
1

Finite Element Method for fluid flow problems in an industrial R&D
context - Motivations, theory and applications

Cenaero's intervention in UCLouvain's course Introduction aux éléments finis (LEPL1110)
Teacher: Vincent Legat

Pierre-Alexandre Beaufort, Margaux Boxho, David Henneaux

Contact: david.henneaux@cenaero.be



22

Context –Why numerical simulations matter

© 2024 Cenaero – All rights reservedFEM for fluid flow equation
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design
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Operation

'Conventional'
process

Simulation-
based process

Simplified theory &
experiments

• Excessive margins ->
performance degradation

• Impossibility to innovate

Verification by huge # of tests

• Possible missing of risks due
to inadequate physics
understanding

• Increased developed cost and
time

Frequent occurrence of
failures

• Possible missing of risks due
to inadequate physics
understanding

• Increased developed cost and
time

Detailed modeling

• Optimized performance

• Allow innovative design

• Handle out-of-reach
configurations for
'conventional' approach

Fast virtual tests

• Reliable outcomes
combined with uncertainty
quantification

• Reduced costs by
accelerating R&D

Enhanced reliability

• Anticipation and mitigation
strategies development

• Immediate investigation
and problem resolutions



33

Context – Numerical simulations is one of the pillars of predictive science
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Credits: El Rassi,

Helber, Fagnani
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Context – Challenges and requirements for simulating fluid flows

Non-linearities -> singularities

© 2024 Cenaero – All rights reservedFEM for fluid flow equation

Stability

Challenges Method
requirements

Wide range of scales High-resolution

FlexibilityComplex geometries

[1]

[2]

Credits:

[1] Cadence Poitwise

[2] Beck. PhD thesis, Univ. Stuttgart; 2015

[3] Schmitt et al., International Conference on Computational Engineering. 2017.

[3]
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Context – Challenges and requirements for simulating fluid flows

© 2024 Cenaero – All rights reservedFEM for fluid flow equation

Challenges Method
requirements

Computational cost
Efficiency

RobustnessMultiphysics nature -> stiffness

Credits:

[1] Schrooyen PhD thesis, UCLouvain; 2015

[1]
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Outline
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Discretization through the weighted residual perspective
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• Prototype advection-diffusion equation – strong form

• You've seen that for elliptic problem (c=0, u(x)): FEM <=> functional minimization

• But breaks down for hyperbolic equation => go for the more general weighted
residual approach

Fundamental Lemma of
Variational Calculus

Pointwise condition

-> KO for non-smooth solution

Integral ("average") condition

-> OK for non-smooth solution
(derivatives in the sense of distributions)
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Discretization through the weighted residual perspective
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• Discretization: from infinite space to 'computer-compatible' finite space
o On the domain (meshing):

o On the test functions:

o On the trial functions:

We seek an approximate solution such that the residual of the equations is made
"small" in a certain integral sense (but not = 0 anymore due to discretization)
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Discretization through the weighted residual perspective
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• Method choice:
o Solution representation

Global: all DOF
contribute to the
approximation

Local: dof in a
certain stencil
contribute to the
approximation

Credits:

[1] Beck. PhD thesis, Univ. Stuttgart; 2015

[1]

FEM for fluid flow equation



1111

Discretization through the weighted residual perspective
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• Method choice:
o Weighting of the residual

Orthogonal projection of the
residual on the trial space

-> error minimized in L2-norm

Collocation

Pseudo-spectral
method

Subdomain

FVM

Petrov-Galerkin

SUPG CFEM

Galerkin

CFEM, DGFEM

Lack of geometrical flexibility

due to Cartesian-like stencil
or use of specific collocation

points

Lack of resolution capabilities

due to enforcement of residual in a box
average fashion

Geometrical flexibility
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Outline
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Sources of numerical errors

• Expression of the solution in modal basis

© 2024 Cenaero – All rights reservedFEM for fluid flow equation

1 X X^2 X^3 ... 1 X X^2 X^3 ...

Smooth flow Multiscale flow
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Sources of numerical errors

