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lterative Algorithms
® : M — M iteration map
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9 Control Introduction

lterative Algorithms
® : M — M iteration map

xtEM, ZCt—>CEt_|_1EM

Shifted lterative Algorithms
®: M x U — M iteration map, U set of shift parameters

Ty € M,Ut elu (ZCt,ut) — Ti41 c M

Example: Shifted Inverse lteration on S”~1.
AecR™ M=S""1 UU=R\o(A).
lteration Step

(A—ul) o
I(A = ul)= x|

d: MxU— M, O(x,u) =

Dynamical systems and Computation Day — p.3/23
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9 Control Introduction

lterative Algorithms
® : M — M iteration map

xtEM, ZCt—>CEt_|_1EM

Shifted lterative Algorithms
®: M x U — M iteration map, U set of shift parameters

Ty € M,Ut elu (ZCt,ut) — Ti41 c M

Observation: (M,U, ®) describes a discrete-time control System:

rg € M

Ti+1 = (I)(xtaut)
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9 Control Introduction

Motivation:

© Control theoretical description of numerical algorithms

@ Better understanding of algorithms

© Optimization of shift strategies using control theoretical tools
@ Justify existing shift strategies
¢

Creation of new algorithms
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Example I: Shifted Inverse lteration on Projective Spaces

© AcF~ "

@ M =TFP" ! = {Set of one dimensional subspaces of F"}
© U=F\o(A)

© . M xU — M defined by

(X, u)=(A—ul)" X
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Example I: Shifted Inverse lteration on Projective Spaces

© AcF~ "

@ M =TFP" ! = {Set of one dimensional subspaces of F"}
© U=F\o(A)

© . M xU — M defined by

(X, u)=(A—ul)" X

Questions and remarks:

© C(Can we find feedback controls to reach eigenvectors by arbitrary
initial points?

@ C(Can we find feedback controls to reach specific eigenvectors by
arbitrary initial points?
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Example Il: Shifted Inverse lteration on Grassmann Manifolds

¢ A c Ran
@ M = Grass(p,n) = {Set of p-dimensional subspaces of R"}
@ U set of feedback maps F': ST (p,n) — RP*P

U=1{VX € ST(p,n),YM € GL,(R) : F(XM) =M 'F(X)M}

© &: M xU — M defined by procedure

1) Choose X € ST(p,n) such that (X) =X
2) Solve AX+ — X+F(X) = X
3) (X, F):=XT :=(XT)

Dynamical systems and Computation Day — p.6/23
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Example Il: Shifted Inverse lteration on Grassmann Manifolds

Questions and remarks

@ The choice FF = R with R(X) = (XTX) !XT AX leads to
Grassmann Rayleigh Quotient lteration (Absil, Mahony, Sepulchre,
Van Dooren, 2002).

© Does the Grassmann Rayleigh Quotient lteration has global
convergence properties?

© C(Can we find feedback laws for global convergence?

@ C(Can we find feedback laws for global convergence to a specific
eigenspace?
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@Cmtrol Examples
Example llI: Shifted Inverse lteration on Flag Manifolds

@ AcFmxn

© M =Flag(F") ={V=(V1,...,V)|V; C Viy1,dimp V; =i}
© U=F\o(A)

© . M xU — M defined by

dV,u) = (A—ul)""Vi,...,(A—ul)~'V,)
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Example llI: Shifted Inverse lteration on Flag Manifolds

@ AcFmxn

© M =Flag(F") ={V=(V1,...,V)|V; C Viy1,dimp V; =i}
© U=F\o(A)

© . M xU — M defined by

dV,u) = (A—ul)""Vi,...,(A—ul)~'V,)

Questions and Remarks

@ Algorithm is closely related to the QR algorithm (on isospectral
manifolds).

© C(Can we steer to arbitrary eigenflags?

Dynamical systems and Computation Day — p.8/23
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Example IV: Shifted QR Algorithm on Isospectral Manifolds

0 A c C’I’LX’H,

M ={Q*AQ|Q € U,(C)}
U=C\o(A)

®: M xU — M defined by

(X, u) = (X — uI)%n(C)(X —ul)(X —ul)y, ()

where (X — ul)y, (c) is the unitary factor of the QR decomposition
of (X —ul).

