

LEPL1201 Cours 8 : Capacités et diélectriques

Enseignant: **D. Lederer**

Agenda LEPL1201

```
Cours 1 : Unités, vecteurs, cinématique + APP le jeudi
S2
    Mardi 26/9
S3
    Mardi 3/10
                   Cours 2 : Lois de Newton et gravité (I) + APP le jeudi
    Mardi 10/10
S4
                   Cours 3 : Force de Coulomb + APP le jeudi
S5
    Mardi 17/10
                   Cours 4 : Loi de Gauss + APP le jeudi
S6
    Mardi 24/10
                   Cours 5: Forces de frottement (and co) + APP le jeudi
    Mardi 31/10
S7
                   Cours 6 : Travail, énergie, puissance + APP le jeudi + Devoir Python
    Mardi 7/11
S8
                   Cours 7: Potentiel électrique et moments + APP le jeudi
S9
    Mardi 14/11
                   Cours 8 : Capacités et diélectriques + APP le jeudi + LABO 1
$10 Mardi 21/11
                   Cours 9: Mouvements circulaires + APP le jeudi
$11 Mardi 28/11
                   Cours 10 : Mécanique des corps rigides + APP le jeudi
$12 Mardi 5/12
                   Cours 11 : Courant électrique et résistance + APP le jeudi
$13 Mardi 12/12
                   Cours 12 : Circuit RC + APP le jeudi
S14
                   LABO 2
```

Agenda Cours 3

- 1. Condensateur et capacité
- 2. Combinaisons de condensateurs
- 3. Energie stockée dans un condensateur
- 4. Diélectriques
- 5. Loi de Gauss et diélectriques
- 6. Force exercée sur un diélectrique
- 7. Condensateurs a plusieurs diélectriques

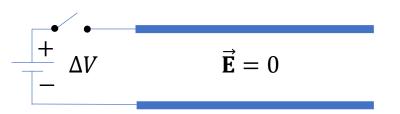
Deux plaques parallèles: on impose σ

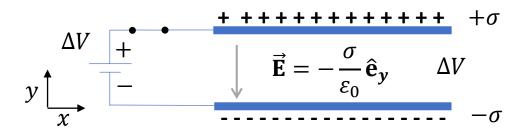
- \square Si on impose $+\sigma$ et $-\sigma$ sur deux conducteurs plans parallèles infinis:
 - \Box champ $\vec{\mathbf{E}} = -\frac{\sigma}{\varepsilon_0} \hat{\mathbf{e}}_y$ apparait entre les conducteurs,
 - \square et une différence de potentiel $\Delta V = Ed = \frac{\sigma}{\varepsilon_0}d$ s'établit entre les plaques.

 $\square \Delta V$, E et σ sont **proportionnels entre eux**.

Deux plaques parallèles: on impose ΔV

- \square Réciproquement, si on impose une différence de potentiel ΔV (ou tension) entre les plaques (par exemple avec une pile):
 - \Box on crée un champ $\vec{\mathbf{E}} = -\frac{\Delta V}{d} \hat{\mathbf{e}}_y$ entre les plaques
 - \Box on induit des densité surfaciques charges sur les plaques: $\sigma = \varepsilon_0 E = \frac{\varepsilon_0 \Delta V}{d}$





- □ Il s'agit du même problème électrostatique!
- $\square \Delta V$, E et σ sont liées par les mêmes relations, et sont donc à nouveau **proportionnels entre eux**.

Condensateur

- □ Le système de deux plaques parallèles apparait donc comme un dispositif capable de **stocker** des charges. On appelle cela un **condensateur** (*capacitor*).
- □ N'importe quelle paire de conducteurs peut former un condensateur.
- \square Pour tout condensateur, la charge stockée sur l'electrode positive (Q) est égale en norme à celle stockée sur l'electrode négative (-Q).
- \square Q est **proportionnelle** à la différence de potentiel appliquée aux deux bornes du condensateur. En effet, ΔV , E, σ_1 et σ_2 sont proportionels entre eux.
 - Si ΔV augmente, E, σ_1 et σ_2 augmentent mais la **forme** des lignes de champ reste **inchangée**.

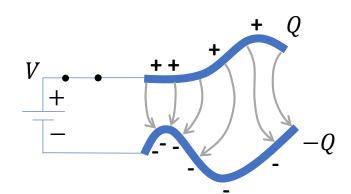
Condensateur et capacité

□ Le facteur de proportionnalité entre la charge et la tension appliquée s'appelle la capacité (capacitance):

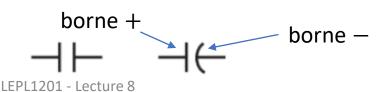
$$C \triangleq \frac{Q}{\Delta V}$$

- ☐ La capacité s'exprime en Farad [F]
- ☐ Souvent, on pose que l'électrode **négative** est au potentiel **nul**.
- ☐ Dans ce cas, on a:

$$C \triangleq \frac{Q}{V}$$



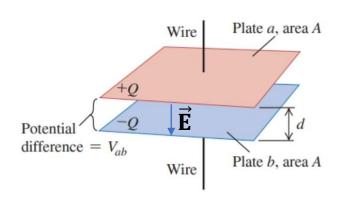
- \square Connaissant C, on peut relier Q à V: Q = CV
- ☐ Symboles électriques:

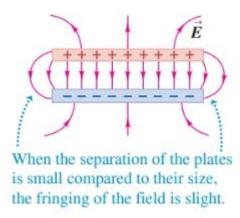


Condensateur à plaques parallèles

- ☐ Le condensateur le plus simple est celui formé par deux plaques parallèles
- \Box Dans ce cas, le **champ** est donné par: $E = \frac{V}{d} = \frac{\sigma}{\varepsilon_0}$ (CL)
- □ La **charge** totale vaut donc: $Q = A\sigma = A\frac{V\varepsilon_0}{d} = V\left(A\frac{\varepsilon_0}{d}\right)$
- □ La **capacité** vaut donc: $C = \frac{Q}{V} = \varepsilon_0 \frac{A}{d} [F]$

Elle ne dépend que des dimensions géométriques du condensateur.





NB: on néglige en général les effets de bord

Condensateur sphérique (1)

- ☐ Exemple 24.3 du libre de référence.
- □ Comment calculer *C* ?
- □ Soit
 - \square on impose les charges +Q et -Q et on calcule E, puis ΔV (oui)
 - \square soit on impose ΔV et on calcule E, puis Q (non, pas dans ce cours)

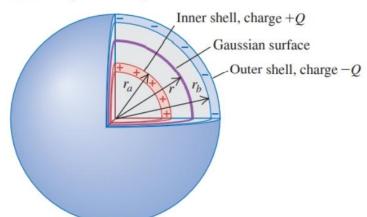


Figure 24.5 A spherical capacitor.

