

Université catholique de Louvain Ecole Polytechnique de Louvain

MECANIQUE DES FLUIDES ET TRANSFERTS I

V. Legat, G. Winckelmans

Notes pour le cours MECA1321 $Année \ académique \ 2024-2025 \ ({\tt version} \ 5.13: \ 13-12-2024)$

Ce document est une oeuvre originale protégée par le droit d'auteur. Copyright V. Legat, G. Winckelmans, février 2011

Ce texte est toujours une version provisoire. Malgré tout le soin apporté à sa rédaction, il est possible que quelques erreurs soient toujours présentes dans le texte. Tout commentaire, critique ou suggestion de votre part, est évidemment le bienvenu. Il vous est possible de m'envoyer vos commentaires directement par courrier électronique à l'adresse suivante : vincent.legat@uclouvain.be

Les éventuels errata du texte (ainsi que les nouvelles versions successives) seront disponibles sur le site Web du cours.

Avant-propos

Les phénomènes de transfert interviennent dans un grand nombre de domaines d'application de l'ingénieur. Il est donc essentiel d'en introduire la modélisation mathématique. Il s'agit du transfert de quantité de mouvement (écoulements visqueux), du transfert d'énergie (conduction thermique, convection et radiation) ainsi que du transfert de masse. En général, le milieu dans lequel les phénomènes de transfert sont décrits est supposé être continu. Il s'agit de l'hypothèse de milieux continus. En négligeant presque complètement une interprétation au niveau moléculaire des phénomènes de transferts, cette démarche permet de répondre à la plupart des problèmes pratiques posés à l'ingénieur. Afin d'avoir une compréhension complète des phénomènes étudiés, il est évidemment opportun d'avoir une compréhension aux deux échelles.

Pourquoi effectue-t-on l'hypothèse des milieux continus au lieu d'effectuer un calcul de dynamique moléculaire? Pour un système avec un petit nombre d'éléments, nous pouvons effectuer des prédictions en utilisant les lois de la dynamique classique. Mais, cela n'est plus possible pour un système avec un très grand nombre d'éléments... A titre d'exemple, il suffit d'observer qu'un litre d'air contient approximativement 10^{23} molécules, tandis qu'un ordinateur fait actuellement 10^{10} opérations par seconde. En d'autres mots, il faut 10^{13} secondes ou approximativement 100000 années juste pour référencer chaque molécule! Il est donc totalement impossible de prédire le comportement de l'air dans la plupart des situations usuelles par la dynamique moléculaire. C'est pourquoi, nous utilisons la mécanique des milieux continus.

L'hypothèse fondamentale de la mécanique des milieux continus est que le comportement de la plupart des gaz, solides et liquides (qui ne sont pas continus!) est virtuellement exactement le même si on supposait qu'ils étaient une matériau parfaitement continus. L'observation expérimentale supporte cette hypothèse, du moins pour l'air, l'eau, les métaux... Les quantités physiques telles que la masse et la quantité de mouvement associées avec les molécules contenues dans un volume donné peuvent être vues comme étant réparties uniformément sur le volume au lieu d'être concentrées sur chaque molécule.

La densité obtenue comme une moyenne...

A titre d'illustration, nous allons expliquer et décrire l'hypothèse de mécanique de milieux continus dans un monde uni-dimensionnel. Le système de coordonnée spatiales se réduit donc simplement à l'axe \mathbf{e}_x . Dans ce monde uni-dimensionnel, nous avons des molécules. Supposons donc que nous souhaitons mesurer la densité d'un matériau à un point x et à un instant t. Dans cette optique, nous considérons un intervalle de longueur L centré en

x et nous mesurons la quantité de masse $\mathcal{M}_L(t)$ présente dans cet intervalle. La densité en ce point x et à un instant t est alors simplement définie par :

$$\rho(L, x, t) = \frac{\mathcal{M}_L(t)}{L}.$$

Evidemment, le résultat obtenu est différent pour chaque longueur L d'intervalle et pour chaque position x et instant t. En d'autres mots, pour une position donnée et un instant donné, la densité est une fonction de la longueur L. Expérimentalement, on observe en général une comportement semblable à celui illustré sur la Figure 1.

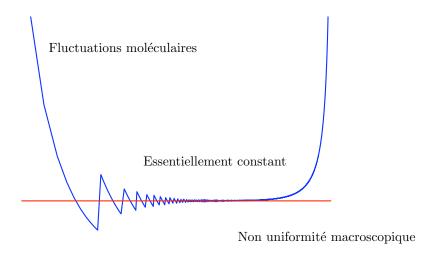


Figure 1: Allure schématique de la moyenne de la densité $\rho(L,x,t)$ en fonction de la longueur de l'intervalle de référence L à une position donnée x et à un instant fixé t.

On peut alors imaginer de définir la densité du milieu continu en x et t comme la valeur de la moyenne de $\rho(L,x,t)$ dans la zone centrale de la Figure 1 et de prolonger cette valeur constante pour les tailles d'intervalles tendant vers zéro. En d'autres mots, on supprime la partie gauche du graphe en extrapolant la valeur constante de la zone centrale, dans la partie où on observe normalement les fluctuations moléculaires. Notons qu'à une dimension, la densité aura les dimensions de masse par longueur. Dans le cas tridimensionnel, nous aurons évidemment des unités de masse par volume. D'une certaine manière, il y a une sorte de principe d'incertitude ici. Pour calculer la densité, nous effectuons une moyenne sur une certaine longueur L: ce qui introduit une certaine incertitude sur la valeur fournie... Pour réduire cette incertitude, il faudrait diminuer la

longueur L. Par contre, si nous diminuons trop cette longueur, nous allons avoir une incertitude due aux fluctuations moléculaires. Donc, plus on souhaite réduire l'erreur due au processus de moyenne, plus on introduit une incertitude due aux fluctuations moléculaires.

En mécanique de milieux continus, un point matériel est donc physiquement un volume élémentaire suffisamment grand afin de lisser toutes les fluctuations moléculaires et suffisamment petit afin d'être négligeable par rapport aux variations macroscopiques. La validité de l'hypothèse de mécanique des milieux continus est directement liée à la séparation des échelles entre les fluctuations moléculaires et les variations macroscopiques. En général, on observe une séparation des échelles d'un facteur 10^{15} dans les milieux solides, liquides et gazeux pour les applications usuelles de l'ingénieur.

Cette procédure de moyenne peut être effectuée pour toutes les quantités physiques que l'on souhaite conserver. A chaque point de l'espace et du temps, on pourra ainsi assigner une densité de masse $\rho(x,t)$, une densité de quantité de mouvement p(x,t) ou une densité d'énergie interne massique U(x,t). Si nous supposons que les fluctuations aléatoires de la position et de la masse des molécules ne sont pas corrélées avec les fluctuations aléatoires de vitesses de celles-ci, on peut écrire simplement que :

$$p(x,t) = \rho(x,t) \ v(x,t). \tag{1}$$

En d'autres mots, nous allons prendre l'équation (1) comme la manière d'obtenir un champ moyen de vitesses pour le milieu continu. La vitesse du milieu continu est donc définie comme le rapport de la quantité de mouvement et de la densité par le processus que nous venons de décrire.

L'équation de continuité...

De manière générale en physique, il existe un principe universel que la matière ne peut être ni crée, ni détruite. Dans la mécanique des milieux continus, ce principe permet l'obtention de l'équation de continuité: cette équation s'applique à l'évolution de n'importe que volume matériel puisqu'il ne fait intervenir que la vitesse et la densité du matériau.

Pour obtenir la forme locale du principe de conservation, nous allons considérer un petit intervalle du milieu continu et y appliquer le principe de conservation de la masse. La tranche de matériau ainsi considérée ne doit toutefois pas vraiment être trop petite afin de pouvoir négliger toutes les fluctuations. Considérons donc un intervalle fixe quelconque [a, b] du milieu continu tel qu'illustré sur la Figure 2.

La masse présente sur l'intervalle est simplement l'intégrale de la densité $\rho(x,t)$. Comme il n'y a ni création, ni destruction de masse sur l'intervalle, la masse totale

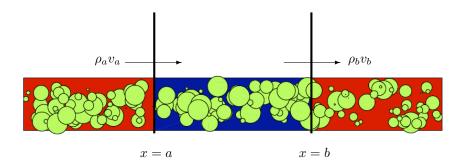


Figure 2: Un intervalle quelconque du milieu continu pour y appliquer le principe de conservation de la masse.

qui y est présente ne peut changer que par la matière qui entre ou qui sort par les deux extrémités en x=a et x=b. Si le milieu se déplace à une vitesse v(x,t), le flux massique $\rho(x,t)$ v(x,t) est la mesure du transport de la masse vers la droite en un point donné. On peut donc écrire la conservation de la masse sous la forme :

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho v) = 0 \tag{2}$$

Il est essentiel ici d'observer que l'on obtient l'équation de continuité du principe global de conservation de la masse en utilisant le théorème suivant : si l'intégrale d'un fonction continue sur tout intervalle est nulle, alors cette fonction doit s'annuler sur tout l'intervalle. Le passage de la forme globale du principe de conservation à une forme locale n'est donc possible que grâce à l'hypothèse des milieux continus.

L'équation (2) est la forme conservative de l'équation de continuité. C'est l'expression que l'on obtient naturellement en appliquant le principe de conservation de la masse à un intervalle (ou à un volume) de contrôle. Il est aisé d'obtenir ce qu'on appelle la forme non-conservative de l'équation de continuité en développant la dérivée spatiale :

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho v) = 0$$

$$\underbrace{\frac{\partial \rho}{\partial t} + v \frac{\partial \rho}{\partial x}}_{Dt} + \rho \frac{\partial v}{\partial x} = 0$$

$$\underbrace{\frac{D\rho}{Dt}}_{Dt}$$

$$\frac{D\rho}{Dt} = -\rho \frac{\partial v}{\partial x}$$

où la notation D/Dt représente la dérivée matérielle. Cette seconde forme peut s'obtenir directement en appliquant non plus le principe de conservation à un intervalle fixe, mais un intervalle matériel dont les frontières suivent le mouvement du milieux continu. Ce petit exercice est laissé au soin du lecteur.

On peut aisément interpréter cette seconde équation comme suit : le changement de densité d'un point matériel est donc proportionnel à l'opposé du gradient de vitesse. Considérons une vitesse v positive et donc un mouvement de la gauche vers la droite. Lorsque $\partial v/\partial x < 0$, les points matériels en x = b sont plus lents que ceux en x = a et donc les particules se retrouvent plus serrées entre elles et doivent s'agglutiner dans un plus petit espace : la densité doit logiquement augmenter.

Références

- G.K. Batchelor An introduction to fluid dynamics, Cambridge University Press 1967 (reprinted paperback 1994).
- F. M. White Viscous fluid flow" second edition, Series in Mechanical Engineering, McGraw-Hill, Inc., 1991.
- P. A. Thompson Compressible-fluid dynamics, advanced engineering series, Maple Press, 1984.
- H. Lamb *Hydrodynamics*, sixth edition, Cambridge University Press 1932, Dover Publications (paperback).
- L. Rosenhead Laminar boundary layers, Oxford University Press 1963, Dover Publications (paperback).
- P. G. Drazin and W. H. Reid Hydrodynamic stability, Cambridge University Press 1985.
- M. Van Dyke An album of fluid motion, The Parabolic Press, 1982.
- A. Bejan Heat transfer, John Wiley, Inc., 1993.

- R.B. Bird, W.E. Stewart., E.N. Lighfoot Transport phenomena, Wiley int.ed., 1960.
- H. Schlichting Boundary-layer theory, Mc Graw-Hill, NY, 1986.
- L.D. LANDAU AND E.M. LIFSCHITZ *Fluid mechanics*, Course of Theoretical Physics vol. 6, Pergamon Press, London, 1959.
- L. Prandtl and O.G. Tietjens Fundamentals of hydro- and aero-mechanics, Dover publ., NY, 1957.
- J. Happel and H. Brenner Low Reynolds number hydrodynamics, Noordhoff int. publ., Leyden, 1973.
- D.J. Tritton Physical fluid dynamics, Van Nostrand Reinhold, UK, 1985.
- R. Siegel and J. Howell Thermal radiation heat transfer, 2nd ed., McGraw-Hill, NY, 1981.
- A.J. Roberts, A one-dimensional introduction to continuum mechanics, World Scientific, London, 1994.

Table des matières

1	Les	fluides	s dans la mécanique des milieux continus	1	
	1.1	Lois de	e conservation	1	
		1.1.1	Formes globales des lois de conservation pour les volumes matériels	2	
		1.1.2	Formes locales des lois de conservation	5	
		1.1.3	Formes globales des lois de conservation pour les volumes de contrôle	7	
		1.1.4	Concept de puissance des efforts internes	10	
		1.1.5	Concept d'énergie potentielle	11	
		1.1.6	Concepts de pression, d'extra-tensions et d'enthalpie	13	
	1.2	Lois de comportement			
		1.2.1	Concept d'entropie et de température absolue	15	
		1.2.2	Modèle du fluide visqueux newtonien	17	
		1.2.3	Modèle du gaz idéal	23	
		1.2.4	Ecoulement incompressible d'un fluide visqueux newtonien	24	
	1.3	Condit	tions aux limites	25	
2	Eco	ulemer	nts incompressibles établis	2 9	
	2.1	Ecoule	ements de Hagen-Poiseuille et de Couette	29	
	2.2	Ecoule	ements instationnaires	38	
		2.2.1	Démarrage brusque de l'écoulement dans une conduite	38	
		2.2.2	Ecoulement cyclique avec gradient de pression oscillant	42	

		2.2.3	Démarrage brusque d'une plaque	. 45
		2.2.4	Plaque oscillante	. 48
	2.3	Zone	d'entrée et longueur d'établissement	. 48
3	Tra	\mathbf{nsfert}	de chaleur	53
	3.1	Transf	fert de chaleur dans les solides	. 54
		3.1.1	Conduction : loi de Fourier	. 54
		3.1.2	Convection : loi de Newton	. 57
		3.1.3	Notion de résistance thermique	. 61
		3.1.4	Exemple de solution analytique de l'équation de Laplace	. 65
	3.2	Transf	fert thermique établi	. 68
		3.2.1	Transfert thermique établi avec température de paroi constante .	. 71
		3.2.2	Transfert thermique établi avec température de paroi et température moyenne linéaires et de même pente	. 73
		3.2.3	Entrée thermique: le problème de Grätz	. 77
		3.2.4	Nombre de Nusselt moyen	. 82
4	Eco	uleme	nts rampants	85
	4.1	Ecoule	ement rampant autour d'un cylindre de section circulaire	. 86
	4.2	Ecoule	ement rampant autour d'une sphère	. 88
	4.3	Théor	ie de la lubrification	. 91
5	Cou	iches l	imites laminaires	101
	5.1	Introd	luction	. 101
	5.2	Etabli	ssement des équations de la couche limite laminaire	. 103
		5.2.1	Approche physique, non formelle	. 103
		5.2.2	Approche formelle mathématique	. 106
	5.3	Soluti	on pour le cas avec u, constant (Blasius)	110

	5.4	Epaiss	seurs de la couche limite	. 114
	5.5	Appro	oche intégrale pour le cas général	. 116
	5.6	Couch	nes limites thermiques	. 120
		5.6.1	Cas $Pr = 1$ et u_e constant	. 121
		5.6.2	Cas Pr général, dissipation négligeable, u_e et T_w constants	. 123
	5.7	Couch	nes limites en écoulement compressible	. 132
		5.7.1	Cas $Pr = 1$ et u_e constant	. 133
	5.8	Appro	oche intégrale pour le transfert de chaleur	. 134
6	Cor	rvectio	on naturelle	137
	6.1	Une é	tape préliminaire : la convection forcée	. 138
	6.2	Nomb	re de Grashof	. 141
	6.3	Une se	olution approchée pour le problème de la convection naturelle	. 143
7	Eco	uleme	nts turbulents	147
	7.1	Transi	ition vers la turbulence	. 147
	7.2	Carac	téristiques générales de la turbulence	. 148
	7.3	Appro	oche statistique de Reynolds	. 149
	7.4	Equat	ions moyennées de Reynolds	. 151
	7.5	Modèl	les de fermeture de type "viscosité effective de turbulence"	. 153
	7.6	Ecoule	ements turbulents en conduite ou en canal	. 156
		7.6.1	Généralités pour les écoulements turbulents établis en conduite ou en canal	. 156
		7.6.2	Modélisation de la viscosité effective de turbulence pour la zone proche de la paroi	. 160
		7.6.3	Profil universel de vitesse pour la zone proche de la paroi: conduite ou canal avec paroi hydrauliquement lisse	. 161

В	Fon	$\operatorname{ction} \operatorname{d}$	le courant	221
\mathbf{A}	Equ	ations	de Navier-Stokes dans divers systèmes d'axes	217
		7.8.5	Conduite hydrauliquement rugueuse avec $Pr \geq 0.5$ et dissipation négligeable	216
		7.8.4	Conduite hydrauliquement lisse avec $Pr \geq 0.5$ et dissipation négligeau	le214
		7.8.3	Couche limite hydrauliquement rugueuse avec $Pr \geq 0.5$ et dissipation négligeable	213
		7.8.2	Couche limite hydrauliquement lisse avec $Pr \geq 0.5$ et dissipation négligeable	209
		7.8.1	Couche limite avec $Pr = 1 \dots \dots \dots \dots \dots$	206
	7.8	Profils	de température et transfert de chaleur	206
		7.7.5	Formules du coefficient de frottement pour la couche limite hy- drauliquement rugueuse	202
		7.7.4	Formules améliorées du coefficient de frottement pour la couche limite hydrauliquement lisse	200
		7.7.3	Formule empirique du coefficient de frottement pour la couche limite hydrauliquement lisse	198
		7.7.2	Profil de vitesse simplifié en exposant pour toute la zone turbulente	197
		7.7.1	Profils universel de vitesse	191
	7.7	Couch	es limites turbulentes	191
		7.6.9	Formule générale des pertes de charge en conduite	185
		7.6.8	Formule générale des pertes de charge en conduite hydrauliquement rugueuse	184
		7.6.7	Conduites hydrauliquement lisses et conduites hydrauliquement rugue	euses 178
		7.6.6	Formule générale de Prandtl pour les pertes de charge en conduite hydrauliquement lisse	177
		7.6.5	Profil de vitesse simplifié en exposant pour toute la zone turbulente	173

Even the mountains flowed before the Lord. (from the song of Deborah after her victory over the Philistines, Judges 5:5)

Chapitre 1

Les fluides dans la mécanique des milieux continus

La mécanique des milieux continus est une discipline scientifique où l'on souhaite construire un modèle pour prédire l'évolution d'un milieu (ici, le fluide considéré). Ce modèle est formé d'un ensemble d'équations aux dérivées partielles et de conditions aux limites. Les équations d'un modèle continu sont d'une part les équations de conservation qui s'appliquent à tous les milieux, et d'autre part les équations de comportement (ou de constitution) qui sont spécifiques au comportement particulier du matériau considéré. Les conditions aux limites sont, en général, classées en conditions initiales et en conditions aux frontières.

1.1 Lois de conservation

Les lois de conservation ont une forme globale universelle schématisée sur la figure (1.1). Le contenu C(t) d'un système considéré évolue en fonction de divers apports externes $A_1(t)$, $A_2(t)$... en accord avec une équation différentielle de conservation

$$\frac{d\mathcal{C}}{dt}(t) = \mathcal{A}_1(t) + \mathcal{A}_2(t) + \dots$$
(1.1)

Il est essentiel de correctement définir le système, en identifiant clairement ce qui est dans le système et ce qui est à l'extérieur du système. Il est aussi important de noter que l'expression des lois de conservation est toujours relative à un certain observateur (galiléen ou quelconque). Il convient donc également d'identifier pour quelle classe d'observateurs une loi de conservation est valable.

Les lois de conservation mènent ensuite, sous certaines conditions de continuité, à des

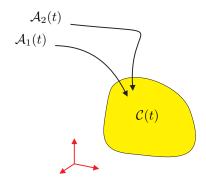


Figure 1.1: Forme globale universelle des lois de conservation.

formes locales, qui sont des équations algébriques ou des équations aux dérivées partielles équivalentes. Plus précisément, le fait qu'une loi de conservation soit satisfaite pour une certaine classe de systèmes (par exemple, tous les volumes matériels ou tous les volumes de contrôle) est équivalent à ce que sa forme locale soit satisfaite en tout point à tout instant.

Rappelons que la physique d'un milieu s'exprime en postulant, sous forme de principes, les formes globales des lois de conservation dont on déduit ensuite les formes locales. En présence de surfaces de discontinuité (comme les ondes de choc), les formes locales ne peuvent plus être établies dans la discontinuité. Il est, dès lors, nécessaire de revenir aux formes globales et d'établir les relations de saut adéquates.

1.1.1 Formes globales des lois de conservation pour les volumes matériels

Un volume matériel V(t) est défini comme un ensemble de points matériels en mouvement. Ces points se déplacent à la vitesse macroscopique définie par :

$$\mathbf{v}(\mathbf{x},t) = v_i(x_i,t)\mathbf{e}_i \tag{1.2}$$

Cette vitesse est définie par rapport à un repère $(0, \mathbf{e}_i)$ préalablement défini. Il s'agit ici d'une représentation eulérienne des vitesses puisque les composantes sont exprimées en termes des coordonnées actuelles et du temps. En général, on écrit simplement \mathbf{v} ou v_i en omettant la dépendance par rapport à x_j et à t. Evidemment, si le contexte l'exige, on peut introduire une représentation lagrangienne du même champ de vitesse et utiliser des symboles distincts.

Afin d'écrire les lois de conservation globales pour un volume matériel, il convient d'abord de définir les grandeurs physiques nécessaires associées à un volume matériel V(t):

$$\mathcal{M} = \int_{V(t)} \rho \, dV, \qquad (\text{masse}),$$

$$\mathcal{P}(t) = \int_{V(t)} \mathbf{pv} \, dV, \qquad (\text{quantit\'e de mouvement}),$$

$$\mathcal{N}(t) = \int_{V(t)} \mathbf{x} \times \rho \mathbf{v} \, dV, \qquad (\text{moment de la quantit\'e de mouvement}),$$

$$\mathcal{U}(t) = \int_{V(t)} \rho U \, dV, \qquad (\text{\'energie interne}),$$

$$\mathcal{K}(t) = \int_{V(t)} \mathbf{p} \, \mathbf{v} \cdot \mathbf{v} \, dV, \qquad (\text{\'energie cin\'etique}),$$

$$\mathcal{F}_d(t) = \int_{V(t)} \mathbf{f} \, dV = \int_{V(t)} \rho \mathbf{g} \, dV, \qquad (\text{forces à distance}),$$

$$\mathcal{F}_c(t) = \int_{\partial V(t)} \mathbf{t}(\mathbf{n}) \, dS, \qquad (\text{forces de contact}),$$

$$\mathcal{M}_d(t) = \int_{V(t)} \mathbf{x} \times \rho \mathbf{g} \, dV, \qquad (\text{moment des forces à distance}),$$

$$\mathcal{M}_c(t) = \int_{\partial V(t)} \mathbf{x} \times \mathbf{t}(\mathbf{n}) \, dS, \qquad (\text{moment des forces de contact}),$$

$$\mathcal{P}_d(t) = \int_{V(t)} \mathbf{v} \cdot \rho \mathbf{g} \, dV, \qquad (\text{puissance des forces de contact}),$$

$$\mathcal{Q}_d(t) = \int_{V(t)} \mathbf{r} \, dV, \qquad (\text{puissance calorifique fournie à distance}),$$

$$\mathcal{Q}_c(t) = \int_{\partial V(t)} q(\mathbf{n}) \, dS, \qquad (\text{puissance calorifique fournie par conduction}),$$

où $\partial V(t)$ représente la frontière du volume matériel V(t). Les éléments de volume ou de surface dans V(t) ou sur $\partial V(t)$ sont donnés par dV et dS respectivement. La normale

(1.3)

unitaire sortante de $\partial V(t)$ est notée **n**. Les autres symboles désignent les fonctions de champ usuelles :

 ρ , la masse volumique,

v, la vitesse,

U, l'énergie interne massique,

 $\mathbf{f} = \rho \mathbf{g}$, la densité des forces de distance,

g, la densité des forces de masse,

t(n), la densité des forces de contact exercées sur la frontière,

r, la densité de puissance calorifique fournie à distance,

 $q(\mathbf{n})$, le flux de puissance calorifique fourni par conduction.

Les lois de conservation globales pour un volume matériel représentées de manière schématique sur la figure 1.2 sont données par :

$$\frac{d\mathcal{M}}{dt} = 0, \qquad \forall V(t),$$

$$\frac{d\mathcal{P}}{dt}(t) = \mathcal{F}_d(t) + \mathcal{F}_c(t), \qquad \forall V(t),$$

$$\forall repère inertiel,$$

$$\frac{d\mathcal{N}}{dt}(t) = \mathcal{M}_d(t) + \mathcal{M}_c(t), \qquad \forall V(t),$$

$$\forall repère inertiel,$$

$$\frac{d(\mathcal{K} + \mathcal{U})}{dt}(t) = \mathcal{P}_d(t) + \mathcal{P}_c(t)$$

$$+ \mathcal{Q}_d(t) + \mathcal{Q}_c(t), \qquad \forall V(t),$$

$$\forall repère inertiel,$$
(1.4)

A l'exception de la conservation de la masse, ces lois ne s'appliquent que pour un repère inertiel. Il est possible de démontrer que, lorsque l'ensemble des lois de conservation est

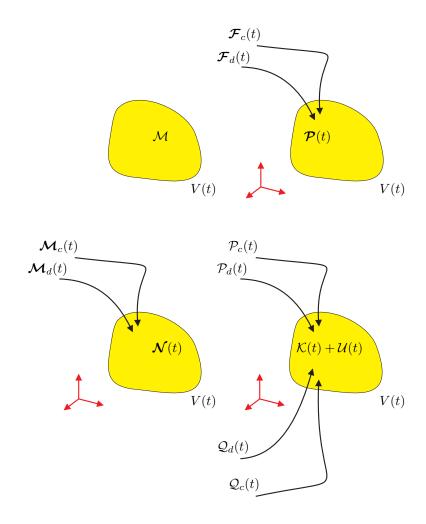


Figure 1.2: Lois de conservation pour un volume matériel.

satisfait par rapport à un certain repère inertiel, elles le sont également pour tout autre repère inertiel (et même pour tout repère dans le cas de la conservation de la masse).

1.1.2 Formes locales des lois de conservation

Les formes locales des lois de conservation s'établissent à partir de l'ensemble des formes globales à l'aide des théorèmes de Reynolds et de Green. Les formes locales peuvent être classées en relations algébriques et en relations différentielles.

Les relations algébriques font apparaître le tenseur de contraintes σ et le vecteur flux de chaleur \mathbf{q} et leurs relations avec $\mathbf{t}(\mathbf{n})$ et $q(\mathbf{n})$. En utilisant respectivement la conservation de la quantité de mouvement, du moment de la quantité de mouvement et de l'énergie, on obtient pour tout repère :

$$\mathbf{t}(\mathbf{n}) = \boldsymbol{\sigma}^T \cdot \mathbf{n},$$

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}^T,$$

$$q(\mathbf{n}) = -\mathbf{q} \cdot \mathbf{n}.$$
(1.5)

Afin d'écrire les relations différentielles locales de conservation, il est utile d'introduire maintenant quelques notations : la dérivée matérielle D/Dt et le tenseur des taux ou vitesses de déformation \mathbf{d} .

La dérivée matérielle est définie par

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla. \tag{1.6}$$

Elle représente la variation d'un champ par rapport au temps lorsqu'on accompagne le mouvement du point matériel qui se trouve à l'endroit où le champ est mesuré.

Le tenseur des taux de déformation est défini par

$$\mathbf{d} = \frac{1}{2} (\mathbf{\nabla} \mathbf{v}^T + \mathbf{\nabla} \mathbf{v}). \tag{1.7}$$

Physiquement, il est possible d'interpréter les composantes de ce tenseur comme suit :

- Les composantes diagonales de ce tenseur s'interprètent en termes d'allongements relatifs par unité de temps de segments matériels élémentaires parallèles aux axes du repère à l'instant t. Ainsi, d_{11} est l'allongement relatif par unité de temps d'un segment parallèle à \mathbf{e}_1 en t.
- Les composantes non-diagonales représentent le rapprochement (ou l'éloignement) angulaire par unité de temps de deux segments matériels élémentaires. Ainsi, $2d_{12}$ est la variation angulaire par unité de temps de deux segments matériels élémentaires précisément parallèles à \mathbf{e}_1 et \mathbf{e}_2 à l'instant t. Un rapprochement ou un éloignement angulaire correspond respectivement à une variation positive ou négative.
- La trace du tenseur des vitesses de déformation (d_{ii}) correspond à un accroissement relatif par unité de temps d'un volume matériel élémentaire en t.

En utilisant les notations de la dérivée matérielle et du tenseur des taux de déformation, les relations différentielles qui expriment localement les lois de conservation (la conservation locale de la masse, la conservation locale de la quantité de mouvement et la conservation locale de l'énergie interne, respectivement) s'écrivent sous la forme suivante :

$$\frac{D\rho}{Dt} + \rho \nabla \cdot \mathbf{v} = 0,$$

$$\rho \frac{D\mathbf{v}}{Dt} = \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{g},$$

$$\rho \frac{DU}{Dt} = \boldsymbol{\sigma} : \mathbf{d} + r - \nabla \cdot \mathbf{q},$$
(1.8)

Ces relations ont une autre forme dite *conservative*. Cette forme conservative est fort utilisée en mécanique des fluides et s'obtient facilement en tenant compte de la conservation de la masse :

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0,$$

$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = \nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{g},$$

$$\frac{\partial (\rho U)}{\partial t} + \nabla \cdot (\rho \mathbf{v} U) = \boldsymbol{\sigma} : \mathbf{d} + r - \nabla \cdot \mathbf{q}.$$
(1.9)

Rappelons que la loi locale de conservation de la quantité de mouvement, qu'elle soit exprimée en termes de dérivées matérielles ou sous forme conservative, ne s'applique que dans un repère inertiel.

1.1.3 Formes globales des lois de conservation pour les volumes de contrôle

Les lois de conservation peuvent également s'écrire, de manière totalement équivalente, pour un volume de contrôle V^c fixe dans le repère considéré. Dans ce cas, il faut désormais inclure des apports convectifs dus au transport de matière au travers la frontière du volume de contrôle.

Les lois de conservation globales pour un volume de contrôle représentées de manière schématique sur la figure 1.3, sont données par :

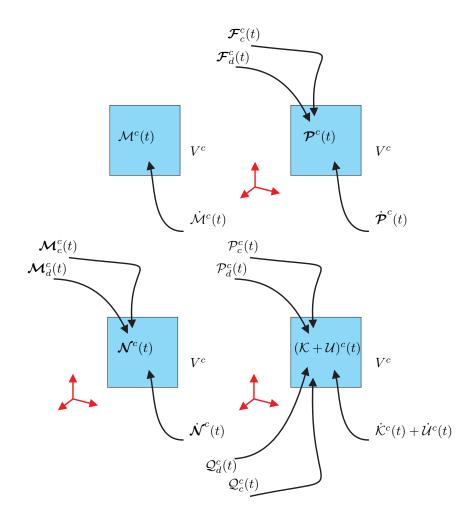


Figure 1.3: Lois de conservation pour un volume de contrôle.

$$\frac{d\mathcal{M}^{c}}{dt}(t) = \dot{\mathcal{M}}^{c}(t), \qquad \forall V^{c},$$

$$\frac{d\boldsymbol{\mathcal{P}}^{c}}{dt}(t) = \dot{\boldsymbol{\mathcal{P}}}^{c}(t) + \boldsymbol{\mathcal{F}}_{d}^{c}(t) + \boldsymbol{\mathcal{F}}_{c}^{c}(t), \qquad \forall V^{c},$$

$$\forall repère inertiel,$$

$$\frac{d\boldsymbol{\mathcal{N}}^{c}}{dt}(t) = \dot{\boldsymbol{\mathcal{N}}}^{c}(t) + \boldsymbol{\mathcal{M}}_{d}^{c}(t) + \boldsymbol{\mathcal{M}}_{c}^{c}(t), \quad \forall V^{c},$$

$$\forall repère inertiel,$$

$$\frac{d(\mathcal{K}^{c} + \mathcal{U}^{c})}{dt}(t) = \dot{\mathcal{K}}^{c}(t) + \dot{\mathcal{U}}^{c}(t)$$

$$+ \mathcal{P}_{d}^{c}(t) + \mathcal{P}_{c}^{c}(t)$$

$$+ \mathcal{Q}_{d}^{c}(t) + \mathcal{Q}_{c}^{c}(t), \qquad \forall V^{c},$$

$$\forall repère inertiel,$$

$$(1.10)$$

Les grandeurs \mathcal{M}^c , \mathcal{P}^c ... sont définies exactement par des expressions similaires à (1.3), mais dont le domaine d'intégration n'est plus le volume matériel (ou sa frontière), mais le volume de contrôle (ou sa frontière). Il ne reste donc plus qu'à définir les apports convectifs par les expressions :

$$\dot{\mathcal{M}}^{c}(t) = \int_{\partial V^{c}} -\rho(\mathbf{v} \cdot \mathbf{n}) dS,$$

$$\dot{\mathcal{P}}^{c}(t) = \int_{\partial V^{c}} -\rho \mathbf{v}(\mathbf{v} \cdot \mathbf{n}) dS,$$

$$\dot{\mathcal{N}}^{c}(t) = \int_{\partial V^{c}} -(\mathbf{x} \times \rho \mathbf{v})(\mathbf{v} \cdot \mathbf{n}) dS,$$

$$\dot{\mathcal{K}}^{c}(t) = \int_{\partial V^{c}} -\rho \frac{\mathbf{v} \cdot \mathbf{v}}{2} (\mathbf{v} \cdot \mathbf{n}) dS,$$

$$\dot{\mathcal{U}}^{c}(t) = \int_{\partial V^{c}} -\rho U(\mathbf{v} \cdot \mathbf{n}) dS.$$

$$(1.11)$$

Il est aisé d'établir les lois de conservation pour un volume de contrôle, à partir de celles sur un volume matériel. Il suffit de considérer un volume matériel V(t) occupant précisément le domaine V^c à l'instant t (mais pas nécessairement aux autres temps). On peut alors écrire au temps t pour un champ f quelconque

$$\frac{d}{dt} \int_{V(t)=V^c ent} \rho f \, dV = \int_{V^c} \rho \frac{Df}{Dt} \, dV$$

$$= \int_{V^c} \left[\rho \frac{\partial f}{\partial t} + \rho \mathbf{v} \cdot \nabla f \right] \, dV$$

$$= \int_{V^c} \left[\rho \frac{\partial f}{\partial t} + \rho \mathbf{v} \cdot \nabla f + f \left(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) \right) \right] \, dV$$

$$= \int_{V^c} \left[\frac{\partial (\rho f)}{\partial t} + \nabla \cdot (\rho \mathbf{v} f) \right] \, dV$$

$$= \frac{d}{dt} \int_{V^c} \rho f \, dV + \int_{\partial V^c} \rho f(\mathbf{v} \cdot \mathbf{n}) \, dS.$$

On voit donc bien apparaître l'apport convectif. Il est également possible d'obtenir les formes globales pour un volume de contrôle en partant des lois de conservation locales sous forme conservative (ou vice-versa).

1.1.4 Concept de puissance des efforts internes

La formalisation des lois de conservation en termes de systèmes et d'apports externes permet d'obtenir d'autres formulations ou variantes des lois de conservations. Il est ainsi possible d'obtenir des variantes de l'équation d'énergie. En particulier, à partir des formes globales de la conservation de la quantité de mouvement et de l'énergie totale, il est possible d'établir des lois de conservation de l'énergie cinétique (ou théorème de l'énergie cinétique) et de l'énergie interne.

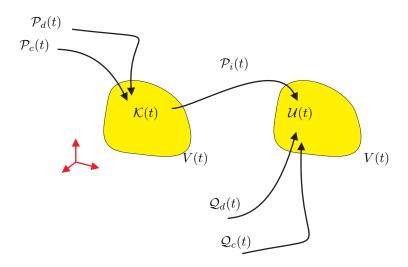


Figure 1.4: Lois de conservation de l'énergie cinétique et interne pour un volume matériel.

Ces relations qui sont représentées schématiquement sur la figure 1.4 s'expriment sous la forme :

$$\frac{d\mathcal{K}}{dt}(t) = \mathcal{P}_d(t) + \mathcal{P}_c(t) - \mathcal{P}_i(t), \qquad \forall V(t), \\
\forall rep\`ere inertiel,$$

$$\frac{d\mathcal{U}}{dt}(t) = \mathcal{Q}_d(t) + \mathcal{Q}_c(t) + \mathcal{P}_i(t), \qquad \forall V(t),$$
(1.12)

où $\mathcal{P}_i(t)$ désigne la puissance de efforts internes et est donné par :

$$\mathcal{P}_i(t) = \int_{V(t)} \boldsymbol{\sigma} : \mathbf{d} \, dV. \tag{1.13}$$

La conservation de l'énergie interne s'applique dans un repère quelconque et donne directement la forme locale (1.8.3). On peut donc dire qu'étant donné un volume matériel V(t), celui-ci reçoit par unité de temps un apport externe d'énergie cinétique $\mathcal{P}_d(t) + \mathcal{P}_c(t)$ et un apport externe d'énergie interne $\mathcal{Q}_d(t) + \mathcal{Q}_c(t)$. En outre, il y a une transformation d'énergie cinétique en énergie interne (ou vice-versa) proportionnel à $\mathcal{P}_i(t)$. La forme locale de la conservation de l'énergie cinétique s'obtient directement et est

$$\rho \frac{D}{Dt} \left(\frac{\mathbf{v} \cdot \mathbf{v}}{2} \right) = \mathbf{\nabla} \cdot (\boldsymbol{\sigma} \cdot \mathbf{v}) + \rho \mathbf{g} \cdot \mathbf{v} - \boldsymbol{\sigma} : \mathbf{d}.$$
 (1.14)

On peut faire exactement le même raisonnement pour un volume de contrôle et écrire les lois correspondantes.

1.1.5 Concept d'énergie potentielle

Lorsque dans le repère inertiel considéré, les forces à distances dérivent d'un potentiel $W(\mathbf{x})$, il est possible de faire apparaître le concept d'énergie potentielle que l'on définit par :

$$\mathcal{W}(t) = \int_{V(t)} \rho W \, dV. \tag{1.15}$$

Puisque $\mathbf{g} = -\nabla W$, l'utilisation du théorème de Reynolds permet de déduire immédiatement la loi de conservation de l'énergie potentielle

$$\frac{d}{dt} \int_{V(t)} \rho W \, dV = \int_{V(t)} \rho \frac{DW}{Dt} \, dV$$

$$= \int_{V(t)} \left[\rho \frac{\partial W}{\partial t} + \rho \mathbf{v} \cdot \nabla W \right] \, dV$$

$$= \int_{V(t)} \rho \mathbf{v} \cdot \nabla W \, dV$$

$$= -\int_{V(t)} \rho \mathbf{v} \cdot \mathbf{g} \, dV.$$

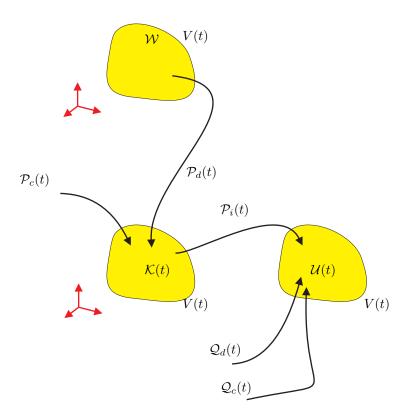


Figure 1.5: Lois de conservation de l'énergie potentielle, cinétique et interne pour un volume matériel.

Dans le cas où les forces à distance dépendent d'un potentiel, les apports et les transformations d'énergie peuvent être maintenant représentés par le diagramme de la figure 1.5. On distingue l'énergie interne, cinétique et potentielle, et on peut écrire les relations globales et locales de conservation de l'énergie potentielle et de la somme de l'énergie potentielle et cinétique.

$$\frac{dW}{dt}(t) = -\mathcal{P}_d(t), \qquad \forall V(t), \\
\forall repère inertiel,$$

$$\frac{d(W + \mathcal{K})}{dt}(t) = \mathcal{P}_c(t) - \mathcal{P}_i(t), \qquad \forall V(t), \\
\forall repère inertiel,$$
(1.16)

$$\rho \frac{DW}{Dt} = -\rho \mathbf{g} \cdot \mathbf{v},$$

$$\rho \frac{D}{Dt} \left(W + \frac{\mathbf{v} \cdot \mathbf{v}}{2} \right) = \nabla \cdot (\boldsymbol{\sigma} \cdot \mathbf{v}) - \boldsymbol{\sigma} : \mathbf{d}.$$
(1.17)

1.1.6 Concepts de pression, d'extra-tensions et d'enthalpie

En mécanique des fluides, la pression thermodynamique p joue un rôle central. C'est pourquoi on décompose le tenseur des contraintes comme suit

$$\sigma = -p\delta + \tau, \tag{1.18}$$

où τ est le tenseur des extra-contraintes et δ le tenseur identité. Dans le cas d'un fluide visqueux newtonien, ce tenseur des extra-contraintes sera uniquement formé des termes visqueux. Puisque le volume massique est $v=1/\rho$, on définit également l'enthalpie massique H par :

$$H = U + \frac{p}{\rho}.\tag{1.19}$$

L'enthalpie d'un volume matériel est alors

$$\mathcal{H}(t) = \int_{V(t)} \rho H \, dV. \tag{1.20}$$

Il est dès lors possible d'utiliser H, p et τ plutôt que U et σ dans l'écriture de la forme

locale de l'équation de la conservation de l'énergie. Tout d'abord observons que

$$\rho \frac{DH}{Dt} = \rho \left(\frac{DU}{Dt} + \frac{1}{\rho} \frac{Dp}{Dt} - \frac{p}{\rho^2} \frac{D\rho}{Dt} \right)$$
$$= \rho \frac{DU}{Dt} + \frac{Dp}{Dt} - \frac{p}{\rho} \frac{D\rho}{Dt}.$$

En utilisant la conservation de l'énergie interne, on développe ensuite

$$\rho \frac{DH}{Dt} = \boldsymbol{\sigma} : \mathbf{d} + r - \boldsymbol{\nabla} \cdot \mathbf{q} + \frac{Dp}{Dt} - \frac{p}{\rho} \frac{D\rho}{Dt},$$

$$= -p \boldsymbol{\nabla} . \mathbf{v} + \boldsymbol{\tau} : \mathbf{d} + r - \boldsymbol{\nabla} \cdot \mathbf{q} + \frac{Dp}{Dt} - \frac{p}{\rho} \frac{D\rho}{Dt},$$

$$= \boldsymbol{\tau} : \mathbf{d} + r - \boldsymbol{\nabla} \cdot \mathbf{q} + \frac{Dp}{Dt} - \frac{p}{\rho} \underbrace{\left(\frac{D\rho}{Dt} + \rho \boldsymbol{\nabla} . \mathbf{v}\right)}_{=0}.$$

et on obtient finalement une expression locale de la conservation de l'enthalpie. Il est également possible d'écrire le théorème de l'énergie cinétique en termes de pression et d'extra-tensions et d'en déduire finalement une expression locale de la conservation de l'enthalpie massique totale $H + W + \frac{\mathbf{v} \cdot \mathbf{v}}{2}$.

$$\rho \frac{DH}{Dt} = \frac{Dp}{Dt} + \boldsymbol{\tau} : \mathbf{d} + r - \boldsymbol{\nabla} \cdot \mathbf{q}$$

$$\rho \frac{D}{Dt} \left(W + \frac{\mathbf{v} \cdot \mathbf{v}}{2} \right) = \boldsymbol{\nabla} \cdot (\boldsymbol{\tau} \cdot \mathbf{v}) - \mathbf{v} \cdot \boldsymbol{\nabla} p - \boldsymbol{\tau} : \mathbf{d}$$

$$\rho \frac{D}{Dt} \left(H + W + \frac{\mathbf{v} \cdot \mathbf{v}}{2} \right) = \frac{\partial p}{\partial t} + \boldsymbol{\nabla} \cdot (\boldsymbol{\tau} \cdot \mathbf{v}) + r - \boldsymbol{\nabla} \cdot \mathbf{q},$$
(1.21)

1.2 Lois de comportement

Les lois de conservation forment un ensemble d'équations aux dérivées partielles qui doivent être complétées par des équations de constitution ou de comportement qui caractérisent le fluide considéré. L'ensemble des équations de conservation et de comportement formera alors le modèle mathématique permettant la prédiction de l'évolution du milieu.

Toutefois, la définition des équations de constitution doit obéir à certaines règles. En particulier, les équations de constitution doivent être écrites de manière à satisfaire le second principe de la thermodynamique.

1.2.1 Concept d'entropie et de température absolue

Si on désigne l'entropie massique par S et la température absolue par T, les potentiels thermodynamiques classiques, c'est-à-dire l'énergie libre massique de Helmholtz F et l'enthalpie libre massique (ou enthalpie libre de Gibbs massique) G sont définis par les expressions usuelles :

$$F = U - TS,$$

$$G = H - TS.$$
(1.22)

Et donc pour un volume matériel, on écrit

$$S(t) = \int_{V(t)} \rho S \, dV,$$

$$F(t) = \int_{V(t)} \rho F \, dV,$$

$$G(t) = \int_{V(t)} \rho G \, dV.$$
(1.23)

On peut donner une interprétation physique aux grandeurs $\mathcal{F}(t)$ et $\mathcal{G}(t)$ par des diagrammes de type loi de conservation. Mais ceux-ci ne peuvent s'établir que sous des hypothèses restrictives (transformations isobares et/ou isothermes) qui n'ont d'intérêt réel que dans les milieux à plusieurs constituants (milieux réactifs) ou à plusieurs phases.

Par contre, les concepts d'entropie et de température absolue permettent d'énoncer le second principe de la thermodynamique. Celui-ci est d'une nature fondamentalement différente des lois de conservation. Il exprime que pour tout volume matériel, l'accroissement d'entropie par unité de temps est au moins égal à l'apport externe d'entropie par unité de temps. La différence $\xi(t)$ est donc nécessairement positive et compte pour la production irréversible d'entropie par le système. Une relation d'égalité est évidemment associée aux transformations réversibles.

Pour un volume matériel, on obtient sur la figure 1.6 un diagramme du même type

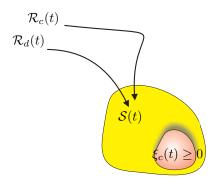


Figure 1.6: Second principe de la thermodynamique.

que pour les lois de conservation. Le second principe peut donc s'écrire sous la forme :

$$\left| \frac{dS}{dt} \right| \ge \left| \mathcal{R}_d(t) + \mathcal{R}_c(t), \quad \forall \ V(t), \right|$$
(1.24)

où les apports externes d'entropie sont définis par

$$\mathcal{R}_{d}(t) = \int_{V(t)} \frac{r}{T} dV,$$
(apport externe radiatif d'entropie par unité de temps),
$$\mathcal{R}_{c}(t) = \int_{\partial V(t)} \frac{q(\mathbf{n})}{T} dS,$$
(1.25)

(apport externe conductif d'entropie par unité de temps).

Un traitement classique par usage des théorèmes de Reynolds et de Green permet d'exprimer le second principe sous une forme locale :

$$\rho \frac{DS}{Dt} \geq \frac{r}{T} - \frac{1}{T} \nabla \cdot \mathbf{q} + \frac{\mathbf{q}}{T^2} \cdot \nabla T, \tag{1.26}$$

et d'obtenir en combinant (1.26) avec l'équation de conservation de l'énergie, l'inégalité

de Clausius-Duhem, soit en termes de U et σ ou en termes de H, τ et p

$$\rho T \frac{DS}{Dt} - \rho \frac{DU}{Dt} \geq -\boldsymbol{\sigma} : \mathbf{d} + \frac{\mathbf{q}}{T} \cdot \boldsymbol{\nabla} T,$$

$$\rho T \frac{DS}{Dt} - \rho \frac{DH}{Dt} + \frac{Dp}{Dt} \geq -\boldsymbol{\tau} : \mathbf{d} + \frac{\mathbf{q}}{T} \cdot \boldsymbol{\nabla} T.$$
(1.27)

L'inégalité de Clausius-Duhem doit être satisfaite en tout point et en tout instant. Une égalité correspond au caractère localement réversible de la transformation. Plus précisément, la formulation dite rationnelle du second principe impose que l'inégalité de Clausius-Duhem soit identiquement satisfaite pour une histoire arbitraire des variables thermodynamiques du point matériel considéré. Une telle histoire est appelée processus thermodynamique.

En toute rigueur, on notera que la formulation précédente du second principe n'est valable que pour les transformations dites proches de l'équilibre thermodynamique. Dans ce cas, on accepte l'hypothèse d'équilibre thermodynamique local, ce qui permet de définir, en fonction des coordonnées et du temps, l'entropie massique comme une mesure du désordre énergétique local, et la température absolue d'une manière telle que deux corps à l'équilibre et en contact échangent immédiatement de la chaleur du corps le plus chaud vers le corps le plus froid. Par contre, lorsque les transformations sont fortement irréversibles, une formulation différentielle (et plus complexe...) du second principe est nécessaire. Cette question qui ne fait pas l'unanimité dans la communauté scientifique déborde largement le cadre de ce cours.

1.2.2 Modèle du fluide visqueux newtonien

Décomposons le tenseur des taux des déformations en une partie sphérique \mathbf{d}^s et une partie déviatoire \mathbf{d}^d de la manière suivante

$$\mathbf{d} = \underbrace{(\boldsymbol{\delta} : \mathbf{d}) \frac{\boldsymbol{\delta}}{3}}_{\mathbf{d}^s} + \underbrace{(\mathbf{d} - (\boldsymbol{\delta} : \mathbf{d}) \frac{\boldsymbol{\delta}}{3})}_{\mathbf{d}^d}, \tag{1.28}$$

où $\boldsymbol{\delta}$: \mathbf{d} est la trace du tenseur des taux des déformation et peut aussi être notée $tr(\mathbf{d})$ ou d_{mm} .

Les équations de constitution du fluide visqueux newtonien peuvent être alors écrites comme suit

$$\sigma = -p\delta + 3\hat{\kappa}(p, T)\mathbf{d}^{s} + 2\hat{\mu}(p, T)\mathbf{d}^{d},$$

$$\mathbf{q} = -\hat{k}(p, T)\nabla T,$$

$$\rho = \hat{\rho}(p, T),$$

$$H = \hat{H}(p, T),$$

$$S = \hat{S}(p, T).$$

$$(1.29)$$

où $\kappa = \hat{\kappa}(p,T)$ et $\mu = \hat{\mu}(p,T)$ sont respectivement les coefficients de viscosité de volume et de cisaillement, tandis que $k = \hat{k}(p,T)$ est le coefficient de conduction (ou conductibilité) thermique du fluide. Les variables thermodynamiques sont donc la pression, la température, le tenseur des taux de déformation et le gradient de température. Dans la pratique, on définit également la viscosité cinématique d'un fluide $\nu = \mu/\rho$, tandis que μ est appelé viscosité dynamique.

En conclusion, on voit que l'ensemble des 17 équations formé par les formes locales des lois de conservation et les équations de comportement forment un modèle cohérent où le nombre d'équations et d'inconnues s'équilibrent. En particulier, on constate que l'introduction de p comme variable additionnelle correspond à une équation de constitution pour la masse volumique.

conservation locale de la masse conservation locale de la quantité de mouvement conservation locale de l'énergie	$ ho$ \mathbf{v} T	1 3 1
constitution pour les contraintes	σ	6
constitution pour le flux calorifque	q	3
constitution pour la masse volumique	p	1
constitution pour l'enthalpie	H	1
constitution pour l'entropie	S	1

Pour satisfaire identiquement l'inégalité de Clausius-Duhem pour tout processus thermodynamique, on peut montrer que les conditions nécessaires et suffisantes suivantes doivent prévaloir :

$$TdS = dH - \frac{dp}{\rho} = dU - \frac{pd\rho}{\rho^2},$$

$$k \ge 0,$$

$$\kappa \ge 0,$$

$$\mu \ge 0.$$
(1.30)

La relation différentielle $\rho T dS = \rho dH - dp$ peut être détaillée sous la forme

$$\begin{cases}
T \frac{\partial \hat{S}}{\partial p}(p,T) = \frac{\partial \hat{H}}{\partial p}(p,T) - \frac{1}{\hat{\rho}(p,T)}, \\
T \frac{\partial \hat{S}}{\partial T}(p,T) = \frac{\partial \hat{H}}{\partial T}(p,T).
\end{cases} (1.31)$$

On voit donc que la différentielle dS doit être une différentielle exacte, les variables indépendantes étant la pression et la température.

Ceci montre comment le second principe de la thermodynamique intervient dans les modèles de mécanique des milieux continus. Même si l'entropie massique ne joue aucun rôle dans le système d'équations à résoudre, le modèle doit être tel que son existence soit assurée. En d'autres mots, on doit pouvoir intégrer la différentielle dS donnée par (1.30.1) dans le diagramme (p,T) de manière indépendante du chemin d'intégration. Ceci implique classiquement le respect de la condition suivante :

$$\frac{\partial}{\partial T} \left(\frac{1}{T} \frac{\partial \hat{H}}{\partial p} - \frac{1}{\hat{\rho}T} \right) = \frac{\partial}{\partial p} \left(\frac{1}{T} \frac{\partial \hat{H}}{\partial T} \right) \tag{1.32}$$

Cette condition contraint les possibilités de définition des équations d'état pour H et ρ . Afin d'illustrer ceci, définissons tout d'abord la chaleur spécifique à pression constante c_p , le coefficient de diffusivité thermique α , les coefficients de dilatation thermique β , de

compressibilité γ par

$$c_{p} = \hat{c}_{p}(p,T) = \frac{\partial \hat{H}}{\partial T},$$

$$\alpha = \hat{\alpha}(p,T) = \frac{\hat{k}}{\hat{\rho}\hat{c}_{p}},$$

$$\beta = \hat{\beta}(p,T) = -\frac{1}{\hat{\rho}}\frac{\partial \hat{\rho}}{\partial T},$$

$$\gamma = \hat{\gamma}(p,T) = \frac{1}{\hat{\rho}}\frac{\partial \hat{\rho}}{\partial p}.$$

$$(1.33)$$

On peut alors montrer que la contrainte précédente peut s'écrire de manière équivalente comme une condition liant la chaleur spécifique à pression constante et la dérivée partielle de l'enthalpie par rapport à la pression

$$\frac{\partial}{\partial T} \left(\frac{1}{T} \frac{\partial \hat{H}}{\partial p} - \frac{1}{\hat{\rho}T} \right) = \frac{\partial}{\partial p} \left(\frac{1}{T} \frac{\partial \hat{H}}{\partial T} \right)$$
$$-\frac{1}{T^2} \frac{\partial \hat{H}}{\partial p} + \frac{1}{T} \frac{\partial^2 \hat{H}}{\partial p \partial T} + \frac{1}{\rho T^2} + \frac{1}{\rho^2 T} \frac{\partial \hat{\rho}}{\partial T} = \frac{1}{T} \frac{\partial^2 \hat{H}}{\partial p \partial T},$$
$$-\frac{\partial \hat{H}}{\partial p} + \frac{1}{\rho} + \frac{T}{\rho^2} \frac{\partial \hat{\rho}}{\partial T} = 0.$$

On obtient donc la relation

$$\frac{\partial \hat{H}}{\partial p} = \frac{1}{\rho} \left(1 - T\beta \right). \tag{1.34}$$

Interprétation physique du fluide visqueux newtonien

Afin de bien comprendre le sens physique des équations de constitution du fluide visqueux newtonien, il faut, d'une part, observer que les contraintes se composent d'un terme isotrope de pression et de deux termes visqueux. Ces derniers sont chacun le produit d'un coefficient de viscosité par un facteur proportionnel à la vitesse de déformation (la trace ou le déviateur du tenseur des vitesses de déformation) qui mesure soit la vitesse de dilatation (ou compression), soit la vitesse de cisaillement. Ainsi, les contraintes visqueuses

disparaissent non pas en l'absence de déformation (par retour de la matière à l'état initial), mais quand la déformation cesse d'évoluer. Ceci marque la différence fondamentale entre les fluides visqueux où les contraintes sont proportionnelles à la vitesse de déformation et les solides élastiques où les contraintes sont proportionnelles aux déformations elles-mêmes. Il est aussi important de préciser qu'un grand nombre de matériaux ne sont pas correctement caractérisés, ni par un modèle de fluide newtonien, ni par un modèle de solide élastique. On recourt alors à des modèles de fluides non-newtoniens ou des modèles viscoélastiques qui incluent des effets de mémoire dans l'équation de comportement. Ce qui n'est pas le cas du modèle newtonien où toute l'histoire passée du point matériel considéré se résume à la valeur actuelle de pression et de température.

Afin de quantifier les taux de déformation subie par un matériau, on définit le taux de cisaillement $\dot{\gamma}$ par la relation

$$\dot{\gamma}^2 = 2\mathbf{d}^d : \mathbf{d}^d. \tag{1.35}$$

Il s'agit donc d'une norme du déviateur du tenseur des taux de déformation.

D'autre part, il faut observer que l'équation de constitution du flux de chaleur est gouvernée par la loi de Fourier. Ceci modélise le fait que dans un matériau isotrope, comme les fluides classiques, la chaleur va du chaud au froid et est directement opposée au gradient de température. Enfin, les équations d'état de H, S et ρ font partie de la thermodynamique classique et illustrent le fait que l'état du fluide visqueux newtonien à un endroit et à un instant donnés est caractérisé par la pression et la température locales.

Finalement, il est intéressant d'écrire l'inégalité de Clausius-Duhem pour un fluide visqueux newtonien

$$\left[\kappa(\boldsymbol{\delta}:\mathbf{d})^2 + 2\mu\mathbf{d}^d:\mathbf{d}^d + \frac{k}{T}\boldsymbol{\nabla}T\cdot\boldsymbol{\nabla}T\right] \geq 0, \tag{1.36}$$

Cette relation montre que toutes les irréversibilités thermodynamiques proviennent des effets visqueux (proportionnels à la viscosité du fluide) et des transferts de chaleur par conduction (proportionnels au coefficient de conduction du fluide).

Formulation en pression, vitesse et température

Le système formé par les 5 équations de conservation et les 12 équations de constitution est fermé puisqu'il comporte autant d'équations que d'inconnues. On rappelle que les forces à distance et les apports radiatifs sont externes et sont donc des données du problème au même titre que les forces de contacts et les apports de chaleur par conduction. Le système peut être considérablement simplifié si l'on injecte les équations de constitution dans les lois de conservation, sans plus se préoccuper de l'entropie, et en gardant la pression, les vitesses et la température comme inconnues de base. C'est ce qu'on désigne par formulation pression-vitesse-température du problème.

Après calculs, les équations de masse, de mouvement et d'énergie prennent la forme :

$$\gamma \frac{Dp}{Dt} - \beta \frac{DT}{Dt} + \nabla \cdot \mathbf{v} = 0,$$

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \nabla (\kappa \boldsymbol{\delta} : \mathbf{d}) + \nabla \cdot (2\mu \mathbf{d}^d) + \rho \mathbf{g},$$

$$\rho c_p \frac{DT}{Dt} - \beta T \frac{Dp}{Dt} = \kappa (\boldsymbol{\delta} : \mathbf{d})^2 + 2\mu (\mathbf{d}^d : \mathbf{d}^d) + r + \nabla \cdot (k\nabla T),$$
(1.37)

où, pour des raisons de commodité et de clarté, les expressions \mathbf{d} et \mathbf{d}^d ainsi que l'opérateur de la dérivée matérielle n'ont pas été détaillés en termes de vitesses. De plus, les coefficients β , γ , ρ , κ , μ , c_p et k doivent être compris comme des fonctions données de la pression et de la température. On obtient donc bien 5 équations à 5 inconnues.

De nombreuses simplications peuvent être introduites dans le système ci-dessus. Avant de les présenter, il convient d'observer que tout fluide réel est toujours tant soit peu compressible, tant soit peu visqueux et qu'il conduit toujours tant soit peu la chaleur. Les simplifications usuelles doivent donc être considérées comme des approximations dont la validité effective relève de l'analyse dimensionnelle.

Les simplifications les plus courantes sont :

- fluide incompressible : $\gamma = 0$,
- fluide indilatable : $\beta = 0$,
- écoulement incompressible : $\nabla \cdot \mathbf{v} = 0$,
- écoulement incompressible et irrotationnel : $\nabla \cdot \mathbf{v} = 0$, $\nabla \times \mathbf{v} = 0$,
- transformations adiabatiques : q = r = 0.

Dans la pratique, l'expression *fluide incompressible* désigne souvent un modèle de fluide incompressible et indilatable, tandis que l'expression *écoulement incompressible* désigne un problème où le champ de vitesse est à divergence nulle.

L'utilisation adéquate de ces approximations ou simplifications est un des aspects les plus importants de la modélisation mathématique d'un écoulement réel. On notera ainsi que l'écoulement particulier d'un fluide réel connu pour être compressible peut parfois être parfaitement représenté par un modèle d'écoulement incompressible, si le champ de vitesse de cet écoulement est à divergence nulle.

1.2.3 Modèle du gaz idéal

Dans le cadre du modèle du fluide visqueux newtonien, une équation d'état possible pour la masse volumique est celle du gaz idéal (aussi appelé gaz parfait):

$$\hat{\rho}(p,T) = \frac{p}{RT},\tag{1.38}$$

où $R = \mathcal{R}/m$ est la constante du gaz idéal considéré.

Dans ce cas, la condition (1.34) devient

$$\frac{\partial \hat{H}}{\partial p} = \frac{1}{\rho} \left(1 - \underbrace{\frac{p}{\rho RT}}_{=1} \right) = 0, \tag{1.39}$$

ce qui implique que l'enthalpie massique et la chaleur massique à pression constante ne dépendent que de la température. Il est ensuite facile de montrer qu'il en est de même pour l'énergie interne massique et la chaleur spécifique à volume constant.

Typiquement, on obtient de cette manière les propriétés suivantes pour un gaz idéal :

$$dU = \hat{c}_v(T)dT,$$

$$dH = \hat{c}_p(T)dT,$$

$$R = \hat{c}_p(T) - \hat{c}_v(T).$$
(1.40)

où la chaleur spécifique à volume constant est définie par :

$$c_v = \hat{c_v}(T) = \frac{\partial \hat{U}}{\partial T}.$$
 (1.41)

1.2.4 Ecoulement incompressible d'un fluide visqueux newtonien

Lorsqu'on introduit l'hypothèse d'incompressibilité et d'indilatabilité, on obtient le modèle de l'écoulement incompressible du fluide visqueux newtonien.

$$\mathbf{\sigma} = -p\mathbf{\delta} + 2\hat{\mu}(p, T)\mathbf{d},$$

$$\mathbf{q} = -\hat{k}(p, T)\mathbf{\nabla}T,$$

$$U = \hat{U}(T),$$

$$S = \hat{S}(T).$$
(1.42)

Pour satisfaire identiquement l'inégalité de Clausius-Duhem pour tout processus thermodynamique, on peut, à nouveau, montrer que les conditions nécessaires et suffisantes suivantes doivent prévaloir :

$$\rho T dS = \rho dH - dp,
k \ge 0,
\mu \ge 0.$$
(1.43)

En particulier, l'utilisation de (1.34) devient

$$\frac{\partial \hat{H}}{\partial p} = \frac{1}{\rho},\tag{1.44}$$

ce qui implique bien que l'énergie interne ne peut dépendre que de la température. N'ayant plus d'intérêt ici à distinguer chaleur spécifique à volume ou à pression constante, nous définirons simplement la chaleur spécifique c comme étant

$$c = \hat{c}(T) = \frac{\partial \hat{U}}{\partial T} = \frac{\partial \hat{H}}{\partial T},$$
 (1.45)

dans le cas d'un modèle d'écoulement incompressible.

Formulation en pression, vitesse et température

Le système formé par les équations de conservation et les équations de constitution peut, à nouveau, être considérablement simplifié si l'on injecte les équations de constitution dans les lois de conservation.

Après calculs, les équations de la formulation pression-vitesse-température du problème prennent la forme :

$$\nabla \cdot \mathbf{v} = 0,$$

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \nabla \cdot (2\mu \mathbf{d}) + \rho \mathbf{g},$$

$$\rho c \frac{DT}{Dt} = 2\mu(\mathbf{d} : \mathbf{d}) + r + \nabla \cdot (k\nabla T),$$
(1.46)

1.3 Conditions aux limites

Dans le formalisme de la mécanique des milieux continus, le problème à résoudre porte le plus souvent sur la prédiction de l'évolution des champs inconnus dans un volume matériel ou un volume de contrôle. Dans la mécanique des fluides classique, les champs inconnus sont, en général, la pression, les vitesses et la température, tandis que le domaine d'étude est généralement un volume de contrôle, puisque les fluides sont susceptibles de subir d'énormes déformations. Il est donc préférable de s'attacher à l'étude d'un volume fixe de l'espace pour un observateur déterminé.

Pour définir correctement un problème, il faut spécifier le modèle (par exemple, le modèle de fluide visqueux newtonien en formulation pression-vitesse-température), mais également préciser complètement l'action de l'extérieur sur le système. Cette action comprend des effets à distance, ainsi que les conditions initiales et aux frontières.

Les effets à distance se limitent aux forces de masse (\mathbf{g}) et à la puissance radiative volumique (r) qui sont donc bien des données du problème.

Les conditions initiales et les conditions frontières peuvent prendre des formes extrêmement différentes et il est très difficile d'en donner une description systématique. Toutefois, il faut observer que la matière ne s'arrête pas aux frontières du domaine considéré et que son évolution ne commence pas au temps initial. Comme il est impossible d'étendre sans limite le domaine d'analyse et de reculer arbitrairement le temps initial où démarre l'analyse, on devra donc effectuer un compromis. En pratique, on choisit donc des frontières telles que certaines informations puissent y être considérées comme approximativement correctes. Mais il ne s'agit que d'un modèle de la réalité : on doit donc toujours garder à l'esprit, et en particulier pour les problèmes thermiques, le fait que ces conditions ne sont qu'une approximation de la réalité.

Conditions initiales

Pour un fluide visqueux newtonien quelconque, les conditions initiales consistent à spécifier les champs de pression, de vitesse et de température au temps initial.

Lorsqu'on suppose que l'écoulement est incompressible, il ne faut plus imposer que les vitesses et la température. Ce fait est lié à la nature mathématique des équations aux dérivées partielles associées à ce problème. De manière purement intuitive, ceci peut être expliqué par le fait que le terme d'évolution temporelle disparaît dans l'équation de conservation de la masse qui est associée au champ de pression. Dans le cas incompressible, la pression s'adapte instantanément à l'écoulement à chaque instant, sans le retard dû à la propagation des ondes acoustiques.

Conditions aux frontières

En restant dans le cas d'un fluide visqueux newtonien, trois ou quatre conditions mécaniques et une condition thermique doivent être spécifiées le long de toutes les frontières. Le long des parois, le fluide est supposé coller et on impose donc que la vitesse du fluide soit égale à la vitesse de la paroi solide. Il faut y ajouter une condition thermique, en prescrivant soit la température à la paroi, soit le flux de chaleur sortant à travers celle-ci. Le long d'une section d'entrée, il est usuel d'imposer la pression, le profil de vitesse et la température. Par contre, le long des sections de sortie du domaine, on impose généralement des conditions moins strictes de façon à éviter la génération de zones minces de transition indésirables. On impose seulement la composante normale de la force de contact, en exigeant que les composantes tangentielles de la vitesse (ou les composantes tangentielles de la force de contact) soient nulles. On agit de même pour la condition thermique en imposant un flux de chaleur nul.

