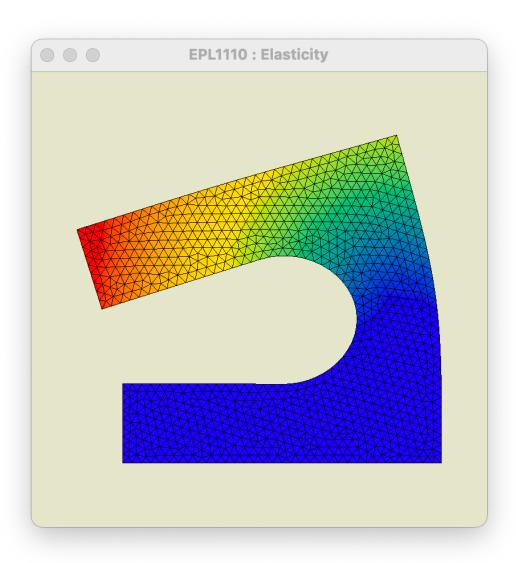
A quoi cela sert les éléments finis ?

Elasticité linéaire



Monsieur, 309.63 m Côté extérieur = 18,65 m j'ai pas eu MMC, moi? Superficie = 350 m² 276.13 m J= m9 324 m 149.23 m Côté extérieur = 40,96 m Superficie = 1 650 m² 91.13 m Côté extérieur = 70,69 m 115.73 m Superficie = 4200 m^2 5=2mg ~ 57.63 m Sol = 74.24 m 33,5 m au-dessus du niveau 0 = 3 mg 124.90 m 3mg

Ouuuppss!

Mais, MMC, MSD et Flotte : quelle horreur!

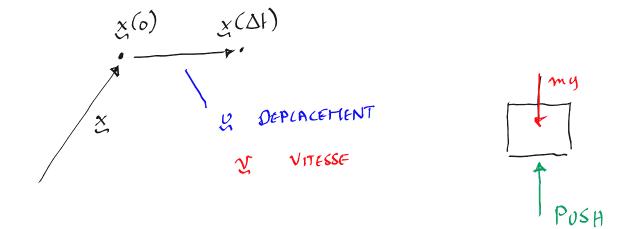
Souviens-toi des anciens!

Le grand Newton!

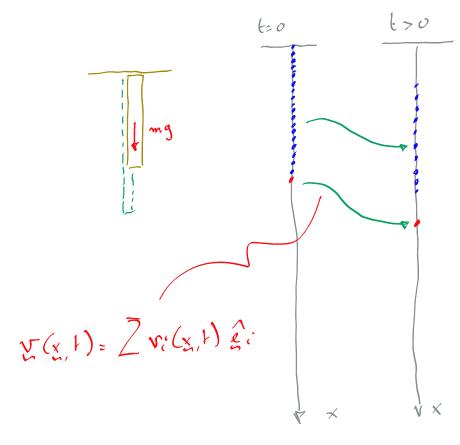
L'inoubliable Roland!

$$m \frac{d^2x}{dt}(t) = Z E$$

PULL

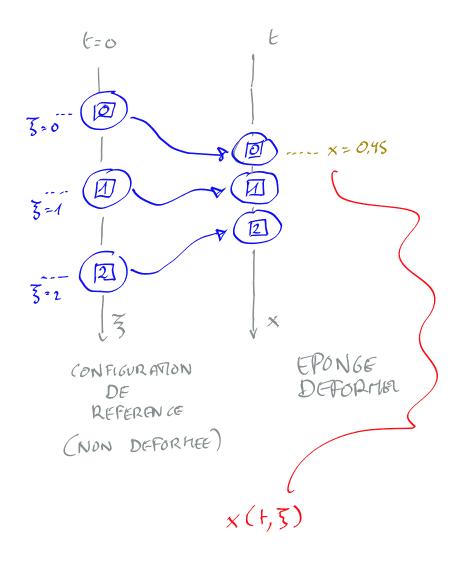


Un volume matériel!