Condensateur sphérique (2)

- \square Soit -Q sur la sphère extérieure et +Q sur la sphère intérieure.
- \square Par Gauss, on trouve que le champ E(r) entre les deux sphères vaut:

$$\int_{S} \vec{\mathbf{E}}(r) \cdot d\vec{\mathbf{s}} = SE(r) = (4\pi r^{2})E(r) = \frac{Q}{\varepsilon_{0}}$$

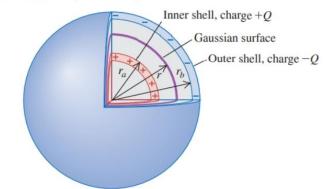
- \square On a donc: $E(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
- $\Box \int_a^b \vec{\mathbf{E}} \cdot d\vec{\mathbf{r}} = V_a V_b$ donne:

$$V_a - V_b = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b} \right) = \frac{Q}{4\pi\varepsilon_0} \left(\frac{r_b - r_a}{r_a r_b} \right)$$

 \Box La capacité vaut donc: $C=rac{Q}{\Delta V}=4\pi arepsilon_0 \left(rac{r_a r_b}{r_b-r_a}
ight)$

□ C ne dépend que des dimensions géométriques

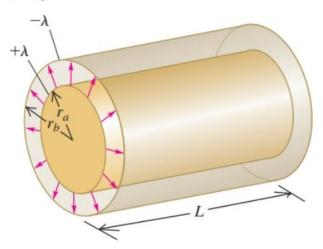
Figure 24.5 A spherical capacitor.



Condensateur cylindrique

☐ Exemple 24.4 du libre de référence.

Figure 24.6 A long cylindrical capacitor. The linear charge density λ is assumed to be positive in this figure. The magnitude of charge in a length L of either cylinder is λL .

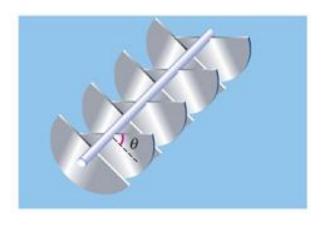


 \Box Déterminer C en fonction de r_a et r_b en appliquant la même méthode. (Voir séance d'exercices)

Condensateurs commerciaux

☐ Quelques exemples:

Capa variable:



Anciens postes de radio: En tournant le bouton de syntonisation du poste, on faisait varier la capacité, ce qui faisait varier la fréquence des ondes radio captées par la radio.

□ Valeurs typique: 10 pF ... 1 μ F (1p = 10⁻¹²)

Utilité?

composant de base des circuits électriques (filtrage)

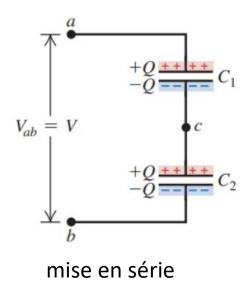
Flash = décharge d'un condensateur

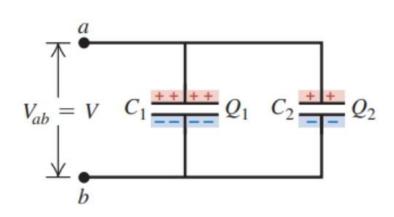
Agenda Cours 3

- 1. Condensateur et capacité
- 2. Combinaisons de condensateurs
- 3. Energie stockée dans un condensateur
- 4. Diélectriques
- 5. Loi de Gauss et diélectriques
- 6. Force exercée sur un diélectrique
- 7. Condensateurs a plusieurs diélectriques

Combinaisons de condensateurs

- ☐ Les condensateurs sont fabriqués pour **certaines valeurs de capacité** standard, et pour des **tensions d'opération maximales** spécifiées.
- □ Il est parfois intéressant de **combiner** des condensateurs pour s'offrir plus de **flexibilité** lors de la conception d'un circuit électrique.
- ☐ **Deux types** de combinaison possibles:





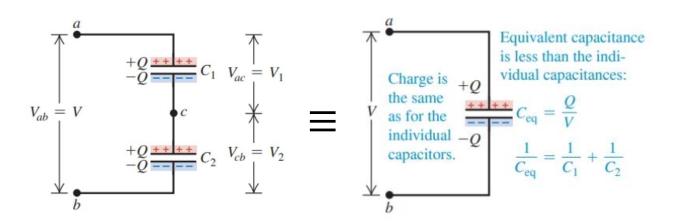
mise en parallèle

Mise en série de condensateurs (1)

- \square Lors d'une mise en **série**, la tension appliquée V **se répartit** entre les deux condensateurs, et chaque condensateur porte la **même charge** Q.
- □ On a donc:

$$V_1 = \frac{Q}{C_1}$$
 $V_2 = \frac{Q}{C_2}$ \Rightarrow $V = V_1 + V_2 = Q\left(\frac{1}{C_1} + \frac{1}{C_2}\right)$ \Rightarrow

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

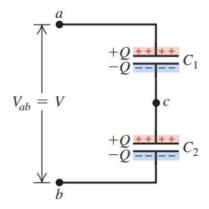


$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

 \square Si N condensateurs en série: $\frac{1}{C_{eq}} = \sum_{i=1}^{N} \frac{1}{C_i} \implies C_{eq} < C_i$

Mise en série de condensateurs (2)

☐ Exemple:



$$\Box C_1 = 6 \text{ nF}, C_2 = 12 \text{ nF}$$
:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{6 \cdot 10^{-9}} + \frac{1}{12 \cdot 10^{-9}}$$

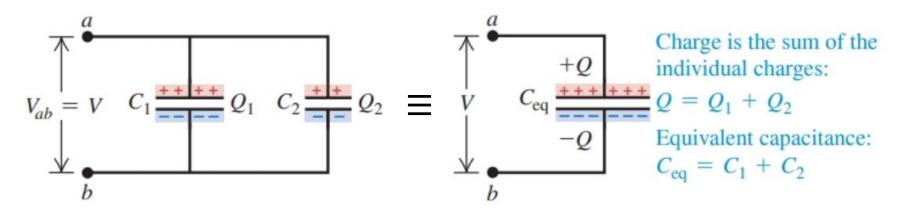
$$\frac{1}{C_{eq}} = \frac{3}{12 \cdot 10^{-9}} = \frac{1}{4 \cdot 10^{-9}} \Rightarrow C_{eq} = 4 \cdot 10^{-9} = 4 \text{ nF} < 6 \text{ nF}$$

 $lue{}$ Avantage: V_{ab} se répartit sur deux condensateurs soumis chacun à une tension plus faible.