Il est essentiel d'observer que les conditions aux frontières changent complètement lorsque l'une des simplifications classiques (écoulement incompressible, écoulement incompressible et irrotationnel, transformations adiabatiques) est introduite. A titre d'exemple, mentionnons seulement les points suivants :

- Pour un écoulement incompressible et irrotationnel ou écoulement de fluide parfait, seule une condition sur la composante normale de la vitesse peut être appliquée le long d'une paroi. Le fluide glisse sur les parois.
- Il ne faut pas imposer la pression aux sections d'entrée, dans le cas incompressible.
- Il n'y a pas de conditions thermiques à spécifier sur les parois et les sections de sortie, dans le cas d'un écoulement en transformations adiabatiques (sans échange de chaleur).

Conditions d'interface

Dans de très nombreux problèmes, des interfaces de forme inconnue entre deux fluides (ou entre un fluide et un solide) doivent être considérées. On parle alors de problème à frontière libre. En général, on impose à l'interface la continuité des vitesses, des forces de contact, de la température et du flux de chaleur. A nouveau, les simplifications classiques modifient les conditions d'interface qu'il faut appliquer.

D'autre part, des phénomènes physiques supplémentaires importants peuvent être en jeu. Par exemple, la présence d'effets capillaires modifie les conditions de forces de contact à l'interface de deux fluides, tandis que la chaleur latente de fusion ou d'évaporation doit être prise en compte pour des problèmes de changement de phase solide-liquide ou liquidegaz.

Chapitre 2

Ecoulements incompressibles établis

Un écoulement établi est un écoulement dont le profil transversal de vitesse est le même quelle que soit la section (transversale à l'écoulement) où on mesure ce profil. "Etabli" signifie donc "complètement développé" ("fully developed"). Les écoulements établis ne peuvent donc se rencontrer qu'en écoulement avec section de passage invariable le long de l'écoulement: écoulement entre deux plaques planes séparées par une distance invariable, écoulement en conduite cylindrique de section circulaire invariable, écoulement en conduite cylindrique de section non circulaire (e.g., carré, rectangle, etc.) invariable. Pour la suite, la direction de l'écoulement est la direction x.

A noter que le profil de vitesse pour un écoulement à section invariable n'est pas nécessairement établi: par exemple, si on connecte une très longue conduite de section invariable à la base d'un réservoir rempli d'un fluide, et qu'on laisse le fluide s'écouler par l'autre bout de la conduite, il faudra compter une distance non-négligeable à partir de la sortie du réservoir pour que l'écoulement s'"établisse" (i.e., se développe complètement). Nous y reviendrons plus loin.

En résumé: avoir une section invariable est une condition nécessaire mais non suffisante pour assurer un écoulement établi.

2.1 Ecoulements de Hagen-Poiseuille et de Couette

Ecoulements plans

Considérons l'écoulement bidimensionnel et établi entre deux plaques planes, fixes, et séparées par une distance d=2h (Poiseuille, 1840, d'où le nom d'écoulement de Poiseuille). Le système de coordonnées est centré entre les plaques, avec x la direction de l'écoulement et y la direction perpendiculaire à l'écoulement, voir Fig. 2.1. Comme l'écoulement est établi, on a, par définition, que u=u(y) et donc que $\frac{\partial u}{\partial x}=0$. La continuité implique donc

que $\frac{\partial v}{\partial y} = 0$. L'intégration de cette équation implique que v = v(x) au plus. Comme on a que v = 0 à la paroi, on en conclut, finalement, que v = 0 partout.

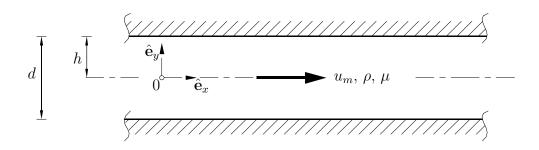


Figure 2.1: Ecoulement établi entre deux plaques.

On considère ensuite les équations de quantité de mouvement. Comme v=0, l'équation en y donne: $\frac{\partial P}{\partial y}=0$. La pression ne dépend donc que de x. De l'équation en x, on obtient:

$$0 = -\frac{dP}{dx} + \nu \frac{d^2u}{dy^2} \,. \tag{2.1}$$

Donc, pour de tels écoulements, les termes non-linéaires de convection s'annulent exactement, et ce indépendamment du nombre de Reynolds. En particulier, le nombre de Reynolds ne doit pas nécessairement être petit.

Comme P = P(x) et u = u(y), on a:

$$\frac{dP}{dx} = \nu \frac{d^2u}{dy^2} = C \tag{2.2}$$

où C est une constante. Cette contante est négative car la pression diminue en x en raison des pertes de charge. Le profil de vitesse est donc finalement obtenu par intégration:

$$u(y) = \left(\frac{dP}{dx}\right) \frac{1}{\nu} \left(\frac{y^2}{2} + C_1 y + C_2\right) . \tag{2.3}$$

Avec la condition que u(-h) = u(h) = 0, on obtient:

$$u(y) = \left(-\frac{dP}{dx}\right) \frac{h^2}{2\nu} \left(1 - \left(\frac{y}{h}\right)^2\right) = \left(-\frac{dp}{dx}\right) \frac{h^2}{2\mu} \left(1 - \left(\frac{y}{h}\right)^2\right). \tag{2.4}$$

Le profil de vitesse est donc parabolique, comme illustré sur la Fig. 2.2. La vitesse maximale est la vitesse au centre:

$$u_c = \left(-\frac{dp}{dx}\right) \frac{h^2}{2\mu} \,. \tag{2.5}$$

Le débit volumique (par unité de profondeur) est aussi facilement obtenu:

$$Q = 2 \int_0^h u(y) \, dy = \frac{2}{3} \left(-\frac{dp}{dx} \right) \, \frac{h^3}{\mu} = \frac{4}{3} \, h \, u_c \,. \tag{2.6}$$

La vitesse de débit est définie comme étant le débit volumique (par unité de profondeur) divisé par la section de passage:

$$u_m = \frac{Q}{2h} = \frac{2}{3} u_c . {2.7}$$

On a donc aussi, pour le profil de vitesses

$$u(y) = \frac{3}{2} u_m \left(1 - \left(\frac{y}{h} \right)^2 \right) . \tag{2.8}$$

La vitesse maximale est égale à 3/2 de la vitesse de débit.

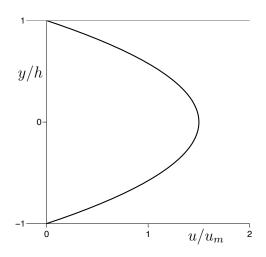


Figure 2.2: Profil de vitesse pour l'écoulement de Poiseuille entre deux plaques.

La contrainte de frottement à la paroi est:

$$\tau_w = \mu \frac{du}{dy}\Big|_{y=-h} = -\mu \frac{du}{dy}\Big|_{y=h} = \left(-\frac{dp}{dx}\right) h = \frac{2\mu u_c}{h} = \frac{3\mu u_m}{h} .$$
(2.9)

Le coefficient adimensionnel de frottement, C_f , est défini comme étant la contrainte de frottement divisée par la pression dynamique (basée sur la vitesse de référence, u_m):

$$C_f = \frac{\tau_w}{\rho u_m^2 / 2} \ . \tag{2.10}$$

On obtient donc:

$$C_f = \frac{6\mu}{\rho h u_m} = \frac{6\nu}{h u_m} = \frac{12}{Re_d}$$
 (2.11)

avec $Re_d = u_m d/\nu$ le nombre de Reynolds de l'écoulement (avec la normalisation classique qui utilise comme vitesse de référence la vitesse de débit, et comme longueur de référence la distance entre les plaques, d = 2h).

On utilise aussi souvent le coefficient de perte de charge, λ , défini par:

$$\left(-\frac{dp}{dx}\right) = \frac{\rho u_m^2}{2} \frac{\lambda}{d} \,. \tag{2.12}$$

En comparant C_f et λ , on obtient immédiatement que

$$\lambda = 2C_f \ . \tag{2.13}$$

Donc, pour les pertes de charge, on a:

$$\lambda = \frac{24}{Re_d} \,. \tag{2.14}$$

Un autre type d'écoulement est l'écoulement de Couette: u(-h) = 0 et u(h) = U, sans gradient de pression. On a alors:

$$\frac{d^2u}{dy^2} = 0. (2.15)$$

Le profil de vitesse est obtenu par intégration, voir Fig. 2.3:

$$u(y) = \frac{U}{2} \left(1 + \frac{y}{h} \right) . \tag{2.16}$$

Finalement, une combinaison linéaire des deux écoulements ci-dessus correspond au cas Poiseuille-Couette combinés: u(-h) = 0 et u(h) = U, avec gradient de pression. Le profil de vitesse est aussi obtenu par combinaison linéaire:

$$u(y) = \left(-\frac{dp}{dx}\right) \frac{h^2}{2\mu} \left(1 - \left(\frac{y}{h}\right)^2\right) + \frac{U}{2} \left(1 + \frac{y}{h}\right) . \tag{2.17}$$

A noter que l'approche par combinaison linéaire est rendue possible par le fait que les termes non-linéaires de convection s'annulent exactement. Les profils de vitesse d'écoulements de type Poiseuille-Couette sont donnés à la Fig. 2.4, en fonction du paramètre adimensionnel $\beta = \left(-\frac{dp}{dx}\right)\frac{h^2}{2\mu U}$. Le cas Couette pur correspond à $\beta = 0$. Pour les écoulements avec pertes de charge $(\beta > 0)$, la vitesse u(y) est toujours supérieure à celle de l'écoulement de Couette. Il n'en va pas de même pour les écoulements avec "gains" de charge $(\beta < 0)$: la vitesse u(y) est alors toujours inférieure à celle de l'écoulement de Couette. En fait, pour $\beta < -1/4$, on a même des vitesses négatives.

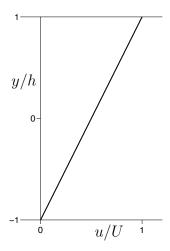


Figure 2.3: Profil de vitesse pour l'écoulement de Couette entre deux plaques.

Ecoulements axisymétriques

Considérons ensuite l'écoulement axisymétrique en conduite cylindrique de section circulaire de diamètre D=2R (Hagen 1839 et Poiseuille, 1840, d'où le nom d'écoulement de Hagen-Poiseuille). Le système de coordonnées est centré, avec x la direction de l'écoulement et r la direction radiale, voir Fig. 2.5. Comme l'écoulement est établi, on a, par définition, que u=u(r) et donc que $\frac{\partial u}{\partial x}=0$. La continuité implique donc que $\frac{\partial v}{\partial r}(r\,v)=0$. L'intégration de cette équation implique que $r\,v=f(x)$ au plus. Comme on a que v=0 à la paroi r=R, on obtient f(x)=0. On conclut donc, finalement, que v=0 partout.

On considère ensuite les équations de quantité de mouvement. Comme v=0, l'équation en r donne: $\frac{\partial P}{\partial r}=0$. La pression ne dépend donc que de x. De l'équation en x, on obtient:

$$0 = -\frac{dP}{dx} + \frac{\nu}{r}\frac{d}{dr}\left(r\frac{du}{dr}\right) . {(2.18)}$$

De nouveau, les termes non-linéaires de convection s'annulent exactement pour de tels écoulements. Le profil de vitesse est obtenu par intégration:

$$u(r) = \left(\frac{dP}{dx}\right) \frac{1}{\nu} \left(\frac{r^2}{4} + C_1 \log r + C_2\right) .$$
 (2.19)

Avec les conditions impliquant que u(R) = 0 et que la solution ne soit pas singulière en r = 0, on obtient:

$$u(r) = \left(-\frac{dP}{dx}\right) \frac{R^2}{4\nu} \left(1 - \left(\frac{r}{R}\right)^2\right) = \left(-\frac{dp}{dx}\right) \frac{h^2}{4\mu} \left(1 - \left(\frac{r}{R}\right)^2\right) . \tag{2.20}$$

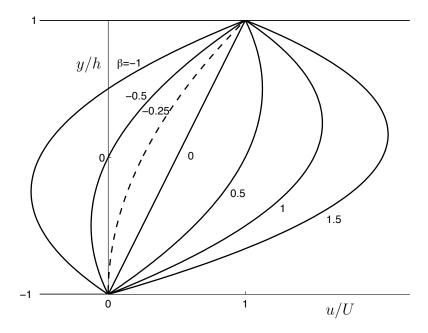


Figure 2.4: Profils de vitesse pour les écoulements de Poiseuille-Couette entre deux plaques.

Le profil de vitesse est donc de nouveau parabolique. La vitesse maximale est au centre:

$$u_c = \left(-\frac{dp}{dx}\right) \frac{R^2}{4\mu} \ . \tag{2.21}$$

Le débit est obtenu par intégration du profil de vitesse, avec $dA = dr \, r d\theta$:

$$Q = \int_{A} u(r)dA = \int_{0}^{2\pi} d\theta \int_{0}^{R} u(r) r dr = \left(-\frac{dp}{dx}\right) \frac{\pi R^{4}}{8\mu} = \frac{\pi R^{2} u_{c}}{2}.$$
 (2.22)

La vitesse de débit est donc:

$$u_m = \frac{Q}{A} = \frac{Q}{\pi R^2} = \frac{u_c}{2} \,, \tag{2.23}$$

et on a aussi:

$$u(r) = 2 u_m \left(1 - \left(\frac{r}{R}\right)^2 \right) . \tag{2.24}$$

La vitesse maximale est donc égale à deux fois la vitesse de débit.

La contrainte de frottement à la paroi est:

$$\tau_w = -\mu \frac{du}{dr}\Big|_{r=R} = \left(-\frac{dp}{dx}\right) \frac{R}{2} = \frac{2\mu u_c}{R} = \frac{4\mu u_m}{R},$$
(2.25)

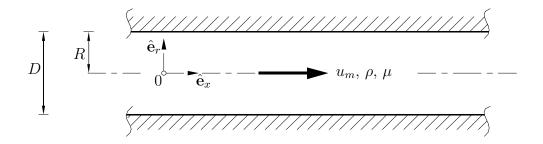


Figure 2.5: Ecoulement établi en conduite circulaire.

ce qui donne, pour le coefficient de frottement:

$$C_f = \frac{\tau_w}{\rho u_m^2 / 2} = \frac{8\mu}{\rho R u_m} = \frac{8\nu}{R u_m} = \frac{16}{R e_D}$$
 (2.26)

avec $Re_D = u_m D/\nu$ le nombre de Reynolds de l'écoulement qui est ici basé sur la vitesse de débit et sur le diamètre de la conduite. Le coefficient de perte de charge est ici défini par:

$$\left(-\frac{dp}{dx}\right) = \frac{\rho u_m^2}{2} \frac{\lambda}{D} \,.$$
(2.27)

En comparant C_f et λ , on obtient immédiatement que

$$\lambda = 4 C_f . (2.28)$$

Finalement, pour les pertes de charge en conduites circulaires, on a:

$$\lambda = \frac{64}{Re_D} \ . \tag{2.29}$$

A noter que le cas des écoulements entre deux cylindres concentriques de diamètres D_i ("inner diameter") et D ("outer diameter") est aussi facilement obtenu: il suffit de déterminer les constantes d'intégration du profil de vitesse, C_1 et C_2 , afin de satisfaire les conditions aux limites: $u(R_i) = u(R) = 0$. Il s'agit là encore d'écoulements de type Hagen-Poiseuille, voir Fig. 2.7.

Finalement, on peut même considérer le cas où il y a une vitesse relative de translation entre les deux cylindres: soit Couette (sans gradient de pression), voir Fig. 2.8, soit même Hagen-Poiseuille et Couette combinés (avec gradient de pression).

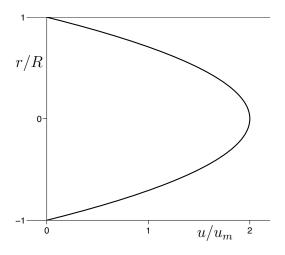


Figure 2.6: Profil de vitesse pour l'écoulement de Hagen-Poiseuille en conduite circulaire.

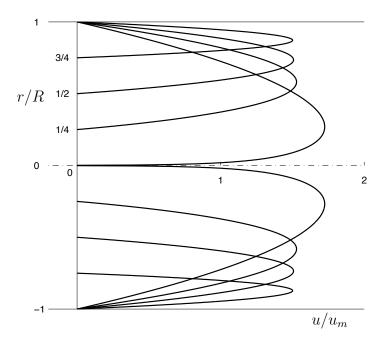


Figure 2.7: Profils de vitesse pour l'écoulement de Hagen-Poiseuille en conduite circulaire avec cylindre interne. Cas $D_i/D=0$, 1/4, 1/2 et 3/4.

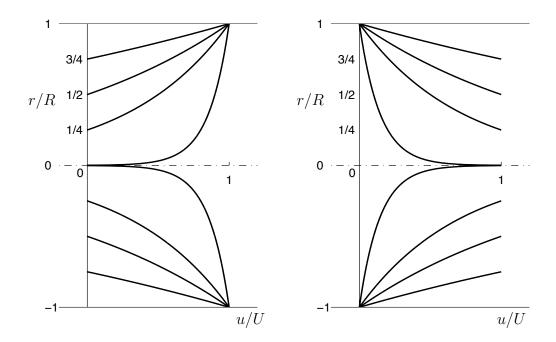


Figure 2.8: Profils de vitesse pour l'écoulement de Couette en conduite circulaire avec cylindre interne. Cas $D_i/D=0$, 1/4, 1/2 et 3/4. Gauche: cas avec cylindre intérieur fixe et cylindre extérieur mobile. Droite: cas avec cylindre intérieur mobile et cylindre extérieur fixe.

2.2 Ecoulements instationnaires

2.2.1 Démarrage brusque de l'écoulement dans une conduite

Pour un écoulement établi mais instationnaire en conduite, on a avec u = u(r,t):

$$\frac{\partial u}{\partial t} = -\frac{dP}{dx} + \nu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) . \tag{2.30}$$

Considérons tout d'abord le problème du démarrage brusque de l'écoulement dans une conduite: pour t < 0, il n'y a pas de gradient de pression imposé à la conduite, et donc pas d'écoulement u(r,t<0)=0. Pour t>0, un gradient de pression constant est imposé à la conduite. Un écoulement "démarre" donc au sein de celle-ci en $t=0_+$, tout en respectant la condition de non-glissement à la paroi: u(R,t)=0. Clairement, il s'agit d'un problème aux conditions initiale et limite bien posé. On sait que, pour $t\to\infty$, l'écoulement tendra vers l'écoulement de Poiseuille, $u=u(r)=u_c\left(1-\left(\frac{r}{R}\right)^2\right)$ avec $u_c=2\,u_m=-\left(\frac{dP}{dx}\right)\,\frac{R^2}{4\nu}$, écoulement qui satisfait l'équation,

$$0 = -\frac{dP}{dx} + \nu \frac{1}{r} \frac{d}{dr} \left(r \frac{du}{dr} \right) , \qquad (2.31)$$

ainsi que la condition limite de non-glissement à la paroi. Par soustraction des équations ci-dessus, on obtient l'équation pour la fonction "différence entre $u(r,t\to\infty)$ et u(r,t)". Appelons cette fonction $\tilde{u}(r,t)$. On a donc que $\tilde{u}(r,t)$ satisfait

$$\frac{\partial \tilde{u}}{\partial t} = \nu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \tilde{u}}{\partial r} \right) , \qquad (2.32)$$

avec, comme condition initiale, $\tilde{u}(r,0) = u_c \left(1 - \left(\frac{r}{R}\right)^2\right)$ et, comme condition limite, $\tilde{u}(R,t) = 0$. Comme dans le problème de l'entrée thermique (Grätz), on travaille en variables adimensionnelles en définissant:

$$\tilde{u}^* = \frac{\tilde{u}}{u_c}, \qquad \eta = \frac{r}{R}, \qquad \zeta = \frac{\nu t}{R^2},$$

$$(2.33)$$

ce qui donne

$$\frac{\partial \tilde{u}^*}{\partial \zeta} = \frac{1}{\eta} \frac{\partial}{\partial \eta} \left(\eta \frac{\partial \tilde{u}^*}{\partial \eta} \right) , \qquad (2.34)$$

avec $\tilde{u}^*(\eta,0) = (1-\eta^2)$ et $\tilde{u}^*(1,\zeta) = 0$. Le problème est clairement séparable: $\tilde{u}^* = f(\eta) g(\zeta)$, ce qui donne:

$$f\frac{dg}{d\zeta} = \frac{1}{\eta}\frac{d}{d\eta}\left(\eta\frac{df}{d\eta}\right)g, \qquad (2.35)$$

et donc:

$$\frac{1}{g}\frac{dg}{d\zeta} = \frac{1}{\eta f}\frac{d}{d\eta}\left(\eta \frac{df}{d\eta}\right) = -\lambda^2, \qquad (2.36)$$

ou encore:

$$\frac{dg}{d\zeta} + \lambda^2 g = 0 , (2.37)$$

$$\eta \frac{d^2 f}{d\eta^2} + \frac{df}{d\eta} + \lambda^2 \eta f = 0.$$
(2.38)

La fonction g est donc de la forme $g = C e^{-\lambda^2 \zeta}$, et la solution du problème est construite comme:

$$\tilde{u}^* = \sum_{n=1}^{\infty} C_n f_n(\eta) e^{-\lambda_n^2 \zeta}$$
(2.39)

avec

$$\eta^2 \frac{d^2 f_n}{d\eta^2} + \eta \frac{df_n}{d\eta} + \lambda_n^2 \eta^2 f_n = 0 , \qquad (2.40)$$

l'équation de Bessel d'ordre 0 dont les solutions sont $J_0(\lambda_n \eta)$ et $Y_0(\lambda_n \eta)$. Cette dernière étant non bornée à l'origine est donc à rejeter. La solution du problème s'exprime donc sous la forme:

$$\tilde{u}^*(\eta,\zeta) = \sum_{n=1}^{\infty} C_n J_0(\lambda_n \eta) e^{-\lambda_n^2 \zeta}.$$
(2.41)

L'imposition de la condition à la limite, $\tilde{u}^*(1,\zeta) = 0$, implique que les λ_n (i.e., les valeurs propres) sont les zéros successifs de la fonction de Bessel J_0 . L'imposition de la condition initiale, $\tilde{u}^*(\eta,0) = (1-\eta^2)$ demande que

$$(1 - \eta^2) = \sum_{n=1}^{\infty} C_n J_0(\lambda_n \eta) , \qquad (2.42)$$

ce qui, par l'orthogonalité des fonctions de Bessel, permet de déterminer les C_n . En multipliant Eq. (2.42) par $\eta J_0(\lambda_m \eta)$ et en intégrant, on obtient donc:

$$\int_0^1 \eta \, \left(1 - \eta^2\right) \, J_0(\lambda_m \, \eta) \, d\eta = \sum_{n=1}^\infty C_n \, \int_0^1 \eta \, J_0(\lambda_m \, \eta) \, J_0(\lambda_n \, \eta) \, d\eta = C_m \, \frac{1}{2} \, \left(J_1(\lambda_m)\right)^2 \, . \tag{2.43}$$

Comme $\int s J_0(s) ds = s J_1(s)$, et que $\int s^3 J_0(s) ds = s^3 J_1(s) + 2 s^2 J_0(s) - 4 \int s J_0(s) ds$, on obtient finalement que

$$\int_{0}^{1} \eta \left(1 - \eta^{2}\right) J_{0}(\lambda_{m} \eta) d\eta =
\frac{1}{\lambda_{m}} \left[\eta \left(1 - \eta^{2}\right) J_{1}(\lambda_{m} \eta)\right]_{0}^{1} - \frac{2}{\lambda_{m}^{2}} \left[\eta^{2} J_{0}(\lambda_{m} \eta)\right]_{0}^{1} + \frac{4}{\lambda_{m}^{3}} \left[\eta J_{1}(\lambda_{m} \eta)\right]_{0}^{1}
= \frac{4}{\lambda_{m}^{3}} J_{1}(\lambda_{m}).$$
(2.44)

On a donc, pour le coefficient C_m :

$$C_m = \frac{8}{\lambda_m^3 J_1(\lambda_m)} \,. \tag{2.45}$$

Finalement, la solution est:

$$\tilde{u}^*(\eta,\zeta) = 8 \sum_{n=1}^{\infty} \frac{J_0(\lambda_n \eta)}{\lambda_n^3 J_1(\lambda_n)} e^{-\lambda_n^2 \zeta} , \qquad (2.46)$$

et donc

$$\frac{u}{u_c} = (1 - \eta^2) - 8 \sum_{n=1}^{\infty} \frac{J_0(\lambda_n \eta)}{\lambda_n^3 J_1(\lambda_n)} e^{-\lambda_n^2 \zeta},$$

$$= \left(1 - \left(\frac{r}{R}\right)^2\right) - 8 \sum_{n=1}^{\infty} \frac{J_0(\lambda_n \frac{r}{R})}{\lambda_n^3 J_1(\lambda_n)} \exp\left(-\lambda_n^2 \frac{\nu t}{R^2}\right). \tag{2.47}$$

L'établissement du profil de vitesse est donné à la Fig. 2.9.

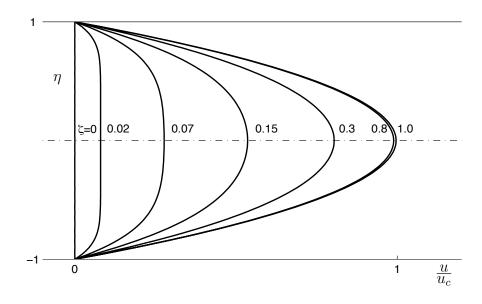


Figure 2.9: Démarrage brusque d'un écoulement de Poiseuille en conduite circulaire: développement du profil de vitesse.

Combien de temps faut-il pour établir un tel écoulement? Le temps caractéristique d'établissement est essentiellement déterminé par le terme exponentiel qui décroît le moins rapidement: $e^{-\lambda_1^2 \zeta}$. On a donc, comme estimation du temps caractéristique de développement (pour passer de 1 à e^{-1} dans le facteur exponentiel dominant),

$$\zeta_c \approx \frac{1}{\lambda_1^2} = 0.173 \ . \tag{2.48}$$

Plus précisément, examinons la vitesse au centre de la conduite:

$$\frac{u}{u_c}(0,\zeta) = 1 - 8\sum_{n=1}^{\infty} \frac{1}{\lambda_n^3 J_1(\lambda_n)} e^{-\lambda_n^2 \zeta} . \tag{2.49}$$

Pour $\zeta > \zeta_c$, cela donne

$$\frac{u}{u_c}(0,\zeta > \zeta_c) \approx 1 - \frac{8}{\lambda_1^3 J_1(\lambda_1)} e^{-\lambda_1^2 \zeta} = 1 - 1.108 e^{-5.783 \zeta} . \tag{2.50}$$

Par exemple, le temps de développement tel que la vitesse au centre de la conduite soit égale à 99% de la vitesse maximum, est

$$\zeta_{c,0.99} = \frac{\nu \, t_{c,99}}{R^2} \approx 0.814 \,,$$
(2.51)

estimation qui est effectivement confirmée par la Fig. 2.9. Celui tel que la vitesse soit égale à 95% de la vitesse maximum est

$$\zeta_{c,0.95} = \frac{\nu \, t_{c,95}}{R^2} \approx 0.536 \,.$$
(2.52)

Il y a manifestement un certain parallèle entre l'écoulement établi et instationnaire correspondant à un démarrage brusque en conduite, et celui de la zone d'entrée pour l'établissement d'un écoulement stationnaire en conduite. En effet, on constate que, pour chaque problème, il y a développement (temporel ou spatial, selon le cas) d'une couche limite qui émane de la paroi, diffuse, et éventuellement occupe toute la section de la conduite pour former ainsi l'écoulement de Poiseuille. Il y a cependant aussi des différences notables. Dans le cas du développement spatial, le profil de vitesse passe de l'écoulement bouchon, $u(r) = u_m$, à l'écoulement de Poiseuille, $u(r) = 2 u_m \left(1 - \left(\frac{r}{R}\right)^2\right)$. Dans le cas du développement temporel, il passe de u(r) = 0 à Poiseuille. Dans le cas spatial, la vitesse au centre passe donc de $u_c = u_m$ à $u_c = 2 u_m$, tandis que, dans le cas temporel, elle passe de $u_c = 0$ à $u_c = 2 u_m$. Quoi qu'il en soit, l'analogie espace-temps est évidente, même si elle est imparfaite. En "remplacant" t_c par x_c/u_m dans le résultat ci-dessus, on obtient une estimation de la longeur de développement pour le cas spatial:

$$\frac{x_c}{u_m} \frac{\nu}{R^2} \approx t_c \frac{\nu}{R^2} = \zeta_c \,, \tag{2.53}$$

et donc

$$4\frac{x_c}{D}\frac{\nu}{u_mD} \approx \zeta_c \quad \iff \quad \frac{x_c}{D} \approx \frac{\zeta_c}{4}Re_D \approx 0.2Re_D \ .$$
 (2.54)

Bien sûr, puisque l'analogie n'est pas parfaite, on ne peut pas utiliser de chiffre précis. On a ici proposé 0.20 comme estimation acceptable. De toute façon, cela dépend aussi de la valeur de x_c : est-ce $x_{c,0.95}$, où plutôt $x_{c,0.99}$?... Quoi qu'il en soit, on a établi ici un résultat encore plus précis que celui obtenu par l'analyse dimensionnelle: i.e., que la fonction $f(Re_D)$ pour la longueur d'établissement d'un écoulement laminaire en conduite est simplement de la forme CRe_D , et que le coefficient de proportionalité, C, est proche de 0.2.

Notons, en passant, que la longueur d'établissement d'un écoulement de Poiseuille peut être considérable. Par exemple, pour établir un écoulement à $Re_D = 1000$, il faudra compter environ 200 diamètres! Tout ceci, bien sûr, n'est valable que pour les écoulements laminaires. Pour les écoulements turbulents, la loi de variation sera différente.

2.2.2 Ecoulement cyclique avec gradient de pression oscillant

Considérons ensuite le cas où le gradient de pression imposé est oscillant:

$$-\frac{dP}{dx} = -\frac{dP}{dx}\Big|_{0} \cos(\omega t) = -\frac{dP}{dx}\Big|_{0} e^{i\omega t}$$
 (2.55)

avec ω la fréquence circulaire d'excitation (en radians par seconde) et $-\frac{dP}{dx}\big|_0 > 0$ l'amplitude du gradient de pression imposé. Il est bien entendu que l'on considère uniquement la partie réelle de $e^{i\,\omega\,t}$.

La vitesse de référence est, naturellement, la vitesse maximale de l'écoulement de Poiseuille, $u_c = -\frac{dP}{dx}\Big|_0 \frac{R^2}{4\nu}$. Eq. (2.30) devient donc:

$$\frac{\partial u}{\partial t} = \frac{4\nu}{R^2} u_c e^{i\omega t} + \nu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) . \tag{2.56}$$

Les variables adimensionnelles à utiliser sont:

$$u^* = \frac{u}{u_c}, \qquad \eta = \frac{r}{R}, \qquad \omega^* = \frac{\omega R^2}{\nu}, \qquad \zeta = \frac{t \nu}{R^2}.$$
 (2.57)

A noter que $\omega t = \omega^* \zeta$. On cherche donc une solution de la forme

$$u^* = f(\eta) e^{i\omega t} = f(\eta) e^{i\omega^* \zeta} . \tag{2.58}$$

On obtient alors:

$$\frac{\partial u}{\partial t} = u_c f i \omega e^{i\omega t} = \frac{\nu}{R^2} u_c f i \omega^* e^{i\omega^* \zeta} ,$$

$$\nu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) = \frac{\nu}{R^2} u_c \left(\frac{d^2 f}{d\eta^2} + \frac{1}{\eta} \frac{df}{d\eta} \right) e^{i\omega^* \zeta} ,$$
(2.59)

ce qui mène à l'équation différentielle non-homogène suivante:

$$\eta^2 \frac{d^2 f}{d\eta^2} + \eta \frac{df}{d\eta} - i \omega^* f \eta^2 = -4 \eta^2.$$
 (2.60)

Une solution particulière de l'équation non-homogène est

$$f_p(\eta) = \frac{4}{i\,\omega^*} \,. \tag{2.61}$$

L'équation homogène est l'équation de Bessel d'ordre 0 dont la solution (régulière) est

$$f_h(\eta) = C J_0 \left(\sqrt{-i \,\omega^*} \,\eta \right) . \tag{2.62}$$

La solution génerale de l'équation non-homogène est donc:

$$f(\eta) = \frac{4}{i\,\omega^*} + C\,J_0\left(\sqrt{-i\,\omega^*}\,\eta\right) \ . \tag{2.63}$$

L'imposition de la condition limite de vitesse nulle à la paroi, f(1) = 0, fournit la constante C. Finalement, la solution est

$$f(\eta) = \frac{4}{i\,\omega^*} \left(1 - \frac{J_0\left(\sqrt{-i\,\omega^*}\,\eta\right)}{J_0\left(\sqrt{-i\,\omega^*}\right)} \right) . \tag{2.64}$$

Comme $-i=e^{i\,3\pi/2}$, on a que $\sqrt{-i}=e^{i\,3\pi/4}$. La solution finale s'écrit:

$$\frac{u}{u_c} = \Re \left\{ \frac{4}{i\,\omega^*} \left(1 - \frac{J_0\left(e^{i\,3\pi/4}\,\sqrt{\omega^*}\,\eta\right)}{J_0\left(e^{i\,3\pi/4}\,\sqrt{\omega^*}\right)} \right) \,e^{i\,\omega^*\,\zeta} \right\} \,. \tag{2.65}$$

La fonction complexe $J_0\left(e^{i3\pi/4}s\right)$ avec s réel ≥ 0 a un nom en mathématique: sa partie réelle s'appelle la fonction Ber(s) (avec Ber(0) = 1), et sa partie imaginaire s'appelle la fonction Bei(s) (avec Bei(0) = 0):

$$J_0\left(e^{i\,3\pi/4}\,s\right) = Ber(s) + i\,Bei(s)$$
 (2.66)

On a donc, comme solution:

$$\frac{u}{u_c} = \Re \left\{ \frac{4}{i\,\omega^*} \left(1 - \frac{Ber\left(\sqrt{\omega^*}\,\eta\right) + i\,Bei\left(\sqrt{\omega^*}\,\eta\right)}{Ber\left(\sqrt{\omega^*}\right) + i\,Bei\left(\sqrt{\omega^*}\right)} \right) e^{i\,\omega^*\,\zeta} \right\} \,. \tag{2.67}$$

Cette solution est générale et valable pour toutes les fréquences d'excitation. Les cas de forçages lent et rapide sont des cas particuliers intéressants.

En forçage lent, on considère que $\sqrt{\omega^*} \eta$ est petit. Comme on a que $0 \le \eta \le 1$, une condition suffisante est que $\sqrt{\omega^*}$ soit petit. La série de Taylor est alors:

$$J_0\left(e^{i\,3\pi/4}\,s\right) = Ber(s) + i\,Bei(s) = 1 + i\,\frac{s^2}{4} - \frac{s^4}{64} + \dots\,\,\,\,(2.68)$$

et on obtient:

$$\frac{J_0\left(e^{i\,3\pi/4}\,\sqrt{\omega^*\,\eta}\right)}{J_0\left(e^{i\,3\pi/4}\,\sqrt{\omega^*}\right)} = \frac{1+i\,\frac{\omega^*\eta^2}{4} - \frac{\omega^{*2}\eta^4}{64} + \dots}{1+i\,\frac{\omega^*}{4} - \frac{\omega^{*2}}{64} + \dots}$$

$$= 1-i\,\frac{\omega^*}{4}\left(1-\eta^2\right) + \frac{\omega^{*2}}{64}\left(\eta^4 - 4\,\eta^2 + 3\right) + \mathcal{O}\left(\omega^{*2}\right) . \quad (2.69)$$

Cela donne finalement:

$$\frac{u}{u_c} = \Re\left\{ \left(\left(1 - \eta^2 \right) - i \frac{\omega^*}{16} \left(\eta^4 - 4 \eta^2 + 3 \right) \right) e^{i \omega^* \zeta} \right\}
= \left(1 - \eta^2 \right) \cos(\omega^* \zeta) + \frac{\omega^*}{16} \left(\eta^4 - 4 \eta^2 + 3 \right) \sin(\omega^* \zeta) + \mathcal{O}\left(\omega^{*2}\right) .$$
(2.70)

Cette formule est uniformémement valable (i.e., valable pour tous les η) tant que ω^* reste faible. On constate donc, qu'à faible ω^* , l'écoulement est essentiellement un écoulement

de Poiseuille en phase avec le gradient de pression imposé. Ceci est tout à fait logique: le gradient de pression de forçage variant lentement, l'écoulement à le temps de "suivre" sa variation et d'être en équilibre quasi-statique avec celui-ci. Le terme additionnel, proportionnel à ω^* et donc d'autant plus petit que ω^* est faible, est un terme de déphasage de $\pi/2$ (i.e., de 90 deg). En début de cycle ($\omega^* \zeta = 0$), le profil de vitesse est le profil de Poiseuille correspondant au gradient de pression, voir Fig. 2.10. En quart de cycle ($\omega^* \zeta = \pi/2$), le profil de vitesse n'est pas nul bien que le gradient de pression le soit, voir Fig. 2.10. On a donc un retard entre le profil de vitesse et le gradient de pression. En milieu de cycle ($\omega^* \zeta = \pi$), le profil de vitesse est, de nouveau, le profil de Poiseuille en phase avec le gradient de pression. On a donc "récupéré" le retard. Par exemple, au centre de la conduite, on a que

$$\frac{u(0)}{u_c} = \cos\left(\omega^* \zeta\right) + \frac{3\omega^*}{16} \sin\left(\omega^* \zeta\right) + \mathcal{O}\left(\omega^{*2}\right) , \qquad (2.71)$$

et on constate bien que cette vitesse ne suit pas parfaitement la variation du gradient de pression.

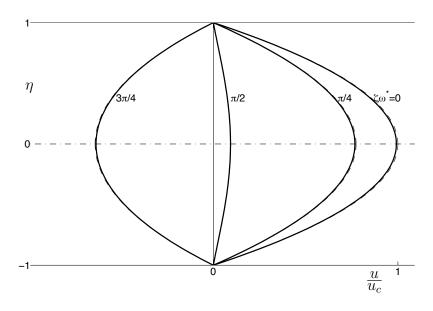


Figure 2.10: Ecoulement cyclique en conduite circulaire: cas d'un forçage lent avec $\omega^*=1/2$. Solution exacte (trait plein) et solution approchée (trait interrompu).

En forçage rapide, on considère que $\sqrt{\omega^*} \eta$ est grand, et ce pour tous les η . Clairement, le centre de la conduite, $\eta=0$, doit être exclu d'une telle analyse. La solution obtenue ne sera pas uniformément valide. On utilise ici l'expansion asymptotique de $J_0(z)$ valable pour de grande valeurs de |z| avec $\arg(z) < \pi$:

$$J_0(z) = \sqrt{\frac{2\pi}{z}} \cos\left(z - \frac{\pi}{4}\right) + \dots \tag{2.72}$$

On a donc:

$$J_{0}\left(e^{i3\pi/4}s\right) = Ber(s) + i Bei(s)$$

$$\approx e^{-i3\pi/8} \sqrt{\frac{2\pi}{s}} \cos\left(e^{i3\pi/4}s - \frac{\pi}{4}\right)$$

$$= e^{-i3\pi/8} \sqrt{\frac{2\pi}{s}} \cos\left(i\frac{s}{\sqrt{2}} - \left(\frac{s}{\sqrt{2}} + \frac{\pi}{4}\right)\right)$$

$$= e^{-i3\pi/8} \sqrt{\frac{2\pi}{s}} \left[\cos\left(i\frac{s}{\sqrt{2}}\right) \cos\left(\frac{s}{\sqrt{2}} + \frac{\pi}{4}\right) + \sin\left(i\frac{s}{\sqrt{2}}\right) \sin\left(\frac{s}{\sqrt{2}} + \frac{\pi}{4}\right)\right]$$

$$= e^{-i3\pi/8} \sqrt{\frac{2\pi}{s}} \left[\cosh\left(\frac{s}{\sqrt{2}}\right) \cos\left(\frac{s}{\sqrt{2}} + \frac{\pi}{4}\right) + i \sinh\left(\frac{s}{\sqrt{2}}\right) \sin\left(\frac{s}{\sqrt{2}} + \frac{\pi}{4}\right)\right]$$

$$\approx e^{-i3\pi/8} \sqrt{\frac{2\pi}{s}} \frac{1}{2} e^{\frac{s}{\sqrt{2}}} \left[\cos\left(\frac{s}{\sqrt{2}} + \frac{\pi}{4}\right) + i \sin\left(\frac{s}{\sqrt{2}} + \frac{\pi}{4}\right)\right]$$

$$= e^{-i3\pi/8} \sqrt{\frac{\pi}{s}} e^{\frac{s}{\sqrt{2}}} e^{i\left(\frac{s}{\sqrt{2}} + \frac{\pi}{4}\right)},$$
(2.73)

ce qui mène à:

$$\frac{J_0\left(e^{i\,3\pi/4}\,\sqrt{\omega^*}\,\eta\right)}{J_0\left(e^{i\,3\pi/4}\,\sqrt{\omega^*}\,\right)} \approx \frac{1}{\sqrt{\eta}}\,e^{-\sqrt{\frac{\omega^*}{2}}(1-\eta)}\,e^{-i\sqrt{\frac{\omega^*}{2}}(1-\eta)}\,\,,\tag{2.74}$$

et finalement au résultat asymptotique suivant:

$$\frac{u}{u_c} = \Re\left\{\frac{4}{i\,\omega^*} \left(\frac{1}{\sqrt{\eta}} e^{-\sqrt{\frac{\omega^*}{2}}(1-\eta)} e^{-i\sqrt{\frac{\omega^*}{2}}(1-\eta)}\right) e^{i\,\omega^*\,\zeta}\right\}$$

$$= \frac{4}{\omega^*} \left[\sin\left(\omega^*\,\zeta\right) - \frac{1}{\sqrt{\eta}} e^{-\sqrt{\frac{\omega^*}{2}}(1-\eta)} \sin\left(\omega^*\,\zeta - \sqrt{\frac{\omega^*}{2}}(1-\eta)\right)\right] + \mathcal{O}\left(\frac{1}{\omega^{*2}}\right) (2.75)$$

résultat qui n'est pas uniformément valable: il nécéssite que $\sqrt{\omega^*} \eta$ soit suffisamment grand. L'écoulement est essentiellement en déphasage de $\pi/2$ (i.e., de 90 deg) par rapport au gradient de pression, voir Fig. 2.11: c'est en $\omega^* \zeta = \pi/2$ (i.e., lorsque le gradient de pression est nul) que le profil de vitesse est le plus "plein". En début de cycle, on observe une zone de grande vitesse près de la paroi (i.e., plus grande que la vitesse au centre). La dynamique de cet écoulement est donc fort compliquée.

2.2.3 Démarrage brusque d'une plaque

Considérons un écoulement instationnaire le long d'une plaque plane: u=u(y,t). Comme une plaque ne borne l'écoulement que d'un côté (l'autre "côté" étant à l'infini), il n'y a pas de gradient de pression latéral pour un écoulement établi le long d'une plaque. On a alors simplement que:

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial y^2} \,. \tag{2.76}$$

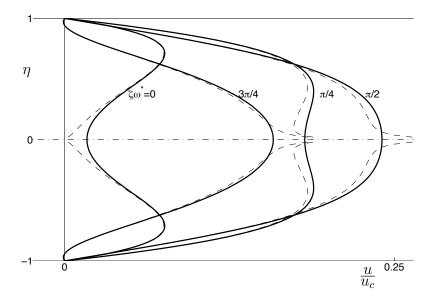


Figure 2.11: Ecoulement cyclique en conduite circulaire: cas d'un forcage rapide avec $\omega^*=20$. Solution exacte (trait plein) et solution approchée (trait interrompu).

Cette équation est l'équation classique de diffusion.

Considérons tout d'abord le problème du démarrage brusque d'une plaque: pour t < 0, il n'y a pas de vitesse de plaque, et donc pas d'écoulement u(y, t < 0) = 0. Pour t > 0, une vitesse de plaque constante, U, est imposée. Un écoulement "démarre" donc au sein du fluide en $t = 0_+$, et ce afin de respecter la condition de non-glissement à la paroi: u(0, t > 0) = U. Clairement, il s'agit d'un problème aux conditions initiale et limite bien posé. L'analyse dimensionnelle nous fournit la variable de similitude à utiliser: $\eta = \frac{y}{\sqrt{\nu t}}$. En fait, l'algèbre est un peu plus facile si on utilise plutôt $\eta = \frac{y}{2\sqrt{\nu t}}$. On considère donc:

$$\frac{u}{U} = f\left(\frac{y}{2\sqrt{\nu t}}\right) = f(\eta) . \tag{2.77}$$

Cela donne

$$\frac{\partial u}{\partial t} = U \frac{df}{d\eta} \frac{\partial \eta}{\partial t} = -U \frac{df}{d\eta} \eta \frac{1}{2t} ,$$

$$\frac{\partial u}{\partial y} = U \frac{df}{d\eta} \frac{\partial \eta}{\partial y} = U \frac{df}{d\eta} \frac{1}{2\sqrt{\nu t}} ,$$

$$\frac{\partial^2 u}{\partial y^2} = U \frac{d^2 f}{d\eta^2} \frac{1}{4\nu t} .$$
(2.78)

On obtient donc l'équation différentielle suivante:

$$\frac{d^2f}{d\eta^2} + 2\eta \, \frac{df}{d\eta} = 0 \ . \tag{2.79}$$

Intégrée une première fois, elle donne:

$$\frac{df}{d\eta} = C e^{-\eta^2} . ag{2.80}$$

Intégrée une deuxième fois, elle donne:

$$f(\eta) = C \int_0^{\eta} e^{-\eta'^2} d\eta' + D.$$
 (2.81)

La condition f(0) = 1 donne D = 1. La condition $\lim_{\eta \to \infty} f(\eta) = 0$ donne $C \frac{\sqrt{\pi}}{2} + 1 = 0$. On a donc la solution:

$$\frac{u}{U} = 1 - \frac{2}{\sqrt{\pi}} \int_0^{\eta} e^{-\eta'^2} d\eta' = 1 - \text{erf}(\eta) = \text{erfc}(\eta) , \qquad (2.82)$$

avec erf la fonction erreur et erfc la fonction erreur complémentaire. Le développement du champ de vitesse est montré à la Fig. 2.12.

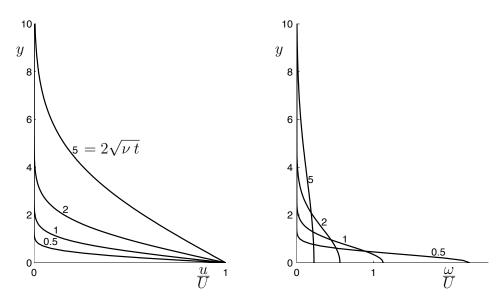


Figure 2.12: Démarrage brusque d'une plaque: développement des profils de vitesse et de tourbillon.

Le tourbillon est aussi facilement obtenu:

$$\omega = -\frac{\partial u}{\partial y} = U \frac{2}{\sqrt{\pi}} e^{-\eta^2} \frac{1}{2\sqrt{\nu t}} = \frac{U}{\sqrt{\pi \nu t}} e^{\frac{-y^2}{4\nu t}}.$$
 (2.83)

Son graphe est aussi donné à la Fig. 2.12. En fait, au temps $t=0_+$, une feuille tourbillon infiniment mince (i.e., un Dirac de tourbillon) a été déposée sur la surface de la plaque. Elle diffuse ensuite dans le fluide, et la valeur du tourbillon à la paroi diminue en fonction du temps. L'intégrale du tourbillon reste cependant conservée et égale à U. En effet:

$$\int_0^\infty \omega \, dy = -\int_0^\infty \frac{\partial u}{\partial y} \, dy = -\left[u(y)\right]_0^\infty = U \,. \tag{2.84}$$

2.2.4 Plaque oscillante

Dans le cas d'une plaque oscillante, la vitesse de la plaque est

$$U\cos(\omega t) = \Re\left\{U e^{i\omega t}\right\}. \tag{2.85}$$

Par analyse dimensionnelle, on détermine que la variable est $\eta = y \sqrt{\frac{\omega}{\nu}}$. On considère donc:

$$\frac{u}{U} = \Re\left\{f(\eta) e^{i\omega t}\right\} , \qquad (2.86)$$

ce qui donne

$$\frac{\partial u}{\partial t} = U f i \omega e^{i\omega t},$$

$$\frac{\partial u}{\partial y} = U \frac{df}{d\eta} \sqrt{\frac{\omega}{\nu}} e^{i\omega t},$$

$$\frac{\partial^2 u}{\partial y^2} = U \frac{d^2 f}{d\eta^2} \frac{\omega}{\nu} e^{i\omega t},$$
(2.87)

où on a négligé de préciser qu'on doit considérer la partie réelle des fonctions ci-dessus: on s'en souviendra à la fin. On obtient donc l'équation différentielle suivante:

$$\frac{d^2f}{d\eta^2} - if = 0. (2.88)$$

Les solutions sont de la forme $C e^{\lambda \eta}$. Le polynôme caractéristique est ici $\lambda^2 - i = 0$, c.-à.-d. $\lambda^2 = i = e^{i\frac{\pi}{2}} = e^{i\frac{5\pi}{2}}$, et donc $\lambda_1 = e^{i\frac{\pi}{4}} = \frac{1}{\sqrt{2}}(1+i)$ et $\lambda_2 = e^{i\frac{5\pi}{4}} = -\frac{1}{\sqrt{2}}(1+i)$. Ici, la solution doit décroître lorsque $\eta \to \infty$. On doit donc exclure la solution de la forme $C e^{\lambda_1 \eta}$. On a donc:

$$\frac{u}{U} = \Re \left\{ C e^{-\frac{1}{\sqrt{2}}(1+i)\eta} e^{i\omega t} \right\} . \tag{2.89}$$

La condition de non-glissement en $\eta = 0$ détermine que C = 1. Finalement, on obtient:

$$\frac{u}{U} = e^{-\frac{\eta}{\sqrt{2}}} \cos\left(\omega t - \frac{\eta}{\sqrt{2}}\right) = e^{-y\sqrt{\frac{\omega}{2\nu}}} \cos\left(\omega t - y\sqrt{\frac{\omega}{2\nu}}\right). \tag{2.90}$$

L'amplitude de la vitesse décroît de manière exponentielle. De plus, elle est déphasée par rapport à la vitesse de la plaque, l'angle de déphasage ϕ étant proportionnel à la distance à la plaque: $\phi = y \sqrt{\frac{\omega}{2\nu}}$, voir Fig. 2.13. Par exemple, la vitesse en $y = \sqrt{\frac{2\nu}{\omega}} \pi$ est déphasée de π (i.e., de 180 deg) par rapport à la vitesse de la plaque.

2.3 Zone d'entrée et longueur d'établissement

Comme nous l'avons déjà noté précédemment, le profil de vitesse pour un écoulement à section invariable n'est pas nécessairement établi. Nous considérons ici une longue

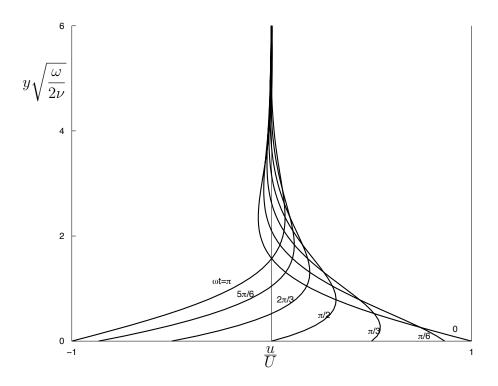


Figure 2.13: Oscillation d'une plaque: profils de vitesse.

conduite de section constante connectée à un grand réservoir, voir Fig. 2.14. A l'entrée de la conduite, x=0, le profil de vitesse est essentiellement plat (i.e., écoulement bouchon) car la présence de la paroi de la conduite n'a pas encore pu influencer de façon significative le profil de vitesse. On a donc, en bonne approximation: $u(0,r) \approx u_m$ pour $0 \le r < R$ et u(0,R)=0. Il faudra compter une longueur d'établissement x_c non négligeable pour que l'écoulement s'établisse (i.e., se développe) et atteigne le régime qui correspond à l'écoulement de Poiseuille, $u(x>x_c,r)\approx u(r)=2\,u_m\left(1-\left(\frac{r}{R}\right)^2\right)$, dans le cas d'un écoulement laminaire.

Les équations qui régissent ce problème sont essentiellement les équations de la couche limite (voir plus loin le chapitre du cours consacré aux couches limites) écrites ici en coordonnées cylindriques:

$$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} (r v) = 0,$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} = -\frac{dP}{dx} + \nu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right).$$
(2.91)

En régime de couche limite, la pression n'est fonction que de x et le terme de diffusion en x est négligeable par rapport au terme de diffusion en r. Dans le problème laminaire que nous traitons, une couche limite se développe le long de la paroi, voir Fig. 2.14. Son épaisseur, $\delta(x)$, grandit en x jusqu'à ce qu'elle atteigne le centre de la conduite en $x \approx x_c$.

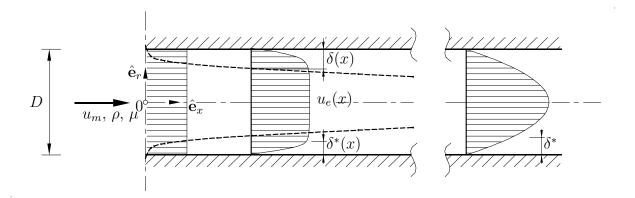


Figure 2.14: Zone d'entrée et établissement d'un écoulement en conduite circulaire.

A partir de cet endroit, on a essentiellement le profil de vitesse de Poiseuille pour un écoulement établi.

A noter que, d'un point de vue strictement mathématique, l'écoulement qui s'établit n'atteint le profil de vitesse établi que de façon asymptotique. Il faudra donc une distance infinie pour complètement établir un profil de vitesse. On considérera donc, pour la suite, que x_c est la longueur d'établissement telle que la vitesse au centre de la conduite soit presque égale à $2\,u_m$. Par exemple, $x_{c,0.99}$ désignera la longueur d'établissement nécessaire pour attendre 99% de cette vitesse, $x_{c,0.95}$ celle pour atteindre 95% de cette vitesse, etc.

Que vaut la pression $p(x)/\rho = P(x)$? Elle est en fait déterminée par la vitesse de l'écoulement, $u_e(x)$, dans la partie plate du profil en dehors de la couche limite, voir Fig. 2.14. Pour cette partie irrotationnelle de l'écoulement, l'équation de Bernoulli est satisfaite:

$$P(x) + \frac{1}{2}u_e^2(x) = \text{constante} = P(0) + \frac{1}{2}u_m^2,$$

 $\frac{dP}{dx} + u_e \frac{du_e}{dx} = 0.$ (2.92)

Le problème posé revient donc finalement à résoudre le système d'équations:

$$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} (r v) = 0,
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} = u_e \frac{du_e}{dx} + \nu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right),$$
(2.93)

avec la condition initiale $u(0,r) = u_m$ et la condition frontière u(x,R) = 0. Comment détermine-t-on la vitesse $u_e(x)$? Clairement, par conservation du débit qui traverse chaque section: $\int u \, dA = u_m A$ pour tout x. Le profil de vitesse au sein de la couche limite

détermine donc $u_e(x)$ qui lui même intervient dans les équations qui déterminent le profil de vitesse. Le problème est donc fortement couplé. En fait, la notion d'épaisseur de couche limite, δ , est assez floue, comme on le verra par la suite. On utilise plutôt la notion d'épaisseur de déplacement, δ^* , qui est basée sur la notion de débit, voir Fig. 2.14. Ceci deviendra plus clair dans la partie du cours consacrée aux couches limites. Dans le cadre présent, elle est définie par:

$$u_e(x) \pi (R - \delta^*(x))^2 = \int u dA = u_m A = u_m \pi R^2,$$
 (2.94)

et donc $\delta^*(x)$ et $u_e(x)$ sont reliés par

$$\left(1 - \frac{\delta^*(x)}{R}\right)^2 \frac{u_e(x)}{u_m} = 1 ,$$
(2.95)

ce qui constitue la relation fondamentale de couplage entre la couche limite et l'écoulement externe. A l'entrée, on a que $u_e(0) = u_m$ et donc que $\delta^*(0) = 0$. Asymptotiquement, on obtient Poiseuille avec $u_e = 2 u_m$, et donc avec $\delta^*/R = 1 - 1/\sqrt{2} = 0.293$.

Le problème ci-dessus n'a en fait pas de solution analytique. Il est certainement soluble par approche numérique. Il est aussi possible d'obtenir une solution approchée par utilisation de l'équation intégrale de von Karman, laquelle fait usage de $\delta^*(x)$ et de $u_e(x)$ qui sont, pour le problème présent, liés par l'équation ci-dessus. L'équation intégrale de von Karman sera aussi developpée dans la partie du cours consacrée aux couches limites. A noter que, pour ce cours, la théorie des couches limites est développée pour le cas plan. Il faudrait, pour le problème présent, la développer pour le cas axisymétrique.

Même sans le résoudre, on peut déjà déterminer, par analyse dimensionnelle, que la loi qui régit la longueur d'établissement est de la forme:

$$\frac{x_c}{D} = f\left(\frac{u_m D}{\nu}\right) = f(Re_D) . {(2.96)}$$

Nous allons voir, dans la suite de ce chapitre, qu'il est possible d'estimer la loi de variation à partir de la solution analytique d'un problème différent: celui de l'écoulement instationnaire correspondant à un démarrage brusque en conduite.

Chapitre 3

Transfert de chaleur

La chaleur est une forme d'énergie. On appelle transfert de chaleur le transfert d'énergie suscité par un écart de température entre les différents points d'un milieu ou entre milieux distincts.

Il existe trois modes de transfert de chaleur : la conduction, la convection et le rayonnement. Les deux premiers modes n'impliquent que des phénomènes locaux : ils sont décrits par des équations locales (équations aux dérivées partielles ou équations différentielles ordinaires). Le troisième mode fait intervenir tout l'environnement : il s'agit d'un phénonème global, décrit par des équations intégrales ou un ensemble équivalent d'équations algébriques.

La conduction de la chaleur est la transmission d'énergie, de proche en proche, par divers mécanismes mettant en jeu des particules élémentaires : molécules, atomes, phonons, électrons. La conduction dépend exclusivement des propriétés physiques du matériau considéré.

La convection de la chaleur est la transmission d'énergie thermique par delà une interface, généralement fluide-solide. Le mécanisme de convection, qui fait intervenir les propriétés de conduction des deux milieux au voisinage immédiat de l'interface, est principalement piloté par les caractéristiques de l'écoulement dans un voisinage assez étendu de l'interface.

Le rayonnement thermique est un rayonnement électromagnétique intervenant dans une gamme assez large de longueurs d'onde (le visible et l'infrarouge), et donc de fréquences pour lesquelles des interactions mécaniques sont possibles avec les constituants corpusculaires de la matière. Les substances solides absorbent en général le rayonnement thermique sur une épaisseur assez faible, voire très faible (quelques microns pour les matériaux conducteurs de l'électricité) : ces substances sont dites opaques. D'autres matériaux (les liquides, certains solides tels le verre ou les plastiques translucides, des gaz tels CO_2 , H_2O , $NH_3...$) n'absorbent que partiellement et progressivement le rayonnement thermique :

ils sont dits semi-transparents. Enfin, des gaz dont la structure moléculaire est très simple (gaz monoatomiques tels Ar, diatomiques tels O_2 et N_2) sont quasi parfaitement transparents au rayonnement thermique. L'atmosphère ambiante n'a donc que très peu d'influence (seulement via H_2O et d'autres gaz à l'état de traces) sur la transmission du rayonnement thermique. Tout l'environnement du corps étudié doit être pris en considération : l'étude du rayonnement fait inévitablement appel à des relations globales. Cette caractéristique ne doit toutefois pas conduire à ignorer des phénomènes locaux parfois très complexes lors du transfert par rayonnement thermique : l'incidence du recouvrement de vitrages par des couches ultraminces en constitue un exemple.

Les lois relatives à la conduction et à la convection de la chaleur sont des lois linéaires, tout au moins dans leur formulation usuelle. Par contre, la loi de Stefan-Boltzman, loi fondamentale du rayonnement thermique, est hautement non-linéaire : elle fait intervenir la température absolue au quatrième degré.

3.1 Transfert de chaleur dans les solides

3.1.1 Conduction: loi de Fourier

Pour un matériau homogène et isotrope, le transfert de chaleur est caractérisé par le vecteur densité de flux de chaleur. Celui-ci est relié au gradient de température par la loi de Fourier

$$\mathbf{q} = -k\mathbf{\nabla}T. \tag{3.1}$$

Il s'agit bien d'une loi de constitution qui apparaissait comme une partie du modèle de fluide visqueux newtonien décrit par (1.29). Toutefois, il convient de rappeller que la loi de Fourier est beaucoup plus générale et décrit le transfert de chaleur dans une multitude de matériaux.

Rappelons que le coefficient $k = \hat{k}(p,T)$ est la conductibilité thermique, propre à chaque matériau. La conductibilité thermique varie en général avec la température. Toutefois, contrairement à la viscosité, la variation de k avec la température est généralement faible dans des intervalles de température limités.

La conductibilité thermique des métaux est beaucoup plus élevée que celles des autres matériaux. Le taleau ci-dessous reprend quelques valeurs de conductibilités thermiques pour une température de $100^{0}C$. Il faut aussi observer qu'en général, la conductibilité d'un alliage est inférieure à celles de chacun de ses composants.

Matériau	$k\left(W/mK\right)$
eau (à pression atmosphérique) cuivre aluminium acier	0.67 380 260 45

(D'après J. R. Bird, Transport Phenomena, Wiley, 60)

Le flux de chaleur qui traverse une surface A donnée se calcule aisément par

$$Q = \int_{A} q(\mathbf{n}) dA = \int_{A} \mathbf{q} \cdot \mathbf{n} dA, \qquad (3.2)$$

où $q(\mathbf{n})$ est la densité de flux de chaleur.

L'équation de la chaleur est la forme particulière de l'équation de conservation de l'énergie lorsqu'on l'applique à un corps solide, indéformable, éventuellement soumis à une génération interne de densité de puissance r. Le corps est en outre supposé au repos: il n'y a donc pas de travail exercé sur son environnement.

L'équation de conservation (1.8.3) devient dans ces conditions :

$$\rho \frac{\partial U}{\partial t} = r - \nabla \cdot \mathbf{q}. \tag{3.3}$$

En y introduisant la chaleur massique c et en utilisant la loi de Fourier, on obtient :

$$\rho c \frac{\partial T}{\partial t} = r + \nabla \cdot (k \nabla T). \tag{3.4}$$

Lorsque la conductibilité k ne varie pas avec la température, on trouve l'équation de la chaleur :

$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{r}{k} + \nabla^2 T,\tag{3.5}$$

où α est la diffusivité thermique :

$$\alpha = \frac{k}{\rho c}.\tag{3.6}$$

La diffusivité thermique a une signification physique intéressante. Elle représente la facilité avec laquelle un flux de chaleur transmis à un solide se traduit, au sein de celui-ci,

par un relèvement de la température. Les propriétés de conductibilité thermique et de capacité calorifique du matériau interviennent donc toutes deux.

Par exemple, considérons un milieu semi-infini initialement à température nulle. Sa surface externe est forcée instantanément à $T_0 = 100^0 C$. Le temps t après lesquel la température aura atteint $\frac{1}{2}T_0 = 50^0 C$ à $0.3\,m$ de profondeur est repris ci-dessous :

Matériau	Argent	Cuivre	Acier	Verre
$10^6 \alpha m^2/s$	170	103	12.9	0.59
$\int t$	9.5min	16.5min	2.2h	2.0jours

(D'après A. Bejan, Heat transfer, Wiley, 93)

Conduction à travers une plaque plane, en régime permanent

Considérons une plaque plane dont les faces latérales sont beaucoup plus grandes que son épaisseur L et ont une température connue. Si l'on néglige les effets de bord, on peut accepter que la recherche du champ de température dans la plaque est un problème unidimensionnel. L'équation de la chaleur se réduit à

$$\frac{d^2T}{dx^2} = 0. (3.7)$$

Cette équation indique que le profil de température est une droite dont les constantes d'intégration se déterminent par les conditions aux limites aux parois. Ici, on assigne les températures de paroi (figure 3.1).

- $\bullet \text{ en } x = 0, \qquad T = T_0,$
- en x = L, $T = T_L$.

La solution particulière du problème est donnée par

$$T = \frac{T_L - T_0}{L}x + T_0, (3.8)$$

la densité de flux de chaleur vaut

$$q = -k\frac{T_L - T_0}{L}, (3.9)$$

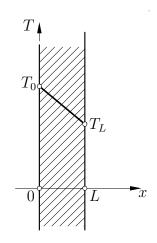


Figure 3.1: Profil de température dans une plaque plane.

et le flux de chaleur à travers une aire latérale A de la plaque vaut

$$Q = Aq = -Ak\frac{T_L - T_0}{L}. (3.10)$$

Tant le flux de chaleur que la densité de flux sont invariables avec x, ce qui est évident puisqu'en régime permanent sans puits ni source de chaleur, il ne peut y avoir accumulation d'énergie.

Le problème qui vient d'être résolu est trop partiel. En général, la plaque considérée est environnée, à ses deux faces, de fluides en écoulement dont on connaît les températures et les intensité d'échange par convection. Par contre les températures de parois sont généralement inconnues, et par ailleurs toujours très difficiles à mesurer.

3.1.2 Convection: loi de Newton

Lors du transfert de chaleur d'une paroi à température T_p vers un fluide environnant dont la température moyenne est T_f (supposée ici plus basse), l'expérience indique que l'on peut écrire une loi de transfert sous la forme

$$Q = Ah(T_p - T_f), (3.11)$$

où A est l'aire d'échange et $h(W/m^2K)$ est appelé coefficient de convection. Il apparaît que, souvent, h est indépendant ou ne dépend que faiblement de la température. La loi (3.11), dite loi de Newton, est donc approximativement linéaire.

La loi de Newton est plus formelle que physique, car le coefficient h ne peut être déterminé une fois pour toutes. Il contient en réalité toutes les informations relatives à l'écoulement et aux propriétés du fluide : profil de vitesse à la paroi, propriétés du fluide : viscosité, conductibilité thermique, masse volumique, chaleur massique. Ce sera l'objet de plusieurs chapitres ultérieurs de ce cours que d'exposer des méthodes de calcul du coefficient de convection h, en tenant compte de tous les éléments qui viennent d'être énumérés.

Ici, nous considérerons que la valeur de h est connue. Quelques valeurs typiques sont données, ci-dessous, à titre d'exemple et pour indiquer des ordres de grandeurs.

Type de transfert	Fluide	$h(W/m^2K)$
Convection forcée	gaz	10300
	liquide aqueux huile métal liquide	50012000 501700 6000110000
Convection naturelle	gaz liquide aqueux	530 1001000
Changement de phase	eau, ébullition eau, condensation	300060000 5000110000

(D'après J. Taine et J.P. Petit, Heat transfer, Prentice Hall, 93)

Plaque soumise à convection

Considérons maintenant le cas d'un plaque soumise à convection illustré sur la figure 3.2. Le profil de température le long d'une normale aux parois de la plaque est continu. Les températures aux parois sont T_0 et T_L , tandis que les températures des fluides loin des parois sont respectivement $T_{\infty 0}$ et $T_{\infty L}$.