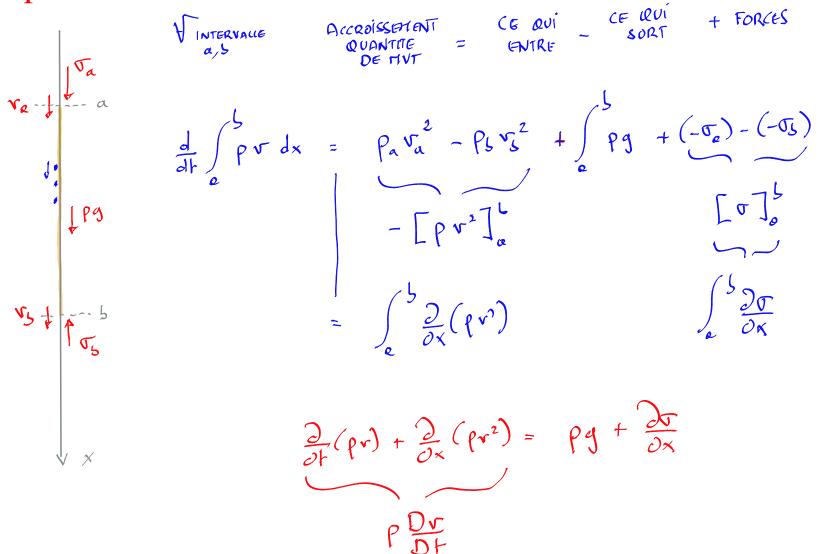
CONFIGURATION

DE REFERENCE

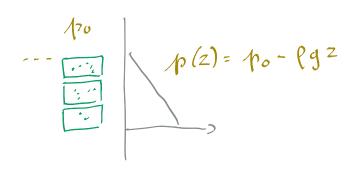


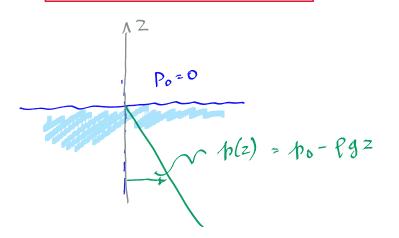
Bilan

de quantité de mouvement



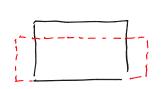
Bilan de quantité de mouvement



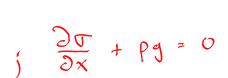


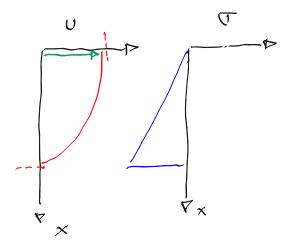
PRESSION HYDROSTATIONE

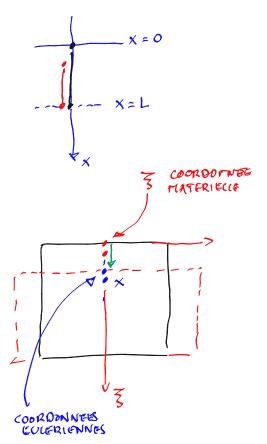
Loi de Hooke! So easy!



19







$$\frac{1}{2} \left(\sum_{i} x_{i} + \sum_{i} x_{i}^{T} \right)$$

$$\frac{1}{2} \left(\sum_{i} y_{i} + \sum_{i} y_{i}^{T} \right)$$

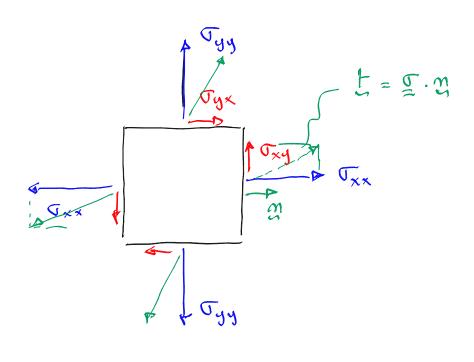
$$\frac{1}{2} \left(\sum_{i} y_{i} + \sum_{i} y_{i}^{T} \right)$$

$$\frac{1}{2} \left(\sum_{i} y_{i} + \sum_{i} y_{i}^{T} \right)$$

$$Q = 2m = + \lambda + h(e) =$$

$$T = d = -b =$$

Taux de déformation = gradient de vitesses Déformation = gradient de déplacement



 $\underline{\underline{\Box}} = \underline{\underline{\Box}}^{\mathsf{T}}$

$$f(x) = \mathbf{I} \cdot \mathbf{x}$$

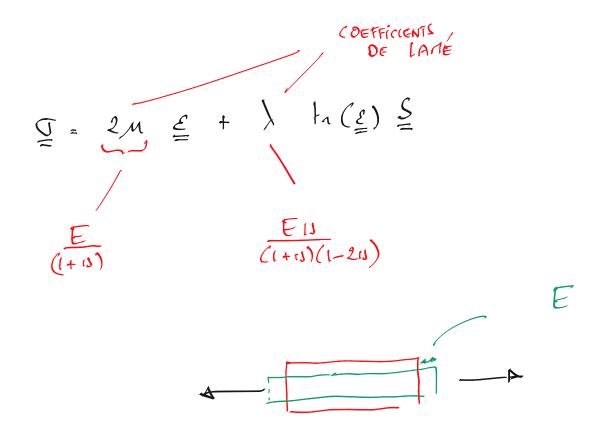
$$f(x) = \mathbf{I} \cdot \mathbf{x}$$

$$\begin{array}{c|c}
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & &$$

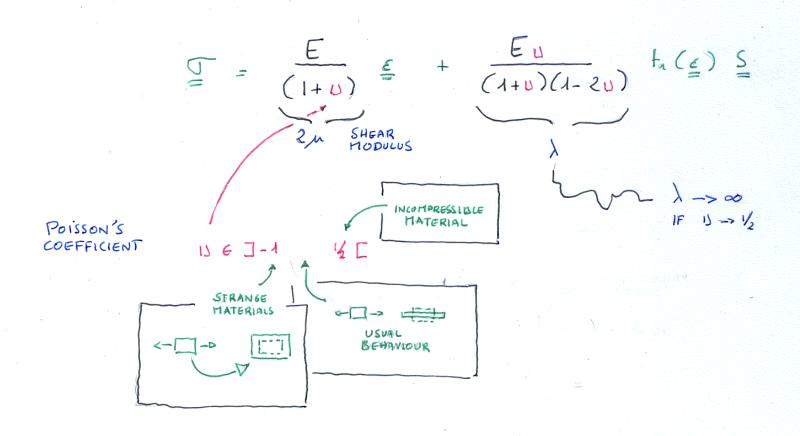
$$\int Pg + \frac{\partial}{\partial y} (\nabla_{yy}) + \frac{\partial}{\partial x} (\nabla_{xy}) = 0$$

$$\frac{\partial}{\partial x} (\nabla_{xx}) + \frac{\partial}{\partial y} (\nabla_{xy}) = 0$$

