Fast unfolding of community hierarchies in large networks

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre

Based on E. Lefebvre master’s thesis

Email: jean-loup.guillaume@lip6.fr
We propose

a modularity optimization algorithm which:
- gives excellent results for modularity;
- directly produces a hierarchy structure;
- is incredibly simple (local greedy approach);
- can work on external memory.

Can deal with millions nodes / billions links
 e.g. 118M nodes/1B links in 152mn
Outline

• The algorithm
• Experimental results
• Case study:
 – Belgian phone call network
An example

Pass 1 – Iteration 1
Each node belongs to an atomic community
An example

Pass 1 – Iteration 1
insert 0 in c[3]
An example

Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]
An example

Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]
insert 2 in c[1,4]
An example

Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]
insert 2 in c[1,4]
insert 3 in c[0]
An example

Pass 1 – Iteration 1
insert 0 in c[3]
insert 1 in c[4]
insert 2 in c[1,4]
insert 3 in c[0]
insert 4 in c[1]
insert 5 in c[7]
insert 6 in c[11]
insert 7 in c[5]
insert 8 in c[15]
insert 9 in c[12]
insert 10 in c[13]
insert 11 in c[10,13]
insert 12 in c[9]
insert 13 in c[10,11]
insert 14 in c[9,12]
insert 15 in c[8]
An example

Pass 1 – Iteration 2
An example

Pass 1 – Iteration 2
insert 0 in c[4]
...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
An example
An example

• Gives a tree (not a binary one):
 – each level is meaningful.
The algorithm formally

Sequence of passes:
• each pass computes one hierarchy level;
• input: (weighted) network;
• output: weighted network where nodes are “communities” of the original network;

• passes are applied recursively;
• stop when modularity cannot be increased.
The algorithm formally

One pass:

• initially each node forms a community;

• repeat iteratively for all nodes i:
 – remove i from its community;
 – insert i in a neighboring community of i so as to maximize modularity (local greedy approach);

• stop when a local maximum is attained.
Outline

• The algorithm
• Experimental results
• Case study:
 – Belgian phone call network
Experimental results

• High level networks are smaller:
 – first passes are the only costly ones;
 – in general 1st pass > 90\% of computation time.

• There are few iterations for each pass:
 – only iterations on the first passes are costly;
 – <33 for all tested networks.

• Considering one node is simple.
Modularity

- A widely accepted measure:
 \[Q = \frac{1}{2m} \sum_C \left[e_C - \frac{a_C^2}{2m} \right] \]
 - Links inside C
 - Links with an extremity in C

- Contribution of an isolated node is:
 \[Q(i) = -\left(\frac{k_i}{2m} \right)^2 \]
 - Degree of i
Moving a node

• An isolated node ‘i’ can be moved to C with a gain:

\[
\Delta Q(C,i) = \left[\frac{e_C + k_{i,C}}{2m} - \left(\frac{a_C + k_i}{2m} \right)^2 \right] - \left[\frac{e_C}{2m} - \left(\frac{a_C}{2m} \right)^2 - \left(\frac{k_i}{2m} \right)^2 \right]
\]

Links from i to C

Only related to i and C
Complexity linear with \(k_i\)
One pass algorithm

Input: a (weighted) network
Variables: e, a, comm

for all nodes i do
 insert i in an atomic community (comm[i]=i)
 initialize e and a
while there is an increase of modularity do
 for all nodes i do
 remove(e,a) i from comm[i]
 compute DeltaQ(C,i,e,a) for all C in neigh_comm(i)
 insert(e,a) i in argmax(DeltaQ(C,i))

Output: weighted community graph
Experimental results (time)

<table>
<thead>
<tr>
<th></th>
<th>Karate</th>
<th>Arxiv</th>
<th>Internet</th>
<th>Web nd.edu</th>
<th>Belgian Phone Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=34/m=77</td>
<td>0s</td>
<td>3.6s</td>
<td>799s</td>
<td>5034s</td>
<td>2.5M/6.3M</td>
</tr>
<tr>
<td>Newman Girvan Clauset Moore</td>
<td>0s</td>
<td>3.3s</td>
<td>575s</td>
<td>6666s</td>
<td></td>
</tr>
<tr>
<td>Pons Latapy</td>
<td>0s</td>
<td>0s</td>
<td>8s</td>
<td>52s</td>
<td>1279s</td>
</tr>
<tr>
<td>Wakita Tsurumi (expected)</td>
<td>0s</td>
<td>0s</td>
<td>8s</td>
<td>52s</td>
<td>1279s</td>
</tr>
</tbody>
</table>
Experimental results (time)