Mise en parallèle de condensateurs (1)

- \Box Lors d'une mise en parallèle, la tension appliquée V est la même pour chaque condensateur, et la charge totale se répartit entre les deux condensateurs.
- ☐ On a donc:

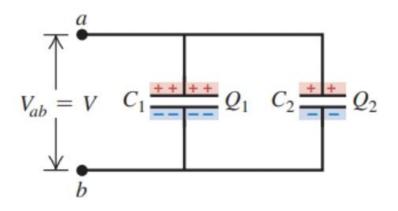
$$Q_1 = C_1 V$$
 $Q_2 = C_2 V \Rightarrow Q = Q_1 + Q_2 = V(C_1 + C_2) \Rightarrow C_{eq} = C_1 + C_2$



 \square Si N condensateurs en parallèle: $C_{eq} = \sum_{i=1}^{N} C_i > C_i$

Mise en parallèle de condensateurs (2)

☐ Exemple:



$$\Box C_1 = 6 \text{ nF}, C_2 = 12 \text{ nF}:$$

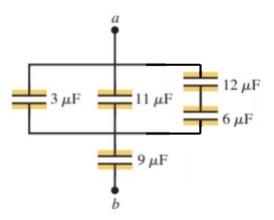
$$C_{eq} = C_1 + C_2 = 6 \cdot 10^{-9} + 12 \cdot 10^{-9} = 18 \text{ nF} > 12 \text{ nF}$$

 \Box Avantages: augmentation de la capacité à un endroit du circuit, et plus grande flexibilité dans le choix de C_{eq}

Réseau de condensateurs

□ Dans un circuit, on peut retrouver une **combinaison** de mises en série et de mises en parallèle.

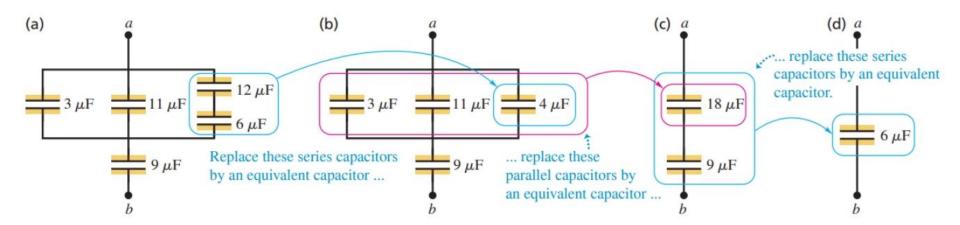
☐ Exemple 24.6 du livre de référence:



 \square Que vaut : C_{eq} ?

Réseau de condensateurs

- □ Dans un circuit, on peut retrouver une **combinaison** de mises en série et de mises en parallèle.
- ☐ Exemple 24.6 du livre de référence:

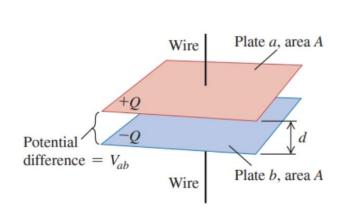


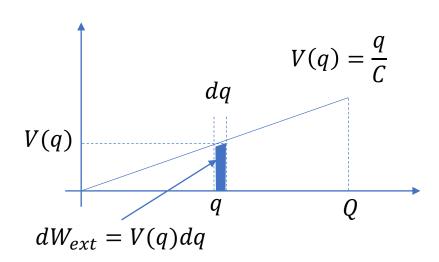
Agenda Cours 3

- 1. Condensateur et capacité
- 2. Combinaisons de condensateurs
- 3. Energie stockée dans un condensateur
- 4. Diélectriques
- 5. Loi de Gauss et diélectriques
- 6. Force exercée sur un diélectrique
- 7. Condensateurs a plusieurs diélectriques

Energie stockée dans un condensateur (1)

- ☐ Le condensateur est un **réservoir de charges** portées à un certain **potentiel**.
- \square Il est donc aussi un **réservoir d'énergie potentielle** U_c .
- \square Pour calculer U_c il faut calculer et sommer le **travail** nécessaire pour amener chaque élément de charge dans la capacité, dont le **potentiel croit** au fur et à mesure qu'on la charge.





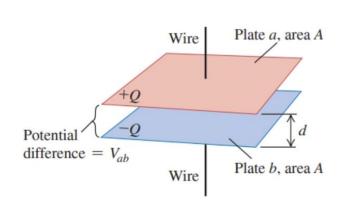
Energie stockée dans un condensateur (2)

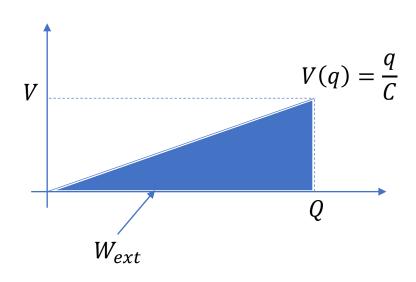
- \square Durant la charge: $dW_{ext} = V(q)dq = \frac{q}{c}dq$.
- ☐ Le travail total se calcule en sommant (intégrant) ces contributions élémentaires:

$$W_{ext} = \int_{0}^{Q} dW_{ext} = \int_{0}^{Q} \frac{q}{C} dq = \frac{Q^{2}}{2C}$$

figspace Si l'énergie dans la capacité avant la charge est nulle, alors $U_c=W_{ext}$

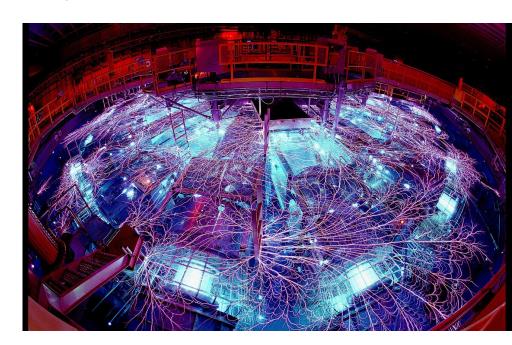
$$\Box U_{c} = \frac{Q^{2}}{2C} = \frac{QV}{2} = \frac{CV^{2}}{2}$$





Energie stockée dans un condensateur (3)

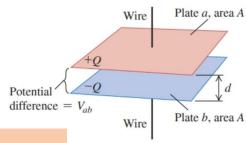
- $\Box U_c = \frac{CV^2}{2} \implies \text{même avec un faible } V, U_c \text{ peut être très grand si } C \text{ est très grande également (mise en parallèle)}$
- □ Exemple: machine Z (Nouveau Mexique): décharge de quelques MJ en qqs ns, permettant de libérer une puissance de ~10¹⁴ W, (= 80 x la puissance combinée de toutes les centrales électriques de la planète)
- ☐ Application: fusion nucléaire