Bilan de quantité de mouvement

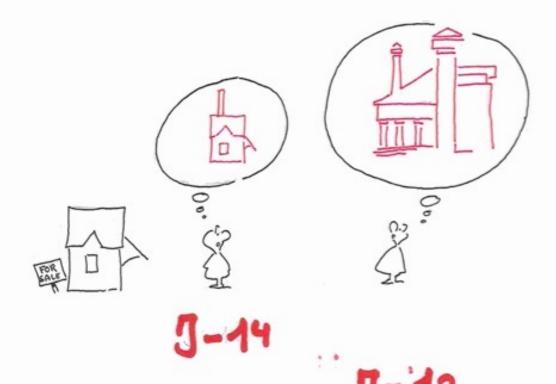


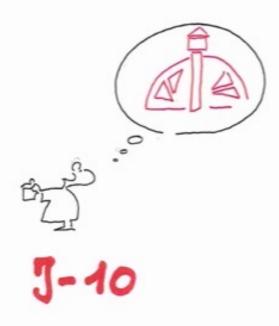
Loi de Hooke Coefficients de Lamé Module de Young et coefficients de Poisson

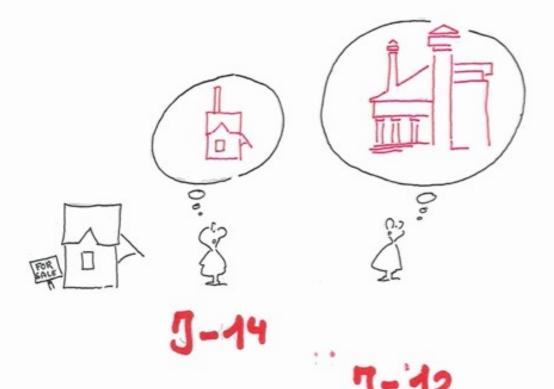


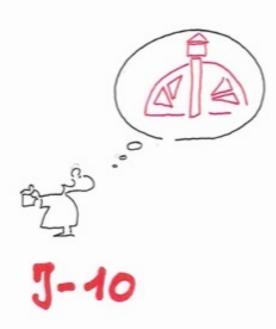
Grandes et petites déformations! Cela peut devenir très compliqué!

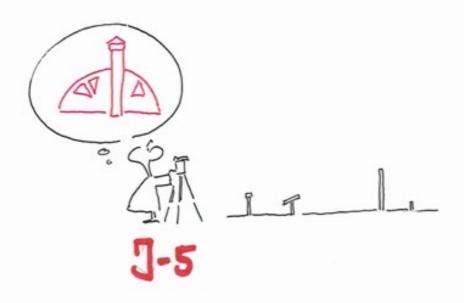
Le projet

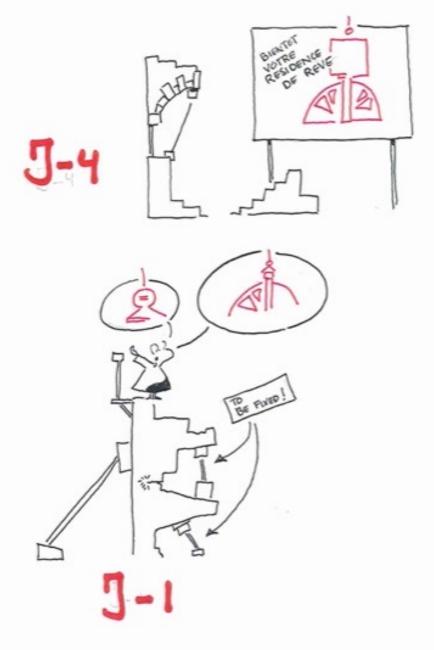






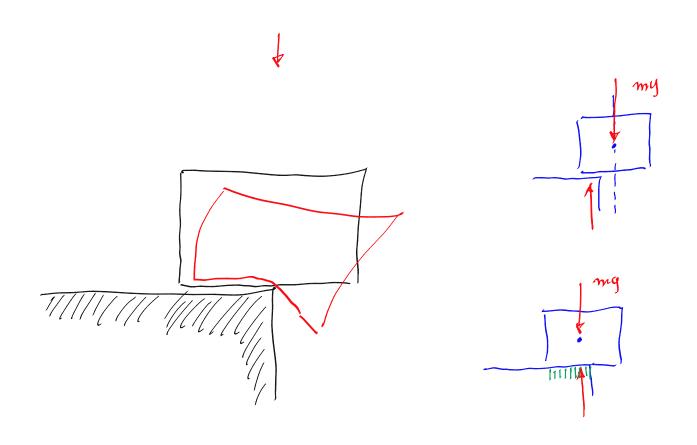






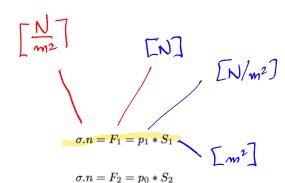


J



Et plein d'autres idées sont possibles! Regardez autour de vous!

