The Karcher Mean of Points on $S O_{n}$

Knut Hüper
joint work with
Jonathan Manton (Univ. Melbourne)

Knut. Hueper@nicta.com.au

National ICT Australia Ltd.

- Introduction
- Introduction
- Centroids, Karcher mean, Fréchet mean
- Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case

Contents

- Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case
- Motivation, why $S O_{n}$

Contents

- Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case
- Motivation, why $S O_{n}$
- Radii of convexity and injectivity

Contents

- Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case
- Motivation, why $S O_{n}$
- Radii of convexity and injectivity
- Karcher mean on $S O_{n}$

Contents

- Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case
- Motivation, why $S O_{n}$
- Radii of convexity and injectivity
- Karcher mean on $S O_{n}$
- Cost function, gradient and Hessian

Contents

- Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case
- Motivation, why $S O_{n}$
- Radii of convexity and injectivity
- Karcher mean on $S O_{n}$
- Cost function, gradient and Hessian
- Newton-type algorithm

Contents

- Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case
- Motivation, why $S O_{n}$
- Radii of convexity and injectivity
- Karcher mean on $S O_{n}$
- Cost function, gradient and Hessian
- Newton-type algorithm
- Convergence results

Contents

- Introduction
- Centroids, Karcher mean, Fréchet mean
- The Euclidean case
- Motivation, why $S O_{n}$
- Radii of convexity and injectivity
- Karcher mean on $S O_{n}$
- Cost function, gradient and Hessian
- Newton-type algorithm
- Convergence results
- Discussion, outlook

Several ways to define a centroid x_{C}

Given $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$.

Several ways to define a centroid x_{C}

Given $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$.

1) As the sum

$$
x_{c}:=\frac{1}{n} \sum_{i=1}^{k} x_{i} .
$$

Several ways to define a centroid x_{C}

Given $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$.

1) As the sum

$$
x_{c}:=\frac{1}{n} \sum_{i=1}^{k} x_{i} .
$$

2) Equivalently, to ask the vector sum

$$
\overrightarrow{x_{1}}+\cdots+\overrightarrow{x x_{k}}
$$

to vanish.

Several ways to define a centroid x_{C}

3) (Appolonius of Perga) As unique minimum of

$$
x_{c}:=\operatorname{argmin}_{x \in \mathbb{R}} \sum_{i=1}^{k}\left\|x-x_{i}\right\|^{2} .
$$

Several ways to define a centroid x_{C}

3) (Appolonius of Perga) As unique minimum of

$$
x_{c}:=\operatorname{argmin}_{x \in \mathbb{R}} \sum_{i=1}^{k}\left\|x-x_{i}\right\|^{2} .
$$

4) More generally, assign to each x_{i} a mass m_{i},
$\sum m_{i}=1$. By induction

$$
\begin{aligned}
x_{c_{1,2}} & =\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \\
x_{c_{1,2,3}} & =\frac{\left(m_{1}+m_{2}\right) x_{c_{1,2}}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}, \ldots
\end{aligned}
$$

Also works on spheres.

Several ways to define a centroid x_{C}

5) Axiomatically:

Let $\Phi: \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \supset \Xi \rightarrow \mathbb{R}^{n}$ be a rule mapping points to its centroid.

Several ways to define a centroid x_{C}

5) Axiomatically:

Let $\Phi: \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \supset \Xi \rightarrow \mathbb{R}^{n}$ be a rule mapping points to its centroid.

Axioms:

(A1) Φ is symmetric in its arguments.
(A2) Φ is smooth.
(A3) Φ commutes with the induced action of $S E_{n}$ on $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$.
(A4) If $\Omega \subset \mathbb{R}^{n}$ is an open convex ball then Φ maps $\Omega \times \cdots \times \Omega$ into Ω.
(A1) Centroid is independent of the ordering of the points.
(A2) Small changes in the location of the points causes only small changes in x_{c}.
(A3) Invariance w.r.t. translation and rotation.
(A4) Centroid lies in the "same region" as the points themselves. Especially, $\Phi(x, ., x)=x$.

Why centroids on manifolds?

- Engineering, Mathematics, Physics

Why centroids on manifolds?