Energie et champ électrique

- \Box L'énergie stockée dans un condensateur (U_c) est associée à la tension appliquée et à la présence de charges.
- \square Il existe aussi un **champ électrique** dans le volume de la capacité, directement proportionnel à V (et Q).
- \square A ce champ, distribué sur une certain volume, on peut aussi associer U_c .
- □ Pour un condensateur à plaques parallèles, la densité d'énergie (J/m³) vaut:

$$u = \frac{U_c}{Ad} = \frac{\frac{1}{2}CV^2}{Ad}$$



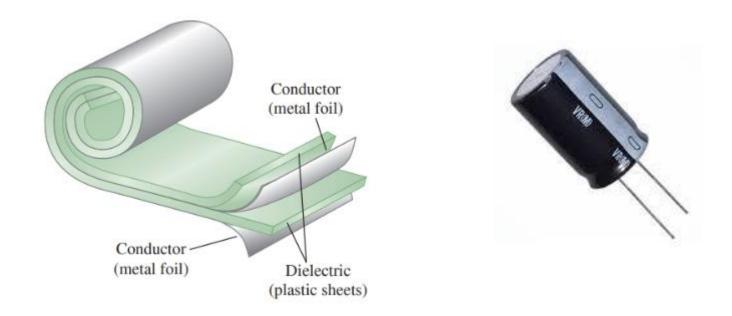
- \square Puisque $E = \frac{V}{d}$ et $C = \varepsilon_0 \frac{A}{d}$ on trouve: $u = \frac{1}{2} \varepsilon_0 E^2$ [J/m³]
- ☐ Ceci est **vrai** pour toute configuration de champ électrique dans le vide, et donc aussi pour toute **géométrie** de condensateur vide.

Agenda Cours 3

- 1. Condensateur et capacité
- 2. Combinaisons de condensateurs
- 3. Energie stockée dans un condensateur
- 4. Diélectriques
- 5. Loi de Gauss et diélectriques
- 6. Force exercée sur un diélectrique
- 7. Condensateurs a plusieurs diélectriques

Diélectriques

□ Pour des raisons **mécaniques**, on insére en général un matériau **isolant**, appelé **diélectrique**, entre les plaques d'un condensateurs.



☐ Les matériaux diélectriques présentent par ailleurs **d'autres** propriétés **utiles** pour les condensateurs.

Propriété des diélectriques: tension de claquage (1)

- □ Lorsque le champ électrique devient très **intense**, il peut être capable **d'arracher** des électrons aux molécules ou atomes de la matière. Ces électrons à haute énergie entrent en **collision** avec d'autres molécules et/ou atomes, formant une **reaction en chaîne** (avalanche).
- ☐ Ce phénomène s'accompagne en général d'un arc électrique.
- **□** Ex:

Propriété des diélectriques: tension de claquage (2)

- □ Le champ électrique maximal que peut tolérer un matériau avant de "percer" ou de "claquer" s'appelle la **rigidité diélectrique** (*dielectric strength*).
- ☐ La rigidité diélectrique de **l'air sec** est de 3.10⁶ V/m.
- ☐ Qqs exemples:

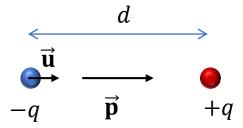
TABLE 24.2 Dielectric Constant and Dielectric Strength of Some Insulating Materials

Material	Dielectric Constant, K	Dielectric Strength, $E_{\rm m}$ (V/m)	
Polycarbonate	2.8	3×10^7	
Polyester	3.3	6×10^7 7×10^7	
Polypropylene	2.2		
Polystyrene	2.6	2×10^{7}	
Pyrex [®] glass	4.7	1×10^7	

□ Placer un diélectrique entre les plaques d'un condensateur permet en général d'utiliser ce condensateur à des champs électriques (et donc V) plus élevés.

Propriété des diélectriques: dipôle

 \Box Un **dipôle** électrique est une paire de charges de même amplitude mais de signes opposés et séparées d'une distance d:

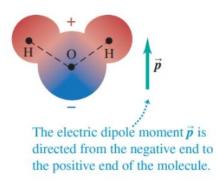


☐ On définit le **moment dipolaire électrique**:

$$\vec{\mathbf{p}} \triangleq qd\vec{\mathbf{u}}$$
 ($\vec{\mathbf{u}}$ orienté de la charge – à la charge +)

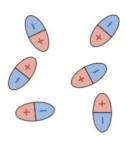
☐ Exemple de dipôle électrique : molécule polaire

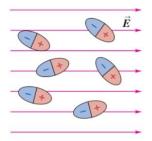
ex: H₂0



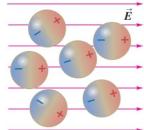
Propriété des diélectriques: polarisation (1)

☐ Les diélectriques peuvent être également constitués de molécules **polaires**



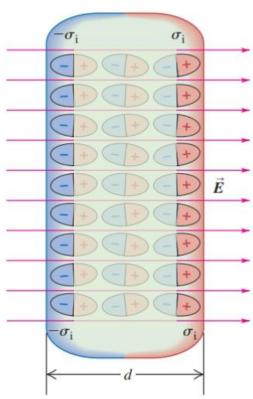


- □ Si l'on soumet un diélectrique à un champ électrique, les moments dipolaires vont avoir tendance à **s'aligner** avec le champ.
- ☐ Un effet semblable peut se produire par **induction** avec des molécules **non polaires**:



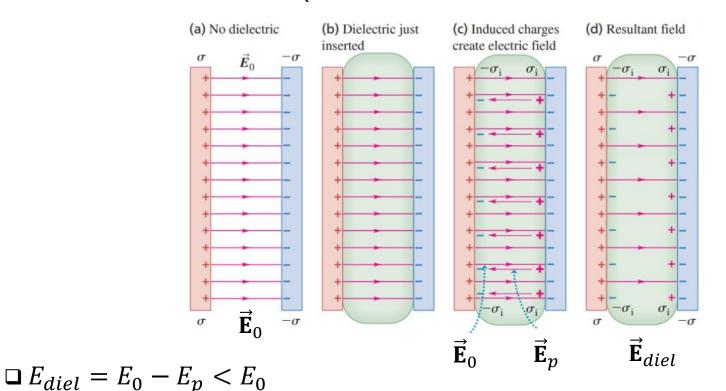
Propriété des diélectriques: polarisation (2)

- □ Lorsqu'un diélectrique est soumis à un champ électrique, une très fine couche de **charges négatives** $(-\sigma_i)$ ainsi qu'une couche **positives** (σ_i) apparaissent sur les faces **exposées** du diélectrique.
- ☐ Ces charges sont **induites** et sont **liées** au matériau: elles ne peuvent pas de déplacer librement.
- ☐ Cette redistribution des charges s'appelle la **polarisation**.
- ☐ On dit également que le matériau est **polarisé**.