Votre soumission préliminaire...



Géométrie et Maillage

Notre maillage aurait la forme suivante :

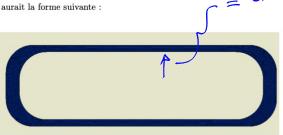


FIGURE 1 - Exemple du Maillage

Ce qui correspondrait à la géométrie de notre problème sur le schéma suivant :

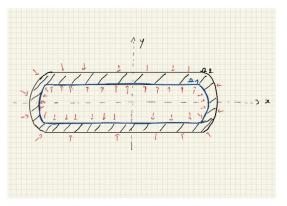


FIGURE 2 - Géométrie du problème

où S_1 et S_2 représentent les surfaces à l'intérieur et à l'extérieur du réservoir, p_1 la pression intérieure (plus au moins 700 bars) 1 et p_0 la pression atmosphérique évaluée à 1 bar. Il s'agit donc de conditions frontières de Neumann.

Nous poserons également les hypothèses suivantes :

- 1. répartition du gaz constante (forces appliquée constantes)
- 2. Problème axisymétrique

1. Sur Ω_1

2. Sur Ω_2

Nous devrons naturellement détailler les surfaces et leur géométrie (approximation a 2 cylindres).

Il est à noter que puisque le problème contient des symétries nous pouvons réaliser une économie sur les calculs et le maillage en ne représentant qu'un quart du problème en imposant donc une condition de Dirichlet nul sur les surfaces de coupure sans perte de généralité. Nous pensions également rajouter une vanne de pression à la bonbonne afin de complexifier un peu le maillage mais il faudrait évaluer l'impact que cela aurait sur les équations et les conditions aux frontières.

ABSTRACT GENERIC ELLIPTIC PROBLEM

HEAT CONDUCTION

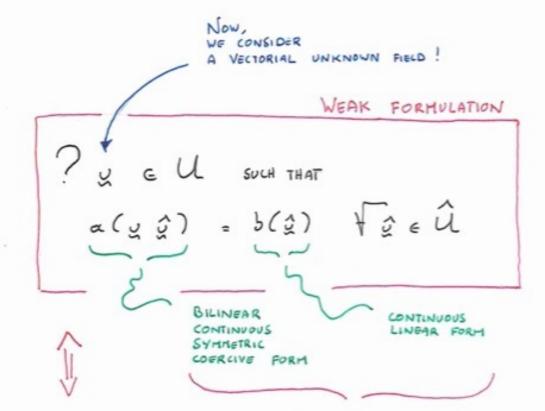
LINEAR ELASTICITY

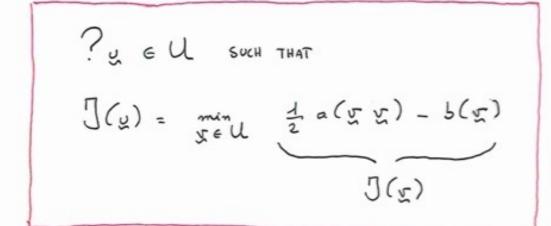
SIMPLIFIED MODELS OF LINEAR ELASTICITY

BEAM / SHELLS

ROPE / MENBRANE

STOKES PROBLEM

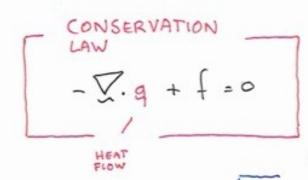


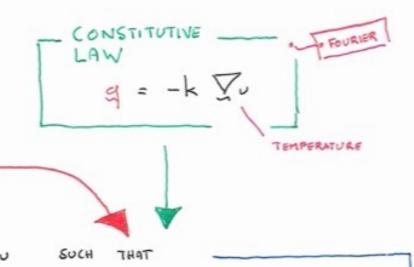


ASSUMPTIONS
REQUIRED
TO HAVE AN ABSTRACT
MINIMIZATION
PROBLEM

MINIMIZATION PROBLEM

HEAT



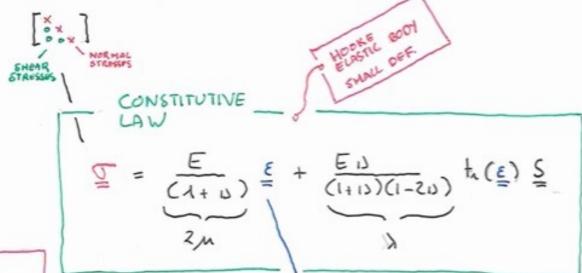


$$\frac{\sqrt{2}}{\sqrt{2}} \left(\frac{1}{2} \sqrt{2} \right) + \int_{0}^{\infty} \frac{1}{2} dx = 0 \quad \text{in } \Omega$$

$$-\frac{1}{2} \sqrt{2} = \frac{1}{2} \quad \text{on } \Gamma_{0}$$

$$0 = 0 \quad \text{on } \Gamma_{0}$$

3D LINEAR ISOTROPIC ELASTICITY



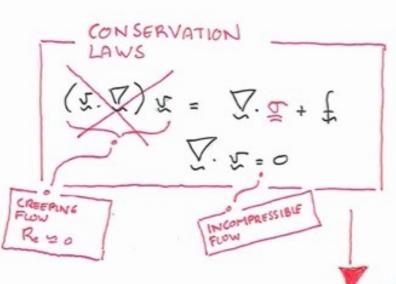
$$\stackrel{\epsilon}{=} \stackrel{\Delta}{=} \frac{1}{2} \left(\nabla_{u} + (\nabla_{u})^{T} \right)$$