- Engineering, Mathematics, Physics
- statistical inferences on manifolds

Why centroids on manifolds?

- Engineering, Mathematics, Physics
- statistical inferences on manifolds
- pose estimation in vision and robotics

Why centroids on manifolds?

- Engineering, Mathematics, Physics
- statistical inferences on manifolds
- pose estimation in vision and robotics
- shape analysis and shape tracking

Why centroids on manifolds?

- Engineering, Mathematics, Physics
- statistical inferences on manifolds
- pose estimation in vision and robotics
- shape analysis and shape tracking
- fuzzy control on manifolds (defuzzification)

Why centroids on manifolds?

- Engineering, Mathematics, Physics
- statistical inferences on manifolds
- pose estimation in vision and robotics
- shape analysis and shape tracking
- fuzzy control on manifolds (defuzzification)
- smoothing data

Why centroids on manifolds?

- Engineering, Mathematics, Physics
- statistical inferences on manifolds
- pose estimation in vision and robotics
- shape analysis and shape tracking
- fuzzy control on manifolds (defuzzification)
- smoothing data
- plate tectonics

Why centroids on manifolds?

- Engineering, Mathematics, Physics
- statistical inferences on manifolds
- pose estimation in vision and robotics
- shape analysis and shape tracking
- fuzzy control on manifolds (defuzzification)
- smoothing data
- plate tectonics
- sequence dep. continuum modeling of DNA

Why centroids on manifolds?

- Engineering, Mathematics, Physics
- statistical inferences on manifolds
- pose estimation in vision and robotics
- shape analysis and shape tracking
- fuzzy control on manifolds (defuzzification)
- smoothing data
- plate tectonics
- sequence dep. continuum modeling of DNA
- comparison theorems (diff. geometry)

Why centroids on manifolds?

- Engineering, Mathematics, Physics
- statistical inferences on manifolds
- pose estimation in vision and robotics
- shape analysis and shape tracking
- fuzzy control on manifolds (defuzzification)
- smoothing data
- plate tectonics
- sequence dep. continuum modeling of DNA
- comparison theorems (diff. geometry)
- stochastic flows of mass distributions on manifolds (jets in gravitational field)

The special orthogonal group
 $S O_{n}$

$$
S O_{n}:=\left\{X \in \mathbb{R}^{n \times n} \mid X^{\top} X=I, \operatorname{det} X=1\right\} .
$$

The special orthogonal group S_{n}

$$
S O_{n}:=\left\{X \in \mathbb{R}^{n \times n} \mid X^{\top} X=I, \operatorname{det} X=1\right\} .
$$

Facts:

The special orthogonal group

$$
S O_{n}:=\left\{X \in \mathbb{R}^{n \times n} \mid X^{\top} X=I, \operatorname{det} X=1\right\} .
$$

Facts:
a) $S O_{n}$ is a Lie group,

The special orthogonal group

$$
S O_{n}:=\left\{X \in \mathbb{R}^{n \times n} \mid X^{\top} X=I, \operatorname{det} X=1\right\} .
$$

Facts:
a) $S O_{n}$ is a Lie group,
b) is in general not diffeomorphic to a sphere,

The special orthogonal group

$$
S O_{n}:=\left\{X \in \mathbb{R}^{n \times n} \mid X^{\top} X=I, \operatorname{det} X=1\right\} .
$$

Facts:
a) $S O_{n}$ is a Lie group,
b) is in general not diffeomorphic to a sphere,
c) can be equipped with a Riemannian metric, therefore notion of distance is available,

The special orthogonal group S_{n}

$$
S O_{n}:=\left\{X \in \mathbb{R}^{n \times n} \mid X^{\top} X=I, \operatorname{det} X=1\right\} .
$$

Facts:
a) $S O_{n}$ is a Lie group,
b) is in general not diffeomorphic to a sphere,
c) can be equipped with a Riemannian metric, therefore notion of distance is available,
d) is compact and connected, but in general not simply connected.
a) We think of $S O_{n}$ as a submanifold of $\mathbb{R}^{n \times n}$.

Geometry of $S O_{n}$

a) We think of $S O_{n}$ as a submanifold of $\mathbb{R}^{n \times n}$. b) Tangent space
$T_{X} S O_{n} \cong\left\{X A \mid A \in \mathbb{R}^{n \times n}, A^{\top}=-A\right\}$.