Les conditions aux limites s'écrivent en exprimant le fait que le flux par conduction à l'intérieur de la plaque (loi de Fourier) est égal à celui qui sort par convection (loi de Newton). On a ainsi

• en
$$x = 0$$
, $-k \frac{dT}{dx}\Big|_{0} = h_0(T_{\infty 0} - T_0)$,

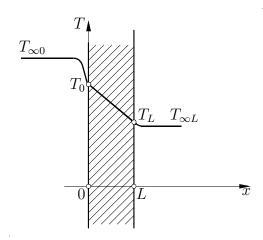


Figure 3.2: Profil de température : plaque plane soumise à convection.

• en
$$x = L$$
, $-k \left. \frac{dT}{dx} \right|_L = h_L (T_L - T_{\infty L})$,

En utilisant les conditions aux limites, on obtient immédiatement le profil de température dans la plaque

$$T = \frac{(T_{\infty L} - T_{\infty 0}) \left(\frac{x}{L} + \frac{k}{h_0 L}\right)}{1 + \frac{k}{h_0 L} + \frac{k}{h_L L}} + T_{\infty 0},$$
(3.12)

En introduisant un nombre de Biot Bi estimé à gauche et à droite par:

$$Bi_0 = \frac{h_0 L}{k}, \qquad Bi_L = \frac{h_L L}{k}, \qquad (3.13)$$

on peut écrire la solution (3.12) sous la forme

$$T = \frac{(T_{\infty L} - T_{\infty 0}) \left(\frac{x}{L} + \frac{1}{Bi_0}\right)}{1 + \frac{1}{Bi_0} + \frac{1}{Bi_L}} + T_{\infty 0},$$
(3.14)

Le nombre de Biot permet de quantifier les effets de convection par rapport aux effets de conduction.

On notera ainsi que la solution (3.8) est un cas limite de (3.14). En effet, pour maintenir inchangé le flux traversant la plaque, ce qui revient à maintenir T_0 et T_L inchangés,

la condition de convection à la paroi gauche par exemple doit évoluer de manière à ce que la densité de flux $h_0(T_{\infty 0} - T_0)$ demeure constante. Si le coefficient de convection tend vers l'infini, la température doit se rapprocher asymptotiquement de T_0 . La solution (3.8) correspond donc à une convection d'intensité infinie ($Bi \to \infty$) aux deux faces.

Génération interne de chaleur dans un cylindre

Considérons un cylindre plein de rayon R qui soit l'objet d'une génération interne de chaleur. On suppose que la génération interne de chaleur est provoquée par effet Joule par le passage d'un courant électrique au sein du cylindre. La transmission d'un courant électrique est un processus irréversible et l'énergie électrique est convertie en chaleur par un effet de dissipation électrique. En supposant que le courant est uniformément réparti dans la section, la densité de puissance calorifique fournie est donc :

$$g = \frac{I^2}{\sigma} \tag{3.15}$$

où σ est la conductibilité électrique $(\Omega^{-1}m^{-1})$ et I est la densité de courant (Am^{-2}) .

En régime permanent, l'équation de la chaleur (3.5) en coordonnées cylindriques se réduit à :

$$\frac{g}{k} + \frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0, (3.16)$$

En supposant que la chaleur se dissipe par convection à l'extérieur du cylindre (coefficient de convection h, température moyenne du fluide environnant T_{∞} , les conditions aux limites sont :

• en
$$r = R$$
, $-k \left. \frac{dT}{dr} \right|_R = h(T_R - T_\infty)$,

• en
$$r = 0$$
, $-k \left. \frac{dT}{dr} \right|_0 = 0$.

Cette dernière condition traduit le fait que, le long d'un diamètre et en particulier en l'axe du cylindre, la densité de flux ne peut présenter de discontinuité en l'absence de source ou de puits local de chaleur. La solution de (3.16) est

$$T = \frac{gR^2}{4k} \left[1 - (\frac{r}{R})^2 \right] + \frac{gR}{2h} + T_{\infty}.$$
 (3.17)

3.1.3 Notion de résistance thermique

Reprenons l'exemple de la figure 3.2. Le flux Q = Aq traversant une surface d'aire A de la paroi peut s'écrire sous les trois formes

$$Q = \frac{(T_{\infty 0} - T_0)}{\frac{1}{Ah_0}},$$

$$Q = \frac{(T_0 - T_L)}{\frac{L}{Ak}},$$

$$Q = \frac{(T_L - T_{\infty L})}{\frac{1}{Ah_L}},$$
(3.18)

où on distingue la première et la troisième expression comme relatives au mode convectif de transfert, tandis que la seconde est relative au mode conductif.

Chacune de ces expressions du flux est analogue à la loi d'Ohm

$$I = \frac{\Delta U}{R},$$

où I est le courant, ΔU la différence de potentiel et R la résistance électrique. On est ainsi conduit à introduire la notion de résistance thermique (K/W):

- résistance thermique conductive $\frac{L}{Ak}$,
- résistance thermique convective $\frac{1}{Ah}$.

On déduit de ce formalisme qu'un écart de température constitue un potentiel de transfert thermique. On notera également que le nombre de Biot exprime le rapport d'une résistance conductive à une résistance convective. L'analogie électrique peut être étendue au cas général tridimensionnel, en comparant la loi de Fourier

$$\mathbf{q} = -k\mathbf{\nabla}T.$$

à la forme vectorielle de loi d'Ohm

$$\mathbf{j} = -\sigma \nabla U$$
.

où j est la densité de courant, σ la conductance unitaire $(\Omega^{-1}m^{-2})$. Finalement, l'analogie peut aussi être observée au niveau de l'expression de la résistance thermique conductive et celle de la résistance électrique $R = L/(A\sigma)$.

Si l'on se réfère à la figure 3.2, on observe que le flux de chaleur transmis du fluide de gauche à température $T_{\infty 0}$ au fluide de droite à température $T_{\infty L}$ doit "vaincre" trois résistances successives : résistance convective à gauche, résistance conductive dans la plaque, résistance convective à droite. La figure 3.3 montre bien que ces trois résistances sont placées en série. La résistance thermique totale est la somme des trois résistances mises en série :

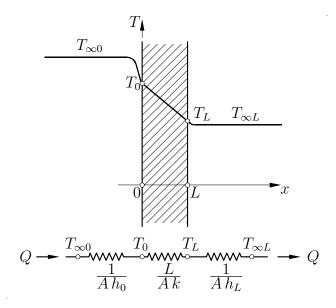


Figure 3.3: Circuit électrique équivalent au transfert de chaleur à travers une plaque.

$$Q = \frac{(T_{\infty 0} - T_0)}{\frac{1}{Ah_0}} = \frac{(T_0 - T_L)}{\frac{L}{Ak}} = \frac{(T_L - T_{\infty L})}{\frac{1}{Ah_L}},$$

$$= \frac{(T_{\infty 0} - T_{\infty L})}{\frac{1}{Ah_0} + \frac{L}{Ak} + \frac{1}{Ah_L}},$$
(3.19)

Le circuit thermique présente la même propriété d'additivité des résistances en série que son équivalent électrique. L'analogie peut être étendue à des circuits plus complexes,

présentant des résistances en parallèle.

En thermique du bâtiment, lors de l'étude des échangeurs de chaleur et dans bien d'autres cas, il est utile d'évaluer le flux transféré entre deux fluides séparés par une paroi, au moyen d'un paramètre unique. Le relation suivante est utilisée à cet effet

$$Q = AU(T_{\infty 0} - T_{\infty L}) \tag{3.20}$$

qui constitue la relation de définition de U appelé coefficient global de transfert de chaleur (W/m^2K) . La comparaison de (3.20) et (3.19) conduit à trouver l'expression du coefficient global en fonction des grandeurs physiques locales

$$\frac{1}{AU} = R_{tot} = \frac{1}{Ah_0} + \frac{L}{Ak} + \frac{1}{Ah_L}. (3.21)$$

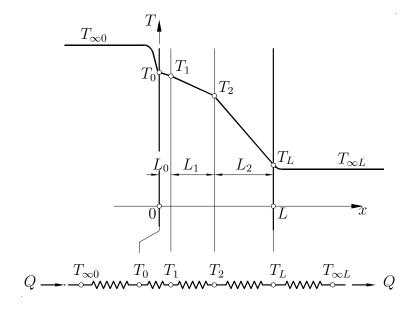


Figure 3.4: Transfert de chaleur à travers une plaque à couches multiples.

Lorsque la paroi est composée de plusieurs couches successives comme indiqué sur la figure 3.4, la généralisation des considérations précédentes conduit immédiatement à l'expression du coefficient global de transfert

$$\frac{1}{AU} = R_{tot} = \frac{1}{Ah_0} + \sum_{i} \frac{L_i}{Ak_i} + \frac{1}{Ah_L}.$$
 (3.22)

Conduction dans un tube

Considèrons maintenant un tube et effectuons le même raisonnement. L'équation de Laplace en l'unique variable r s'écrit :

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0, (3.23)$$

dont la solution générale a la forme $T = a \log(r) + b$.

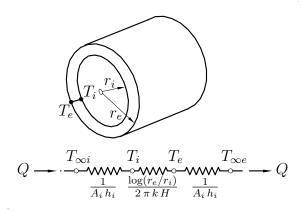


Figure 3.5: Transfert de chaleur à travers une paroi cylindrique.

Lorsqu'on choisit d'assigner les températures de paroi, les conditions aux limite s'écrivent en utilisant les notations définies sur la figure 3.5:

- en $r = r_i$, $T = T_i$,
- en $r = r_e$, $T = T_e$.

La solution particulière du problème est donnée par

$$T = \left(\frac{(T_e - T_i)\log(r)}{\log(\frac{r_e}{r_i})}\right) - \left(\frac{(T_e - T_i)\log(r_e)}{\log(\frac{r_e}{r_i})} - T_e\right),\tag{3.24}$$

la densité de flux de chaleur vaut

$$q = -k \frac{(T_e - T_i)}{\log(\frac{r_e}{r_i})r},\tag{3.25}$$

et le flux de chaleur à travers une longueur L du tube vaut

$$Q = 2\pi L r q = -k \frac{(T_e - T_i)}{\log(\frac{r_e}{r_i})} 2\pi L. \tag{3.26}$$

Lorsqu'on veut introduire les effets de convection, les conditions aux limites deviennent

• en
$$r = r_i$$
, $-k \left. \frac{dT}{dr} \right|_{r_i} = h_i (T_{\infty i} - T_i)$,

• en
$$r = r_e$$
, $-k \left. \frac{dT}{dr} \right|_{r_e} = h_e(T_e - T_{\infty e})$,

où les notations sont définies sur la figure 3.5. On constate alors que pour le cas d'un tube de longueur L, le concept des résistances thermiques conductives et convectives donne les expressions suivantes :

- résistance thermique conductive $\frac{\log(\frac{r_e}{r_i})}{2\pi Lk}$,
- résistance thermique convective interne $\frac{1}{2\pi Lr_{i}h_{i}}$,
- résistance thermique convective externe $\frac{1}{2\pi L r_e h_e}$.

La définition de coefficients globaux de transfert U_i et U_e devient pour la paroi interne ou externe du tube respectivement :

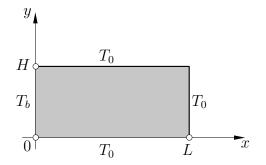
$$Q = (2\pi L r_i) U_i (T_{\infty i} - T_{\infty e}) = (2\pi L r_e) U_e (T_{\infty i} - T_{\infty e})$$
(3.27)

On voit bien que les relations (3.27) définissent des valeurs distinctes de coefficient global de transfert de chaleur, selon que l'on choisit de se référer à la surface interne ou externe du tube. Comme pour la paroi plane, l'expression de la résistance totale peut très facilement être étendue au cas de parois cylindriques à couches multiples, comme le sont des conduites munies d'un isolant thermique.

3.1.4 Exemple de solution analytique de l'équation de Laplace

Soit le domaine rectangulaire représenté à la figure 3.6. Trois côtés du rectangle sont maintenus à la température T_0 tandis que le quatrième l'est à T_b . Des conditions aux limites homogènes facilitent la résolution du problème, ce qui conduit à le reformuler en termes d'excès de température : $\theta = T - T_0$. L'équation de Laplace est identique en T et θ :

$$\frac{d^2\theta}{dx^2} + \frac{d^2\theta}{dy^2} = 0\tag{3.28}$$



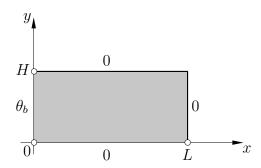


Figure 3.6: Domaine rectangulaire et conditions aux limites.

Les conditions aux limites sont mentionnées à la figure 3.6.

La solution de (3.28) s'obtient par séparation des variables. On pose :

$$\theta(x,y) = X(x)Y(y) \tag{3.29}$$

La substitution dans (3.28) donne:

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} \tag{3.30}$$

Le premier rapport ne dépend que de la variable indépendante x, le second que de y. Les deux rapports doivent néanmoins demeurer égaux pour tout x et tout y: ils ne peuvent dès lors être égaux qu'à une constante. Par ailleurs, cette constante devra être positive afin d'obtenir des solutions à multiples racines en y, ce qui est nécessaire pour pouvoir statisfaire aux deux conditions homogènes imposées dans la direction y. On a donc :

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = \lambda^2,$$
(3.31)

où λ est une constante réelle, non encore déterminée.

La solution du système est :

$$X(x) = A \sinh(\lambda x) + B \cosh(\lambda x)$$

$$Y(y) = C \sin(\lambda y) + D \cos(\lambda y)$$
(3.32)

La condition en y = 0 impose D = 0. La condition en y = H conduit à :

$$C\sin(\lambda H) = 0 \tag{3.33}$$

Le problème différentiel en Y ne possédera de solution non identiquement nulle que pour certaines valeurs de λ :

$$\lambda_n = \frac{n\,\pi}{H}, \ n \in Z \tag{3.34}$$

et les solutions s'écrivent :

$$Y_n(y) = C_n \sin(\lambda_n y). \tag{3.35}$$

La condition en x = L donne une relation entre les constantes arbitraires d'intégration A et B, et X(x) devient, pour chaque valeur de λ_n :

$$X_n(x) = \frac{A_n}{\cosh(\lambda_n L)} \sinh(\lambda_n(x - L))$$
(3.36)

Il n'est possible de satisfaire à la condition aux limites non homogène en x=0 qu'en adoptant pour solution une superposition des solutions précédemment obtenues:

$$\theta(x,y) = \sum_{n=1}^{\infty} E_n \sinh(\lambda_n(x-L)) \sin(\lambda_n y)$$
 (3.37)

On se limite aux valeurs entières positives de n, afin que les solutions superposées soient linéairement indépendantes. En outre, on constate que le cas n=0 n'apporte aucune contribution différente de zéro.

La condition en x = 0 impose :

$$\theta(0,y) = \theta_b = \sum_{n=1}^{\infty} E_n \sinh(\lambda_n L) \sin(\lambda_n y). \tag{3.38}$$

On observe, ici, que les solutions $\sin(\lambda_n y)$ sont orthogonales entre elles sur l'intervalle [0, H], par rapport à la fonction poids unité pour le produit scalaire $\langle fg \rangle = \int_0^H fg \, dy$.

La fonction constante θ_b peut donc être développée en série de ces fonctions orthogonales. on trouve:

$$E_n \sinh(\lambda_n L) = \frac{\theta_b \int_0^H \sin(\lambda_n y) \, dy}{\int_0^H \sin^2(\lambda_n y) \, dy}$$
(3.39)

Les valeurs paires de n conduisent à des valeurs nulles de E_n . En posant:

$$n = 2m + 1, \ \lambda_m = \frac{(2m+1)\pi}{H}, \ m \in N,$$
 (3.40)

la solution s'écrit:

$$\theta(x,y) = \frac{4\,\theta_b}{\pi} \sum_{m=0}^{\infty} \frac{\sinh(\lambda_m(x-L))}{\sinh(\lambda_m L)} \, \frac{\sin(\lambda_m y)}{2\,m+1}.\tag{3.41}$$

Elle est représentée à la figure 3.7

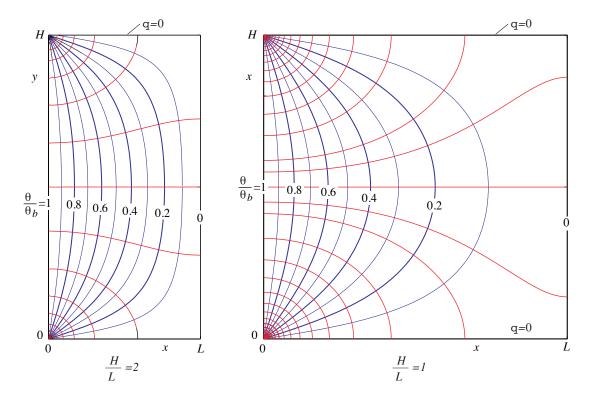


Figure 3.7: Isothermes et lignes de flux dans un domaine rectangulaire.

3.2 Transfert thermique établi

On considère ici différents cas de "transfert thermique établi" (le concept sera défini plus loin) avec écoulement établi en conduite circulaire. Le profil de vitesse est donc connu: c'est le profil de Poiseuille: $u(r) = 2 u_m \left(1 - \left(\frac{r}{R}\right)^2\right)$.

On néglige aussi la conduction de chaleur dans la direction axiale car elle est très faible par rapport à la conduction dans la direction radiale (on verra que, dans de nombreux

cas, elle est même identiquement nulle):

$$\frac{\partial^2 T}{\partial x^2} \ll \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) . \tag{3.42}$$

L'équation de l'énergie se réduit alors à:

$$\rho c u \frac{\partial T}{\partial x} = k \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \mu \left(\frac{du}{dr} \right)^2 . \tag{3.43}$$

avec $\frac{du}{dr}$ provenant du profil de vitesse:

$$\frac{du}{dr} = -4\frac{u_m}{R}\frac{r}{R} \,. \tag{3.44}$$

Pour définir le coefficient adimensionnel de transfert de chaleur entre l'écoulement et la paroi à température T_w (voir plus loin), on utilise, pour l'écoulement, la "température moyenne" (en anglais "cup mixing temperature") T_m : c'est la température représentative du flux énergétique thermique au sein de la conduite. En effet, à chaque tube de courant de section dA correspond un flux énergétique local égal à $cT \rho u dA$ (énergie thermique × flux massique). La température moyenne de l'écoulement est donc définie par:

$$cT_m = \frac{\int_A cT \rho u \, dA}{\int_A \rho u \, dA} \,, \tag{3.45}$$

et donc, pour des écoulements incompressibles et avec c constant, par:

$$T_m = \frac{\int_A T \, u \, dA}{\int_A u \, dA} = \frac{\int_A T \, u \, dA}{u_m \, A} \,, \tag{3.46}$$

Le flux énergétique thermique global de l'écoulement au sein de la conduite est donc, par définition de T_m , égal à $c T_m \rho u_m A$. De manière équivalente, on a, par soustraction de T_w , que

$$T_m - T_w = \frac{\int_A (T - T_w) \, u \, dA}{\int_A u \, dA} \,. \tag{3.47}$$

Le coefficient adimensionnel de transfert de chaleur est alors le "nombre de Nusselt", qui est défini comme

$$Nu = \frac{q_w D}{k (T_w - T_m)} = \frac{h D}{k} . {(3.48)}$$

où $q_w = k \frac{dT}{dr}\Big|_{r=R}$ est la densité de flux de chaleur à la paroi.

Il est aussi très utile de considérer le bilan d'énergie thermique perdue (acquise) par l'écoulement sur un élément de conduite de longueur dx, voir Fig. 3.9. On obtient d'abord,

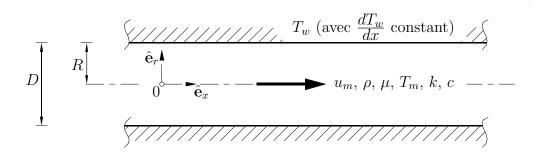


Figure 3.8: Transfert thermique établi en conduite circulaire..

par intégration du terme de dissipation visqueuse au travers de la section (avec $dA = rd\theta dr$ et en utilisant $\eta = r/R$), que:

$$\int_{A} \mu \left(\frac{du}{dr}\right)^{2} dA = 16\mu u_{m}^{2} 2\pi \int_{0}^{R} \left(\frac{r}{R}\right)^{2} \frac{r}{R} \frac{dr}{R} = 32\pi \mu u_{m}^{2} \int_{0}^{1} \eta^{3} d\eta = 8\pi \mu u_{m}^{2}.$$
(3.49)

On obtient donc, pour le bilan local d'énergie, que

$$(q_w (2\pi R) + 8\pi \mu u_m^2) dx = (\rho u_m \pi R^2) cdT_m$$
(3.50)

et donc que:

$$\rho u_m c \frac{dT_m}{dx} = \frac{4}{D} q_w + 32\mu \frac{u_m^2}{D^2} \,. \tag{3.51}$$

On a donc:

Dans les cas avec dissipation visqueuse négligeable, cette équation de bilan se réduit à

$$\rho u_m c \frac{dT_m}{dx} = \frac{4}{D} q_w . \tag{3.52}$$

Lorsque $T_w > T_m$, q_w est positif et de la chaleur est transférée de la paroi de la conduite vers l'écoulement: T_m augmente avec x. Lorsque $T_w < T_m$, q_w est négatif et de la chaleur est transférée de l'écoulement vers la paroi: T_m diminue avec x. Dans chaque cas, le nombre de Nusselt est positif. On note aussi que le cas q_w constant implique que $\frac{dT_m}{dx}$ l'est aussi.

Un transfert thermique est dit "établi" lorsque le profil normalisé adimensionnel de différence de température, $(T - T_w) / (T_m - T_w)$, ne dépend pas de x (i.e., n'est fonction

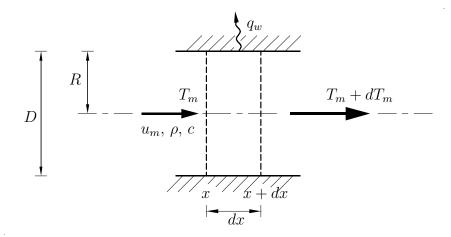


Figure 3.9: Bilan d'énergie thermique perdue (acquise) par l'écoulement établi sur un élément différentiel de longueur dx.

que de r):

$$0 = \frac{\partial}{\partial x} \left(\frac{T - T_w}{T_m - T_w} \right)$$

$$= \frac{1}{(T_m - T_w)} \left(\frac{\partial T}{\partial x} - \frac{dT_w}{dx} \right) - \frac{(T - T_w)}{(T_m - T_w)^2} \left(\frac{dT_m}{dx} - \frac{dT_w}{dx} \right) , \qquad (3.53)$$

et donc, la condition générale est que:

$$\frac{\partial T}{\partial x} - \frac{dT_w}{dx} = \frac{(T - T_w)}{(T_m - T_w)} \left(\frac{dT_m}{dx} - \frac{dT_w}{dx} \right) . \tag{3.54}$$

Comme $(T - T_w) / (T_m - T_w)$, ne dépend pas de x, sa dérivée en r ne dépend pas non plus de x. Evaluée en r = R, cette dérivée est égale à -Nu/D: le nombre de Nusselt ne dépend donc pas non plus de x. C'est une propriété très importante, et propre au transfert thermique établi.

3.2.1 Transfert thermique établi avec température de paroi constante

On considère tout d'abord le cas du transfert thermique établi avec température de paroi, T_w , contante (i.e., $\frac{dT_w}{dx} = 0$). On a donc que

$$\frac{\partial T}{\partial x} = \frac{(T - T_w)}{(T_m - T_w)} \frac{dT_m}{dx} \,. \tag{3.55}$$

Un premier cas classique est le cas avec température moyenne de l'écoulement, T_m , aussi constante (i.e., $\frac{dT_m}{dx} = 0$):

$$\frac{\partial T}{\partial x} = 0 \qquad \Longrightarrow \qquad \frac{\partial^2 T}{\partial x^2} = 0 \ . \tag{3.56}$$

La conduction de chaleur dans la direction axiale s'annule donc exactement (i.e., pas besoin de faire l'hypothèse qu'elle est négligeable). L'équation de l'énergie devient ici:

$$0 = k \frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) + \mu \left(\frac{du}{dr} \right)^2 . \tag{3.57}$$

La dissipation visqueuse contrebalance donc exactement la conduction, ce qui conduit à:

$$k\frac{1}{r}\frac{d}{dr}\left(r\frac{d}{dr}\left(T-T_w\right)\right) = -16\,\mu\frac{u_m^2}{R^2}\left(\frac{r}{R}\right)^2. \tag{3.58}$$

Par intégration, on obtient:

$$\frac{d}{dr}(T - T_w) = -4\frac{\mu u_m^2}{kR} \left(\frac{r}{R}\right)^3 , \qquad (3.59)$$

et donc, finalement, le profil de différence de température:

$$T - T_w = \frac{\mu u_m^2}{k} \left(1 - \left(\frac{r}{R} \right)^4 \right) . \tag{3.60}$$

La température maximale est obtenue au centre de la conduite:

$$T_c - T_w = \frac{\mu \, u_m^2}{k} \,. \tag{3.61}$$

Par exemple, pour de l'air à $20\,^{\circ}C$ ($\mu=1.81\,10^{-5}$ N s/m² et $k=2.57\,10^{-2}$ W/(m K)) circulant en conduite avec une vitesse de débit, $u_m=1$ m/s, on obtient $T_c-T_w=0.00074\,^{\circ}C$, ce qui est très faible. Pour de l'eau à $20\,^{\circ}C$ ($\mu=1.00\,10^{-3}$ N s/m² et k=0.603 W/(m K)) circulant avec une vitesse de débit $u_m=1$ m/s, on obtient $T_c-T_w=0.0017\,^{\circ}C$, ce qui est aussi très faible. Il faut en fait un écoulement d'un fluide très visqueux et avec une faible conductibilité thermique pour obtenir un écart de température significatif. La dissipation visqueuse est donc souvent négligeable dans les problèmes d'écoulement avec transfert de chaleur; nous y reviendrons.

La chaleur produite au sein de l'écoulement par la dissipation visqueuse est donc ici dégagée vers l'extérieur par conduction à la paroi. On obtient, pour le transfert de chaleur à la paroi:

$$q_w = k \frac{dT}{dr}\Big|_{r=R} = -4\mu \frac{u_m^2}{R} = -4k \frac{(T_c - T_w)}{R}$$
 (3.62)

On vérifie aussi, en passant, que ce résultat correspond bien à celui produit par l'équation de bilan d'énergie dans le cas $\frac{dT_m}{dx} = 0$

On obtient aussi par intégration (avec $dA = rd\theta dr$ et en utilisant $\eta = r/R$):

$$T_m - T_w = \frac{1}{u_m \pi R^2} \frac{\mu}{k} u_m^2 2 u_m 2\pi R^2 \int_0^1 (1 - \eta^4) (1 - \eta^2) \eta d\eta = \frac{5}{6} \frac{\mu}{k} u_m^2.$$
 (3.63)

On a donc, pour le profil adimensionnel de différence de température (voir Fig. 3.10), que:

$$\frac{T - T_w}{T_m - T_w} = \frac{6}{5} \left(1 - \left(\frac{r}{R} \right)^4 \right) . \tag{3.64}$$

Le transfert de chaleur à la paroi est donc aussi

$$q_w = -\frac{24}{5} k \frac{(T_m - T_w)}{R} \,, \tag{3.65}$$

de sorte que le nombre de Nusselt vaut:

$$Nu = \frac{48}{5} = 9.60 \ . \tag{3.66}$$

Un deuxième cas classique important est celui avec température moyenne de l'écoulement, T_m , qui varie en x (i.e., $\frac{dT_m}{dx}$ est non nul), et avec dissipation visqueuse négligeable. L'équation de l'énergie est alors:

$$\rho c \frac{(T - T_w)}{(T_m - T_w)} \frac{dT_m}{dx} 2 u_m \left(1 - \left(\frac{r}{R}\right)^2 \right) = k \frac{1}{r} \frac{d}{dr} \left(r \frac{d}{dr} \left(T - T_w \right) \right)$$
(3.67)

Il n'est pas possible d'obtenir analytiquement la solution de cette équation. On peut cependant utiliser une procédure itérative, qui comprend des approximations successives du profil de différence de température. Pour chaque profil, on obtient q_w et donc aussi, par le bilan d'énergie, $\frac{dT_m}{dx}$. A convergence de cette procédure, on obtient le profil adimensionnel de différence de température, et donc aussi le nombre de Nusselt; il vaut:

$$Nu \simeq 3.66$$
 . (3.68)

Pour tous ces cas, l'équation de bilan d'énergie implique que q_w et $\frac{dT_m}{dx}$ varient tous les deux en x. La variation n'est bien sûr pas linéaire car la différence de température, $T_w - T_m(x)$ varie en x. Par contre, le nombre de Nusselt est, lui, bien constant en x.

3.2.2 Transfert thermique établi avec température de paroi et température moyenne linéaires et de même pente

On considère ensuite le cas du transfert thermique établi avec température de paroi, T_w , et température moyenne de l'écoulement, T_m , linéaires en x et avec la même pente (i.e., $\frac{dT_w}{dx} = \frac{dT_m}{dx}$ constant et non nul). On a donc que

$$\frac{\partial T}{\partial x} = \frac{dT_w}{dx} = \frac{dT_m}{dx} = \text{constant} \qquad \Longrightarrow \qquad \frac{\partial^2 T}{\partial x^2} = 0 \ .$$
 (3.69)

Il n'y a donc, de nouveau, pas de conduction de chaleur dans la direction axiale. Pour tous ces cas, l'équation de bilan d'énergie implique que q_w est constant en x.

L'équation d'énergie devient ici:

$$\rho c \frac{dT_w}{dx} 2 u_m \left(1 - \left(\frac{r}{R}\right)^2 \right) = k \frac{1}{r} \frac{d}{dr} \left(r \frac{d}{dr} \left(T - T_w \right) \right) + 16\mu \frac{u_m^2}{R^2} \left(\frac{r}{R} \right)^2 . \tag{3.70}$$

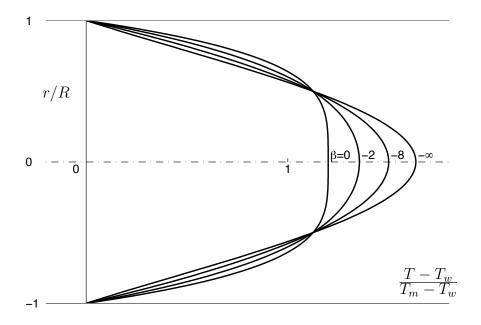


Figure 3.10: Profils adimensionnels de différence de température pour le transfert thermique établi en conduite circulaire: cas avec $\beta \leq 0$.

Celle-ci s'intègre pour donner:

$$\frac{d}{dr}\left(T - T_w\right) = \frac{1}{2} \frac{\rho c}{k} \frac{dT_w}{dx} u_m R \left(2\frac{r}{R} - \left(\frac{r}{R}\right)^3\right) - 4\frac{\mu}{k} \frac{u_m^2}{R} \left(\frac{r}{R}\right)^3, \tag{3.71}$$

et, finalement, donner le profil de différence de température:

$$T - T_w = \frac{\mu}{k} u_m^2 \left(1 - \left(\frac{r}{R}\right)^4 \right) - \frac{1}{8} \frac{\rho c}{k} \frac{dT_w}{dx} u_m R^2 \left(3 - 4\left(\frac{r}{R}\right)^2 + \left(\frac{r}{R}\right)^4 \right) . \tag{3.72}$$

Le transfert de chaleur à la paroi est:

$$q_w = k \frac{dT}{dr}\Big|_{r=R} = -4\mu \frac{u_m^2}{R} + \frac{1}{2} \rho c \frac{dT_w}{dx} u_m R.$$
 (3.73)

On obtient aussi, par intégration, que:

$$T_m - T_w = \frac{5}{6} \frac{\mu}{k} u_m^2 - \frac{11}{48} \frac{\rho c}{k} \frac{dT_w}{dx} u_m R^2.$$
 (3.74)

Les équations ci-dessus constituent la solution exacte du problème. Définissons le paramètre adimensionnel β :

$$\beta = \left(\frac{\rho c}{k} \frac{dT_w}{dx} u_m R^2\right) / \left(\frac{\mu}{k} u_m^2\right) = \rho c \frac{dT_w}{dx} \frac{R^2}{\mu u_m}. \tag{3.75}$$

On obtient alors:

$$T - T_{w} = \frac{\mu}{k} u_{m}^{2} \left[\left(1 - \left(\frac{r}{R} \right)^{4} \right) - \frac{1}{8} \beta \left(3 - 4 \left(\frac{r}{R} \right)^{2} + \left(\frac{r}{R} \right)^{4} \right) \right] ,$$

$$T_{m} - T_{w} = \frac{\mu}{k} u_{m}^{2} \left[\frac{5}{6} - \frac{11}{48} \beta \right] ,$$

$$\frac{q_{w} D}{k} = -\frac{\mu}{k} u_{m}^{2} \left[8 - \beta \right] ,$$

$$\frac{T - T_{w}}{T_{m} - T_{w}} = \frac{\left[\left(1 - \left(\frac{r}{R} \right)^{4} \right) - \frac{1}{8} \beta \left(3 - 4 \left(\frac{r}{R} \right)^{2} + \left(\frac{r}{R} \right)^{4} \right) \right]}{\left[\frac{5}{6} - \frac{11}{48} \beta \right]} ,$$

$$Nu = \frac{q_{w} D}{k \left(T_{w} - T_{m} \right)} = \frac{\left[8 - \beta \right]}{\left[\frac{5}{6} - \frac{11}{48} \beta \right]} .$$

$$(3.76)$$

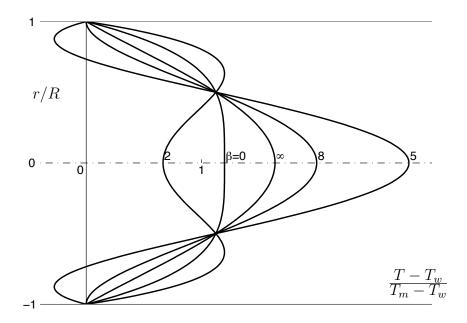


Figure 3.11: Profils adimensionnels de différence de température pour le transfert thermique établi en conduite circulaire: cas avec $\beta \geq 0$..

Les profils normalisés de différence de température, $(T - T_w) / (T_m - T_w)$, sont fournis aux Figs. 3.10 et 3.11 pour différentes valeurs du paramètre β . La variation du nombre

de Nusselt en fonction de β est aussi présentée à la Fig. 3.12. Le cas $\beta=0$ correspond au cas avec température de paroi constante: $Nu=\frac{48}{5}=9.60$. On constate que le cas $\beta=8$ correspond à un cas adiabatique $(q_w=0$ et donc Nu=0) alors que $T_m-T_w\neq 0$. On constate aussi que le cas $\beta=\frac{40}{11}=3.64$ correspond à $q_w\neq 0$ alors que $T_m-T_w=0$ (et donc $Nu\to\infty$).

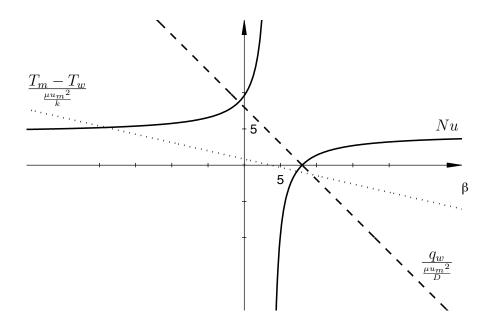


Figure 3.12: Variation du nombre de Nusselt en fonction de β pour le transfert thermique établi en conduite circulaire..

Finalement, le cas avec $\beta \to \pm \infty$ (i.e., $\frac{1}{\beta} \to 0$) correspond à un cas classique important: celui avec dissipation visqueuse négligeable. On obtient alors, plus simplement:

$$T - T_{w} = -\frac{1}{8} \frac{\rho c}{k} \frac{dT_{w}}{dx} u_{m} R^{2} \left(3 - 4 \left(\frac{r}{R} \right)^{2} + \left(\frac{r}{R} \right)^{4} \right) ,$$

$$T_{m} - T_{w} = -\frac{11}{48} \frac{\rho c}{k} \frac{dT_{w}}{dx} u_{m} R^{2} ,$$

$$q_{w} = \frac{1}{2} \rho c \frac{dT_{w}}{dx} u_{m} R ,$$

$$\frac{T - T_{w}}{T_{m} - T_{w}} = \frac{6}{11} \left(3 - 4 \left(\frac{r}{R} \right)^{2} + \left(\frac{r}{R} \right)^{4} \right) ,$$

$$Nu = \frac{q_{w} D}{k (T_{w} - T_{m})} = \frac{48}{11} = 4.36 .$$
(3.77)

On note enfin une propriété remarquable de tous ces profils de température: quel que

soit β , on a toujours

$$\frac{T - T_w}{T_m - T_w} = \frac{9}{8}$$
 en $\frac{r}{R} = \frac{1}{2}$. (3.78)

3.2.3 Entrée thermique: le problème de Grätz

Les cas considérés ci-avant sont les seuls avec écoulement de Poiseuille et avec transfert thermique établi. Considérons maintenant le problème plus complexe du développement d'un profil de température au sein d'un écoulement établi suite à un changement brusque de la température de paroi, voir Fig. 3.13. Pour x < 0, la température de paroi est égale à T_0 . Pour x > 0, elle est égale à $T_w \neq T_0$ mais constante.

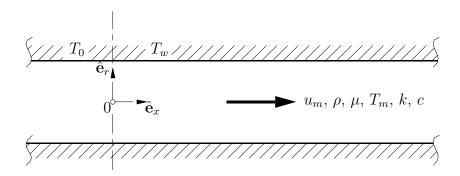


Figure 3.13: Entrée thermique avec écoulement de Poiseuille en conduite circulaire.

On ne considére que les cas avec dissipation visqueuse négligeable. On a donc, pour l'équation d'énergie:

$$\rho c u \frac{\partial T}{\partial x} = k \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) , \qquad (3.79)$$

ou, avec la diffusivité thermique, $\alpha = \frac{k}{\rho c} = \frac{\nu}{Pr}$,

$$u\frac{\partial T}{\partial x} = \alpha \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) . \tag{3.80}$$

Comme la dissipation visqueuse est négligeable, le profil de température pour x < 0 est tout à fait plat: $T = T_0$ (le fait que $T = T_0$ soit valable jusqu'en x = 0 provient du fait qu'on a aussi négligé la conduction axiale). De même, loin en aval de la discontinuité de température de paroi, on atteindra de nouveau un profil plat: $T \to T_w$ lorsque $x \to \infty$. Le problème à résoudre est donc la zone de développement: problème de l'"entrée thermique".

Avec l'écoulement de Poiseuille, $u=2\,u_m\left(1-\left(\frac{r}{R}\right)^2\right)$, on obtient:

$$2u_m \left(1 - \left(\frac{r}{R}\right)^2\right) \frac{\partial T}{\partial x} = \alpha \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r}\right). \tag{3.81}$$

On travaille ici en variable adimensionnelle. On définit

$$T^* = \frac{T - T_w}{T_0 - T_w}, \qquad \eta = \frac{r}{R}, \qquad \zeta = \frac{1}{Re_D Pr} \frac{x}{D} = \frac{1}{Pe_D} \frac{x}{D},$$
 (3.82)

avec $Pe_D = Re_D Pr$ le nombre de Peclet. L'équation se réduit alors à la forme générique:

$$(1 - \eta^2) \frac{\partial T^*}{\partial \zeta} = \frac{2}{\eta} \frac{\partial}{\partial \eta} \left(\eta \frac{\partial T^*}{\partial \eta} \right) . \tag{3.83}$$

A noter que le choix de la normalisation de x a été dicté par le besoin d'obtenir cette forme générique indépendante des paramètres dimensionnels (à faire en exercice). Les conditions initiale et à la limite deviennent:

$$T^*(\eta, 0) = 1$$
, $T^*(1, \zeta) = 0$. (3.84)

Les variables sont clairement séparables. On cherche donc une solution de la forme:

$$T^*(\eta, \zeta) = f(\eta) g(\zeta) . \tag{3.85}$$

On obtient alors:

$$(1 - \eta^2) f \frac{dg}{d\zeta} = \frac{2}{\eta} \frac{d}{d\eta} \left(\eta \frac{df}{d\eta} \right) g , \qquad (3.86)$$

et donc:

$$\frac{1}{2g}\frac{dg}{d\zeta} = \frac{1}{\eta (1-\eta^2) f} \frac{d}{d\eta} \left(\eta \frac{df}{d\eta} \right) = -\lambda^2.$$
 (3.87)

Cela donne:

$$\frac{dg}{d\zeta} + 2\lambda^2 g = 0 , (3.88)$$

$$\eta \frac{d^2 f}{d\eta^2} + \frac{df}{d\eta} + \lambda^2 \eta \left(1 - \eta^2\right) f = 0.$$
(3.89)

La fonction g est de la forme $g=C\,e^{-2\,\lambda^2\,\zeta}.$ La solution du problème est donc obtenue comme:

$$T^* = \sum_{n=1}^{\infty} C_n f_n(\eta) e^{-2\lambda_n^2 \zeta}$$
 (3.90)

avec

$$\eta^2 \frac{d^2 f_n}{d\eta^2} + \eta \frac{df_n}{d\eta} + \lambda_n^2 \eta^2 (1 - \eta^2) f_n = 0.$$
 (3.91)

L'imposition de la condition à la limite, $T^*(1,\zeta) = 0$, implique que $f_n(1) = 0$: les λ_n (i.e., les valeurs propres) sont donc telles que les solutions $f_n(\eta)$ de l'équation différentielle

s'annulent en $\eta=1$. L'équation différentielle ci-dessus est fort complexe: à cause du terme $(1-\eta^2)$, il ne s'agit pas d'une équation de Bessel. Le problème a cependant été résolu par Poiseuille en 1885.

Le problème plus simple résolu par Grätz en 1883 est celui où le profil de vitesse est simplifié: on considère un profil plat: $u = u_m$. C'est ce qu'on appelle un écoulement "bouchon" ("slug flow"). Dans ce cas, on obtient plus simplement:

$$\frac{\partial T^*}{\partial \zeta} = \frac{4}{\eta} \frac{\partial}{\partial \eta} \left(\eta \frac{\partial T^*}{\partial \eta} \right) , \qquad (3.92)$$

ce qui donne, avec $T^* = f(\eta) g(\zeta)$:

$$f\frac{dg}{d\zeta} = \frac{4}{\eta}\frac{d}{d\eta}\left(\eta\frac{df}{d\eta}\right)g, \qquad (3.93)$$

et donc:

$$\frac{1}{4g}\frac{dg}{d\zeta} = \frac{1}{\eta f}\frac{d}{d\eta}\left(\eta \frac{df}{d\eta}\right) = -\lambda^2, \qquad (3.94)$$

ou encore:

$$\frac{dg}{d\zeta} + 4\lambda^2 g = 0 , (3.95)$$

$$\eta \, \frac{d^2 f}{d\eta^2} + \frac{df}{d\eta} + \lambda^2 \, \eta \, f = 0 \, . \tag{3.96}$$

La fonction g est donc de la forme $g=C\,e^{-4\,\lambda^2\,\zeta},$ et la solution du problème est donc construite comme:

$$T^* = \sum_{n=1}^{\infty} C_n f_n(\eta) e^{-4\lambda_n^2 \zeta}$$
 (3.97)

avec

$$\eta^2 \frac{d^2 f_n}{d\eta^2} + \eta \frac{df_n}{d\eta} + \lambda_n^2 \eta^2 f_n = 0 , \qquad (3.98)$$

ce qui constitue une équation de Bessel d'ordre 0. Les solutions en sont $J_0(\lambda_n \eta)$ et $Y_0(\lambda_n \eta)$. Comme Y_0 n'est pas borné à l'origine, il faut la rejeter. La solution du problème s'exprime donc sous la forme:

$$T^*(\eta, \zeta) = \sum_{n=1}^{\infty} C_n J_0(\lambda_n \eta) e^{-4\lambda_n^2 \zeta} .$$
 (3.99)

L'imposition de la condition à la limite, $T^*(1,\zeta) = 0$, implique que $J_0(\lambda_n) = 0$: les λ_n (i.e., les valeurs propres) sont donc les zéros successifs de la fonction de Bessel J_0 . L'imposition de la condition initiale, $T^*(\eta,0) = 1$ demande que

$$1 = \sum_{n=1}^{\infty} C_n J_0(\lambda_n \eta) . {(3.100)}$$

Cette condition permet de déterminer les C_n . En effet, on se souvient que les fonctions de Bessel sont orthogonales avec la "fonction poids" η . Plus précisément, pour tout $\alpha \neq \beta$, on a:

$$\int_{0}^{1} \eta J_{0}(\alpha \eta) J_{0}(\beta \eta) d\eta = \frac{\beta J_{1}(\beta) J_{0}(\alpha) - \alpha J_{1}(\alpha) J_{0}(\beta)}{\beta^{2} - \alpha^{2}}, \qquad (3.101)$$

avec J_1 la fonction de Bessel régulière d'ordre 1 (Rappel: $\frac{d}{ds}J_0(s) = -J_1(s)$), et donc, pour tout $\lambda_n \neq \lambda_m$ zéros de la fonction J_0 , on obtient l'orthogonalité:

$$\int_0^1 \eta \, J_0(\lambda_n \, \eta) \, J_0(\lambda_m \, \eta) \, d\eta = 0 \; . \tag{3.102}$$

On se souvient aussi que:

$$\int_0^1 \eta \ (J_0(\alpha \eta))^2 \ d\eta = \frac{1}{2} \ (J_0(\alpha))^2 + \frac{1}{2} \ (J_1(\alpha))^2 \ , \tag{3.103}$$

et donc, pour tout λ_n zéro de la fonction J_0 , on obtient la normalisation:

$$\int_0^1 \eta \ (J_0(\lambda_n \eta))^2 \ d\eta = \frac{1}{2} \ (J_1(\lambda_n))^2 \ . \tag{3.104}$$

En multipliant Eq. (3.100) par $\eta J_0(\lambda_m \eta)$ et en intégrant, on obtient donc:

$$\int_0^1 \eta J_0(\lambda_m \eta) d\eta = \sum_{n=0}^\infty C_n \int_0^1 \eta J_0(\lambda_m \eta) J_0(\lambda_n \eta) = C_m \frac{1}{2} (J_1(\lambda_m))^2 . \tag{3.105}$$

Comme $\int s J_0(s) ds = s J_1(s)$, on a aussi que

$$\int_0^1 \eta \, J_0(\lambda_m \, \eta) \, d\eta = \frac{1}{\lambda_m} \, \left[\eta \, J_1(\lambda_m \, \eta) \right]_0^1 = \frac{1}{\lambda_m} \, J_1(\lambda_m) \, . \tag{3.106}$$

On a donc, pour le coefficient C_m :

$$C_m = \frac{2}{\lambda_m J_1(\lambda_m)} \,. \tag{3.107}$$

Le champ de température est finalement obtenu:

$$T^*(\eta,\zeta) = 2\sum_{n=1}^{\infty} \frac{J_0(\lambda_n \eta)}{\lambda_n J_1(\lambda_n)} e^{-4\lambda_n^2 \zeta}.$$
 (3.108)

Il est représenté à la Fig. 3.14.

On a aussi:

$$\frac{\partial T^*}{\partial \eta} = -2 \sum_{n=1}^{\infty} \frac{J_1(\lambda_n \eta)}{J_1(\lambda_n)} e^{-4\lambda_n^2 \zeta} . \tag{3.109}$$

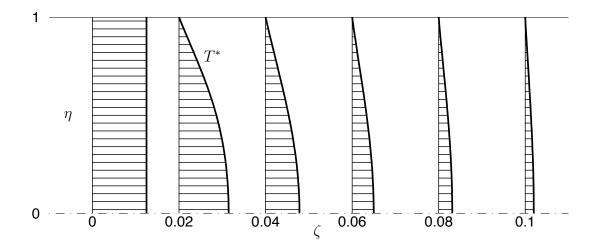


Figure 3.14: Entrée thermique avec écoulement bouchon en conduite circulaire: évolution spatiale du champ de température.

Le transfert de chaleur à la paroi est donc:

$$q_w(\zeta) = k \frac{\partial T}{\partial r}\Big|_{r=R} = \frac{k}{R} (T_0 - T_w) \frac{\partial T^*}{\partial \eta}\Big|_{\eta=1} = -\frac{k}{R} (T_0 - T_w) 2 \sum_{n=1}^{\infty} e^{-4\lambda_n^2 \zeta}.$$
 (3.110)

La température moyenne de référence utilisée pour définir le nombre de Nusselt est obtenue comme

$$\frac{T_m - T_w}{T_0 - T_w} = T_m^*(\zeta) = \frac{\int T^* u \, dA}{u_m A} = \frac{\int T^* \, dA}{A} = 2 \int_0^1 T^*(\eta, \zeta) \, \eta \, d\eta = 4 \sum_{n=1}^\infty \frac{1}{\lambda_n^2} e^{-4\lambda_n^2 \zeta}$$
(3.111)

où on a utilisé le fait que $u = u_m$ dans ce problème simplifié avec écoulement bouchon. On a donc finalement, pour le nombre de Nusselt:

$$Nu(\zeta) = \frac{q_w D}{k (T_w - T_m)} = \frac{\sum_{n=1}^{\infty} e^{-4\lambda_n^2 \zeta}}{\sum_{n=1}^{\infty} \frac{1}{\lambda_n^2} e^{-4\lambda_n^2 \zeta}}.$$
 (3.112)

Son évolution est donnée à la Fig. 3.15.

Quelle est la longueur de développement caractéristique d'une telle entrée thermique? Elle est essentiellement déterminée par le terme exponentiel qui décroît le moins vite, $e^{-4\lambda_1^2\zeta}$. On a donc, comme estimation de la longeur de développement (pour passer de 1 à e^{-1} dans le facteur exponentiel dominant):

$$\zeta_c \approx \frac{1}{4\lambda_1^2} = 0.043 \ .$$
(3.113)

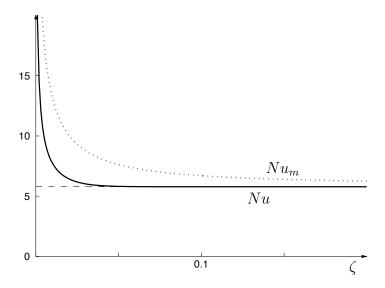


Figure 3.15: Entrée thermique avec écoulement bouchon en conduite circulaire: évolution des nombres de Nusselt Nu et Nu_m .

Quel est le transfert de chaleur asymptotique? Pour $\zeta > \zeta_c$, on obtient:

$$Nu(\zeta > \zeta_c) \approx \lambda_1^2 = 5.78 . \tag{3.114}$$

(Pour comparaison: avec le profil de vitesse de Poiseuille, la longueur caractéristique obtenue est $\zeta_c \approx 0.068$ et le transfert de chaleur asymptotique est $Nu(\zeta > \zeta_c) \approx 3.66$.)

3.2.4 Nombre de Nusselt moyen

On définit le flux de chaleur moyen réalisé sur une distance x par:

$$q_{w,m}(x) = \frac{1}{x} \int_0^x q_w(x') dx'. \qquad (3.115)$$

A noter que, par définition, on a: $d(x q_{w,m}(x)) = q_w(x) dx$.

Le flux de transfert total réalisé sur une distance x est une grandeur importante car il correspond à l'energie thermique globale perdue (gagnée) par le fluide sur la distance x. Le bilan global donne:

$$(2\pi R) x q_{w,m}(x) = (\pi R^2) \rho u_m c (T_m(x) - T_m(0))$$
(3.116)

de sorte que $T_m(x)$ peut être calculé si $q_{w,m}(x)$ est connu. On note aussi que la forme différentielle du bilan d'énergie,

$$d(x q_{w,m}(x)) = q_w(x) dx = \frac{D}{4} \rho u_m c dT_m, \qquad (3.117)$$

s'intègre bien pour redonner le bilan global:

$$x q_{w,m}(x) = -\frac{D}{4} \rho u_m c \left(T_m(x) - T_m(0) \right) = \frac{1}{4} \frac{\rho u_m D}{\mu} \frac{\mu c}{k} k \left(T_m(x) - T_m(0) \right)$$
$$= \frac{1}{4} Re_D Pr k \left(T_m(x) - T_m(0) \right) . (3.118)$$

L'équation différentielle de bilan peut aussi s'exprimer en terme de Nu:

$$Nu(x) dx = \frac{q_w(x) D}{k (T_w - T_m)} dx = D^2 / 4 \frac{\rho u_m c}{k} \frac{dT_m}{(T_w - T_m)}$$

$$= \frac{D}{4} \frac{\rho u_m D}{\mu} \frac{\mu c}{k} \frac{dT_m}{(T_w - T_m)}$$

$$= \frac{D}{4} Re_D Pr \frac{dT_m}{(T_w - T_m)}, \qquad (3.119)$$

résultat différentiel général, qui est même valable lorsque T_w dépend de x. Dans le cas avec T_w constant (comme dans le problème de Grätz), on a $dT_m = d(T_m - T_w)$, et l'équation s'intègre facilement pour donner:

$$x N u_m(x) = \frac{D}{4} Re_D Pr \log \left[\left(T_w - T_m(0) \right) / \left(T_w - T_m(x) \right) \right] . \tag{3.120}$$

A quoi correspond le nombre de Nusselt moyen, $Nu_m(x)$ défini ci-dessus? En comparant les résultats obtenus pour $q_{w,m}(x)$ et $Nu_m(x)$, on constate qu'il correspond au transfert de chaleur moyen normalisé,

$$Nu_m(x) = \frac{q_{w,m}(x)D}{k\Delta T_m}, \qquad (3.121)$$

avec, comme référence ΔT_m pour la différence globale de température, la "moyenne logarithmique":

$$\Delta T_m = \frac{\left[(T_w - T_m(0)) - (T_w - T_m(x)) \right]}{\log \left[(T_w - T_m(0)) / (T_w - T_m(x)) \right]} \,. \tag{3.122}$$

Pour le problème de Grätz, on a, en termes adimensionnels,

$$\zeta N u_m(\zeta) = -\frac{1}{4} \log \left(T_m^*(\zeta) \right) . \tag{3.123}$$

Avec l'écoulement bouchon, $u = u_m$, cela donne:

$$Nu_m(\zeta) = -\frac{1}{4\zeta} \log \left[4 \sum_{n=1}^{\infty} \frac{1}{\lambda_n^2} e^{-4\lambda_n^2 \zeta} \right] , \qquad (3.124)$$

résultat qui est aussi donné à la Fig. 3.15. Pour $\zeta \gg \zeta_c$, la valeur asymptotique de Nu_m est obtenue en considérant le terme dominant:

$$Nu_m(\zeta \gg \zeta_c) \approx -\frac{1}{4\zeta} \log \left[\frac{4}{\lambda_1^2} e^{-4\lambda_1^2 \zeta} \right] = -\frac{1}{4\zeta} \left(\log \left(\frac{4}{\lambda_1^2} \right) - 4\lambda_1^2 \zeta \right) \simeq \lambda_1^2 = 5.78 ,$$

$$(3.125)$$

ce qui est, bien sûr, la même valeur asymptotique que celle obtenue pour $Nu(\zeta > \zeta_c)$. On note que $Nu_m(\zeta)$ converge moins vite vers la valeur asymptotique que $Nu(\zeta)$.

Chapitre 4

Ecoulements rampants

Les écoulements rampants sont les écoulements lents aussi communément appelés écoulements de Stokes. Les termes non-linéaires d'inertie sont supposés négligeables par rapport aux termes de gradient de pression et de diffusion. Dans le cas de fluides à grandeurs physiques invariables, ces écoulements sont régis par des équations linéaires:

$$\nabla \cdot \mathbf{v} = 0 , \qquad (4.1)$$

$$\nabla p = \mu \nabla^2 \mathbf{v} . \tag{4.2}$$

Si on prend la divergence de l'équation de quantité de mouvement, on obtient:

$$\nabla^2 p = \nabla \cdot (\nabla p) = \mu \, \nabla \cdot (\nabla^2 \mathbf{v}) = \mu \, \nabla^2 (\nabla \cdot \mathbf{v}) = 0 , \qquad (4.3)$$

où on a utilisé la propriété de commutation entre les opérateurs $\nabla \cdot ()$ et $\nabla^2 ()$. La pression est donc harmonique: $\nabla^2 p = 0$.

Si on prend le rotationnel de l'équation de quantité de mouvement, on obtient:

$$0 = \nabla \times (\nabla p) = \mu \,\nabla \times (\nabla^2 \mathbf{v}) = \mu \,\nabla^2 (\nabla \times \mathbf{v}) = \mu \,\nabla^2 \boldsymbol{\omega}, \tag{4.4}$$

où on a utilisé la propriété de commutation entre les opérateurs $\nabla \times$ () et ∇^2 (). Le tourbillon est donc aussi harmonique: $\nabla^2 \omega = 0$. De plus, comme on a que $\nabla^2 \psi = -\omega$, on a aussi que $\nabla^2 (\nabla^2 \psi) = 0$: la fonction de courant est donc bi-harmonique. A noter qu'on utilise aussi souvent la notation ∇^4 () pour désigner le double Laplacien. On écrit donc, de manière équivalente: $\nabla^4 \psi = 0$.

Les écoulements de Stokes sont donc très particuliers: la pression et le tourbillon sont des fonctions harmoniques, la fonction de courant est une fonction bi-harmonique.

4.1 Ecoulement rampant autour d'un cylindre de section circulaire

On considère ici l'écoulement permanent bidimensionnel autour d'un cylindre de section circulaire de rayon a. Cet écoulement n'est pas un écoulement établi. Le nombre de Reynolds caractéristique de cet écoulement est $Re_D = U_\infty D/\nu$, avec U_∞ la vitesse à "l'infini" (i.e., loin du cylindre) et D=2a le diamètre du cylindre. Etant donné la géométrie circulaire, les coordonnées polaires s'imposent. Les équations de conservation de la masse et de la quantité de mouvement ont déjà été présentées. Il est sans espoir d'en obtenir une solution exacte valable pour tous les nombres de Reynolds. Nous nous attachons ici à en chercher la solution dans le cas où $Re_D \ll 1$, les termes non-linéaires d'inertie étant alors négligés par rapport aux termes de gradient de pression et de diffusion: approximation d'écoulement rampant (i.e., d'écoulement de Stokes).

On se place dans un repère fixe par rapport au cylindre. La vitesse infinie amont, U_{∞} , est prise positive (i.e., l'écoulement vient de la gauche). La surface du cylindre est une ligne de courant: ψ y est donc constant. En effet, le long du cylindre, on a que $u_r = 0$, ce qui requiert que $\frac{\partial \psi}{\partial \theta} = 0$ en r = R, et donc que ψ soit constant le long du cylindre. Comme la fonction de courant n'est définie qu'à une constante arbitraire près, on peut prendre, sans perte de généralité, que $\psi = 0$ en r = a. L'écoulement est symétrique par rapport à l'axe des x: ω est donc antisymétrique par rapport à ce même axe: $\omega(r, -\theta) = -\omega(r, \theta)$.

La solution est facilement obtenue si on travaille en terme de fonction de courant. Très loin du cylindre, on doit avoir que $u=\frac{\partial \psi}{\partial y}\to U_{\infty}$ et que $v=-\frac{\partial \psi}{\partial x}\to 0$. On a donc que $\psi\to U_{\infty}\,y=U_{\infty}\,r\,\sin\theta$, que $u_r\to U_{\infty}\,\cos\theta$ et $u_\theta\to -U_{\infty}\,\sin\theta$. On considère donc une fonction ψ de la forme générale:

$$\psi = f(r)\sin\theta \,, \tag{4.5}$$

ce qui conduit à:

$$-\omega = \nabla^2 \psi = \left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - \frac{1}{r^2}\right)f(r)\sin\theta. \tag{4.6}$$

La fonction f(r) est de la forme $a_p r^p$. On a donc:

$$-\omega = a_p \left(p^2 - 1 \right) r^{p-2} \sin \theta . \tag{4.7}$$

Cela conduit à:

$$0 = -\nabla^2 \omega = a_p \left((p-2)^2 - 1 \right) \left(p^2 - 1 \right) r^{p-4} \sin \theta . \tag{4.8}$$

Comme cela doit être vérifié pour tous les θ , on en déduit que p est solution du polynôme caractéristique: $((p-2)^2-1)$ $(p^2-1)=0$. Il y a une racine double: la fonction f(r) est donc une combinaison linéaire de r, $r \log r$, r^{-1} et r^3 . On a donc, finalement:

$$\psi = U_{\infty} a \left(c_1 \frac{r}{a} + c_2 \frac{a}{r} + c_3 \frac{r}{a} \log \left(\frac{r}{a} \right) + c_4 \left(\frac{r}{a} \right)^3 \right) \sin \theta . \tag{4.9}$$

Le terme en r^3 est à rejeter étant donné les conditions de régularité à l'infini. Strictement parlant, il en est de même du terme en $r \log r$, mais gardons le pour le moment: il diverge certainement beaucoup moins rapidement que le terme en r^3 ! On a donc, pour le champ de vitesse:

$$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = U_{\infty} \left(c_1 + c_2 \left(\frac{a}{r} \right)^2 + c_3 \log \left(\frac{r}{a} \right) \right) \cos \theta ,$$
 (4.10)

$$u_{\theta} = -\frac{\partial \psi}{\partial r} = -U_{\infty} \left(c_1 - c_2 \left(\frac{a}{r} \right)^2 + c_3 \left(\log \left(\frac{r}{a} \right) + 1 \right) \right) \sin \theta . \tag{4.11}$$

La condition de vitesse nulle à la surface du cylindre mène alors à:

$$u_r = U_{\infty} c_1 \left(1 - \left(\frac{a}{r} \right)^2 - 2 \log \left(\frac{r}{a} \right) \right) \cos \theta , \qquad (4.12)$$

$$u_{\theta} = -U_{\infty} c_1 \left(-1 + \left(\frac{a}{r} \right)^2 - 2 \log \left(\frac{r}{a} \right) \right) \sin \theta . \tag{4.13}$$

Finalement, très loin du cylindre, on devrait avoir que que $\psi \to U_{\infty} y = U_{\infty} r \sin \theta$, que $u_r \to U_{\infty} \cos \theta$ et $u_{\theta} \to -U_{\infty} \sin \theta$. Manifestement, il est impossible de satisfaire, et la condition de vitesse nulle à la paroi, et la condition de vitesse uniforme à l'infini! Ceci constitue le paradoxe de Stokes: il n'y a pas de solution pour l'écoulement rampant autour du cylindre bidimensionnel! Pour tout nombre de Reynolds, aussi faible soit-il, un écoulement rampant autour d'un cylindre bidimensionnel ne peut pas exister. Le terme non-linéaire d'inertie est donc toujours significatif: le supprimer complètement mène à un problème qui n'a tout simplement pas de solution. En désespoir de cause, le mieux que nous puissions ici offrir comme solution (non-régulière) est:

$$\psi = U_{\infty} a \left(\frac{r}{a} - \frac{a}{r} - 2\frac{r}{a}\log\left(\frac{r}{a}\right)\right) \sin \theta
= U_{\infty} a \left(\frac{r}{a} - \frac{a}{r} + \frac{r}{a}\log\left(\left(\frac{a}{r}\right)^{2}\right)\right) \sin \theta , \qquad (4.14)$$

$$u_{r} = U_{\infty} \left(1 - \left(\frac{a}{r}\right)^{2} - 2\log\left(\frac{r}{a}\right)\right) \cos \theta
= U_{\infty} \left(1 - \left(\frac{a}{r}\right)^{2} + \log\left(\left(\frac{a}{r}\right)^{2}\right)\right) \cos \theta , \qquad (4.15)$$

$$u_{\theta} = U_{\infty} \left(1 - \left(\frac{a}{r}\right)^{2} + 2\log\left(\frac{r}{a}\right)\right) \sin \theta
= U_{\infty} \left(1 - \left(\frac{a}{r}\right)^{2} - \log\left(\left(\frac{a}{r}\right)^{2}\right)\right) \sin \theta , \qquad (4.16)$$

qui, bien sûr, diverge de façon logarithmique à l'infini. Rappelons, en passant, qu'une divergence logarithmique est une divergence "douce", car plus douce que n'importe quelle puissance de r.

Finalement, il est utile de mentionner que le paradoxe de Stokes est vrai pour l'écoulement autour de n'importe quel corps bidimensionnel: il n'y a pas de solution de type "écoulement rampant".

Nous examinons maintenant le cas très utile de l'écoulement de type Stokes autour de la sphère: celui-là a une solution.

4.2 Ecoulement rampant autour d'une sphère

On considère l'écoulement rampant tridimensionnel autour d'une sphère de rayon a. De nouveau, cet écoulement n'est pas un écoulement établi. Le nombre de Reynolds caractéristique est $Re_D = U_{\infty}D/\nu$ avec D=2a le diamètre de la sphère. Les coordonnées sphériques sont ici naturelles. De nouveau, on recherche la solution pour l'écoulement rampant avec $Re_D \ll 1$: les termes non-linéaires d'inertie sont négligés par rapport aux termes de gradient de pression et de diffusion. De nouveau, on travaille en terme de fonction de courant. On se place dans un repère fixe par rapport au centre de la sphère. La vitesse à l'infini, U_{∞} , est prise positive. A l'infini, on doit avoir que $u \to U_{\infty}$ et que $v \to 0$. On a donc que $u_r \to U_{\infty}$ cos θ et $u_{\theta} \to -U_{\infty}$ sin θ . On a donc que $\psi \to \frac{1}{2}U_{\infty}r$ sin θ . On considère donc une solution de la forme $\psi = f(r) \sin \theta$. Cela conduit à

$$u_r = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \, \psi) = \frac{f}{r} \frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin^2 \theta \right) = 2 \frac{f}{r} \cos \theta \,, \tag{4.17}$$

$$u_{\theta} = -\frac{1}{r}\frac{\partial}{\partial r}(r\,\psi) = -\frac{1}{r}\frac{d}{dr}(r\,f)\,\sin\theta = -\left(\frac{df}{dr} + \frac{f}{r}\right)\,\sin\theta\,\,. \tag{4.18}$$

Le tourbillon est

$$-\omega = -\frac{1}{r}\frac{\partial}{r}(r u_{\theta}) + \frac{1}{r}\frac{\partial u_{r}}{\partial \theta} = \nabla^{2}\psi - \frac{\psi}{r^{2}\sin^{2}\theta}$$
$$= \left(\frac{d^{2}f}{dr^{2}} + \frac{2}{r}\frac{df}{dr} - \frac{2}{r^{2}}f\right)\sin\theta = g(r)\sin\theta. \tag{4.19}$$

Le tourbillon est harmonique, i.e., la fonction de courant est biharmonique:

$$0 = \nabla^2 \omega - \frac{\omega}{r^2 \sin^2 \theta} = \left(\frac{d^2 g}{dr^2} + \frac{2}{r} \frac{dg}{dr} - \frac{2}{r^2} g\right) \sin \theta . \tag{4.20}$$

On a donc finalement l'équation différentielle pour f(r):

$$= \left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - \frac{2}{r^2}\right) \left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - \frac{2}{r^2}\right) f = 0 \tag{4.21}$$

Cette équation est linéaire, et sa solution est de la forme r^p . Par substitution, on obtient le polynôme caractéristique:

$$p(p-3)(p-1)(p+2) = 0 (4.22)$$

dont les racines sont p = 0, p = 3, p = 1 et p = -2. La fonction f(r) est donc une combinaison linéaire de 1, r^3 , r et r^{-2} . On a donc:

$$\psi = U_{\infty} a \left(c_1 + c_2 \frac{r}{a} + c_3 \left(\frac{a}{r} \right)^2 + c_4 \left(\frac{r}{a} \right)^3 \right) \sin \theta;$$
 (4.23)

La condition à l'infini requiert que $c_4 = 0$ et que $c_2 = 1/2$. Les conditions de vitesse nulle à la surface de la sphère, $u_r = u_\theta = 0$ en r = a, déterminent ensuite que $c_1 = -3/4$ et que $c_3 = 1/4$. Finalement, on a donc:

$$\psi = U_{\infty} a \left(\frac{1}{2} \frac{r}{a} - \frac{3}{4} + \frac{1}{4} \left(\frac{a}{r}\right)^2\right) \sin \theta , \qquad (4.24)$$

$$u_r = U_{\infty} \left(1 - \frac{3}{2} \left(\frac{a}{r} \right) + \frac{1}{2} \left(\frac{a}{r} \right)^3 \right) \cos \theta , \qquad (4.25)$$

$$u_{\theta} = -U_{\infty} \left(1 - \frac{3}{4} \left(\frac{a}{r} \right) - \frac{1}{4} \left(\frac{a}{r} \right)^{3} \right) \sin \theta , \qquad (4.26)$$

$$\omega = -\frac{U_{\infty}}{a} \frac{3}{2} \left(\frac{a}{r}\right)^2 \sin \theta . \tag{4.27}$$

On a $\psi = 0$ sur la surface de la sphère. Les lignes de courant de l'écoulement sont données à la Fig. 4.1. Le champ tourbillon est donné à la Fig. 4.2.