DEFORMATION

TENSOR

$$\nabla \cdot \nabla = 0$$
 $\nabla \cdot \nabla = 0$
 $\nabla \cdot \nabla = 0$

STOKES PROBLEM



TENSOR

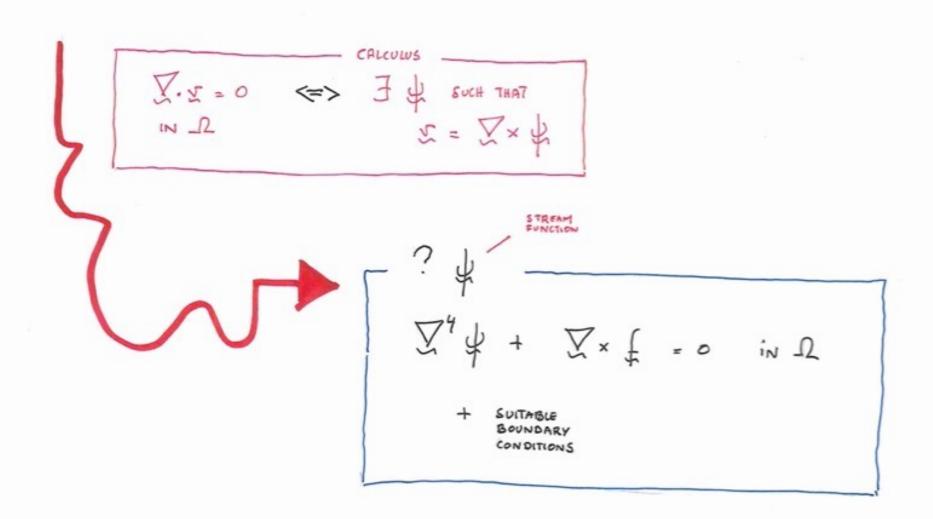
$$\vec{q} = \frac{5}{4} \left(\tilde{\Delta}^{\tilde{\kappa}} + (\tilde{\Delta}^{\tilde{\kappa}})_{\perp} \right)$$

$$Z = 0 \quad \text{on } L^0$$

$$Z \cdot Z = 0 \quad \text{on } L^0$$

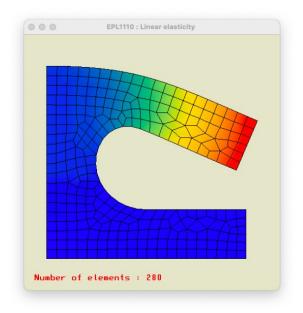
$$Z \cdot Z = 0 \quad \text{on } L^0$$

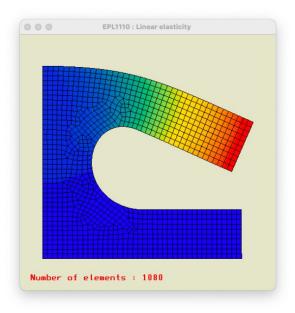
$$Z \cdot Z = 0 \quad \text{on } L^0$$



Que va-t-on résoudre?

Trouver
$$\mathbf{u}(\mathbf{x}) \in \mathcal{U}$$
 tel que
$$\underbrace{\langle \, \boldsymbol{\epsilon}(\widehat{\mathbf{u}}) : \mathbf{C} : \boldsymbol{\epsilon}(\mathbf{u}). \, \rangle}_{a(\widehat{\mathbf{u}}, \mathbf{u})} = \underbrace{\langle \, \widehat{\mathbf{u}}f \, \rangle + \ll \, \widehat{\mathbf{u}}g \gg_N,}_{b(\widehat{\mathbf{u}})} \quad \forall \widehat{\mathbf{u}} \in \widehat{\mathcal{U}},$$





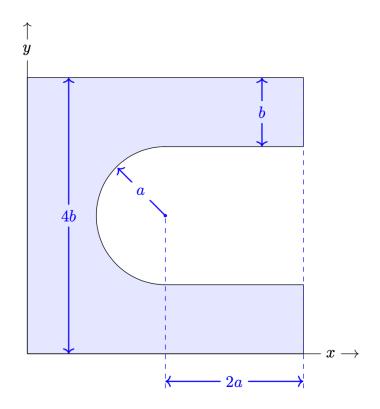
Créer une géométrie! Construire le maillage!

Définir la géométrie et le maillage !

