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Algebraic topology for meshes

Delaunay triangulations in the plane

N-symmetry direction fields
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Euler’s second most famous result
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Platonic solids
There exist exactly 5 “ideal” polyedra:
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There a are exactly 5 platonic solids
• Consider a polyhedron with n vertices, ne edges, nf planar facets. Euler Formula is written

n− ne + nf = 2. (1)

• Let m denote the number of edges and vertices of each facet and k the degree of each
vertex i.e. the number of facets adjacent to the vertex.

• Each vertex has k adjacent faces and each face has m vertices. This implies that

mnf = kn → nf = kn

m
. (2)

• Each edge has 2 adjacent faces and each face has m edges. This implies

mnf = 2ne → ne = mnf

2 = kn

2 . (3)

• Putting (1), (2) and (3) together gives

n

(
1 +

(
k

m
− k

2

))
= 2.
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There a are exactly 5 platonic solids
• We can expand

n

(
1 +

(
k

m
− k

2

))
= 2.

into
(2m+ 2k −mk)n = 4.

• Since n > 0 and m > 0, we must have

2m+ 2k −mk > 0.

• Since
2m+ 2k −mk = −(k − 2)(m− 2) + 4 > 0

the condition is transformed into

(k − 2)(m− 2) < 4.

• Since k ≥ 3 and m ≥ 3, the only possible values for (m, k) are (3, 3), (4, 3), (5, 3), (3, 4)
and (3, 5).
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There a are exactly 5 platonic solids

n

(
1 +

(
k

m
− k

2

))
= 2 , nf = kn

m
.

• Tetrahedron : (m, k) = (3, 3) → n = 4 , nf = 4.
• Hexahedron : (m, k) = (4, 3) → n = 8 , nf = 6.
• Octahedron : (m, k) = (3, 4) → n = 6 , nf = 8.
• Dodecahedron : (m, k) = (5, 3) → n = 20 , nf = 12.
• Icosahedron : (m, k) = (3, 5) → n = 12 , nf = 20.
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Euler-Poincare Characteristic
• The topology of a 3D surface S can be described by a topological invariant that is its

Euler-Poincare characteristic χ.
• Two surfaces S1 and S2 with the same χ are topologically equivalent: it is possible to

deform S1 onto S2 smoothly.
• Assume that our surface is a sphere with nb holes and nh handles. We have :

χ = 2− nh − 2nh

• A disk can be seen (topologically) as a sphere with one hole in it so χ = 2− 1 = 1.
• The surface of a cylinder can be seen (topologically) as a sphere with two holes in it so
χ = 2− 2 = 0.

• The Euler-Poincare formula is a generalization of Euler’s formula for general 3D surfaces
that may have a topology that is not the one of a sphere. Assume a polyhedron (n
vertices, ne edges and nf facets) that covers a surface of topology χ, we have

n− ne + nf = χ.
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Euler-Poincare – Triangular meshes
Assume a triangular mesh mesh with n vertices, ne edges and nf triangular facets that covers
a domain that has the topology of a sphere (χ = 2):

n− ne + nf = χ.

• Each edge has exactly two neighboring triangles and each triangle has three edges:

3nf = 2ne

• With Euler’s formula:
nf = 2(n− 2) , ne = 3(n− 2).
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Euler-Poincare – Triangular meshes
Assume a triangular mesh mesh with n vertices, ne edges and nf triangular facets that covers
a domain with topology χ:

n− ne + nf = χ.

Assume that nh edges and vertices are located on the boundaries of the surface.
• Each triangle has 3 edges. Each internal edge has two triangles and each edge on the

boundary is asjacent to on triangle:

3nf = 2(ne − nh) + nh

• With Euler’s formula:

nf = 2(n− χ)− nh , ne = 3(n− χ)− nh.

• There are asymptotically 3 times more edges than nodes and 2 times more triangles than
nodes in a triangular mesh.
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Euler-Poincare – Triangular meshes
• A triangle has three vertices and each vertex is adjacent in average to nvf triangles. This

leads to
nvfn = 3nf = 3 (2(n− χ)− nh) → nvf = 6− 3nh + 3χ

n
.

• This means that, for large meshes, there is in average 6 triangles surrounding every vertex.
• There is, in average, exactly 6 triangles surrounding each vertex on a triangular mesh of a

torus (nh = χ = 0).