Geometry of $S O_{n}$

a) We think of $S O_{n}$ as a submanifold of $\mathbb{R}^{n \times n}$.
b) Tangent space
$T_{X} S O_{n} \cong\left\{X A \mid A \in \mathbb{R}^{n \times n}, A^{\top}=-A\right\}$.
c) (Scaled) Frobenius inner product on $\mathbb{R}^{n \times n}$

$$
\langle U, V\rangle=\frac{1}{2} \operatorname{tr}\left(V^{\top} U\right)
$$

restricts to

$$
\langle X U, X V\rangle=\frac{1}{2} \operatorname{tr}\left(V^{\top} U\right), \quad U, V \in T_{X} S O_{n}
$$

Gives Riemannian metric on $S O_{n}$.

Geometry of $S O_{n}$ cont'd

d) Let $X \in S O_{n}, \Omega^{\top}=-\Omega \in \mathbb{R}^{n \times n}$.

| Geometry of $S O_{n}$ cont'd

d) Let $X \in S O_{n}, \Omega^{\top}=-\Omega \in \mathbb{R}^{n \times n}$.

$$
\begin{aligned}
\gamma: \mathbb{R} & \rightarrow S O_{n}, \\
t & \mapsto X \cdot e^{t \cdot \Omega}
\end{aligned}
$$

is a geodesic through $X=\gamma(0)$.

| Geometry of $S O_{n}$ cont'd

d) Let $X \in S O_{n}, \Omega^{\top}=-\Omega \in \mathbb{R}^{n \times n}$.

$$
\begin{aligned}
\gamma: \mathbb{R} & \rightarrow S O_{n} \\
t & \mapsto X \cdot \mathrm{e}^{t \cdot \Omega}
\end{aligned}
$$

is a geodesic through $X=\gamma(0)$.

$$
\int_{0}^{T}\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle^{\frac{1}{2}} \mathrm{~d} t
$$

is minimal (for T not too large..)

Geometry of $S O_{n}$ cont'd

e) Squared distance between any two points

$$
X, Y \in S O_{n}
$$

Geometry of $S O_{n}$ cont'd

e) Squared distance between any two points

$$
X, Y \in S O_{n}
$$

$$
\begin{aligned}
d^{2}(X, Y) & =\frac{1}{2} \min _{\substack{A^{\top}=-A \\
\exp (A)=X^{\top} Y}} \operatorname{tr}\left(A A^{\top}\right) \\
& =-\frac{1}{2} \operatorname{tr}\left(\log \left(X^{\top} Y\right)\right)^{2}
\end{aligned}
$$

Centroid of $S O_{n}$ by axioms

Let

$$
\Xi \subset S O_{n} \times \cdots \times S O_{n}
$$

be open and consider $\Phi: \Xi \rightarrow S O_{n}$.

Centroid of $S O_{n}$ by axioms

Let

$$
\Xi \subset S O_{n} \times \cdots \times S O_{n}
$$

be open and consider $\Phi: \Xi \rightarrow S O_{n}$. (A1) Φ is symmetric in its arguments.

Centroid of $S O_{n}$ by axioms

Let

$$
\Xi \subset S O_{n} \times \cdots \times S O_{n}
$$

be open and consider $\Phi: \Xi \rightarrow S O_{n}$. (A1) Φ is symmetric in its arguments. (A2) Φ is smooth.

Centroid of $S O_{n}$ by axioms

Let

$$
\Xi \subset S O_{n} \times \cdots \times S O_{n}
$$

be open and consider $\Phi: \Xi \rightarrow S O_{n}$. (A1) Φ is symmetric in its arguments. (A2) Φ is smooth.
(A3) Φ commutes with left and right translation.

Centroid of $S O_{n}$ by axioms

Let

$$
\Xi \subset S O_{n} \times \cdots \times S O_{n}
$$

be open and consider $\Phi: \Xi \rightarrow S O_{n}$. (A1) Φ is symmetric in its arguments. (A2) Φ is smooth.
(A3) Φ commutes with left and right translation. (A4) If $\Omega \subset S O_{n}$ is an open convex ball then Φ maps $\Omega \times \cdots \times \Omega$ into Ω.