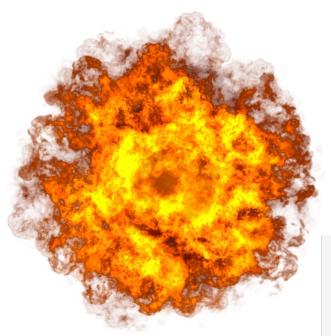
Le maillage et la géométrie sont définis comme suit :

```
double Lx = 1.0;
double Ly = 1.0;

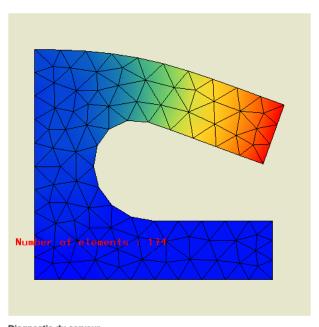
theGeometry->LxPlate = Lx;
theGeometry->LyPlate = Ly;
theGeometry->h = Lx * 0.05;
theGeometry->elementType = FEM_TRIANGLE;
```



Et on soumet au serveur...



Et après avoir fait le devoir...



Diagnostic du serveur

Et on minimise toujours une fonctionnelle!

Trouver
$$\mathbf{u}(\mathbf{x}) \in \mathcal{U}$$
 tel que
$$\underbrace{< \boldsymbol{\epsilon}(\widehat{\mathbf{u}}) : \mathbf{C} : \boldsymbol{\epsilon}(\mathbf{u}).>}_{a(\widehat{\mathbf{u}}, \mathbf{u})} = \underbrace{< \widehat{\mathbf{u}}f > + \ll \widehat{\mathbf{u}}g \gg_N,}_{b(\widehat{\mathbf{u}})} \quad \forall \widehat{\mathbf{u}} \in \widehat{\mathcal{U}},$$

$$J(\mathbf{v}) = \underbrace{\frac{1}{2} < \epsilon(\mathbf{v}) : \mathbf{C} : \epsilon(\mathbf{v}). >}_{\frac{1}{2}a(\mathbf{v}, \mathbf{v})} - \underbrace{< \mathbf{v}f > + \ll \mathbf{v}g \gg_N,}_{b(\mathbf{v})}$$

En deux dimensions!

$$\begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{yy} \end{bmatrix} = \begin{bmatrix} A\epsilon_{xx} + B\epsilon_{yy} & 2C\epsilon_{xy} \\ 2C\epsilon_{xy} & A\epsilon_{yy} + B\epsilon_{xx} \end{bmatrix}$$

Acier

$$E = 2.11 \ 10^{11} \ [N/m^2]$$
 $\nu = 0.3$
$$\rho = 7.85 \ 10^3 \ [kg/m^3]$$

$$\nu = 0.3$$

$$ho = 7.85 \ 10^3 \ [kg/m^3]$$

Déformations planes Tensions planes

$$A = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \qquad A = \frac{E}{(1-\nu^2)}$$

$$B = rac{E
u}{(1+
u)(1-2
u)} \qquad B = rac{E
u}{(1-
u^2)}$$

$$C = \frac{E}{2(1+\nu)}$$

Déformations planes...

$$\sigma_{xx} = \frac{E}{(1+\nu)(1-2\nu)} \left((1-\nu)\epsilon_{xx} + \nu\epsilon_{yy} \right),$$

$$\sigma_{yy} = \frac{E}{(1+\nu)(1-2\nu)} \left(\nu\epsilon_{xx} + (1-\nu)\epsilon_{yy} \right),$$

$$\sigma_{zz} = \frac{E\nu}{(1+\nu)(1-2\nu)} (\epsilon_{xx} + \epsilon_{yy}),$$

$$\sigma_{xy} = \frac{E}{(1+\nu)} \epsilon_{xy},$$

$$\sigma_{xx} = \frac{E}{(1-\nu^2)} (\epsilon_{xx} + \nu \epsilon_{yy}),$$

$$\sigma_{yy} = \frac{E}{(1-\nu^2)} (\nu \epsilon_{xx} + \epsilon_{yy}),$$

$$\sigma_{xy} = \frac{E}{(1+\nu)} \epsilon_{xy}.$$

...tensions planes

La fonctionnelle à minimiser!

$$\frac{1}{2} a(\mathbf{u}, \mathbf{u}) = \frac{1}{2} < \epsilon(\mathbf{u}) : \sigma(\mathbf{u}) >,$$

$$= \frac{1}{2} < \begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} \\ \epsilon_{xy} & \epsilon_{yy} \end{bmatrix} : \begin{bmatrix} A\epsilon_{xx} + B\epsilon_{yy} & 2C\epsilon_{xy} \\ 2C\epsilon_{xy} & A\epsilon_{yy} + B\epsilon_{xx} \end{bmatrix} >,$$

$$= \frac{1}{2} < \begin{bmatrix} \epsilon_{xx} & \epsilon_{yy} & 2\epsilon_{xy} \end{bmatrix} \cdot \begin{bmatrix} A & B & 0 \\ B & A & 0 \\ 0 & 0 & C \end{bmatrix} \cdot \begin{bmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ 2\epsilon_{xy} \end{bmatrix} >.$$

Matrice et vecteur locaux à construire!

