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Context — Why numerical simulations matter

Simplified theory & Verification by huge # of tests Frequent occurrence of
experiments - Possible missing of risks due failures
'Conventional' - Excessive margins -> to inadequate physics *  Possible missing of risks due
rocess performance degradation understanding to inadequate physics
P - Impossibility to innovate ° Increased developed cost and understanding
time * Increased developed cost and
time
Concept Detailed Prototyping .
. . . r n
design design & testing Operatio
Simulation- Detailed modeling Fast virtual tests Enhanced reliability
based process - Optimized performance - Reliable outcomes - Anticipation and mitigation
- Allow innovative design combined with uncertainty strategies development
- Handle out-of-reach quantification - Immediate investigation
configurations for * Reduced costs by and problem resolutions
'‘conventional' approach accelerating R&D
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Context — Numerical simulations is one of the pillars of predictive science
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Context — Challenges and requirements for simulating fluid flows

Challenges

Complex geometries

Wide range of scales

Non-linearities -> singularities

Credits:

[1] Cadence Poitwise

[2] Beck. PhD thesis, Univ. Stuttgart; 2015

[3] Schmitt et al., International Conference on Computational Engineering. 2017 .

Method
requirements

Flexibility

High-resolution
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Context — Challenges and requirements for simulating fluid flows
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Computational cost

network

Method

requirements

Credits: -

[1] Schrooyen PhD thesis, UCLouvain; 2015
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Challenges Method

. . requirements
Complex geometries
[Margaux's talk }
Wide range of scales i )
Non-linearities -> singularities
Multiphysics nature + high-orderr )
operators -> stiffness .
Computational cost [
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Challenges Method

r . requirements
Complex geometries
. J
[Margaux's talk }
Wide range of scales i )
Non-linearities -> singularities
Multiphysics nature + high-orderr )
operators -> stiffness .
Computational cost [
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Discretization through the weighted residual perspective

Prototype advection-diffusion equation — strong form
L= 00 - . o= o~ -
uel E—I—V-(cu)—V-(qu):O on )

You've seen that for elliptic problem (c=0, u(x)): FEM <=> functional minimization
J (@) = min J(W)
wel
But breaks down for hyperbolic equation => go for the more general weighted
residual approach

on - ~ ~ ~

R : Vo(cl) -V (dVE)=0 onQ) <= foﬂé[ﬁ]ﬁrdxzo Vw € C2 Q)

= T

Pointwise condition
-> KO for non-smooth solution
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Discretization through the weighted residual perspective

Discretization: from infinite space to ‘computer-compatible’ finite space
On the domain (meshing): Q ~ Q

On the test functions:

W E CCOO((N)) mmes) W € W := span{wy, ..., w,, ..., Wy }
fN R[] wdx =0 ‘J: R[d] w,dx=0 forn=1,..N,
@) O

On the trial functions:

u E lUc C?(Q)) mmm=) U € U = span{@y, ..., P, -, PN}
‘fﬂﬁ%[u] w,dx=0 forn=1,...N,

Rlul + R[i] =0
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Discretization through the weighted residual perspective

Credits:

Method choice: [1] Beck. PhD thesis, Univ. Stuttgart; 2015
Solution representation
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Discretization through the weighted residual perspective

Method choice:
Weighting of the residual

Wi (0 = 8= X) w00 = {7 D ==

W, (X) = P, (X) W, (X) = ¢, (x)

0, otherwise.

3 y v

Lack of geometrical flexibility Lack of resolution capabilities
due to Cartesian-like stencil due to enforcement of residual in a box
or use of specific collocation average fashion

points
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Challenges Method

. . requirements
Complex geometries
[Margaux's talk }
Wide range of scales ( ]
. J
Non-linearities -> singularities
Multiphysics nature + high-orderr )
operators -> stiffness .
Computational cost [
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Sources of numerical errors

Expression of the solution in modal basis

U; 1 U; N
| | | a(x) = Y Ui&i(x
: ! : — ! : | | — 1=0
X X2 XM3 T X X2 X3
u(x)t u(x)1