Diélectrique dans un condensateur (1)

 \square Si l'on place un diélectrique dans un condensateur **déconnecté** mais chargé par $\pm \sigma$, les charges induites en surface dans le matériau diélectrique créent un **champ de polarisation** $(\vec{\mathbf{E}}_p)$ qui **réduit** le champ total $(\vec{\mathbf{E}}_{diel})$ dans le matériau:



Diélectrique dans un condensateur (2)

☐ Si l'on place un diélectrique dans un condensateur **déconnecté mais chargé**, le champ électrique est donc **réduit** d'un facteur K:

$$E_{diel} = \frac{E_0}{K}$$

- \square Le facteur de réduction K s'appelle également la **permittivité relative** du diélectrique et se note ε_r [] (nombre sans unité)
- \square La **permittivité** du diélectrique est par définition: $\varepsilon = K\varepsilon_0 = \varepsilon_r \varepsilon_0$ [F/m]

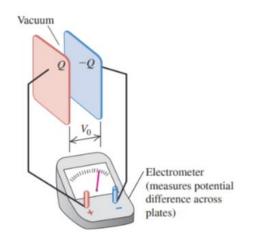
$$\varepsilon = K\varepsilon_0 = \varepsilon_r \varepsilon_0 \, [\text{F/m}]$$

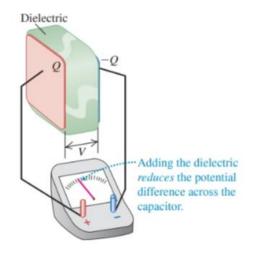
☐ La **permittivité relative** est parfois aussi appelée constante diélectrique, et est une propriété électrique du matériau.

TABLE 24.1 Values of Dielectric Constant K at 20°C

Material	\boldsymbol{K}	Material	K
Vacuum	1	Polyvinyl chloride	3.18
Air (1 atm)	1.00059	Plexiglas [®]	3.40
Air (100 atm)	1.0548	Glass	5-10
Teflon [®]	2.1	Neoprene	6.70
Polyethylene	2.25	Germanium	16
Benzene	2.28	Glycerin	42.5
Mica	3-6	Water	80.4
Mylar [®]	3.1	Strontium titanate	310

Diélectrique dans un condensateur (3)





☐ Après introduction du diélectrique:

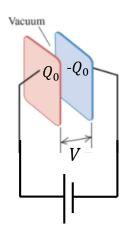
- $E_{diel} = \frac{E_0}{\varepsilon_r} \implies V = \frac{V_0}{\varepsilon_r}$
- ☐ Capacité en **présence** du diélectrique:

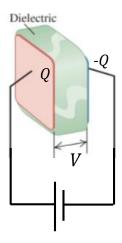
$$C = \frac{Q}{V} = \frac{Q}{(V_0/\varepsilon_r)} = \varepsilon_r \frac{Q}{V_0} = \varepsilon_r C_0$$

- où C_0 est la capacité en l'absence du diélectrique.
- \square La **capacité** est donc **multipliée** par un facteur ε_r en présence du diélectrique.
- ☐ Condensateur à plaques parallèles:

$$C = \varepsilon_r \varepsilon_0 \frac{A}{d} = \varepsilon \frac{A}{d}$$

Diélectrique dans un condensateur (4)

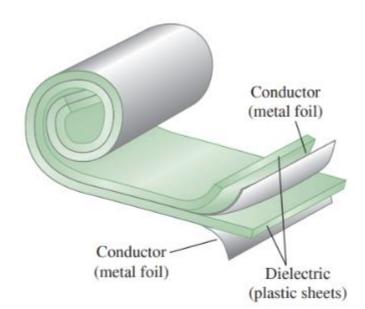




- \square Supposons à présent V constante durant l'introduction du diélectrique.
- $oldsymbol{\square}$ Puisque C est augmentée d'un facteur ε_r après avoir introduit le diélectrique, il en résulte que $U_c=rac{1}{2}CV^2$ doit l'être **également**.
- □ Pour une **différence de potentiel donnée imposée** aux bornes du condensateur, l'énergie stockée dans le condensateur est **multipliée** par un facteur ε_r en présence du diélectrique.
- \Box La densité d'énergie électrique l'est donc aussi: $u = \frac{1}{2} \varepsilon_r \varepsilon_0 E^2 = \frac{1}{2} \varepsilon E^2$

Utilités des diélectriques (résumé)

☐ En résumé, les **avantages** liés à l'utilisation d'un diélectrique dans un condensateur sont les suivants:



- □ intégrité et robustesse mécaniques
- □ augmentation de la tension maximale d'utilisation
- □ augmentation de la capacité et de l'énergie stockée

Agenda Cours 3

- 1. Condensateur et capacité
- 2. Combinaisons de condensateurs
- 3. Energie stockée dans un condensateur
- 4. Diélectriques
- 5. Loi de Gauss et diélectriques
- 6. Force exercée sur un diélectrique
- 7. Condensateurs a plusieurs diélectriques

Loi de Gauss et diélectriques (1)

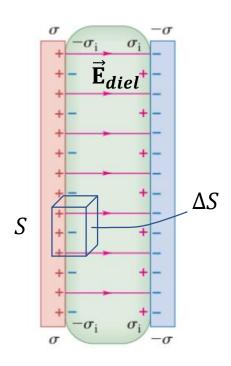
- $lue{}$ Supposons un condensateur rempli d'un diélectrique de permittivité $arepsilon=arepsilon_rarepsilon_0$
- ☐ La **loi de Gauss** nous permet d'écrire à l'interface metal/diélectrique:

$$\oint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{S}} = \frac{\Delta S(\sigma - \sigma_{i})}{\varepsilon_{0}} = E_{diel} \Delta S$$

$$=> E_{diel} = \frac{\sigma - \sigma_i}{\varepsilon_0} = \frac{E_0}{\varepsilon_r} = \frac{\sigma}{\varepsilon_0 \varepsilon_r}$$

- \Box On a donc: $\sigma \sigma_i = \frac{\sigma}{\varepsilon_r}$
- ☐ Et la loi de Gauss devient:

$$\oint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{S}} = \frac{\Delta S \sigma}{\varepsilon_{r} \varepsilon_{0}} = \frac{q_{free}}{\varepsilon_{r} \varepsilon_{0}}$$



Loi de Gauss et diélectriques (2)

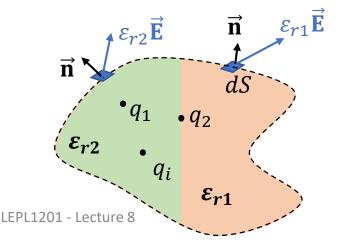
☐ De manière générale, la **loi de Gauss en présence de diélectriques** s'écrit:

$$\oint_{S} \varepsilon_{r} \vec{\mathbf{E}} \cdot d\vec{\mathbf{S}} = \frac{q_{free}}{\varepsilon_{0}}$$

où q_{free} représente les **charges non liées** au(x) diélectrique(s).

- \Box En présence de diélectriques, on peut donc appliquer la loi de Gauss **en ne considérant pas** les charges de polarisation mais en y **remplaçant** $\overrightarrow{\mathbf{E}}$ par $\varepsilon_r \overrightarrow{\mathbf{E}}$ afin de prendre en compte leur effet.
- \Box La valeur de ε_r est à prendre **en tout point** $d\vec{S}$ de la surface.