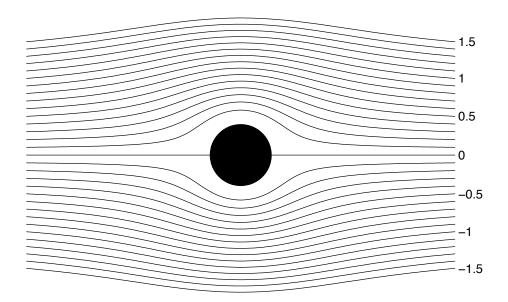


Figure 4.1: Lignes de courant pour l'écoulement rampant autour de la sphère: iso-contours de $\psi/\left(U_{\infty}\,a\right)$.

Notons que la pertubation causée par la sphère est considérable: le champ de vitesse ne décroît qu'en 1/r, ce qui est très lent. Finalement, notons que le champ de vitesse d'un

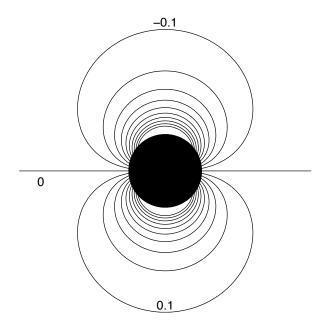


Figure 4.2: Tourbillon pour l'écoulement rampant autour de la sphère: iso-contours de $\omega/\left(U_{\infty}/a\right)$.

écoulement de Stokes ne dépend pas de la viscosité, μ du fluide. Il n'en va pas de même, bien sûr, pour la contrainte de cisaillement:

$$\tau_{r\theta} = 2\mu \, d_{r\theta} = \mu \, \left(r \, \frac{\partial}{\partial r} \left(\frac{u_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial u_{r}}{\partial \theta} \right) = -\mu \, \frac{U_{\infty}}{a} \, \frac{3}{2} \left(\frac{a}{r} \right)^{4} \sin \theta \,. \tag{4.28}$$

Il n'en va pas non plus de même pour la pression. Celle-ci est obtenue par intégration:

$$p - p_{\infty} = -\mu \frac{U_{\infty}}{a} \frac{3}{2} \left(\frac{a}{r}\right)^2 \cos \theta \tag{4.29}$$

avec p_{∞} la pression à l'infini. Rappelons qu'en écoulement incompressible, la pression n'est définie qu'à une constante près. Le champ de pression de l'écoulement est donné à la Fig. 4.3.

Par intégration de la composante en x de la contrainte de cisaillement agissant sur la surface de la sphère, on obtient la traînée de frottement, \mathcal{D}_{τ} (\mathcal{D} pour "drag"). l'élément de surface est ici $dS = (r \sin \theta \, d\phi)(r \, d\theta)$ avec ϕ l'angle azimutal. On a donc:

$$\mathcal{D}_{\tau} = -\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \left(\tau_{r\theta} \Big|_{r=a} \sin \theta \right) (a \sin \theta \, d\phi) (a \, d\theta)$$
$$= \mu \frac{U_{\infty}}{a} \frac{3}{2} 2\pi \, a^2 \int_{0}^{\pi} \sin^3 \theta \, d\theta = 4\pi \, \mu \, U_{\infty} \, a \, . \tag{4.30}$$

De même, par intégration de la composante en x de la pression agissant sur la surface de la sphère, on obtient la traînée de pression, D_p :

$$\mathcal{D}_{p} = -\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \left((p - p_{\infty}) \Big|_{r=a} \cos \theta \right) (a \sin \theta \, d\phi) (a \, d\theta)$$
$$= \mu \frac{U_{\infty}}{a} \frac{3}{2} 2\pi \, a^{2} \int_{0}^{\pi} \cos^{2} \theta \, \sin \theta \, d\theta = 2\pi \, \mu \, U_{\infty} \, a \, . \tag{4.31}$$

Nous avons ici obtenu la célèbre formule de Stokes (1851) pour la traînée de la sphère en écoulement rampant: 2/3 de traînée de frottement et 1/3 de traînée de pression, le tout donnant:

$$\mathcal{D} = \mathcal{D}_{\tau} + \mathcal{D}_{p} = 6\pi \,\mu \,U_{\infty} \,a \,. \tag{4.32}$$

Le coefficient adimensionnel de traînée est défini en utilisant la section de la sphère comme surface de référence:

$$C_{\mathcal{D}} = \frac{\mathcal{D}}{\frac{1}{2}\rho U_{\infty}^2 \pi a^2} = \frac{12\,\nu}{U_{\infty}\,a} = \frac{24}{Re_D} \,.$$
 (4.33)

Cette célèbre formule s'avère très utile dans de nombreux problèmes pratiques. Bien que strictement valable pour $Re_D \ll 1$, il se fait qu'elle se compare bien avec les résultats expérimentaux jusqu'à des valeurs de Re_D proches de l'unité.

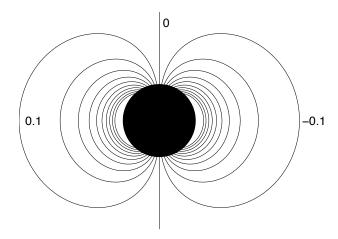


Figure 4.3: Pression pour l'écoulement rampant autour de la sphère: iso-contours de $(p-p_\infty)\,/\,(\mu U_\infty/a).$

4.3 Théorie de la lubrification

La théorie de la lubrification fait partie des écoulements rampants. Pour de tels écoulements, les termes non-linéaires d'inertie sont négligeables par rapport aux termes de gradient

de pression et de diffusion, et ce parce que le nombre de Reynolds caractéristique de l'écoulement est petit. Cette hypothèse est, bien sûr, à vérifier.

Nous considérons ici, à titre d'exemple et d'introduction à la théorie de la lubrification, le cas du palier plat et plan, voir Fig. 4.4.

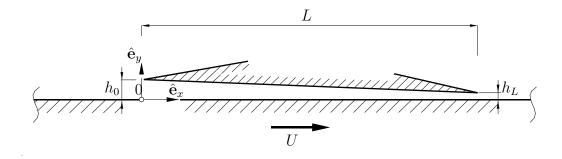


Figure 4.4: Lubrification: cas du palier plat.

Dans le repère choisi, le bloc supérieur (i.e., le palier) est fixe et est légèrement incliné par rapport à la plaque inférieure. Cette dernière est mobile et se déplace à vitesse constante U. A noter que, dans un système de coordonnées fixé à la plaque, ce serait le contraire: le palier serait mobile et la plaque serait fixe. Cela revient au même: en effet, la vitesse de déplacement relatif étant constante, on peut travailler dans l'un ou l'autre repère. Pour la suite, nous verrons que le repère avec palier fixe facilite les développements mathématiques.

L'important pour créer de la portance (et donc assurer le rôle à la fois porteur et lubrificateur du palier), est, comme nous le verrons ci-dessous, que l'écart entre les deux surfaces solides ne soit pas constant, d'où l'angle relatif, α , entre les deux surfaces. Dans le cas du palier plat, on a

$$h(x) = h_0 - (h_0 - h_L) \frac{x}{L} = h_0 - \tan \alpha x.$$
 (4.34)

A noter que l'angle est faible: $\alpha \approx \tan \alpha \ll 1$. Il faut aussi que l'écart soit faible comparé à la longueur du palier: $h(x) \ll L$: Cela permet de valider l'hypothèse que les termes d'inertie sont effectivement négligeables: $\rho u \frac{\partial u}{\partial x} \ll \mu \frac{\partial^2 u}{\partial y^2}$, c.-à-d., en utilisant les ordres de grandeur, que:

$$\rho U \frac{U}{L} \ll \mu \frac{U}{h_0^2} \,, \tag{4.35}$$

où on a choisi h_0 car c'est le plus critique. Cela revient donc à demander que

$$\frac{\rho U L}{\mu} \left(\frac{h_0}{L}\right)^2 = Re_L \left(\frac{h_0}{L}\right)^2 \ll 1. \tag{4.36}$$

On voit donc que le nombre de Reynolds, Re_L , basé sur la longueur, L, du palier peut être grand si le plus grand écart, h_0 , est suffisamment petit. A noter que ce n'est pas un facteur h_0/L qui multiplie Re_L , mais bien un facteur $(h_0/L)^2$! Ceci est tout à l'avantage de la théorie de la lubrification: elle sera souvent tout à fait justifiée et donc souvent très utile en ingénierie. A titre d'exemple, considérons un cas tel que U = 10 m/s, L = 10 cm et $h_0 = 0.1$ mm, avec une huile de lubrification SAE 50 à $T = 60 \,^{\circ}C$. La viscosité cinématique de cette huile à cette température est $\nu \approx 6.7 \, 10^{-5} \, \mathrm{m}^2/\mathrm{s}$. On aura alors $Re_L \approx 1.5 \, 10^4$ qui est clairement beaucoup plus grand que l'unité, mais $Re_L (h_0/L)^2 \approx 1.5 \, 10^{-2}$ qui est clairement beaucoup plus petit que l'unité. L'hypothèse consistant à admettre que les termes d'inertie sont négligeables est donc ici tout à fait justifiée.

Comme l'angle α est faible, on peut facilement obtenir une très bonne approximation de l'écoulement. En effet, bien que l'écoulement ne soit pas strictement établi puisque la section de passage varie en x, il est "presque établi" puisque la section de passage varie faiblement en x vu que l'angle est faible. On a en fait que $\frac{\partial u}{\partial x} \ll \frac{\partial u}{\partial y}$. L'ecoulement est donc essentiellement un écoulement de type Poiseuille-Couette avec gradient de pression. Dans le cas présent avec u(0) = U et u(h) = 0, le profil de vitesse Poiseuille-Couette est:

$$u = -\frac{dp}{dx} \frac{h^2}{2\mu} \frac{y}{h} \left(1 - \frac{y}{h} \right) + U \left(1 - \frac{y}{h} \right) . \tag{4.37}$$

Pourquoi l'écoulement ne serait-il pas simplement un écoulement de Couette avec gradient de pression nul? Cette solution n'est pas acceptable car elle viole la conservation du débit au travers de chaque section. En plus de l'écoulement de Couette, un écoulement de Poiseuille doit aussi se développer de manière à assurer la conservation du débit au travers de chaque section. A cet écoulement de Poiseuille correspond un gradient de pression. Celui-ci est nécessairement fonction de x afin d'assurer la conservation de débit à chaque section. La pression est la même à l'entrée, x = 0, et à la sortie, x = L, soit $p(0) = p(L) = p_0$. Elle augmente, atteint un maximum, et diminue. L'ecoulement de Poiseuille est donc dirigé vers l'entrée et vers la sortie, en partant du point de pression maximum.

Le débit, Q, est uniforme (i.e., ne dépend pas de x):

$$Q = \int_0^h u dy = -\frac{dp}{dx} \frac{h^3}{12\mu} + \frac{Uh}{2} , \qquad (4.38)$$

ce qui entraîne la relation suivante:

$$-h^3 \frac{dp}{dx} = 12\mu \left(Q - \frac{Uh}{2} \right) . \tag{4.39}$$

Ceci constitue l'équation de Reynolds en lubrification (1889). A noter que le profil de gradient de pression est connu si Q est connu. La forme différentielle de cette équation est obtenue en écrivant que dQ/dx = 0:

$$\frac{d}{dx}\left(h^3\frac{dp}{dx}\right) = 6\,\mu\,U\,\frac{dh}{dx}\,. (4.40)$$

Donc, pour tout palier avec h(x) donné, on peut intégrer (numériquement, voire exactement quand c'est possible) l'équation différentielle de Reynolds avec les conditions aux limites: $p(0) = p(L) = p_0$. Ce n'est pas simple, même dans le cas du palier plat (à essayer en exercice).

En fait, dans le cas du palier plat, on peut grandement se faciliter la tâche en utilisant une petite astuce qui permet de déterminer Q et donc tout le reste. On écrit:

$$\frac{dp}{dx} = \frac{dp}{dh}\frac{dh}{dx} = -\frac{dp}{dh}\frac{(h_0 - h_L)}{L}\,,\tag{4.41}$$

ce qui conduit à:

$$\frac{dp}{dh} = \frac{12\,\mu\,L}{(h_0 - h_L)} \left(\frac{Q}{h^3} - \frac{U}{2h^2}\right) \,, \tag{4.42}$$

et donc, par intégration, à

$$p(h) = \frac{6 \,\mu L}{(h_0 - h_L)} \left(\frac{U}{h} - \frac{Q}{h^2} + C \right) . \tag{4.43}$$

La constante d'intégration se détermine facilement en utilisant la condition que $p = p_0$ en $h = h_0$,

$$p_0 = \frac{6\,\mu\,L}{(h_0 - h_L)} \left(\frac{U}{h_0} - \frac{Q}{h_0^2} + C\right) , \qquad (4.44)$$

et donc, finalement:

$$p(h) - p_0 = \frac{6 \,\mu L}{(h_0 - h_L)} \left(U \left(\frac{1}{h} - \frac{1}{h_0} \right) - Q \left(\frac{1}{h^2} - \frac{1}{h_0^2} \right) \right) . \tag{4.45}$$

Mais, on a aussi que $p = p_0$ en $h = h_L!$ Cela donne l'équation qui détermine Q:

$$0 = \frac{6 \,\mu L}{(h_0 - h_L)} \left(U \left(\frac{1}{h_L} - \frac{1}{h_0} \right) - Q \left(\frac{1}{h_L^2} - \frac{1}{h_0^2} \right) \right) , \tag{4.46}$$

et donc

$$Q = U \frac{\left(\frac{1}{h_L} - \frac{1}{h_0}\right)}{\left(\frac{1}{h_L^2} - \frac{1}{h_0^2}\right)} = U \frac{h_0 h_L}{(h_0 + h_L)}.$$
 (4.47)

A noter que le débit ne dépend que de la vitesse U et des paramètres géométriques h_0 et h_L .

On peut maintenant tout déterminer. Pour le profil de pression, on obtient:

$$p(h) - p_{0} = \frac{6 \mu U L}{(h_{0} - h_{L})} \left(\left(\frac{1}{h} - \frac{1}{h_{0}} \right) - \frac{h_{0} h_{L}}{(h_{0} + h_{L})} \left(\frac{1}{h^{2}} - \frac{1}{h_{0}^{2}} \right) \right)$$

$$= \frac{6 \mu U L}{(h_{0} - h_{L})} \left(\frac{1}{h} - \frac{1}{h_{0}} \right) \left(1 - \frac{h_{0} h_{L}}{(h_{0} + h_{L})} \left(\frac{1}{h} + \frac{1}{h_{0}} \right) \right)$$

$$= \frac{6 \mu U L}{(h_{0}^{2} - h_{L}^{2})} \frac{(h_{0} - h) (h - h_{L})}{h^{2}}. \tag{4.48}$$

On peut aussi l'exprimer en fonction de x, bien que le résultat soit moins compact. Puisque $h_0 - h = (h_0 - h_L) \ x/L$ et que $h - h_L = (h_0 - h_L) \ (1 - x/L)$, on obtient:

$$p(x) - p_{0} = \frac{6 \mu U L}{(h_{0}^{2} - h_{L}^{2})} (h_{0} - h_{L})^{2} \frac{(x/L) (1 - x/L)}{(h_{0} - (h_{0} - h_{L}) x/L)^{2}}$$

$$= 6 \mu U L \frac{(h_{0} - h_{L})}{(h_{0} + h_{L})} \frac{(x/L) (1 - x/L)}{(h_{0} - (h_{0} - h_{L}) x/L)^{2}}$$

$$= \frac{6 \mu U L}{h_{0}^{2}} \frac{(1 - h_{L}/h_{0})}{(1 + h_{l}/h_{0})} \frac{(x/L) (1 - x/L)}{(1 - (1 - h_{L}/h_{0}) x/L)^{2}}, \qquad (4.49)$$

resultat qui est représenté à la Fig. 4.5 pour différentes valeurs du rapport de contraction h_L/h_0 .

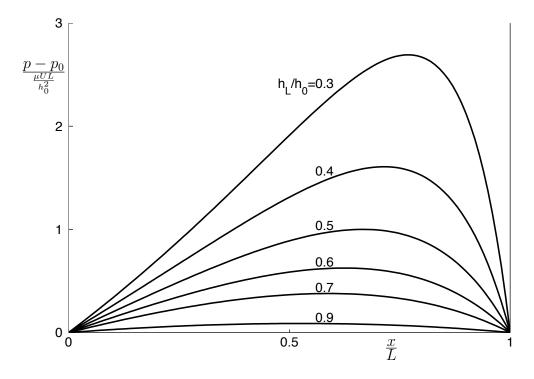


Figure 4.5: Profils de pression pour le cas du palier plat.

Le point avec maximum de pression (i.e., avec $\frac{dp}{dx} = 0$) se trouve aussi facilement: puisque $\frac{dh}{dx} \neq 0$, on l'obtient en cherchant la valeur de h pour laquelle $\frac{dp}{dh} = 0$. Cela correspond à

$$\frac{2}{h} = \frac{1}{h_0} + \frac{1}{h_L} , \qquad \Longleftrightarrow \qquad h = \frac{h_0 h_L}{(h_0 + h_L)/2} .$$
 (4.50)

La hauteur h de maximum de pression est donc la moyenne géométrique entre h_0 et h_L . Le point x correspondant est alors aussi obtenu:

$$\frac{x}{L} = \frac{h_0}{(h_0 + h_L)} \ . \tag{4.51}$$

La pression maximale est aussi obtenue, voir Fig. 4.6:

$$p_{\text{max}} - p_0 = \frac{3}{2} \frac{\mu U L}{h_0 h_L} \frac{(h_0 - h_L)}{(h_0 + h_L)} = \frac{3}{2} \frac{\mu U L}{h_0^2} \frac{1}{h_L/h_0} \frac{(1 - h_L/h_0)}{(1 + h_L/h_0)}.$$
(4.52)

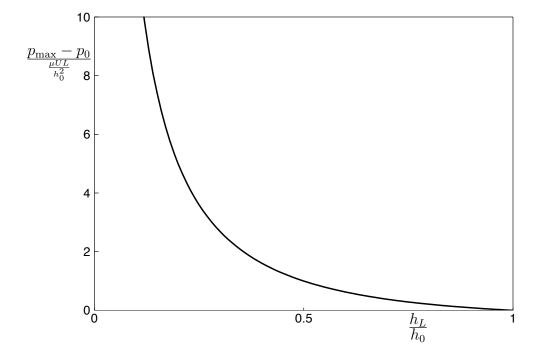


Figure 4.6: Maximum de pression pour le cas du palier plat.

Cette pression peut être très grande. A titre d'exemple, considérons un cas tel que U=10~m/s,~L=10~cm, $h_0=0.1~\text{mm},~h_L=0.05~\text{mm}$ avec une huile de viscosité $\mu\approx 0.1~\text{N s/m}^2$ (cas de la SAE 50 à environ 50 °C). On obtient alors $p_{\text{max}}-p_0\approx 10^7~\text{Pa}$, soit plus directement 10 MPa! Un palier plat peut donc supporter des charges énormes.

En fait la charge utile (par unité de profondeur) s'obtient aussi facilement par intégration:

$$P = \int_{0}^{L} (p(x) - p_{0}) dx = \int_{h_{0}}^{h_{L}} (p(h) - p_{0}) \frac{dx}{dh} dh = -\frac{L}{(h_{0} - h_{L})} \int_{h_{0}}^{h_{L}} (p(h) - p_{0}) dh$$

$$= -\frac{L}{(h_{0} - h_{L})} \frac{6 \mu U L}{(h_{0}^{2} - h_{L}^{2})} \int_{h_{0}}^{h_{L}} \left[(h_{0} + h_{L}) \frac{1}{h} - \frac{h_{0} h_{L}}{h^{2}} - 1 \right] dh$$

$$= -\frac{L}{(h_{0} - h_{L})} \frac{6 \mu U L}{(h_{0}^{2} - h_{L}^{2})} \left[(h_{0} + h_{L}) \log \left(\frac{h_{L}}{h_{0}} \right) + h_{0} h_{L} \left(\frac{1}{h_{L}} - \frac{1}{h_{0}} \right) + (h_{0} - h_{L}) \right]$$

$$= -\frac{6 \mu U L^{2}}{(h_{0}^{2} - h_{L}^{2}) (h_{0} - h_{L})} \left[(h_{0} + h_{L}) \log \left(\frac{h_{L}}{h_{0}} \right) + 2 (h_{0} - h_{L}) \right]$$

$$= -6 \mu U L^{2} \left[\frac{1}{(h_{0} - h_{L})^{2}} \log \left(\frac{h_{L}}{h_{0}} \right) + \frac{2}{(h_{0}^{2} - h_{L}^{2})} \right]$$

$$= -\frac{6 \mu U L^{2}}{h_{0}^{2}} \left[\frac{1}{(1 - h_{L}/h_{0})^{2}} \log \left(\frac{h_{L}}{h_{0}} \right) + \frac{2}{(1 - (h_{L}/h_{0})^{2})} \right]. \tag{4.53}$$

Ce résultat est certainement très utile en ingénierie. Il a quelques conséquences remarquables. Tout d'abord, pour h_0 fixé, on constate que la charge utile augmente de plus en plus à mesure que le rapport de contraction h_L/h_0 diminue, voir Fig. 4.7. Il est clair qu'il y a une valeur minimale de h_L au dessous de laquelle on ne peut pas s'aventurer car il faut éviter que le film d'huile ne devienne trop mince par rapport à la hauteur des aspérités et/ou des défauts de surface des pièces. Posons la question inverse: pour h_L fixé, y-a-t-il un optimum du rapport h_0/h_L auquel correspond la charge utile maximale. On utilise ici

$$P = \frac{6 \,\mu \,U \,L^2}{h_L^2} \left[\frac{1}{(h_0/h_L - 1)^2} \log \left(\frac{h_0}{h_L} \right) - \frac{2}{((h_0/h_L)^2 - 1)} \right] , \tag{4.54}$$

qui a effectivement un optimum (cependant assez plat) lorsque $h_0/h_L = 2.19$, voir Fig. 4.7, avec comme charge utile maximale:

$$P = 0.16024 \, \frac{\mu \, U \, L^2}{h_L^2} \, . \tag{4.55}$$

Un autre aspect du problème est la force de cisaillement totale, F, (force par unité de profondeur) que la surface mobile applique au fluide. On a, pour la contrainte,

$$\tau = \mu \frac{\partial u}{\partial y} = \left(-\frac{dp}{dx}\right) \frac{h}{2} \left(1 - 2\frac{y}{h}\right) - \mu \frac{U}{h}
= \frac{6 \mu}{h^2} \left(Q - \frac{U h}{2}\right) \left(1 - 2\frac{y}{h}\right) - \mu \frac{U}{h}
= \mu U \left[\frac{6}{h^2} \left(\frac{h_0 h_L}{(h_0 + h_L)} - \frac{h}{2}\right) \left(1 - 2\frac{y}{h}\right) - \frac{1}{h}\right].$$
(4.56)

La partie mobile est en y = 0. On a alors:

$$\tau_w(x,0) = \mu U \left[\frac{6}{h^2} \frac{h_0 h_L}{(h_0 + h_L)} - \frac{4}{h} \right] . \tag{4.57}$$

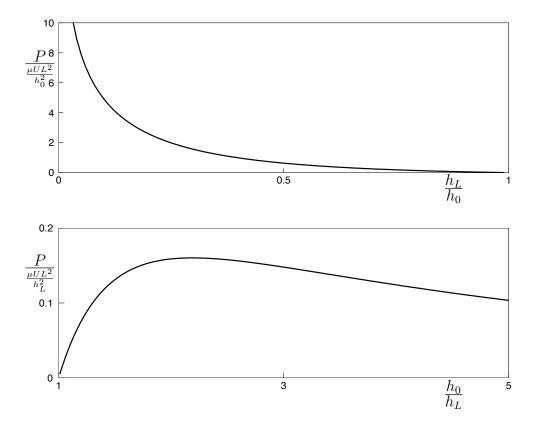


Figure 4.7: Charge utile pour le cas du palier plat. Cas avec h_0 fixé et h_L/h_0 variable. Cas avec h_L fixé et h_0/h_L variable.

La force de cisaillement totale (par unité de profondeur) exercée par la partie mobile sur le fluide est obtenue par intégration:

$$F = -\int_{0}^{L} \tau_{w}(x,0) dx = -\int_{h_{0}}^{h_{L}} \tau_{w}(x,0) \frac{dx}{dh} dh = \frac{L}{(h_{0} - h_{L})} \int_{h_{0}}^{h_{L}} \tau_{w}(x,0) dh$$

$$= \frac{L}{(h_{0} - h_{L})} \mu U \int_{h_{0}}^{h_{L}} \left[\frac{6}{h^{2}} \frac{h_{0} h_{L}}{(h_{0} + h_{L})} - \frac{4}{h} \right] dh$$

$$= -\mu U L \left[\frac{6}{(h_{0} + h_{L})} + \frac{4}{(h_{0} - h_{L})} \log \left(\frac{h_{L}}{h_{0}} \right) \right]$$

$$= -\frac{\mu U L}{h_{0}} \left[\frac{6}{(1 + h_{L}/h_{0})} + \frac{4}{(1 - h_{L}/h_{0})} \log \left(\frac{h_{L}}{h_{0}} \right) \right] . \tag{4.58}$$

Seule cette force effectue un travail, car seule la surface y=0 se déplace. A noter que la pression n'effectue pas de travail car elle agit perpendiculairement à la surface mobile: comme le produit scalaire entre le vecteur vitesse et la contrainte de pression est nul, il n'y a pas de travail associé. La puissance nécessaire (par unité de profondeur) est donc finalement obtenue comme le produit de la force (par unité de profondeur) par la vitesse

de déplacement:

$$FU = -\frac{\mu U^2 L}{h_0} \left[\frac{6}{(1 + h_L/h_0)} + \frac{4}{(1 - h_L/h_0)} \log \left(\frac{h_L}{h_0} \right) \right]. \tag{4.59}$$

A noter aussi que la puissance consommée est dissipée en chaleur au sein du fluide. Il faudra donc s'assurer que l'huile est refroidie en dehors de la zone où elle sert de support à la charge et de lubrifiant.

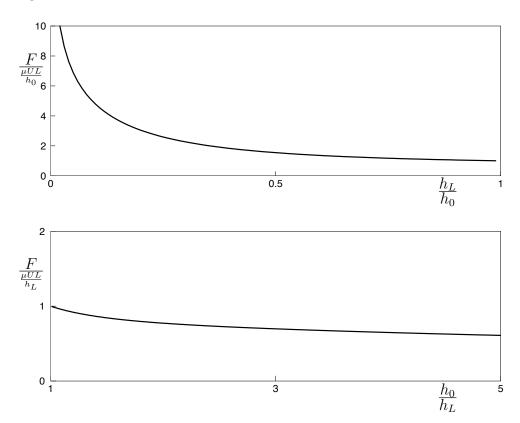


Figure 4.8: Force à appliquer pour le cas du palier plat. Cas avec h_0 fixé et h_L/h_0 variable. Cas avec h_L fixé et h_0/h_L variable.

A h_0 fixé, la force et donc la puissance augmentent de façon monotone lorsque le rapport de contraction, h_L/h_0 diminue, voir Fig. 4.8. A noter que la limite pour $h_L/h_0 \to 1$ (et donc pas de charge supportée par le palier) conduit bien à la valeur correspondant à un écoulement de Couette pur (i.e., sans gradient de pression):

$$\lim_{h_L/h_0 \to 1} F = \frac{\mu U^2 L}{h_0} \,. \tag{4.60}$$

Qu'en est-il à h_L fixé? On utilise alors:

$$F = -\frac{\mu U L}{h_L} \left[\frac{6}{(h_0/h_L + 1)} - \frac{4}{(h_0/h_L - 1)} \log \left(\frac{h_0}{h_L} \right) \right]. \tag{4.61}$$

La limite lorsque $h_0/h_L \to 1$ est, bien sûr, la même que ci-dessus. Il n'y a pas d'optimum du rapport h_0/h_L : la force et donc la puissance décroissent de façon monotone lorsque le rapport h_0/h_L augmente, voir Fig. 4.8.

Chapitre 5

Couches limites laminaires

5.1 Introduction

Bien que le modèle du fluide parfait (c-à-d non visqueux) en écoulement incompressible et irrotationnel produise des résultats utiles et fondamentaux, il a ses limites car il ne permet de calculer que des écoulements avec glissement du fluide le long de la paroi. Les fluides réels sont visqueux: ils ne glissent pas le long des parois; ils y adhèrent. La condition de non-glissement à la paroi est donc une caractéristique fondamentale des écoulements de fluides réels. Le fait que le fluide adhère à la paroi entraîne une production de tourbillon à celle-ci. Le tourbillon est produit à la paroi, diffuse de la paroi vers l'écoulement, et est transporté par ce même écoulement le long de la paroi. Il s'ensuit que l'écoulement au voisinage de la paroi n'est plus irrotationnnel: il contient du tourbillon. La zone proche de la paroi qui contient ce tourbillon est appelée "couche limite" (de paroi).

La compétition entre les phénomènes de diffusion et de convection du tourbillon détermine l'épaisseur de la couche limite. Celle-ci est généralement mince, et d'autant plus mince que le nombre de Reynolds caractéristique global de l'écoulement est grand.

Considérons, par exemple, l'écoulement laminaire d'un fluide autour d'un profil de type aérodynamique et à faible angle d'attaque, voir Fig. 5.1. La vitesse caractéristique globale est la corde du profil, c. Le nombre de Reynolds caractéristique global est donc $Re_c = U_{\infty} c/\nu$. Le temps caractéristique global de convection (transport) est $T \propto c/U_{\infty}$: c'est l'ordre de grandeur du temps requis pour qu'une particule fluide aille du bord d'attaque du profil jusqu'au bord de fuite Au sein de la couche limite, les effets de la viscosité sont du même ordre de grandeur que les effets d'inertie. C'est en fait là une façon de définir la couche limite: la couche limite est la région proche de la paroi où les effets visqueux sont aussi importants que les effets d'inertie (on y reviendra dans la section suivante, lors du développement rigoureux des équations qui régissent la couche limite). Pour l'exemple du profil aérodynamique considéré ici, on a donc que le temps T est aussi le

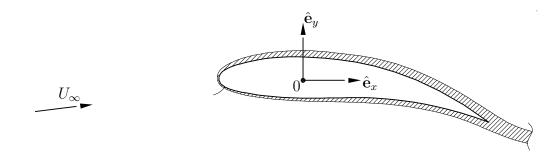


Figure 5.1: Profil aérodynamique et écoulement avec couche limite laminaire le long de la paroi. Pour simplifier, on a ici supposé que la couche limite reste attachée à la paroi jusqu'au bord de fuite du profil..

temps caractéristique global de diffusion du tourbillon au sein de la couche limite. Durant le temps global T, le processus de diffusion va avoir couvert, en fin de profil, une épaisseur globale δ de l'ordre de $\delta = \propto \sqrt{\nu T}$. On en conclut que

$$T \propto \frac{\delta^2}{\nu}$$
 et $T \propto \frac{c}{U_{\infty}}$, (5.1)

ce qui conduit à

$$\delta^2 \propto \nu T \propto \frac{\nu c}{U_{\infty}} = \frac{c^2}{\frac{U_{\infty} c}{\nu}} ,$$
 (5.2)

et donc finalement à

$$\frac{\delta}{c} \propto \frac{1}{\sqrt{\frac{U_{\infty} c}{\nu}}} = \frac{1}{\sqrt{Re_c}} \,. \tag{5.3}$$

Comparée à la corde c du profil, la couche limite laminaire est donc d'autant plus mince que le nombre de Reynolds global est grand. De plus, nous avons déjà obtenu la loi de variation. Nous verrons dans la suite que l'approche rigoureuse du problème confirme bien ce résultat préliminaire.

Dans les expressions ci-dessus, δ désigne l'épaisseur de la couche limite au bord de fuite du profil (i.e., en x=c). Si on considère plutôt l'épaisseur de la couche limite à une distance x < c le long du profil, on obtient alors que

$$\delta^2(x) \propto \frac{\nu c}{U_{\infty}} f\left(\frac{x}{c}\right) = \frac{c^2}{\frac{U_{\infty} c}{\nu}} f\left(\frac{x}{c}\right) ,$$
 (5.4)

et donc que

$$\frac{\delta(x)}{c} \propto \frac{1}{\sqrt{Re_c}} \sqrt{f\left(\frac{x}{c}\right)}$$
 (5.5)

Que se passe-t-il en aval du profil? Le tourbillon de couche limite quitte la proximité de la paroi au bord de fuite et devient tourbillon de sillage. C'est le cas idéal de bon fonctionnement aérodynamique du profil. En réalité, la couche limite à l'extrados du profil aura aussi tendance à quitter la paroi, et ce avant d'atteindre le bord de fuite. On parle alors de la "séparation de la couche limite". Une telle séparation de la couche limite mène à une baisse de performance du profil (i.e., une baisse de la force de portance), mais n'est pas pour autant catastrophique. Cependant, si on augmente l'angle d'attaque, il y aura, au delà d'un certain angle, un "décrochage aérodynamique " du profil: c'est le cas de mauvais fonctionnement aérodynamique du profil. le tourbillon de couche limite quitte alors la paroi de façon plus brutale, et de gros tourbillons de sillage sont produits de façon intermittente, le point de séparation étant lui-même instationnaire

Ce chapitre a pour objet d'exposer la théorie de la "couche limite laminaire" pour des écoulements simples et incompressibles. Le cas simple du développement d'une couche limite le long d'une plaque plane, et avec vitesse extérieure à la couche limite, $u_e = u_e(x)$, est d'abord considéré. La solution exacte pour le cas particulier avec u_e constant, est ensuite obtenue (solution de Blasius). Le transfert de chaleur en couche limite est ensuite aussi étudié: c'est la "couche limite thermique laminaire". L'effet du nombre de Prandtl est aussi quantifié. Le cas des "couches limites turbulentes" est couvert plus tard, dans la partie du cours portant sur les "écoulements turbulents".

On mentionne aussi que les méthodes de solution pour les "couches limites laminaires générales" (i.e., avec $u_e = u_e(x)$, et donc éventuellement avec séparation) sont étudiées en détail dans le cours $A\acute{e}rodynamique$ (cours à option). Le cas des couches limites turbulentes y est aussi étudié.

5.2 Etablissement des équations de la couche limite laminaire

5.2.1 Approche physique, non formelle

On considère l'écoulement laminaire bidimensionnel et stationnaire le long d'une plaque plane. La plaque commence en x = 0 et s'étend vers les x > 0. La couche limite commence donc aussi en x = 0.

En l'absence de couche limite, on a une vitesse de l'écoulement qui est connue (par exemple, calculée en utilisant l'approximation en fluide parfait.) On suppose que la couche limite est assez mince pour que la vitesse en dehors de la couche limite, $u_e(x)$, puisse effectivement être approximée par la vitesse obtenue sans couche limite. Au sein de la couche limite, la vitesse passe d'une valeur nulle à la paroi (condition de non-glissement) à la valeur $u_e(x)$.

Au vu des constatations de l'introduction, on a que l'épaisseur locale de la couche limite, δ , à la distance x=X par rapport au début de la plaque, est faible par rapport à cette distance: $\delta \ll X$. Au sein de la couche limite, la vitesse horizontale, u, est de l'ordre de $U_e = u_e(x)$. La dérivée $\frac{\partial u}{\partial y}$ est donc $\mathcal{O}(U_e/\delta)$. Il est clair que la vitesse varie beaucoup moins vite en x qu'en y. La dérivée $\frac{\partial u}{\partial x}$ est $\mathcal{O}(U_e/X)$. On a donc:

$$\left| \frac{\partial u}{\partial x} \right| = \mathcal{O}\left(\frac{U_e}{X}\right) \ll \left| \frac{\partial u}{\partial y} \right| = \mathcal{O}\left(\frac{U_e}{\delta}\right) ,$$

$$\left| \frac{\partial^2 u}{\partial x^2} \right| = \mathcal{O}\left(\frac{U_e}{X^2}\right) \ll \left| \frac{\partial^2 u}{\partial y^2} \right| = \mathcal{O}\left(\frac{U_e}{\delta^2}\right) . \tag{5.6}$$

Notons par V l'ordre de grandeur de la vitesse verticale, v dans la couche limite: $v = \mathcal{O}(V)$. On peut donc écrire:

$$\left| \frac{\partial v}{\partial y} \right| = \mathcal{O}\left(\frac{V}{\delta}\right) . \tag{5.7}$$

D'autre part, l'équation de continuité, $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$, implique aussi que l'on a:

$$\left| \frac{\partial v}{\partial y} \right| \sim \left| \frac{\partial u}{\partial x} \right| = \mathcal{O}\left(\frac{U_e}{X}\right) . \tag{5.8}$$

On a donc:

$$\left| \frac{\partial v}{\partial y} \right| = \mathcal{O}\left(\frac{V}{\delta}\right) = \mathcal{O}\left(\frac{U_e}{X}\right) , \qquad (5.9)$$

ce qui, en fait, détermine l'ordre de grandeur, V:

$$V = \frac{\delta}{X} U_e . (5.10)$$

L'équation de quantité de mouvement dans la direction horizontale, x, est:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \nu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right). \tag{5.11}$$

Considérons d'abord les termes d'inertie. On obtient, pour les ordres de grandeur:

$$\left| u \frac{\partial u}{\partial x} \right| = \mathcal{O}\left(\frac{U_e^2}{X}\right) , \qquad \left| v \frac{\partial u}{\partial y} \right| = \mathcal{O}\left(\frac{\delta}{X} U_e \frac{U_e}{\delta}\right) = \mathcal{O}\left(\frac{U_e^2}{X}\right) . \tag{5.12}$$

Les deux termes d'inertie sont donc du même ordre de grandeur: on ne peut pas négliger l'un par rapport à l'autre. Pour les termes de diffusion visqueuse, l'équation (5.6) implique que la diffusion en x est négligeable par rapport à la diffusion en y. Cette dernière est donc la seule à considérer. Son ordre de grandeur est:

$$\left| \nu \frac{\partial^2 u}{\partial y^2} \right| = \mathcal{O}\left(\nu \frac{U_e}{\delta^2}\right) . \tag{5.13}$$

La couche limite étant la zone de l'écoulement proche de la paroi où les effets de viscosité sont aussi importants que les effets d'inertie (c'est en fait là une bonne façon de la définir), il s'ensuit nécessairement que l'on a:

$$\left| u \frac{\partial u}{\partial x} \right| \sim \left| v \frac{\partial u}{\partial y} \right| \sim \left| \nu \frac{\partial^2 u}{\partial y^2} \right| = \mathcal{O}\left(\frac{U_e^2}{X}\right) = \mathcal{O}\left(\nu \frac{U_e}{\delta^2}\right) . \tag{5.14}$$

Il s'ensuit donc que l'ordre de grandeur, δ , est:

$$\delta^2 = \frac{\nu X}{U_e} \qquad \Rightarrow \qquad \frac{\delta}{X} = \left(\frac{U_e X}{\nu}\right)^{-1/2} . \tag{5.15}$$

On a donc de nouveau obtenu la même expression que lors de l'introduction.

Qu'en est-il du terme $\frac{1}{\rho} \left| \frac{\partial p}{\partial x} \right|$? Comme il constitue un des termes de l'équation de quantité de mouvement en x, il est nécessairement, soit négligeable, soit aussi $\mathcal{O}(U_e^2/X)$. En dehors de la couche limite, l'écoulement est irrotationnel: l'équation de Bernoulli y est donc satisfaite. La pression en dehors de la couche limite, $p = p_e(x)$, est donc régie par la relation:

$$\frac{p_e(x)}{\rho} + \frac{u_e^2(x)}{2} = B_0 , \qquad (5.16)$$

et donc, de façon équivalente, par:

$$-\frac{1}{\rho}\frac{\partial p_e}{\partial x}(x) = u_e(x)\frac{\partial u_e}{\partial x}(x). \tag{5.17}$$

Considérons maintenant l'équation de quantité de mouvement dans la direction verticale, y:

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + \nu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right). \tag{5.18}$$

Les termes d'inertie sont de nouveau du même ordre de grandeur:

$$\left| u \frac{\partial v}{\partial x} \right| \sim \left| v \frac{\partial v}{\partial y} \right| \sim \mathcal{O}\left(U_e \frac{V}{X} \right) = \mathcal{O}\left(\frac{V^2}{\delta} \right) = \mathcal{O}\left(\frac{\delta}{X} \frac{U_e^2}{X} \right) ,$$
 (5.19)

La diffusion en x est négligeable par rapport à la diffusion en y. Cette dernière est de l'ordre de

$$\left|\nu \frac{\partial^2 v}{\partial y^2}\right| = \mathcal{O}\left(\nu \frac{V}{\delta^2}\right) = \mathcal{O}\left(\nu \frac{\delta}{X} \frac{U_e}{\delta^2}\right) \tag{5.20}$$

Par l'équation (5.15), on en déduit que les termes d'inertie et de diffusion en y sont aussi du même ordre de grandeur: ils sont $\mathcal{O}\left((\delta/X)(U_e^2/X)\right)$. Le terme $\frac{1}{\rho}\left|\frac{\partial p}{\partial y}\right|$ est donc aussi, au plus, $\mathcal{O}\left((\delta/x)(U_e^2/X)\right)$. Par série de Taylor, la pression au sein de la couche limite est donc obtenue comme:

$$p(x,y) = p_e(x) + (y - \delta) \frac{\partial p}{\partial y}|_{y=\delta} + \dots , \qquad (5.21)$$

ce qui donne, comme ordre de grandeur:

$$\frac{p(x,y)}{\rho} = \frac{p_e(x)}{\rho} + \mathcal{O}\left(\delta \frac{\delta}{X} \frac{U_e^2}{X}\right) = \frac{p_e(x)}{\rho} + \mathcal{O}\left(\left(\frac{\delta}{X}\right)^2 U_e^2\right) \\
= B_0 - \left(1 - \mathcal{O}\left(\left(\frac{\delta}{X}\right)^2\right)\right) \frac{u_e^2(x)}{2} . (5.22)$$

Le terme de correction étant en $(\delta/X)^2$, on peut donc certainement le négliger et donc considérer que la pression ne varie pas au travers de la couche limite. On prend donc $p(x,y) = p_e(x)$, ce qui donne:

$$-\frac{1}{\rho}\frac{\partial p}{\partial x} = -\frac{1}{\rho}\frac{dp_e}{dx}(x) = u_e(x)\frac{du_e}{dx}(x).$$
 (5.23)

Les équations qui régissent le développement de la couche limite (= "équations de Prandtl") sont donc finalement obtenues comme:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 , (5.24)$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = u_e \frac{du_e}{dx} + \nu \frac{\partial^2 u}{\partial y^2}.$$
 (5.25)

On note aussi que le cas particulier u_e constant correspond à $-\frac{1}{\rho}\frac{dp_e}{dx}=u_e\frac{du_e}{dx}=0$.

5.2.2 Approche formelle mathématique

On considère ici une approche plus formelle et mathématique pour l'établissement des équations de la couche limite.

La couche limite se développe le long d'une plaque qui commence en x=0. Pour simplifier, on considère que la plaque est plane, mais cette hypothèse n'est en fait pas limitative. On considère les équations de la couche limite au voisinage du point X fixé, et avec vitesse extérieure U_e fixée $(U_e = u_e(X))$.

En définitive, il y a alors deux "grandeurs caractéristiques" $(X \text{ et } U_e)$, et toutes deux constantes dans l'analyse. Le nombre de Reynolds basé sur ces grandeurs caractéristiques est $Re = U_e X/\nu$. L'écoulement est fonction de X, U_e et ν seulement. On cherche à voir comment l'écoulement se comporte pour Re grand, et en supposant cependant qu'il reste laminaire. Pour cela, on adimensionalise les équations avec X et U_e , et on fait $Re \to \infty$.

On considère donc une famille d'écoulements fictifs, paramétrés par Re, qu'on fait tendre vers l'infini (similitude dynamique). L'écoulement asymptotique obtenu par le passage à la limite est une bonne approximation de l'écoulement réel, correspondant à

une valeur précise de Re. La comparaison entre les divers écoulements (et donc le passage à la limite) n'est possible qu'en adimensionalisant les équations.

Une première adimensionalisation, élémentaire, fait apparaître les équations d'Euler pour $Re \to \infty$. C'est l'écoulement dit "externe", correspondant au modèle du fluide parfait. Cet écoulement ne respecte pas les conditions sur la plaque.

Une seconde adimensionalisation est alors introduite pour faire apparaître la couche limite et les équations de Prandtl.

Définissons d'abord $\delta = Re^{-1/2} X$. Il est clair que la grandeur δ n'est pas exactement l'épaisseur de la couche limite en X. C'est un ordre de grandeur de cette épaisseur. (En fait, l'épaisseur de la couche limite est un concept peu précis et encore à définir: nous y reviendrons en temps opportun).

Considérons donc la mise sous forme adimensionnelle des équations de la couche limite en utilisant les variables "prime" suivantes adimensionnelles:

$$x = X x', \quad y = \delta y', \quad u = U_e u', \quad v = V v', \quad \text{et} \quad p = \rho U_e^2 p',$$
 (5.26)

où V est encore à déterminer.

L'équation de continuité devient:

$$\frac{U_e}{X}\frac{\partial u'}{\partial x'} + \frac{V}{\delta}\frac{\partial v'}{\partial y'} = 0 , \qquad (5.27)$$

et donc:

$$\frac{\partial u'}{\partial x'} = -\frac{V}{U_e} \frac{X}{\delta} \frac{\partial v'}{\partial y'} = -\frac{V}{U_e} Re^{1/2} \frac{\partial v'}{\partial y'}.$$
 (5.28)

On considère la similitude dynamique avec $Re \to \infty$. Pour que l'équation ne dégénère pas lorsque $Re \to \infty$ (principe de moindre dégénérescence), on doit donc prendre:

$$V = \frac{U_e}{Re^{1/2}} \ . \tag{5.29}$$

On obtient alors:

$$\frac{\partial u'}{\partial x'} + \frac{\partial v'}{\partial y'} = 0. {(5.30)}$$

Considérons ensuite l'équation de quantité de mouvement en x. On obtient:

$$\frac{U_e^2}{X} \left(u' \frac{\partial u'}{\partial x'} + v' \frac{\partial u'}{\partial y'} \right) = -\frac{U_e^2}{X} \frac{\partial p'}{\partial x'} + \frac{\nu U_e}{X^2} \frac{\partial^2 u'}{\partial x'^2} + \frac{\nu U_e}{\delta^2} \frac{\partial^2 u'}{\partial y'^2} .$$

$$= -\frac{U_e^2}{X} \frac{\partial p'}{\partial x'} + \frac{\nu U_e}{\delta^2} \left(\left(\frac{\delta}{X} \right)^2 \frac{\partial^2 u'}{\partial x'^2} + \frac{\partial^2 u'}{\partial y'^2} \right) .$$

$$= -\frac{U_e^2}{X} \frac{\partial p'}{\partial x'} + \frac{U_e^2}{X} \left(\frac{1}{Re} \frac{\partial^2 u'}{\partial x'^2} + \frac{\partial^2 u'}{\partial y'^2} \right) . \tag{5.31}$$

On a donc:

$$u'\frac{\partial u'}{\partial x'} + v'\frac{\partial u'}{\partial y'} = -\frac{\partial p'}{\partial x'} + \left(\frac{1}{Re}\frac{\partial^2 u'}{\partial x'^2} + \frac{\partial^2 u'}{\partial y'^2}\right) , \qquad (5.32)$$

qui, lorsque $Re \to \infty$, se réduit à:

$$u'\frac{\partial u'}{\partial x'} + v'\frac{\partial u'}{\partial y'} = -\frac{\partial p'}{\partial x'} + \frac{\partial^2 u'}{\partial y'^2}.$$
 (5.33)

Pour l'équation de quantité de mouvement en y, on obtient:

$$\frac{U_e V}{X} \left(u' \frac{\partial v'}{\partial x'} + v' \frac{\partial v'}{\partial y'} \right) = -\frac{U_e^2}{\delta} \frac{\partial p'}{\partial y'} + \nu \frac{V}{\delta^2} \left(\left(\frac{\delta}{X} \right)^2 \frac{\partial^2 v'}{\partial x'^2} + \frac{\partial^2 v'}{\partial y'^2} \right) . \tag{5.34}$$

On a $U_e^2/\delta = Re^{1/2}U_e^2/X$. Comme $V = Re^{-1/2}U_e$, on a aussi $U_e V/X = Re^{-1/2}U_e^2/X$ et $\nu V/\delta^2 = Re^{-1/2}\nu U_e/\delta^2 = Re^{-1/2}U_e^2/X$. Ceci permet d'écrire:

$$\frac{1}{Re^{1/2}}\frac{U_e^2}{X}\left(u'\frac{\partial v'}{\partial x'}+v'\frac{\partial v'}{\partial y'}\right) = -Re^{1/2}\frac{U_e^2}{X}\frac{\partial p'}{\partial y'} + \frac{1}{Re^{1/2}}\frac{U_e^2}{X}\left(\frac{1}{Re}\frac{\partial^2 v'}{\partial x'^2} + \frac{\partial^2 v'}{\partial y'^2}\right)\;. \eqno(5.35)$$

On a donc, finalement:

$$\frac{1}{Re} \left(u' \frac{\partial v'}{\partial x'} + v' \frac{\partial v'}{\partial y'} \right) = -\frac{\partial p'}{\partial y'} + \frac{1}{Re} \left(\frac{1}{Re} \frac{\partial^2 v'}{\partial x'^2} + \frac{\partial^2 v'}{\partial y'^2} \right) , \qquad (5.36)$$

qui, lorsque $Re \to \infty$, se réduit à:

$$\frac{\partial p'}{\partial u'} = 0 \ . \tag{5.37}$$

La pression ne varie donc pas au travers de la couche limite.

Les conditions à la paroi sont: u=v=0 en y=0. Les conditions loin de la paroi sont les conditions de raccordement entre l'écoulement "Prandtl" et l'écoulement "Euler". Pour fixer les idées, considérons la grandeur ζ définie par $\zeta=Re^{-1/4}X$. Clairement, comme $Re\gg 1$, on a:

$$\frac{\delta}{\zeta} = \frac{1}{Re^{1/4}} \ll 1 \quad \text{et} \quad \frac{\zeta}{X} = \frac{1}{Re^{1/4}} \ll 1 \quad \Rightarrow \quad \delta \ll \zeta \ll X \ . \tag{5.38}$$

 ζ est donc une échelle intermédiaire entre δ et X, voir Fig. 5.2. Le raccordement Prandtl-Euler se fait dans une zone à hauteur $\mathcal{O}(\zeta)$.

Pour les valeurs de Re de plus en plus grand, la solution adimensionnelle a une valeur unique au raccordement (en notant que cette solution adimensionnelle ne dépend que de Re et que les adimensionalisations de u et de p sont les mêmes hors de la couche limite et dans la couche limite). Cependant, l'ordonnée adimensionnelle de raccordement est $\hat{y} = \zeta/X \ll 1$ pour la zone externe (zone Euler) et $\tilde{y} = \zeta/\delta \gg 1$ pour la zone interne

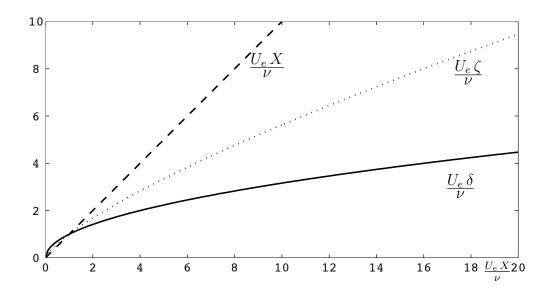


Figure 5.2: Schéma des échelles: échelle d'épaisseur de la couche limite, δ , échelle intermédiaire (de raccordement), ζ , et échelle de longueur le long de la plaque, X.

(zone de couche limite). En faisant tendre Re vers l'infini, cette ordonnée de raccordement tend vers 0 pour la zone externe et vers l'infini pour la zone interne.

Revenant aux variables dimensionnelles, on a donc comme conditions asymptotiques de raccordement :

$$\lim_{y/\delta \gg 1} u(X,y) = \lim_{y/X \ll 1} u_e(X,y) = u_e(X,0) = Ue,$$

$$\lim_{y/\delta \gg 1} p(X,y) = \lim_{y/X \ll 1} p_e(X,y) = p_e(X,0).$$
(5.39)

De plus, comme $\frac{\partial p}{\partial y} = 0$ au sein de la couche limite, la pression y vaut partout $p_e(X, 0)$.

Les équations qui régissent le développement d'une couche limite le long d'une plaque plane sont donc finalement obtenues comme:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 , (5.40)$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p_e}{\partial x}(x,0) + \nu\frac{\partial^2 u}{\partial y^2}$$
 (5.41)

et

$$u(x,0) = v(x,0) = 0,$$
 (5.42)

$$\lim_{y/\delta \gg 1} u(x,y) = u_e(x,0) . \tag{5.43}$$

De plus, comme l'écoulement Euler hors de la couche limite satisfait l'équation de Bernoulli, le terme $-\frac{1}{\rho}\frac{\partial p_e}{\partial x}(x,0)$ est aussi $u_e(x,0)\frac{\partial u_e}{\partial x}(x,0)$.

5.3 Solution pour le cas avec u_e constant (Blasius)

On considère ici le cas simple avec $u_e(x,0)$ constant:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 , (5.44)$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2}. {(5.45)}$$

C'est le problème dont la solution a été obtenue par Blasius. Comme l'écoulement est incompressible, le champ de vitesse est déterminé par une fonction de courant ψ : $u = \partial \psi/\partial y$ et $v = -\partial \psi/\partial x$. La similitude de la solution requiert que:

$$\frac{u}{u_e} = g\left(\frac{y}{\delta(x)}\right) = g(\eta) , \qquad (5.46)$$

avec $\eta = y/\delta(x)$, la variable de similitude où:

$$\delta(x) = \frac{x}{\left(\frac{u_e x}{2u}\right)^{1/2}} = \frac{2^{1/2} x}{Re^{1/2}} = \left(\frac{2\nu x}{u_e}\right)^{1/2} . \tag{5.47}$$

Le facteur $2^{1/2}$ n'est pas nécessaire. Il permet simplement d'éviter un facteur 2 par la suite (voir plus loin). Pour les dérivées partielles de η , on obtient

$$\frac{\partial \eta}{\partial x} = -\frac{y}{\delta^2(x)} \, \delta'(x) = -\eta \, \frac{\delta'(x)}{\delta(x)} \,,$$

$$\frac{\partial \eta}{\partial y} = \frac{1}{\delta(x)} \,,$$
(5.48)

avec

$$\delta'(x) = \frac{1}{(2Re)^{1/2}} \quad \Rightarrow \quad \frac{\delta'(x)}{\delta(x)} = \frac{1}{2x} \quad \text{et} \quad \delta'(x)\,\delta(x) = \frac{x}{Re} \ . \tag{5.49}$$

La fonction de courant est nécessairement de la forme

$$\psi = u_e \,\delta(x) \, f(\eta) \,. \tag{5.50}$$

En effet, cette forme conduit à:

$$u = \frac{\partial \psi}{\partial y} = u_e \,\delta(x) \,f'(\eta) \,\frac{1}{\delta(x)} = u_e \,f'(\eta) \,. \tag{5.51}$$

Le profil de vitesse, $g(\eta)$, est donc $g(\eta) = f'(\eta)$. La fonction de courant donne aussi la vitesse v:

$$v = -\frac{\partial \psi}{\partial x} = -\left(u_e \,\delta'(x) \,f(\eta) - u_e \,\delta(x) \,f'(\eta) \,\eta \,\frac{\delta'(x)}{\delta(x)}\right) = u_e \,\delta'(x) \left(\eta \,f'(\eta) - f(\eta)\right) . \tag{5.52}$$

Pour les dérivées du champ de vitesse, on obtient:

$$\frac{\partial u}{\partial x} = -u_e f''(\eta) \eta \frac{\delta'(x)}{\delta(x)},$$

$$\frac{\partial u}{\partial y} = u_e f''(\eta) \frac{1}{\delta(x)},$$

$$\frac{\partial^2 u}{\partial y^2} = u_e f'''(\eta) \frac{1}{\delta^2(x)}.$$
(5.53)

Les termes d'inertie sont donc:

$$u\frac{\partial u}{\partial x} = -u_e^2 f'(\eta) f''(\eta) \eta \frac{\delta'(x)}{\delta(x)},$$

$$v\frac{\partial u}{\partial y} = u_e^2 f''(\eta) (\eta f'(\eta) - f(\eta)) \frac{\delta'(x)}{\delta(x)}.$$
(5.54)

Nous avons finalement tous les termes à introduire dans l'équation de quantité de mouvement en x,

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = v\frac{\partial^2 u}{\partial y^2} \,, (5.55)$$

soit:

$$-u_e^2 \frac{\delta'(x)}{\delta(x)} f(\eta) f''(\eta) = \nu u_e \frac{1}{\delta^2(x)} f'''(\eta) ,$$

$$f'''(\eta) + \frac{u_e}{\nu} \delta(x) \delta'(x) f(\eta) f''(\eta) = 0 .$$
 (5.56)

Finalement, comme on a $\delta(x)\delta'(x) = \frac{x}{Re}$, on obtient bien une équation différentielle ordinaire (EDO) pour $f(\eta)$:

$$f'''(\eta) + f(\eta) f''(\eta) = 0. (5.57)$$

Il s'agit d'une EDO non-linéaire et du 3ème ordre. (Remarquons, en passant, que si nous n'avions pas utilisé le facteur "2" dans la définition de δ , nous aurions obtenu un facteur "2" dans l'EDO: $f'''(\eta) + \frac{1}{2} f(\eta) f''(\eta) = 0$, forme moins "canonique" que celle ci-dessus, mais tout aussi valable.) L'EDO obtenue requiert trois conditions aux limites. On a: u = 0 à la paroi, ce qui requiert d'avoir f'(0) = 0. On a aussi: v = 0 à la paroi, ce qui requiert f(0) = 0. La paroi est donc une ligne de courant: $\psi = 0$ à la paroi. Finalement, le raccordement avec l'écoulement Euler requiert d'avoir: $\lim_{\eta \gg 1} f'(\eta) = 1$. On a donc:

$$f(0) = 0$$
, $f'(0) = 0$, $\lim_{\eta \gg 1} f'(\eta) = 1$. (5.58)

Cette équation n'a pas de solution analytique. Elle doit donc être résolue par intégration numérique. Pour ce faire, on la réécrit sous forme d'un système de trois EDO du premier ordre:

$$f'(\eta) = g(\eta) ,$$

$$g'(\eta) = h(\eta) ,$$

$$h'(\eta) = -f(\eta) h(\eta) .$$
(5.59)

Le système est donc de la forme $d\mathbf{s}/d\eta = \mathbf{F}(\mathbf{s})$ avec $\mathbf{s} = (f,g,h)^T$ et $\mathbf{F}(\mathbf{s}) = (g,h,-f\,h)$. Pour l'intégrer numériquement, on utilise, par exemple, un schéma de Runge-Kutta 4. On débute l'intégration en $\eta = 0$, avec f(0) = 0, g(0) = f'(0) = 0 et h(0) = f''(0) deviné ("méthode du tir", "shooting method"). On intègre numériquement jusqu'aux grandes valeurs de η , et on examine alors $f'(\eta)$. On itère la procédure sur le choix de f''(0) jusqu'à ce que l'on obtienne bien que $f'(\eta) \to 1$ lorsque $\eta \gg 1$. On obtient ainsi finalement que f''(0) = 0.46960.

Le profil de contrainte de cisaillement est

$$\tau = \mu \frac{\partial u}{\partial y} = \mu \frac{u_e}{\delta} f''(\eta) . \qquad (5.60)$$

On a aussi, pour la vitesse v:

$$\lim_{\eta \gg 1} (\eta f'(\eta) - f(\eta)) = 1.22.$$
 (5.61)

Etant donné qu'il y a le terme multiplicatif $\delta'(x) \ll 1$, la vitesse v à la frontière de la couche limite est effectivement beaucoup plus petite que u_e ; elle est néanmoins non nulle. Ceci provient du fait que, comme la couche limite grandit lentement en x, il faut bien, par conservation de la masse, qu'il y ait un petit "débit de fuite".

Les profils de fonction de courant, $\psi/(u_e \delta) = f(\eta)$, de vitesse, $u/u_e = f'(\eta) = g(\eta)$, de contrainte de cisaillement, $\tau \delta/(\mu u_e) = f''(\eta) = g'(\eta) = h(\eta)$ et de vitesse $v/(u_e \delta') = \eta f'(\eta) - f(\eta)$ ainsi obtenus sont présentés à la Fig. 5.3.

Qu'en est-il du frottement à la paroi? La contrainte de cisaillement à la paroi, $\tau_w(x)$, est:

$$\frac{\tau_w}{\rho} = \nu \frac{\partial u}{\partial y}\Big|_{y=0} = f''(0) \nu \frac{u_e}{\delta} = 0.4696 \nu \frac{u_e}{\delta} = 0.4696 \frac{u_e^2}{2} \left(\frac{u_e x}{2\nu}\right)^{-1/2}.$$
 (5.62)

Le coefficient adimensionnel de frottement local, $C_f(x)$, est donc:

$$C_f = \frac{\tau_w}{\rho u_e^2/2} = 0.664 \left(\frac{u_e x}{\nu}\right)^{-1/2} = \frac{0.664}{Re^{1/2}}.$$
 (5.63)

La force D, par unité de largeur, exercée par l'écoulement sur la plaque (i.e., la force de traı̂née: "Drag" en anglais), et correspondant à la partie de la plaque entre x=0 à x=L,

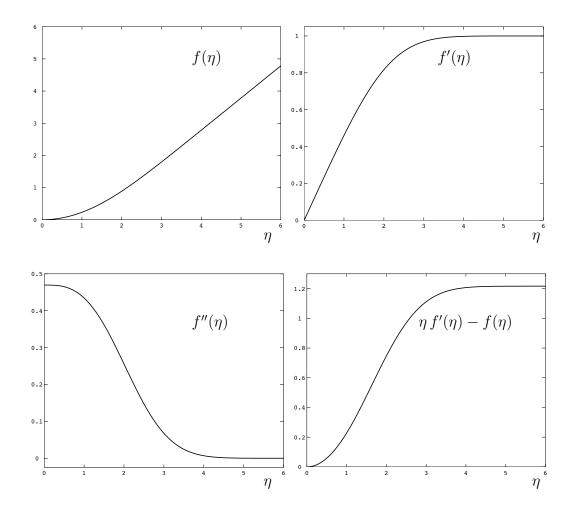


Figure 5.3: Solution de Blasius pour la couche limite avec u_e constant: profils de fonction de courant, $\psi/(u_e\,\delta)=f(\eta)$, de vitesse, $u/u_e=f'(\eta)$, de contrainte de cisaillement, $\tau\,\delta/(\mu\,u_e)=f''(\eta)$ et de vitesse $v/(u_e\,\delta')=\eta\,f'(\eta)-f(\eta)$.

est facilement obtenue par intégration:

$$D(L) = \int_0^L \tau_w(x) dx = \frac{\rho u_e^2}{2} f''(0) \int_0^L \left(\frac{u_e x}{2\nu}\right)^{-1/2} dx = 0.4696 \frac{u_e^2}{2} 2 L \left(\frac{u_e L}{2\nu}\right)^{-1/2}.$$
(5.64)

Le coefficient de frottement moyen, correspondant à cette longueur L, est donc:

$$C_{f,m}(L) = \frac{D(L)}{L \rho u_e^2 / 2} = 1.328 \left(\frac{u_e L}{\nu}\right)^{-1/2} = \frac{1.328}{Re_L^{1/2}}.$$
 (5.65)

Il est clair qu'on a aussi, par définition de la moyenne, que

$$C_{f,m}(L) = \frac{1}{L} \int_0^L C_f(x) dx . {(5.66)}$$

Finalement, on note aussi que, dans le cas de la couche limite avec u_e constant, $C_{f,m}(L) = 2 C_f(L)$.

5.4 Epaisseurs de la couche limite

Comme expliqué précédemment, la grandeur δ n'est pas l'épaisseur de la couche limite. C'est un ordre de grandeur de cette épaiseur. Il est difficile de "définir" l'épaisseur de la couche limite: en effet, le profil de vitesse est une fonction continue qui tend asymptotiquement vers u_e . On parle souvent d'épaisseur à 99%. C'est la distance à la paroi telle que $u=0.99\,u_e$. Elle correspond à $\eta_{0.99}=3.4719$. On obtient donc

$$\frac{\delta_{0.99}}{x} = \frac{\eta_{0.99}}{\left(\frac{u_e \, x}{2\nu}\right)^{1/2}} = \frac{4.91}{Re^{1/2}} \,. \tag{5.67}$$

Si on considère plutôt l'épaisseur à 95% comme mesure de l'épaisseur de la couche limite, $u = 0.95 u_e$ correspond à $\eta_{0.95} = 2.7705$, et on obtient donc

$$\frac{\delta_{0.95}}{x} = \frac{\eta_{0.95}}{\left(\frac{u_e \, x}{2\nu}\right)^{1/2}} = \frac{3.92}{Re^{1/2}} \,. \tag{5.68}$$

Le concept d'épaisseur de couche limite est donc peu précis. Un concept plus précis est le concept d'épaisseur de déplacement, δ^* . C'est la distance à la paroi telle que le débit du profil de vitesse incluant la couche limite soit le même que le débit sans couche limite pour une paroi "déplacée" de l'épaisseur δ^* , voir Fig. 5.4.

On a donc, pour tout $\zeta \gg \delta$:

$$\int_0^{\zeta} u \, dy = (\zeta - \delta^*) \, u_e = u_e \, \int_0^{\zeta} dy - u_e \, \delta^* \,, \tag{5.69}$$

et donc:

$$\delta^* = \int_0^{\zeta} \left(1 - \frac{u}{u_e} \right) dy . \tag{5.70}$$

Comme $\zeta \gg \delta$, l'intégrale est clairement rapidement convergente. Pour la couche limite avec u_e constant, on obtient:

$$\frac{\delta^*}{\delta} = \int_0^{\zeta} \left(1 - \frac{u}{u_e} \right) \frac{dy}{\delta} = \int_0^{\eta \gg 1} \left(1 - f'(\eta) \right) d\eta = 1.217 , \qquad (5.71)$$

et donc:

$$\frac{\delta^*}{x} = \frac{1.217}{\left(\frac{u_e \, x}{2\nu}\right)^{1/2}} = \frac{1.721}{Re^{1/2}} \,. \tag{5.72}$$

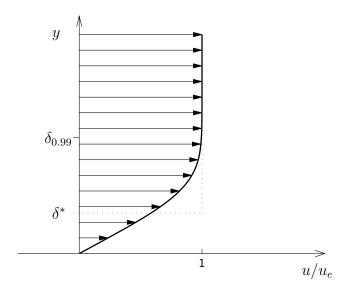


Figure 5.4: Concept d'épaisseur de déplacement, δ^* , pour une couche limite.

