Orthogonal

 Searching

Querying a database

Computational Geometry

$$
5 \text { Orthogonal searching }
$$

pages 95-116

Querying a database

1D Range Searching

1D BINARY TREE

$$
\text { Find }\left[\begin{array}{ll}
18 & 77
\end{array}\right]
$$

Let $P:=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be the given set of points on the real line.

1D Range Searching

We can solve the 1-dimensional range searching problem efficiently using a well-known data structure:
a balanced binary search tree !

When we search with the interval [18:77] in the tree, we have to report all the points stored in the dark grey leaves plus the leaf of item 19.

Let $P:=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be the given set of points on the real line.

Finding
the split node?

Finding the split node?

We first search for the split node where the paths to x and x ' split.

Let $l c(v)$ and $r c(v)$ denote the left and right child of a node v.

FindSplitNode($\left.\mathcal{T}, x, x^{\prime}\right)$
Input. A tree \mathcal{T} and two values x and x^{\prime} with $x \leqslant x^{\prime}$.
Output. The node v where the paths to x and x^{\prime} split, or the leaf where both paths end.

1. $\quad v \leftarrow \operatorname{root}(\mathcal{T})$
2. while v is not a leaf and ($x^{\prime} \leqslant x_{v}$ or $x>x_{v}$)
3. do if $x^{\prime} \leqslant x_{v}$
4. \quad then $v \leftarrow l c(v)$
5. else $v \leftarrow r c(v)$
6. return v

Performance of this data QuERY $\partial\left(k+\log _{n}\right)$ structure

$$
\text { STORAGE } \partial(n)
$$

$$
\text { Burning } O(n \log n)
$$

Performance of this data

 structureThe time spent in a query
is linear in the number of reported points: $\mathbf{O}(\mathrm{k})$.
The remaining nodes are nodes on the search path. The paths of a balanced tree have length $\mathbf{O}(\operatorname{logn})$. The time we spend at each node is $O(1)$.

The query algorithm is output-sensitive !
A balanced binary search tree uses $\mathbf{O (n)}$ storage and is built in $\mathbf{O}(\mathrm{n} \operatorname{logn})$ time.

Theorem 5.2 Let P be a set of n points in 1-dimensional space. The set P can be stored in a balanced binary search tree, which uses $O(n)$ storage and has $O(n \log n)$ construction time, such that the points in a query range can be reported in time $O(k+\log n)$, where k is the number of reported points.

2D Range Searching

How can we generalize the data structure used for 1-dimensional range queries
-which was just a binary search tree-
to 2-dimensional range queries?

A 2-dimensional rectangular range query on P asks for the points from P lying inside a query rectangle $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$. A point $p:=\left(p_{x}, p_{y}\right)$ lies inside this rectangle if and only if

$$
p_{x} \in\left[x: x^{\prime}\right] \quad \text { and } \quad p_{y} \in\left[y: y^{\prime}\right] .
$$

Building Kd-trees

Kd-trees

Lemma 5.3 A kd-tree for a set of n points uses $O(n)$ storage and can be constructed in $O(n \log n)$ time.

Building Kd-trees

Lemma 5.3 A kd-tree for a set of n points uses $O(n)$ storage and can be constructed in $O(n \log n)$ time.

Recursive Query Procedure

$$
\operatorname{region}(l c(v))=\underbrace{\operatorname{region}(v)} \cap \overbrace{\ell(v)^{\text {left }}}^{\text {LEFT }}
$$

where $\ell(v)$ is the splitting line stored at v, and $\ell(v)^{\text {left }}$ is the half-plane to the left of and including $\ell(v)$.

Recursive

 Query Procedure

Algorithm SearchKdTree (v, R)

Input. The root of (a subtree of) a kd-tree, and a range R. Output. All points at leaves below v that lie in the range.