Notion of convexity

$\Omega \subset S O_{n}$ is defi ned to be convex if for any $X, Y \in S O_{n}$ there is a unique geodesic wholly contained in Ω connecting X to Y and such that it is also the unique minimising geodesic in $S O_{n}$ connecting X to Y.

Notion of convexity

$\Omega \subset S O_{n}$ is defi ned to be convex if for any $X, Y \in S O_{n}$ there is a unique geodesic wholly contained in Ω connecting X to Y and such that it is also the unique minimising geodesic in $S O_{n}$ connecting X to Y.
A function $f: \Omega \rightarrow \mathbb{R}$ is convex if for any geodesic $\gamma:[0,1] \rightarrow \Omega$, the function $f \circ \gamma:[0,1] \rightarrow \mathbb{R}$ is convex in the usual sense, that is,

$$
f(\gamma(t)) \leq(1-t) f(\gamma(0))+t f(\gamma(1)), \quad t \in[0,1] .
$$

Notion of convexity

Maximal convex ball (centered at the identity I_{n})

Notion of convexity cont'd

Maximal convex ball (centered at the identity I_{n})

$$
B(I, r)=\left\{X \in S O_{n} \mid d(I, X)<r\right\} .
$$

$r_{\text {conv }}$ is the largest r s.t. $B(I, r)$ is convex and $d(I, X)$ is convex on $B(I, r)$.

Notion of convexity cont'd

Maximal convex ball (centered at the identity I_{n})

$$
B(I, r)=\left\{X \in S O_{n} \mid d(I, X)<r\right\} .
$$

$r_{\text {conv }}$ is the largest r s.t. $B(I, r)$ is convex and $d(I, X)$ is convex on $B(I, r)$.
Theorem: For $S O_{n}$ it holds $r_{\text {conv }}=\frac{\pi}{2}$.

Injectivity radius

For $\mathfrak{s o}_{n}:=\left\{A \in \mathbb{R}^{n \times n} \mid A^{\top}=-A\right\}$ let

$$
\begin{aligned}
\exp : \mathfrak{s o}_{n} & \rightarrow S O_{n}, \\
\Psi & \mapsto \exp (\Psi),
\end{aligned}
$$

and

$$
B(0, \rho)=\left\{A \in \mathfrak{s o}_{n} \left\lvert\, \frac{1}{2} \operatorname{tr} A^{\top} A<\rho^{2}\right.\right\} .
$$

Injectivity radius

For $\mathfrak{s o}_{n}:=\left\{A \in \mathbb{R}^{n \times n} \mid A^{\top}=-A\right\}$ let

$$
\begin{aligned}
\exp : \mathfrak{s o}_{n} & \rightarrow S O_{n}, \\
\Psi & \mapsto \exp (\Psi),
\end{aligned}
$$

and

$$
B(0, \rho)=\left\{A \in \mathfrak{s o}_{n} \left\lvert\, \frac{1}{2} \operatorname{tr} A^{\top} A<\rho^{2}\right.\right\} .
$$

The injectivity radius $r_{\text {inj }}$ of $\mathfrak{s o}_{n}$ is the largest ρ s.t. $\left.\exp \right|_{B(0, \rho)}$ is a diffeomorphism onto its image.

Injectivity radius

For $\mathfrak{s o}_{n}:=\left\{A \in \mathbb{R}^{n \times n} \mid A^{\top}=-A\right\}$ let

$$
\begin{aligned}
\exp : \mathfrak{s o}_{n} & \rightarrow S O_{n}, \\
\Psi & \mapsto \exp (\Psi),
\end{aligned}
$$

and

$$
B(0, \rho)=\left\{A \in \mathfrak{s o}_{n} \left\lvert\, \frac{1}{2} \operatorname{tr} A^{\top} A<\rho^{2}\right.\right\} .
$$

The injectivity radius r_{inj} of $\mathfrak{s o}_{n}$ is the largest ρ s.t. $\left.\exp \right|_{B(0, \rho)}$ is a diffeomorphism onto its image. Theorem: For $\mathfrak{s o}_{n}$ it holds $r_{\text {inj }}=\pi$.