X X
Smooth flow Multiscale flow
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Sources of numerical errors

Approximation error: truncation of expansion

oo N R
u(x) = U, £i(X) ) u(x) = Z U; &i(x)
=0 1=0
€1 = Z I:Jz *gz (X)
1=N+1

PDE discretization error: discrete weighted residual formulation

Riul+ R[{i] =0 s c2;=|U;,—0;| i=0,...,N
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Manifestations of numerical errors

Approximation and discretization errors lead to alterations of phase
(dispersion) and amplitude (dissipation) of the signal (solution)

€1 = Z ﬁzfz(x) . €2 = |ﬂz — ﬂZI 2

1=N+1
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Dispersion error

Credits:

[1] https://hplgit.github.io/fdm-book/doc/pub/book/sphinx/. book012.html
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Interest of high-order discretization for multiscale problem

- Increasing the scheme order reduces dispersion and dissipation errors ->
increased resolution capabilities at higher modes

U, 1 U; |
ll A1

I —
>

X X0 XM X X2 X3
u(x)‘r u(x)
X X
Smooth flow Multiscale flow

Credits:

[1] Kadanoff, Leo P. "Excellence in computer simulation.
" Computing in Science & Engineering 6.2 (200@&;57-67.

p =
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Why going high-order can pay off

N
FE-type element-based methods offer a natural way to -
improve subcell resolution by locally increasing the u(x) = Z Ui (X%

interpolation order (i.e. without stencil extension) =l
For the same # DOF, increasing the order quickly leads ‘ ‘
to errors levels (far) below what can mesh refinement KL

reaches
F
N /'
L ~
B N algebraic N
- — convergence m
o
= N\
W~ N
2 N
a0 L N
S spectral
| convergence
_ N
Credits: \
[1] Wang, Zhi Jian. "High-order - ~
methods for the Euler and Navier— -
Stokes equations on unstructured
grids." Progress in Aerospace
Sciences 43.1-3 (2007): 1-41. (NDOFS)”d - B . — —
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Why going high-order can pay off

FE-type element-based methods offer a natural way to
improve subcell resolution by locally increasing the

interpolation order (i.e. without stencil extension)

For the same # DOF, increasing the order quickly leads
to errors levels (far) below what can mesh refinement

reaches

For some appli
this leads

to a lower cost|

cations requiring high resolution,
High-order methods

Log(Error)

Credits:

[1] Wang, Zhi Jian. "High-order
methods for the Euler and Navier—

~
> ~ Error level for RANS
\ - -
B ~ Simulations
w
| ~
— ~, Low order methods
-~
S

— Error level for ~ ~

acoustic wave ~

— propagation

Stokes equations on unstructured
grids." Progress in Aerospace
Sciences 43.1-3 (2007): 1-41.
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Challenges Method

. . requirements
Complex geometries
[Margaux's talk }
Wide range of scales i )
n mEgm ] g m r 1
Non-linearities -> singularities
Multiphysics nature + high-orderr )
operators -> stiffness .
Computational cost [

FEM for fluid flow equation © 2024 Cenaero — All rights reserved 19 Cenaero



Continuous Finite Element vs Discontinuous Galerkin

You've seen that the coercivity (hence stability) of the continuous FE
discretized form is ensured for pure elliptic problem.

But it's note the case for hyperbolic problem -> let's consider that case:

o~

Rla] =V (cu)=0 on () == fﬂﬁ%[u] w,dx=0 forn=1,...N,

Different choices of function space between FEM and DGM:
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Continuous Finite Element vs Discontinuous Galerkin

Different choices of function space between FEM and DGM:
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Continuous Finite Element vs Discontinuous Galerkin

fﬂﬁ%[u] w,dx=0 forn=1,...N,

Galerkin continuous FE (with weak essential boundary condition enforcement)

/ V- (cu)|wdz +/ c(u —up)wds =0, YweW;
Q B1Y.