Ex à 2 diélectriques:



Conditions limites (1)

Cette reformulation de la loi de Gauss nous permet de trouver la condition limite à l'interface entre un conducteur et un diélectrique:

$$\oint_{S} \varepsilon_{r} \vec{\mathbf{E}} \cdot d\vec{\mathbf{S}} = \frac{q_{free}}{\varepsilon_{0}}$$

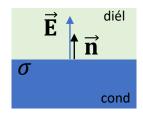
$$\oint_{S} \varepsilon_{r} \vec{\mathbf{E}} \cdot d\vec{\mathbf{S}} = \frac{q_{free}}{\varepsilon_{0}}$$

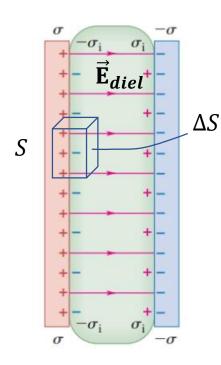
$$=> \varepsilon_{r} E_{diel} \Delta S = \frac{\sigma \Delta S}{\varepsilon_{0}}$$

$$\Box$$
 On trouve donc: $E_{diel} = \frac{\sigma}{\varepsilon_r \varepsilon_0} = \frac{\sigma}{\varepsilon}$

□ Condition limite à l'interface conducteur/diélectrique:

$$\vec{\mathbf{n}} \cdot \vec{\mathbf{E}} = \frac{\sigma}{\varepsilon}$$





NB: σ = densité de charges libres sur le conducteur. Les charges induites sont prises en compte par le facteur ε

Conditions limites (2)

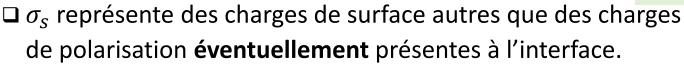
□ Cette reformulation nous permet aussi de trouver la condition limite pour un champ perpendiculaire à l'interface

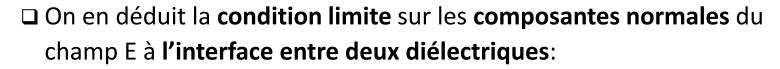
$$\oint_{S} \varepsilon_{r} \vec{\mathbf{E}} \cdot d\vec{\mathbf{S}} = \frac{q_{free}}{\varepsilon_{0}}$$

$$=>(\varepsilon_{r2}E_2-\varepsilon_{r1}E_1)\Delta S=\frac{\sigma_S\Delta S}{\varepsilon_0}$$

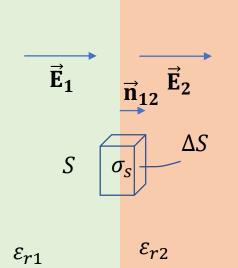
entre deux diélectriques:

$$\Rightarrow \varepsilon_2 E_2 - \varepsilon_1 E_1 = \sigma_s$$



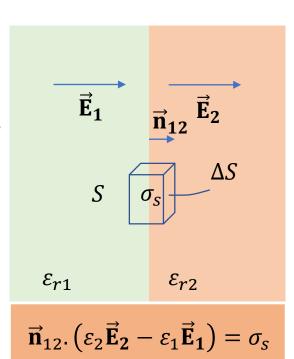


$$\vec{\mathbf{n}}_{12} \cdot \left(\varepsilon_2 \vec{\mathbf{E}}_2 - \varepsilon_1 \vec{\mathbf{E}}_1 \right) = \sigma_S$$
 Si $\sigma_S = 0$: $\vec{\mathbf{n}}_{12} \cdot \left(\varepsilon_2 \vec{\mathbf{E}}_2 - \varepsilon_1 \vec{\mathbf{E}}_1 \right) = 0$



Conditions limites (3)

□ Rem 1: important de respecter la convention sur \vec{n}_{12} : "pointe du milieu 1 vers le milieu 2"



Forme vectorielle

Forme scalaire

$$\varepsilon_2 E_{2n} - \varepsilon_1 E_{1n} = \sigma_s$$

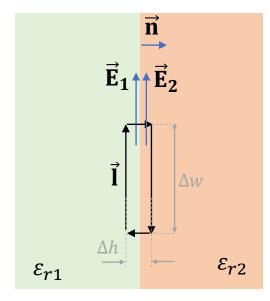
Conditions limites (4)

- ☐ Il existe aussi une CL sur les composantes tangentielles de E.
- □ En effet, puisque $\oint_{l} \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = 0$, on a sur la petite boucle fermée centrée sur l'interface et traversant les deux milieu:

$$E_1 \Delta w - E_2 \Delta w = 0$$

(produit scalaire nul sur Δh)

$$E_1 = E_2$$



☐ On en déduit la **condition limite** sur les **composantes tangentielles** du champ E à **l'interface entre deux diélectriques**:

$$\vec{\mathbf{n}} \times \left(\vec{\mathbf{E}}_1 - \vec{\mathbf{E}}_2 \right) = 0$$

$$E_{1tan} = E_{2tan}$$

Forme vectorielle

Forme scalaire

Champ de déplacement

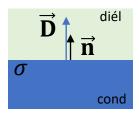
□ Dans un diélectrique, on définit également le champ de déplacement

$$\vec{\mathbf{D}} \triangleq \varepsilon \vec{\mathbf{E}}$$

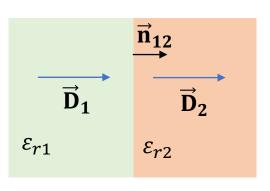
- ☐ Il s'exprime en [C/m²]
- ☐ La loix de Gauss devient:

$$\oint_{S} \vec{\mathbf{D}} \cdot d\vec{\mathbf{S}} = q_{free}$$

☐ Les conditions limites se réécrivent:



$$\vec{\mathbf{n}} \cdot \vec{\mathbf{D}} = \sigma_{\scriptscriptstyle S}$$

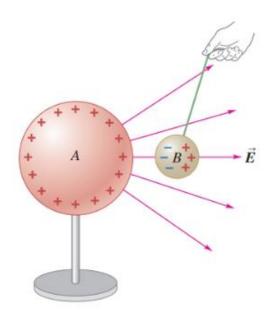


$$\vec{\mathbf{n}}_{12} \cdot \left(\vec{\mathbf{D}}_2 - \vec{\mathbf{D}}_1 \right) = \sigma_{S}$$

Agenda Cours 3

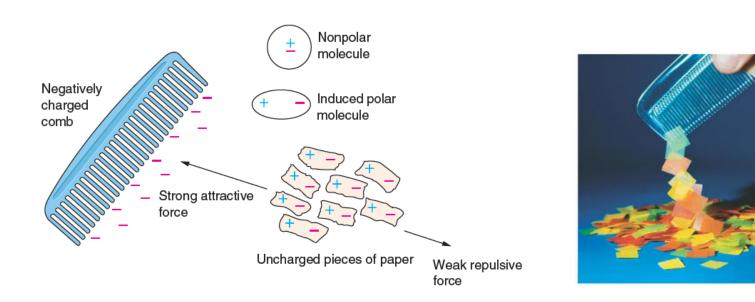
- 1. Condensateur et capacité
- 2. Combinaisons de condensateurs
- 3. Energie stockée dans un condensateur
- 4. Diélectriques
- 5. Loi de Gauss et diélectriques
- 6. Force exercée sur un diélectrique
- 7. Condensateurs a plusieurs diélectriques