Finalement, pour les couches limites, on définit aussi l'épaisseur de quantité de mouvement, θ (qui s'avérera très utile dans la formulation intégrale des équations de la couche limite, voir plus loin):

$$\theta = \int_0^{\zeta} \frac{u}{u_e} \left(1 - \frac{u}{u_e} \right) dy . \tag{5.73}$$

Pour la couche limite avec u_e constant, on obtient:

$$\frac{\theta}{\delta} = \int_0^{\zeta} \frac{u}{u_e} \left(1 - \frac{u}{u_e} \right) \frac{dy}{\delta} = \int_0^{\eta \gg 1} f'(\eta) \left(1 - f'(\eta) \right) d\eta = 0.470 , \qquad (5.74)$$

et donc:

$$\frac{\theta}{x} = \frac{0.470}{\left(\frac{u_e \, x}{2\nu}\right)^{1/2}} = \frac{0.664}{Re^{1/2}} \,. \tag{5.75}$$

Pour la couche limite avec u_e constant, on a donc:

$$\frac{\theta(L)}{L} = \frac{C_{f,m}(L)}{2} \ . \tag{5.76}$$

On a en fait obtenu ici la signification "physique" de l'épaisseur de quantité de mouvement dans le cas avec u_e constant. En effet la relation,

$$C_{f,m}(L) = \frac{D(L)}{L \rho u_e^2 / 2} = 2 \frac{\theta(L)}{L}$$
 (5.77)

entraîne l'égalité:

$$D(L) = \rho u_e^2 \theta(L) . \qquad (5.78)$$

L'épaisseur de quantité de mouvement, $\theta(L)$, correspond donc à la force de traînée normalisée, $D/(\rho u_e^2)$, exercée par la plaque sur le fluide entre x=0 et x=L. De même, pour tout couple (x_1, x_2) , la différence, $\theta(x_2) - \theta(x_1)$, correspond à la force de traînée normalisée exercée par la plaque sur le fluide entre $x=x_1$ et $x=x_2$. Le déficit de quantité de mouvement de la couche limite entre x_1 et x_2 est donc $\theta(x_2) - \theta(x_1)$, et ce déficit correspond à la force exercée par le milieu extérieur (ici, la plaque) sur le système (ici le fluide).

Enfin, il est aussi utile de noter que le cas de la couche limite simple de Blasius est bien conforme au cas général discuté dans l'introduction. En effet,

$$\frac{\delta(x)}{x} = \frac{2^{1/2}}{\left(\frac{u_e x}{\nu}\right)^{1/2}} = \frac{2^{1/2}}{Re^{1/2}} \qquad \Rightarrow \qquad \frac{\delta(x)}{L} = \frac{2^{1/2}}{Re_L^{1/2}} \left(\frac{x}{L}\right)^{1/2}. \tag{5.79}$$

et il en va de même pour toutes les autres épaisseurs:

$$\frac{\delta_{0.99}(x)}{L} = \frac{4.91}{Re_L^{1/2}} \left(\frac{x}{L}\right)^{1/2}, \qquad \frac{\delta^*(x)}{L} = \frac{1.721}{Re_L^{1/2}} \left(\frac{x}{L}\right)^{1/2}, \qquad \frac{\theta(x)}{L} = \frac{0.664}{Re_L^{1/2}} \left(\frac{x}{L}\right)^{1/2}. \tag{5.80}$$

5.5 Approche intégrale pour le cas général

Pour les couches limites laminaires, il y a peu de solutions exactes, i.e., de solutions de similitude de la forme $u/u_e = g(\eta)$ avec $\eta = y/\delta(x)$ et $\delta(x) = x \ (u_e(x) \ x/\nu)^{-1/2}$. En fait, il y a (1) la solution de Blasius développée ci-dessus pour le cas u_e uniforme, et (2) la solution de Falkner-Skan pour le cas $u_e = C \ x^{\alpha}$ (cfr., le cours $A \acute{e} rodynamique$) et dont la solution de Blasius n'est en fait que le cas particulier $\alpha = 0$. Comme il n'y a pas de solution exacte pour les autres cas (que l'on rencontre pourtant dans la réalité), il est nécessaire de développer une approche simplifiée et qui permette encore d'obtenir des grandeurs globales telles que δ^* , θ , C_f , $C_{f,m}$.

L'approche intégrale de von Karman constitue une telle approche. Elle peut s' obtenir, soit par intégration des équations de la couche limite en y, de la paroi jusqu'à la zone de raccordement avec l'écoulement irrotationnel extérieur, soit à partir de la conservation de la masse et de la quantité de mouvement appliquée à un volume de contrôle différentiel tel que présenté à la Fig. 5.5. Nous considérons ici la seconde approche car on peut l'aborder de manière plus physique et plus simple. Nous considérons le cas général des écoulements incompressibles ou compressibles.

La conservation de la masse demande que le débit sortant soit égal au débit entrant:

$$Q_{CD} + Q_{BD} - Q_{AB} = 0. (5.81)$$

On a:

$$Q_{AB} = \left(\int_0^{\zeta} \rho \, u \, dy \right) \Big|_x \tag{5.82}$$

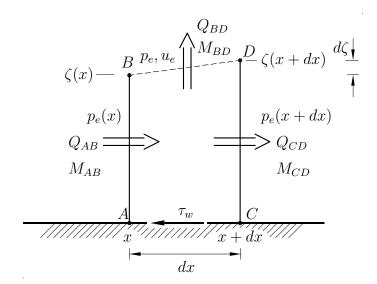


Figure 5.5: Approche intégrale de von Karman: volume de contrôle différentiel.

et

$$Q_{CD} = \left(\int_0^{\zeta} \rho u \, dy \right) \Big|_{x+dx} = \left(\int_0^{\zeta} \rho u \, dy \right) \Big|_x + dx \, \frac{d}{dx} \left(\int_0^{\zeta} \rho u \, dy \right) \Big|_x. \tag{5.83}$$

On obtient dès lors, pour le débit sortant de la couche limite par sa "frontière" extérieure:

$$Q_{BD} = -dx \frac{d}{dx} \left(\int_0^{\zeta} \rho \, u \, dy \right) \Big|_x \,. \tag{5.84}$$

La conservation de quantité de mouvement demande que la différence entre le flux sortant et le flux entrant soit égale à la somme des forces subies par le fluide. On considère la composante en x de la quantité de mouvement. On doit donc avoir l'égalité:

$$M_{CD} + M_{BD} - M_{AB} = F_{AB} - F_{CD} + F_{BD} - F_{AC} . {(5.85)}$$

Pour les intégrales de flux, on obtient:

$$M_{AB} = \left(\int_0^{\zeta} \rho \, u^2 \, dy \right) \Big|_x \,, \tag{5.86}$$

$$M_{CD} = \left(\int_0^{\zeta} \rho \, u^2 \, dy \right) \Big|_{x+dx} = \left(\int_0^{\zeta} \rho \, u^2 \, dy \right) \Big|_x + dx \, \frac{d}{dx} \left(\int_0^{\zeta} \rho \, u^2 \, dy \right) \Big|_x, \quad (5.87)$$

$$M_{BD} = u_e Q_{BD} = -u_e dx \frac{d}{dx} \left(\int_0^{\zeta} \rho u dy \right) \Big|_x.$$
 (5.88)

Pour les forces agissant sur le volume de contrôle, on obtient:

$$F_{AB} = (p_e \zeta) \Big|_{r}, \tag{5.89}$$

$$F_{CD} = \left(p_e \zeta\right)\Big|_{x+dx} = \left(p_e \zeta\right)\Big|_x + dx \frac{d}{dx} \left(p_e \zeta\right)\Big|_x, \qquad (5.90)$$

$$F_{BD} = p_e \, d\zeta \Big|_{x} = p_e \, dx \, \frac{d\zeta}{dx} \Big|_{x} \,, \tag{5.91}$$

$$F_{AC} = dx \tau_w \bigg|_x . (5.92)$$

Finalement, il vient:

$$dx \frac{d}{dx} \left(\int_0^{\zeta} \rho u^2 dy \right) \Big|_x - u_e dx \frac{d}{dx} \left(\int_0^{\zeta} \rho u dy \right) \Big|_x = -dx \frac{d}{dx} \left(p_e \zeta \right) \Big|_x + p_e dx \frac{d\zeta}{dx} \Big|_x - dx \tau_w \Big|_x$$

$$= -dx \zeta \frac{dp_e}{dx} \Big|_x - dx \tau_w \Big|_x. \tag{5.93}$$

On a donc établi que, pour tout x:

$$\frac{d}{dx} \left(\int_0^{\zeta} \rho \, u^2 \, dy \right) = u_e \frac{d}{dx} \left(\int_0^{\zeta} \rho \, u \, dy \right) - \zeta \frac{dp_e}{dx} - \tau_w$$

$$= \frac{d}{dx} \left(u_e \int_0^{\zeta} \rho \, u \, dy \right) - \left(\int_0^{\zeta} \rho \, u \, dy \right) \frac{du_e}{dx} - \zeta \frac{dp_e}{dx} - \tau_w , \tag{5.94}$$

résultat que l'on réécrit sous la forme:

$$\frac{d}{dx} \left(\int_0^{\zeta} \rho u \left(u - u_e \right) dy \right) + \left(\int_0^{\zeta} \rho u dy \right) \frac{du_e}{dx} = -\zeta \frac{dp_e}{dx} - \tau_w . \tag{5.95}$$

Dans le cas général (écoulements incompressibles ou compressibles), l'épaisseur de déplacement est définie à partir de la relation:

$$\int_0^{\zeta} \rho u \, dy = \rho_e \, u_e \, \left(\zeta - \delta^*\right) \,, \tag{5.96}$$

qui donne:

$$\delta^* = \int_0^{\zeta} \left(1 - \frac{\rho u}{\rho_e u_e} \right) dy . \tag{5.97}$$

L'équation (5.95) devient donc:

$$\frac{d}{dx}\left(\int_0^{\zeta} \rho u \left(u - u_e\right) dy\right) + \rho_e u_e \frac{du_e}{dx} \left(\zeta - \delta^*\right) = -\zeta \frac{dp_e}{dx} - \tau_w. \tag{5.98}$$

Comme $\frac{dp_e}{dx} + \rho_e u_e \frac{du_e}{dx} = 0$ en dehors de la couche limite (Euler), les termes en ζ se simplifient. Il reste:

$$\frac{d}{dx} \left(\int_0^{\zeta} \rho u \left(u - u_e \right) dy \right) - \rho_e u_e \frac{du_e}{dx} \delta^* = -\tau_w . \tag{5.99}$$

L'épaisseur de quantité de mouvement est définie, dans le cas général, par:

$$\theta = \int_0^{\zeta} \frac{\rho \, u}{\rho_e \, u_e} \left(1 - \frac{u}{u_e} \right) \, dy \,. \tag{5.100}$$

L'équation intégrale de von Karman est finalement obtenue comme:

$$\frac{d}{dx}\left(\rho_e u_e^2 \theta\right) + \rho_e u_e \frac{du_e}{dx} \delta^* = \tau_w . \tag{5.101}$$

Le coefficient de frottement étant défini par:

$$C_f = \frac{\tau_w}{\rho_e \, u_e^2 / 2} \,, \tag{5.102}$$

la forme adimensionnelle de l'équation intégrale de von Karman s'écrit, pour le cas général, sous la forme:

$$\frac{d\theta}{dx} + \frac{1}{\rho_e u_e^2} \frac{d}{dx} \left(\rho_e u_e^2\right) \theta + \frac{1}{u_e} \frac{du_e}{dx} \delta^* = \frac{C_f}{2} ,$$

$$\frac{d\theta}{dx} + \frac{1}{\rho_e} \frac{d\rho_e}{dx} \theta + \frac{1}{u_e} \frac{du_e}{dx} \left(2\theta + \delta^*\right) = \frac{C_f}{2} .$$
(5.103)

Le rapport $H\stackrel{\text{def}}{=} \delta^*/\theta$ constitue ce que l'on appelle le facteur de forme de la couche limite. On écrit donc aussi:

$$\frac{d\theta}{dx} + \left(\frac{1}{\rho_e}\frac{d\rho_e}{dx} + (2+H)\frac{1}{u_e}\frac{du_e}{dx}\right)\theta = \frac{C_f}{2}.$$
 (5.104)

Le cas des écoulements incompressibles est obtenu en prenant $\rho_e = \rho$ constant. On a alors, plus simplement:

$$\frac{d\theta}{dx} + \frac{1}{u_e} \frac{du_e}{dx} \left(2\theta + \delta^* \right) = \frac{C_f}{2} ,$$

$$\frac{d\theta}{dx} + \left(2 + H \right) \frac{1}{u_e} \frac{du_e}{dx} \theta = \frac{C_f}{2} .$$
(5.105)

Dans le cas de la couche limite avec u_e constant, l'équation intégrale se réduit simplement à $\frac{d\theta}{dx} = \frac{C_f}{2}$: le taux d'augmentation de l'épaisseur de quantité de mouvement est alors directement proportionnel au coefficient de frottement. L'intégration de l'équation de von Karman donne alors aussi: $\frac{\theta(L)}{L} = \frac{C_{f,m}}{2}$.

5.6 Couches limites thermiques

Considérons le cas général, en écoulements incompressibles. L'équation de l'énergie s'exprime alors en terme d'energie interne, U, avec dU = c(T) dT:

$$\rho \frac{DU}{Dt} = \tau_{ji} d_{ij} - \frac{\partial q_j}{\partial x_j} ,$$

$$= 2\mu d_{ji} d_{ij} + \frac{\partial}{\partial x_j} \left(k \frac{\partial T}{\partial x_j} \right) .$$
(5.106)

Au sein de la couche limite, celle-ci se réduit à

$$\rho\left(u\frac{\partial U}{\partial x} + v\frac{\partial U}{\partial y}\right) = \mu\left(\frac{\partial u}{\partial y}\right)^2 + \frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right). \tag{5.107}$$

En toute généralité, μ , k et c sont fonctions de la température, T. Si on multiplie l'équation de quantité de mouvement,

$$\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{dp_e}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) , \qquad (5.108)$$

par u, on obtient:

$$\rho\left(u\frac{\partial}{\partial x}\left(\frac{u^2}{2}\right) + v\frac{\partial}{\partial y}\left(\frac{u^2}{2}\right)\right) = -u\frac{dp_e}{dx} + u\frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right). \tag{5.109}$$

Si on additionne cette équation avec celle de l'énergie interne, on obtient l'équation pour l'énergie interne totale, $U_0 = U + u^2/2$:

$$\rho \left(u \frac{\partial U_0}{\partial x} + v \frac{\partial U_0}{\partial y} \right) = -u \frac{dp_e}{dx} + u \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) + \mu \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) \\
= -u \frac{dp_e}{dx} + \frac{\partial}{\partial y} \left(\mu u \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) \\
= -u \frac{dp_e}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial}{\partial y} \left(\frac{u^2}{2} \right) + k \frac{\partial T}{\partial y} \right) \\
= -u \frac{dp_e}{dx} + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial}{\partial y} \left(\frac{u^2}{2} \right) + \frac{k}{\mu c} \frac{\partial U}{\partial y} \right) \right) . \tag{5.110}$$

On se souvient du nombre de Prandtl: $Pr=\frac{\mu\,c}{k}$. Le coefficient de diffusivité thermique, $\alpha=\frac{k}{\rho\,c}$ est donc aussi $\alpha=\frac{\nu}{Pr}$. Bien que $\mu,\,k$ et c sont tous fonctions de T, le nombre de Prandtl l'est relativement peu pour les gaz: en effet, c varie peu avec la température, μ et k varient significativement (ils croissent) mais presque en proportion. Par exemple, à pression atmosphérique, l'air a Pr=0.71 à 20 °C et Pr=0.69 à 100 °C. Par contre, pour les liquides, le nombre de Prandtl varie rapidement avec la température: en effet,

c varie peu, la viscosité μ décroît rapidement et k croît lentement. Par exemple, l'eau a Pr=6.9 à $20\,^{\circ}$ C, Pr=3.5 à $50\,^{\circ}$ C et Pr=2.2 à $80\,^{\circ}$ C. L'approximation consistant à considérer que Pr n'est pas fonction de T est donc souvent très bonne pour les gaz. Elle l'est beaucoup moins pour les liquides; sauf, bien sûr, lorsque les variations de température pour le problème considéré sont faibles.

Pour la suite, on considère uniquement les cas avec u_e constant, et donc:

$$\rho\left(u\frac{\partial U_0}{\partial x} + v\frac{\partial U_0}{\partial y}\right) = \frac{\partial}{\partial y}\left(\mu\left(\frac{\partial}{\partial y}\left(\frac{u^2}{2}\right) + \frac{1}{Pr}\frac{\partial U}{\partial y}\right)\right). \tag{5.111}$$

5.6.1 Cas Pr = 1 et u_e constant

Nous examinons ici plus en détail le cas avec u_e constant et Pr = 1. L'équation (5.111) se simplifie alors en:

$$\rho \left(u \frac{\partial U_0}{\partial x} + v \frac{\partial U_0}{\partial y} \right) = \frac{\partial}{\partial y} \left(\mu \frac{\partial U_0}{\partial y} \right) . \tag{5.112}$$

En comparant l'équation (5.108) pour le cas avec $u_e = 0$ et l'équation (5.112), on constate que les grandeurs u et U_0 satisfont la même équation. Il s'ensuit qu'il doit y avoir une relation linéaire entre les deux profils:

$$U_0 = A u + B . (5.113)$$

Cette constatation constitue la relation de Crocco en couche limite incompressible. A noter que, tant que Pr=1, elle est même valable pour des fluides à propriétés physiques, μ , k et c, non constantes.

Les constantes A et B sont déterminées à partir des conditions aux limites. Considérons d'abord le cas d'une couche limite avec paroi à température constante: $T\big|_{y=0} = T_w = \text{constante}$. On obtient alors que $B = U_w$. Le raccordement avec l'écoulement hors couche limite donne aussi:

$$U_{0e} = A u_e + B = A u_e + U_w , (5.114)$$

et donc:

$$A = \frac{(U_{0e} - U_w)}{u_e} = \frac{(U_e - U_w) + u_e^2/2}{u_e}.$$
 (5.115)

La relation de Crocco devient donc, finalement:

$$U_0 - U_w = (U_{0e} - U_w) \frac{u}{u_e},$$

$$(U - U_w) + \frac{u^2}{2} = \left((U_e - U_w) + \frac{u_e^2}{2} \right) \frac{u}{u_e}.$$
(5.116)

La signification physique de la constante A est facilement obtenue. En effet, par différentiation de la relation de Crocco, on obtient:

$$\frac{\partial U}{\partial y} + u \frac{\partial u}{\partial y} = c \frac{\partial T}{\partial y} + u \frac{\partial u}{\partial y} = A \frac{\partial u}{\partial y}. \tag{5.117}$$

A la paroi, cette relation donne:

$$c \frac{\partial T}{\partial y}\Big|_{y=0} = A \frac{\partial u}{\partial y}\Big|_{y=0}, \qquad (5.118)$$

et donc, puisque Pr = 1,

$$k \frac{\partial T}{\partial y}\Big|_{y=0} = A \mu \frac{\partial u}{\partial y}\Big|_{y=0},$$

$$-q_w = A \tau_w.$$
(5.119)

La constante A constitue donc le rapport entre le flux de chaleur à la paroi et la contrainte de cisaillement à la paroi: $A = -q_w/\tau_w$

Dans le cas où les propriétés physiques du fluide sont constantes, l'écoulement est obtenu par la solution de similitude de Blasius, $u/u_e = f'(\eta)$. Puisque, dans ce cas, dU = c dT, la relation de Crocco devient:

$$c (T - T_w) + \frac{u^2}{2} = \left(c (T_e - T_w) + \frac{u_e^2}{2}\right) \frac{u}{u_e}.$$
 (5.120)

En divisant par $u_e^2/2$, on obtient

$$\frac{c \left(T - T_w\right)}{u_e^2 / 2} + \left(\frac{u}{u_e}\right)^2 = \left(\frac{c \left(T_e - T_w\right)}{u_e^2 / 2} + 1\right) \frac{u}{u_e} \,. \tag{5.121}$$

Le profil de température est donc obtenu comme:

$$\frac{c(T - T_w)}{u_e^2/2} = \left(\frac{c(T_e - T_w)}{u_e^2/2} + 1\right) f'(\eta) - (f'(\eta))^2 . \tag{5.122}$$

Un autre cas est le cas d'une couche limite sans transfert de chaleur à la paroi (cas adiabatique): $q_w = 0$ et donc A = 0, et donc $U_0 =$ constante. L'énergie interne totale est constante au travers de la couche limite. Ce cas correspond effectivement à une solution particulière de l'équation (5.112). On a donc

$$U + \frac{u^2}{2} = U_e + \frac{u_e^2}{2} , (5.123)$$

et donc

$$U - U_e = \frac{u_e^2}{2} \left(1 - \left(\frac{u}{u_e} \right)^2 \right) . {(5.124)}$$

Dans le cas avec c constant, cette relation fournit le profil de température:

$$\frac{c (T - T_e)}{u_e^2 / 2} = 1 - (f'(\eta))^2 . (5.125)$$

En particulier, la température de paroi est telle que:

$$\frac{c \left(T_w - T_e\right)}{u_e^2/2} = 1 \ . \tag{5.126}$$

5.6.2 Cas Pr général, dissipation négligeable, u_e et T_w constants

On considère ici les fluides dont le nombre de Prandtl est différent de l'unité. La relation de Crocco n'est donc plus satisfaite. Cependant, si on considère les écoulements pour lesquels le terme de dissipation visqueuse au sein de la couche limite est négligeable par rapport au terme de conduction de chaleur, on peut encore obtenir des solutions exactes.

L'ordre de grandeur des termes de dissipation visqueuse et de conduction de chaleur est:

$$\mu \left(\frac{u_e}{\delta}\right)^2 \quad \text{et} \quad k \frac{|T_e - T_w|}{\delta_T^2}$$
 (5.127)

avec δ_T l'épaisseur caractéristique de la couche limite thermique. Pour que la dissipation visqueuse soit négligeable par rapport à la conduction de chaleur, il faut donc que:

$$\mu \left(\frac{u_e}{\delta}\right)^2 \ll k \frac{|T_e - T_w|}{\delta_T^2} \,, \tag{5.128}$$

ou encore:

$$\frac{\mu u_e^2}{k |T_e - T_w|} \left(\frac{\delta_T}{\delta}\right)^2 = \frac{\mu c}{k} \frac{u_e^2}{c |T_e - T_w|} \left(\frac{\delta_T}{\delta}\right)^2 = Pr Ec \left(\frac{\delta_T}{\delta}\right)^2 \ll 1, \qquad (5.129)$$

avec Ec le nombre de Eckert. On a aussi déjà obtenu, par considérations physiques (i.e., par comparaison de l'ordre de grandeur des termes de convection et des termes de diffusion de la vitesse u), que $\delta(x)$ varie comme $x\left(\frac{u_e\,x}{\nu}\right)^{-1/2}$. De la même manière, on propose, par comparaison de l'ordre de grandeur des termes de convection et des termes de diffusion de la température T, que $\delta_T(x)$ varie comme $x\left(\frac{u_e\,x}{\alpha}\right)^{-1/2}$. On obtient alors que

$$\frac{\delta_T}{\delta} \simeq \left(\frac{\alpha}{\nu}\right)^{1/2} = \frac{1}{Pr^{1/2}} \ . \tag{5.130}$$

La condition adimensionnelle pour que le terme de dissipation visqueuse soit négligeable par rapport au terme de conduction de chaleur devient alors $Ec \ll 1$. (On verra plus loin que la proposition ci-dessus, et selon laquelle $\frac{\delta_T}{\delta} \simeq \frac{1}{Pr^a}$ avec a=1/2 n'est en fait valable que pour les très faibles valeurs de Pr; pour les grandes valeurs de Pr, l'exposant est plutôt a=0.33-0.34; pour les valeurs de Pr proches de l'unité, il est plutôt a=0.37-0.38.

La condition correcte est donc $Pr^{1-2a}Ec \ll 1$ avec a qui varie en fonction de Pr: on y reviendra.)

Nous poursuivons avec l'équation de l'énergie dans le cas avec dissipation visqueuse négligeable. Elle se réduit alors à:

$$\rho\left(u\frac{\partial U}{\partial x} + v\frac{\partial U}{\partial y}\right) = \frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right). \tag{5.131}$$

Dans le cas d'un fluide avec propriétés physiques constantes, cette équation devient:

$$u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} = \frac{k}{\rho c}\frac{\partial^2 T}{\partial y^2} = \frac{\nu}{Pr}\frac{\partial^2 T}{\partial y^2}.$$
 (5.132)

On considère de nouveau le cas de la couche limite avec température de paroi, T_w , constante. On peut alors aussi obtenir le profil de température sous la forme d'une solution de similitude:

$$\frac{T - T_w}{T_e - T_w} = \Theta(\eta) . \tag{5.133}$$

En développant les différents termes (à faire en exercice), l'équation de l'énergie se réduit finalement à l'équation différentielle ordinaire suivante:

$$\Theta''(\eta) + Pr f(\eta) \Theta'(\eta) = 0$$
(5.134)

avec $f(\eta)$ une fonction connue (= solution de Blasius). Les conditions aux limites sont $\Theta(0) = 0$ et $\lim_{\eta \to \infty} \Theta(\eta) = 1$. Comme l'EDO ne contient pas de terme en $\Theta(\eta)$, il s'agit en fait d'une EDO du premier ordre pour la fonction $G(\eta) = \Theta'(\eta)$:

$$G'(\eta) + Pr f(\eta) G(\eta) = 0$$
. (5.135)

L'intégration de cette EDO est immédiate:

$$G(\eta) = G(0) \exp\left(-Pr \int_0^{\eta} f(\zeta) d\zeta\right). \tag{5.136}$$

On obtient donc, par seconde intégration, que:

$$\Theta(\eta) = G(0) \int_0^{\eta} \exp\left(-Pr \int_0^{\xi} f(\zeta) d\zeta\right) d\xi + D.$$
 (5.137)

Les conditions aux limites déterminent les constantes d'intégration. Le profil de température est finalement obtenu comme:

$$\frac{T - T_w}{T_e - T_w} = \Theta(\eta) = \frac{\int_0^{\eta} \exp\left(-Pr\int_0^{\xi} f(\zeta) d\zeta\right) d\xi}{\int_0^{\infty} \exp\left(-Pr\int_0^{\xi} f(\zeta) d\zeta\right) d\xi}.$$
 (5.138)

La figure 5.6 montre les profils de température obtenus pour différentes valeurs de Pr. En fait, on n'a pas utilisé ici l'intégration numérique de la solution mathématique obtenue ci-dessus. On a simplement tout résolu par intégration numérique, en une seule fois: intégration de l'ODE pour le profil de vitesse et de celle pour le profil de température. Pour ce faire, on a tout réécrit sous la forme d'un système de cinq EDO du premier ordre:

$$f'(\eta) = g(\eta),$$

 $g'(\eta) = h(\eta),$
 $h'(\eta) = -f(\eta)h(\eta),$
 $\Theta'(\eta) = G(\eta),$
 $G'(\eta) = -Pr f(\eta)G(\eta).$ (5.139)

On a intégré numériquement ce système, en utilisant un schéma de Runge-Kutta 4 et en débutant l'intégration en $\eta=0$, avec f(0)=0, g(0)=f'(0)=0, h(0)=f''(0)=0.4696 (déjà convergé par la "méthode du tir"), $\Theta(0)=0$ et $G(0)=\Theta'(0)$ deviné pour chaque valeur de Pr. Pour chaque Pr, on intègre en η jusqu'aux grandes valeurs de η/Pr^a ; on itère la procédure sur le choix de $\Theta'(0)$ jusqu'à ce que l'on obtienne bien que $\Theta(\eta) \to 1$ lorsque $\eta/Pr^a \gg 1$ ("méthode du tir").

On vérifie bien que, au plus le nombre de Prandtl est grand, au plus l'épaisseur de la couche limite thermique, δ_T , est petite par rapport à l'épaisseur de la couche limite de vitesse, δ .

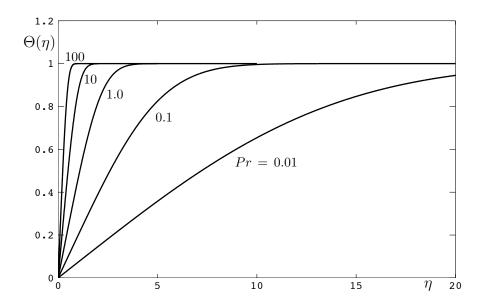


Figure 5.6: Profils de température pour les cas avec dissipation négligeable, u_e et T_w constants, et $Pr=0.01,\,0.1,\,1,\,10$ et 100..

Comme les solutions obtenues sont valables pour tout Pr, mais avec dissipation visqueuse négligeable, on peut aussi réexaminer le cas Pr = 1 et le comparer avec la solution exacte de Crocco (qui, elle, ne néglige pas la dissipation visqueuse). Avec Pr = 1, l'EDO (5.134) se réduit à

$$\Theta''(\eta) + f(\eta)\Theta'(\eta) = 0. (5.140)$$

En comparant cette EDO avec celle qui a été écrite pour $f(\eta)$, Eq. (5.57), dont les conditions aux limites sont f'(0) = 0 et $\lim_{\eta \gg 1} f'(\eta) = 1$, on obtient immédiatement la solution: $\Theta(\eta) = f'(\eta)$ (car même EDO et mêmes conditions aux limites). On obtient donc:

$$\frac{T - T_w}{T_e - T_w} = \frac{u}{u_e} = f'(\eta) . {(5.141)}$$

Ce résultat est à comparer avec le résultat exact de Crocco pour Pr=1, Eq. (5.120). Cette concordance est logique: en effet, lorsque $Ec \ll 1$, on a $u_e^2 \ll c |T_e - T_w|$ et aussi $u^2 \ll c |T - T_w|$, et la relation de Crocco devient alors essentiellement:

$$c (T - T_w) \simeq c (T_e - T_w) \frac{u}{u_e}, \qquad (5.142)$$

ce qui correspond bien au résultat (5.141).

Retournons au cas Pr géneral et dissipation visqueuse négligeable. Le flux de chaleur à la paroi est aussi obtenu:

$$q_w = -k \left. \frac{\partial T}{\partial y} \right|_{y=0} = -k \left(T_e - T_w \right) \Theta'(0) \frac{1}{\delta(x)} = -k \left(T_e - T_w \right) \Theta'(0) \left(\frac{u_e}{2 \nu x} \right)^{1/2} . (5.143)$$

En terme adimensionnel, on définit le nombre de Nusselt:

$$Nu = \frac{q_w x}{k (T_w - T_e)} = \Theta'(0) \frac{x}{\delta(x)} = \frac{\Theta'(0)}{\sqrt{2}} \left(\frac{u_e x}{\nu}\right)^{1/2} = \frac{\Theta'(0)}{\sqrt{2}} Re^{1/2}.$$
 (5.144)

Le profil de température donne aussi $\Theta'(0) = G(0)$. Certaines valeurs numériques sont reprises dans la Table 5.1.

Pour les cas $Pr \geq 0.5$, une approximation classique est:

$$\frac{\Theta'(0)}{\sqrt{2}} \simeq 0.332 \, Pr^{1/3} \qquad \to \qquad Nu \simeq 0.332 \, Pr^{1/3} \, Re^{1/2} \,.$$
 (5.145)

Cette approximation n'est clairement pas bonne pour les cas $Pr \leq 0.5$: pour Pr = 0.1, on a déjà une erreur relative de 10%; pour Pr = 0.01, on a une erreur relative de près de 40%. On note aussi que cette approximation est effectivement adéquate pour les cas avec $Pr \geq 0.5$ mais néanmoins modéré; dès que $Pr \geq 10$, il vaut encore mieux utiliser:

$$\frac{\Theta'(0)}{\sqrt{2}} \simeq 0.3387 \, Pr^{1/3} \qquad \to \qquad Nu \simeq 0.3387 \, Pr^{1/3} \, Re^{1/2} \,.$$
 (5.146)

Pr	$\frac{\Theta'(0)}{\sqrt{2}}$	$0.332Pr^{1/3}$	$0.564Pr^{1/2}$	Churchill	$\frac{\delta_{0.95}}{\delta_{T,0.95}}$	$\frac{\delta_{0.99}}{\delta_{T,0.99}}$
0.0001	0.0055878		0.005640	0.005619	0.01408	0.01343
0.001	0.017316		0.01783	0.01751	0.04413	0.04217
0.01	0.051589		0.05640	0.05227	0.1357	0.1303
0.1	0.14003	0.1541	0.1783	0.1397	0.3940	0.3835
1.0	0.33206	0.3320		0.3285	1.000	1.000
10	0.72814	0.7153		0.7247	2.233	2.264
100	1.5718	1.541		1.570	4.832	4.907
1000	3.3871	3.320		3.386	10.41	10.58
10000	7.2974	7.153		7.297	22.44	22.80

Table 5.1: Résultats globaux pour la couche limite thermique à différents Pr. Les résultats des corrélations sont également fournis.

Pour les cas $Pr \leq 0.01$ une autre approximation classique est:

$$\frac{\Theta'(0)}{\sqrt{2}} \simeq 0.564 \, Pr^{1/2} \qquad \to \qquad Nu \simeq 0.564 \, Pr^{1/2} \, Re^{1/2} = 0.564 \, Pe^{1/2} \, .$$
 (5.147)

avec Pe = Pr Re, le nombre de Peclet.

Enfin, il existe aussi la "corrélation de Churchill et Ozoe" (1973), qui fournit une bonne approximation pour tous les Pr:

$$Nu \simeq \frac{0.3387 \, Pr^{1/3}}{\left(1 + \left(\frac{0.0468}{Pr}\right)^{2/3}\right)^{1/4}} \, Re^{1/2} \,.$$
 (5.148)

Cette corrélation a bien les bons comportements limites: pour les grands Pr, elle donne $Nu \simeq 0.3387 \, Pr^{1/3} \, Re^{1/2}$; pour les très petits Pr, elle donne $Nu \simeq 0.564 \, Pr^{1/2} \, Re^{1/2}$. Néanmoins, pour Pr = 1, elle donne $Nu \simeq 0.329 \, Re^{1/2}$ au lieu de la valeur exacte $Nu = 0.332 \, Re^{1/2}$.

Finalement, il convient de mentionner que, au lieu du nombre de Nusselt, on utilise souvent le nombre de Stanton:

$$St = \frac{q_w}{\rho \, u_e \, c \, (T_w - T_e)} \,. \tag{5.149}$$

Ces nombres sont liés. En effet:

$$St = \frac{q_w x}{k (T_w - T_e)} \frac{\mu}{\rho u_e x} \frac{k}{\mu c} = \frac{Nu}{Pr Re} = \frac{Nu}{Pe}$$
 (5.150)

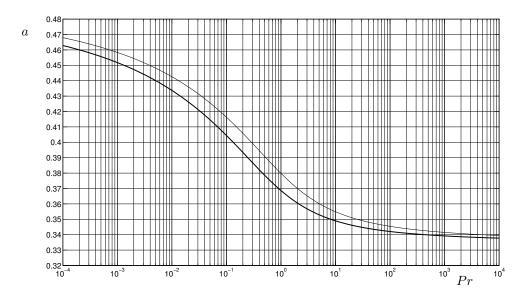


Figure 5.7: Exposant a dans la relation $\frac{\delta}{\delta_T}=Pr^a$, obtenu en utilisant les épaisseurs à 95% (trait épais) ou celles à 99% (trait mince).

Avec l'approximation classique donnée ci-dessus pour les cas $Pr \geq 0.5$, on obtient donc:

$$St \simeq 0.332 \, Pr^{-2/3} \, Re^{-1/2} \,.$$
 (5.151)

Si on compare ce résultat avec celui obtenu pour le coefficient de frottement, Eq. (5.63), on obtient:

$$St \simeq Pr^{-2/3} \frac{C_f}{2}$$
 (5.152)

Cette relation constitue "l'analogie de Reynolds": pour les couches limites avec u_e et T_w constants, dissipation négligeable et $Pr \geq 0.5$, le coefficient de transfert de chaleur exprimé en nombre de Stanton et le coefficient de frottement sont dans un rapport bien déterminé, et qui ne dépend que du nombre de Prandtl du fluide. Cette analogie s'avère très utile en ingénierie. Elle permet, par exemple, de calculer le transfert de quantité de mouvement à la paroi (i.e., le frottement) à partir d'une mesure du transfert de chaleur à la paroi. Elle peut aussi être utilisée de façon inverse. Bien que l'analogie ne soit strictement valable qu'en couche limite avec u_e constant, on l'utilise aussi souvent, en ingénierie, comme "approximation" dans le cas de couches limites avec u_e non constant mais variant de façon modérée.

On note aussi qu'avec la corrélation améliorée pour les cas $Pr \geq 10$, l'analogie de Reynolds devient plutôt:

$$St \simeq 0.3387 Pr^{-2/3} Re^{-1/2} = \left(\frac{0.3387}{0.332}\right) Pr^{-2/3} \frac{C_f}{2} \simeq 1.020 Pr^{-2/3} \frac{C_f}{2}$$
 (5.153)

Avec l'autre approximation pour les cas $Pr \leq 0.01$, on obtient:

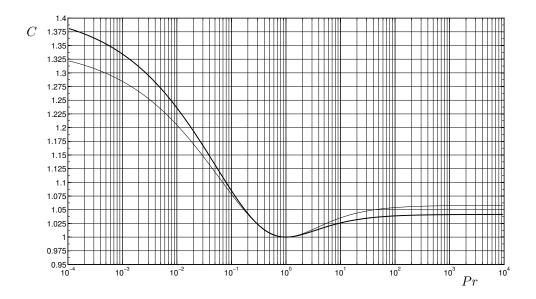
$$St \simeq 0.564 \, Pr^{-1/2} \, Re^{-1/2} \,,$$
 (5.154)

et donc une "analogie de Reynolds à bas nombre de Prandtl":

$$St \simeq \left(\frac{0.564}{0.332}\right) Pr^{-1/2} \frac{C_f}{2} \simeq 1.70 Pr^{-1/2} \frac{C_f}{2}$$
 (5.155)

Finalement, on obtient aussi, pour le cas Pr général, et en utilisant la corrélation de Churchill et Ozoe:

$$St \simeq \frac{0.3387 \, Pr^{-2/3}}{\left(1 + \left(\frac{0.0468}{Pr}\right)^{2/3}\right)^{1/4}} \, Re^{-1/2} = \frac{1.020 \, Pr^{-2/3}}{\left(1 + \left(\frac{0.0468}{Pr}\right)^{2/3}\right)^{1/4}} \, \frac{C_f}{2}$$
(5.156)



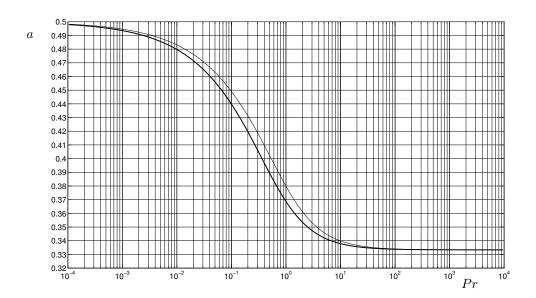


Figure 5.8: Coefficient C et exposant a dans la relation $\frac{\delta}{\delta T}=C\,Pr^a$, obtenus en utilisant les épaisseurs à 95% (trait épais) ou celles à 99% (trait mince).

Enfin, on peut aussi vérifier, a posteriori, la qualité de l'approximation/argumentation sur les ordres de grandeur, et selon laquelle $\frac{\delta}{\delta_T} \simeq P r^{1/2}$. Pour ce faire, on a obtenu, par intégration numérique précise des EDO couplées (comme expliqué ci-avant), les profils de

couches limites de vitesse et de température, et ce dans une très large gamme de valeurs de Pr: de $Pr = 10^{-4}$ à $Pr = 10^4$. Pour chaque cas de Pr, on a mesuré les épaisseurs δ et δ_T et on a calculé l'exposant a dans la relation $\frac{\delta}{\delta_T} = Pr^a$. En fait, on a même mesuré deux épaisseurs: celles définies à 95% et celles définies à 99% (cfr. Table 5.1), et on a obtenu l'exposant a correspondant à chaque définition. Les résultats sont fournis à la Fig. 5.7. Ils montrent que:

- La valeur $a \simeq 0.50$ n'est obtenue que pour des Pr vraiment très petits (besoin de $Pr < 10^{-5}$; voire même de $Pr < 10^{-6}$?).
- La valeur $a \approx 0.34$ est obtenue pour des Pr relativement grands $(Pr > 10^2)$.
- La valeur $a \approx 0.37 0.38$ (selon la définition utilisée pour mesurer les épaisseurs) est obtenue pour des Pr proches de l'unité.

On a ensuite aussi considéré une version améliorée, avec la fonction plus générale $\frac{\delta}{\delta_T} = C \ Pr^a$ (avec, bien sûr, C = 1 pour Pr = 1). Le fait de rajouter le degré de liberté C permet de converger plus rapidement l'exposant a: pour les grandes valeurs de Pr et aussi pour les petites valeurs de Pr. Pour chaque cas de Pr, on a calculé le meilleur couple (a, C). Les résultats sont fournis à la Fig. 5.8. Ils montrent que:

- Les valeurs $a \simeq 0.50$ et $C \simeq 1.32 1.38$ (selon la définition utilisée pour les épaisseurs) sont obtenues pour $Pr = 10^{-4}$; et manifestement tendent vers a = 0.50 (donc 1/2) et $C \simeq 1.35 1.40$ pour $Pr < 10^{-5}$.
- Les valeurs a = 0.333 (donc 1/3) et $C \simeq 1.05$ sont obtenues pour $Pr \ge 10^2$.
- Les valeurs $a \simeq 0.37 0.38$ et $C \simeq 1.0$ sont obtenues pour des Pr proches de l'unité.

On en conclut donc que le scaling a=1/2 n'est vraiment atteint que lorsque l'épaisseur de la couche limite de vitesse est beaucoup plus petite que l'épaisseur de la couche limite de température.

5.7 Couches limites en écoulement compressible

Les équations de la couche limite en écoulement compressible sont facilement obtenues par extension de l'analyse développée ci-avant. En plus de la loi de constitution $p = \rho RT$, de la conservation de la masse et de la quantité de mouvement,

$$\frac{D\rho}{Dt} + \rho d_{mm} = 0, (5.157)$$

$$\rho \frac{Du_i}{Dt} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ji}}{\partial x_j} , \qquad (5.158)$$

on doit aussi considérer l'équation de l'énergie. Exprimée en enthalpie, H, avec $dH = c_p dT$, elle s'écrit:

$$\rho \frac{DH}{Dt} = \frac{Dp}{Dt} + \tau_{ji} d_{ij} + \frac{\partial}{\partial x_j} \left(k \frac{\partial T}{\partial x_j} \right) . \tag{5.159}$$

Au sein de la couche limite, ces équations deviennent:

$$\frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) = 0, \qquad (5.160)$$

$$\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{dp_e}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) , \qquad (5.161)$$

$$\rho \left(u \frac{\partial H}{\partial x} + v \frac{\partial H}{\partial y} \right) = u \frac{dp_e}{dx} + \mu \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) . \tag{5.162}$$

En toute généralité, les grandeurs μ , k et c_p sont fonctions de la température, T. Si on multiplie l'equation de quantité de mouvement par u, on obtient:

$$\rho\left(u\frac{\partial}{\partial x}\left(\frac{u^2}{2}\right) + v\frac{\partial}{\partial y}\left(\frac{u^2}{2}\right)\right) = -u\frac{dp_e}{dx} + u\frac{\partial}{\partial y}\left(\mu\frac{\partial u}{\partial y}\right). \tag{5.163}$$

Si on additionne cette équation avec celle de l'enthalpie, on obtient l'équation pour l'enthalpie totale, $H_0 = H + u^2/2$:

$$\rho \left(u \frac{\partial H_0}{\partial x} + v \frac{\partial H_0}{\partial y} \right) = u \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) + \mu \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) \\
= \frac{\partial}{\partial y} \left(\mu u \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) \\
= \frac{\partial}{\partial y} \left(\mu \frac{\partial}{\partial y} \left(\frac{u^2}{2} \right) + k \frac{\partial T}{\partial y} \right) \\
= \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial}{\partial y} \left(\frac{u^2}{2} \right) + \frac{1}{Pr} \frac{\partial H}{\partial y} \right) \right) , \tag{5.164}$$

avec $Pr = \frac{\mu c_p}{k}$. A noter que, bien que μ , k et c_p soient fonctions de T, le nombre de Prandtl l'est relativement peu pour les gaz. L'approximation, consistant à considérer que le nombre de Prandtl Pr n'est pas fonction de T, est donc souvent très bonne.

5.7.1 Cas Pr = 1 et u_e constant

Nous examinons plus en détail le cas avec u_e constant et Pr=1. L'équation 5.164 se simplifie:

 $\rho \left(u \frac{\partial H_0}{\partial x} + v \frac{\partial H_0}{\partial y} \right) = \frac{\partial}{\partial y} \left(\mu \frac{\partial H_0}{\partial y} \right) . \tag{5.165}$

Les grandeurs u et H_0 satisfont alors la même équation. Il s'ensuit qu'il doit y avoir une relation linéaire entre ces deux grandeurs:

$$H_0 = A u + B . (5.166)$$

Cette relation constitue la relation de Crocco pour les couche limites compressibles. Les constantes A et B sont déterminées à partir des conditions aux limites.

Dans le cas d'une couche limite avec température de paroi constante, $T|_{y=0} = T_w =$ constante, on obtient finalement:

$$H_0 - H_w = (H_{0e} - H_w) \frac{u}{u_e},$$

$$(H - H_w) + \frac{u^2}{2} = \left((H_e - H_w) + \frac{u_e^2}{2} \right) \frac{u}{u_e}.$$
(5.167)

Dans le cas d'un fluide calorifiquement parfait $(c_p$ pas fonction de T), on a $dH = c_p dT$ et donc:

$$c_p (T - T_w) + \frac{u^2}{2} = \left(c_p (T_e - T_w) + \frac{u_e^2}{2}\right) \frac{u}{u_e}.$$
 (5.168)

Le profil de température est dès lors obtenu comme:

$$\frac{c_p (T - T_w)}{u_e^2 / 2} = \left(\frac{c_p (T_e - T_w)}{u_e^2 / 2} + 1\right) \frac{u}{u_e} - \left(\frac{u}{u_e}\right)^2.$$
 (5.169)

La constante A constitue donc le rapport entre le flux de chaleur et la contrainte de cisaillement à la paroi.

Dans la cas d'une couche limite sans transfert de chaleur à la paroi (cas adiabatique: $q_w = 0$), l'enthalpie totale est constante:

$$H + \frac{u^2}{2} = H_e + \frac{u_e^2}{2} \ . \tag{5.170}$$

Donc, pour un fluide caloriquement parfait, il vient:

$$\frac{c_p (T - T_e)}{u_e^2/2} = 1 - \left(\frac{u}{u_e}\right)^2 . {(5.171)}$$

En particulier, la température de paroi est telle que:

$$\frac{c_p \left(T_w - T_e\right)}{u_e^2/2} = 1. (5.172)$$

5.8 Approche intégrale pour le transfert de chaleur

L'approche intégrale de von Karman s'applique aussi au transfert de chaleur. De nouveau, elle peut s'obtenir, soit par intégration des équations de la couche limite en y, de la paroi jusqu'à la zone de raccordement avec l'écoulement Euler extérieur, soit à partir des conservations de la masse et de l'énergie appliquées à un volume de contrôle tel que présenté à la Fig. 5.9 Nous utilisons de nouveau la seconde approche.

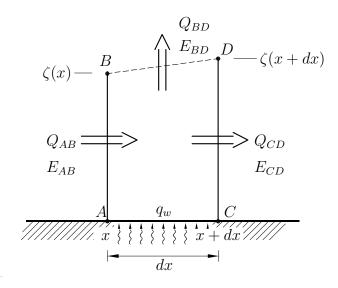


Figure 5.9: Approche intégrale de von Karman pour le transfert de chaleur: volume de contrôle différentiel.

La conservation de l'énergie demande que la différence entre le flux sortant et le flux entrant soit égale à l'apport reçu par le fluide:

$$E_{CD} + E_{BD} - E_{AB} = E_{AC} . (5.173)$$

Considérons d'abord le cas des écoulements compressibles. On travaille en enthalpie totale, H_0 :

$$E_{AB} = \left(\int_0^{\zeta} \rho u H_0 dy \right) \Big|_x, \qquad (5.174)$$

$$E_{CD} = \left(\int_0^{\zeta} \rho u H_0 dy \right) \Big|_{x+dx}$$

$$= \left(\int_0^{\zeta} \rho u H_0 dy \right) \Big|_x + dx \frac{d}{dx} \left(\int_0^{\zeta} \rho u H_0 dy \right) \Big|_x, \qquad (5.175)$$

$$E_{BD} = H_{0e} Q_{BD} = -H_{0e} dx \frac{d}{dx} \left(\int_0^{\zeta} \rho u dy \right) \Big|_x.$$
 (5.176)

L'apport reçu par le fluide provient de l'échange de chaleur avec la paroi:

$$E_{AC} = dx \ q_w|_x \ . \tag{5.177}$$

Finalement, on obtient:

$$dx \frac{d}{dx} \left(\int_0^{\zeta} \rho u H_0 dy \right) \Big|_x - H_{0e} dx \frac{d}{dx} \left(\int_0^{\zeta} \rho u dy \right) \Big|_x = dx q_w|_x.$$
 (5.178)

On a aussi établi que, pour tout x:

$$\frac{d}{dx} \left(\int_0^{\zeta} \rho u H_0 dy \right) = H_{0e} \frac{d}{dx} \left(\int_0^{\zeta} \rho u dy \right) + q_w$$

$$= \frac{d}{dx} \left(H_{0e} \int_0^{\zeta} \rho u dy \right) + q_w .$$
(5.179)

où la seconde égalité provient du fait que l'enthalpie H_{0e} est conservé en dehors de la couche limite: $dH_{0e}/dx = 0$. Finalement, il vient:

$$\frac{d}{dx} \left(\int_0^{\zeta} \rho u \, (H_0 - H_{0e}) \, dy \right) = q_w \,. \tag{5.180}$$

L'épaisseur d'enthalpie totale est définie par (rappel: $H_{0w} = H_w$ puisque $u_w = 0$):

$$\theta_{H_0} = \int_0^{\zeta} \frac{\rho \, u}{\rho_e \, u_e} \left(1 - \frac{H_0 - H_w}{H_{0e} - H_w} \right) \, dy = \int_0^{\zeta} \frac{\rho \, u}{\rho_e \, u_e} \left(\frac{H_{0e} - H_0}{H_{0e} - H_w} \right) \, dy$$
$$= \int_0^{\zeta} \frac{\rho \, u}{\rho_e \, u_e} \left(\frac{H_0 - H_{0e}}{H_w - H_{0e}} \right) \, dy . \quad (5.181)$$

L'équation intégrale de l'énergie est donc finalement écrite sous la forme:

$$\frac{d}{dx} \left(\rho_e \, u_e \, \left(H_w - H_{0e} \right) \, \theta_{H_0} \right) = q_w \tag{5.182}$$

dont la forme adimensionnelle est:

$$\frac{d\theta_{H_0}}{dx} + \left(\frac{1}{\rho_e}\frac{d\rho_e}{dx} + \frac{1}{u_e}\frac{du_e}{dx} + \frac{1}{(H_w - H_{0e})}\frac{dH_w}{dx}\right)\theta_{H_0} = \frac{q_w}{\rho_e u_e (H_w - H_{0e})} = St \quad (5.183)$$

avec la définition classique du nombre de Stanton.

Le cas des écoulements incompressibles est obtenu en prenant $\rho_e = \rho$ uniforme et en remplaçant, dans l'analyse de bilan ci-avant, l'enthalpie totale par l'énergie interne totale: $U_0 = U + u^2/2$. Si on définit l'épaisseur d'énergie interne totale par la relation:

$$\theta_{U_0} = \int_0^{\zeta} \frac{u}{u_e} \left(1 - \frac{U_0 - U_w}{U_{0e} - U_w} \right) dy = \int_0^{\zeta} \frac{u}{u_e} \left(\frac{U_0 - U_{0e}}{U_w - U_{0e}} \right) dy , \qquad (5.184)$$

on obtient, comme équation intégrale, l'équation:

$$\rho \frac{d}{dx} \left(u_e \left(U_w - U_{0e} \right) \, \theta_{H_0} \right) = q_w \tag{5.185}$$

dont la forme adimensionnelle est:

$$\frac{d\theta_{U_0}}{dx} + \left(\frac{1}{u_e}\frac{du_e}{dx} + \frac{1}{(U_w - U_{0e})}\frac{dU_w}{dx}\right)\theta_{U_0} = \frac{q_w}{\rho u_e (U_w - U_{0e})} = St.$$
 (5.186)

De nouveau, le membre de droite est le nombre de Stanton classique.

Vérifions que l'équation intégrale de l'énergie est en accord avec les résultats précédents dans le cas simple de la couche limite d'un fluide incompressible à grandeurs constantes et avec u_e et T_w constants. L'équation intégrale de l'énergie se réduit alors à $d\theta_{U_0}/dx = St$: le taux d'augmentation de l'épaisseur d'énergie interne totale est donc directement proportionnel au coefficient de transfert de chaleur. Cette équation est semblable à l'équation intégrale de quantité de mouvement, $d\theta/dx = C_f/2$. Jusque-là, ces résultats de l'analyse par approche intégrale sont valables pour tout Pr.

Considérons maintenant le cas Pr = 1. De par la relation exacte de Crocco, il vient:

$$\theta_{U_0} = \int_0^{\zeta} \frac{u}{u_e} \left(1 - \frac{U_0 - U_w}{U_{0e} - U_w} \right) dy = \int_0^{\zeta} \frac{u}{u_e} \left(1 - \frac{u}{u_e} \right) dy = \theta , \qquad (5.187)$$

et donc $\theta_{U_0} = \theta$: les épaisseurs de quantité de mouvement et d'énergie sont donc égales. On obtient finalement:

$$\frac{C_f}{2} = \frac{d\theta}{dx} = \frac{d\theta_{U_0}}{dx} = St , \qquad (5.188)$$

et on retrouve le résultat exact développé précédemment: $C_f/2 = St$ lorsque Pr = 1.

Pour le cas $Pr \neq 1$, on a $\theta_{U_0} \neq \theta$. L'analogie de Reynolds suppose alors d'avoir:

$$\frac{d\theta}{dx} = \frac{C_f}{2} \approx Pr^{2/3} St = Pr^{2/3} \frac{d\theta_{U_0}}{dx},$$
(5.189)

ou encore:

$$\theta \approx Pr^{2/3}\,\theta_{U_0} \ . \tag{5.190}$$

Chapitre 6

Convection naturelle

L'étude de la convection le long d'une plaque chaude suspendue verticalement dans l'air retient ici notre intérêt, elle met en jeu la théorie de couche limite pour un écoulement laminaire permanent. L'élévation de l'air le long des parois d'un radiateur est un exemple typique de convection naturelle sous l'effet de la poussée d'Archimède, qui s'oppose à la gravité.

Tout d'abord, nous allons supposer que la pression est globalement hydrostatique en tout point de la plaque

$$\frac{\partial p}{\partial y}(x,y) = -\rho_0 g \tag{6.1}$$

ou encore

$$p(x,y) = -\rho_0 gy \tag{6.2}$$

Il s'agit d'une hypothèse équivalente à l'approximation de Boussinesq (1903), qui revient à ne considérer les variations de densité du fluide que lorsqu'elles multiplient la gravité, soit dans le terme de la poussée d'Archimède, dans le cas présent. En effet, comme l'a parfaitement exprimé Boussinesq, la variation de masse volumique est précisément la cause du phénomène de convection observé. Par la suite, nous verrons qu'il n'est pas nécessaire d'introduire une telle hypothèse et que la pression hydrostatique dans la couche mince le long de la plaque chaude se déduit directement de l'hypothèse que la convection se fait sur une couche mince le long de la plaque.

Suite à un développement en série de Taylor de $\rho(p,T)\rho_0^{-1}$, la conservation de la quantité de mouvement le long de la plaque verticale est donnée par

$$\rho_0(1 - \underbrace{\beta(T - T_0)}_{\ll 1}) \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = \underbrace{-\frac{\partial p}{\partial y}}_{\rho_0 g} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \rho_0(1 - \beta(T - T_0))g$$

$$\rho_0 \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + \rho_0 \beta (T - T_0) g$$

où $\beta = -\frac{1}{\rho} \frac{\partial \rho}{\partial T}$ est le coefficient de dilatation thermique du fluide.

Le champ de pression est donc fixé par un champ de pression hydrostatique.

6.1 Une étape préliminaire : la convection forcée...

Une propriété intéressante de la convection forcée est qu'il est possible de découpler le problème de l'écoulement, du problème thermique. C'est pourquoi nous l'abordons avant de considérer la convection naturelle.

Alors qu'à une grande distance de la paroi les effets visqueux sont supposés négligeables (écoulement irrotationnel), à proximité de celle-ci, il n'en est rien. Le mouvement relatif entre la plaque et le fluide engendre l'existence d'un tourbillon. Les effets visqueux peuvent même être dominants par rapport aux termes non linéaires d'inertie dans un voisinage proche de la paroi. On définit ainsi la frontière de la couche limite de vitesse comme le lieu géométrique pour lequel les ordres de grandeur des effets d'inertie et des effets visqueux sont identiques. Négliger les effets visqueux près de la plaque est incompatible avec le modèle du fluide visqueux qui stipule que le fluide colle à la paroi.

L'épaisseur caractéristique de la couche limite, d'un ordre de grandeur supposé constant dans une zone suffisamment éloignée du bord d'attaque (y=0) et des turbulences, est largement inférieure à la longueur verticale caractéristique. Le modèle de la couche limite est ainsi basé sur l'hypothèse $\delta \ll Y$ (Fig. 6.1).

En réalité, l'épaisseur de la couche limite augmente de manière monotone (et non linéaire) dans la direction verticale, d'où l'intérêt de l'analyse dans la zone locale. Le frottement visqueux au niveau de la paroi contribue, en effet, au ralentissement de l'écoulement du fluide. Il est de plus en plus important au fur et à mesure que la portion de la paroi longée augmente, la couche limite est ainsi de moins en moins fine.

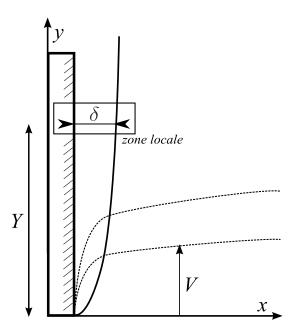


Figure 6.1: Couche limite et écoulement externe incompressible et irrotationnel.

Par égalisation des ordres de grandeur des termes d'inertie et visqueux, on montre que l'hypothèse de la couche limite est vérifiée si le nombre de Reynolds Re_Y , basé sur la longueur verticale caractéristique, est grand. On impose en effet, en termes d'ordres de grandeur

$$\rho \frac{V^2}{Y} = \mu \frac{V}{\delta^2} \qquad \Leftrightarrow \qquad \frac{\delta^2}{Y^2} = \frac{\mu}{\rho V Y} \qquad \Leftrightarrow \qquad \frac{\delta}{Y} = Re_Y^{-1/2} \tag{6.3}$$

Ce qui signifie que, plus on avance dans la direction verticale, plus le rapport entre l'épaisseur de la couche limite et la longueur de la plaque diminue. Notons, au passage, que Re_Y doit être suffisamment grand pour que δ/Y soit petit, mais pas trop pour que l'écoulement ne devienne pas turbulent. Nous trouvons ainsi une valeur pour l'épaisseur de la couche limite de vitesse. Cette valeur n'est qu'une approximation (assez bonne) basée sur les ordres de grandeur. Notons aussi que dans la couche limite, l'un des deux termes de forces visqueuses de l'équation de conservation de la quantité de mouvement est négligeable devant l'autre: $\mathcal{O}(\mu V/\delta^2) \gg \mathcal{O}(\mu V/Y^2)$.

Nous pouvons alors, avec l'hypothèse de la couche limite, valider l'approximation de Boussinesq

$$p(x,y) - p_0 = \underbrace{p(\delta,y)}_{\mathcal{O}(\rho V^2)} - p_0 + \underbrace{(x-\delta)\frac{\partial p}{\partial x}\Big|_{x=\delta}}_{\mathcal{O}\left(\rho \frac{V^2 \delta^2}{Y^2}\right) \ll \mathcal{O}(p(\delta,y))}$$
(6.4)

Suite aux simplifications de l'équation verticale de conservation de la quantité de mouvement, on observe que la variation de pression en y doit être d'un ordre de grandeur identique aux termes d'inertie (pour ne pas être négligée). Aussi, la variation de pression horizontale dans la couche limite est négligeable devant la pression hors de la couche limite.

Les équations de Prandtl (1904) sont applicables au sein de la couche limite, avec, en convection forcée, un gradient de pression vertical nul si l'écoulement extérieur est uniforme. A l'extérieur de la couche limite en revanche, les équations d'Euler (terme visqueux négligé) font légion.

Les grandeurs de référence de ces deux modèles, x/δ pour Prandtl et x/Y pour Euler sont, conformément à la théorie de la couche limite, forts différentes. L'introduction d'une astuce mathématique est nécessaire au raccord des deux modèles, et donc à l'expression mathématique de l'écoulement au niveau de la couche limite. La variable ζ est introduite afin que

$$\frac{\delta}{\zeta} = \frac{\zeta}{Y} = \frac{1}{Re^{\alpha}}$$
 avec $0 < \alpha < 0.5$, typiquement 0.25 (6.5)

Cette variable est donc d'un ordre de grandeur intermédiaire entre les distances verticale et horizontale et permet ainsi l'obtention de conditions limites identiques pour les deux modèles au lieu de raccord de ceux-ci

$$\lim_{x/\delta \to \infty} v(\frac{x}{\delta}, y) = \lim_{x/Y \to 0} v_e(\frac{x}{Y}, y) = v_e(0, y)$$

$$\lim_{x/\delta \to \infty} p(\frac{x}{\delta}, y) = \lim_{x/Y \to 0} p_e(\frac{x}{Y}, y) = p_e(0, y)$$

Cela permet de résoudre le problème de l'écoulement du fluide. La démarche est similaire pour le problème thermique; les effets conductifs sont négligeables devant les effets convectifs loin de la paroi alors qu'ils faut en tenir compte dans son voisinage immédiat. On définit la couche limite thermique δ_T comme le lieu géométrique où la conduction (diffusion de l'énergie) et la convection (transport de l'énergie) possèdent un ordre de grandeur identique. Remarquons que le terme de dissipations visqueuses ne joue aucun rôle dans la présente analyse dimensionnelle.

Par un raisonnement semblable à celui effectué antérieurement, mais sur la base de l'équation de la conservation de l'énergie cette fois, on trouve, après égalisation des ordres de grandeur des termes de transport et de diffusion de l'énergie,

$$\frac{\delta_T}{Y} = (PrRe_Y)^{-1/2} \qquad \text{et donc} \qquad \frac{\delta_T}{\delta} = Pr^{-1/2} \tag{6.6}$$

On comprend alors aisément la raison pour laquelle l'huile est privilégiée comme lubrifiant pour de nombreuses applications. Le nombre de Prandtl de l'huile étant relativement élevé ($\gg 1$), l'épaisseur de la couche limite thermique est faible, permettant uniquement à une petite fraction de l'huile, dont la viscosité diminue avec la température, de chauffer.

6.2 Nombre de Grashof

Revenons au problème de convection forcée. Nous n'imposons cette fois plus le déplacement du fluide, mais bien une force de volume, la gravité. Cet apport naturel se traduit, conformément à l'hypothèse (vérifiée) de Boussinesq, en un gradient de pression $-dp/dy = \beta g(T-T_0)$. On ne dispose dès lors plus de la vitesse caractéristique V, auparavant imposée.

Deux approches différentes permettent d'obtenir l'ordre de grandeur de cette vitesse verticale. La première consiste à dire que la flottabilité (poussée d'Archimède) est compensée par la friction. On se place dans la couche limite (δ petit), où le terme des frottements visqueux est non négligeable contrairement au terme d'inertie, conséquence de l'approche suivie.

$$\underbrace{u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}}_{\ll V/\delta^2} = \beta g(T - T_0) + \nu \frac{\partial^2 v}{\partial x^2}$$
(6.7)

$$V = \frac{\beta g \Delta T \delta_T^2}{\nu} \tag{6.8}$$

L'épaisseur de la couche limite thermique est obtenue par égalisation des termes de conduction et de convection présents dans l'équation de l'énergie :

$$\frac{\delta_T}{Y} = \sqrt{\frac{\alpha}{VY}} = \left(\frac{\nu\alpha}{\beta g \Delta T Y \delta_T^2}\right)^{1/2} = (Gr)^{-1/4} (Pr)^{-1/4}$$
 (6.9)

$$\frac{\delta}{V} = (Gr)^{-1/4} (Pr)^{1/4} \tag{6.10}$$

où Gr représente le nombre de Grashof (1822-1893), qui caractérise une convection libre, ce paramètre est identique pour deux convections libres dynamiquement identiques. Ce nombre est définit comme le produit des forces d'inertie par la force d'Archimède, divisé par le carré des forces visqueuses

$$Gr = \frac{\beta \Delta T \ gL^3}{\nu^2} \tag{6.11}$$

Dans une seconde approche, on considère que la flottabilité est compensée par l'inertie du fluide. Cela revient à dire que l'action de la flottabilité s'exerce dans une zone où

le terme visqueux est négligeable (hors couche limite, δ théoriquement, pour l'analyse dimensionnelle, très grand). On obtient

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = \beta g(T - T_0) + \underbrace{\nu\frac{\partial^2 v}{\partial x^2}}_{\ll V^2/Y}$$
(6.12)

$$V = \sqrt{\beta g \Delta T Y} \tag{6.13}$$

Définie ainsi, la vitesse caractéristique n'est pas du même ordre de grandeur que celui obtenu auparavant. L'épaisseur de la couche limite thermique est, elle aussi, différente

$$\frac{\delta_T}{Y} = \sqrt{\frac{\alpha}{VY}} = \left(\frac{\alpha^2}{\beta g \Delta T Y^3}\right)^{1/4} = (Gr)^{-1/4} (Pr)^{-1/2}$$

$$\frac{\delta}{Y} = (Gr)^{-1/4}$$
(6.14)

$$\frac{\delta}{Y} = (Gr)^{-1/4} \tag{6.15}$$

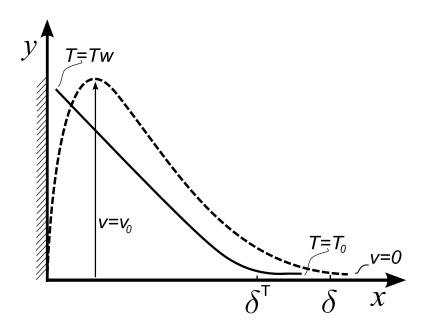


Figure 6.2: Couches limites de vitesse et thermique en convection forcée. (a) la flottabilité est compensée par la friction ($Pr \geq 1$): la couche de vitesse est plus épaisse (b) la flottabilité est compensée par l'inertie (Pr < 1): couche thermique plus épaisse..