The form is coercive... but not in the norm defining the function space -> no
control leading to oscillatory solution as the mesh is refined

: 1
B(v,v) 2’}‘(}/%‘2d$+/ bw? ds
Jo 2 Jog
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Continuous Finite Element vs Discontinuous Galerkin

fﬂﬁ%[u] w,dx=0 forn=1,...N,

Petrov-Galerkin continuous FE (with weak essential boundary condition

enforcement)
/ V- (cu)| w4 e Vuw| de + / c(u—up)wds =0, YweW,
Q o9

Artificial diffusion in streamline direction "c" gives now control on the
previously unbounded directional derivative of the solution

C/(CVH)(CV?H)d:IZ-I-C/(ch)(c?w)d:r
Jo 0
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Continuous Finite Element vs Discontinuous Galerkin

fﬂﬁ%[u] w,dx=0 forn=1,...N,

Discontinuous Galerkin FE

/ V- (cu)|wdr = 0 — (cu)Vwdx + / cuwds =0
;-u > b Trn . 'E)Trn
/((* u)Vwdr + Z / Luw ds =0, VYwe W;f <:D
T”-i )TH‘I
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Continuous Finite Element vs Discontinuous Galerkin

fﬂﬁ%[u] w,dx=0 forn=1,...N,

Discontinuous Galerkin FE

/ V- (cu)|wdr = 0 ) (cu)Vwdx +/ cuwds =0
il‘l‘l . T”‘!

'E)Trn

/(( uw)Vwdzx + Z / Luw ds =0, VYwe W;f <:D

T”‘I )T”!

Because of solution jump at element mterfaces, definition of a numerical flux
function based on left and right states

F=bu" +u")+by(u’ —u")

Control on the solution jump in the DG norm only if b 0 1= 0.

In particular, upwind stabilization is ensured by , _ —|I;| %

bu- 1tb<0
but ifb>0
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Continuous Finite Element vs Discontinuous Galerkin

fﬂﬁ%[u] w,dx=0 forn=1,...N,

Discontinuous Galerkin FE exploits weak imposition of inter-element continuity,
in contrast to strong continuity in continuous FEM. This has a stabilizing effect
(if numerical flux properly chosen) and lead to improved order of convergence.

V (cu)|lwdr—
[ 19wl wda

/ c(ut—u")wds+ / c(u—up)wds =0, Ywe W
T \ 012 dTTu o

What about elliptic operator with DGM? Contrary to continuous FEM, well-
posedness via the Lax-Milgram theorem cannot be invoked since we're
considering non-conforming FE -> need to prove it for every discrete function
space (i.e. stability conditions depending on element type and order).
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Challenges Method

. . requirements
Complex geometries
. J
[Margaux's talk }
= é ~
Wide range of scales
. J
] ] ] ] ] ] r 1
Non-linearities -> singularities
u u u r 1
Multiphysics nature + high-order
operators -> stiffness L

Computational cost [
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Application of DG spatial discretization to Navier-Stokes fluid equations

Also an advection-diffusion-reaction equation on which we apply weighted
residual approach

i~

i~

Jdu d
Z 4V Fu) = V-F(u,Vu) + S(u, Vo)== R (1] é—u+v F(ii, Vi) — S(@, Vi) =0

ot
fﬁ%[u]w dx=0 forn=1,...N, <:D

DG discerization leads to a system of ODEs to be integrated in time

NP (u, w) = Z J,.(a,,w,)

du meT
. o L NP ) = 0 e e
};TJ‘”I ¢m ‘Pm dt ( ) + ZE‘8€(um(€),um(e),wm(e),wm(e))
—nrm - ee
M .
= l + +
beB
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Application of DG spatial discretization to Navier-Stokes fluid equations

) L PP, dx L +NPU___)=0

mel m _ dt
M
N'®(U(tn 1)) + N*P(U(t)) = 0 N'P(U(tn41)) + NP (U(tn41)) = 0
Linear temporal term -> solution at Non-linear system to solve at each
next time step directly available time step
Linear system to solve at each
iteration

FEM for fluid flow equation © 2024 Cenaero — All rights reserved 29 Cenaero
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Advantages