Dynamical systems and Computation Day — p.9/23
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Example V: Shifted Inverse lteration on Hessenberg Manifolds

© Ac ™" regular

© M =Hesss(F")={V=(1,...,V,) € Flag(F") | AV; C V;11}
© U=F\o(A)

© . M xU — M defined by

dV,u) = (A—ul)""Vi,...,(A—ul)~'V,)
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Example V: Shifted Inverse lteration on Hessenberg Manifolds

© Ac ™" regular

© M =Hesss(F")={V=(1,...,V,) € Flag(F") | AV; C V;11}
© U=F\o(A)

© . M xU — M defined by

dV,u) = (A—ul)""Vi,...,(A—ul)~'V,)

Questions and Remarks

© Algorithm is closely related to the QR algorithm on Hessenberg
Matrices.

© C(Can we steer to arbitrary Hessenberg eigenflags?

Dynamical systems and Computation Day — p.10/23
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Example VI: Restart-Shifts of Krylov Methods

© M = Grass(p,n)

@ U =Rt

@ 1) cR"\ {0}, K(xg) = (xg, Axg, ..., AP71xy) € M
© &: M xU — M defined by

O(K(x),u) =u(A)K(x) = K(u(A)x)
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Example VI: Restart-Shifts of Krylov Methods

© M = Grass(p,n)

@ U =Rt

@ 1) cR"\ {0}, K(xg) = (xg, Axg, ..., AP71xy) € M
© &: M xU — M defined by

O(K(x),u) =u(A)K(x) = K(u(A)x)

Questions and Remarks

@ Find shifts to approximate specific eigenspaces (Beattie, Embree,
Sorensen, Rossi).
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System ¥ = (M, U, D); xp.
Definition: Reachable set of zg € M

R(xg) := {x wich can be reached from x in finite many steps}
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System ¥ = (M, U, D); xp.
Definition: Reachable set of zg € M

R(xg) := {x wich can be reached from x in finite many steps}

Definition: &k € N, &, : M x U - M
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System ¥ = (M, U, D); xp.
Definition: Reachable set of zg € M

R(xg) := {x wich can be reached from x in finite many steps}

Definition: &k € N, &, : M x U - M

Proposition:

R(zo) ={z e M|INeN,FucU” : 2 = dn(20,u)}
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Qcm Reachable Sets

System ¥ = (M, U, D).
Definition: Reachable set of zg € M

R(xg) := {x wich can be reached from x in finite many steps}
Definition: System Semigroup

[y :={®: M- M|INcN,FuclU" :d=dy(-,u)}
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gcmrol Reachable Sets

System ¥ = (M, U, D).
Definition: Reachable set of zg € M

R(xg) := {x wich can be reached from x in finite many steps}
Definition: System Semigroup
s ={® M —->M|INeN,FuclU" :®=dy(,u)}

Proposition: The reachable set of o € M is always an orbit of the
semigroup action a: I's x M — M, a(®,x) = ®(z). l.e

R(xg) = a(I's, xq)
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gcmol Reachable Sets

System ¥ = (M, U, D).
Definition: Reachable set of zg € M

R(xg) := {x wich can be reached from x in finite many steps}
Definition: System Semigroup
s ={® M —->M|INeN,FuclU" :®=dy(,u)}

Proposition: The reachable set of o € M is always an orbit of the
semigroup action a: I's x M — M, a(®,x) = ®(z). l.e

R(xg) = a(I's, xq)

Corollary: If I's; is a group the reachable sets form a partition on M.
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Example |, Il and IV (Scalar Shifted Inverse Iteration)

@ AcTF™" regular, M = FP" ! Flag(F"), Hess 4 (F"),
U=F\oc(A)

© O: M xU — M defined by ®(z,u) = (A—ul)™! -2
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Example |, Il and IV (Scalar Shifted Inverse Iteration)

