −grad f(xk).

• Minimize the model mk(s) along δ0 within the trust region.

This yields s1. If the boundary is reached, then stop.

• Compute the conjugate-gradient direction δ1.

• Minimize the model along s1 + αδ2. If the boundary if

reached, then stop.

• ... Repeat the procedure until some stopping criterion is

satisfied, and return sk := sj .

Stopping criteria are based on the norm of the residual

∇mk(s
j).
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Principle of TR on Riemannian manifold

xk

Rxk

0 ∈ Rn

R

f̂xk
(s) := f (Rxk

(s))

M

Txk
M
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Required ingredients for Riemannian TR

• Manifold M , Riemannian metric g, and cost function f on

M .

• Practical expression for Txk
M .

• Retraction Rxk
: Txk

M → M .

• Function f̂xk
(s) := f(Rxk

(s)).

• Gradient grad f̂xk
(0).

• Hessian Hess f̂xk
(0).
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Outline (Part 2)

• Trust-region in Rn.

• Trust-region on Riemannian manifolds.

– Description.

– Convergence analysis.

• Application: Minor Component Analysis.

– Properties of the trust-region algorithm.

– Extensions... Competitors...

– Numerical experiments.
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Global convergence result

Let {xk} be a sequence of iterates generated by the RTR

algorithm with ρ′ ∈ (0, 1

4
). Suppose that f is C2 and bounded

below on the level set {x ∈ M : f(x) < f(x0)}. Suppose that

‖grad f(x)‖ ≤ βg and ‖Hess f(x)‖ ≤ βH for some constants βg,

βH , and all x ∈ M . Moreover suppose that

‖D
dt

d
dt

Rtξ‖ ≤ βD (1)

for some constant βD, for all ξ ∈ TM with ‖ξ‖ = 1 and all

t < δD, where D
dt

denotes the covariant derivative along the

curve t 7→ Rtξ. Further suppose that all approximate solutions

sk of the trust-region subproblems produce a decrease of the

model that is at least a fixed fraction of the Cauchy decrease.
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Global convergence result (cont’d)

It then follows that

lim
k→∞

grad f(xk) = 0.

And only the local minima are stable (the saddle points and

local maxima are unstable).
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Local convergence result

Consider the RTR-tCG algorithm. Suppose that f is a C2 cost

function on M and that

‖Hk − Hess f̂xk
(0k)‖ ≤ βH‖grad f(xk)‖. (2)

Let v ∈ M be a nondegenerate local minimum of f , (i.e.,

grad f(v) = 0 and Hess f(v) is positive definite). Further

assume that Hess f̂xk
is Lipschitz-continuous at 0x uniformly in

x in a neighborhood of v, i.e., there exist β1 > 0, δ1 > 0 and

δ2 > 0 such that, for all x ∈ Bδ1(v) and all ξ ∈ Bδ2(0x), it holds

‖Hess f̂xk
(ξ) − Hess f̂xk

(0xk
)‖ ≤ βL2‖ξ‖. (3)
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Local convergence result (cont’d)

Then there exists c > 0 such that, for all sequences {xk}

generated by the RTR-tCG algorithm converging to v, there

exists K > 0 such that for all k > K,

dist(xk+1, v) ≤ c (dist(xk, v))min{θ+1,2}, (4)

where θ governs the stopping criterion of the tCG inner

iteration.
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Outline (Part 2)

• Trust-region in Rn.

• Trust-region on Riemannian manifolds.

– Description.

– Convergence analysis.

• Application: Minor Component Analysis.

– Properties of the trust-region algorithm.

– Extensions... Competitors...

– Numerical experiments.
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Trust-region on the sphere

xk

Txk
Sn−1

Rxk

0 ∈ Rn

R

f̂xk
(s) := f (Rxk

(s))

Sn−1
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Properties of the algorithm

Algorithm: Riemannian Trust-Region method on the sphere

with truncated-CG algorithm for minimizing the Rayleigh

quotient.

Properties:

1. For all initial conditions, {yk} converges to an eigenvector.

2. Only the minor eigenvector ±v1 is stable.

3. Superlinear rate, with exponent min{θ + 1, 3}.

4. No factorization of A.

5. Minimal storage space needed (CG process).
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Outline (Part 2)

• Trust-region in Rn.

• Trust-region on Riemannian manifolds.

– Description.

– Convergence analysis.

• Application: Minor Component Analysis.

– Properties of the trust-region algorithm.

– Extensions... Competitors...

– Numerical experiments.
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Extensions of the algorithm

• A = AT ¨ 0. Then the algorithm computes the “leftmost

eigenvector”.

• Therefore, applied to −A, the algorithm computes the

rightmost eigenvector.

• Algorithm for the symmetric/positive-definite generalized

eigenvalue problem

Ax = λBx,

using the Rayleigh quotient y 7→ (yT Ay)/(yT By).

• Block version. The iterates are n × p matrices Y . The cost

function is Y 7→ trace
(

Y T AY (Y T BY )−1
)

and the relevant

domain is the Grassmann manifold.
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Competitors ?

• Scott [Sco81]. Restarted Lanczos method for the generalized

eigenproblem, superlinear convergence, without matrix

inversion.

But the storage space becomes very large to ensure superlinear

convergence. No proof of convergence.

• Golub and Ye [GY02]. Restarted Lanczos method for the

generalized eigenproblem.

But linear convergence (unless ideal preconditioning).

• SG algorithms of Lippert and Edelman [LE00]. Close precursors.

But global convergence and generalized eigenproblem not

considered.

• Nikpour et al. [NMMA04]...

(See also Mongeau and Torki [MT99].)
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Outline (Part 2)

• Trust-region in Rn.

• Trust-region on Riemannian manifolds.

– Description.

– Convergence analysis.

• Application: Minor Component Analysis.

– Properties of the trust-region algorithm.

– Extensions... Competitors...

– Numerical experiments.
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Numerical experiments
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Distance to target versus number of outer iterations.

Simple symmetric positive-definite eigenvalue problem.
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Numerical experiments
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Numerical experiments
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Numerical experiments
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Conclusion (I)

Trust-region method on Riemannian manifolds.

1. Convergence to stationary points for all initial conditions.

2. Stable convergence to the nondegenerate local minima.

3. Superlinear local convergence to the nondegenerate local

minima.

4. Approximate Hessian H only utilized as operator s 7→ Hs.

5. Minimal storage space required.
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Conclusion (II)

The “ideal” minor component algorithm

1. Convergence to some eigenvector for all initial conditions.

2. Stable convergence to the leftmost/rightmost eigenvector

only.

3. Superlinear local convergence to ±v1.

4. Matrix A only utilized as operator x 7→ Ax:

• No exact system solve with matrix A.

• No factorization of A.

5. Minimal storage space required.
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Current work

Hybrid Lanczos-tCG method.
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