Directed communities

Weighted communities

k-clique percolation and clustering in directed and weighted networks

Gergely Palla1 Dániel Ábel2 Imre Derényi2
Illés Farkas1 Péter Pollner1 Tamás Vicsek1,2

1Statistical and Biological Physics Research Group, Hungarian Academy of Sciences,
2Department of Biological Physics, Eötvös University, Hungary

March 2008, Louvain-la-Neuve
Outline

- Introduction
 - The Clique Percolation Method (CPM)
 - Phase transition in the Erdős-Rényi graph

- Directed communities
 - Relative in- and out degree
 - Directed CPM
 - Results

- Weighted communities
 - Weights in the original CPM
 - Weighted CPM
 - Results
The Clique Percolation Method (CPM)

Definitions

- **k-clique**: a complete (fully connected) subgraph of k vertices.
- **k-clique adjacency**: two k-cliques are adjacent if they share $k - 1$ vertices, i.e., if they differ only in a single node.
The Clique Percolation Method (CPM)

Definitions

- **k-clique**: a complete (fully connected) subgraph of k vertices.
- **k-clique adjacency**: two k-cliques are adjacent if they share $k - 1$ vertices, i.e., if they differ only in a single node.
The Clique Percolation Method (CPM)

Definitions

- **k-clique**: a complete (fully connected) subgraph of k vertices.
- **k-clique adjacency**: two k-cliques are adjacent if they share $k - 1$ vertices, i.e., if they differ only in a single node.

Vicsek group

Directed and weighted communities
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:
Definition

- *k-clique community*: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Illustration:

![Diagram of a network illustrating a k-clique community]
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:

[Diagram showing a network with k-cliques highlighted in green, illustrating the concept of k-clique communities.]
Definition

- *k-clique community*: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Illustration:

Definition

- **k-clique community**: the union of \(k \)-cliques that can be reached from one to the other through a sequence of adjacent \(k \)-cliques.

Illustration:

![Vicsek group](image-url)
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.
Definition

- *k-clique community*: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Illustration:
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:

[Diagram showing a network of nodes and connections, illustrating a k-clique community.]
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:
Definition

- *k-clique community*: the union of \(k \)-cliques that can be reached from one to the other through a sequence of adjacent \(k \)-cliques.

Illustration:

[Diagram showing a network of nodes and edges, representing a k-clique community]
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:

[Diagram of a network with nodes and edges, illustrating a k-clique community.]
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:

[Vicsek group]

Directed and weighted communities
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:
Definition

- *k-clique community*: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Illustration:

Vicsek group
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:
Definition

- **k-clique community**: the union of \(k \)-cliques that can be reached from one to the other through a sequence of adjacent \(k \)-cliques.
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:
Definition

- **k-clique community**: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:

[Diagram of a Vicsek group showing directed and weighted communities]
Definition

k-clique community: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Illustration:

same at $k = 4$:

Vicsek group
Advantages of the CPM

The main advantages of the CPM:

- Allows overlaps between the communities.
- The definition is based on the density of the links.
- It is local. (No resolution limit).
The Erdős-Rényi graph:

- N nodes,
- every pair is independently linked with probability p.

A giant k-clique percolation cluster can be found if $p \geq p_c(k)$.

The order parameter of the phase transition is the size of the giant cluster:

- The number of nodes, N^* \quad \rightarrow \quad \Phi \equiv \frac{N^*}{N}$,
- The number of k-cliques, \mathcal{N}^* \quad \rightarrow \quad \Psi \equiv \frac{\mathcal{N}^*}{\mathcal{N}}$.
The Erdős-Rényi graph:
- N nodes,
- every pair is independently linked with probability p.

A giant k-clique percolation cluster can be found if $p \geq p_c(k)$.

The order parameter of the phase transition is the size of the giant cluster:
- The number of nodes, N^* \rightarrow $\Phi \equiv N^*/N$,
- The number of k-cliques, N^* \rightarrow $\Psi \equiv N^*/\mathcal{N}$.
The Erdős-Rényi graph:
- \(N \) nodes,
- every pair is independently linked with probability \(p \).

A giant \(k \)-clique percolation cluster can be found if \(p \geq p_c(k) \).

The order parameter of the phase transition is the size of the giant cluster:
- The number of nodes, \(N^* \) \(\rightarrow \) \(\Phi \equiv N^*/N \),
- The number of \(k \)-cliques, \(N^* \) \(\rightarrow \) \(\Psi \equiv N^*/N \).
Numerical results:

\[p_c(k) = \frac{1}{[N(k-1)]^{\frac{1}{k-1}}} \]
Directed links

Direction of the links:
- Direction of some kind of flow (e.g. information, energy).
- Asymmetrical relation (e.g. superior-inferior).