Let $\Omega \subset S O_{n}$ be open.

Karcher mean on SO_{n}

Let $\Omega \subset S O_{n}$ be open.
A Karcher mean of $Q_{1}, \ldots, Q_{k} \in S O_{n}$ is defined to be a minimiser of

$$
\begin{aligned}
& f: \Omega \rightarrow \mathbb{R} \\
& f(X)=\sum_{i=1}^{k} d^{2}\left(Q_{i}, X\right) .
\end{aligned}
$$

Karcher mean on SO_{n}

Let $\Omega \subset S O_{n}$ be open.
A Karcher mean of $Q_{1}, \ldots, Q_{k} \in S O_{n}$ is defined to be a minimiser of

$$
\begin{aligned}
& f: \Omega \rightarrow \mathbb{R} \\
& f(X)=\sum_{i=1}^{k} d^{2}\left(Q_{i}, X\right) .
\end{aligned}
$$

Existence, uniqueness?

Results

Theorem (MH'04):

The critical points of

$$
\begin{aligned}
& f: \Omega \rightarrow \mathbb{R}, \\
& f(X)=\sum_{i=1}^{k} d^{2}\left(Q_{i}, X\right)
\end{aligned}
$$

are precisely the solutions of

$$
\sum_{i=1}^{k} \log \left(Q_{i}^{\top} X\right)=0
$$

Results

Theorem (MH'04):

The Karcher mean is well defined and satisfies axioms (A1)-(A4) of a centroid on the open set

$$
\Xi=\bigcup_{Y \in S O_{n}} B(Y, \pi / 2) \times \cdots \times B(Y, \pi / 2) .
$$

Results

Theorem (MH'04):
The Hessian of f represented along geodesics

$$
\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}(f \circ \gamma)(t)\right|_{t=0}
$$

is always positive definite.

$$
\left\lvert\, \begin{aligned}
& f, g r a d ~ f a n d ~ \\
& \text { Hessian explicitly }
\end{aligned}\right.
$$

$$
\begin{aligned}
& f: \Omega \rightarrow \mathbb{R} \\
& f(X)=\sum_{i=1}^{k} d^{2}\left(Q_{i}, X\right)=-\sum_{i=1}^{k} \frac{1}{2} \operatorname{tr}\left(\log \left(X^{\top} Q_{i}\right)\right)^{2} .
\end{aligned}
$$

$$
\left\lvert\, \begin{aligned}
& f, g r a d ~ f a n d ~ \\
& \text { Hessian explicitly }
\end{aligned}\right.
$$

$$
\begin{aligned}
& f: \Omega \rightarrow \mathbb{R}, \\
& f(X)=\sum_{i=1}^{k} d^{2}\left(Q_{i}, X\right)=-\sum_{i=1}^{k} \frac{1}{2} \operatorname{tr}\left(\log \left(X^{\top} Q_{i}\right)\right)^{2} . \\
& \mathrm{D} f(X) X A=-\sum_{i=1}^{\sum_{i=1}^{k} \operatorname{tr}\left(\log \left(Q_{i}^{\top} X\right) A\right)} \\
& =\langle\underbrace{2 X \sum_{i=1}^{k} \log \left(Q_{i}^{\top} X\right)}_{=\operatorname{grad} f(X)}, X A\rangle .
\end{aligned}
$$

$$
\left\lvert\, \begin{aligned}
& f, g r a d ~ f a n d ~ \\
& \text { Hessian explicitly }
\end{aligned}\right.
$$

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} \varepsilon^{2}} f\left(X \mathrm{e}^{\varepsilon A}\right)_{\varepsilon=0}=\operatorname{vec}^{\top} A \cdot \mathcal{H}(X) \cdot \operatorname{vec} A
$$

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} \varepsilon^{2}} f\left(X \mathrm{e}^{\varepsilon A}\right)_{\varepsilon=0}=\operatorname{vec}^{\top} A \cdot \mathcal{H}(X) \cdot \operatorname{vec} A
$$

with $\left(n^{2} \times n^{2}\right)$-matrix

$$
\mathcal{H}(X):=\sum_{i=1}^{k} Z_{i}(X) \operatorname{coth}\left(Z_{i}(X)\right)
$$