2

2

2

3

3

2

2

2

3 → 4
7 → 6

5 → 6

6 → 5

A triangulation T with n = 12 and nh = 9. The average
number of triangles adjacent to a vertex is
nvf = 6− 3×9+6

12 = 3, 25. This average can also be
computed explicitely: nvf = 39

12 = 3, 25.
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Regular triangulations
nf = 2(n− χ)− nh.

• Closed surface, no boundaries, nh = 0.
• Regular topology: exactly 6 triangles adjacent to a vertex:

3nf = 6n → nf = 2n.

• Restriction:
2n = 2(n− χ) → χ = 0.

• Regular triangulations of closed surfaces are only possible for torus topologies (χ = 0).

a b c a

d d

a acb
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Regular triangulations with boundaries
nf = 2(n− χ)− nh.

• We have nh edges/vertices on the boundaries of the surface.
• Regular topology: exactly 6 triangles adjacent to an internal vertex and 3 triangles

adjacent to a boundary vertex.
3nf = 6(n− nh) + 3nh → nf = 2n− nh.

• Same restriction:
2n− nh = 2(n− χ)− nh → χ = 0.

• Regular triangulations of general surfaces are only available for χ = 0 i.e. surface of a
cylinder or torus.

c ′b′ a′a′

d d

a acb
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Quasi-regular triangulations
• Introduction of nk , k = −2,−1, 1, 2 non-regular internal vertices of degree 6− k.
• Introduction of ml , l = −2,−1, 1, 2 non-regular boundary vertices of degree 3− k.
• This leads to

3nf =
∑

k

[(6− k)nk + (3− k)mk + 6(n− nk − nh) + 3(nh −mk)]

Finally , using nf = 2(n− χ)− nh, we get

6n− 6χ− 3nh =
∑

k

[(6− k)nk + (3− k)mk + 6(n− nk −mk) + 3(nh −mk)]

that simplifies into
χ = −

∑
k

k

6 (nk +mk).
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Quasi-regular triangulations

χ = −
∑

k

k

6 (nk +mk).

This formula has quite interresting implications
• It is possible to compute χ only by counting singularities
• Each singularity of index k count as −k/6 in the Poincare characteristic.
• A vertex with 5 neighboring triangles counts for 1/6
• A vertex with 7 neighboring triangles counts for −1/6
• In the example, χ = 1 and vertices a, a′, a′′ and a′′′ are irregular: a and a′′′ have indices
k = −1 and a′ and a′′ have indices k = −2, which leads to 1/6 + 1/6 + 2/6 + 2/6 = 1.

a′′′′ a′′′

a′′

d ′

c ′b′a′

d

cb
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Euler-Poincare – Quadrangular meshes
Assume a quad-mesh with n vertices, ne edges and nf quad facets that covers a domain with
topology χ:

n− ne + nf = χ.

Assume that nh edges and vertices are located on the boundaries of the surface.
• Each quad has 4 edges. Each internal edge has two adjacent quads and each edge on the

boundary is adjacent to on quad:

4nf = 2(ne − nh) + nh

• With Euler’s formula:
nf = n− χ− nh

2
• Quad meshes are only possible if nf is even!
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Regular quadrangulations

nf = n− χ− nh

2

• Closed surface, no boundaries, nh = 0.
• Regular topology: exactly 6 triangles adjacent to a vertex:

4nf = 4n → nf = n.

• Regular quadrangulations of closed surfaces are only possible for torus topologies (χ = 0).

a

b c aa

dd

acb
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Regular quadrangulations with boundaries
nf = 2(n− χ)− nh.

• We have nh edges/vertices on the boundaries of the surface.
• Regular topology: exactly 4 quads adjacent to an internal vertex and 2 quads adjacent to

a boundary vertex.

4nf = 4(n− nh) + 2nh → nf = n− nh

2 .