@ AcTF™" regular, M = FP" ! Flag(F"), Hess 4 (F"),
U=F\oc(A)

© O: M xU — M defined by ®(z,u) = (A—ul)™! -2
Proposition: For all Scalar Shifted Inverse Iterations

Iy ={][(A—ud)" |N eN,u €F\ o(A)}

t=1
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Example |, Il and IV (Scalar Shifted Inverse Iteration)
@ AcTF™" regular, M = FP" ! Flag(F"), Hess 4 (F"),
U=F\oc(A)
© O: M xU — M defined by ®(z,u) = (A—ul)™! -2

Proposition: For all Scalar Shifted Inverse Iterations

Iy :={][(A—wI)™"|N € N,u; € F\ o(A)}

t=1

Theorem: (Helmke, J 2002) For F = C, I'; is a Group. If A is
diagonalizable then I's; is homeomorphic to (C*)* whereas k is the
number of different eigenvalues of A.
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Example |, Il and IV (Scalar Shifted Inverse Iteration)
@ AcTF™" regular, M = FP" ! Flag(F"), Hess 4 (F"),
U=F\oc(A)
© O: M xU — M defined by ®(z,u) = (A—ul)™! -2

Proposition: For all Scalar Shifted Inverse Iterations

Iy :={][(A—wI)™"|N € N,u; € F\ o(A)}

t=1

Theorem: (Helmke, J 2002) For F = C, I'; is a Group. If A is
diagonalizable then I's; is homeomorphic to (C*)* whereas k is the
number of different eigenvalues of A.

Theorem: (J 2003) For F = R there exists an open set of Matrices

S C R™" ™ such that I'y; is not a Group.

Dynamical systems and Computation Day — p.14/23
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Example |, Shifted Inverse Iteration on CP"~!
@ AcC"*", cyclic (i.e: it exists v € C™ such that
(x, Az, A%z, ... A" lx) = C").
@ M=Cpr!
© U=C\o(A)
© O: M xU — M defined by ®(z,u) = (A —ul)™! 2
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Example |, Shifted Inverse Iteration on CP"~!
@ AcC"*", cyclic (i.e: it exists v € C™ such that
(x, Az, A%z, ... A" lx) = C").
@ M=Cpr!
© U=C\o(A)
© O: M xU — M defined by ®(z,u) = (A —ul)™! 2

Theorem: (Helmke, Fuhrmann 2000) Let F = C and A be cyclic. There is

a bijective correspondence between the closures of the reachable sets R(x)

and the A-invariant subspaces of C”.

Dynamical systems and Computation Day — p.15/23
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- Controllability

System ¥ = (M, U, D).

Definition: System > = (M, U, @) is said to be controllable if there exist
xo € M such that every point in M can be reached from z( at least
arbitrarily close. (l.e.

drg € M : R([l?o) =M
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- Controllability

System ¥ = (M, U, D).

Definition: System > = (M, U, @) is said to be controllable if there exist
xo € M such that every point in M can be reached from z( at least
arbitrarily close. (l.e.

drg € M : R([Bo) =M

Remark: If ¥ = (M,U, D) is controllable and I's; is a group, then every

neighbourhood can be reached from every neighbourhood.

Dynamical systems and Computation Day — p.16/23
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Example I, Shifted Inverse Iteration on FP"~!

‘ AG]FTLX’I’L
® M =TFp!
@ U=T)\o(A)

© O: M xU — M defined by ®(z,u) = (A—ul)™! 2
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- Controllability

Example I, Shifted Inverse Iteration on FP"~!

‘ AE]FTLXTL
® M =TFpr!
@ U=T)\o(A)

© O: M xU — M defined by ®(z,u) = (A—ul)™! 2

Theorem:(Helmke, Fuhrmann 2000)
Let F = C. Shifted Inverse Iteration on CP"~! is controllable if and only if
A'is cyclic (i.e.: it exists v € C™ such that (x, Az, A%z,... A" 1z) = C").
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%@.Dynamics

- Controllability

Example I, Shifted Inverse Iteration on FP"~!