Ability to handle complex geometries
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Take-home messages about discontinuous Galerkin method

Advantages
Ability to handle complex geometries

Guaranteed order of convergence p+1
on unstructured meshes

No degradation near size jumps/walls
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Take-home messages about discontinuous Galerkin method

Advantages
Ability to handle complex geometries

Guaranteed order of convergence p+1
on unstructured meshes

No degradation near size jumps/walls
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Take-home messages about discontinuous Galerkin method

C N=10
Advantages N=1-10
Ability to handle complex geometries | =t /
Guaranteed order of convergence p+1 = )
on unstructured meshes 2 -
No degradation near size jumps/walls ~
Good dispersion-dissipation properties ik )
ok ;é?

Im(Q)
b &b 4 &b &b A b b 4 o

'
—_
o
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Take-home messages about discontinuous Galerkin method

Advantages

Ability to handle complex geometries

Guaranteed order of convergence p+1
on unstructured meshes

No degradation near size jumps/walls
Good dispersion-dissipation properties
hp-adaptation

Temperature
20 53.5 87.1
[ I I [ I
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Take-home messages about discontinuous Galerkin method

Advantages

Ability to handle complex geometries

Guaranteed order of convergence p+1
on unstructured meshes

No degradation near size jumps/walls
Good dispersion-dissipation properties
hp-adaptation

Hybrid structured/unstructured mesh
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Take-home messages about discontinuous Galerkin method

Advantages

Ability to handle complex geometries

Guaranteed order of convergence p+1
on unstructured meshes

No degradation near size jumps/walls
Good dispersion-dissipation properties
hp-adaptation

Hybrid structured/unstructured mesh
Shared operations (parametric)

Local operations

Low transfer work and operation hiding
possible (parallel efficiency)
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Take-home messages about discontinuous Galerkin method

Advantages

Ability to handle complex geometries

Guaranteed order of convergence p+1
on unstructured meshes

No degradation near size jumps/walls
Good dispersion-dissipation properties
hp-adaptation

Hybrid structured/unstructured mesh
Shared operations (parametric)

Local operations

Low transfer work and operation hiding
possible (parallel efficiency)

Local conservation
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Take-home messages about discontinuous Galerkin method

Advantages

Ability to handle complex geometries

Guaranteed order of convergence p+1
on unstructured meshes

No degradation near size jumps/walls

Good dispersion-dissipation properties
hp-adaptation - ——
Hybrid structured/unstructured mesh . Argo
Shared operations (parametric)
Local operations

Low transfer work and operation hiding
possible (parallel efficiency)

Local conservation
Drawbacks

Duplication of the degrees of freedom
on the element boundaries (costly) 00 02 04 06 08 10

Sensitive to under-resolved features x[m]

=
o
1

©
(>3]

©
o

Pressure [Pa]

o o
N e
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Reference to go further into details

Hartmann, Ralf. "Numerical analysis of higher order
discontinuous Galerkin finite element methods." (2008)
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Applications - Detailed thermo-chemical degradation study of critical space

debris materials

(St eady State) Argo compressible flow

Fluid Temperature

Exchange at
gas-liquid

( ) interface
- Argo material solver

coupled with
(unsteady simulation with immersed
method)
= Mostly used for melting materials
(coupled with hydrodynamic
conservation laws)
= Staggered approach exploits the
difference in time scale for
flow/material response

accounting for

the presence of reacting porous
material (unified method)
= Use of volume averaging method
to develop single set of equations
valid for low/dense reactive
porous materials

g &
g 8

N
8
Matrix Density

— 2.8e+03
— 2500

8

~—2000 = Velocity magnitude
0 2.5e-03 100 200 300 3.6e+02
1

eh—

1500
1000

1.1e+03
3.2e+02 [ =
800

Time: 3.000000

— 600

Fibers Density
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Challenges Method

. . requirements
Complex geometries
[Margaux's talk }
Wide range of scales i )
Non-linearities -> singularities
Multiphysics nature + high-orderr )
operators -> stiffness .
Computational cost [
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