Force exercée sur un diélectrique (1)



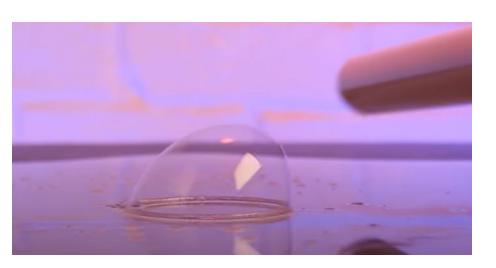
- □ La polarisation d'un diélectrique explique pourquoi un objet électriquement neutre peut être **attiré** par un objet chargé.
- □ En effet, les charges les plus proches de la source sont soumises à un champ généralement plus intense que les charges les plus éloignées. Il en résulte une force résultante non nulle.

Force exercée sur un diélectrique (2)



☐ Les morceaux de papier polarisés sont **attirés** par un peigne chargé par frottement sur une chevelure sèche.

Force exercée sur un diélectrique (3)



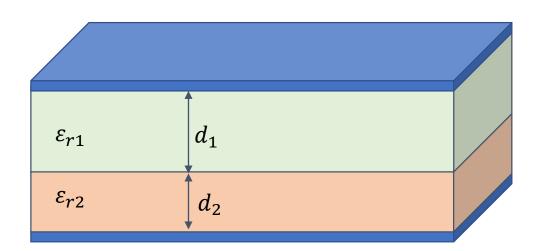
https://www.youtube.com/watch?v=ViZNgU-Yt-Y

Agenda Cours 3

- 1. Condensateur et capacité
- 2. Combinaisons de condensateurs
- 3. Energie stockée dans un condensateur
- 4. Diélectriques
- 5. Loi de Gauss et diélectriques
- 6. Force exercée sur un diélectrique
- 7. Condensateurs a plusieurs diélectriques

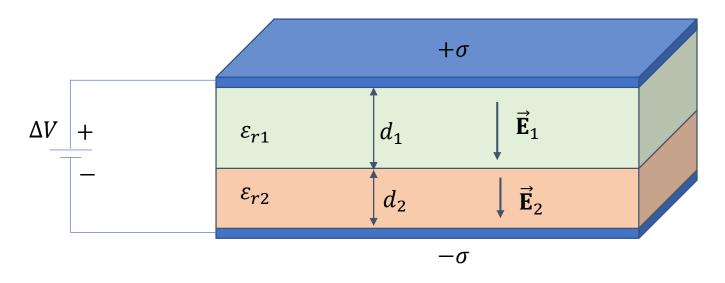
Deux diélectriques superposés dans un condensateur (1)

 \square Que se passe-t-il si l'on **surperpose** deux diélectriques différents dans un condensateur plan ? Que devient C ? Que vaut le champ électrique dans les deux diélectriques?



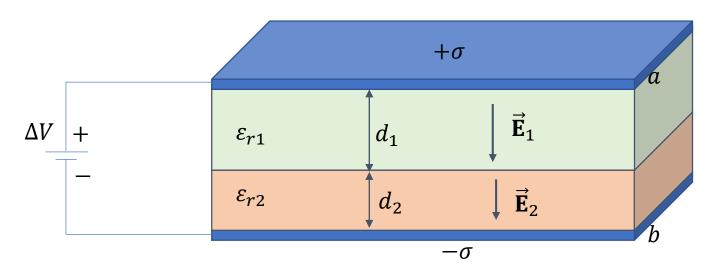
Deux diélectriques superposés dans un condensateur (2)

 \Box Supposons que l'on applique une différence de potentiel ΔV entre la plaque inférieure et la plaque supérieure.



- ☐ Le condensateur se charge
 - $\Rightarrow +\sigma$ et $-\sigma$ apparaissent
 - \Rightarrow \vec{E}_1 et \vec{E}_2 apparaissent également

Deux diélectriques superposés dans un condensateur (3)



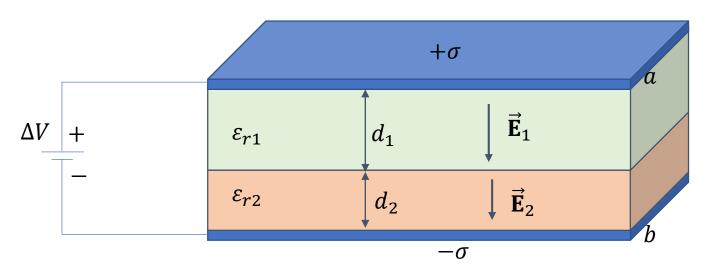
$$\Box$$
 $\vec{\mathbf{E}}_1$ et $\vec{\mathbf{E}}_2$ sont uniformes => $\Delta V = V_{ab} = \int_a^b \vec{\mathbf{E}} \, d\vec{\mathbf{l}} = E_1 d_1 + E_2 d_2$

- lacksquare CL sur cond supérieur: $E_1=rac{\sigma}{arepsilon_1}$
- \Box CL sur cond inférieur: $E_2 = \frac{\sigma}{\varepsilon_2}$

$$E_2 \varepsilon_2 = E_1 \varepsilon_1$$

CL à l'interface entre les 2 diélectriques!

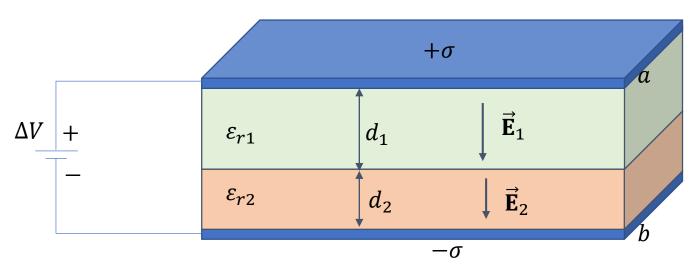
Deux diélectriques superposés dans un condensateur (4)



 \square On peut calculer E_1 et E_2 séparément:

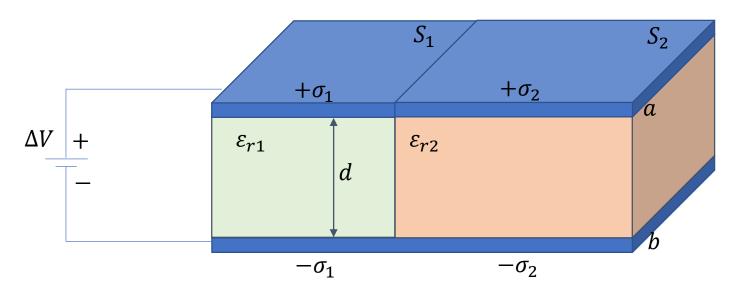
$$\Box$$
 On trouve aussi: $E_2 = \frac{\Delta V}{d_2 + \frac{\varepsilon_2}{\varepsilon_1} d_1}$