• Regular quadrangulations of general surfaces are only available for χ = 0 i.e. surface of a
cylinder or torus.

c ′

b c aa

dd

a′ a′b′
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Quasi-regular quadrangulations
• Introduction of nk , k = −2,−1, 1, 2 non-regular internal vertices of degree 4− k.
• Introduction of ml , l = −2,−1, 1, 2 non-regular boundary vertices of degree 2− k.
• This leads to

4nf =
∑

k

[(4− k)nk + (2− k)mk + 4(n− nk − nh) + 2(nh −mk)]

Finally , using nf = 2(n− χ)− nh, we get

χ = −
∑

k

k

4 (nk +mk).
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Quasi-regular quadrangulations

χ = −
∑

k

k

4 (nk +mk).

This formula has quite interresting implications
• It is possible to compute χ only by counting singularities
• Each singularity of index k count as −k/4 in the Poincare characteristic.
• A vertex with 3 neighboring triangles counts for 1/4
• A vertex with 5 neighboring triangles counts for −1/4
• In the example, χ = 1 and vertices a, a′, a′′ and a′′′ are irregular and of index k = −1,

which leads to 1/4 + 1/4 + 1/4 + 1/4 = 1.

a′′′′ b c

d

a′ b′ c ′

d ′

a′′

a′′′
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Quasi-regular quadrangulations
• Quadrilateral meshes of a non smooth domain. Five singularities of index 1/4 (in red) and

one singularity of index −1/4 (in blue) are required to have the sum of the indices to be
one (left).

• It is also possible to use 4 irregular nodes only (right), leading to a different result.
• Quadrilateral mesh with 8 vertices of index −1/4, and 12 of index 1/4, leading to
χ = 12/4− 8/4 = 1.
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The Voronöı Diagram
Definition: Consider a finite set S = {p1, . . . , pn} ⊆ R2 of n distinct points in the plane. The
Voronoi cell Vi of pi ∈ S is the set of points x that are closer to pi than to any other points of
the set:

Vi =
{
x ∈ R2 | ‖x− pi‖ < ‖x− pj‖ , ∀1 ≤ i ≤ n, i 6= j

}
where ‖x− y‖ is the euclidian distance between x and y.

Vi

p j

pl

pi

pk
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The Voronöı Diagram of 2 points pi and pj
The perpendicular bissector of pipj divides R2 into two halfplanes Hij and Hji:

Hij =
{
x ∈ R2 | ‖x− pi‖ < ‖x− pj‖

}
.

We have Vi = Hij .

Hi j

p j

pi

23



The Voronöı Diagram of 3 points
Let’s make the problem a little more complicated and consider a set S = {pi, pj , pk} of 3
points. The Voronoi cell associated to pi is the intersection of half planes Hij and Hik:
Vi = Hij ∩Hik.

Hi j

pk

Hi j ∩Hi k

Hi k

pi

p j
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The Voronöı Diagram
The Voronoi diagram V (S) is the unique subdivision of the plane into n cells. Its is the union
of all Voronoi cells Vp:

v I

Vi

p j

pl

pi

pk

Vl

Ω(S)
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Green and Sibson’s algorithm (O(n2))
• Incremental: adding a point only modifies the diagram locally
• Let Sn = {p1, p2, . . . , pn} and V (Sn). Add pn+1 to form V (Sn+1) with
Sn+1 = {p1, p2, . . . , pn+1}.

1. Find voronoi cell Vi such that pn+1 ∈ Vi.
2. Draw orthogonal bissector of pn+1pi and compute x1 and x2 its intersections with Vi (only

2 intersections because Vi is convex.
3. x1x2 is the Voronöı edge that separates Vn+1 and Vi. Start with x2 that sits on a Voronöı

edge of V (S) that separates Vi with Vj .
4. Replace i by j and goto 2 until x2 goes back to x1.
5. The Voronöı cell Vn+1 relative to pn+1 has been created. Remove the parts of all Vi’s that

have been “eaten” by Vn+1.
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Green and Sibson’s algorithm
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Fortune’s algorithm (O(n log(n)))
• Line sweep (like intersection of lines) e.g. from left to right. Main issue, a part of the

diagram on the left of the line depends on points on the right of the line.
• Fortune solves the issue by introducing a “beach line” that is (i) made of parabolas and

that is (ii) delayed with respect to the sweep line.
• For each point left of the sweep line, one can define a parabola of points equidistant from

that point and from the sweep line; the beach line is the boundary of the union of these
parabolas.

• As the sweep line progresses, the vertices of the beach line, at which two parabolas cross,
trace out the edges of the Voronoi diagram.