Remarquons que dans ce deuxième cas, nous avons l'égalité $\sqrt{Gr_Y}=Re_Y$. De plus, dans les deux cas, le rapport des deux couches limites est donné par $\delta_T/\delta=Pr^{-1/2}$. Ce qui signifie que la couche limite de vitesse est plus épaisse que la couche limite thermique lorsque $Pr \geq 1$, et inversement si le Pr < 1 (Fig. 6.2).

6.3 Une solution approchée pour le problème de la convection naturelle

En raison du couplage des problèmes thermique et de l'écoulement, nous allons tenter de construire une solution approchée pour la couche limite. Il n'est pas tout à fait exact de travailler avec des profils δ_T et δ semblables, mais cela simplifie grandement la solution et c'est acceptable si on suppose que le nombre de Prandtl n'est pas trop différent de l'unité.

On recherche une solution telle que les conditions sommaires suivantes soient respectées

$$v(0,y) = 0$$
 $v(\delta,y) = 0$ $\frac{\partial v}{\partial x}(\delta,y) = 0$ $\mu \frac{\partial^2 v}{\partial x^2}(0,y) = -\rho \beta g(T_w - T_0)$ (6.16)

$$T(0,y) = T_w T(\delta, y) = T_0 \frac{\partial T}{\partial x}(\delta, y) = 0$$
 (6.17)

Sur base d'une intuition purement phénoménologique, nous allons -par exemple- proposer les profils suivants.

$$v(x,y) = v_0(y) \frac{x}{\delta(y)} \left(1 - \frac{x}{\delta(y)}\right)^2 \tag{6.18}$$

$$\frac{T(x,y) - T_0}{T_w - T_0} = \left(1 - \frac{x}{\delta(y)}\right)^2 \tag{6.19}$$

Ces deux équations traduisent de manière simple la décroissance monotone et non linéaire du champ de température et la décroissance, elle aussi monotone, précédée par une forte croissance, à proximité de la paroi, du champs de vitesse (Fig 2.33).

Ces expressions sont toutes deux fonctions de $v_0(y)$, la vitesse maximale et de δ , l'épaisseur de la couche limite (thermique ou de vitesse). A l'aide des formes présumées des champs de vitesse et de température et suite à l'intégration des équations de conservation, nous allons obtenir des équations que doivent satisfaire v_0 et δ .

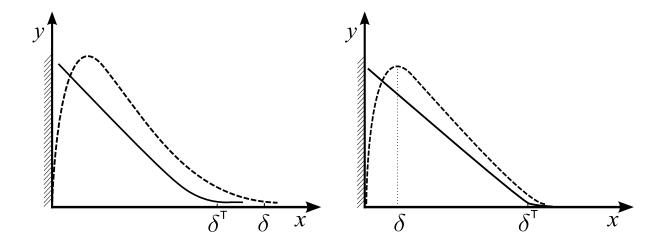


Figure 6.3: Couches limites thermique et de vitesse pour la construction de la solution approchée.

$$\int_{0}^{\delta} u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} dx = \beta g \int_{0}^{\delta} (T(x, y) - T_0) dx + \nu \int_{0}^{\delta} \frac{\partial^2 v}{\partial x^2} dx$$
 (2.294)

L'intégration par partie du terme de gauche donne :

$$[uv]_0^{\delta} - \int_0^{\delta} v \frac{\partial u}{\partial x} dx + \int_0^{\delta} v \frac{\partial v}{\partial y} dx = \beta g \int_0^{\delta} (T(x, y) - T_0) dx + \nu \int_0^{\delta} \frac{\partial^2 v}{\partial x^2} dx \qquad (2.295)$$

où on a tiré profit de l'incompressibilité : $\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$.

On utilise ensuite la condition de raccord (2.290c) pour le terme de droite et on obtient :

$$\frac{d}{dy} \int_0^\delta v^2(x,y) dx = \beta g \int_0^\delta (T(x,y) - T_0) dx - \nu \frac{\partial v}{\partial x} \bigg|_{x=0}$$
 (2.296)

Identiquement, pour l'équation de conservation de l'énergie avec, en plus, u(0,y) =

 $u(y,\delta)=0$, nécessaire dans ce cas

$$\int_0^\delta u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} dx = \alpha \int_0^\delta \frac{\partial^2 T}{\partial x^2} dx \tag{2.297}$$

$$[uT]_0^{\delta} - \int_0^{\delta} T \frac{\partial u}{\partial x} dx + \int_0^{\delta} v \frac{\partial T}{\partial y} dx = \alpha \int_0^{\delta} \frac{\partial^2 T}{\partial x^2} dx$$
 (2.298)

$$\frac{d}{dy} \int_0^\delta v(x,y) T(x,y) dx = -\alpha \frac{\partial T}{\partial x} \bigg|_{x=0}$$
 (2.299)

Si l'on substitue les expressions 2.292 et 2.293 de v(x,y) et T(x,y), on obtient deux équations différentielles ordinaires du premier ordre.

$$\begin{cases}
\frac{1}{105} \frac{d}{dy} \left(v_0^2(y) \delta(y) \right) &= \frac{\beta g \Delta T \ \delta(y)}{3} + \nu \frac{v_0(y)}{\delta(y)} \\
\frac{1}{30} \frac{d}{dy} \left(v_0(y) \delta(y) \right) &= \frac{2\alpha}{\delta(y)}
\end{cases} (2.300)$$

Equations satisfaites pour des champs $v_0(y)$ et $\delta(y)$ de la forme

$$v_0(y) = V y^m$$

$$\delta(y) = D y^n$$
(2.301)

avec m = 1/2 et n = 1/4:

$$\begin{cases} \frac{1}{105} V^2 D(2m+n) y^{2m+n-1} &= \frac{\beta g \Delta T D}{3} y^n + \nu \frac{V}{D} y^{m-n} \\ \frac{1}{30} V D(m+n) y^{m+n-1} &= \frac{2\alpha}{D} y^{-n} \end{cases}$$
(2.302)

Les valeurs de V et D peuvent alors être retrouvées, pour obtenir l'expression finale de l'épaisseur de la couche limite

$$\frac{\delta_T(y)}{y} = 3,936 \left(Pr\right)^{-1/2} \left(Gr(y)\right)^{-1/4} \left(\frac{20}{21} + Pr\right)^{1/4}$$
(2.303)

Notons, au passage, que cette solution possède un ordre de grandeur tout à fait raisonnable vis-à-vis de l'estimation que nous en avions faite précédemment (2.284). On vérifie en effet que

$$\mathcal{O}\left(3,936(Pr)^{-1/2}\left(\frac{20}{21}+Pr\right)^{1/4}\right) = \mathcal{O}(Pr^{1/4}) \text{ pour } Pr \ge 1$$
 (2.304)

Chapitre 7

Ecoulements turbulents

7.1 Transition vers la turbulence

La plupart des écoulements laminaires deviennent instables à partir d'une certaine valeur du paramètre adimensionnel qui les caractérise.

Par exemple, la couche limite laminaire avec vitesse externe, u_e , constante devient instable à certaines pertubations de faible amplitude à partir d'un certaine valeur (dite "critique") du nombre de Reynolds local, $Re_{\delta^*} = u_e \, \delta^* / \nu \simeq 400$. On se rappelle aussi la relation entre Re_{δ^*} et le nombre de Reynolds global, Re_x :

$$Re_{\delta^*} = \frac{u_e \, \delta^*}{\nu} = 1.721 \, \frac{u_e \, x}{\nu} / \sqrt{\frac{u_e \, x}{\nu}} = 1.721 \, \sqrt{Re_x} \quad \Longleftrightarrow \quad Re_x = 0.338 \, (Re_{\delta^*})^2 \, . \quad (7.1)$$

La distance x le long de la plaque à partir de laquelle la couche limite devient instable correspond donc à $Re_x \approx 54,000$. L'instabilité apparaît comme une onde qui se propage en x et qui grandit exponentiellement en x: ce sont les ondes de "Tollmien-Schlichting" (ou ondes T-S) car ce sont Tollmien (1923) et Schlichting (1933) qui les ont étudiées en premier.

Si on considère plutôt un écoulement de Poiseuille en canal (écoulement laminaire et établi entre deux plaques séparées par une distance d), on obtient, par analyse linéaire de stabilité, qu'il devient instable à partir de $Re_d = u_m d/\nu \geq 7,690$. Au nombre de Reynolds critique, le nombre d'onde, $k = 2\pi/\lambda$, du mode T-S instable est k d = 2.04; la longueur d'onde correspondante est donc grande en comparaison avec la distance entre les plaques: $\lambda = 3.08 d$.

On peut aussi considérer l'instabilité fondamentale des écoulements cisaillés à grand nombre de Reynolds, appellée l'instabilité de Kelvin-Helmholtz (K-H). C'est l'instabilité d'une couche séparant deux écoulements à vitesse relative différente, avec saut de vitesse ΔU . On peut également appliquer l'analyse linéaire de stabilité. Par exemple, si on

prend un modèle de profil de vitesse de la forme $\tanh(y/\delta)$, on obtient, dans le cas nonvisqueux, que tous les modes dans la plage $0 \le k\delta \le 1$ sont instables. Le mode le plus instable (i.e., celui avec taux de croissance maximum) correspond à $k\delta \approx 0.44$; sa longueur d'onde est donc grande comparée à l'épaisseur caractéristique de la couche de cisaillement: $\lambda = 14.3 \, \delta$. Si on inclut la contribution de la viscosité dans l'analyse de stabilité, on obtient alors que la contribution visqueuse est "stabilisante": la plage des modes instables se réduit à mesure que le nombre de Reynolds, $\Delta U \, \delta / \nu$, diminue. La valeur $k\delta$ du mode le plus instable varie aussi en fonction du nombre de Reynolds, et son taux de croissance diminue. En dessous d'un certain nombre de Reynolds, tous les modes sont stables.

La stabilité linéaire des écoulements permet de déterminer le début de l'instabilité d'un écoulement: elle ne permet pas de déterminer le développement subséquent de l'écoulement vers un écoulement "turbulent". Après l'amplification, initiallement exponentielle, des petites perturbations, l'écoulement passe par une séquence fort complexe de changements. Le résultat final est un écoulement instationnaire, désordonné et persistant appelé "turbulence". La transition vers la turbulence est un sujet fort complexe qui dépasse largement ce cours et qui fait encore l'objet de recherches intensives.

7.2 Caractéristiques générales de la turbulence

La turbulence peut être caractérisée par les points suivants:

- Fluctuations temporelles et spatiales de grande amplitude de toutes les grandeurs physiques (composantes de vitesse, pression, etc.).
- Structures tourbillonnaires de tailles caractéristiques fort différentes, imbriqués les uns dans les autres, et interagissant entre eux. La taille des tourbillons constitue un spectre continu: cela va de grands tourbillons, d'une taille comparable à la grandeur caractéristique globale de l'écoulement (e.g. l'épaisseur de la couche limite), à des petits tourbillons, de taille correspondant à la "longueur de Kolmogorov", $\eta = (\nu^3/\bar{\epsilon})^{1/4}$ (où $\bar{\epsilon}$ est le taux de dissipation de l'énergie cinétique de la turbulence), et qui dissipent l'énergie mécanique en chaleur, par effets visqueux. Il n'existe donc pas de tourbillons beaucoup plus petits que η . Par exemple, en "simulation numérique directe" d'écoulements turbulents (i.e., des simulations où on capture correctement toutes les échelles, de la plus grande à la plus petite), on doit typiquement utiliser un maillage numérique de taille $h \approx \eta$ (on peut utiliser $h \simeq 2\eta$ dans le cas des méthodes de très grande précision, telles les "méthodes spectrales").
- Chaque grandeur physique a un spectre d'énergie (i.e., spectre du carré de la fluctuation) qui est continu et qui tend vers zéro aux grands nombres d'ondes (i.e., aux plus petites échelles spatiales).

- Persistance de la turbulence. Une fois amorcé, un écoulement turbulent à tendance à se maintenir: il continue à produire des tourbillons pour remplacer ceux dissipés. C'est particulièrement vrai pour les écoulements turbulents avec paroi et pour les couches de cisaillement. Cette persistance n'est en rien reliée aux mécanismes d'instabilité des ondes T-S en écoulement laminaire.
- Mélange: le mélange en écoulement turbulent est beaucoup plus efficace que le mélange en écoulement laminaire (i.e., par diffusion moléculaire). Les tourbillons turbulents 3-D sont d'excellents promoteurs de mélange: ils causent donc des transferts rapides et efficaces de masse, de quantité de mouvement et d'énergie entres les différentes zones de l'écoulement turbulent. En conséquence, les transferts de chaleur et de masse sont aussi grandement augmentés par la turbulence, ce qui, bien sûr, a des implications et utilisations majeures en ingénierie. Finalement, le fluide d'une zone laminaire de l'écoulement est aussi entraîné efficacement par la zone turbulente (e.g., entraînement du fluide en dehors de la couche limite turbulente par celle-ci; entraînement du fluide en dehors de la couche de cisaillement turbulente par celle-ci).

7.3 Approche statistique de Reynolds

Pour la suite, nous considérons l'approche statistique de Reynolds pour la compréhension et modélisation des effets moyens de la turbulence. Considérons une grandeur physique $\phi(x,y,z,t)$ en écoulement turbulent complètement développé (e.g., une composante de vitesse, la pression, etc). Plaçons nous en un point fixe de l'espace: (x,y,z) fixé. "Mesurons" la grandeur, ϕ , en ce point. Le signal de mesure sera alors une fonction du temps, $\phi(t)$, avec des fluctuations rapides et de large amplitude, dues à la turbulence, voir Fig. 7.1.

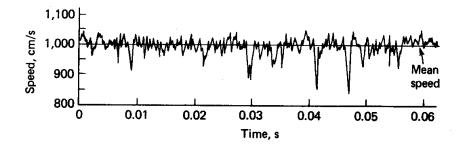


Figure 7.1: Mesures, au fil chaud, d'une composante de vitesse en un point d'un écoulement turbulent (figure tirée de F. M. White, Viscous Fluid Flow, second ed., MacGraw-Hill).

On suppose que la méthode de mesure est de qualité. On peut, bien sûr, faire la

moyenne temporelle du signal sur un temps, T, beaucoup plus long que le temps caractéristique, T_f , des fluctuations turbulentes significatives. Comme les fluctuations turbulentes n'ont pas un seul temps caractéristique mais plutôt un spectre continu, on prendra, pour T_f , le temps caractéristique correspondant aux fluctuations turbulentes les plus lentes. On utilisera alors, pour définir la moyenne:

$$\overline{\phi} \stackrel{\text{def}}{=} \frac{1}{T} \int_{t_0 - T/2}^{t_0 + T/2} \phi(t) dt \quad T \gg T_f . \tag{7.2}$$

Pour des écoulements "statistiquement stationnaires", cette procédure fournira la même valeur de $\overline{\phi}$ quel que soit le temps t_0 utilisé: c'est pour cela que nous avons écrit $\overline{\phi}$ et non $\overline{\phi}(t_0)$. Strictement parlant, il faudrait un temps T infini pour définir exactement la moyenne, i.e.:

$$\overline{\phi} \stackrel{\text{def}}{=} \lim_{T \to \infty} \frac{1}{T} \int_{t_0 - T/2}^{t_0 + T/2} \phi(t) dt . \tag{7.3}$$

Dans la pratique, il est clair que $T \gg T_f$ suffit amplement (par exemple T de l'ordre de 500 à 1000 fois T_f).

On définit aussi la fluctuation, ϕ' , de toute grandeur physique comme la différence entre sa valeur instantanée et sa valeur moyenne:

$$\phi' \stackrel{\text{def}}{=} \phi - \overline{\phi} \iff \phi \stackrel{\text{def}}{=} \overline{\phi} + \phi' .$$
 (7.4)

Finalement, on définit la variance par:

$$\overline{\phi'^2} \stackrel{\text{def}}{=} \frac{1}{T} \int_{t_0 - T/2}^{t_0 + T/2} (\phi'(t))^2 dt \quad T \gg T_f , \qquad (7.5)$$

et l'écart-type moyen par sa racine:

$$\phi_{rms}' \stackrel{\text{def}}{=} \sqrt{\overline{\phi'^2}} \ . \tag{7.6}$$

On définit aussi la covariance de deux fonctions ϕ et ψ :

$$\overline{\phi'\,\psi'} \stackrel{\text{def}}{=} \frac{1}{T} \int_{t_0 - T/2}^{t_0 + T/2} \phi'(t)\,\psi'(t)\,dt \quad T \gg T_f , \qquad (7.7)$$

Les règles suivantes découlent alors des définitions:

$$\overline{\phi'} = 0,$$

$$\overline{\overline{\phi}} = \overline{\phi},$$

$$\overline{\overline{\phi}}\overline{\overline{\psi}} = \overline{\phi}\overline{\psi},$$

$$\overline{\phi'}\overline{\overline{\psi}} = 0,$$

$$\overline{\phi + \psi} = \overline{\phi} + \overline{\psi},$$

$$\overline{\phi}\overline{\psi} = \overline{\phi}\overline{\psi} + \overline{\phi'}\overline{\psi'}.$$
(7.8)

L'avantage de la définition Eq. (7.2) est qu'elle permet aussi de considérer des écoulements turbulents dont la "moyenne temporelle" dépend lentement du temp: des écoulements qui ne sont pas "statistiquement stationnaires". Plus spécifiquement, soit un écoulement turbulent avec des fluctuations turbulentes de temps caractéristique T_f et des variations beaucoup plus lentes, de temps caractéristique T_v . On suppose aussi que ces échelles de temps sont très différentes: $T_f \ll T_v$. Si on utilise alors, comme temps de moyenne, $T_f \ll T \ll T_v$, on pourra alors définir, comme valeur moyenne,

$$\overline{\phi}(t) \stackrel{\text{def}}{=} \frac{1}{T} \int_{t-T/2}^{t+T/2} \phi(\tau) d\tau \quad T_v \gg T \gg T_f , \qquad (7.9)$$

moyenne qui varie lentement dans le temps, avec un temps caractéristique T_v . Ce concept sera aussi utilisé dans la suite, lorsque nous présenterons les équations utilisées en turbulence.

7.4 Equations moyennées de Reynolds

Un écoulement turbulent d'un fluide visqueux newtonien satisfait, bien sûr, les équations de Navier-Stokes. Pour la suite, on considère uniquement (aussi pour simplifier) le cas des écoulements incompressibles. Les équations de conservation sont alors, en notation indicielle:

$$\frac{\partial v_j}{\partial x_j} = 0 , (7.10)$$

$$\rho \frac{Dv_i}{Dt} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} , \qquad (7.11)$$

$$\rho \frac{DU}{Dt} = \rho c \frac{DT}{Dt} = \Phi - \frac{\partial q_j}{\partial x_j}, \qquad (7.12)$$

avec, pour le tenseur des contraintes visqueuses:

$$\tau_{ij} = 2 \,\mu \, d_{ij} \;, \tag{7.13}$$

et donc, pour la fonction de dissipation,

$$\Phi \stackrel{\text{def}}{=} \tau_{ij} d_{ij} = 2 \mu d_{ij} d_{ij} . \tag{7.14}$$

Pour le flux de chaleur, on a:

$$q_j = -k \frac{\partial T}{\partial x_j} \,. \tag{7.15}$$

Pour toute grandeur physique ϕ , on peut aussi écrire, du fait de l'incompressibilité,

$$\frac{D\phi}{Dt} \stackrel{\text{def}}{=} \frac{\partial \phi}{\partial t} + v_j \frac{\partial \phi}{\partial x_j} = \frac{\partial \phi}{\partial t} + \frac{\partial}{\partial x_j} (\phi v_j) . \tag{7.16}$$

Appliquons alors l'opérateur de moyenne temporelle aux équations de conservation. Clairement, les opérateurs de moyenne et de dérivation spatiale commutent:

$$\frac{\overline{\partial \phi}}{\partial x_i} = \frac{\partial \overline{\phi}}{\partial x_i} \,.$$
(7.17)

Pour des écoulements avec moyenne variant lentement dans le temps, on suppose que les opérateurs de moyenne et de dérivation temporelle commutent aussi:

$$\frac{\overline{\partial \phi}}{\partial t} \simeq \frac{\partial \overline{\phi}}{\partial t} \ . \tag{7.18}$$

On obtient alors les équations de conservation pour la moyenne des grandeurs physiques:

$$\frac{\partial \overline{v}_j}{\partial x_j} = 0 , (7.19)$$

$$\rho \left[\frac{\partial \overline{v}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{v}_i \, \overline{v}_j + \overline{v'_i v'_j} \right) \right] = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial \overline{\tau}_{ij}}{\partial x_j} , \qquad (7.20)$$

$$\rho c \left[\frac{\partial \overline{T}}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{T} \, \overline{v}_j + \overline{T' \, v'_j} \right) \right] = \overline{\Phi} - \frac{\partial \overline{q}_j}{\partial x_j} , \qquad (7.21)$$

avec

$$\overline{\tau}_{ij} = 2 \mu \overline{d}_{ij} , \qquad (7.22)$$

$$\overline{\Phi} = \overline{\tau_{ij} d_{ij}} = 2 \mu \overline{d_{ij} d_{ij}} = 2 \mu \left(\overline{d}_{ij} \overline{d}_{ij} + \overline{d'_{ij} d'_{ij}} \right) , \qquad (7.23)$$

$$\overline{\Phi} = \overline{\tau_{ij} d_{ij}} = 2 \mu \overline{d_{ij} d_{ij}} = 2 \mu \left(\overline{d}_{ij} \overline{d}_{ij} + \overline{d'_{ij} d'_{ij}} \right) , \qquad (7.23)$$

$$\overline{q}_j = -k \frac{\partial \overline{T}}{\partial x_j} \,. \tag{7.24}$$

L'écoulement moyen est donc, lui aussi, incompressible. Si on définit la "dérivée matérielle moyenne" (i.e., celle en se déplaçant à la vitesse moyenne) par:

$$\frac{\overline{D}\overline{\phi}}{Dt} \stackrel{\text{def}}{=} \frac{\partial \overline{\phi}}{\partial t} + \overline{v}_j \frac{\partial \overline{\phi}}{\partial x_j} = \frac{\partial \overline{\phi}}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{\phi} \, \overline{v}_j \right) , \qquad (7.25)$$

on obtient que l'équation de quantité de mouvement se réduit à:

$$\rho \, \frac{\bar{D}\overline{v}_i}{Dt} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_i} \left(\overline{\tau}_{ij} + \overline{\sigma}_{ij}^t \right) , \qquad (7.26)$$

avec un tenseur de contraintes effectives additionnelles dues à la turbulence:

$$\overline{\sigma}_{ij}^t \stackrel{\text{def}}{=} -\rho \, \overline{v_i' v_j'} \,. \tag{7.27}$$

C'est le "tenseur de Reynolds". L'équation de quantité de mouvement pour l'écoulement moyen est donc une équation classique, mais avec un terme additionnel de contraintes dues à la turbulence. La trace du tenseur de Reynolds est liée à l'énergie cinétique des fluctuations de turbulence, \overline{k} , (ou, de manière équivalente, à la vitesse caractéristique des fluctuations de turbulence, \overline{q}):

$$\overline{k} \stackrel{\text{def}}{=} \frac{\overline{q}^2}{2} \stackrel{\text{def}}{=} \frac{\overline{v_k' v_k'}}{2} = -\frac{\overline{\sigma}_{kk}^t}{2\rho} \qquad \Longrightarrow \qquad \overline{\sigma}_{kk}^t = -2\rho \,\overline{k} \,. \tag{7.28}$$

On a donc toujours:

$$\overline{\sigma}_{ij}^t - \frac{1}{3}\overline{\sigma}_{kk}^t \,\delta_{ij} = \overline{\sigma}_{ij}^t + \frac{2}{3}\,\rho\,\overline{k}\,\delta_{ij} \stackrel{\text{def}}{=} \overline{\tau}_{ij}^t \tag{7.29}$$

Pour l'équation de l'énergie, on obtient:

$$\rho c \frac{\bar{D}\bar{T}}{Dt} = \bar{\Phi} - \frac{\partial}{\partial x_i} \left(\bar{q}_j + \bar{q}_j^t \right) , \qquad (7.30)$$

avec un flux de chaleur effectif additionnel dû à la turbulence:

$$\overline{q}_{i}^{t} \stackrel{\text{def}}{=} \rho \, c \, \overline{T' \, v_{i}'} \, . \tag{7.31}$$

L'équation de température pour l'écoulement moyen est donc aussi une équation classique, mais avec un terme additionnel de flux de chaleur dû à la turbulence, et avec la complexité additionnelle que la dissipation effective est la somme de deux termes:

$$\overline{\Phi} = 2\mu \, \overline{d}_{ij} \overline{d}_{ij} + 2\mu \, \overline{d'_{ij} d'_{ij}} \ . \tag{7.32}$$

On peut aussi montrer (ce n'est pas fait ici) que le deuxième terme correspond au taux de dissipation de l'énergie cinétique de turbulence, multiplié par la masse volumique: il est noté $\rho \bar{\epsilon}$.

Les contraintes additionnelles et le flux de chaleur additionnel, ainsi que la dissipation, dûs à la turbulence sont des termes qu'il faut modéliser. C'est là le grand problème de la "fermeture des équations" en turbulence. Les modèles les plus simples consistent en une fermeture de type "viscosité effective de turbulence": ce sont ceux là que nous allons considérer.

7.5 Modèles de fermeture de type "viscosité effective de turbulence"

Ces modèles utilisent, par analogie avec le modèle du fluide visqueux newtonien, une fermeture faisant appel à une viscosité effective de turbulence, μ_t (ou, ce qui revient au même, $\nu_t = \mu_t/\rho$). La partie déviatoire du tenseur des contraintes de Reynolds est alors modélisé comme simplement proportionnel au tenseur des taux de déformation de l'écoulement moyen, le coefficient de proportionnalité étant la viscosité effective due à la turbulence:

$$\overline{\tau}_{ij}^t \stackrel{\text{mod}}{=} 2\,\mu_t\,\overline{d}_{ij} \ . \tag{7.33}$$

Il s'agit donc d'un modèle isotrope simple, proposé par analogie avec le modèle newtonien pour la contrainte due à la viscosité moléculaire:

$$\overline{\tau}_{ij} = 2\,\mu\,\overline{d}_{ij} \ . \tag{7.34}$$

La contrainte effective totale est alors écrite comme:

$$\overline{\sigma}_{ij} + \overline{\sigma}_{ij}^t = -\left(\overline{p} + \frac{2}{3}\rho\,\overline{k}\right)\,\delta_{ij} + 2\left(\mu + \mu_t\right)\,\overline{d}_{ij}\,\,\,\,(7.35)$$

le terme $\frac{2}{3}\rho \, \overline{k}$ constituant un terme de pression effective additionnelle à \overline{p} .

Le flux de chaleur effectif dû à la turbulence, \overline{q}_j^t , est aussi modélisé simplement, en le prenant proportionnel au gradient de température de l'écoulement moyen, le coefficient de proportionnalité étant la conductibilité thermique effective due à la turbulence, k_t :

$$\overline{q}_j^t \stackrel{\text{mod}}{=} -k_t \frac{\partial \overline{T}}{\partial x_j} \,. \tag{7.36}$$

La conductibilité thermique effective, k_t , est elle-même liée à la viscosité dynamique effective, μ_t par un "nombre de Prandtl turbulent" effectif:

$$Pr_t \stackrel{\text{def}}{=} \frac{\mu_t c}{k_t} = \frac{\nu_t}{\alpha_t} . \tag{7.37}$$

Les modèles que nous allons considérer dans la suite s'attachent à modéliser le champ μ_t (variation dans l'espace et, éventuellement, dans le temps) et supposent que Pr_t est une constante (de l'ordre de l'unité: on trouve, dans la littérature, des valeurs de Pr_t de 0.6 à 1.0). Il en découle que le champ de k_t est totalement déterminé par le champ de μ_t :

$$k_t \stackrel{\text{mod}}{=} c \frac{\mu_t}{Pr_t} = \rho c \frac{\nu_t}{Pr_t} \implies \alpha_t = \frac{k_t}{\rho c} \stackrel{\text{mod}}{=} \frac{\nu_t}{Pr_t}$$
 (7.38)

Avec ces modèles de fermeture simple, les équations de conservation moyennées deviennent:

$$\frac{\partial \overline{v}_j}{\partial x_i} = 0 , (7.39)$$

$$\frac{\overline{D}\overline{v}_{i}}{Dt} = -\frac{\partial}{\partial x_{i}} \left(\overline{P} + \frac{2}{3} \overline{k} \right) + \frac{\partial}{\partial x_{i}} \left(2 \left(\nu + \nu_{t} \right) \overline{d}_{ij} \right) , \qquad (7.40)$$

$$\frac{\overline{D}\overline{T}}{Dt} = \frac{1}{c} \left(2\nu \overline{d}_{ij}\overline{d}_{ij} + \overline{\epsilon} \right) + \frac{\partial}{\partial x_j} \left(\left(\frac{\nu}{Pr} + \frac{\nu_t}{Pr_t} \right) \frac{\partial \overline{T}}{\partial x_j} \right) . \tag{7.41}$$

avec la notation classique pour la pression réduite, $\overline{P} = \overline{p}/\rho$. Clairement, on peut ausi définir une "pression effective de calcul", $\overline{P}^* = \overline{P} + \frac{2}{3}\overline{k}$, et se contenter de résoudre pour la grandeur \overline{P}^* , sans se soucier de la décomposer.

On peut aussi montrer (ce n'est pas fait ici) que le taux de production de l'énergie cinétique de turbulence est égal à $\frac{1}{\rho} \overline{\tau}_{ij}^t \overline{d}_{ij}$. Dans certains cas simplifiés, on fait l'hypothèse que la turbulence est "essentiellement à l'équilibre"; ce taux de production est alors approximativement égal au taux de dissipation $\bar{\epsilon}$. On obtient alors:

$$2\nu \, \overline{d'_{ij}d'_{ij}} \stackrel{\text{def}}{=} \overline{\epsilon} \simeq \frac{1}{\rho} \, \overline{\tau}_{ij}^t \, \overline{d}_{ij} = 2\nu_t \, \overline{d}_{ij} \overline{d}_{ij} \ . \tag{7.42}$$

On obtient alors, plus simplement, pour l'équation de conservation de la température:

$$\frac{\overline{D}\overline{T}}{Dt} \simeq \frac{1}{c} 2 \left(\nu + \nu_t\right) \overline{d}_{ij} \overline{d}_{ij} + \frac{\partial}{\partial x_j} \left(\left(\frac{\nu}{Pr} + \frac{\nu_t}{Pr_t} \right) \frac{\partial \overline{T}}{\partial x_j} \right) , \qquad (7.43)$$

équation que l'on peut résoudre en parallèle avec celles qui déterminent le champ de vitesse, \overline{v}_i .

Les cas où la turbulence n'est pas à cet équilibre ne permettent pas cette simplification: ils sont plus complexes et requièrent de déterminer \overline{k} et $\overline{\epsilon}$ (ce qui est fait en utilisant des équations de conservation modèles additionnelles, comme dans le "modèle $\overline{k} - \overline{\epsilon}$ "). Cela n'est pas présenté ici.

Finalement, on note aussi que pour des fluides à propriétés physiques constantes (μ , k et c constants), ou pour des écoulements avec des variations de températures telles qu'on peut négliger la variation des propriétés du fluide, le problème de la dynamique des fluides (représenté par les équations de conservation de la quantité de mouvement) est encore complètement découplé du problème de la thermique des fluides (représenté par l'équation de conservation de la température): on peut donc s'attaquer à le résoudre sans se préoccuper de résoudre, en parallèle, le problème thermique. L'inverse n'est bien sûr pas vrai: la thermique des fluides dépend toujours de la dynamique des fluides.

Reste, bien sûr, le problème épineux de la modélisation de la viscosité effective de turbulence, $\mu_t = \rho \nu_t!$ C'est celui là que nous allons examiner dans ce qui suit, pour des écoulements simples et avec de la turbulence à l'équilibre.

7.6 Ecoulements turbulents en conduite ou en canal

Le cas des écoulements turbulents et établis en conduite ou en canal est certainement fondamental en ingénierie: perte de charge en conduite, transfert de chaleur.

On se souvient de la théorie cinétique des gaz: elle permet de déterminer la viscosité moléculaire d'un gaz à partir du libre parcours moyen des molécules, λ , et de la vitesse thermique d'agitation des molécules, $v_{\rm therm}$ (pour rappel, la vitesse du son, c, est aussi liée à cette vitesse). Le résultat est $\nu = C \, v_{\rm therm} \, \lambda$ avec C une constante. Le modèle de fermeture pour ν_t doit se baser sur l'analyse dimensionnelle et être calculable en termes de grandeurs moyennes. Nous considérons ici l'approche proposée par von Karman (1930) et Prandtl (1933).

7.6.1 Généralités pour les écoulements turbulents établis en conduite ou en canal

Considérons tout d'abord un écoulement turbulent établi en conduite de section circulaire de diamètre $D=2\,R$, voir Fig. 7.2. La distance à la paroi est notée y. On s'intéresse au profil de vitesse moyen, $\overline{u}(y)$, avec $0 \le y \le R$. Le profil est symétrique par rapport au centre de la conduite, donc pas besoin de dépasser la valeur y=R pour l'analyse. On a, bien sûr, que y=R-r et donc r=R-y. La seule contrainte de cisaillement additionnelle due à la turbulence est $\overline{\tau}_{xy}^t(y)=-\rho\,\overline{u'v'}(y)$ que nous noterons plus simplement $\overline{\tau}^t(y)$: elle est responsable de l'échange de quantité de mouvement moyen entre les couches successives de l'écoulement turbulent.

Avant même de s'intéresser au modèle de fermeture pour $\overline{\tau}^t(y)$, considérons, plus simplement, le bilan de quantité de mouvement sur un volume de contrôle différentiel de longueur dx et de rayon r=R-y, voir Fig. 7.2. L'écoulement étant établi, le flux de quantité de mouvement entrant en x est le même que le flux de quantité de mouvement sortant en x+dx. Il faut donc que la somme des forces qui s'exercent sur le volume de contrôle soit nulle. La pression effective en x est uniforme dans toute la section (car un écoulement établi ne peut supporter de gradient de pression transversal). La pression effective en x+dx est aussi uniforme. La différence est $\overline{p}(x+dx)-\overline{p}(x)=\frac{d\overline{p}}{dx}(x)$ dx. L'écoulement étant établi, le gradient de pression effective est constant: $\frac{d\overline{p}}{dx}$ est le même pour tous les x. D'ailleurs, lors d'expériences, on le détermine en mesurant la différence de pression effective sur une distance $L=x_2-x_1$:

$$-\frac{d\overline{p}}{dx} = -\frac{(\overline{p}_2 - \overline{p}_1)}{(x_2 - x_1)} = \frac{\Delta \overline{p}}{L} > 0.$$
 (7.44)

La contribution en x des forces de pression agissant sur le volume de contrôle est donc égale à $-\frac{d\overline{p}}{dx}\,dx$ π $(R-y)^2$. La contrainte de cisaillement totale (moleculaire + turbulent), $\overline{\tau}(y)+\overline{\tau}^t(y)$, agit sur la surface $2\,\pi\;(R-y)\,dx$. La résultante en x est donc

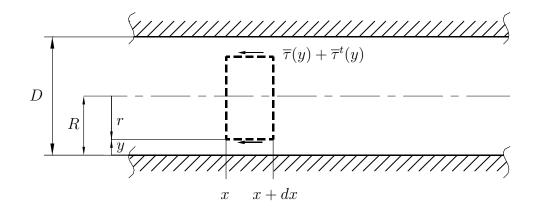


Figure 7.2: Ecoulement établi en conduite de section circulaire: volume de contrôle utilisé pour effectuer le bilan de quantité de mouvement.

 $-\left(\overline{\tau}(y)+\overline{\tau}^t(y)\right)$ $2\,\pi\,\left(R-y\right)\,dx.$ Le bilan de quantité de mouvement donne donc finalement:

$$-\left(\overline{\tau}(y) + \overline{\tau}^{t}(y)\right) 2\pi \left(R - y\right) dx - \frac{d\overline{p}}{dx} dx \pi \left(R - y\right)^{2} = 0, \qquad (7.45)$$

ce qui, en simplifiant, donne:

$$2\left(\overline{\tau}(y) + \overline{\tau}^t(y)\right) = -\frac{d\overline{p}}{dx}\left(R - y\right) . \tag{7.46}$$

Cette équation est fondamentale. Encore plus fondamentale est l'équation obtenue pour un volume de contrôle englobant tout le fluide: ce cas correspond à r=R et donc à y=0. La contrainte de cisaillement effective est alors la contrainte effective totale à la paroi, $\overline{\tau}_w$ (i.e., celle qui détermine les pertes de charges):

$$2\,\overline{\tau}_w = -\frac{d\overline{p}}{dx}\,R\,. \tag{7.47}$$

En divisant les deux résultats ci-dessus, on obtient aussi que:

$$\overline{\tau}(y) + \overline{\tau}^t(y) = \overline{\tau}_w \left(1 - \frac{y}{R} \right) . \tag{7.48}$$

Le profil de la contrainte moyenne totale (moléculaire + turbulent) est donc une ligne droite avec maximum à la paroi et zéro au centre de la conduite: aussi un résultat fondamental, voir Fig. 7.3.

En passant, on fait aussi le lien entre le coefficient de frottement pariétal, C_f , et le coefficient de perte de charges, λ . On se souvient d'abord de leur définition:

$$C_f \stackrel{\text{def}}{=} \frac{\overline{\tau}_w}{\rho \, \overline{u}_m^2 / 2} \,, \tag{7.49}$$

et

$$-\frac{d\overline{p}}{dx} = \frac{\Delta \overline{p}}{L} \stackrel{\text{def}}{=} \frac{\rho \, \overline{u}_m^2}{2} \, \lambda \, \frac{1}{D} \tag{7.50}$$

avec \overline{u}_m la vitesse de débit. On obtient donc que:

$$-\frac{d\overline{p}}{dx} = \frac{\Delta \overline{p}}{L} = \overline{\tau}_w \frac{2}{R} = \overline{\tau}_w \frac{4}{D}$$

$$= \frac{\rho \overline{u}_m^2}{2} \frac{\overline{\tau}_w}{\rho \overline{u}_m^2 / 2} \frac{4}{D} = \frac{\rho \overline{u}_m^2}{2} C_f \frac{4}{D}, \qquad (7.51)$$

et donc que $\lambda = 4 C_f$ pour un écoulement en conduite de section circulaire.

Le même type d'analyse que ci-dessus peut être fait pour un écoulement turbulent établi entre deux plaques planes séparées par une distance d=2h: le cas d'un écoulement turbulent en canal. La distance à la paroi est, comme dans l'analyse présente, notée y. On s'intéresse de nouveau au profil de vitesse moyen, $\overline{u}(y)$, avec $0 \le y \le h$. Le profil étant symétrique par rapport au milieu du canal, on se limite à $0 \le y \le h$. On obtient alors, par bilan sur un volume de contrôle (exercice):

$$\overline{\tau}(y) + \overline{\tau}^t(y) = -\frac{d\overline{p}}{dx} (h - y) ,$$
 (7.52)

$$\overline{\tau}_w = -\frac{d\overline{p}}{dx} h , \qquad (7.53)$$

et donc

$$\overline{\tau}(y) + \overline{\tau}^t(y) = \overline{\tau}_w \left(1 - \frac{y}{h} \right) . \tag{7.54}$$

Donc, le profil de la contrainte moyenne totale (moléculaire + turbulente) est aussi une droite dans le cas du canal plan. Pour la relation entre λ et C_f , on obtient par contre (exercice) que $\lambda = 2 C_f$.

Conclusion: que ce soit en conduite ou en canal, on a obtenu que le profil de contrainte totale (moléculaire + turbulente) est droite. En divisant par ρ , on écrit aussi

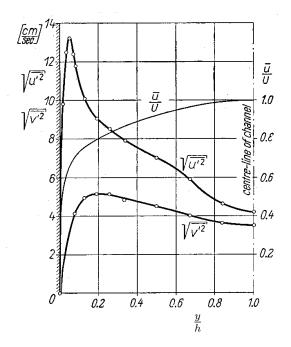
$$\nu \frac{d\overline{u}}{dy} - \overline{u'v'} = \nu \frac{d\overline{u}}{dy} + \nu_t \frac{d\overline{u}}{dy} = \frac{\overline{\tau}_w}{\rho} \left(1 - \frac{y}{R} \right)$$
 (7.55)

pour la conduite et

$$\nu \frac{d\overline{u}}{dy} - \overline{u'v'} = \nu \frac{d\overline{u}}{dy} + \nu_t \frac{d\overline{u}}{dy} = \frac{\overline{\tau}_w}{\rho} \left(1 - \frac{y}{h} \right)$$
 (7.56)

pour le canal.

Si on considère, par exemple, des écoulements turbulents avec parois "hydrauliquement lisses" (un autre concept à préciser plus tard) et que l'on mesure le profil de $-\overline{u'\,v'}$, on obtient des résultats tels que ceux présentés à la Fig. 7.3. Le complément entre $-\overline{u'\,v'}$ et la relation linéaire est nécessairement dû à la contrainte moleculaire, $\nu \frac{d\overline{u}}{dy}$. On constate



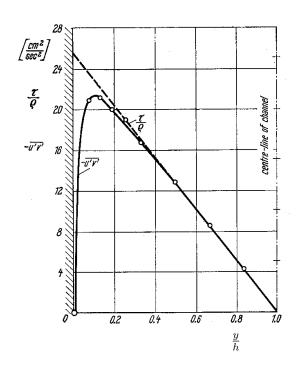


Figure 7.3: Mesures du profil de vitesse, $\frac{\overline{u}}{\overline{u}_c}$, et de ses fluctuations en écoulement turbulent en canal: composantes $\sqrt{u'\,u'}$, $\sqrt{v'\,v'}$ et $\overline{\tau}^t/\rho = -\overline{u'\,v'}$; la vitesse au centre est $\overline{u}_c = 100$ cm/s et est notée U (figure d'après Reichart, 1938); figure tirée de H. Schlichting, $Boundary-Layer\ Theory,\ sixth\ ed.,\ MacGraw-Hill).$

que l'effet de la viscosité moléculaire n'est dominant que dans une toute petite région proche de la paroi (zone I, appelée sous-couche laminaire dans la suite). Il est dominé par l'effet de la viscosité effective de turbulence dans la partie complètement turbulente de l'écoulement (zone III dans la suite). Il y a, bien sûr, une zone de transition où $\overline{\tau}$ et $\overline{\tau}^t$ sont du même ordre de grandeur (zone II dans la suite). Ces concepts seront précisés et quantifiés dans la suite.

Finalement, on notera qu'on peut toujours, que ce soit en conduite ou en canal, clairement définir le profil de viscosité effective de turbulence:

$$\nu_t \stackrel{\text{def}}{=} \frac{-\overline{u'\,v'}}{\frac{d\overline{u}}{dy}} \ . \tag{7.57}$$

On peut donc aussi l'obtenir à partir des mesures expérimentales des profils de \overline{u} et de $-\overline{u'v'}$. A noter aussi que la viscosité effective de turbulence n'est pas nulle au centre de la conduite ou du canal: le numérateur et le dénominateur s'annulent mais leur rapport reste fini.

7.6.2 Modélisation de la viscosité effective de turbulence pour la zone proche de la paroi

Jusqu'à présent, nous n'avons toujours pas proposé de modèle pour $\mu_t = \rho \nu_t$.

Par analogie avec la théorie cinétique des gaz, la viscosité cinématique de turbulence peut être prise comme:

$$\nu_t \propto l \, \overline{q}$$
 (7.58)

avec l une "longueur de mélange caractéristique de la turbulence" et \overline{q} une "vitesse caractéristique de la turbulence. On se souvient aussi de la définition liée à l'énergie cinétique de la turbulence: $\overline{q} \stackrel{\text{def}}{=} \sqrt{2\overline{k}}$; donc, si on a \overline{k} , on peut l'utiliser comme ingrédient pour modéliser ν_t :

$$\nu_t \propto l \sqrt{\overline{k}} \ . \tag{7.59}$$

Considérons d'abord l'approche proposée par von Karman et Prandtl dans les années 1930, et pour la zone turbulente proche de la paroi. Elle consiste à aussi modéliser \overline{q} en utilisant le gradient de vitesse moyenne et, de nouveau, la longueur de mélange l, soit:

$$\overline{q} \propto l \, \frac{d\overline{u}}{dy} \,.$$
 (7.60)

On obtient alors:

$$\nu_t \propto l^2 \frac{d\overline{u}}{dy} \,. \tag{7.61}$$

A noter que $\frac{d\overline{u}}{dy} > 0$ partout: on aura donc bien \overline{q} positif. Le modèle ci-dessus pour \overline{q} n'est cependant clairement pas valable dans la zone proche du centre de la conduite ou du canal: en effet, le gradient de vitesse y est faible, et même s'annule au centre, alors que l'énergie cinétique de la turbulence \overline{k} (et donc la vitesse de turbulence, \overline{q}) y est clairement significative, et non-nulle! Ce modèle ne pourra donc pas être utilisé dans cette zone.

Poursuivons donc néanmoins avec ce modèle, mais en se limitant à la zone turbulente proche de la paroi. A ce stade, on peut aussi fixer les choses et écrire, après von Karman et Prandtl, que

$$\nu_t \stackrel{\text{mod}}{=} l^2 \frac{d\overline{u}}{dy} \,, \tag{7.62}$$

toute constante étant absorbée dans la définition de la longueur de mélange, l, qui est encore à déterminer/modéliser.

Von Karman (1930) a proposé le modèle:

$$l \stackrel{\text{mod}}{=} \kappa \frac{d\overline{u}}{dy} / \left(-\frac{d^2 \overline{u}}{dy^2} \right) . \tag{7.63}$$

avec κ une constante (appelée depuis la "constante de von Karman") déterminée à partir des résultats expérimentaux. A noter que $\frac{d^2\overline{u}}{dv^2} < 0$ partout, d'où le signe — pour assurer

une longueur positive. Ce modèle produit, pour la partie de la zone turbulente qui est proche de la paroi (appelée zone III-a dans la suite) un profil de vitesse qui correspond bien aux mesures expérimentales. Prandtl (1933) a ensuite indiqué que ce profil est aussi obtenu en prenant simplement que la longueur de mélange est proportionnelle à la distance à la paroi:

$$l \stackrel{\text{mod}}{=} \kappa y . \tag{7.64}$$

Autrement dit: dans la zone turbulente proche de la paroi, les deux modèles sont équivalents (comme on va le voir ci-dessous).

7.6.3 Profil universel de vitesse pour la zone proche de la paroi: conduite ou canal avec paroi hydrauliquement lisse

Considérons d'abord le cas des écoulements en conduite ou en canal, et avec paroi lisse (plus précisemment, avec paroi "hydrauliquement lisse": un concept à préciser plus tard).

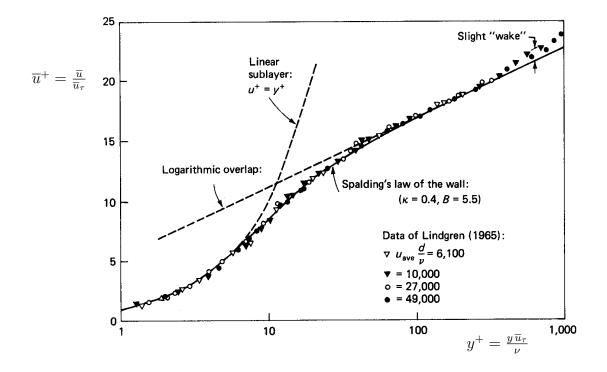


Figure 7.4: Profil universel de vitesse, $\frac{\overline{u}}{\overline{u}_{\tau}}$ en conduite lisse, exprimé en coordonnée interne, $y^+ = \frac{y\overline{u}_{\tau}}{\nu}$: théorie et résultats expérimentaux (figure d'après les résultats de Lindgren (1965); figure tirée de F.~M.~White,~Viscous~Fluid~Flow,~second~ed.,~MacGraw-Hill).

L'équation (EDO) pour le profil de vitesse est (pour un canal, simplement remplacer

R par h):

$$\frac{1}{\rho} \left(\overline{\tau} + \overline{\tau}^t \right) = \left(\nu + \nu_t \right) \frac{d\overline{u}}{dy} = \frac{\overline{\tau}_w}{\rho} \left(1 - \frac{y}{R} \right) . \tag{7.65}$$

On constate que le terme $\overline{\tau}_w/\rho$ a les dimensions du carré d'une vitesse. On définit alors la "vitesse de frottement" par:

$$\overline{u}_{\tau} \stackrel{\text{def}}{=} \sqrt{\frac{\overline{\tau}_{w}}{\rho}} \ . \tag{7.66}$$

On écrit donc:

$$(\nu + \nu_t) \frac{d\overline{u}}{dy} = \overline{u}_{\tau}^2 \left(1 - \frac{y}{R} \right) . \tag{7.67}$$

On considère d'abord la "zone proche de la paroi": c'est la zone avec $0 \le \frac{y}{R} \le 0.15$ (la borne supérieure étant approximative). Elle comprend les zones I, II et III-a discutées ci-après.

La zone I est la zone à dominance la minaire: celle toute proche de la paroi. On y a $\overline{\tau} >> \overline{\tau}^t$ et $\frac{y}{R}$ très petit, et donc l'EDO qui détermine le profil de vitesse est

$$\nu \frac{d\overline{u}}{dy} = \overline{u}_{\tau}^{2} \tag{7.68}$$

Le profil, obtenu par intégration, est donc linéaire:

$$\overline{u} = \frac{y}{\nu} \frac{\overline{\tau}_w}{\rho} \ . \tag{7.69}$$

Ce profil s'écrit aussi sous la forme "universelle":

$$\frac{\overline{u}}{\overline{u}_{\tau}} = \frac{y\,\overline{u}_{\tau}}{\nu} = \frac{y}{l_{\nu}} \tag{7.70}$$

avec $l_{\nu} \stackrel{\text{def}}{=} \frac{\nu}{\overline{u}_{\tau}}$. Le profil de vitesse est donc naturellement normalisé par la vitesse de frottement (i.e., par la contrainte de paroi réduite, $\frac{\overline{\tau}_{w}}{\rho}$). Il en va de même de la coordonnée y: elle est normalisée sous la forme d'un nombre de Reynolds faisant intervenir la vitesse de frottement et la viscosité cinématique): on dira que y est ici normalisé en terme de coordonnée adimensionnelle "interne" (i.e., proche de la paroi). On définit d'ailleurs les notations:

$$\overline{u}^+ \stackrel{\text{def}}{=} \frac{\overline{u}}{\overline{u}_\tau} , \qquad y^+ \stackrel{\text{def}}{=} \frac{y \, \overline{u}_\tau}{\nu} = \frac{y}{l_\nu} .$$
(7.71)

Dans la zone I, l'EDO qui détermine le profil universel de vitesse peut donc aussi s'écrire comme $\frac{d\bar{u}^+}{du^+}=1$ et sa solution est

$$\overline{u}^+ = y^+ . \tag{7.72}$$

La "fin" de la zone I se situe en $y^+ \simeq 5$.

La zone II est la zone avec $\overline{\tau}$ et $\overline{\tau}^t$ du même ordre de grandeur. C'est une zone de transition entre la zone laminaire (zone I) et la zone turbulente (zone III). On y reviendra plus tard.

La zone III est la zone à dominance turbulente, et donc avec $\overline{\tau} \ll \overline{\tau}^t$. Elle s'étend jusqu'au centre de la conduite. On y a donc:

$$\nu_t \frac{d\overline{u}}{dy} = \overline{u}_\tau^2 \left(1 - \frac{y}{R} \right) . \tag{7.73}$$

La zone III est divisée en deux sous-zones: la zone III-a qui est la partie proche de la paroi et la zone III-b qui est le reste.

Le "début" de la zone III-a se situe en $y^+ \simeq 70-90$ (i.e., en terme de coordonnée adimensionnelle interne car proche de la paroi). Elle s'étend jusque $\eta \stackrel{\text{def}}{=} \frac{y}{R} \simeq 0.15$ (i.e., en terme de coordonnée adimensionnelle externe η car devant faire intervenir la dimension globale du problème, R).

Considérons la solution obtenue en utilisant le modèle de viscosité de turbulence basé sur la longueur de mélange, de von Karman et Prandtl. Ils ont aussi considéré que, dans la zone III-a, $\frac{y}{R}$ est négligeable par rapport à l'unité, et donc que:

$$\nu_t \frac{d\overline{u}}{dy} = \overline{u}_\tau^2 \ . \tag{7.74}$$

On obtient alors:

$$l^{2} \left(\frac{d\overline{u}}{dy}\right)^{2} = \overline{u}_{\tau}^{2},$$

$$l \frac{d\overline{u}}{dy} = \overline{u}_{\tau}, \qquad (7.75)$$

Considérons d'abord l'approche de Prandtl (1933). On continue alors avec Eq. (7.64) comme modèle pour l, ce qui donne:

$$\kappa y \frac{d\overline{u}}{dy} = \overline{u}_{\tau} ,$$

$$\kappa \frac{y \overline{u}_{\tau}}{\nu} \frac{d\left(\frac{\overline{u}}{\overline{u}_{\tau}}\right)}{d\left(\frac{y \overline{u}_{\tau}}{\nu}\right)} = 1 ,$$

$$\kappa y^{+} \frac{d\overline{u}^{+}}{dy^{+}} = 1 ,$$
(7.76)

et donc, par intégration,

$$\overline{u}^{+} = \frac{1}{\kappa} \log y^{+} + C \ . \tag{7.77}$$

C'est le célèbre "profil logarithmique" de vitesse: il est universel en ce sens que tous les résultats expérimentaux sur les écoulements turbulents en conduite ou en canal (aussi en couche limite, voir plus loin) et à grand nombre de Reynolds montrent une zone proche de la paroi avec un profil de vitesse logarithmique: voir, par exemple, Fig. 7.4.

Considérons ensuite l'approche de von Karman (1930). On vérifie que le profil logarithmique, Eq. (7.77), donne bien que Eq. (7.63) produit $l = \kappa y$. Les modèles de von Karman et de Prandtl sont donc bien équivalents en zone III-a.

Les coefficients κ et C varient quelque peu. Les valeurs en conduite calibrées sur les anciens résultats expérimentaux de Nikuradse donnent: $\kappa \simeq 0.40$ et $C \simeq 5.5$: voir Fig. 7.4.

Il y a une variabilité significative dans la valeur de la "constante de von Karman", κ , et donc aussi dans le C, et il y a eu beaucoup d'investigations et de discussions sur ce sujet. Le débat est encore en cours, avec de nombreuses publications récentes et basées sur des analyses approfondies de résultats expérimentaux (aussi à très grand nombre de Reynolds) et numériques. Les travaux récents donnent des valeurs plus basses, avec $\kappa \simeq 0.38 - 0.39$ et $C \simeq 4.1 - 4.2$ (e.g., Monty (2005) en conduite avec $\kappa \simeq 0.384$ et en canal avec $\kappa \simeq 0.389$, Lee and Moser (2015) avec une simulation en canal à $Re_{\tau} = h^+ = 5200$ et qui produit une zone logarithmique bien mesurable, avec $\kappa \simeq 0.384$).

Conclusion: Dans la région proche de la paroi (zones I, II et III-a), le profil de vitesse est exprimable en coordonnée "interne", $\overline{u}^+ = f(y^+)$: c'est ce qu'on appelle la "loi de la paroi" (en anglais: "law of the wall").

A ce stade, il est aussi important de remarquer que l'approche avec longueur de mélange n'est vraiment pas nécessaire! On peut tout aussi bien (voire même mieux!) modéliser directement la viscosité de turbulence, sans passer par le concept de longueur de mélange. La zone logarithmique (zone III-a) correspond simplement à l'hypothèse que la viscosité de turbulence grandit linéairement avec la distance à la paroi:

$$\nu_t = \kappa \, y \, \overline{u}_\tau \,. \tag{7.78}$$

Si on introduit ce modèle dans l'EDO pour la zone III-a, on obtient bien le profil logarithmique.

On peut alors aussi poser la question de savoir si il existe aussi une "bonne" formule du profil de vitesse qui soit valable pour toute la région interne (zones I, II et III-a)? Il y a la formule de Spalding, qui est une formule "ad hoc", et qui exprime y^+ en fonction de \overline{u}^+ au lieu d'exprimer \overline{u}^+ en fonction de y^+ :

$$y^{+} = \overline{u}^{+} + \exp(-\kappa C) \left(\exp(\kappa \overline{u}^{+}) - \left(1 + \kappa \overline{u}^{+} + \frac{(\kappa \overline{u}^{+})^{2}}{2} + \frac{(\kappa \overline{u}^{+})^{3}}{6} \right) \right)$$
(7.79)

Elle donne $\overline{u}^+ = y^+$ en zone I et $\overline{u}^+ = \frac{1}{\kappa} \log(y^+) + C$ en zone III-a, ce qui est bien conforme au modèle de base. Elle ne constitue cependant pas une bonne approximation du profil de vitesse observé.

Une autre formule est celle de Reichardt; qui, elle, constitue une meilleure approxima-

tion du profil de vitesse:

$$\overline{u}^{+} = \frac{1}{\kappa} \log \left(1 + \kappa y^{+} \right) + 7.8 \left(1 - \exp \left(-\frac{y^{+}}{11} \right) - \frac{y^{+}}{11} \exp \left(-\frac{y^{+}}{3} \right) \right) . \tag{7.80}$$

Elle donne $\overline{u}^+ = y^+$ en zone I et $\overline{u}^+ = \frac{1}{\kappa} \log (1 + \kappa y^+) + 7.8$ en zone III-a, ce qui est bien conforme au modèle de base; en effet:

$$\overline{u}^{+} = \frac{1}{\kappa} \log \left(\left(\frac{1}{\kappa} + y^{+} \right) \kappa \right) + 7.8 = \frac{1}{\kappa} \log \left(\frac{1}{\kappa} + y^{+} \right) + 5.5$$
 (7.81)

lorsque $\kappa=0.40$; ce qui est bien le modèle de base (avec l'ancienne valeur de κ) car le terme $\frac{1}{\kappa}=2.5$ est négligeable devant y^+ en zone III-a.

Enfin, l'analyse de résultats de simulations numériques directes (DNS, Direct Numerical Simulations) récentes d'écoulements turbulents en canal et à grand nombre de Reynolds montre qu'il ne faut en fait même pas négliger $\eta = \frac{y}{h}$ par rapport à l'unité dans la zone turbulente proche de la paroi! En effet, les mesures de $\nu_t \stackrel{\text{def}}{=} -\overline{u'\,v'}/\frac{d\overline{u}}{dy}$ montrent que, dans la zone logarithmique, on a:

$$\nu_t = \kappa \, y \, \overline{u}_\tau \, (1 - \eta) \tag{7.82}$$

et non $\nu_t = \kappa y \overline{u}_\tau!$ On obtient donc que le terme $(1 - \eta)$ apparait à gauche et à droite dans l'ED0

$$\nu_t \frac{d\overline{u}}{dy} = \overline{u}_\tau^2 (1 - \eta) , \qquad (7.83)$$

et donc il se simplifie! On obtient donc bien le profil logarithmique et ce sans faire l'approximation que 0.15 est négligeable devant l'unité (ce qui n'est clairement pas le cas). Le profil logarithmique en zone III-a est donc "robuste": la viscosité effective de turbulence est simplement telle que le profil de vitesse y est logarithmique. La loi de la paroi, $\overline{u}^+ = f(y^+)$, pour toute la zone proche de la paroi, est donc, elle aussi, robuste. Le même argument est valable en conduite, donc avec $\eta = \frac{y}{R}$.

Des résultats de DNS d'écoulements turbulents en canal sont présentés en Fig. 7.5, et ce pour des nombre de Reynolds de plus en plus grand: voir Table 7.1 pour les valeurs de $Re_{\tau} = h^{+} = \frac{h\overline{u}_{\tau}}{\nu}$ et de $Re_{d} = \frac{d\overline{u}_{m}}{\nu}$. (**Note**: les résultats du cas récent à $h^{+} = 5200$ seront rajoutés dans une version revue des notes de cours. Ils seront montrés au cours, et sont disponibles sur internet.)

Les profils de contrainte effective de turbulence, $\frac{-\overline{u'v'}}{\overline{u_{\tau}}^2} = \frac{\nu_t d\overline{u}/dy}{\overline{u_{\tau}}^2}$, sont présentés à la Fig. 7.6 en variable globale, η , et le zoom en variable de paroi, y^+ , est présenté à la Fig. 7.7. On voit bien que le maximum se déplace vers la paroi à mesure que le nombre de Reynolds augmente. On note aussi, en passant, que le cas expérimental de la Fig. 7.3 est un cas à nombre de Reynolds relativement modeste: il compare bien avec le cas de

h^+	Re_d
180	5600
395	13800
590	22000
950	37500
2000	87200

Table 7.1: Nombres de Reynolds correspondants aux profils montrés pour les DNS en canal de Moser et al à $h^+=180$, 395 et 590 (1999), et de Hoyas, del Alamo et Jimenez à $h^+=550$ (2003, non utilisés ici)), 950 (2004) et 2000 (2006).

la DNS à $h^+=590$. En fait, même le cas de la DNS à $h^+=2000$ n'est pas encore à suffisamment grand nombre de Reynolds que pour avoir une petite zone logarithmique clairement mesurable (par contre, le cas de la DNS à $h^+=5200$ l'est). Quand au cas de la DNS à $h^+=180$, il s'agit clairement d'un cas d'écoulement turbulent à très faible nombre de Reynolds.

Pour information complémentaire, les profils des fluctuations de turbulence, $\frac{u_{rms}'}{\overline{u}_{\tau}}$, $\frac{v_{rms}'}{\overline{u}_{\tau}}$ et $\frac{w_{rms}'}{\overline{u}_{\tau}}$ sont présentés aux Figs. 7.8 et 7.9, et les profils de l'énergie cinétique de turbulence, $\frac{\overline{k}}{\overline{u}_{\tau}^2}$, aux Figs. 7.10 et 7.11. Nous ne les commenterons pas ici, sauf de souligner que la turbulence est effectivement très anisotrope dans la zone proche de la paroi et est presque isotrope (mais néanmoins pas tout à fait) dans la zone proche du centre du canal. Finalement, on présente aussi, à la Fig. 7.12, les profil de vitesse, $\frac{\overline{u}}{\overline{u}_c}$, qui ne sont pas universels: on obtient effectivement un profil différent pour chaque nombre de Reynolds.

Finalement, et en ce qui concerne le début du profil strictement logarithmique: on peut montrer que ce début n'est pas universel (comme le proposent souvent les livres, avec les valeurs $y^+ = 70 - 90$ utilisées ci-avant) et que cela dépend en fait de h^+ . En effet, on peut montrer (Wei et al. 2005) que les effets de la viscosité moléculaire, ν , se font sentir jusque $y^+ \simeq 2.6 \sqrt{h^+}$. On observe aussi que, bien que monotone croissant, le profil de vitesse $\overline{u}^+ = f\left(y^+\right)$ exhibe un léger "overshoot" (i.e., avec des valeurs un peu au dessus de celles du profil logarithmique) avant de devenir purement logarithmique. Selon Marusic et al. (2013) la zone purement logarithmique n'est atteinte que lorsque $y^+ \simeq 3 \sqrt{h^+}$; et c'est même plutôt $y^+ \simeq 4 \sqrt{h^+}$ selon notre analyse des résultats de la DNS récente à $h^+ = 5200$. On pourrait donc considérer que la zone purement logarithmique correspond à l'intervalle $4 \sqrt{h^+} \le y^+ \le 0.15 \, h^+$.

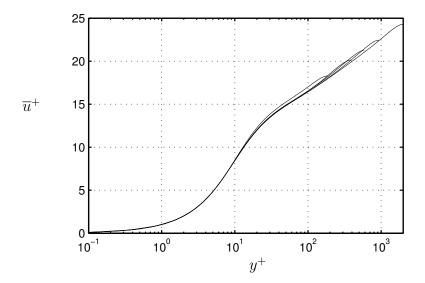


Figure 7.5: Canal turbulent avec paroi hydrauliquement lisse: profil universel de vitesse, $\frac{\overline{u}}{\overline{u}_{\tau}}$ en fonction de y^+ ; résultats de simulation numérique directe (DNS) à $h^+=180$, 395, 590, 950 et 2000. Figure produite à partir de résultats obtenus par Moser et al à $h^+=180$, 395 et 590 (1999), et par Hoyas, del Alamo et Jimenez à $h^+=950$ (2004) et 2000 (2006).

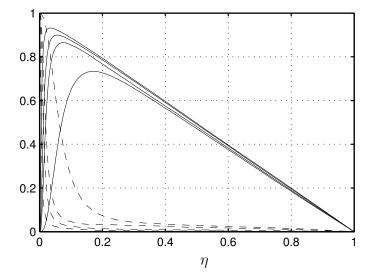


Figure 7.6: DNS de canal avec paroi hydrauliquement lisse à $h^+=180,\ 590,\ 950$ et 2000: profils de contrainte effective de turbulence, $\frac{-\overline{u'v'}}{\overline{u}_{\tau}{}^2}=\frac{\nu_t\,d\overline{u}/dy}{\overline{u}_{\tau}{}^2},$ (solid) et de contrainte moléculaire, $\frac{\nu\,d\overline{u}/dy}{\overline{u}_{\tau}{}^2},$ (dash) en fonction de $\eta=\frac{y}{h}.$



Figure 7.7: DNS de canal avec paroi hydrauliquement lisse à $h^+=180$, 590, 950 et 2000: profils de contrainte effective de turbulence, $\frac{-\overline{u'v'}}{\overline{u_\tau}^2}=\frac{\nu_t\,d\overline{u}/dy}{\overline{u_\tau}^2}$, en fonction de y^+ et dans la région proche de la paroi.

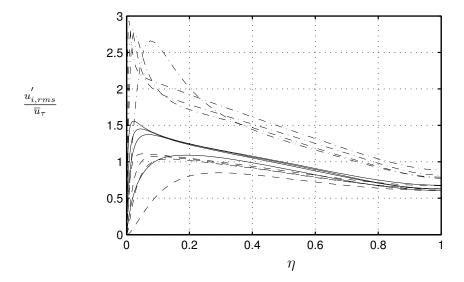


Figure 7.8: DNS de canal avec paroi hydrauliquement lisse à $h^+=180,\ 590,\ 950$ et 2000: profils des fluctuations de turbulence, $\frac{u_{rms}^{'}}{\overline{u}_{\tau}}$ (dash-dot), $\frac{v_{rms}^{'}}{\overline{u}_{\tau}}$ (dash) et $\frac{w_{rms}^{'}}{\overline{u}_{\tau}}$ (solid), en fonction de η .

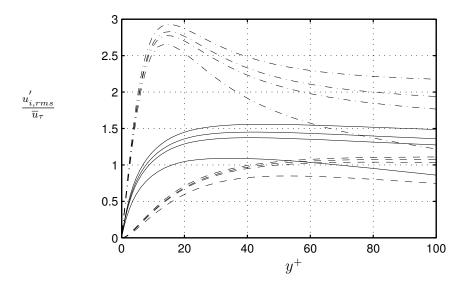


Figure 7.9: DNS de canal avec paroi hydrauliquement lisse à $h^+=180,\ 590,\ 950$ et 2000: profils des fluctuations de turbulence, $\frac{u_{rms}^{'}}{\overline{u}_{\tau}}$ (dash-dot), $\frac{v_{rms}^{'}}{\overline{u}_{\tau}}$ (dash) et $\frac{w_{rms}^{'}}{\overline{u}_{\tau}}$ (solid), en fonction de y^+ et dans la région proche de la paroi.