1. if v is a leaf
2. then Report the point stored at v if it lies in R.
3. else if $\operatorname{region}(l c(v))$ is fully contained in R
4. then REPORTSUbTREE $(l c(v))$
5. else if region $(l c(v))$ intersects R
6.
7. if $\operatorname{region}(r c(v))$ is fully contained in R
8. then REPORTSUBTREE $(r c(v)$)
9. else if region $(r c(v))$ intersects R
10.

then SearchKdTree $(r c(v), R)$

Recursive

Query

Procedure

Let us

summarize

the performances of kd-trees

$$
\begin{aligned}
& d=2 \\
& n^{1-1 / 2}=\sqrt{n}
\end{aligned}
$$

$$
Q(n)= \begin{cases}O(1), & \text { if } n=1, \\ 2+2 Q(n / 4), & \text { if } n>1\end{cases}
$$

This recurrence solves to $Q(n)=O(\sqrt{n})$.

$$
\begin{aligned}
& d=1000 \\
& n \underbrace{1-1 / 1000}_{\frac{999}{1000}} \simeq n
\end{aligned}
$$

Theorem 5.5 A kd-tree for a set P of n points in the plane uses $O(n)$ storage and can be built in $O(n \log n)$ time. A rectangular range query on the $k d$-tree takes $O(\sqrt{n}+k)$ time, where k is the number of reported points.

Composite
 $$
p:=\left(p_{x}, p_{y}\right)
$$
 $$
\hat{p}:=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right)
$$

$$
\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]
$$

$$
\left[(x \mid-\infty):\left(x^{\prime} \mid+\infty\right)\right] \times\left[(y \mid-\infty):\left(y^{\prime} \mid+\infty\right)\right]
$$

The first coordinate of any two composite points are distinct The same holds true for the second coordinate.
We construct kd-trees and range trees for this space with the order defined by

$$
(a \mid b)<\left(a^{\prime} \mid b^{\prime}\right) \Leftrightarrow a<a^{\prime} \text { or }\left(a=a^{\prime} \text { and } b<b^{\prime}\right) .
$$

Range-trees

Lemma 5.6 A range tree on a set of n points in the plane requires $O(n \log n)$ storage.

Building

a range

tree

Algorithm Build2DRANGETREE (P)

Input. A set P of points in the plane.
Output. The root of a 2 -dimensional range tree.

1. Construct the associated structure: Build a binary search tree $\mathcal{T}_{\text {assoc }}$ on the set P_{y} of y-coordinates of the points in P. Store at the leaves of $\mathcal{T}_{\text {assoc }}$ not just the y-coordinate of the points in P_{y}, but the points themselves.
2. if P contains only one point
3. then Create a leaf v storing this point, and make $\mathcal{T}_{\text {assoc }}$ the associated structure of v.
4. else Split P into two subsets; one subset $P_{\text {eft }}$ contains the points with x-coordinate less than or equal to $x_{\text {mid }}$, the median x-coordinate, and the other subset $P_{\text {right }}$ contains the points with x-coordinate larger than $x_{\text {mid }}$.
5. $\quad v_{\text {left }} \leftarrow$ BUILD2DRANGETREE $\left(R_{\text {left }}\right)$
6. $\quad v_{\text {right }} \leftarrow$ BUILD2DRANGETREE $\left(P_{\text {right }}\right)$
7. \quad Create a node v storing $x_{\text {mid }}$, make $v_{\text {left }}$ the left child of v, make $v_{\text {right }}$ the right child of v, and make $\mathcal{T}_{\text {assoc }}$ the associated structure of v.
8. return v

Lemma 5.6 A range tree on a set of n points in the plane requires $O(n \log n)$
storage.

Query algorithm

Algorithm 2DRANGEQUERY($\left.\mathcal{T},\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]\right)$
Input. A 2-dimensional range tree \mathcal{T} and a range $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.
Output. All points in \mathcal{T} that lie in the range.