$f, \operatorname{grad} f$ and Hessian explicitly

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} \varepsilon^{2}} f\left(X \mathrm{e}^{\varepsilon A}\right)_{\varepsilon=0}=\operatorname{vec}^{\top} A \cdot \mathcal{H}(X) \cdot \operatorname{vec} A
$$

with $\left(n^{2} \times n^{2}\right)$-matrix

$$
\mathcal{H}(X):=\sum_{i=1}^{k} Z_{i}(X) \operatorname{coth}\left(Z_{i}(X)\right)
$$

and

$$
Z_{i}(X):=\frac{I_{n} \otimes \log \left(Q_{i}^{\top} X\right)+\log \left(Q_{i}^{\top} X\right) \otimes I_{n}}{2}
$$

Algorithm

Given $Q_{1}, ., Q_{k} \in S O_{n}$, compute a local minimum of f.
Step 1: Set $X \in S O_{n}$ to an initial estimate.
Step 2: Compute $\sum_{i=1}^{k} \log \left(Q_{i}^{\top} X\right)$.
Step 3: Stop if $\left\|\sum_{i=1}^{k} \log \left(Q_{i}^{\top} X\right)\right\|$ is suff. small.
Step 4: Compute the update direction

$$
\operatorname{vec} A_{\mathrm{opt}}=-(\mathcal{H}(X))^{-1} \sum_{i=1}^{k} \operatorname{vec}\left(\log \left(Q_{i}^{\top} X\right)\right)
$$

Step 5: Set $X:=X \mathrm{e}^{A_{\mathrm{opt}}}$.
Step 6: Go to Step 2.

Theorem (MH'04):
The algorithm is an intrinsic Newton method.

Results

Theorem (MH'04):
The algorithm is an intrinsic Newton method. Theorem:
If the algorithm converges, then it converges
locally quadratically fast.

Discussion, outlook
 ICT AUSTRALIA

- Need simple test to ensure that update step in algorithm remains in open convex ball \Rightarrow global convergence.

Discussion, outlook

- Need simple test to ensure that update step in algorithm remains in open convex ball \Rightarrow global convergence.
- Different RM, e.g. Cayley-like, gives different function, geodesics, etc.., but typically
$\left\|K M_{\text {cay }}-K M_{\text {exp }}\right\| \ll 1$.

Discussion, outlook

- Need simple test to ensure that update step in algorithm remains in open convex ball \Rightarrow global convergence.
- Different RM, e.g. Cayley-like, gives different function, geodesics, etc.., but typically
$\left\|K M_{\text {cay }}-K M_{\text {exp }}\right\| \ll 1$.
- $(\mathcal{H}(X))^{-1}$ via EVD.

Discussion, outlook

- Need simple test to ensure that update step in algorithm remains in open convex ball \Rightarrow global convergence.
- Different RM, e.g. Cayley-like, gives different function, geodesics, etc.., but typically
$\left\|K M_{\text {cay }}-K M_{\exp }\right\| \ll 1$.
- $(\mathcal{H}(X))^{-1}$ via EVD.
- Quasi-Newton (rank-one updates).

Discussion, outlook

- Linear convergent algorithm (joint work with Robert Orsi, ANU)

$$
X_{i+1}=X_{i} \mathrm{e}^{\frac{1}{k} \sum_{j=1}^{k} \log \left(X_{i}^{\top} Q_{j}\right)}
$$

Discussion, outlook

- Linear convergent algorithm (joint work with Robert Orsi, ANU)

$$
X_{i+1}=X_{i} \mathrm{e}^{\frac{1}{k} \sum_{j=1}^{k} \log \left(X_{i}^{\top} Q_{j}\right)}
$$

- Centroids on homogeneous (symmetric) spaces.

Discussion, outlook

- Linear convergent algorithm (joint work with Robert Orsi, ANU)

$$
X_{i+1}=X_{i} \mathrm{e}^{\frac{1}{k} \sum_{j=1}^{k} \log \left(X_{i}^{\top} Q_{j}\right)}
$$

- Centroids on homogeneous (symmetric) spaces.
- Project with NICTA vision/robotic program (Richard Hartley) to treat $S E_{3}$ case.