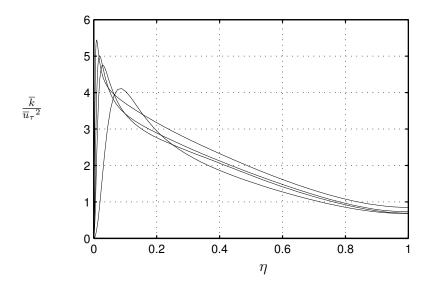


Figure 7.10: DNS de canal avec paroi hydrauliquement lisse à $h^+=180$, 590, 950 et 2000: profils de l'énergie cinétique de turbulence, $\frac{\bar{k}}{\bar{u}_\tau^{-2}}$, en fonction de η .

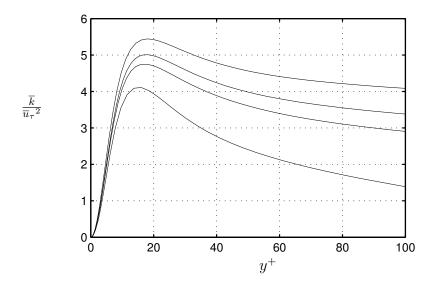


Figure 7.11: DNS de canal avec paroi hydrauliquement lisse à $h^+=180$, 590, 950 et 2000: profils de l'énergie cinétique de turbulence, $\frac{\bar{k}}{\bar{u}_\tau^{-2}}$, en fonction de y^+ et dans la région proche de la paroi.

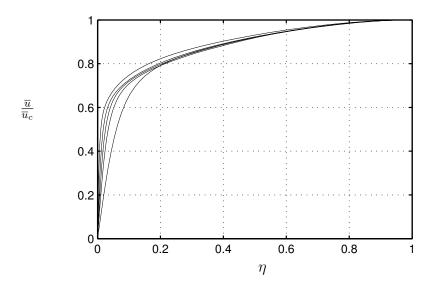


Figure 7.12: DNS de canal avec paroi hydrauliquement lisse à $h^+=180$, 395, 590, 950 et 2000: profils de vitesse, $\frac{\overline{u}}{\overline{u}_c}$, en fonction de η .

7.6.4 Profil universel de déficit de vitesse pour toute la zone turbulente

Considérons ensuite le profil universel de déficit de vitesse, qui est valable pour toute la zone turbulente (zone III), et qui est exprimé en terme de variable "externe" (i.e., globale): $\eta \stackrel{\text{def}}{=} \frac{y}{B}$:

$$\frac{\overline{u}_c - \overline{u}}{\overline{u}_\tau} = F\left(\frac{y}{R}\right) = F(\eta) \tag{7.84}$$

avec \overline{u}_c la vitesse au centre de la conduite. C'est la "loi du déficit de vitesse" (en anglais: "defect law"). A noter que ce profil est aussi valable dans la zone III-a: il est valable pour toute la zone turbulente.

La zone III-a avec profil logarithmique est en fait la zone qui est à la fois interne et externe: c'est une "zone de recouvrement" (en anglais: "overlap zone"). Dans cette zone, on a donc les deux expressions:

$$\frac{\overline{u}}{\overline{u}_{\tau}} = f\left(y^{+}\right) \quad \text{et} \quad \frac{\overline{u}_{c} - \overline{u}}{\overline{u}_{\tau}} = F\left(\eta\right) .$$
 (7.85)

Mentionons aussi que le fait qu'on a un profil logarithmique en zone III-a est quelque chose qu'on peut même démontrer sans modèle: simplement via le fait que c'est une zone de recouvrement, donc avec les deux expressions ci-dessus. Cette démonstration (non faite ici) est le célèbre "argument de Millikan", et qui surpasse tous les modèles.

On note aussi, en passant, que le terme $\frac{\overline{u}_{\tau}}{\overline{u}_{m}}$ est lié au coefficient de pertes de charge. En effet:

$$\frac{\overline{u}_{\tau}^2}{\overline{u}_m^2} = \frac{\overline{\tau}_w}{\rho \,\overline{u}_m^2} = \frac{C_f}{2} = \frac{\lambda}{8} \,. \tag{7.86}$$

Pour un écoulement turbulent en canal, on aura aussi le profil universel de vitesse exprimé en variable interne pour les zones I, II et III-a, et le profil universel de déficit de vitesse exprimé en variable externe pour les zones III-a et III-b:

$$\frac{\overline{u}_c - \overline{u}}{\overline{u}_{\tau}} = F\left(\frac{y}{h}\right) = F(\eta) . \tag{7.87}$$

Le terme $\frac{\overline{u}_{\tau}}{\overline{u}_{m}}$ est alors

$$\frac{\overline{u}_{\tau}^2}{\overline{u}_m^2} = \frac{\overline{\tau}_w}{\rho \,\overline{u}_m^2} = \frac{C_f}{2} = \frac{\lambda}{4} \,. \tag{7.88}$$

La fonction $F(\eta)$ en canal n'est cependant pas la même que celle en conduite.

Sur base des résultats expérimentaux de Nikuradse, von Karman a aussi proposé une loi approximative pour le profil de déficit de vitesse, valable pour la partie de la zone III-b

qui est proche du centre de la conduite. C'est la "loi du milieu" (ou "loi du centre") de von Karman (en anglais: "law of the middle" ou "law of the center"):

$$\frac{\overline{u}_c - \overline{u}}{\overline{u}_\tau} \simeq 7.2 \ (1 - \eta)^2 \ . \tag{7.89}$$

On vérifie facilement que cela correspond effectivement au profil obtenu proche du centre avec une viscosité effective de turbulence uniforme et égale à $\frac{\nu_t}{R\overline{n}_x} = 1/14.4 \simeq 0.070$.

Enfin, il y a également le modèle composite de profil universel de vitesse de type "Coles" (voir aussi plus loin, la partie sur les couches limites turbulentes). Ici appliqué aux conduites, le profil en zone turbulente s'écrit alors

$$\frac{\overline{u}}{\overline{u}_{\tau}} = f(y^{+}) + G(\eta) = \left[\frac{1}{\kappa} \log \left(\frac{y\overline{u}_{\tau}}{\nu}\right) + C\right] + \frac{\Pi}{\kappa} 2 \sin^{2} \left(\frac{\pi}{2} \alpha \frac{y}{R}\right) , \qquad (7.90)$$

avec $\kappa \simeq 0.40, \, C \simeq 5.5, \, \Pi \simeq 0.20$ et $\alpha \simeq 1.35$ comme (anciennes) valeurs calibrées en conduite. Evalué au centre de la conduite, cela donne

$$\frac{\overline{u}_c}{\overline{u}_\tau} = \left[\frac{1}{\kappa} \log \left(\frac{R\overline{u}_\tau}{\nu}\right) + C\right] + \frac{\Pi}{\kappa} 2\sin^2\left(\frac{\pi}{2}\alpha\right) . \tag{7.91}$$

On obtient bien alors, par simple différence, et car

$$\log\left(\frac{y}{a}\right) - \log\left(\frac{R}{a}\right) = \log\left(\frac{y}{R}\right) \tag{7.92}$$

quel que soit a, un profil de déficit de vitesse exprimé uniquement en variable externe:

$$\frac{\overline{u}_c - \overline{u}}{\overline{u}_\tau} = -\frac{1}{\kappa} \log \eta + \frac{\Pi}{\kappa} 2 \left[\sin^2 \left(\frac{\pi}{2} \alpha \right) - \sin^2 \left(\frac{\pi}{2} \alpha \eta \right) \right] = F(\eta) . \tag{7.93}$$

C'est effectivement un "relativement bon modèle" pour le profil de déficit de vitesse pour toute la zone III. Pour la partie proche paroi (zone III-a), il produit la partie logarithmique du profil de déficit de vitesse:

$$\frac{\overline{u}_c - \overline{u}}{\overline{u}_\sigma} \simeq -2.5 \log \eta + 0.73 . \tag{7.94}$$

A noter que la fonction $\sin^2\left(\frac{\pi}{2}s\right)$ n'a rien de magique: c'est simplement une fonction commode en forme de "S" (avec valeur nulle et pente nulle en s=0, valeur unitaire et pente nulle en s=1). D'autres auteurs utilisent d'ailleurs plutôt la fonction $3s^2-2s^3$ qui a les mêmes propriétés.

En canal (donc avec $\eta = y/h$), le profil composite de type Coles aura la même forme que ci-dessus, mais la valeur de Π sera différente de celle en conduite; et aussi celle de α . La valeur de Π obtenue en canal est de fait plus petite que celle obtenue en conduite.

7.6.5 Profil de vitesse simplifié en exposant pour toute la zone turbulente

Bien que l'approche qui suit n'est pas fondée sur une base solide, elle a son histoire et son utilité: nous nous devons donc de la présenter brièvement. Nikuradse a d'abord réduit ses résultats expérimentaux en utilisant, pour la zone turbulente (zone III) un simple "fit" en loi de puissance (i.e., en exposant) de la forme, voir Fig. 7.13:

$$\frac{\overline{u}}{\overline{u}_c} = \left(\frac{y}{R}\right)^{\frac{1}{n}} = \eta^{\frac{1}{n}} \ . \tag{7.95}$$

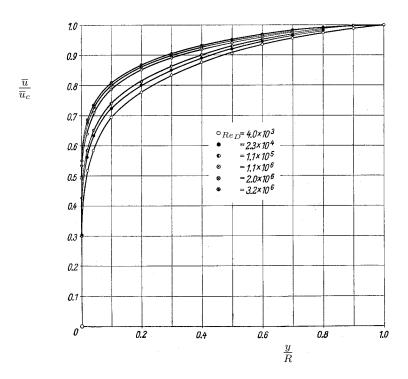


Figure 7.13: Conduites lisses: profils de vitesse, $\frac{\overline{u}}{\overline{u}_c}$, en fonction de $\frac{y}{R}$ pour différentes valeurs du nombre de Reynolds, Re_D : théorie avec loi en exposant et résultats expérimentaux (figure d'après Nikuradse (1932); figure tirée de H. Schlichting, Boundary-Layer Theory, sixth ed., MacGraw-Hill).

Ce profil a quelques "problèmes":

- 1. la pente du profil en $\eta = 0$ est infinie. Ce n'est pas un problème car on l'utilise uniquement dans la zone turbulente (zone III).
- 2. la pente du profil en $\eta=1$ n'est pas nulle: elle vaut 1/n. Ce n'est pas trop grave car n est grand.

3. le paramètre n n'est pas universel: il varie en fonction de Re_D .

Au vu des sections précédentes, il est clair qu'il est difficile d'accepter le "fit" de Nikuradse. Même si on l'accepte, le moins que l'on puisse dire est que le paramètre n ne peut pas être universel: il doit dépendre du coefficient de perte de charge, $\lambda = 4\,C_f$, ou, ce qui revient aussi au même en conduites hydrauliquement lisses, du nombre de Reynolds global, $Re_D = \frac{\overline{u}_m D}{\nu}$ (rappel: pour les écoulements turbulents en conduites lisses, $\lambda = \lambda\,(Re_D)$). Nikuradse a en effet déterminé les valeurs de n en fonction de Re_D , voir Fig. 7.14. La plage de variation de n est de 6 à 10. Pour les écoulements turbulent "typiques" (i.e., avec $Re_D \approx 10^5$), on retient la valeur $n \simeq 7$.

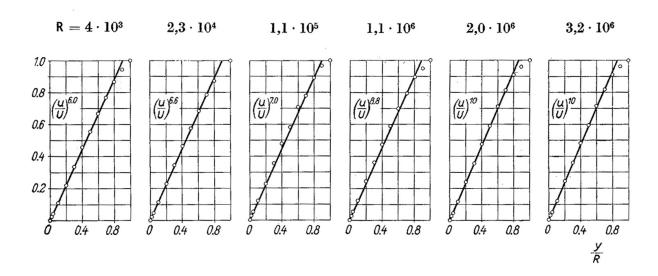


Figure 7.14: Profils de vitesse en exposant: détermination de n en fonction de Re_D sur base de résultats expérimentaux en conduite hydrauliquement lisse (figure d'après Nikuradse (1932); figure tirée de H. Schlichting, Boundary-Layer Theory, sixth ed., MacGraw-Hill).

Débit et flux de quantité de mouvement

Bien que le profil a ses problèmes, il demeure intégrable et produit des résultats utiles. Considérons d'abord la vitesse moyenne (vitesse de débit) associée à ce type de profil:

$$\overline{u}_m = \frac{\int \overline{u} \, dA}{A} \tag{7.96}$$

avec $A = \pi R^2$. Utilisant $dA = r d\theta dr$, on obtient:

$$\int \overline{u} \, dA = \overline{u}_c \int_0^{2\pi} d\theta \int_0^R \left(\frac{R-r}{R}\right)^{\frac{1}{n}} r \, dr = \overline{u}_c \, 2\pi \, R^2 \int_0^1 (1-s)^{\frac{1}{n}} s \, ds$$

$$= -\overline{u}_c \, 2A \int_1^0 \eta^{1/n} (1-\eta) \, d\eta = \overline{u}_c \, 2A \int_0^1 \left(\eta^{\frac{1}{n}} - \eta^{\frac{1}{n}+1}\right) \, d\eta$$

$$= \overline{u}_c \, 2A \left(\frac{1}{\frac{1}{n}+1} - \frac{1}{\frac{1}{n}+2}\right) = \overline{u}_c \, 2A \frac{n^2}{(n+1)(2n+1)}, \tag{7.97}$$

et donc:

$$\frac{\overline{u}_m}{\overline{u}_c} = \frac{2n^2}{(n+1)(2n+1)} , \qquad (7.98)$$

ce qui donne 0.817 lorsque n=7. Pour le flux de quantité de mouvement, on obtient:

$$\int \overline{u}^2 dA = 2 \frac{n^2}{(n+2)(2n+2)} \overline{u}_c^2 A = \frac{(n+1)(2n+1)^2}{4n^2(n+2)} \overline{u}_m^2 A, \qquad (7.99)$$

ce qui donne $1.020 \, \overline{u}_m^2 A$ lorsque n = 7.

A noter que le profil simplifié en exposant mène aussi à:

$$\frac{\overline{u}_c - \overline{u}}{\overline{u}_\tau} = \frac{\overline{u}_c}{\overline{u}_\tau} \left(1 - \eta^{\frac{1}{n}} \right) = \frac{(n+1)(2n+1)}{2n^2} \frac{\overline{u}_m}{\overline{u}_\tau} \left(1 - \eta^{\frac{1}{n}} \right)$$

$$= \frac{(n+1)(2n+1)}{2n^2} \sqrt{\frac{8}{\lambda}} \left(1 - \eta^{\frac{1}{n}} \right) . \tag{7.100}$$

La comparaison avec le profil universel, $\frac{\overline{u}_c - \overline{u}}{\overline{u}_\tau} = F(\frac{y}{R})$, nous montre qu'il y a un clairement une relation entre n et $\sqrt{\lambda}$. On l'obtient en comparant leurs intégrales. Si on intègre le profil simplifié, on obtient

$$\int \frac{\overline{u}_c - \overline{u}}{\overline{u}_\tau} dA = \frac{\overline{u}_c - \overline{u}_m}{\overline{u}_\tau} A = \frac{\overline{u}_m}{\overline{u}_\tau} \left(\frac{\overline{u}_c}{\overline{u}_m} - 1 \right) A = \sqrt{\frac{8}{\lambda}} \frac{(3n+1)}{2n^2} A. \tag{7.101}$$

Si on intègre le profil universel composite de Coles, on obtient

$$\int \frac{\overline{u}_c - \overline{u}}{\overline{u}_\tau} dA \simeq 4.06 A. \tag{7.102}$$

La comparaison donne alors la relation

$$\sqrt{\frac{8}{\lambda}} \frac{3}{2} \frac{1}{n} \left(1 + \frac{1}{3n} \right) \simeq 4.06 \ .$$
 (7.103)

Comme $\frac{1}{3n} \ll 1$ (puisque $n \geq 6$), cette relation se simplifie encore. On obtient, finalement,

$$n \simeq \frac{1.05}{\sqrt{\lambda}} \simeq \frac{1.0}{\sqrt{\lambda}} \,. \tag{7.104}$$

On a donc obtenu, pour les écoulements turbulent en conduite, une relation très simple, et très utile, et qui propose que $n \simeq 1/\sqrt{\lambda}$. Ce donne donc aussi, comme modèle simplifié de profil:

$$\frac{\overline{u}}{\overline{u}_c} \simeq \eta^{\sqrt{\lambda}} \,. \tag{7.105}$$

Loi empirique de Blasius pour les pertes de charges en conduite hydrauliquement lisse

La loi empirique de Blasius (1913) pour les pertes de charges des écoulements turbulents en conduites lisses est:

$$\lambda \simeq 0.3164 \, Re_D^{-1/4} \,, \qquad \frac{1}{\sqrt{\lambda}} \simeq 1.778 \, Re_D^{1/8} \,,$$
 (7.106)

pour $5\,10^3 \le Re_D \le 5\,10^4$. Cette loi est consistante avec le profil en exposant. En effet, il en découle que

$$\lambda = 4 C_f = 4 \frac{\overline{\tau}_w}{\rho \, \overline{u}_m^2 / 2} = 8 \left(\frac{\overline{u}_\tau}{\overline{u}_m} \right)^2 \simeq 0.3164 \left(\frac{\nu}{\overline{u}_m D} \right)^{1/4} ,$$
 (7.107)

et donc que

$$\left(\frac{\overline{u}_{\tau}}{\overline{u}_{m}}\right)^{7/4} \simeq 0.03326 \left(\frac{\nu}{R\,\overline{u}_{\tau}}\right)^{1/4} . \tag{7.108}$$

On obtient alors la relation

$$\frac{\overline{u}_m}{\overline{u}_\tau} \simeq 7.00 \left(\frac{R\,\overline{u}_\tau}{\nu}\right)^{1/7} \,. \tag{7.109}$$

On voit dèjà apparaître l'exposant 1/n avec n=7. Comme on a que $\overline{u}_m=0.817\,\overline{u}_c$ lorsque n=7, on peut aussi écrire:

$$\frac{\overline{u}_c}{\overline{u}_\tau} \simeq 8.56 \left(\frac{R\,\overline{u}_\tau}{\nu}\right)^{1/7} \ . \tag{7.110}$$

La formule de Blasius équivaut en fait à une relation en puissance entre $\overline{u}_c/\overline{u}_\tau$ et $R^+ = R \overline{u}_\tau/\nu$. On peut la comparer avec ce que l'on obtient si on applique le formalisme universel avec la forme composite de Coles

$$\frac{\overline{u}_c}{\overline{u}_\tau} = \frac{1}{\kappa} \log R^+ + C + 0.73.$$
(7.111)

Par exemple, à $Re_D = 5 \, 10^4$, la formule empirique de Blasius pour les pertes de charge donne $\lambda \simeq 0.0212$. En utilisant alors

$$R^{+} = \frac{R \overline{u}_{\tau}}{\nu} = \frac{R \overline{u}_{m}}{\nu} \frac{\overline{u}_{\tau}}{\overline{u}_{m}} = \frac{Re_{D}}{2} \sqrt{\frac{\lambda}{8}} , \qquad (7.112)$$

on déduit que $R^+ \simeq 1286$. La formule Eq. (7.110) donne alors $\overline{u}_c/\overline{u}_\tau \simeq 23.8$ et celle de Coles donne $\overline{u}_c/\overline{u}_\tau \simeq 24.1$: les résultats sont donc fort proches; c'est cohérent puisque que nous sommes dans la zone de validité de la formule de Blasius: $Re_D = 5 \cdot 10^4$.

A noter qu'il existe aussi une autre formule empirique, valable pour $5\,10^4 \le Re_D \le 10^6$:

$$\lambda \simeq 0.184 \, Re_D^{-1/5} \,, \qquad \frac{1}{\sqrt{\lambda}} \simeq 2.33 \, Re_D^{1/10} \,.$$
 (7.113)

7.6.6 Formule générale de Prandtl pour les pertes de charge en conduite hydrauliquement lisse

Retournons au profil universel de vitesse pour les écoulements turbulents en conduites lisses. Si on intègre le profil universel logarithmique (zone III-a),

$$\frac{\overline{u}}{\overline{u}_{\tau}} = \frac{1}{\kappa} \log \left(\frac{y \, \overline{u}_{\tau}}{\nu} \right) + C \,, \tag{7.114}$$

dans toute la section, on obtiendra une formule pour les pertes de charge. C'est ce qu'a fait Prandtl en 1935. L'erreur que l'on commet est faible car les zones I et II sont fort proches de la paroi et donc ne participent pas beaucoup à l'intégrale de débit. La contribution de la composante additionnelle de Coles en zone III-b ne sera pas complètement négligeable et peut aussi être prise en compte. Rappelons que son amplitude est assez faible ($\Pi = 0.20$). De toute façon, la formulation de Coles n'était pas connue en 1935. Intégrons donc simplement le profil logarithmique sur toute la section, comme l'avait fait Prandtl:

$$\pi R^{2} \overline{u}_{m} = 2\pi \int_{0}^{R} \overline{u}(r) r dr = 2\pi \overline{u}_{\tau} \int_{0}^{R} \left[\frac{1}{\kappa} \log \left(\frac{(R-r)\overline{u}_{\tau}}{\nu} \right) + C \right] r dr$$

$$= 2\pi R^{2} \overline{u}_{\tau} \int_{0}^{R} \left[\frac{1}{\kappa} \log \left(\frac{R\overline{u}_{\tau}}{\nu} \left(1 - \frac{r}{R} \right) \right) + C \right] \frac{r}{R} d \left(\frac{r}{R} \right)$$

$$= 2\pi R^{2} \overline{u}_{\tau} \int_{0}^{1} \left[\frac{1}{\kappa} \log \left(\frac{R\overline{u}_{\tau}}{\nu} (1 - s) \right) + C \right] s ds$$

$$= 2\pi R^{2} \overline{u}_{\tau} \int_{0}^{1} \left[\left(\frac{1}{\kappa} \log \left(\frac{R\overline{u}_{\tau}}{\nu} \right) + C \right) + \frac{1}{\kappa} \log(1 - s) \right] s ds$$

$$= 2\pi R^{2} \overline{u}_{\tau} \left[\left(\frac{1}{\kappa} \log \left(\frac{R\overline{u}_{\tau}}{\nu} \right) + C \right) \int_{0}^{1} s ds + \frac{1}{\kappa} \int_{0}^{1} \log(1 - s) s ds \right].$$

$$(7.115)$$

Les deux intégrales valent respectivement $\frac{1}{2}$ et $\int_0^1 \log \eta \ (1-\eta) d\eta = -\frac{3}{4}$. On obtient donc:

$$\frac{\overline{u}_m}{\overline{u}_\tau} = \left(\frac{1}{\kappa} \log \left(\frac{R\overline{u}_\tau}{\nu}\right) + C\right) - \frac{3}{2\kappa} = \frac{1}{\kappa} \log \left(\frac{R\overline{u}_\tau}{\nu}\right) + \left(C - \frac{3}{2\kappa}\right) .$$
(7.116)

Cette expression se traduit en une formule pour les pertes de charge:

$$\sqrt{\frac{8}{\lambda}} = \frac{1}{\kappa} \log \left(\frac{Re_D}{2} \sqrt{\frac{\lambda}{8}} \right) + \left(C - \frac{3}{2\kappa} \right)$$

$$\frac{1}{\sqrt{\lambda}} = \frac{1}{\sqrt{8}\kappa} \log \left(Re_D \sqrt{\lambda} \right) + \frac{1}{\sqrt{8}} \left(C - \frac{1}{\kappa} \left(\frac{3}{2} + \log \left(2\sqrt{8} \right) \right) \right) .$$
(7.117)

Avec les valeurs utilisées par Prandtl ($\kappa = 0.40$ et C = 5.5), on obtient:

$$\frac{1}{\sqrt{\lambda}} = 0.8839 \log \left(Re_D \sqrt{\lambda} \right) - 0.9129$$

$$= 2.035 \log_{10} \left(Re_D \sqrt{\lambda} \right) - 0.9129$$

$$= -2.035 \log_{10} \left(\frac{2.81}{Re_D} \frac{1}{\sqrt{\lambda}} \right) .$$
(7.118)

Un meilleur "fit" des résultats expérimentaux sur les pertes de charge en conduites lisses a été obtenu, par Prandtl, en changeant quelques peu les coefficients, voir Fig. 7.15 (n'oublions pas que Prandtl a négligé une partie du profil en effectuant l'intégrale: il peut donc s'autoriser à devoir changer quelque peu les coefficients du résultat final):

$$\frac{1}{\sqrt{\lambda}} = -2.0 \log_{10} \left(\frac{2.51}{Re_D} \frac{1}{\sqrt{\lambda}} \right) . \tag{7.119}$$

C'est la formule que l'on utilise à ce jour pour les pertes de charge en conduites hydrauliquelent lisses: elle donne de très bon résultats dans une très large gamme de nombres de Reynolds. Elle a en tout cas été validée expérimentalement jusque $Re_D = 3.5 \, 10^6$, et il est fort probable qu'elle reste valable bien au delà. Elle a le petit désavantage d'être une formule implicite mais ce n'est vraiment pas un problème: il suffit d'itérer sur le paramètre $\frac{1}{\sqrt{\lambda}}$, en utilisant la formule empirique de Blasius pour choisir la première valeur. Il existe aussi de bonnes "approximations explicites" de cette formule.

7.6.7 Conduites hydrauliquement lisses et conduites hydrauliquement rugueuses

Jusqu'à présent, nous n'avons considéré que des conduites avec parois lisses. Toute paroi réelle a sa "rugosité", voir Fig. 7.16. On peut caractériser la rugosité d'une surface avec "rugosité uniformément répartie" par la hauteur moyenne (rms) de ses aspérités (i.e., l'écart-type moyen). Si on considère que h(x,z) est la fonction qui décrit les variations de hauteur de surface (par rapport à la surface moyenne), on définira la rugosité par la hauteur moyenne (rms) des aspérités:

$$\epsilon \stackrel{\text{def}}{=} \left(\frac{1}{S} \int_{S} h^{2}(x, z) \, dx \, dz \right)^{1/2} . \tag{7.120}$$

Dans le cas de surface avec une rugosité non-uniformément répartie, on utilise le concept de "rugosité uniforme équivalente" en y associant un " ϵ équivalent". Des valeurs typiques de rugosité sont données dans la Table 7.2.

L'adimensionalisation de la rugosité en utilisant la vitesse de frottement est:

$$\epsilon^{+} \stackrel{\text{def}}{=} \frac{\epsilon \, \overline{u}_{\tau}}{\nu} \,. \tag{7.121}$$

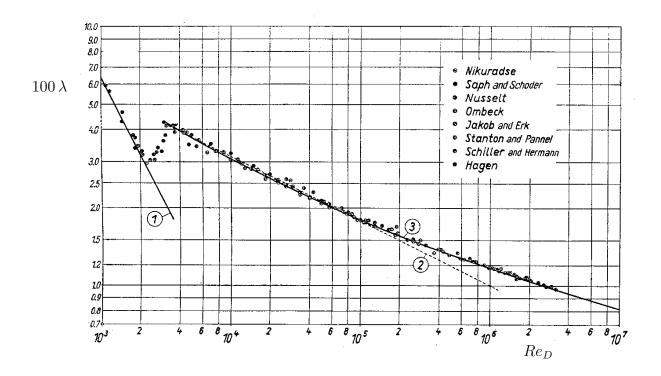


Figure 7.15: Pertes de charge en conduites hydrauliquement lisses: λ en fonction de Re_D ; courbe 1: écoulement laminaire: $\lambda=64/Re_d$; formule de Prandtl (solid) et formule empirique de Blasius (dash) (figure tirée de H. Schlichting, Boundary-Layer Theory, sixth ed., <math>MacGraw-Hill).

Si on a $\epsilon^+ \leq 1$, la hauteur des aspérités est significativement plus petite que la hauteur caractéristique qu'aurait une zone I de type sous-couche laminaire. Une sous-couche laminaire peut alors exister près de la paroi. Le régime est dit "hydrauliquement lisse": il y a une zone I suivie d'une zone III de transition suivie d'une zone III complètement turbulente.

Si on a $\epsilon^+ \geq 70$, la hauteur des aspérités est plus grande que la hauteur caractéristique qu'auraient une zone I suivie d'une zone II. L'écoulement est alors turbulent partout: il n'y a qu'une zone III. Le régime est dit "hydrauliquement rugueux".

A noter que ces valeurs limites sont en fait déterminées sur base de résultats expérimentaux: voir plus plus loin.

Dire qu'une conduite est lisse ou rugueuse n'a pas vraiment de sens. Une même conduite (ϵ donné) peut, en effet, être en régime hydrauliquement lisse ou hydrauliquement rugueux ou même mixte: cela dépend de \overline{u}_{τ} et de ν . La grandeur "décisionnelle" est la grandeur adimensionnelle ϵ , et non la grandeur dimensionnelle ϵ ou même la grandeur adimensionnelle ϵ/D . On dit cependant souvent "conduite lisse" ou "conduite rugueuse",

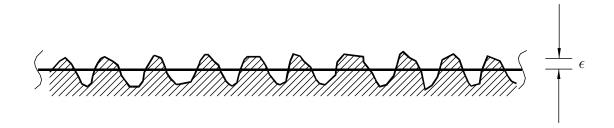


Figure 7.16: Surface rugueuse et concept de hauteur moyenne des aspérités, ϵ .

mais on sous-entend toujours "conduite en régime hydrauliquement lisse" ou "conduite en régime hydrauliquement rugueux".

Bien sûr, que ce soit en régime hydrauliquement lisse ou hydrauliquement rugueux, le concept de viscosité effective de turbulence reste valable pour la zone turbulente, zone III. Le fait que, pour la partie proche de la paroi (zone III-a), cette viscosité est directement proportionnelle à la distance à la paroi, $\nu_t = \kappa \, y \, \overline{u}_\tau \, (1-\eta)$, reste tout aussi valable. Le profil de vitesse dans la zone III-a sera donc aussi logarithmique. Seule l'adimensionalisation et la constante d'intégration seront différentes. On observe alors, comme profil de vitesse, voir Fig. 7.17:

$$\frac{\overline{u}}{\overline{u}_{\tau}} = \frac{1}{\kappa} \log \left(\frac{y}{\epsilon} \right) + B \tag{7.122}$$

avec $B \simeq C + 3.0 = 8.5$ comme valeur déterminée sur base des résultats expérimentaux, avec $\kappa \simeq 0.40$ et $C \simeq 5.5$. C'est donc la hauteur des aspérités qui intervient naturellement dans l'adimensionalisation de la coordonnée y.

Pour comparer les profils de vitesse lisses et rugueux, on peut aussi comparer l'une et l'autre formules:

$$\frac{\overline{u}}{\overline{u}_{\tau}} = \frac{1}{\kappa} \log y^{+} + \tilde{C}(\epsilon^{+}) = \frac{1}{\kappa} \log \left(\frac{y}{\epsilon}\right) + \left(\tilde{C}(\epsilon^{+}) + \frac{1}{\kappa} \log \epsilon^{+}\right) = \frac{1}{\kappa} \log \left(\frac{y}{\epsilon}\right) + \tilde{B}(\epsilon^{+})$$
(7.123)

Si, sur base de résultats expérimentaux, on fait un graphe de \tilde{B} en fonction de $\log \epsilon^+$, ce qu'a fait Nikuradse, voir Fig. 7.18, on observe effectivement une courbe $\tilde{B} = \tilde{B}(\epsilon^+)$. La partie à gauche avec $\tilde{C} = C = 5.5$, et donc $\tilde{B} = C + \frac{1}{\kappa} \log \epsilon^+$, correspond au régime hydrauliquement lisse; la partie à droite avec $\tilde{B} = B = 8.5$, et donc $\tilde{C} = B - \frac{1}{\kappa} \log \epsilon^+$ correspond au régime hydrauliquement rugueux. C'est en fait ce graphe qui a servi à déterminer les limites annoncées ci-dessus: hydrauliquement lisse tant que $\epsilon^+ \leq 1$ et hydrauliquement rugueux dès que $\epsilon^+ \geq 70$. En fait, la valeur limite proposée sur le graphe, et dans de nombreux ouvrages d'ingénierie, est: hydrauliquement lisse tant que $\epsilon^+ \leq 3$; cette valeur est cependant déjà trop grande car \tilde{B} n'est plus tout à fait linéaire

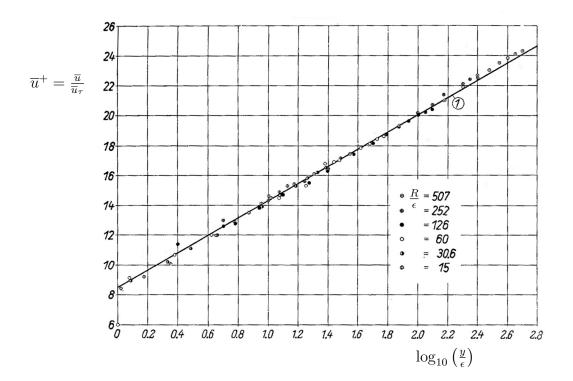


Figure 7.17: Conduite hydrauliquement rugueuse: profil universel de vitesse, $\frac{\overline{u}}{\overline{u}_{\tau}}$, en fonction de $\frac{y}{\epsilon}$; théorie et résultats expérimentaux (figure tirée de H. Schlichting, Boundary-Layer Theory, sixth ed., MacGraw-Hill).

en fonction de $\log \epsilon^+$.

On compare aussi, à la Fig. 7.19, le profil universel de vitesse pour la partie proche de la paroi et exprimé en variable y^+ : cas d'une conduite hydrauliquement lisse et cas de conduites hydrauliquement rugueuses pour différentes valeurs de ϵ^+ .

Il existe aussi un modèle approximatif simple pour le profil logarithmique, et qui couvre tous les régimes hydrauliques (lisse, mixte ou rugueux):

$$\frac{\overline{u}}{\overline{u}_{\tau}} = \frac{1}{\kappa} \log y^{+} + \tilde{C}(\epsilon^{+}) = \frac{1}{\kappa} \log y^{+} + \left(C - \Delta C(\epsilon^{+})\right) \tag{7.124}$$

avec

$$\Delta C(\epsilon^{+}) = \frac{1}{\kappa} \log \left(1 + 0.3 \, \epsilon^{+} \right) \tag{7.125}$$

Dans le cas hydrauliquement lisse, $\Delta C \ll C$ (mais néanmoins non nul, sauf quand ϵ^+ devient vraiment très petit). Dans le cas hydrauliquement rugueux, $\Delta C \simeq \frac{1}{\kappa} \log{(0.3\,\epsilon^+)} \simeq \frac{1}{\kappa} \log{\epsilon^+} - 3.0$ et on retrouve bien $\frac{\overline{u}}{\overline{u}_{\tau}} = \frac{1}{\kappa} \log{\left(\frac{y}{\epsilon}\right)} + B$ avec $B \simeq C + 3.0 \simeq 8.5$.

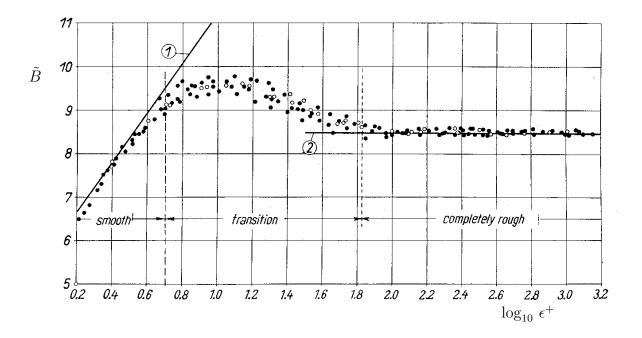


Figure 7.18: Détermination de \tilde{B} en fonction de $\log{(\epsilon^+)}$ sur base des résultats expérimentaux de Nikuradse (figure tirée de H. Schlichting, Boundary-Layer Theory, sixth ed., MacGraw-Hill).

Dans le cas hydrauliquement rugueux, on peut aussi écrire le profil comme:

$$\frac{\overline{u}}{\overline{u}_{\tau}} = \frac{1}{\kappa} \log \left(\frac{y}{e^{-\kappa B} \epsilon} \right) = \frac{1}{\kappa} \log \left(\frac{y}{y_0} \right) \tag{7.126}$$

avec $y_0 = e^{-\kappa B} \epsilon = 0.033 \epsilon$ (et donc $y_0 \ll \epsilon$). Clairement, la petite zone $0 \leq y < y_0$ est à exclure car elle correspond à des vitesses négatives. Dans la discipline des Sciences de l'ingénieur mécanicien, on utilise ϵ pour caractériser la rugosité d'une surface (e.g., voir Table 7.2). En Sciences de la Terre (atmosphères et océans), on utilise plutôt y_0 (par exemple, $y_0 \simeq 2-3$ mm pour une piste d'atterrissage en béton ou du gazon court, $y_0 \simeq 3-4$ cm pour un terrain agricole dégagé, etc.). C'est aussi une question de culture scientifique. Il est important de souligner qu'on peut toujours passer de l'un à l'autre.

Finalement, on note aussi les profils simplifiés en exposant exprimé en variable externe $\eta = y/R$, mais ici pour des conduites hydrauliquement rugueuses, voir Fig. 7.20. De nouveau, le paramètre n n'est pas universel: à Re_D fixé, il dépend de la rugosité relative $\frac{\epsilon}{R}$.

En toute généralité, il dépend donc de Re_D et de $\frac{\epsilon}{R}$. Au vu de ce que l'on a obtenu avant, c'est en fait plus simple: il ne dépend que de $\frac{1}{\sqrt{\lambda}}$, lequel est bien sûr fonction de Re_D et de $\frac{\epsilon}{R}$. Le profil en exposant s'applique en régime hydrauliquement lisse ou rugueux, et avec le même profil si on a les mêmes pertes de charges.

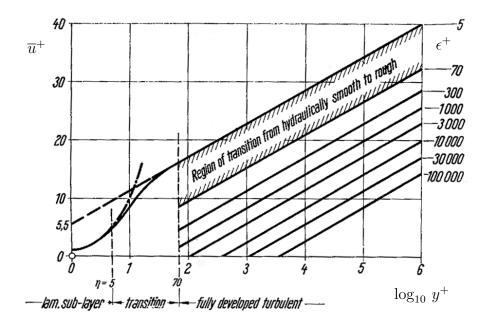


Figure 7.19: Profils de vitesse pour la loi de la paroi, tous exprimés en variable y^+ : conduites hydrauliquement lisses et hydrauliquement rugueuses avec différentes valeurs de ϵ^+ (figure tirée de H. Schlichting, Boundary-Layer Theory, sixth ed., MacGraw-Hill).

Il en va de même pour le profil composite de Coles pour la zone turbulente, et exprimé en variable externe: il est le même que ce soit en conduite hydrauliquement lisse ou en conduite hydrauliquement rugueuse. En effet, dans le cas hydrauliquement rugueux, le profil de vitesse est

$$\frac{\overline{u}}{\overline{u}_{\tau}} = \left[\frac{1}{\kappa} \log \left(\frac{y}{\epsilon} \right) + B \right] + \frac{\Pi}{\kappa} 2 \sin^2 \left(\frac{\pi}{2} \alpha \frac{y}{R} \right)$$
 (7.127)

et donc, le profil de déficit de vitesse est

$$\frac{\overline{u}_c - \overline{u}}{\overline{u}_\tau} = -\frac{1}{\kappa} \log \left(\frac{y}{R} \right) + \frac{\Pi}{\kappa} 2 \left[\sin^2 \left(\frac{\pi}{2} \alpha \right) - \sin^2 \left(\frac{\pi}{2} \alpha \frac{y}{R} \right) \right] , \qquad (7.128)$$

soit le même profil F(y/R) que dans le cas hydrauliquement lisse. En ce qui concerne les profils universels de vitesse exprimé en variable externe, il n'y a donc aucune distinction entre les cas lisses ou rugueux: à même \overline{u}_{τ} (i.e., à même pertes de charge), même profil.

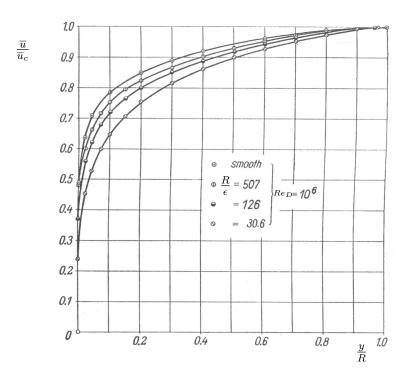


Figure 7.20: Conduites hydrauliquement rugueuses: profils de vitesse, $\frac{\overline{u}}{\overline{u}_c}$, en fonction de $\frac{y}{R}$ pour différentes valeurs de $\frac{\epsilon}{R}$ et à Re_D fixé; théorie avec loi en exposant et résultats expérimentaux (figure d'après Nikuradse (1933); figure tirée de H. Schlichting, Boundary-Layer Theory, sixth ed., MacGraw-Hill).

7.6.8 Formule générale des pertes de charge en conduite hydrauliquement rugueuse

Considérons le profil universel de vitesse pour les écoulements turbulents en conduites hydrauliquement rugueuses. Si on intègre le profil logarithmique

$$\frac{\overline{u}}{\overline{u}_{\tau}} = \frac{1}{\kappa} \log \left(\frac{y}{\epsilon} \right) + B \,, \tag{7.129}$$

dans toute la section, on obtiendra une formule pour les pertes de charge. Comme il n'y a pas ici de zones I et II, l'erreur que l'on commet sur l'intégrale de débit sera uniquement due à l'absence de composante complémentaire de Coles (de nouveau, on pourrait facilement en tenir compte). Intégrons donc le profil logarithmique sur toute la section,

comme l'avait fait Prandtl:

$$\pi R^{2} \overline{u}_{m} = 2\pi \overline{u}_{\tau} \int_{0}^{R} \left[\frac{1}{\kappa} \log \left(\frac{R-r}{\epsilon} \right) + B \right] r dr$$

$$= 2\pi R^{2} \overline{u}_{\tau} \int_{0}^{R} \left[\frac{1}{\kappa} \log \left(\frac{R}{\epsilon} \left(1 - \frac{r}{R} \right) \right) + B \right] \frac{r}{R} d\left(\frac{r}{R} \right)$$

$$= 2\pi R^{2} \overline{u}_{\tau} \int_{0}^{1} \left[\left(\frac{1}{\kappa} \log \left(\frac{R}{\epsilon} \right) + B \right) + \frac{1}{\kappa} \log(1-s) \right] s ds . \quad (7.130)$$

On obtient donc:

$$\sqrt{\frac{8}{\lambda}} = \frac{1}{\kappa} \log \left(\frac{R}{\epsilon}\right) + \left(B - \frac{3}{2\kappa}\right) . \tag{7.131}$$

La formule des pertes de charges est donc aussi obtenue. Avec $\kappa=0.40$ et B=8.5, cela donne:

$$\frac{1}{\sqrt{\lambda}} = 0.8839 \log \left(\frac{R}{\epsilon}\right) + 1.679$$

$$= 2.035 \log_{10} \left(\frac{R}{\epsilon}\right) + 1.679$$

$$= -2.035 \log_{10} \left(\frac{\epsilon/D}{3.34}\right). \tag{7.132}$$

De nouveau, un meilleur "fit" aux résultats expérimentaux, voir Fig. 7.21, est obtenu en changeant un peu le deuxième coefficient:

$$\frac{1}{\sqrt{\lambda}} = -2.0 \log_{10} \left(\frac{\epsilon/D}{3.71} \right) . \tag{7.133}$$

7.6.9 Formule générale des pertes de charge en conduite

Des résultats expérimentaux d'écoulements turbulents en conduites hydrauliquement lisses, hydrauliquement rugueuses, et hydrauliquement "mixtes" sont présentés à la Fig. 7.21. On a aussi reporté sur le graphe la formule empirique de Blasius pour les pertes de charges en conduites hydrauliquement lisses: on constate que c'est effectivement une bonne formule pour $5 \cdot 10^3 \le Re_D \le 5 \cdot 10^4$. On a aussi, à gauche, le cas des écoulements laminaires pour $Re_D \le 5 \cdot 10^3$, avec $\lambda = 64/Re_D$.

On note que, à rugosité fixée, le coefficient de perte de charge des écoulements turbulents n'a pas un comportement monotone décroissant à mesure que le nombre de Reynolds augmente. Cependant, il convient de souligner que ce diagramme a été obtenu avec des conduites à rugosité tout à fait homogène (grains de sable calibrés), ce qui n'existe pas en pratique.

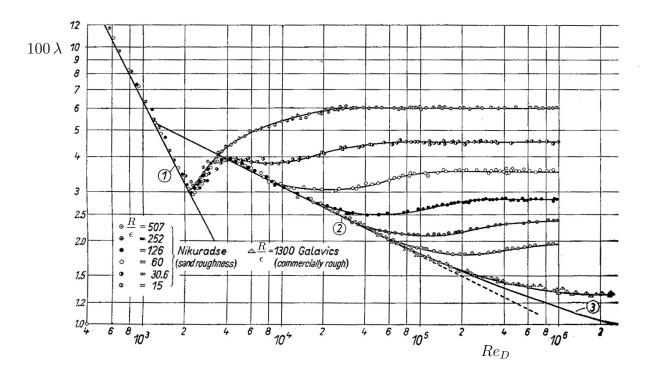


Figure 7.21: Pertes de charge en conduites, avec régimes hydrauliquement lisses, mixtes, et rugueux: résultats expérimentaux de λ en fonction de Re_D pour différentes valeurs de ϵ/R ; (figure tirée de H. Schlichting, Boundary-Layer Theory, sixth ed., MacGraw-Hill).

Une formule générale a été proposée par Colebrook (1939): elle est simplement constituée d'un amalgame des formules pour les conduites hydrauliquement lisses et hydrauliquement rugueuses:

$$\frac{1}{\sqrt{\lambda}} = -2.0 \log_{10} \left(\frac{2.51}{Re_D} \frac{1}{\sqrt{\lambda}} + \frac{\epsilon/D}{3.71} \right) . \tag{7.134}$$

Elle reproduit assez bien les résultats expérimentaux et est très souvent utilisée. On note qu'elle ne reproduit pas le comportement dans le régime mixte obtenu pour des conduites à rugosité homogène: en effet, à rugosité fixée, le λ obtenu est monotone décroissant à mesure que Re_D augmente. Pour les conduites industrielles, avec des "rugosités uniforme équivalentes" comme celle proposées dans la Table 7.2, c'est bien la formule de Colebrook qui est généralement utilisée.

La mise sous forme graphique de la formule de Colebrook constitue la partie "écoulements turbulents" du diagramme de Moody (1944) pour les pertes de charges en conduites, voir Fig. 7.22. A noter qu'on a ici supposé que $Re_D < 2000$ correspond aux écoulements laminaires et que $Re_D > 5000$ correspond aux écoulements turbulents (ces "bornes" ne sont, en fait, pas bien définies).

La formule de Colebrook est implicite, ce qui n'est pas un problème. Il existe cependant des "approximations explicites" de cette formule. Citons, par exemple, la formule de Swamee & Jain (1976):

$$\frac{1}{\sqrt{\lambda}} = -2.0 \log_{10} \left(\frac{5.74}{Re_D^{0.9}} + \frac{\epsilon/D}{3.71} \right) . \tag{7.135}$$

Citons aussi la formule de Haaland (1983):

$$\frac{1}{\sqrt{\lambda}} = -1.8 \log_{10} \left(\frac{6.9}{Re_D} + \left(\frac{\epsilon/D}{3.71} \right)^{1.11} \right) . \tag{7.136}$$

Finalement, il existe aussi la formule de Churchill (1977), qui est en fait une amélioration de celle de Swamee & Jain de façon à aussi comprendre tous les régimes d'écoulements (régime laminaire, transition du régime laminaire au régime turbulent et régime turbulent):

$$\lambda^{12} = \left(\frac{64}{Re_D}\right)^{12} + \left[\left(-2.0 \log_{10} \left(\left(\frac{7.0}{Re_D}\right)^{0.9} + \frac{\epsilon/D}{3.71} \right) \right)^{16} + \left(\frac{13270}{Re_D}\right)^{16} \right]^{-3/2} . (7.137)$$

La mise sous forme graphique des diverses formules est présentée à la Fig. 7.23: les résultats produit par les formules explicites (Haaland et Swamee & Jain) sont effectivement fort proches de ceux produit par la formule implicite de Colebrook. La formule de Churchill capture bien toute la plage des Re_D .

Type de conduite	Rugosité uniforme équivalente
	$\epsilon \; (\mathrm{mm})$
Tuyau étiré en verre, cuivre, laiton	0.001
Tuyau industriel en laiton	0.025
Tuyau en acier laminé neuf	0.05
Tuyau en acier laminé rouillé	0.15 à 0.25
Tuyau en acier laminé incrusté	1.5 à 3.0
Tuyau en acier laminé bitumé intérieurement	0.015
Tuyau en acier soudé neuf	0.03 à 0.1
Tuyau en acier soudé rouillé	0.4
Tuyau en fer galvanisé	0.15 à 0.20
Tuyau en fonte usuelle moulée neuf	0.25
Tuyau en fonte usuelle moulée rouillée	1.0 à 1.5
Tuyau en fonte usuelle moulée bitumé intér.	0.1
Tuyau recouvert intér. de fortes incrustations	jusqu'à 3
Tuyau ciment lisse	0.3 à 0.8
Tuyau ciment brut	jusqu'à 3
Tuyau acier rivé	0.9 à 9
Pierre de taille brute de percement	8 à 15
Galerie	80 à 600

Table 7.2: Valeurs typiques de rugosité uniforme équivalente.

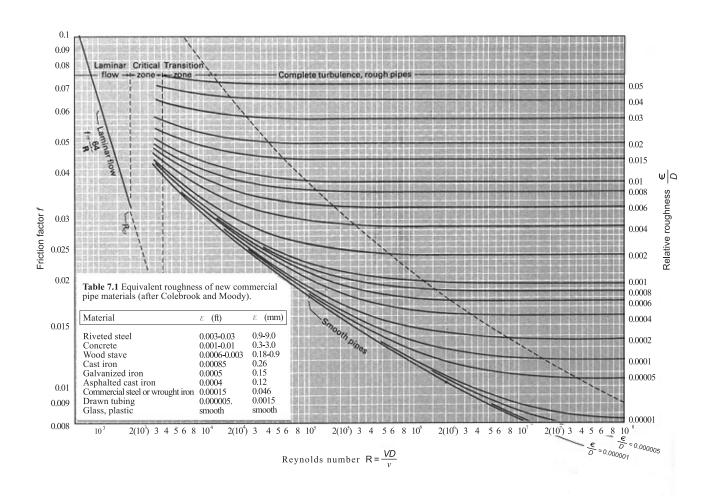


Figure 7.22: Diagramme de Moody pour les pertes de charge en conduites: formule de Colebrook et cas laminaire avec $\lambda=64/Re_D$ (figure tirée de P.M. Gerhart, R.J. Gross, J.I. Hochstein, Fundamentals of fluid mechanics, second ed., Addisson Wesley).

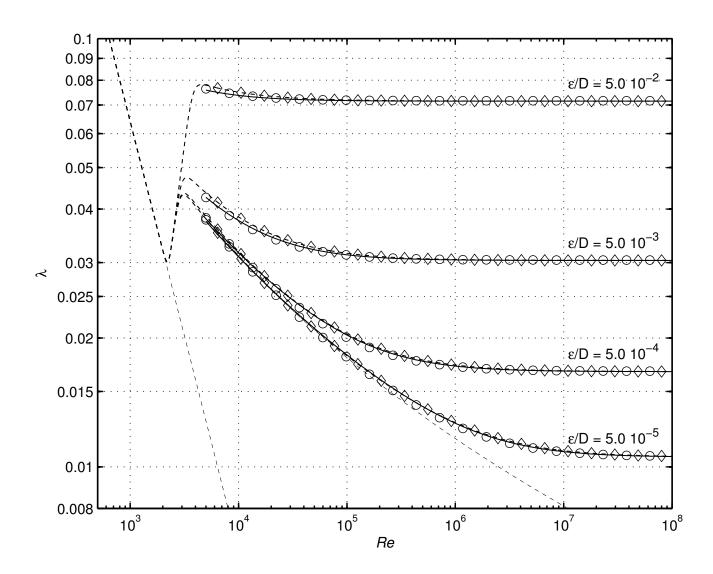


Figure 7.23: Diagramme des pertes de charge en conduites: formule de Colebrook (solid), de Haaland (circle), de Swamee & Jain (diamond), et de Churchill (dash).

7.7 Couches limites turbulentes

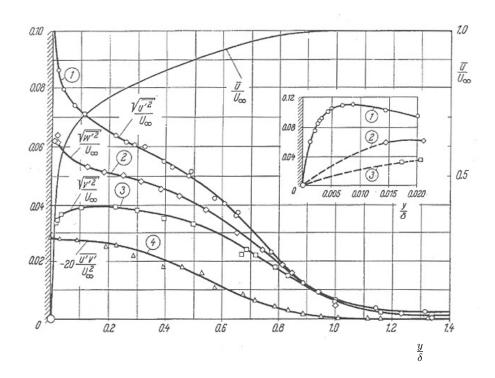


Figure 7.24: Mesures du profil de vitesse, $\frac{\overline{u}}{\overline{u}_e}$, et de ses fluctuations en couche limite turbulente sur paroi hydrauliquement lisse: composantes $\sqrt{\overline{u'u'}}$, $\sqrt{\overline{v'v'}}$, $\sqrt{\overline{w'w'}}$ et $\overline{\tau}^t/\rho = -\overline{u'v'}$; la vitesse externe est ici notée U_{∞} (figure d'après Klebanoff (1955); figure tirée de H. Schlichting, Boundary-Layer Theory, sixth ed., MacGraw-Hill).

A quoi peut-on s'attendre en couche limite turbulente? On considère ici uniquement les couches limites avec vitesse externe \overline{u}_e constante (et donc $d\overline{p}_e/dx=0$). Le cas des couches limites avec \overline{u}_e non constant (couche limite accélerée avec gradient de pression favorable: $d\overline{u}_e/dx>0$ et $d\overline{p}_e/dx<0$; couche limite décélérée avec gradient de pression défavorable: $d\overline{u}_e/dx<0$ et $d\overline{p}_e/dx>0$, menant éventuellement au décollement de la couche limite) est couvert dans le cours d'Aérodynamique, dans les deux cas: couches limites laminaires et couches limites turbulentes.

7.7.1 Profils universel de vitesse

On considère d'abord le cas avec paroi hydrauliquement lisse. Comme c'est un écoulement avec paroi qui est non-établi mais qui grandit doucement en x, on aura aussi une zone proche de la paroi (i.e., $0 \le \frac{y}{\delta} \lesssim 0.15$ avec δ l'épaisseur "effective" de la couche limite:

voir plus loin) avec profil de vitesse exprimable en variable interne, et une zone avec profil de déficit de vitesse exprimable en variable externe.

En couche limite, la contrainte totale (moléculaire + turbulente) n'est plus une droite comme dans le cas de la conduite ou du canal (il n'y a pas de bilan de quantité de mouvement!) Ici, on constate que la zone proche de la paroi est effectivement à contrainte totale essentiellement uniforme: $\overline{\tau}(y) + \overline{\tau}^t(y) \simeq \overline{\tau}_w$, voir Fig. 7.24. La viscosité de turbulence pour la zone turbulente proche de la paroi varie selon $\nu_t = \kappa y \overline{u}_{\tau}$. On obtient donc les mêmes résultats qu'en conduite ou canal, pour la partie du profil universel de vitesse proche de la paroi (zones I, II et III-a), ç-à-d la "loi de la paroi", voir Fig. 7.25,

$$\frac{\overline{u}}{\overline{u}_{\tau}} = f\left(\frac{y\,\overline{u}_{\tau}}{\nu}\right) , \qquad \overline{u}^{+} = f\left(y^{+}\right) , \qquad (7.138)$$

avec les mêmes formules que précédemment.

Selon les anciens travaux de Coles (1957) en couches limites, les valeurs à utiliser pour le profil logarithmique en couche limite sont $\kappa \simeq 0.41$ et $C \simeq 5.0$, plutôt que $\kappa \simeq 0.40$ et $C \simeq 5.5$. Cependant, les travaux récents basés sur des résultats expérimentaux à grand nombre de Reynolds, et aussi sur certains résultats numériques, donnent de nouveau une valeur plus basse de κ , et donc aussi de C: selon Nagib et al (2005, 2007), on a $\kappa \simeq 0.384$ et $C \simeq 4.17$; selon Osterlund (2000), on a $\kappa \simeq 0.38$; selon Alfredson et al (2013), on a $\kappa \simeq 0.378$ et $C \simeq 3.98$. Si on arrondit à deux chiffres significatifs, on a donc, en couche limite, que $\kappa \simeq 0.38 - 0.39$ et $C \simeq 4.0 - 4.2$: ce sont donc bien essentiellement les mêmes valeurs que les valeurs récentes en conduite ou en canal.

Pour la partie turbulente (zone III), le profil du déficit de vitesse est:

$$\frac{\overline{u}_e - \overline{u}}{\overline{u}_\tau} = F\left(\frac{y}{\delta}\right) = F(\eta) , \qquad (7.139)$$

avec δ l'épaisseur "effective" de la couche limite et $\eta = \frac{y}{\delta}$. Ici, L'épaisseur effective est définie telle que, en $y = \delta$ et avec le modèle mathématique utilisé pour le profil de \overline{u} (voir plus loin), on a que $\overline{u} = \overline{u}_e$ et que la pente du profil est nulle. Au delà, donc pour $y \geq \delta$, on utilise $\overline{u} = \overline{u}_e$.

En couche limite, il n'y a bien sûr pas de vitesse de débit; on définit C_f en utilisant la vitesse externe, \overline{u}_e :

$$C_f = \frac{\overline{\tau}_w}{\frac{1}{2}\rho \overline{u}_e^2} \,. \tag{7.140}$$

Coles (1957) a aussi montré, sur base de nombreux résultats expérimentaux en couches limites turbulentes (avec \overline{u}_e constant et non constant), que le profil de vitesse peut s'exprimer sous une "forme composite": la combinaison linéaire d'un profil universel exprimé en variable interne ("loi de la paroi"; en anglais: "law of the wall") et d'une fonction complément exprimée en variable externe ("loi du sillage"; en anglais: "law of the wake")

$$\frac{\overline{u}}{\overline{u}_{\tau}} = \overline{u}^{+} = f\left(y^{+}\right) + G(\eta) . \tag{7.141}$$

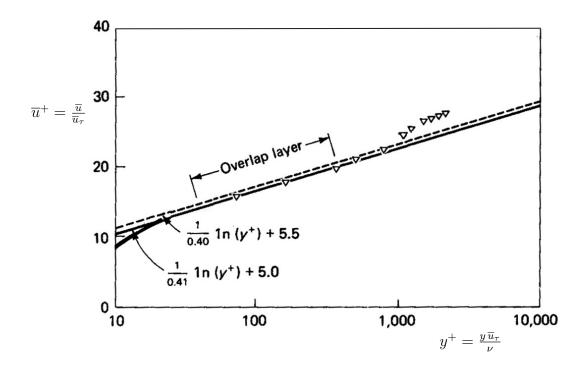


Figure 7.25: Couche limite sur paroi hydrauliquement lisse: profil universel de vitesse, $\frac{\overline{u}}{\overline{u}_{\tau}}$ en fonction de y^+ ; résultats expérimentaux et profil logarithmique (figure tirée de F.~M.~White,~Viscous~Fluid~Flow,~second~ed.,~MacGraw-Hill).

Comme modèle pour la fonction complément, il a utilisé:

$$G(\eta) = \frac{\Pi}{\kappa} 2\sin^2\left(\frac{\pi}{2}\,\eta\right) \ . \tag{7.142}$$

Si on considère le profil pour la zone turbulente (zone III), cela donne donc:

$$\overline{u}^{+} = \left[\frac{1}{\kappa} \log y^{+} + C\right] + \frac{\Pi}{\kappa} 2 \sin^{2}\left(\frac{\pi}{2}\eta\right) . \tag{7.143}$$

avec, selon Coles, $\Pi \simeq 0.55$ lorsque \overline{u}_e est constant, et en utilisant $\kappa \simeq 0.41$ et $C \simeq 5.0$.

Si on considère le modèle de Coles tel que ci-dessus, on obtient une pente non nulle en $y = \delta$. Pour y imposer une pente nulle, on modifie le modèle en utilisant plutôt

$$\overline{u}^{+} = \left[\frac{1}{\kappa} \log y^{+} + C \right] + \frac{\Pi}{\kappa} 2 \sin^{2} \left(\frac{\pi}{2} \alpha \eta \right) . \tag{7.144}$$

On a donc

$$\frac{d\overline{u}^{+}}{dy} = \frac{1}{\kappa y} + G'(\eta) \frac{1}{\delta} \quad \to \quad \frac{d\overline{u}^{+}}{d\eta} = \frac{1}{\kappa \eta} + G'(\eta) . \tag{7.145}$$

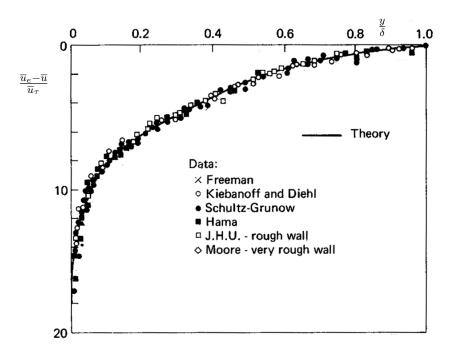


Figure 7.26: Couche limite sur paroi hydrauliquement lisse: profil universel du déficit de vitesse, $\frac{\overline{u}_e - \overline{u}}{\overline{u}_\tau}$, en fonction de $\eta = \frac{y}{\delta}$; théorie avec profil composite de Coles et résultats expérimentaux (figure tirée de $F.\ M.\ White,\ Viscous\ Fluid\ Flow,\ second\ ed.,\ MacGraw-Hill).$

avec

$$G'(\eta) = \frac{\Pi}{\kappa} 4 \sin\left(\frac{\pi}{2}\alpha\eta\right) \cos\left(\frac{\pi}{2}\alpha\eta\right) \frac{\pi}{2}\alpha = \frac{\Pi}{\kappa} \sin\left(\pi\alpha\eta\right) (\pi\alpha). \tag{7.146}$$

Imposer une pente nulle en $\eta = 1$ revient donc à demander que α soit solution de

$$(\pi \alpha) \sin(\pi \alpha) = -\frac{1}{\Pi} . \tag{7.147}$$

Avec $\Pi \simeq 0.55$, on obtient que $\alpha \simeq 1.165$.

On obtient alors aussi, comme modèle pour le profil du déficit de vitesse:

$$\frac{\overline{u}_e - \overline{u}}{\overline{u}_\tau} = -\frac{1}{\kappa} \log \eta + \frac{\Pi}{\kappa} 2 \left[\sin^2 \left(\frac{\pi}{2} \alpha \right) - \sin^2 \left(\frac{\pi}{2} \alpha \eta \right) \right] = F(\eta) , \qquad (7.148)$$

qui est bien conforme à une expression de type Eq. (7.139). C'est effectivement un relativement bon modèle de profil pour toute la zone turbulente.

Mentionons aussi que, si on utilise plutôt le modèle polynomial $G(\eta) = 3 (\alpha \eta)^2 - 2 (\alpha \eta)^3$, alors α est solution de $12 \alpha^2 (1 - \alpha) = -1/\Pi$ (exercice); ce qui, avec $\Pi \simeq 0.55$, donne $\alpha \simeq 1.12$.

Enfin, on notera aussi que la fonction complément atteint son maximum (i.e., a une pente nulle) en $y = \tilde{\delta} < \delta$. La fonction complément mesurée permet donc de déterminer la valeur précise de $\tilde{\delta}$. Ensuite, avec les équations du modèle ci-dessus, on détermine $\delta = \alpha \tilde{\delta}$. Donc, la valeur de δ dépend du modèle utilisé pour la fonction $G(\eta)$!

Des résultats de simulation numérique directe (DNS, Direct Numerical Simulation) d'une couche limite turbulente sont aussi présentés en Fig. 7.27. Les courbes présentées correspondent à des positions x de plus en plus grandes, donc à des nombres de Reynolds de plus en plus grands: voir Table 7.3 pour les valeurs de mesurées de $Re_{\theta} = \frac{\theta \overline{u}_{e}}{\nu}$, et celles estimées de $Re_{\tilde{\delta}} = \frac{\tilde{\delta} \overline{u}_{e}}{\nu}$ et de $\tilde{\delta}^{+} = \frac{\delta \overline{u}_{\tau}}{\nu}$. En particulier, même le dernier profil n'est pas encore à suffisamment grand nombre de Reynolds que pour y avoir une zone III-a de type logarithmique bien définie.

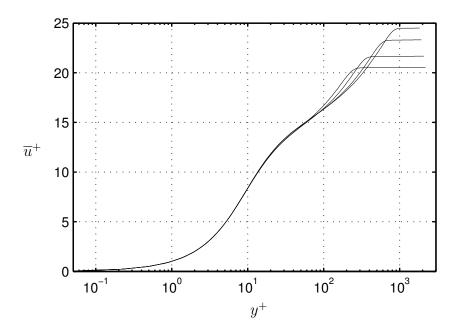


Figure 7.27: Couche limite sur paroi hydrauliquement lisse: profil universel de vitesse, $\frac{\overline{u}}{\overline{u}_{\tau}}$ en fonction de y^+ ; résultats de simulation numérique directe (DNS) (figure produite à partir de résultats obtenus par P. Schlatter et L. Brandt (2008), courtoisie de P. Schlatter).

On peut aussi obtenir de la DNS la fonction complément $G(\tilde{\eta})$ avec $\tilde{\eta} = y/\tilde{\delta}$: voir Fig. 7.28 où on a fait l'exercice pour la station correspondant au plus grand nombre de Reynolds et avec les deux choix: fonction de Coles améliorée et fonction polynomiale.

Enfin, on peut bien sûr aussi utiliser l'approche composite en régime hydrauliquement

Re_{θ}	$Re_{\tilde{\delta}}$	$\tilde{\delta}^+$
670	4870	236
1000	7620	351
1734	13780	591
2512	20620	842

Table 7.3: Nombres de Reynolds correspondants aux profils montrés pour la DNS d'une couche limite turbulente (avec fonction complément mesurée en utilisant $\kappa=0.41$).

rugueux. Le profil composite de Coles sera alors

$$\overline{u}^{+} = \left[\frac{1}{\kappa} \log \left(\frac{y}{\epsilon} \right) + B \right] + \frac{\Pi}{\kappa} 2 \sin^{2} \left(\frac{\pi}{2} \alpha \eta \right) . \tag{7.149}$$

On vérifie de nouveau que le profil pour le déficit de vitesse est le même, que l'on soit en régime lisse ou rugueux: Eq. (7.148) dans les deux cas.