1. $\quad v_{\text {split }} \leftarrow$ FindSplitNode $\left(\mathcal{T}, x, x^{\prime}\right)$
2. if $v_{\text {split }}$ is a leaf
3. then Check if the point stored at $v_{\text {split }}$ must be reported.
4. else ($*$ Follow the path to x and call 1DRANGEQUERY on the subtrees right of the path. *)
5. $\quad v \leftarrow l c\left(v_{\text {split }}\right)$
6. while v is not a leaf
7. do if $x \leqslant x_{v}$
8.

then 1DRANGEQUERY $\left(\mathcal{T}_{\text {assoc }}(r c(v)),\left[y: y^{\prime}\right]\right)$ $v \leftarrow l c(v)$
else $v \leftarrow r c(v)$
Check if the point stored at v must be reported.
12. Similarly, follow the path from $r c\left(v_{\text {split }}\right)$ to x^{\prime}, call 1DRANGEQUERY with the range $\left[y: y^{\prime}\right]$ on the associated structures of subtrees left of the path, and check if the point stored at the leaf where the path ends must be reported.

Nodes in a d-dimensional ange-trees
Query time is given by :

$$
O\left(\log ^{d} n+k\right)
$$

Let us

summarize

the performances of range trees

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses $O(n \log n)$ storage and can be constructed in $O(n \log n)$ time. By querying this range tree one can report the points in P that lie in a rectangular query range in $O\left(\log ^{2} n+k\right)$ time, where k is the number of reported points.

Fractional

Cascading

We query with the range [20:65].
First we use binary search in A1 to find 23, the smallest key larger than or equal to 20. From there we walk to the right until we encounter a key larger than 65.
The objects that we pass have their keys in the range, so they are reported.

Then we follow the pointer from 23 into $\mathbf{A 2}$.
We get to the key 30, which is the smallest one larger than or equal to 20 in A2.
From there we also walk to the right until we reach a key larger than 65.
We report the objects from $S 2$ whose keys are in the range.

Layered Range Tree

$$
\begin{aligned}
\text { points }= & {[[2,19],[5,80],[7,10],[8,37],} \\
& {[12,3],[15,99],[17,62],[21,49], } \\
& {[33,30],[41,95],[52,23],[58,59], } \\
& {[67,89],[93,70]]) }
\end{aligned}
$$

Theorem 5.11 Let P be a set of n points in d-dimensional space, with $d \geqslant 2$. A layered range tree for P uses $O\left(n \log ^{d-1} n\right)$ storage and it can be constructed in $O\left(n \log ^{d-1} n\right)$ time. With this range tree one can report the points in P that lie in a rectangular query range in $O\left(\log ^{d-1} n+k\right)$ time, where k is the number of reported points.

In conclusion :-)

- Kd tree
space : $O(n)$ - build : $O(n \log n)$ query : $\mathbf{O}(\mathrm{k}+\mathrm{sqrt} \mathrm{n})$
- Range tree
space : $O(n \log n)$ - build : $O(n \log n)$ query: $O\left(k+\log ^{2} n\right)$

- Layered Range tree space : O(n $\log n)$ - build : $O(n \log n)$ query: $O(k+\log n)$

Exercice 5

5.1 In the proof of the query time of the kd-tree we found the following recurrence:

$$
Q(n)= \begin{cases}O(1), & \text { if } n=1 \\ 2+2 Q(n / 4), & \text { if } n>1\end{cases}
$$

Prove that this recurrence solves to $Q(n)=O(\sqrt{n})$. Also show that $\Omega(\sqrt{n})$ is a lower bound for querying in a kd-tree by defining a set of n points and a query rectangle appropriately.

Composite
 $$
p:=\left(p_{x}, p_{y}\right)
$$
 $$
\hat{p}:=\left(\left(p_{x} \mid p_{y}\right),\left(p_{y} \mid p_{x}\right)\right)
$$

$$
\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]
$$

$$
\left[(x \mid-\infty):\left(x^{\prime} \mid+\infty\right)\right] \times\left[(y \mid-\infty):\left(y^{\prime} \mid+\infty\right)\right]
$$

The first coordinate of any two composite points are distinct The same holds true for the second coordinate.
We construct kd-trees and range trees for this space with the order defined by

$$
(a \mid b)<\left(a^{\prime} \mid b^{\prime}\right) \Leftrightarrow a<a^{\prime} \text { or }\left(a=a^{\prime} \text { and } b<b^{\prime}\right) .
$$