0 A c IE."nX’I’L

®© M=TFp!

© U=F\o(A)

© O: M xU — M defined by ®(z,u) = (A—ul)™! 2
Theorem:(Helmke, Fuhrmann 2000)

Let F = C. Shifted Inverse Iteration on CP"~! is controllable if and only if
A'is cyclic (i.e.: it exists v € C™ such that (x, Az, A%z,... A" 1z) = C").

Corollary: For F = C, A cyclic. One can steer nearly every initial point to
every specific target point.

Dynamical systems and Computation Day — p.17/23
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- Controllability

Example |, Shifted Inverse Iteration on FP"~1

0 A c IE."nX’I’L

®© M=TFp!

© U=F\o(A)

© O: M xU — M defined by ®(z,u) = (A—ul)™! 2
Theorem:(Helmke, Fuhrmann 2000)

Let F = C. Shifted Inverse Iteration on CP"~! is controllable if and only if
A'is cyclic (i.e.: it exists v € C™ such that (x, Az, A%z,... A" 1z) = C").

Corollary: For F = C, A cyclic. One can steer nearly every initial point to
every specific target point.

Corollary: For F = C controllability is a generic property of the Shifted

Inverse lteration. l.e.: It holds true for an open and dense set of matrices

S C Cn X . Dynamical systems and Computation Day — p.17/23



?{"‘—._Dynamics

t"*--acml Controllability

Example I, Shifted Inverse Iteration on FP"~!

‘ AG]FTLX’I’L
® M =TFp!
@ U=T)\o(A)

© O: M xU — M defined by ®(z,u) = (A—ul)™! 2
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- Controllability

Example I, Shifted Inverse Iteration on FP"~!

@ Ac"
® M=TFpr!
© U=F\o(A)
© O: M xU — M defined by ®(z,u) = (A—ul)™! 2
Remark:
Let F = R. If A is not cyclic, the Shifted Inverse Iteration on RP"~! is not

controllable. There exist cyclic matrices such that Shifted Inverse Iteration
on RP"*~1! is not controllable.
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| Controllability

Example I, Shifted Inverse Iteration on FP"~!

@ Ac"
® M=TFpr!
© U=F\o(A)
© O: M xU — M defined by ®(z,u) = (A—ul)™! 2
Remark:
Let F = R. If A is not cyclic, the Shifted Inverse Iteration on RP"”~! is not

controllable. There exist cyclic matrices such that Shifted Inverse Iteration
on RP"*~1! is not controllable.

Remark:
For F = R it is unknown if controllability is a generic property of the Shifted

Inverse lteration.

Dynamical systems and Computation Day — p.18/23
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Example I%, Polynomial-Shift Inverse lteration on FP"~!

@ AcFv" M=TFpPr 1

©® p.(u)=A—ul, pg(v,w) = A% + vA +wl

© U :={ueTF, (v,w) € F?|py(u),ps(v,w) € GL,(F)}
@ P(x,u)= p;(lt) (u)z, w(t) € {a, B}

Dynamical systems and Computation Day — p.19/23
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- Controllability

Example I%, Polynomial-Shift Inverse lteration on FP"~!

@ AcFv" M=TFpPr 1

©® p.(u)=A—ul, pg(v,w) = A% + vA +wl

© U :={ueTF, (v,w) € F?|py(u),ps(v,w) € GL,(F)}
@ P(x,u)= p;(lt) (u)z, w(t) € {a, B}

Theorem:(J 2003)
Let F = R, C. Polynomial-Shift Inverse Iteration on FP"~! is controllable

if and only if A is cyclic.

Dynamical systems and Computation Day — p.19/23
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- Controllability

Example I%, Polynomial-Shift Inverse lteration on FP"~!
@ AcFv" M =TFpP!
@ p.(u)=A—ul, psg(v,w) = A2 + vA +wl
© U:={u€eTF,(v,w) € F?|py(u),ps(v,w) € GL,(F)}
© P(z,u) =p_y(uz, n(t) € {a, 5}

Theorem:(J 2003)
Let F = R, C. Polynomial-Shift Inverse lteration on FP"~! is controllable
if and only if A is cyclic.