Pour la suite, on utilisera la "variable de travail", z:

$$z \stackrel{\text{def}}{=} \sqrt{\frac{2}{C_f}} \ . \tag{7.150}$$

En utilisant le profil universel pour le déficit de vitesse, on obtient alors

$$\frac{\delta^*}{\delta} = \frac{1}{\delta} \int_0^{\delta} \left(1 - \frac{\overline{u}}{\overline{u}_e} \right) dy = \frac{\overline{u}_{\tau}}{\overline{u}_e} \int_0^1 \left(\frac{\overline{u}_e - \overline{u}}{\overline{u}_{\tau}} \right) d\left(\frac{y}{\delta} \right)$$
(7.151)

$$= \frac{1}{z} \int_0^1 F(\eta) \, d\eta = \frac{a}{z} \tag{7.152}$$

$$\frac{\theta}{\delta} = \frac{1}{\delta} \int_0^{\delta} \frac{\overline{u}}{\overline{u}_e} \left(1 - \frac{\overline{u}}{\overline{u}_e} \right) dy \tag{7.153}$$

$$\frac{\delta^*}{\delta} - \frac{\theta}{\delta} = \frac{1}{\delta} \int_0^{\delta} \left(1 - \frac{\overline{u}}{\overline{u}_e} \right)^2 dy = \left(\frac{\overline{u}_\tau}{\overline{u}_e} \right)^2 \int_0^1 \left(\frac{\overline{u}_e - \overline{u}}{\overline{u}_\tau} \right)^2 d\left(\frac{y}{\delta} \right) , \quad (7.154)$$

$$= \frac{1}{z^2} \int_0^1 F^2(\eta) \, d\eta = \frac{b}{z^2} \,. \tag{7.155}$$

Avec le profil de Coles, on obtient les valeurs $a \simeq 3.4$ et $b \simeq 23$ pour les deux intégrales. En combinant les deux résultats, on obtient aussi que

$$\frac{\theta}{\delta} = \frac{a}{z} - \frac{b}{z^2} \,. \tag{7.156}$$

Ce résultat est fondamental. Il montre bien que le rapport θ/δ n'est pas constant en x puisque z varie en x.

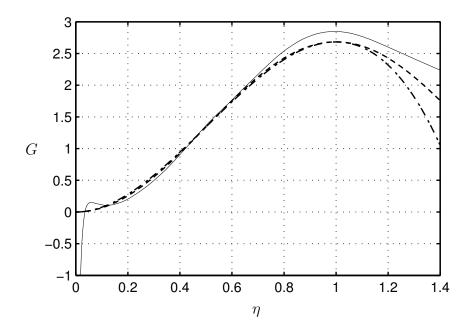


Figure 7.28: Fonction complément, $G=\overline{u}^+-\left[\frac{1}{\kappa}\log y^++C\right]$ en fonction de $\tilde{\eta}=y/\tilde{\delta}$ et telle qu'obtenue à partir des résultats de la DNS de P. Schlatter et L. Brandt (2008), et en utilisant $\kappa=0.41$ et C=5.0 (solid), et modèles avec $\Pi=0.55$ (= valeur proposée par Coles): fonction de Coles améliorée (dash, à ne considérer que jusque $\tilde{\eta}=1.165$ et fonction polynomiale (dash-dot, à ne considérer que jusque $\tilde{\eta}=1.12$).

On obtient aussi l'expression pour le facteur de forme:

$$H = \frac{\delta^*}{\theta} = \frac{\frac{a}{z}}{\left(\frac{a}{z} - \frac{b}{z^2}\right)} = \frac{1}{\left(1 - \frac{b}{a}\frac{1}{z}\right)}.$$
 (7.157)

7.7.2 Profil de vitesse simplifié en exposant pour toute la zone turbulente

Pour les couches limites, certains ont aussi utilisé, pour la zone turbulente, le profil simplifié en exposant:

$$\frac{\overline{u}}{\overline{u}_e} = \left(\frac{y}{\delta}\right)^{\frac{1}{n}} = \eta^{\frac{1}{n}} \ . \tag{7.158}$$

Les épaisseurs de déplacement et de quantité de mouvement sont alors liées à l'exposant n:

$$\frac{\delta^*}{\delta} = \int_0^{\delta} \left(1 - \frac{\overline{u}}{\overline{u}_e} \right) \frac{dy}{\delta} = \int_0^1 1 - \eta^{\frac{1}{n}} d\eta = \frac{1}{(n+1)} , \qquad (7.159)$$

$$\frac{\theta}{\delta} = \int_0^{\delta} \frac{\overline{u}}{\overline{u}_e} \left(1 - \frac{\overline{u}}{\overline{u}_e} \right) \frac{dy}{\delta} = \int_0^1 \eta^{\frac{1}{n}} \left(1 - \eta^{\frac{1}{n}} \right) d\eta = \frac{n}{(n+1)(n+2)}, \quad (7.160)$$

$$H = \frac{\delta^*}{\theta} = \frac{(n+2)}{n}$$
 (7.161)

Avec n=7, cela donne $\delta^*/\delta=0.125$, $\theta/\delta\simeq0.0972$ et $H\simeq1.29$. Il est intéressant de comparer ces valeurs avec celles obtenues pour la couche limite laminaire: $\delta^*/\delta_{0.99}\simeq1.72/4.91\simeq0.351$, $\theta/\delta_{0.99}\simeq0.664/4.91\simeq0.135$ et $H\simeq2.59$. Le profil de vitesse d'une couche limite turbulente est donc beaucoup plus plein que celui d'une couche limite laminaire.

Le facteur de forme peut également s'écrire

$$H = \frac{(n+2)}{((n+2)-2)} = \frac{1}{\left(1 - \frac{2}{(n+2)}\right)}.$$
 (7.162)

La comparaison de cette expression avec celle de l'équation (7.157) implique que

$$\frac{2}{(n+2)} = \frac{b}{a} \frac{1}{z} \tag{7.163}$$

et donc on obtient une expression pour n en fonction de z:

$$n = 2\left(\frac{a}{b}z - 1\right) \simeq 2 \ (0.15 \ z - 1) \ .$$
 (7.164)

7.7.3 Formule empirique du coefficient de frottement pour la couche limite hydrauliquement lisse

En suivant la procédure suivie par Prandtl (1927), on peut obtenir une estimation de la variation en x des grandeurs globales: épaisseurs de la couche limite, coefficients de frottement. Pour cela, on utilise l'équation intégrale de von Karman (valable en écoulement laminaire ou turbulent!). Dans le cas avec \overline{u}_e constant, elle se réduit simplement à:

$$\frac{d\theta}{dx} = \frac{C_f}{2} = \frac{1}{z^2} \,. \tag{7.165}$$

Pour simplifier les choses, Prandtl a négligé la variation de n et a pris la valeur n=7, et donc $\theta/\delta \simeq 7/72$. On obtient alors

$$\frac{7}{72} \frac{d\delta}{dx} \simeq \frac{1}{z^2} \,. \tag{7.166}$$

Si on dispose de résultats expérimentaux qui permettent de lier $z \ alpha \ \delta$, on pourra alors intégrer cette relation et obtenir z, et donc $C_f(x)$ et aussi tout le reste. Pour ce faire, Prandtl a "triché un peu": il a supposé que la loi empirique de Blasius (obtenue en conduite) sous la forme Eq. (7.167) peut aussi être utilisée dans le contexte des couches limites. Il a donc écrit:

$$\frac{\overline{u}_e}{\overline{u}_\tau} \simeq 8.56 \, \delta^{+1/7} = 8.56 \, \left(\frac{\delta \, \overline{u}_\tau}{\nu}\right)^{1/7} \,,$$
(7.167)

ce qui s'écrit aussi comme (exercice):

$$\frac{1}{z^2} = \left(\frac{\overline{u}_\tau}{\overline{u}_e}\right)^2 \simeq 8.56^{-7/4} \left(\frac{\delta \overline{u}_e}{\nu}\right)^{-1/4} \simeq 0.0233 \left(\frac{\delta \overline{u}_e}{\nu}\right)^{-1/4}. \tag{7.168}$$

En utilisant ceci dans l'équation intégrale de von Karman, on obtient une relation intégrable pour $\delta(x)$:

$$\frac{7}{72} \frac{d\delta}{dx} \simeq 0.0233 \left(\frac{\delta \,\overline{u}_e}{\nu}\right)^{-1/4} \,. \tag{7.169}$$

L'intégration (exercice) conduit à l'expression pour $\delta(x)$ et donc aussi à toutes les autres grandeurs globales en fonction de $Re_x = Re(x) = \frac{\overline{u}_e x}{u}$:

$$\frac{\delta(x)}{x} \simeq \frac{0.382}{Re_x^{1/5}},$$
 (7.170)

$$\frac{\delta(x)}{x} \simeq \frac{0.382}{Re_x^{1/5}},$$

$$\frac{\theta(x)}{x} \simeq \frac{0.0371}{Re_x^{1/5}},$$
(7.170)

$$\frac{\delta^*(x)}{x} \simeq \frac{0.0477}{Re_-^{1/5}} \,, \tag{7.172}$$

$$C_f(x) \simeq \frac{0.0594}{Re_x^{1/5}},$$
 (7.173)

$$\frac{x}{x} \qquad Re_x^{1/5}
\frac{\delta^*(x)}{x} \simeq \frac{0.0477}{Re_x^{1/5}}, \qquad (7.172)
C_f(x) \simeq \frac{0.0594}{Re_x^{1/5}}, \qquad (7.173)
C_{f,m}(x) \simeq \frac{0.0742}{Re_x^{1/5}}, \qquad (7.174)$$

le dernier résultat étant celui pour le coefficient de frottement moyen sur une longueur x. On se souvient aussi du résultat général valable en couche limite avec \overline{u}_e constant: $C_{f,m}(x) = 2 \frac{\theta(x)}{x}.$

Donc, selon le présent modèle proposé par Prandtl, une couche limite turbulente grandit comme $x^{4/5}$: elle grandit donc beaucoup plus rapidement qu'une couche limite laminaire (qui grandit comme $x^{1/2}$). Quelle est la validité de ces résultats? Ils coïncident bien avec les résultats expérimentaux ($\pm 5\%$) jusque $Re_x \simeq 10^7$; ce qui correspond à:

$$Re_{\delta} = \frac{\overline{u}_e \, \delta}{\nu} = \frac{\overline{u}_e \, x}{\nu} \, \frac{\delta}{x} \simeq Re_x \, \frac{0.382}{Re_x^{1/5}} = 0.382 \, Re_x^{4/5} \simeq 1.5 \, 10^5 \,.$$
 (7.175)

7.7.4Formules améliorées du coefficient de frottement pour la couche limite hydrauliquement lisse

Considérons à nouveau le profil universel de vitesse pour les couches limites en régime hydrauliquement lisse. Si on considère le profil évalué en $y = \delta$, on obtient:

$$\frac{\overline{u}_e}{\overline{u}_\tau} = \frac{1}{\kappa} \log \left(\frac{\delta \overline{u}_\tau}{\nu} \right) + C + G(1)$$

$$= \frac{1}{\kappa} \log \left(\frac{\delta \overline{u}_e}{\nu} \frac{\overline{u}_\tau}{\overline{u}_e} \right) + C + G(1) .$$
(7.176)

On obtient donc:

$$z = \frac{1}{\kappa} \log \left(Re_{\delta} \frac{1}{z} \right) + C + G(1) = \frac{1}{\kappa} \log \left(Re_{\delta} \frac{c}{z} \right) . \tag{7.177}$$

avec $c = e^{(\kappa (C+G(1)))}$. Cette expression est la relation exacte entre z et Re_{δ} . Avec le profil de Coles, on a $1/\kappa \simeq 2.44$ et donc $c \simeq e^{3.08} \simeq 22$.

Une approximation en loi de puissance de cette relation (basée sur le profil de Coles) a aussi été proposée par White:

$$z \simeq 10 \ Re_{\delta}^{1/12} \ .$$
 (7.178)

Si on retourne alors à l'équation intégrale de von Karman, on obtient alors:

$$\frac{d\theta}{dx} = \frac{C_f}{2} = \frac{1}{z^2} \simeq \frac{1}{100 Re_{\delta}^{1/6}} \,. \tag{7.179}$$

En négligeant de nouveau la variation du rapport θ/δ , et en le fixant de nouveau à la valeur obtenue pour n=7, on obtient alors de nouveau une relation intégrable pour $\delta(x)$:

$$\frac{d\delta}{dx} \simeq \frac{72}{700} \left(\frac{\delta \, \overline{u}_e}{\nu} \right)^{-1/6} \,. \tag{7.180}$$

On obtient donc, par intégration, l'expression pour $\delta(x)$ (exercice), et donc aussi tout le reste. Cela donne, in fine:

$$\frac{\delta(x)}{x} \simeq \frac{0.162}{Re_x^{1/7}} \,, \tag{7.181}$$

$$\frac{\theta(x)}{x} \simeq \frac{0.0158}{Re_{\pi}^{1/7}} \,, \tag{7.182}$$

$$\frac{\delta^*(x)}{x} \simeq \frac{0.0203}{Re_x^{1/7}} \,, \tag{7.183}$$

$$C_f(x) \simeq \frac{0.0271}{Re^{1/7}},$$
 (7.184)

$$\frac{\theta(x)}{x} \simeq \frac{0.0158}{Re_x^{1/7}},$$

$$\frac{\delta^*(x)}{x} \simeq \frac{0.0203}{Re_x^{1/7}},$$

$$C_f(x) \simeq \frac{0.0271}{Re_x^{1/7}},$$

$$C_{f,m}(x) \simeq \frac{0.0316}{Re_x^{1/7}}.$$
(7.182)

(7.183)

Donc, selon ce modèle, une couche limite turbulente grandit comme $x^{6/7}$. Quelle est la validité de ces résultats? Ils sont déjà meilleurs que ceux obtenus par Prandtl (1927), et ils comparent bien avec les résultats expérimentaux (±5 %) jusqu'à $Re_x \simeq 10^9$ (ce qui correspond à $Re_\delta \simeq 8 \, 10^6$).

Mentionons enfin qu'il y a également une formule explicite proposée par White, et basée sur une autre analyse approximative:

$$C_f(x) \simeq 0.455 \left(\log(0.060 \, Re_x)\right)^{-2} \iff z \simeq 2.10 \, \log(0.060 \, Re_x) \,.$$
 (7.186)

Selon White, cette formule est précise à 1%. Pour le coefficient de frottement moyen, il propose:

$$C_{f,m}(x) \simeq 1.15 C_f(x) \simeq 0.523 (\log(0.060 Re_x))^{-2} \iff z_m \simeq 1.96 \log(0.060 Re_x).$$
(7.187)

Finalement, on a aussi la formule approximative de Schultz-Grunow:

$$C_f(x) \simeq 0.37 \left(\log_{10}(Re_x)\right)^{-2.584}$$
 (7.188)

Note pour information (pas matière)

Finalement, il convient de noter qu'on peut tout intégrer exactement. En effet, Eq. (7.177) peut aussi s'écrire dans l'autre sens, sous une forme explicite:

$$Re_{\delta} = \frac{z}{c} e^{\kappa z} \tag{7.189}$$

On peut donc écrire l'équation intégrale de von Karman, en utilisant aussi le résultat général, Eq. (7.157), sous la forme différentielle:

$$\frac{d\theta}{dx} = \frac{1}{z^2}$$

$$z^2 d\theta = dx$$

$$z^2 d\left(\left(\frac{a}{z} - \frac{b}{z^2}\right)\delta\right) = dx$$

$$z^2 d\left(\left(\frac{a}{z} - \frac{b}{z^2}\right)Re_\delta\right) = d(Re_x)$$

$$z^2 d\left(\left(\frac{a}{z} - \frac{b}{z^2}\right)\frac{z}{c}e^{\kappa z}\right) = d(Re_x)$$

$$\frac{z^2}{c} d\left(\left(a - \frac{b}{z}\right)e^{\kappa z}\right) = d(Re_x)$$

$$\frac{1}{c\kappa} \left[\frac{a}{\kappa}(\kappa z)^2 - b(\kappa z) - 1\right]e^{\kappa z} d(\kappa z) = d(Re_x)$$

$$G(Z) dZ = d(Re_x)$$
(7.190)

avec $Z = \kappa z$. Cela donne, après intégration de $\int_0^Z G(\tilde{Z}) d\tilde{Z}$:

$$\frac{1}{c\kappa} \left[\frac{a}{\kappa} \left(\left(Z^2 - 2Z + 2 \right) e^Z - 2 \right) - b \left(\left(Z - 2 \right) e^Z + 2 \right) \right] = Re_x . \tag{7.191}$$

On a donc obtenu une relation "exacte" qui donne Re_x en fonction de z (plutôt que z en fonction de Re_x). On peut ensuite obtenir tout le reste Re_θ , Re_δ , etc.

Tous les résultats produits par les formules sont montrés à la Fig. 7.29, ce qui permet aussi de les comparer.

7.7.5 Formules du coefficient de frottement pour la couche limite hydrauliquement rugueuse

On peut considérer qu'une couche limite est en régime hydrauliquement rugueux pour $\frac{x}{\epsilon} > \frac{Re_x}{1000}$.

Il y a alors les formules proposées par Schlichting (1979), et basées sur du "curve-fitting" de résultats expérimentaux de Nikuradse (1933):

$$C_f(x) \simeq \left(2.87 + 1.58 \log_{10} \left(\frac{x}{\epsilon}\right)\right)^{-2.5},$$
 (7.192)

$$C_{f,m}(x) \simeq \left(1.89 + 1.62 \log_{10} \left(\frac{x}{\epsilon}\right)\right)^{-2.5}$$
 (7.193)

Il y a également une formule proposée par White et basée sur une analyse approximative:

$$C_f(x) \simeq \left(1.4 + 3.7 \log_{10}\left(\frac{x}{\epsilon}\right)\right)^{-2} \iff z \simeq \left(2.0 + 5.2 \log_{10}\left(\frac{x}{\epsilon}\right)\right) .$$
 (7.194)

Note pour information (pas matière)

Si on utilise le profil universel de vitesse pour les couches limites turbulentes hydrauliquement rugueuses (i.e., avec $\epsilon^+ \geq 70$) et qu'on l'évalue en $y = \delta$, on obtient:

$$z = \frac{1}{\kappa} \log \left(\frac{\delta}{\epsilon} \right) + B + G(1) = \frac{1}{\kappa} \log \left(c \frac{\delta}{\epsilon} \right)$$
 (7.195)

avec $c = e^{\kappa (B+G(1))}$, ce qui constitue une relation explicite entre z et δ/ϵ . Elle peut aussi s'écrire dans l'autre sens:

$$\frac{\delta}{\epsilon} = \frac{1}{c} e^{\kappa z} \,. \tag{7.196}$$

On estime aussi que $B \simeq C + 3.0$, comme ce fut le cas en conduite. Avec le profil de Coles, on obtient alors $c \simeq e^{4.31} \simeq 74$.

En utilisant la relation générale qui exprime $\frac{\theta}{\delta}$ en fonction de z, Eq. (7.157), on peut alors tout intégrer exactement. En effet, l'introduction dans l'équation intégrale de von Karman donne alors

$$z^{2} d\left(\frac{\theta}{\epsilon}\right) = d\left(\frac{x}{\epsilon}\right)$$

$$z^{2} d\left(\left(\frac{a}{z} - \frac{b}{z^{2}}\right) \frac{\delta}{\epsilon}\right) = d\left(\frac{x}{\epsilon}\right)$$

$$z^{2} d\left(\left(\frac{a}{z} - \frac{b}{z^{2}}\right) \frac{1}{c} e^{\kappa z}\right) = d\left(\frac{x}{\epsilon}\right)$$

$$\frac{1}{c} \left[\frac{a}{\kappa} \left((\kappa z) - 1\right) - b\left(1 - \frac{2}{(\kappa z)}\right)\right] e^{\kappa z} d(\kappa z) = d\left(\frac{x}{\epsilon}\right)$$

$$G(Z) dZ = d\left(\frac{x}{\epsilon}\right) \tag{7.197}$$

avec $Z = \kappa z$. On ne peut pas l'intégrer comme $\int_0^Z G(\tilde{Z}) d\tilde{Z}$, et ce à cause du terme en e^Z/Z dans l'intégrant. On doit donc écrire que

$$\int_{Z_0}^{Z} G(\tilde{Z}) d\tilde{Z} = F(Z) - F(Z_0)$$
 (7.198)

avec F(Z) une primitive de G(Z). On choisit ici la primitive

$$F(Z) = \frac{1}{c} \left[\frac{a}{\kappa} (Z - 2) e^{Z} - b e^{Z} + 2 b E_{i}(Z) \right]$$
 (7.199)

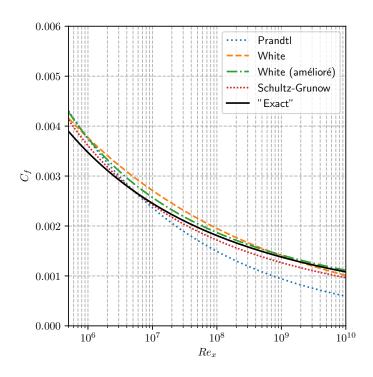
où on a utilisé la fonction $Ei(Z) = \int_{-\infty}^{Z} \frac{e^{\tilde{Z}}}{\tilde{Z}} d\tilde{Z}$ qui est une fonction mathématique "classique" et définie pour Z>0. En particulier, on a que $\lim_{Z\to 0} Ei(Z)=-\infty$, que Ei(Z)=0 lorsque $Z\simeq 0.3725$ et que Ei(Z)>0 au delà de cette valeur.

Avec les valeurs de κ , a et b obtenues avec le profil de Coles, on obtient que $F(Z_0) = 0$ pour $Z_0 \simeq 0.967$ (donc fort proche de 1.0). On obtient donc finalement que

$$\frac{x}{\epsilon} \simeq \int_{0.967}^{Z} G(\tilde{Z}) d\tilde{Z} \simeq F(Z) . \tag{7.200}$$

On a donc obtenu un modèle pour $\frac{x}{\epsilon}$ en fonction de Z (et non Z en fonction de $\frac{x}{\epsilon}$). Une fois Z déterminé, on peut ensuite obtenir facilement $\frac{\delta}{\epsilon}$ et $\frac{\theta}{\epsilon}$.

Tous les résultats produits par les formules sont montrés à la Fig. 7.30, ce qui permet aussi de les comparer.



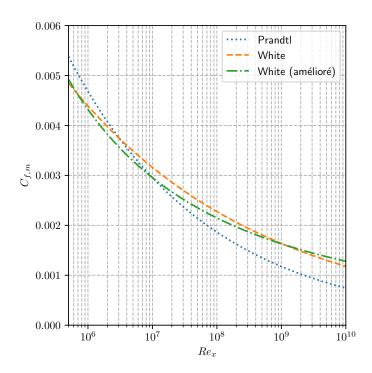
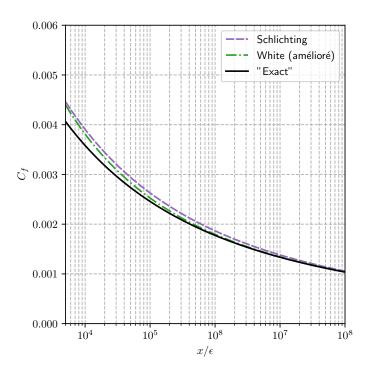


Figure 7.29: Coefficient de frottement C_f et coefficient de frottement moyen $C_{f,m}$ en fonction de Re_x pour la couche limite hydrauliquement lisse.



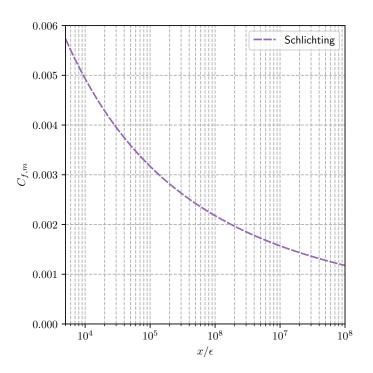


Figure 7.30: Coefficient de frottement C_f et coefficient de frottement moyen $C_{f,m}$ en fonction de $\frac{x}{\epsilon}$ pour la couche limite hydrauliquement rugueuse.

7.8 Profils de température et transfert de chaleur

On a considéré les profils de vitesse en conduite, canal et couche limite, et le transfert de quantité de mouvement pariétal associé (coefficients de perte de charge et/ou de frottement). On considère ici les profils de température correspondants, et le transfert de chaleur pariétal associé.

7.8.1 Couche limite avec Pr = 1

En couches limites turbulentes avec \overline{u}_e constant, les équations de conservation se réduisent à:

$$\frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} = 0 , (7.201)$$

$$\overline{u}\frac{\partial \overline{u}}{\partial x} + \overline{v}\frac{\partial \overline{u}}{\partial y} = \frac{\partial}{\partial y}\left((\nu + \nu_t)\frac{\partial \overline{u}}{\partial y}\right), \qquad (7.202)$$

$$\overline{u} c \frac{\partial \overline{T}}{\partial x} + \overline{v} c \frac{\partial \overline{T}}{\partial y} = (\nu + \nu_t) \left(\frac{\partial \overline{u}}{\partial y} \right)^2 + c \frac{\partial}{\partial y} \left(\left(\frac{\nu}{Pr} + \frac{\nu_t}{Pr_t} \right) \frac{\partial \overline{T}}{\partial y} \right) , \quad (7.203)$$

Si on multiplie l'équation de quantité de mouvement par \overline{u} , on obtient:

$$\overline{u} \frac{\partial}{\partial x} \left(\frac{\overline{u}^2}{2} \right) + \overline{v} \frac{\partial}{\partial y} \left(\frac{\overline{u}^2}{2} \right) = \overline{u} \frac{\partial}{\partial y} \left((\nu + \nu_t) \frac{\partial \overline{u}}{\partial y} \right) \\
= -(\nu + \nu_t) \left(\frac{\partial \overline{u}}{\partial y} \right)^2 + \frac{\partial}{\partial y} \left((\nu + \nu_t) \frac{\partial}{\partial y} \left(\frac{\overline{u}^2}{2} \right) \right). \tag{7.204}$$

En additionnant cette équation avec celle de l'énergie on obtient l'équation pour l'énergie interne totale, $c\overline{T} + \frac{\overline{u}^2}{2}$:

$$\overline{u}\frac{\partial}{\partial x}\left(c\overline{T} + \frac{\overline{u}^2}{2}\right) + \overline{v}\frac{\partial}{\partial y}\left(c\overline{T} + \frac{\overline{u}^2}{2}\right) = \frac{\partial}{\partial y}\left(\left(\frac{\nu}{Pr} + \frac{\nu_t}{Pr_t}\right)\frac{\partial}{\partial y}\left(c\overline{T}\right) + (\nu + \nu_t)\frac{\partial}{\partial y}\left(\frac{\overline{u}^2}{2}\right)\right). \tag{7.205}$$

Considérons, pour la suite, que $Pr_t = 1$ est une bonne approximation pour les écoulements turbulents. On obtient alors, dans le cas de fluides avec Pr = 1, que l'équation se réduit davantage:

$$\overline{u}\frac{\partial}{\partial x}\left(c\overline{T} + \frac{\overline{u}^2}{2}\right) + \overline{v}\frac{\partial}{\partial y}\left(c\overline{T} + \frac{\overline{u}^2}{2}\right) = \frac{\partial}{\partial y}\left((\nu + \nu_t)\frac{\partial}{\partial y}\left(c\overline{T} + \frac{\overline{u}^2}{2}\right)\right). \tag{7.206}$$

Les équations pour \overline{u} et pour $c\overline{T} + \frac{\overline{u}^2}{2}$ sont alors identiques! Il s'ensuit que l'on doit avoir une relation linéaire entre les deux profils:

$$c\,\overline{T} + \frac{\overline{u}^2}{2} = A\,\overline{u} + B\ . \tag{7.207}$$

Ceci constitue la généralisation de la relation de Crocco en écoulement turbulent. Les constantes A et B sont déterminées à partir des conditions aux limites.

Dans le cas d'une paroi à température constante, $\overline{T}|_{y=0} = \overline{T}_w = \text{constante}$, on obtient

$$B = c \, \overline{T}_w \,. \tag{7.208}$$

Le raccordement avec l'écoulement externe demande aussi que

$$c\,\overline{T}_e + \frac{\overline{u}_e^2}{2} = A\,\overline{u}_e + B \,\,\,\,(7.209)$$

et donc:

$$A = \frac{c\left(\overline{T}_e - \overline{T}_w\right) + \overline{u}_e^2/2}{\overline{u}_e} \,. \tag{7.210}$$

La relation de Crocco devient donc:

$$c\left(\overline{T} - \overline{T}_w\right) + \frac{\overline{u}^2}{2} = \left(c\left(\overline{T}_e - \overline{T}_w\right) + \frac{\overline{u}_e^2}{2}\right) \frac{\overline{u}}{\overline{u}_e}.$$
 (7.211)

Le profil de température est donc complètement déterminé.

La signification physique de A est obtenue par différentiation de la relation de Crocco:

$$c\frac{\partial \overline{T}}{\partial y} + \overline{u}\frac{\partial \overline{u}}{\partial y} = A\frac{\partial \overline{u}}{\partial y}. \tag{7.212}$$

A la paroi, cette relation devient:

$$c \frac{\partial \overline{T}}{\partial y}\Big|_{y=0} = A \frac{\partial \overline{u}}{\partial y}\Big|_{y=0}, \tag{7.213}$$

Dans le cas d'une paroi hydrauliquement lisse, il y a une sous-couche laminaire (zone I). Puisque Pr = 1, cela donne donc:

$$k \frac{\partial \overline{T}}{\partial y}\Big|_{y=0} = A \mu \frac{\partial \overline{u}}{\partial y}\Big|_{y=0},$$

$$-\overline{q}_{w} = A \overline{\tau}_{w}. \qquad (7.214)$$

Dans le cas d'une paroi hydrauliquement rugueuse, il n'y a ni zone I, ni zone II. Le voisinage de la paroi est en zone III-a. Puisque $Pr_t = 1$, cela donne donc:

$$k_{t} \frac{\partial T}{\partial y}\Big|_{y=0} = A \mu_{t} \frac{\partial \overline{u}}{\partial y}\Big|_{y=0},$$

$$-\overline{q}_{w} = A \overline{\tau}_{w}. \qquad (7.215)$$

Dans le cas mixte, on aura:

$$(k+k_t) \frac{\partial \overline{T}}{\partial y}\Big|_{y=0} = A(\mu + \mu_t) \frac{\partial \overline{u}}{\partial y}\Big|_{y=0},$$

$$-\overline{q}_w = A\overline{\tau}_w.$$
 (7.216)

La constante A constitue donc, dans tous les cas, le rapport entre le flux de chaleur à la paroi et la contrainte de cisaillement à la paroi.

On obtient aussi le nombre de Stanton, St, pour le flux de chaleur à la paroi:

$$St = \stackrel{\text{def}}{=} \frac{\overline{q}_w}{\rho \, \overline{u}_e \, c \, (\overline{T}_w - \overline{T}_e)} = -\frac{A}{\rho \, \overline{u}_e \, c \, (\overline{T}_w - \overline{T}_e)} \, \overline{\tau}_w$$

$$= -\frac{\left(c \, (\overline{T}_e - \overline{T}_w) + \overline{u}_e^2 / 2\right)}{\rho \, \overline{u}_e^2 \, c \, (\overline{T}_w - \overline{T}_e)} \, \overline{\tau}_w$$

$$= \left(1 - \frac{\overline{u}_e^2 / 2}{c \, (\overline{T}_w - \overline{T}_e)}\right) \, \frac{\overline{\tau}_w}{\rho \overline{u}_e^2}$$

$$= \left(1 - \frac{\overline{u}_e^2 / 2}{c \, (\overline{T}_w - \overline{T}_e)}\right) \, \frac{C_f}{2} \, . \tag{7.217}$$

Cette relation est générale (bien sûr, tant que $Pr_t = 1$ et Pr = 1). On se souvient aussi du nombre de Eckert:

$$Ec \stackrel{\text{def}}{=} \frac{\overline{u_e}^2}{c |\overline{T}_w - \overline{T}_e|}, \qquad (7.218)$$

Pour les écoulements avec dissipation négligeable (i.e., avec $Ec \ll 1$, voir plus loin), on obtient alors, plus simplement, que le profil de température est directement proportionnel au profil de vitesse,

$$\frac{\left(\overline{T} - \overline{T}_w\right)}{\left(\overline{T}_e - \overline{T}_w\right)} = \frac{\overline{u}}{\overline{u}_e} \,, \tag{7.219}$$

et donc que

$$St = \frac{C_f}{2} \ . \tag{7.220}$$

Les résultats ci-dessus constituent l'extension de "l'analogie de Reynolds" aux couches limites turbulentes, dans le cas de fluides avec Pr = 1, et en supposant aussi que $Pr_t = 1$. Comme on a déjà obtenu des corrélations pour C_f , on peut les utiliser pour obtenir St ou, de façon équivalente pour obtenir le nombre de Nusselt:

$$Nu \stackrel{\text{def}}{=} \frac{\overline{q}_w x}{k (\overline{T}_w - \overline{T}_e)} = Re \, Pr \, St \,. \tag{7.221}$$

Il importe d'insister que, en couche limite, toutes les grandeurs dépendent de x (sauf Pr qui est une propriété du fluide). Les notations $\overline{\tau}_w$, \overline{q}_w , St, Re et Nu sont donc utilisées, dans cette partie du cours, au lieu de $\overline{\tau}_w(x)$, $\overline{q}_w(x)$, St(x), Re(x) et Nu(x), pour éviter de surcharger les notations.

7.8.2 Couche limite hydrauliquement lisse avec $Pr \ge 0.5$ et dissipation négligeable

On considère ensuite le cas de fluides avec Pr général, mais quand même tels que $Pr \ge 0.5$. On considère aussi des couches limites avec dissipation négligeable. Pour que cette condition soit satisfaite, il faut que

$$(\mu + \mu_t) \left(\frac{\partial \overline{u}}{\partial y}\right)^2 \ll \frac{\partial}{\partial y} \left((k + k_t) \frac{\partial \overline{T}}{\partial y}\right)$$
 (7.222)

dans l'équation de l'énergie. En utilisant les ordres de grandeurs des deux termes, cela revient à demander que

$$(\mu + \mu_t) \left(\frac{\overline{u}_e}{\delta}\right)^2 \ll (k + k_t) \frac{\left|\overline{T}_w - \overline{T}_e\right|}{\delta_T^2}$$
 (7.223)

On note aussi que, contrairement aux couches limites laminaires, les couches limites turbulentes sont telles que l'épaisseur du profil de température, δ_T , est essentiellement la même que l'épaisseur du profil de vitesse, δ . En effet, les couches limites turbulentes sont dominées par les effets liés à la turbulence et leurs grandeurs caractéristiques globales sont donc aussi dominées par la turbulence. Le rapport δ_T/δ est donc essentiellement contrôlé par la partie turbulente du profil, et donc par Pr_t : puisque $Pr_t \approx 1$, les épaisseurs seront effectivement fort proches.

Une condition suffisante pour garantir que la dissipation est négligeable est donc de demander:

$$\mu \left(\frac{\overline{u}_e}{\delta}\right)^2 \ll k \frac{\left|\overline{T}_w - \overline{T}_e\right|}{\delta^2} \quad \text{et} \quad \mu_t \left(\frac{\overline{u}_e}{\delta}\right)^2 \ll k_t \frac{\left|\overline{T}_w - \overline{T}_e\right|}{\delta^2} ,$$
 (7.224)

et donc de demander que $PrEc \ll 1$ et que $Pr_tEc \ll 1$. Comme $Pr_t \approx 1$ (et on le prendra égal à l'unité dans la suite), on demande donc d'avoir $PrEc \ll 1$ et $Ec \ll 1$.

Comme on est sur paroi lisse, on a une sous-couche laminaire (zone I) suivie d'une zone de transition (zone II) suivie d'une zone turbulente (zone III). Pour la zone proche de la paroi (zone I + zone II + zone III-a), on a que le flux de chaleur total (moléculaire + turbulent) est essentiellement égal au flux de chaleur à la paroi: $\overline{q} \simeq \overline{q}_w$.

De plus, comme $Pr \geq 0.5$, la diffusivité moléculaire, $\alpha = \frac{\nu}{Pr}$ est soit du même ordre que ν , soit plus petite que ν . Donc, dans la zone III-a du profil de vitesse, qui est la zone avec $\nu_t \gg \nu$, on aura aussi que $\alpha_t = \frac{\nu_t}{Pr_t} \gg \alpha = \frac{\nu}{Pr}$, et cette zone sera donc aussi une zone III-a du point de vue thermique, et avec le même début en terme de y^+ (rappelons que la mécanique des fluides influence le profil de température, mais que le profil de température n'influence pas la mécanique des fluides). Par contre, l'étendue de la zone I thermique, qui sera donc la zone avec $\alpha \gg \alpha_t$ ne sera pas tout à fait égale à celle de la zone I du profil de vitesse (qui, pour rappel, se termine en $y^+ \simeq 5$); si on se rappelle le scaling obtenu

pour les couches limites thermique laminaires, on peut s'attendre à ce que la fin de la zone I thermique soit en $y^+ \simeq \frac{5}{Pr^a}$ (avec, pour rappel, $a \simeq 0.37 - 0.38$ pour Pr proches de l'unité, et $a \simeq 0.33 - 0.34$ pour $Pr \ge 100$).

Considérons d'abord la zone I thermique. On obtient donc, puisque $\alpha \gg \alpha_t$:

$$\overline{q} = -k \frac{\partial \overline{T}}{\partial y} = \overline{q}_{w}
-\frac{\mu c}{Pr} \frac{\partial \overline{T}}{\partial y} = \overline{q}_{w}
-\frac{\partial \overline{T}}{\partial y} = Pr \frac{\overline{q}_{w}}{\mu c} = Pr \frac{\overline{q}_{w}}{\rho c \overline{u}_{\tau}} \frac{\overline{u}_{\tau}}{\nu},$$
(7.225)

ce qui s'intègre pour donner:

$$\overline{T} = \overline{T}_w - Pr \frac{\overline{q}_w}{\rho c \overline{u}_\tau} \frac{y \overline{u}_\tau}{\nu} . \tag{7.226}$$

On a ici clairement identifié une température de référence pour l'adimensionalisation du profil de température: la "température de transfert" (au même titre qu'on utilise la "vitesse de frottement", \bar{u}_{τ} , pour adimensionaliser le profil de température):

$$\overline{T}_{\tau} \stackrel{\text{def}}{=} \frac{\overline{q}_w}{\rho \, c \, \overline{u}_{\tau}} \,. \tag{7.227}$$

Le profil universel de température est alors obtenu pour la zone I:

$$\frac{\left(\overline{T}_w - \overline{T}\right)}{\overline{T}_{\tau}} \stackrel{\text{def}}{=} \overline{T}^+ = Pr \ y^+ \ . \tag{7.228}$$

Considérons ensuite la zone III-a thermique, avec $\alpha_t \gg \alpha$. On peut alors écrire:

$$\overline{q}^{t} = -k_{t} \frac{\partial \overline{T}}{\partial y} = \overline{q}_{w}
-\frac{\mu_{t} c}{P r_{t}} \frac{\partial \overline{T}}{\partial y} = \overline{q}_{w}
-\nu_{t} \frac{\partial \overline{T}}{\partial y} = P r_{t} \frac{\overline{q}_{w}}{\rho c \overline{u}_{\tau}} \overline{u}_{\tau} = P r_{t} \overline{T}_{\tau} \overline{u}_{\tau}.$$
(7.229)

On a aussi que $\nu_t = \kappa y \overline{u}_{\tau}$. On obtient donc

$$-\kappa y \frac{\partial \overline{T}}{\partial y} = Pr_t \overline{T}_\tau . \tag{7.230}$$

L'intégration de cette équation conduit à un profil universel logarithmique:

$$\overline{T}^+ = \frac{Pr_t}{\kappa} \log y^+ + A(Pr_t, Pr) . \tag{7.231}$$

Donc, pour $Pr_t = 1$, la pente du profil universel de température est la même que la pente du profil universel de vitesse. Son ordonnée n'est cependant pas identique: il est clair que, en toute généralite, le coefficient A doit dépendre de Pr et de Pr_t . Si on fixe $Pr_t = 1$, on aura alors que A = A(Pr).

Le profil $\overline{T}^+ = g(y^+; Pr, Pr_t)$, avec ses zones I, II et III-a, constitue la "loi de la paroi pour le profil de température", et a aussi été proposé par von Karman (1939).

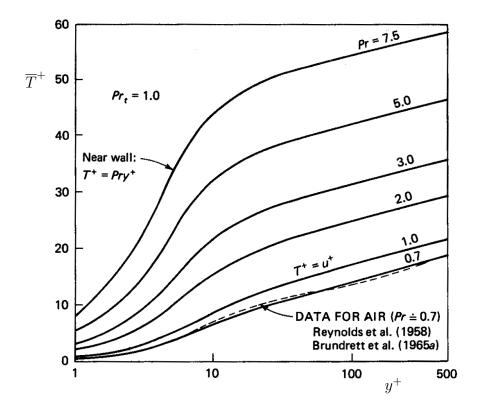


Figure 7.31: Couche limite sur paroi lisse: profil universel de température, $\frac{(\overline{T}_w-\overline{T})}{\overline{T}_\tau}$ en fonction de y^+ et pour différentes valeurs de Pr (et avec $Pr_t=1$) (figure tirée de F. M. White, Viscous Fluid Flow, second ed., MacGraw-Hill).

On montre à la Fig. 7.31 le modèle pour le profil universel de température pour le cas $Pr_t = 1$ et pour des valeurs de Pr dans la fourchette Pr = 0.70 (typique de l'air) à Pr = 7.5 (typique de l'eau à température ambiante). Le cas $Pr_t = 1$ et Pr = 1 doit clairement donner le résultat attendu (i.e., conforme à la section précédente): les profils universels de température et de vitesse doivent être égaux partout: $\overline{T}^+ = \overline{u}^+$ partout. Cela impose que A(Pr = 1) = C.

Pour les fluides avec $Pr \ge 0.5$, une bonne aproximation de la fonction A(Pr) est:

$$A(Pr) \simeq 13 \left(Pr^{2/3} - 1 \right) + C \ .$$
 (7.232)

avec le C du profil universel de vitesse, et donc A = C lorsque Pr = 1.

On peut ensuite également proposer un profil composite, valable pour toute la zone III:

$$\overline{T}^{+} = \frac{Pr_{t}}{\kappa} \log y^{+} + A(Pr_{t}, Pr) + G(\eta)$$
 (7.233)

avec la même fonction complément, $G(\eta)$, que celle obtenue pour le profil composite de vitesse.

On peut alors aussi obtenir une expression pour le nombre de Stanton. Il suffit, pour ce faire, de considérer les profils composites de vitesse et de température évalués en $y = \delta$. On obtient alors, avec $Pr_t = 1$,:

$$\frac{\left(\overline{T}_{w} - \overline{T}_{e}\right)}{\overline{T}_{\tau}} = \frac{1}{\kappa} \log \left(\frac{\delta \,\overline{u}_{\tau}}{\nu}\right) + A(Pr) + G(1) \quad \text{et} \quad \frac{\overline{u}_{e}}{\overline{u}_{\tau}} = \frac{1}{\kappa} \log \left(\frac{\delta \,\overline{u}_{\tau}}{\nu}\right) + C + G(1) , \tag{7.234}$$

ce qui entraîne, par différence,

$$\frac{\overline{u}_e}{\overline{u}_\tau} + (A - C) = \frac{\left(\overline{T}_w - \overline{T}_e\right)}{\overline{T}_\tau} = \left(\overline{T}_w - \overline{T}_e\right) \frac{\rho \, c \, \overline{u}_\tau}{\overline{q}_w}
\frac{\overline{q}_w}{\rho \, c \, \overline{u}_e \, \left(\overline{T}_w - \overline{T}_e\right)} \left(\frac{\overline{u}_e}{\overline{u}_\tau} + (A - C)\right) = \frac{\overline{u}_\tau}{\overline{u}_e}
St \left(\sqrt{\frac{2}{C_f}} + (A - C)\right) = \sqrt{\frac{C_f}{2}},$$
(7.235)

et donc, finalement,

$$St = \frac{\frac{C_f}{2}}{\left(1 + (A - C)\sqrt{\frac{C_f}{2}}\right)} . (7.236)$$

Avec le modèle pour A(Pr) ci-dessus, on obtient finalement:

$$St \simeq \frac{\frac{C_f}{2}}{\left(1 + 13 \left(Pr^{2/3} - 1\right)\sqrt{\frac{C_f}{2}}\right)}$$
, (7.237)

Cette formule est due à Petukhov (1970) et elle est effectivement assez bonne et donc fort utile: elle permet d'étendre l'analogie de Reynolds au cas des couches limites turbulentes hydrauliquement lisses et avec $Pr \geq 0.5$. Pour obtenir $C_f = C_f(Re)$, on utilise les résultats des sections précédentes. On peut, bien sûr, aussi calculer le nombre de Nusselt, en utilisant: Nu = (Re Pr) St.

Finalement, mentionnons aussi les formules approximatives de Colburn, proposées pour $0.6 \le Pr \le 60$. Colburn a simplement proposé que l'analogie de Reynolds obtenue en couche limite laminaire (selon laquelle, pour rappel, $St \simeq Pr^{-2/3} \frac{C_f}{2}$) serait encore valable en couche limite turbulente. Il a, de plus, utilisé les anciennes formules approximatives de Prandtl: $C_f \simeq 0.0594 \, Re^{-1/5}$ et donc $C_{f,m} \simeq 0.0742 \, Re^{-1/5}$. Il a alors obtenu:

$$St \simeq 0.0297 Pr^{-2/3} Re^{-1/5} \rightarrow St_m \simeq 0.0371 Pr^{-2/3} Re^{-1/5}$$
, (7.238)

et donc aussi

$$Nu \simeq 0.0297 Pr^{1/3} Re^{4/5} \rightarrow Nu_m \simeq 0.0371 Pr^{1/3} Re^{4/5}$$
. (7.239)

Attention: il n'y a, a priori, aucune raison pour que l'analogie de Reynolds obtenue en couche limite laminaire, $St \simeq Pr^{-2/3} \frac{C_f}{2}$, soit aussi acceptable en couche limite turbulente. En tout cas, elle ne compare pas bien avec la "bonne formule" (à peine) plus complexe de Petukhov. Il vaut donc mieux utiliser cette dernière.

7.8.3 Couche limite hydrauliquement rugueuse avec $Pr \ge 0.5$ et dissipation négligeable

Il n'y pas, ici de zones I et II. Nous sommes directement en zone III. Le nombre de Pr ne joue donc aucun rôle pour le transfert de chaleur: seul le nombre de Pr_t importe. Donc, pour assurer que la dissipation soit négligeable, on doit uniquement demander que $Ec \ll 1$. On doit donc obtenir, pour la zone III:

$$\overline{T}^{+} = \frac{Pr_t}{\kappa} \log\left(\frac{y}{\epsilon}\right) + A(Pr_t) + G(\eta) , \qquad (7.240)$$

avec A fonction uniquement de Pr_t (puisque Pr n'intervient pas). Si on considère, de plus, que $Pr_t=1$, on aura alors que $\overline{T}^+=\overline{u}^+$: analogie complète entre les profils de vitesse et de température.

En ce qui concerne le coefficient de transfert de chaleur, il est aussi nécessairement conforme à l'analogie entre les profils de vitesse et de température:

$$St = \frac{C_f}{2} \tag{7.241}$$

avec C_f obtenu à partir des résultats des sections précédentes.

7.8.4 Conduite hydrauliquement lisse avec $Pr \ge 0.5$ et dissipation négligeable

On considère le cas des conduites hydrauliquement lisses, pour des fluides avec $Pr \neq 1$. On suppose, de nouveau, que la dissipation est négligeable, et donc que:

$$(\mu + \mu_t) \left(\frac{\overline{u}_m}{R}\right)^2 \ll (k + k_t) \frac{\left|\overline{T}_w - \overline{T}_m\right|}{R^2} , \qquad (7.242)$$

avec \overline{T}_m la température moyenne définie par:

$$\overline{T}_m \, \overline{u}_m \, A \stackrel{\text{def}}{=} \int \overline{T} \, \overline{u} \, dA \,. \tag{7.243}$$

Une condition suffisante pour garantir cela étant de demander que $Pr Ec \ll 1$ et $Pr_t Ec \ll 1$, avec

$$Ec \stackrel{\text{def}}{=} \frac{\overline{u}_m^2}{c |\overline{T}_w - \overline{T}_m|} . \tag{7.244}$$

Comme $Pr_t \approx 1$, on demande donc d'avoir $Pr Ec \ll 1$ et $Ec \ll 1$.

Comme on est sur paroi lisse, on a une sous-couche laminaire (zone I) suivie d'une zone de transition (zone II) suivie d'une zone turbulente (zone III). Pour les zones proches de la paroi (zone I + zone II + zone III-a), on a que $\overline{q} \simeq \overline{q}_w$. On obtient donc, pour la zone I:

$$\overline{T}^+ = Pr \, y^+ \,, \tag{7.245}$$

et pour la zone III-a, en supposant $Pr_t = 1$:

$$\overline{T}^{+} = \frac{1}{\kappa} \log y^{+} + A(Pr) \ .$$
 (7.246)

En conduites, le nombre de Stanton est défini comme:

$$St \stackrel{\text{def}}{=} \frac{\overline{q}_w}{\rho \, \overline{u}_m \, c \, \left(\overline{T}_w - \overline{T}_m\right)} \,, \tag{7.247}$$

On obtient (après plus de manipulations car, étant donné que $\overline{u}_m \neq \overline{u}_c$ et que $\overline{T}_m \neq \overline{T}_c$, il faut travailler davantage) une formule similaire à celle obtenue en couche limite (rappel: en conduite, $\lambda = 4C_f$, et donc $C_f/2 = \lambda/8$):

$$St \simeq \frac{\frac{\lambda}{8}}{\left(1 + (A - C)\sqrt{\frac{\lambda}{8}}\right)}$$
 (7.248)

On aura donc (Petukhov, 1970):

$$St \simeq \frac{\frac{\lambda}{8}}{\left(1 + 13 \left(Pr^{2/3} - 1\right)\sqrt{\frac{\lambda}{8}}\right)}$$
 (7.249)

On peut aussi en déduire le nombre de Nusselt: en conduite, celui-ci est défini comme:

$$Nu \stackrel{\text{def}}{=} \frac{\overline{q}_w D}{k \left(\overline{T}_w - \overline{T}_m\right)} = Re_D Pr St . \tag{7.250}$$

On utilise les formules des sections précédentes pour obtenir $\lambda = \lambda(Re_D)$. Les résultats obtenus sont alors ceux montrés à la Fig. 7.32 pour les courbes avec $Pr \geq 0.5$.

Mentionnons aussi la corrélation de Colburn en conduite, pour $0.6 \le Pr \le 160$:

$$Nu \simeq 0.023 Pr^{1/3} Re_D^{4/5}$$
 (7.251)

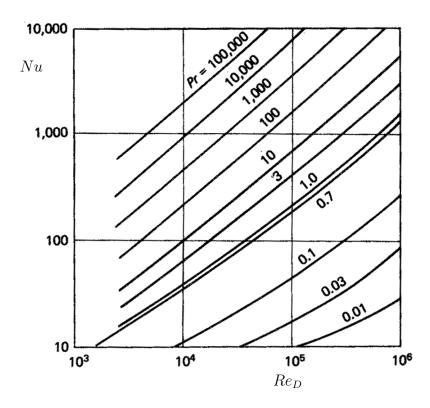


Figure 7.32: Conduite lisse: Nu en fonction de Re_D pour différents Pr (et avec $Pr_t = 1$). (figure tirée de F. M. White, Viscous Fluid Flow, second ed., MacGraw-Hill).

On note que la Fig. 7.32 montre aussi des valeurs de Nu en fonction de Re_D pour des nombres de Prandtl caractéristiques des métaux liquides: $Pr \leq 0.1$ Ceux-ci correspondent à la corrélation expérimentale de Sleicher et Rouse (1975):

$$Nu \simeq 6.3 + 0.00167 Re_D^{0.85} Pr^{0.93}$$
. (7.252)

Finalement, dans le cas d'un écoulement en canal, on a que $\lambda=2C_f$; On utilisera donc $\lambda/4$ au lieu de $\lambda/8$ dans la formule obtenue ci-dessus.

7.8.5 Conduite hydrauliquement rugueuse avec $Pr \ge 0.5$ et dissipation négligeable

De nouveau, il n'y pas, ici, de zones I et II. Nous sommes directement en zone III. Le nombre de Pr ne joue aucun rôle pour le transfert de chaleur: seul le nombre de Pr_t importe. Donc, pour assurer que la dissipation soit négligeable, il suffit de demander que $Ec \ll 1$. Avec $Pr_t = 1$, on a une analogie parfaite entre les profils de température et de vitesse: $\overline{T}^+ = \overline{u}^+$. Il en ressort:

$$St = \frac{\lambda}{8},$$

$$Nu = Re_D Pr \frac{\lambda}{8},$$

$$(7.253)$$

avec $\lambda = \lambda(\epsilon/D)$ obtenu à partir de résultats des sections précédentes.

Appendice A

Equations de Navier-Stokes dans divers systèmes d'axes

Si on considère un écoulement incompressible d'un fluide à grandeurs physiques μ , k et c constantes (ou bien même des fluides à grandeurs non constantes mais pour des écoulements tels que les variations de température n'entraînent pas de variation significative de ces grandeurs), les équations qui régissent l'écoulement s'écrivent simplement:

$$\nabla \cdot \mathbf{v} = 0 , \qquad (A.1)$$

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \mu \nabla^2 \mathbf{v} , \qquad (A.2)$$

$$\rho c \frac{DT}{Dt} = 2\mu \mathbf{d} : \mathbf{d} + k \nabla^2 T , \qquad (A.3)$$

où la notation ∇^2 () signifie l'opérateur $\nabla \cdot (\nabla())$. Clairement, les équations de quantité de mouvement et d'énergie sont maintenant découplées: on peut résoudre la dynamique des fluides d'un problème (en utilisant les équations de continuité et de quantité de mouvement) sans pour autant devoir aussi résoudre, en même temps, la thermique de ce problème. Pour la suite de ce chapitre, nous considérerons toujours de tels écoulements, et nous nous attacherons à obtenir quelques solutions fondamentales utiles en ingénierie. Nous considérons uniquement les écoulements laminaires. Nous rappelons ici l'écriture des équations ci-dessus dans les sytèmes de coordonnées les plus usuels.

Ecoulements plans

Pour les écoulements plans, on travaille soit en coordonnées cartésiennes (x, y), soit en coordonnées polaires (r, θ) avec $x = r \cos \theta$ et $y = r \sin \theta$. En coordonnées cartésiennes (x, y), on utilise la notation u pour désigner la vitesse en x et v pour désigner la vitesse en y. Les composantes du vecteur vitesse sont donc (u, v). Les équations de continuité et

de quantité de mouvement sont alors:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, (A.4)$$

$$\frac{\partial u}{\partial t} + \left(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) u = -\frac{\partial P}{\partial x} + \nu \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) u , \qquad (A.5)$$

$$\frac{\partial v}{\partial t} + \left(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) v = -\frac{\partial P}{\partial y} + \nu \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) v , \qquad (A.6)$$

avec $\nu=\mu/\rho$ la viscosité cinématique et avec la notation P pour désigner le terme p/ρ (notation qui sera très souvent utilisée dans la suite du cours). Pour l'équation de température, on a:

$$\frac{\partial T}{\partial t} + \left(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) T = \alpha \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) T
+ \frac{\nu}{c} \left(2 \left(\frac{\partial u}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right) ,$$
(A.7)

avec

$$\alpha = \frac{k}{\rho c} = \frac{\nu}{Pr}$$
 où $Pr = \frac{\mu c}{k}$ (A.8)

est le nombre de Prandtl du fluide.

En coordonnées polaires (r, θ) , on utilise la notation u_r pour désigner la vitesse en r et u_θ pour désigner la vitesse en θ . La direction axiale est $x = r \cos \theta$, et la direction transversale est $y = r \sin \theta$. La vitesse axiale est $u = u_r \cos \theta - u_\theta \sin \theta$, et la vitesse transversale est $v = u_r \sin \theta + u_\theta \cos \theta$. Les équations de continuité et de quantité de mouvement sont alors:

$$\frac{1}{r}\frac{\partial}{\partial r}(ru_r) + \frac{1}{r}\frac{\partial u_{\theta}}{\partial \theta} = 0,$$

$$\frac{\partial u_r}{\partial t} + \left(u_r\frac{\partial}{\partial r} + \frac{u_{\theta}}{r}\frac{\partial}{\partial \theta}\right)u_r - \frac{u_{\theta}^2}{r} = -\frac{\partial P}{\partial r}$$

$$+ \nu\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_r}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_r}{\partial \theta^2} - \frac{u_r}{r^2} - \frac{2}{r^2}\frac{\partial u_{\theta}}{\partial \theta}\right),$$

$$\frac{\partial u_{\theta}}{\partial t} + \left(u_r\frac{\partial}{\partial r} + \frac{u_{\theta}}{r}\frac{\partial}{\partial \theta}\right)u_{\theta} + \frac{u_ru_{\theta}}{r} = -\frac{1}{r}\frac{\partial P}{\partial \theta}$$

$$+ \nu\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_{\theta}}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u_{\theta}}{\partial \theta^2} - \frac{u_{\theta}}{r^2} + \frac{2}{r^2}\frac{\partial u_r}{\partial \theta}\right).$$
(A.10)

Pour la température, on a:

$$\frac{\partial T}{\partial t} + \left(u_r \frac{\partial}{\partial r} + \frac{u_\theta}{r} \frac{\partial}{\partial \theta}\right) T = \alpha \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2}\right)
+ \frac{\nu}{c} \left(2 \left(\frac{\partial u_r}{\partial r}\right)^2 + 2 \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r}\right)^2 + \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{u_\theta}{r}\right)\right)^2\right) .$$
(A.12)

Ecoulements axisymétriques

Pour les écoulements tridimensionnels mais sans variation azimuthale (i.e., axisymétriques), le système de coordonnées est, soit le système de coordonnées cylindriques (x,y) avec x la direction de l'écoulement et y la direction radiale (souvent aussi notée r, notation malheureuse mais courante, et que nous utiliserons aussi dans la suite du cours afin de rester cohérent avec ce qui se trouve dans les livres), soit le système de coordonnées sphériques (r,θ)

Dans le système cylindrique (x, y) sans variation azimuthale, les notations sont les mêmes que dans le cas plan: u pour la vitesse axiale en x, et v pour la vitesse transversale en y (malheureusement aussi parfois appelée vitesse "radiale" pour vitesse en "r", voir remarque ci-dessus). On a alors, pour les équations de continuité et de quantité de mouvement:

$$\frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial}{\partial y} (y v) = 0 , \qquad (A.13)$$

$$\frac{\partial u}{\partial t} + \left(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) u = -\frac{\partial P}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{1}{y} \frac{\partial}{\partial y} \left(y \frac{\partial u}{\partial y} \right) \right) , \tag{A.14}$$

$$\frac{\partial v}{\partial t} + \left(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) v = -\frac{\partial P}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{1}{y} \frac{\partial}{\partial y} \left(y \frac{\partial v}{\partial y} \right) - \frac{v}{y^2} \right) . \quad (A.15)$$

Pour la température, on a:

$$\frac{\partial T}{\partial t} + \left(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) T = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{1}{y} \frac{\partial}{\partial y} \left(y \frac{\partial T}{\partial y} \right) \right)
+ \frac{\nu}{c} \left(2 \left(\frac{\partial u}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right).$$
(A.16)

Dans le système sphérique (r, θ) sans variation azimuthale, on utilise les mêmes notations que pour le cas plan: u_r pour la vitesse en r et u_θ pour la vitesse en θ . La coordonnée axiale est $x = r \cos \theta$, et la coordonnée transversale est $y = r \sin \theta$. La vitesse axiale est $u = u_r \cos \theta - u_\theta \sin \theta$, et la vitesse transversale est $v = u_r \sin \theta + u_\theta \cos \theta$. Les équations de continuité et de quantité de mouvement sont:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 u_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \, u_\theta \right) = 0 ,$$

$$\frac{\partial u_r}{\partial t} + \left(u_r \frac{\partial}{\partial r} + \frac{u_\theta}{r} \frac{\partial}{\partial \theta} \right) u_r - \frac{u_\theta^2}{r} = -\frac{\partial P}{\partial r}$$

$$+ \nu \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_r}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} - \frac{u_r}{r^2} - \frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta} \right) ,$$

$$\frac{\partial u_\theta}{\partial t} + \left(u_r \frac{\partial}{\partial r} + \frac{u_\theta}{r} \frac{\partial}{\partial \theta} \right) u_\theta + \frac{u_r u_\theta}{r} = -\frac{1}{r} \frac{\partial P}{\partial \theta}$$

$$+ \nu \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_\theta}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_\theta}{\partial \theta^2} - \frac{u_\theta}{r^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} \right) .$$
(A.18)

Pour la température, on a:

$$\frac{\partial T}{\partial t} + \left(u_r \frac{\partial}{\partial r} + \frac{u_\theta}{r} \frac{\partial}{\partial \theta}\right) T = \alpha \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2}\right)
+ \frac{\nu}{c} \left(2 \left(\frac{\partial u_r}{\partial r}\right)^2 + 2 \left(\frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r}\right)^2 + \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{u_\theta}{r}\right)\right)^2\right) .$$
(A.20)

Appendice B

Fonction de courant

Pour les écoulements incompressibles (i.e., $\nabla \cdot \mathbf{v} = 0$), il existe toujours une fonction, ψ , telle que $\mathbf{v} = \nabla \times \psi$. En effet, on se souvient que la divergence d'un rotationnel est nulle. La fonction ψ est appelée la "fonction de courant".

A noter que, de par la définition du vecteur tourbillon, $\boldsymbol{\omega} = \nabla \times \mathbf{v}$, on a toujours $\nabla \cdot \boldsymbol{\omega} = 0$ (même en écoulements compressibles). Pour les écoulements incompressibles, on a aussi obtenu ci-dessus:

$$\nabla^2 \mathbf{v} = -\nabla \times \boldsymbol{\omega} \ . \tag{B.1}$$

La vitesse satisfait donc une équation de Poisson dont le terme source est le rotationnel du tourbillon (changé de signe). On a aussi que:

$$\boldsymbol{\omega} = \nabla \times \mathbf{v} = \nabla \times (\nabla \times \boldsymbol{\psi}) = -\nabla \cdot (\nabla \boldsymbol{\psi}) + \nabla (\nabla \cdot \boldsymbol{\psi}) = -\nabla^2 \boldsymbol{\psi} . \tag{B.2}$$

si on choisit que la fonction de courant soit à divergence nulle (= choix de la "jauge de Lorentz"). Ce choix est naturel puisqu'alors:

$$0 = \nabla \cdot \boldsymbol{\omega} = -\nabla \cdot (\nabla^2 \boldsymbol{\psi}) = -\nabla^2 (\nabla \cdot \boldsymbol{\psi}) = -\nabla^2 (0) = 0.$$
 (B.3)

A noter que l'on a utilisé la propriété de commutation entre les opérateurs $\nabla \cdot ()$ et $\nabla^2()$. Bref, en toute finalité, la fonction de courant satisfait une équation de Poisson dont le terme source est le tourbillon (changé de signe): $\nabla^2 \psi = -\omega$.

Ecoulements plans

Pour les écoulements plans, le tourbillon et la fonction de courant n'ont qu'une composante perpendiculaire au plan: $\boldsymbol{\omega} = \nabla \times \mathbf{v} = \omega \, \hat{\mathbf{e}}_z$ et $\boldsymbol{\psi} = \psi \, \hat{\mathbf{e}}_z$. L'équation de Poisson pour la fonction de courant, $\nabla^2 \boldsymbol{\psi} = -\boldsymbol{\omega}$, se réduit donc à l'équation scalaire: $\nabla^2 \boldsymbol{\psi} = -\boldsymbol{\omega}$. Par exemple, en coordonnées cartésiennes (x,y), $\mathbf{v} = \nabla \times \boldsymbol{\psi}$ se réduit à $u = \frac{\partial \boldsymbol{\psi}}{\partial y}$ et $v = -\frac{\partial \boldsymbol{\psi}}{\partial x}$, ce

qui satisfait bien: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$. Le tourbillon est $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$, et on vérifie effectivement que:

 $-\omega = \frac{\partial}{\partial x}\frac{\partial \psi}{\partial x} + \frac{\partial}{\partial y}\frac{\partial \psi}{\partial y} = \nabla^2 \psi . \tag{B.4}$

En coordonnées polaires (r,θ) , $\mathbf{v} = \nabla \times \boldsymbol{\psi}$ conduit à $u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$ et $u_\theta = -\frac{\partial \psi}{\partial r}$, ce qui satisfait bien $\frac{1}{r} \frac{\partial}{\partial r} (r u_r) + \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} = 0$. Le tourbillon est $\omega = \frac{1}{r} \frac{\partial}{\partial r} (r u_\theta) - \frac{1}{r} \frac{\partial u_r}{\partial \theta}$, et on vérifie effectivement que:

$$-\omega = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = \nabla^2 \psi . \tag{B.5}$$

Ecoulements axisymétriques

Il en va de même pour les écoulements axisymétriques (i.e., tridimensionnels mais sans variation azimuthale): le tourbillon et la fonction de courant n'ont qu'une composante dans la direction azimuthale: $\boldsymbol{\omega} = \nabla \times \mathbf{v} = \omega \, \hat{\mathbf{e}}_{\phi}$ et $\boldsymbol{\psi} = \psi \, \hat{\mathbf{e}}_{\phi}$. L'équation de Poisson, $\nabla^2 \boldsymbol{\psi} = -\boldsymbol{\omega}$, se réduit aussi à une équation scalaire. Par exemple, en coordonnées cylindriques (x,y), $\mathbf{v} = \nabla \times \boldsymbol{\psi}$ donne $u = \frac{1}{y} \frac{\partial}{\partial y} (y \, \psi)$ et $v = -\frac{\partial \psi}{\partial x}$, ce qui satisfait bien: $\frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial}{\partial y} (y \, v) = 0$. Le tourbillon est $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$. On obtient alors:

$$-\omega = -\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = \frac{\partial}{\partial x} \frac{\partial \psi}{\partial x} + \frac{\partial}{\partial y} \left(\frac{1}{y} \frac{\partial}{\partial y} (y \psi) \right)$$
$$= \frac{\partial^2 \psi}{\partial x^2} + \frac{1}{y} \frac{\partial}{\partial y} \left(y \frac{\partial \psi}{\partial y} \right) - \frac{\psi}{y^2} = \nabla^2 \psi - \frac{\psi}{y^2} . \tag{B.6}$$

Cette équation scalaire est effectivement la traduction de l'équation vectorielle $\nabla^2 \psi = -\omega$ dans le cas òu ψ et ω n'ont qu'une composante azimuthale.

En coordonnées sphériques (r,θ) , $\mathbf{v} = \nabla \times \boldsymbol{\psi}$ donne $u_r = \frac{1}{r\sin\theta} \frac{\partial}{\partial \theta} (\sin\theta \, \psi)$ et $u_\theta = -\frac{1}{r} \frac{\partial}{\partial r} (r \, \psi)$, ce qui satisfait bien: $\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \, u_r) + \frac{1}{r\sin\theta} \frac{\partial}{\partial \theta} (\sin\theta \, u_\theta) = 0$. Le tourbillon est $\omega = \frac{1}{r} \frac{\partial}{\partial r} (r \, u_\theta) - \frac{1}{r} \frac{\partial u_r}{\partial \theta}$, et on vérifie que:

$$-\omega = \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{\partial}{\partial r} (r \psi) \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \psi) \right)$$

$$= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} + \psi \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\frac{\partial \psi}{\partial \theta} + \frac{\cos \theta}{\sin \theta} \psi \right)$$

$$= \frac{\partial^2 \psi}{\partial r^2} + \frac{2}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \left(\frac{\partial^2 \psi}{\partial \theta^2} + \frac{\cos \theta}{\sin \theta} \frac{\partial \psi}{\partial \theta} - \frac{\psi}{\sin^2 \theta} \right)$$

$$= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) - \frac{\psi}{r^2 \sin^2 \theta}$$

$$= \nabla^2 \psi - \frac{\psi}{r^2 \sin^2 \theta} . \tag{B.7}$$

Cette équation scalaire est la traduction de l'équation vectorielle $\nabla^2 \psi = -\omega$ dans le cas où ψ et ω n'ont qu'une composante azimuthale.