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define a centroid z~

Given xq, ...,z € R".
1) As the sum

1 k
LEC :: - ZZEZ.
n ;=1

2) Equivalently, to ask the vector sum

—> —>
TL1 + +* + TTk

to vanish.
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define a centroid z~

3) (Appolonius of Perga) As unique minimum of

k

T. = argmin, g > ||z — x;
i=1

I*

4) More generally, assign to each x; a mass m;,
>m; = 1. By Induction

™M1 T Mo X9

ZCC1,2 T

mi -+ Mo —+ M3

AISO Works On Spheres. CESAME LLN, 15/7/04 — p.4/25



‘ Se\{eral WayS tc-) @:?Eg:ﬁ:@
define a centroid z~

5) Axiomatically:
Letd : R"” x --- x R" D = — R" be a rule mapping
points to Iits centroid.

CESAME LLN, 15/7/04 — p.5/25



’ Se\{eral WayS t(_) @:TA:JSC:;{\I:O
define a centroid z~

5) Axiomatically:

Letd :R"” x --- x R" D = — R" be a rule mapping

points to Iits centroid.

AXioms:

(Al) ® Is symmetric In its arguments.

(A2) ® Is smooth.

(A3) ® commutes with the induced action of SF,,
on R"” x --- x R",

(A4) If (2 C R"™ Is an open convex ball then ® maps
() x --- x QInto €.
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O AXIiOMS (e pumzmc

(Al) Centroid is independent of the ordering of
the points.

(A2) Small changes in the location of the points
causes only small changes in z...

(A3) Invariance w.r.t. translation and rotation.

(A4) Centroid lies In the "same region' as the
points themselves. Especially, ®(z,.,z) = .
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manifolds?

e Engineering, Mathematics, Physics
statistical inferences on manifolds
pose estimation in vision and robotics
shape analysis and shape tracking
fuzzy control on manifolds (defuzzification)
smoothing data
plate tectonics
sequence dep. continuum modeling of DNA
comparison theorems (diff. geometry)

stochastic flows of mass distributions on
manifolds (jets in gravitational field)
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The special
O orthogonal group @fﬁfl&ﬁﬂﬁi@
SO,

SO, ={X e R""X"'X =1I,det X = 1}.

Facts:
a) SO,, Is a Lie group,

b) is in general not diffeomorphic to a sphere,
c) can be equipped with a Riemannian metric,
therefore notion of distance is available,

d) Is compact and connected, but in general
not simply connected.
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® Geometry of SO, @fﬁfld:i::ﬁ:o

a) We think of 50O,, as a submanifold of R"*".
b) Tangent space

TxSO, = {XAlAecR™" A" = —A}.
c) (Scaled) Frobenius inner product on R"*"

(U, V) = %tr(VTU)

restricts to
1
(XU, XV) = §tf(vTU), UV eTxS0,.

Gives Riemannian metric on SO,,.
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PN Geometry of SO,
cont’'d

d) Let X € SO,, QT = —Q € R,

v: R — SO,,

IS a geodesic through X = ~(0).

[ G, 4 ()¢ de

IS minimal (for 1" not too large..)

AAAAAAAAAAAA
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® Geometry of SO, o
cont’d <E>

e) Squared distance between any two points

X,Y € 50,
2 1 : T
d°(X,Y)== min tr(AA")
2 AT=-A
exp(4)=X"Y

—% tr(log(XTY))?
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® Centroid of SO, by @ =
axioms

Let
= C SO, x---x 50,

be open and consider ¢ : = — S0O,,.

(Al) ® Is symmetric In Its arguments.

(A2) ® Is smooth.

(A3) & commutes with left and right translation.
(A4) If Q2 C S0O,, I1s an open convex ball then ®
maps {1 x --- x ) into ().
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® Notion of convexity @

) C 50,, is defined to be convex if for any

X, Y € SO, there iIs a uniqgue geodesic wholly
contained in ) connecting X to Y and such that it
IS also the unique minimising geodesic in SO,,
connecting X to Y.