$$\mathbf{A}_{ij} = \begin{bmatrix} <\tau_{i,x}A\tau_{j,x}> + <\tau_{i,y}C\tau_{j,y}> & <\tau_{i,x}B\tau_{j,y}> + <\tau_{i,y}C\tau_{j,x}> \\ \\ <\tau_{i,y}B\tau_{j,x}> + <\tau_{i,x}C\tau_{j,y}> & <\tau_{i,y}A\tau_{j,y}> + <\tau_{i,x}C\tau_{j,x}> \end{bmatrix},$$

$$\mathbf{B}_{i} = \begin{bmatrix} <\tau_{i}f_{x}> + \ll\tau_{i}g_{x} \gg \\ <\tau_{i}f_{y}> + \ll\tau_{i}g_{y} \gg \end{bmatrix}.$$

ABSTRACT GENERIC DISCRETE FORHULATION

$$U(X) = \int_{i=1}^{m} U_{i} \tau_{i}(X)$$

$$U(X) = \int_{i=1}^{m} U_{i} \tau_{i}(X)$$

$$U(X) = U_{i}(X)$$

$$U(X) = U_{i} \tau_{i}(X)$$

$$U(X) = U_{i} \tau_{i}(X)$$

$$U(X) = U_{$$

DISCRETE

TIP#1 = a (0, v) $\langle \tilde{\mathcal{L}} \cdot \left(\tilde{\mathcal{L}} \cdot \tilde{\mathcal{L}}(\tilde{\mathcal{L}}) \right) \rangle = \langle \tilde{\mathcal{L}} \cdot \left(\tilde{\mathcal{L}} \cdot \tilde{\mathcal{L}}(\tilde{\mathcal{L}}) \right) \rangle - \langle \tilde{\mathcal{L}}(\tilde{\mathcal{L}}) \cdot \tilde{\mathcal{L}}(\tilde{\mathcal{L}}) \rangle$ « m. ú. 5(v) » = « Q. (~ (~))»N USUAL CALCULUS

IS a(û u) SYMMETRIC?

$$\langle \nabla \hat{\mathcal{Q}} : \nabla (\hat{\mathcal{Q}}) \rangle = \langle \nabla \hat{\mathcal{Q}} \cdot \nabla (\nabla \hat{\mathcal{Q}}) \rangle : \nabla (\hat{\mathcal{Q}}) \rangle : \nabla (\hat{\mathcal{Q}) \rangle :$$

WEAK FORMULATION

?
$$g \in U$$
 such that

 $\langle \underline{\xi}(\hat{g}) : \underline{\zeta} : \underline{\xi}(\underline{y}) \rangle = \langle \underline{\hat{g}} : \underline{\xi} \rangle$
 $\psi \in U$
 $\psi \in U$
 $\psi \in U$
 $\psi \in U$

FOR SUITABLE
$$\subseteq$$
! ? $U \in U$ SUCH THAT

$$J(u) = \min_{v \in U} \frac{1}{2} a(v, v) - b(v)$$

$$J(v)$$

MINIMIZATION PROBLEM

$$\frac{1}{2}\alpha(x,x) = (\frac{1}{2}\lambda \underline{\epsilon}(x):\underline{s}) + \underline{A} \underline{\epsilon}(x):\underline{\epsilon}(x) >$$

$$\frac{1}{2}\alpha(x,x) = (\frac{1}{2}\lambda \underline{\epsilon}(x):\underline{s}(x)) + \underline{A} \underline{\epsilon}(x):\underline{\epsilon}(x) >$$

$$\frac{1}{2}\alpha(x,x) = (\frac{1}{2}\lambda \underline{\epsilon}(x)):\underline{s}(x) = (\frac{1}{2}\lambda \underline{\epsilon}(x)):\underline{s}(x) = (\frac{1}{2}\lambda \underline{\epsilon}(x)):\underline{s}(x) =$$

$$\frac{1}{2}\alpha(x,x) = (\frac{1}{2}\lambda \underline{\epsilon}(x)):\underline{s}(x) = (\frac{1}{2}\lambda \underline{\epsilon}(x)):\underline{s}(x) =$$

$$\frac{1}{2}\alpha(x,x) = (\frac{1}{2}\lambda \underline{\epsilon}(x)):\underline{s}(x) = (\frac{1}{2}\lambda \underline{\epsilon}(x)):\underline{s}(x) =$$

$$\frac{1}{2}\alpha(x,x) =$$

$$\frac{1}{2} + \frac{1}{2} > 0 \qquad \left(\epsilon_{12} \neq 0 \right) \\ \left(\epsilon_{11} = \epsilon_{22} = \epsilon_{33} \neq 0 \right)$$

ADMISSIBLE VALUES FOR LAMÉ COEFFICIENTS

"DEFORMATION ENERGY"

ENERGY OF DEFORMATION

THE STRUCTURE AND IS STORED INSIDE.

SUCH AN ENERGY IS RECOVERED WHEN EXTERNAL FORCES ARE REMOVED

WHAT?