Out-hubs in communities represent “sources”, whereas in-hubs correspond to “drains”:
Directed links

Direction of the links:
- Direction of some kind of flow (e.g. information, energy).
- Asymmetrical relation (e.g. superior-inferior).

Out-hubs in communities represent "sources", whereas in-hubs correspond to "drains":

[Diagram showing direction of links with source/top and drain/bottom]

Vicsek group
Directed and weighted communities
Directed links

Direction of the links:

- Direction of some kind of flow (e.g. information, energy).
- Asymmetrical relation (e.g. superior-inferior).

Out-hubs in communities represent “sources”, whereas in-hubs correspond to “drains”:
We define the relative in-degree and relative out-degree of node \(i \) in community \(\alpha \) as

\[
D_{i,\text{in}}^{\alpha} \equiv \frac{d_{i,\text{in}}^{\alpha}}{d_{i,\text{in}}^{\alpha} + d_{i,\text{out}}^{\alpha}},
\]

\[
D_{i,\text{out}}^{\alpha} \equiv \frac{d_{i,\text{out}}^{\alpha}}{d_{i,\text{in}}^{\alpha} + d_{i,\text{out}}^{\alpha}},
\]

For weighted networks these can be replaced by the relative in-strength and relative out-strength:

\[
W_{i,\text{in}}^{\alpha} \equiv \frac{w_{i,\text{in}}^{\alpha}}{w_{i,\text{in}}^{\alpha} + w_{i,\text{out}}^{\alpha}},
\]

\[
W_{i,\text{out}}^{\alpha} \equiv \frac{w_{i,\text{out}}^{\alpha}}{w_{i,\text{in}}^{\alpha} + w_{i,\text{out}}^{\alpha}},
\]
Relative in- and out-degree

We define the relative in-degree and relative out-degree of node i in community α as

$$D_{i,\text{in}}^{\alpha} \equiv \frac{d_{i,\text{in}}^{\alpha}}{d_{i,\text{in}}^{\alpha} + d_{i,\text{out}}^{\alpha}},$$

$$D_{i,\text{out}}^{\alpha} \equiv \frac{d_{i,\text{out}}^{\alpha}}{d_{i,\text{in}}^{\alpha} + d_{i,\text{out}}^{\alpha}},$$

For weighted networks these can be replaced by the relative in-strength and relative out-strength:

$$W_{i,\text{in}}^{\alpha} \equiv \frac{w_{i,\text{in}}^{\alpha}}{w_{i,\text{in}}^{\alpha} + w_{i,\text{out}}^{\alpha}},$$

$$W_{i,\text{out}}^{\alpha} \equiv \frac{w_{i,\text{out}}^{\alpha}}{w_{i,\text{in}}^{\alpha} + w_{i,\text{out}}^{\alpha}},$$
Directed k-cliques?

Comparing undirected and directed connections:

- Undirected: A <-> B
- Directed: A -> B and B -> A
- Weighted: A <-> B with a directed edge A -> B

In case of k-cliques:
- $k(k-1)/2$ links $\rightarrow 3^{k(k-1)/2}$ possible configurations.
- However, we would like the k-clique to have some kind of directionality as a whole as well.
Directed k-cliques?

Comparing undirected and directed connections:

In case of k-cliques:
- $k(k-1)/2$ links $\rightarrow 3^{k(k-1)/2}$ possible configurations.
- However, we would like the k-clique to have some kind of directionality as a whole as well.
A directed k-clique has to fulfil the following conditions:

In the absence of double links:
- Any directed link in the k-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The k-clique contains no directed loops.
- The restricted out-degree of each node in the k-clique is different.

If double links are present:
It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.
A directed k-clique has to fulfil the following conditions:

In the absence of double links:
- Any directed link in the k-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The k-clique contains no directed loops.
- The restricted out-degree of each node in the k-clique is different.

If double links are present:
It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.
Definition

A directed k-clique has to fulfil the following conditions:

In the absence of double links:

- Any directed link in the k-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The k-clique contains no directed loops.
- The restricted out-degree of each node in the k-clique is different.

If double links are present:

It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.
A directed k-clique has to fulfil the following conditions:

In the absence of double links:
- Any directed link in the k-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The k-clique contains no directed loops.
- The restricted out-degree of each node in the k-clique is different.

If double links are present:
It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.
Definition

A directed k-clique has to fulfil the following conditions:

In the absence of double links:
- Any directed link in the k-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The k-clique contains no directed loops.
- The restricted out-degree of each node in the k-clique is different.

If double links are present:
It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.
contains double links?

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>b)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c)</td>
<td>1 (or 2)</td>
<td>2 (or 1)</td>
</tr>
<tr>
<td>d)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Directed CPM

directed k-clique?