Corollary: Controllability is a generic property of the Polynomial-Shift In-

verse lteration.

Dynamical systems and Computation Day — p.19/23
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Example Ill, Shifted Inverse Iteration on Flag(C™))

‘ A E (C’I’LX’I’L
@ M = Flag(Cn)
® U=TF)\o(A)

© &: M xU — M defined by @V, u) = (A—ul)~1.V

Dynamical systems and Computation Day — p.20/23
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Example Ill, Shifted Inverse Iteration on Flag(C™))

@ AeCrrm

@ M = Flag(C")

@ U=F\o(A)

© &: M xU — M defined by @V, u) = (A—ul)~1.V

Remark:
Let n > 2. The Shifted Inverse Iteration on Flag(C"™) is not controllable.

Dynamical systems and Computation Day — p.20/23
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- Controllability

Example Ill, Shifted Inverse Iteration on Flag(C™))

@ AeCrrm

@ M = Flag(C")

@ U=F\o(A)

© &: M xU — M defined by @V, u) = (A—ul)~1.V

Remark:
Let n > 2. The Shifted Inverse Iteration on Flag(C"™) is not controllable.

Corollary: Let n > 2. The Shifted Inverse Iteration on the isospectral

manifold M4 = {Q*AQ | Q € U,,(C)} is not controllable.

Dynamical systems and Computation Day — p.20/23
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Example Ill, Shifted Inverse Iteration on Hess 4 (F™))

© Ac ™" regular

© M =Hesss(F")

® U=TF\o(A)

© &: M xU — M defined by @V, u) = (A—ul)~1.V

Dynamical systems and Computation Day — p.21/23
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- Controllability

Example Ill, Shifted Inverse Iteration on Hess 4 (F™))

© Ac ™" regular

© M = Hessy(F")

® U=TF\o(A)

© &: M xU — M defined by @V, u) = (A—ul)~1.V

Theorem:(Helmke, J 2002)
Shifted Inverse Iteration on Hess4 (F™) is controllable (for A) if and only if

Shifted Invesre Iteration on FP"~1 is controllable (for A).

Dynamical systems and Computation Day — p.21/23
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- Controllability

Example Ill, Shifted Inverse Iteration on Hess 4 (F™))

© Ac ™" regular

© M = Hessy(F")

® U=TF\o(A)

© &: M xU — M defined by @V, u) = (A—ul)~1.V

Theorem:(Helmke, J 2002)
Shifted Inverse Iteration on Hess4 (F™) is controllable (for A) if and only if

Shifted Invesre Iteration on FP"~1 is controllable (for A).

Corollary: Let F = C. Shifted Inverse Iteration on Hess 4(C") is
controllable if and only if A is cyclic.

Dynamical systems and Computation Day — p.21/23
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- Controllability

Example Ill, Shifted Inverse Iteration on Hess 4 (F™))

© Ac ™" regular

© M = Hessy(F")

® U=T\o(A)

© &: M xU — M defined by @V, u) = (A—ul)~1.V
Theorem:(Helmke, J 2002)

Shifted Inverse Iteration on Hess4 (F™) is controllable (for A) if and only if
Shifted Invesre Iteration on FP"~1 is controllable (for A).

Corollary: Let F = C. Shifted Inverse Iteration on Hess 4(C") is
controllable if and only if A is cyclic.

Corollary: Let F = C. Controllability is a generic property of the Shifted
Inverse lteration on Hess 4 (C™).

Dynamical systems and Computation Day — p.21/23
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@ s shifted Inverse lteration on RP"~! resp. Hess 4 (R™) generic?
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Is shifted Inverse Iteration on RP"~! resp. Hess 4 (R"™) generic?
Characterizations of system semigroups
Criteria for controllability

Adherence structure of reachable sets

Constructive controllability
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Thank you for your attention

http://www.mathematik.uni-wuerzburg.de/RM2
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