• Approximation error: truncation of expansion
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• PDE discretization error: discrete weighted residual formulation

For non-linear problem, those discretization errors interact across the scales ->
aliasing errors may accumulate energy in the high modes and affect the lower modes
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Manifestations of numerical errors

• Approximation and discretization errors lead to alterations of phase
(dispersion) and amplitude (dissipation) of the signal (solution)

© 2024 Cenaero – All rights reservedFEM for fluid flow equation

Dispersion error Dissipation error Dispersion +
Dissipation errorsCredits:

[1] https://hplgit.github.io/fdm-book/doc/pub/book/sphinx/._book012.html

https://hplgit.github.io/f
dm-
book/doc/pub/book/sp
hinx/._book012.html
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Interest of high-order discretization for multiscale problem

• Increasing the scheme order reduces dispersion and dissipation errors ->
increased resolution capabilities at higher modes
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1 X X^2 X^3 ... 1 X X^2 X^3 ...

Smooth flow Multiscale flow

Credits:

[1] Kadanoff, Leo P. "Excellence in computer simulation.

" Computing in Science & Engineering 6.2 (2004): 57-67.
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Why going high-order can pay off

• FE-type element-based methods offer a natural way to
improve subcell resolution by locally increasing the
interpolation order (i.e. without stencil extension)

• For the same # DOF, increasing the order quickly leads
to errors levels (far) below what can mesh refinement
reaches

© 2024 Cenaero – All rights reservedFEM for fluid flow equation

Credits:

[1] Wang, Zhi Jian. "High-order
methods for the Euler and Navier–
Stokes equations on unstructured
grids." Progress in Aerospace
Sciences 43.1-3 (2007): 1-41.
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Why going high-order can pay off
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Credits:

[1] Wang, Zhi Jian. "High-order
methods for the Euler and Navier–
Stokes equations on unstructured
grids." Progress in Aerospace
Sciences 43.1-3 (2007): 1-41.

• FE-type element-based methods offer a natural way to
improve subcell resolution by locally increasing the
interpolation order (i.e. without stencil extension)

• For the same # DOF, increasing the order quickly leads
to errors levels (far) below what can mesh refinement
reaches

• For some applications requiring high resolution,
this leads
to a lower cost
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Continuous Finite Element vs Discontinuous Galerkin

• You've seen that the coercivity (hence stability) of the continuous FE
discretized form is ensured for pure elliptic problem.

• But it's note the case for hyperbolic problem -> let's consider that case:

© 2024 Cenaero – All rights reservedFEM for fluid flow equation

• Different choices of function space between FEM and DGM:

Nodal unknows doubled

at the element interfaces
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Continuous Finite Element vs Discontinuous Galerkin
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• Different choices of function space between FEM and DGM:
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Continuous Finite Element vs Discontinuous Galerkin
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• Galerkin continuous FE (with weak essential boundary condition enforcement)

• The form is coercive... but not in the norm defining the function space -> no
control leading to oscillatory solution as the mesh is refined
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Continuous Finite Element vs Discontinuous Galerkin
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• Petrov-Galerkin continuous FE (with weak essential boundary condition
enforcement)

• Artificial diffusion in streamline direction "c" gives now control on the
previously unbounded directional derivative of the solution
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Continuous Finite Element vs Discontinuous Galerkin

© 2024 Cenaero – All rights reservedFEM for fluid flow equation

• Discontinuous Galerkin FE

Integration by part

Sum over

elements
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Continuous Finite Element vs Discontinuous Galerkin

© 2024 Cenaero – All rights reservedFEM for fluid flow equation

• Discontinuous Galerkin FE

Integration by part

Sum over

elements

• Because of solution jump at element interfaces, definition of a numerical flux
function based on left and right states

• Control on the solution jump in the DG norm only if b_0 != 0.
In particular, upwind stabilization is ensured by
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Continuous Finite Element vs Discontinuous Galerkin
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• Discontinuous Galerkin FE exploits weak imposition of inter-element continuity,
in contrast to strong continuity in continuous FEM. This has a stabilizing effect
(if numerical flux properly chosen) and lead to improved order of convergence.