FORCE DISPLACEMENT

ENERGY = FORCE . DISPLACEMENT

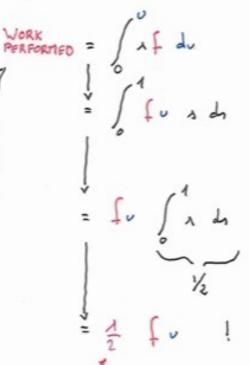
WORK PERFORMED

du=vdn do

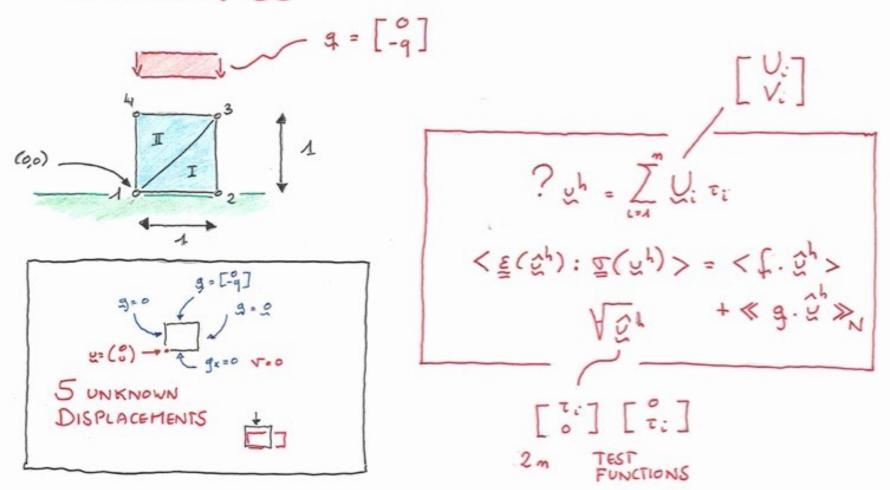
VERY VERY SLOW LOADING

- QUASI-STATE APPROACH
 - . IRREVERSIBILITY :

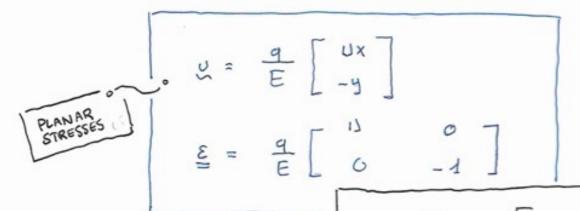
ARE NEGLECTED!

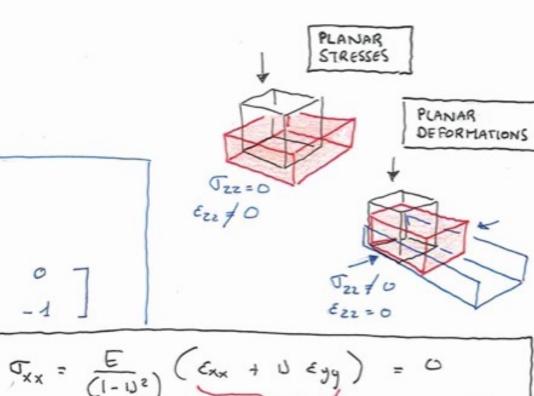


NUMERICAL EXAMPLE



ANALYTICAL





$$\begin{bmatrix}
\tau_{i} \\
0
\end{bmatrix} \circ R \begin{bmatrix} \tau_{i} \\
0
\end{bmatrix}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
0
\end{cases}$$

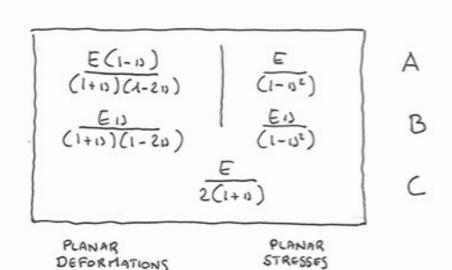
$$\begin{cases}
\xi(\hat{Q}^{h}) : \underline{G}(\hat{Q}^{h}) \\
\vdots \\
\xi(\hat{Q}^{h}) : \underline$$

$$\Xi \begin{pmatrix} \tau_i \\ 0 \end{pmatrix} = \begin{bmatrix} \tau_{i,x} & \tau_{i,y}/2 \\ \tau_{i,y}/2 & 0 \end{bmatrix}$$

$$\Xi \begin{pmatrix} 0 \\ \tau_i \end{pmatrix} = \begin{bmatrix} 0 & \tau_{i,x}/2 \\ \tau_{i,x}/2 & \tau_{i,y} \end{bmatrix}$$

$$\Xi \begin{pmatrix} \Xi \\ 0 \end{pmatrix} = \begin{bmatrix} A \in XX + B \in gg & 2C \in XY \\ 2C \in XY & A \in gg + B \in XX \end{bmatrix}$$

HOW TO CALCULATE IT ?



$$\underline{\xi} : \underline{\underline{G}} = \varepsilon_{xx} \left(\underline{A} \varepsilon_{xx} + \underline{B} \varepsilon_{yy} \right) \\ + 4 \underline{C} \varepsilon_{xy} \varepsilon_{xy} \\ + \varepsilon_{yy} \left(\underline{A} \varepsilon_{yy} + \underline{B} \varepsilon_{xx} \right)$$

LOCAL ELASTICITY MATRIX

COMPUTING A LOCAL ELASTICITY MATRIX