A function f : {) — R Is convex If for any geodesic
v :10,1] — €, the function fo~y:[0,1] — Ris
convex in the usual sense, that is,

f(y(@) < (1 =1)f(7v(0)) +tf((1)), tel0,1].
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® Notion of convexity @pzzmio
cont’d

Maximal convex ball (centered at the identity I,

B(l,r) ={X € SO,|d(I,X) <r}.
rconv 1S the largest r s.t. B(/,r) is convex and
d(I,X)is convex on B(I,r).

Theorem: For SO, it holds r¢ony = 5.




» Injectivity radius @

For 50, := {A € R""|A' = —A} let

exp : s0,, — SO,
U — exp(V),

and
B(0,p) = {A € s0,|5tr ATA < p?}.
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® Injectivity radius (epuzno

For so, := {A € R"”"|A' = —A} let
exp : s0,, — SO,

U — exp(V),

and
B(0,p) = {A € s0,|5tr ATA < p?}.

The Injectivity radius riy; of so,, Is the largest p s.t.
exp | p(o,p) IS @ diffeomorphism onto its image.
Theorem: For so,, it holds 7, = .
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Karcher mean on
O SO, @ AAAAAAAAAAAA O

Let ) C SO, be open.
A Karcher mean of ()¢, ...,Q; € SO, is defined to
be a minimiser of

f: Q0 —-R,
k

Existence, uniqueness?



O Results

Theorem (MH’04):
The critical points of

f Q0 — R,

F(X) = z 2(0:, X)

are precisely the solutions of

k
log(Q; X) = 0.
=1

.

(4

AAAAAAAAAAAA



® Results G 15

Theorem (MH’04):

The Karcher mean is well defined and satisfies
axioms (Al)-(A4) of a centroid on the open set

~= |J BY,7/2)x---x B(Y,n/2).
YeSOo,,
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® Results G 15

Theorem (MH’04):
The Hessian of f represented along geodesics

d2

@(fOW)(t)

t=0

IS always positive definite.

CESAME LLN, 15/7/04 — p.19/25



f, grad f and @ s

Hessian explicitly

f:Q—R,

F(X) = éd?(@i, X) = — é %tr(log(XTQi))Q.

1=1



f, grad f and (oo

Hessian explicitly

f Q0 — R,

F(X) = z 2(Qr, X) —

k
-3 % tr(log(X T Q:)2.

D f(X)XA = — 3" tr(log(Q] X)A)

1=1

— <2X gjjl log(Q; X), XA> .

\

7

:graarf (X)



d2

d e?

f, grad f and

Hessi
S
ian explicitly —"

(XesA) L T
e= =V
, =vec A-H(X)-vecA
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@ ‘ frgrad fand @.’!ﬁ:&ﬁ:ﬂt‘.:o

Hessian explicitly

d2
de2

with (n? x n?)—matrix

(X egA)gzo =vec' A-H(X) - vecA

and




@ Algorithm (e pumzmc

Given ()1, ., Q. € SO,,, compute a local minimum
of f.
Step 1: Set X € S0O,, to an initial estimate.

k
Step 2: Compute Z log(Q.! X).

Step 3: Stop if | 2 log(Q.! X)|| is suff. small.
Step 4. Compute the update direction

vee Agy = —(H(X))™! £ vee(log(Q] X))

Step 5: Set X := X eforr,
Step 6: Go to Step 2.
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® Results G 15

neorem (MH’04):

ne algorithm is an intrinsic Newton method.
neorem:

If the algorithm converges, then it converges
locally quadratically fast.

CESAME LLN, 15/7/04 — p.23/25
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NATIONAI.

Discussion, outlook (e

* Need simple test to ensure that update step In
algorithm remains in open convex ball =
global convergence.

o Different RM, e.g. Cayley-like, gives different
function, geodesics, etc.., but typically

o (H(X)) ! via EVD.
e Quasi-Newton (rank-one updates).

C ME LLN, 15/7/04 — p.24/25
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NATIONAL

Discussion, outlook (e

e Linear convergent algorithm
(Joint work with Robert Orsi, ANU)

X, = X, eF X1 loe(X/ Q)
e Centroids on homogeneous (symmetric)

spaces.

e Project with NICTA vision/robotic program
(Richard Hartley) to treat S F5 case.
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