<table>
<thead>
<tr>
<th></th>
<th>Karate</th>
<th>Arxiv</th>
<th>Internet</th>
<th>Web</th>
<th>Belgian</th>
<th>Web</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n=34/m=77</td>
<td>9k/24k</td>
<td>70k/351k</td>
<td>325k/1M</td>
<td>2.5M/6.3M</td>
<td>39M / 783M</td>
<td>118M/1B</td>
</tr>
<tr>
<td>Newman Girvan</td>
<td>0s</td>
<td>3.6s</td>
<td>799s</td>
<td>5034s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clauset Moore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pons Latapy</td>
<td>0s</td>
<td>3.3s</td>
<td>575s</td>
<td>6666s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakita Tsurumi</td>
<td>0s</td>
<td>0s</td>
<td>8s</td>
<td>52s</td>
<td>1279s</td>
<td></td>
<td>(3days)</td>
</tr>
<tr>
<td>(expected)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Our approach</td>
<td>0s</td>
<td>0s</td>
<td>1s</td>
<td>3s</td>
<td>134s</td>
<td>738s</td>
<td>152mn</td>
</tr>
<tr>
<td></td>
<td>3 passes</td>
<td>5 passes</td>
<td>5 passes</td>
<td>5 passes</td>
<td>5 passes</td>
<td>4 passes</td>
<td>5 passes</td>
</tr>
</tbody>
</table>

Experimental results (Q)

<table>
<thead>
<tr>
<th></th>
<th>Karate</th>
<th>Arxiv</th>
<th>Internet</th>
<th>Web nd.edu</th>
<th>Belgian Phone Calls</th>
<th>Web UK-2005</th>
<th>Web Webbase01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newman Girvan Clauset Moore</td>
<td>0s</td>
<td>0.38</td>
<td>3.6s</td>
<td>799s</td>
<td>5034s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pons Latapy</td>
<td>0s</td>
<td>0.42</td>
<td>3.3s</td>
<td>575s</td>
<td>6666s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakita Tsurumi (expected)</td>
<td>0s</td>
<td>0s</td>
<td>8s</td>
<td>52s</td>
<td>1279s</td>
<td>(3days)</td>
<td></td>
</tr>
<tr>
<td>Our approach</td>
<td>0s</td>
<td>0.42</td>
<td>1s</td>
<td>3s</td>
<td>134s</td>
<td>738s</td>
<td>152mn</td>
</tr>
<tr>
<td></td>
<td>3 passes</td>
<td>5 passes</td>
<td>5 passes</td>
<td>5 passes</td>
<td>5 passes</td>
<td>4 passes</td>
<td>5 passes</td>
</tr>
</tbody>
</table>
Data structures

• Need to keep in memory:
 – the adjacency lists (space complexity: $2m+n$);
 – vectors ‘e’, ‘a’, node2comm (n each);
 – total = $2m+4n$: 118M nodes, 1G links:
 • 8.472 GB for the network;
 • 1.416 GB for the vectors.

• The algorithm is iterative:
 – adjacency lists can be read from disk iteratively;
 – passes can be made one at a time;
 – can deal with very large networks or to use laptops.
Heuristics

- Last iterations and passes offer a marginal gain:
 - stop when the gain is lower than a given epsilon.

- Leaves can be removed before the computation:
 - only useful if networks are very large (>M nodes).

- Only few nodes (<10%) are moved at a given iteration:
 - a standing node is not considered at the following iteration.

Previous results have been obtained using the first one.
Outline

• The algorithm
• Experimental results
• Case study:
 – Belgian phone call network
Case study

- Belgian phone call network:
 - 6 months of communications;
 - One Belgian major operator.

- Flat weighted network:
 - 2.6 millions customers;
 - Language information (Dutch, English, French or German);
 - 6.3 millions links:
 - Weight: number of calls + sms;
 - Only stable calls are kept.
Red = French
Green = Dutch
Language segregation

- All but two communities of size >10k are >93% segregated.
- One community contains more than 60% of all German speaking Belgians.
Largest bilingual community
Largest bilingual community
Second largest “bilingual”
Conclusion

can deal with millions/billions nodes/links
achieves very good modularity

• Moreover:
 – directly produces a hierarchy structure;
 – is strikingly simple;
 – can work on external memory;
 – can use other local quality functions.
Open issues

- Use more heuristics:
 - Allow non increasing modularity choices?
 - Simulated annealing like approaches?

- Understand the community structure:
 - use more information (language) to understand/validate.

- Overlapping communities
 - good quality “overlapping partition”?

- Evolving networks/communities?
Post-doc position for 1 year

- LIP6, NPA team, University Paris 6, France.
- Complex networks.
- Open to signal processing, data-mining, distributed computing, etc. in relation with complex networks.

Deadline March 30th
Simple application form

Remember https://www2.cnrs.fr/DRH/post-docs08/?pid=1&action=view&id=597 !!!
Or ask me
Thanks

Questions?