Deux diélectriques superposés dans un condensateur (4)



- \square Pour trouver C, il faut exprimer Q (ou σ) en fonction de ΔV :
- \Box CL sur cond supérieur $\Rightarrow \sigma = \varepsilon_1 E_1 = \frac{\Delta V}{\frac{d_1}{\varepsilon_1} + \frac{d_2}{\varepsilon_2}}$
- ☐ Le condensateur se comporte comme une **mise en série** de deux condensateurs

Deux diélectriques côte à côte dans un condensateur



- \Box Ici, on a $\Delta V = E_1 d = E_2 d \Rightarrow E_1 = E_2 = E = \frac{\Delta V}{d}$
- \square CL sur cond supérieur $\Rightarrow \sigma_1 = \varepsilon_1 E$ et $\sigma_2 = \varepsilon_2 E$
- \Box On trouve donc $C = \frac{Q}{\Delta V} = \frac{\sigma_1 S_1 + \sigma_2 S_2}{\Delta V} = \frac{\varepsilon_1 E S_1 + \varepsilon_2 E S_2}{E d} = \frac{\varepsilon_1 S_1 + \varepsilon_2 S_2}{d} = C_1 + C_2$
- ☐ Le condensateur se comporte comme **une mise en parallèle** de deux condensateurs

Synthèse du cours 8 (1)

- ☐ Un condensateur est formé d'une paire de conducteurs séparés par un matériau isolant.
- $lue{}$ Lorsqu'une tension V est appliquée entre les deux conducteurs, des charges d'amplitudes Q identiques mais de signes opposés apparaissent sur les conducteurs.
- □ La valeur de la capacité dépend uniquement de la géométrie des conducteurs et du milieu qui remplit l'espace entre les conducteurs.
- Pour un condensateur formé de deux plaques parallèles dans le vide de surface A et séparés d'une distance d, la capacité est donnée par: $C = \frac{\varepsilon_0 A}{d}$
- Lorsque des condensateurs sont placés en série, la capacité équivalente est donnée par: $\frac{1}{C_{ea}} = \sum_{i=1}^{N} \frac{1}{C_i}$
- Lorsque des condensateurs sont placés en parallèle, la capacité équivalente est donnée par $:C_{eq} = \sum_{i=1}^{N} C_i$

Synthèse du cours 8 (2)

- \square L'énergie stockée dans une capacité est égale à l'énergie qu'il faut dépenser pour la charger avec une charge Q et une tension V.
- \Box Cette énergie est donnée par $U_c = \frac{1}{2}QV = \frac{Q^2}{2C} = \frac{1}{2}CV^2$
- On peut également associer cette énergie au champ électrique présent dans le condensateur, dont la densité (énergie par unité de volume) pour un condensateur dans le vide vaut: $u = \frac{1}{2} \varepsilon_0 E^2$.
- Lorsque l'espace entre les conducteurs d'un condensateur chargé est rempli d'un matériau diélectrique, des charges induites (par polarisation) apparaissent à la surface du diélectrique, ce qui réduit le champ électrique dans le diélectrique d'un facteur K.
- \square Le facteur K s'écrit aussi ε_r et est appelé permittivité relative du matériau.
- flue La permittivité du diélectrique est définie par: $eta=arepsilon_rarepsilon_0$
- La capacité d'un condensateur ainsi que l'énergie stockée pour une tension donnée sont toutes deux multipliées par ε_r lorsque le milieu entre les conducteurs est rempli d'un matériau diélectrique de permittivité relative ε_r .
- \Box Dans ce cas, la densité d'énergie est aussi multipliée par ε_r : $u=\frac{1}{2}\varepsilon_r\varepsilon_0E^2$

59

Synthèse du cours 8 (3)

- □ En présence de matériaux diélectriques, la loi de Gauss se réécrit: $\oint_S \varepsilon_r \vec{\mathbf{E}} \cdot d\vec{\mathbf{S}} = \frac{q_{free}}{\varepsilon_0}$ où q_{free} réprésente les charges libres présentes à l'intérieur de S (on ne compte donc pas les charges de polarisation à l'intérieur de S).
- \vec{n} . $\vec{E} = \frac{\sigma}{\varepsilon}$, où σ représente les charges libres sur le conducteur.
- \Box A l'interface entre deux diélectriques, la CL sur les composantes normales de $\vec{\mathbf{E}}$ s'écrit: $\vec{\mathbf{n}}_{12}$. $\left(\varepsilon_2\vec{\mathbf{E}}_2 \varepsilon_1\vec{\mathbf{E}}_1\right) = \sigma_s$, où σ_s représente une éventuelle charge d'interface non liée.
- Pour ces CL, on ne considère pas non plus les charges de polarisation, dont l'effet est pris en compte par la permittivité relative dans les expression ($\varepsilon = \varepsilon_r \varepsilon_0$).
- \Box A l'interface entre deux diélectriques, la CL sur les composantes tangentielles de $\vec{\bf E}$ s'écrit:

$$\vec{\mathbf{n}} \times \left(\vec{\mathbf{E}}_1 - \vec{\mathbf{E}}_2 \right) = 0$$

Synthèse du cours 8 (4)

- $oldsymbol{\Box}$ On définit, à l'intérieur d'un diélectrique, le champ de déplacement: $\overrightarrow{\mathbf{D}} = \varepsilon \overrightarrow{\mathbf{E}}$
- figspace La loi de Gauss dans le cas de diélectriques s'écrit alors: $\oint_S \ \overrightarrow{f D} \,.\, d\overrightarrow{f S} = q_{free}$
- \Box La CL à l'interface entre un conducteur et un diélectrique se réécrit: $\overrightarrow{\mathbf{n}}$. $\overrightarrow{\mathbf{D}} = \sigma$ [C/m²]
- □ La CL à l'interface entre deux conducteurs diélectriques sur les composantes normales du champ se réécrit: $\vec{\mathbf{n}}_{12}$. $(\vec{\mathbf{D}}_2 \vec{\mathbf{D}}_1) = \sigma_s$
- □ Lorsqu'un condensateur plan est rempli de deux matériaux diélectriques superposés, il se comporte comme une mise en série de deux condensateurs où chacun des condensateurs est rempli d'un des deux diélectriques.
- □ Lorsqu'un condensateur plan est rempli de deux matériaux diélectriques placés côte à côte, il se comporte comme une mise en parallèle de deux condensateurs où chacun des condensateurs est rempli d'un des deux diélectriques.