<table>
<thead>
<tr>
<th></th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Vicsek group
Directed and weighted communities
Phase transition in the directed E-R graph

The directed E-R graph:

- N nodes,
- The $N(N - 1)$ possible “places” for the directed links are filled independently with probability p.

Theoretical prediction of the critical point for the appearance of a giant directed k-clique percolation cluster:

$$\rho_{c_{\text{theor}}} = \frac{1}{[Nk(k - 1)]^{\frac{1}{k - 1}}}.$$

Order parameters: Φ, Ψ (same as in the undirected case).
Phase transition in the directed E-R graph

The directed E-R graph:

- N nodes,
- The $N(N - 1)$ possible “places” for the directed links are filled independently with probability p.

Theoretical prediction of the critical point for the appearance of a giant directed k-clique percolation cluster:

$$p_c^{\text{theor}} = \frac{1}{[Nk(k - 1)]^{\frac{1}{k-1}}}.$$

Order parameters: Φ, Ψ (same as in the undirected case).
Introduction
Directed communities
Weighted communities

Numerical results

(a) $\Phi(p)$ for $k = 4$ and different N values:
- $N = 25$
- $N = 50$
- $N = 100$
- $N = 200$
- $N = 400$
- $N = 800$
- $N = 1600$

(b) $\Psi(p)$ for $k = 4$ and different N values:
- $N = 50$
- $N = 100$
- $N = 200$
- $N = 400$
- $N = 800$
- $N = 1600$

(c) $\chi(p)$ for $k = 4$ and different N values:
- $N = 25$
- $N = 50$
- $N = 100$
- $N = 200$
- $N = 400$
- $N = 800$
- $N = 1600$

(d) $P_{C_{\text{num}}} / P_{C_{\text{theor}}}$ for $k = 3, 4, 5, 6$:
- $k = 3$
- $k = 4$
- $k = 5$
- $k = 6$

Vicsek group
Directed and weighted communities
Introduction
Directed communities
Weighted communities

Relative in- and out-degree
Directed CPM
Results

Word association network

Local picture of the communities:
The number of hits in Google as a function of $W_{i,\text{out}}^\alpha$:
Local picture of the communities:
Comparing overlaps

Membership number in function of $D^{\alpha}_{i,\text{out}}$:

Community overlaps:
- word association net, Google’s web pages \rightarrow in-hubs,
- e-mail net, transcription regulatory network \rightarrow out-hubs.
In the original CPM we can take into account the weights by ignoring links weaker than a certain threshold w^*. Changing w^* and k is similar to changing the resolution in a microscope.

Optimal k-clique size and w^*

Where the community structure is as highly structured as possible: just below the critical point of the appearance of a giant k-clique community.
Link weights in the original CPM

In the original CPM we can take into account the weights by ignoring links weaker than a certain threshold w^*. Changing w^* and k is similar to changing the resolution in a microscope.

Optimal k-clique size and w^*

Where the community structure is as highly structured as possible: just below the critical point of the appearance of a giant k-clique community.
In the original CPM we can take into account the weights by ignoring links weaker than a certain threshold w^*. Changing w^* and k is similar to changing the resolution in a microscope.

Optimal k-clique size and w^*

Where the community structure is as highly structured as possible: just below the critical point of the appearance of a giant k-clique community.
The intensity I of a sub-graph is defined as the geometrical mean of its link weights.

For a k-clique C: $I(C) = \left(\prod_{\substack{i<j \\ i,j \in C}} w_{ij} \right)^{2/k/(k-1)}$

Weighted k-clique

A k-clique with an intensity greater or equal to a given intensity threshold I^*.
Percolation transition in the E-R graph

A weighted E-R graph:

- N nodes,
- every pair is linked independently with uniform probability p,
- each link is assigned a weight chosen randomly from a uniform distribution on the $(0, 1]$ interval.

The critical linking probability is a function of the intensity threshold. At $I = 0$ we recover $p_c(I = 0) = [N(k - 1)]^{-1/(k-1)}$.
Percolation transition in the E-R graph

A weighted E-R graph:

- N nodes,
- every pair is linked independently with uniform probability p,
- each link is assigned a weight chosen randomly from a uniform distribution on the $(0, 1]$ interval.

The critical linking probability is a function of the intensity threshold. At $I = 0$ we recover $p_c(I = 0) = [N(k - 1)]^{-1/(k-1)}$.
Results

Directed and weighted communities
New York Stock Exchange graph:

- We studied the pre-computed stock correlation matrix containing the averaged correlation between the daily logarithmic returns.
- The correlation coefficients can be used as link weights. We kept only the strongest 3%.
Summary

- Directed communities:
 - Relative in- and out-degree,
 - Directed k-cliques.

- Weighted communities:
 - k-clique intensity.

- Publications:
 - New Journal of Physics 9, 180 (2007),

- Downloadable community finding software:
 - http://cfinder.org