• What about elliptic operator with DGM? Contrary to continuous FEM, well-
posedness via the Lax-Milgram theorem cannot be invoked since we're
considering non-conforming FE -> need to prove it for every discrete function
space (i.e. stability conditions depending on element type and order).

FEM for fluid flow equation
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Outline
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Application of DG spatial discretization to Navier-Stokes fluid equations
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• Also an advection-diffusion-reaction equation on which we apply weighted
residual approach

• DG discerization leads to a system of ODEs to be integrated in time
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Application of DG spatial discretization to Navier-Stokes fluid equations

© 2024 Cenaero – All rights reservedFEM for fluid flow equation

Unsteady Explicit
Time-marching steady or
unsteady Implicit

• Non-linear system to solve at each
time step

• Linear system to solve at each
iteration

• Linear temporal term -> solution at
next time step directly available
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• Advantages
• Ability to handle complex geometries

Take-home messages about discontinuous Galerkin method



31

p=3

• Advantages
• Ability to handle complex geometries
• Guaranteed order of convergence p+1
on unstructured meshes

• No degradation near size jumps/walls

Take-home messages about discontinuous Galerkin method
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p=6

• Advantages
• Ability to handle complex geometries
• Guaranteed order of convergence p+1
on unstructured meshes

• No degradation near size jumps/walls

Take-home messages about discontinuous Galerkin method
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• Advantages
• Ability to handle complex geometries
• Guaranteed order of convergence p+1
on unstructured meshes

• No degradation near size jumps/walls
• Good dispersion-dissipation properties

Credit : Gasner and Kopriva

Take-home messages about discontinuous Galerkin method
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h

• Advantages
• Ability to handle complex geometries
• Guaranteed order of convergence p+1
on unstructured meshes

• No degradation near size jumps/walls
• Good dispersion-dissipation properties
• hp-adaptation

p=1

p=2

p=3

p

Take-home messages about discontinuous Galerkin method
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• Advantages
• Ability to handle complex geometries
• Guaranteed order of convergence p+1
on unstructured meshes

• No degradation near size jumps/walls
• Good dispersion-dissipation properties
• hp-adaptation
• Hybrid structured/unstructured mesh

Take-home messages about discontinuous Galerkin method
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• Advantages
• Ability to handle complex geometries
• Guaranteed order of convergence p+1
on unstructured meshes

• No degradation near size jumps/walls
• Good dispersion-dissipation properties
• hp-adaptation
• Hybrid structured/unstructured mesh
• Shared operations (parametric)
• Local operations
• Low transfer work and operation hiding
possible (parallel efficiency)

Take-home messages about discontinuous Galerkin method
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• Advantages
• Ability to handle complex geometries
• Guaranteed order of convergence p+1
on unstructured meshes

• No degradation near size jumps/walls
• Good dispersion-dissipation properties
• hp-adaptation
• Hybrid structured/unstructured mesh
• Shared operations (parametric)
• Local operations
• Low transfer work and operation hiding
possible (parallel efficiency)

• Local conservation

• Drawbacks
• Duplication of the degrees of freedom
on the element boundaries (costly)

• Sensitive to under-resolved features

Take-home messages about discontinuous Galerkin method
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Reference to go further into details

• Hartmann, Ralf. "Numerical analysis of higher order
discontinuous Galerkin finite element methods." (2008)
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Applications - Detailed thermo-chemical degradation study of critical space
debris materials
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Argo flow solver (steady state)
coupled with Argo Material solver
(unsteady simulation with immersed
method)

▪ Mostly used for melting materials
(coupled with hydrodynamic
conservation laws)

▪ Staggered approach exploits the
difference in time scale for
flow/material response

Argo flow solver accounting for
the presence of reacting porous
material (unified method)

▪ Use of volume averaging method
to develop single set of equations
valid for low/dense reactive
porous materials
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