• The algorithm maintains as data structures a binary search tree describing the
combinatorial structure of the beach line, and a priority queue listing potential future
events that could change the beach line structure.
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Fortune’s algorithm (O(n log(n)))
• Sweep line L passes through a first point p1 and initiates a parabola P1 s.t.
d(L,P1) = d(p1, P1).

• Sweep line L passes through a second point p2 and initiates a parabola P2. Intersection
point I between P1 and P2 verifies d(I, p1) = d(I, p2) so I belongs to the Voronöı edge
between p1 and p2.

• Sweep line L passes through a third point p3 and initiates a parabola P3. If points are in
general position, there exist a circle C containing the 3 points. When L is tangent to C,
its center is a Voronöı vertex. At that point, a part of P1 must be removed from the
beachline.
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Fortune’s algorithm (O(n log(n)))
Two types of events:

• Point event A new parabola Pi is created whenever the sweep lines encounters seed pi.
• Circle/Vertex event Disparition of a piece of parabola when the sweep line encounters a

vertex i.e. the circumcircle of three “seeds”.
• Both the point event and the vertex event can be handled in O(log(n)) time.
• Fortune’s algorithm computes the Voronöı diagram in O(n log(n)) time. The storage

space requirement is O(n).
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Point Event
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Circle/Vertex Event
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The Delaunay triangulation
The Delaunay triangulation DT (S) is the geometric dual of the Voronöı diagram
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The empty circle property
The circumcircle of any triangle in the Delaunay triangulation is empty i.e. it contains no point
of S.

• Consider the Delaunay triangle ∆I = pipjpk. Assume now that point pl ∈ CI where CI is
the circumcircle of ∆I .

• By definition, the triple point vI is at equal distance to pi, pj and pk and no other points
of S are closer to vI than those three points.

• Then, if a point like pl exist in S, vI is not a triple point and triangle ∆I cannot be a
Delaunay triangle.

pl

C I

∆I

pi

p j

pk

v I
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Delaunay Edges

C2

pi

p j

C1

c1

c2

• Two circles C1 and C2 sharing an edge pipj . The centers of the circles c1 and c2 lie on
the perpendicular bissector of segment pipj (in dashed lines).

• Edge pipj divides disk C1 into two disk sectors and one of the two sectors completely lies
inside C2. On the Figure, the pink sector of C1 is inside C2 and the yellow sector of C2
lies inside C1.
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Delaunay Edges
An edge pipj of a triangulation is a Delaunay edge if there exist a circle that contains pi and
pj and that is empty i.e. that contain no point of S.
A mesh is a Delaunay Triangulation if and only if all its edges are Delaunay edges.

pk

pl

c2

c1

C2

C1

C I

p j

cI

pi
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Delaunay Edges
Let us first show that a Delaunay triangulation has only Delaunay edges.

• Assume a Delaunay triangulation T (S) and an edge
pipj that is not Delaunay.

• This means that there exist no circle passing
through pi and pj that is empty.

• Consider Delaunay triangle ∆I = pipjpk that
contains edge pipj .

• Its circumcircle is empty by definition because T is a
Delaunay triangulation.

• This is in contradiction with the hypothesis that
there exist no circle passing through pi and pj and
that is not empty.

pk

pl

c2

c1

C2

C1

C I

p j

cI

pi
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Delaunay Edges
Now let’s proof that if every edge of a triangulation is Delaunay, then every triangle is
Delaunay as well.

• Assume that triangle ∆I = pipjpk is not Delaunay
(pl is inside its circle), but all its 3 edges pipj , pipk

and pjpk are Delaunay.
• Point pl cannot be inside triangle ∆I . It is then

situated inside one of the three circular sectors
delimited by pi, pj and pk.

• Assume that pl and pj are on opposite sides of
pipk. By hypothesis, there exist a circle passing
through pi and pk and that is empty. The center of
such a circle lies on the orthogonal bissector of pipk.
Any circle like C1 with its center c1 that is below cI

contains pj any circle C2 that is above cI contains
pl, which is in contradiction with the hypothesis
that there exist a circle passing through pipk and
that is empty.

pk

pl

c2

c1

C2

C1

C I

p j

cI

pi
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Local Delaunayhood
• Given a triangulation T (S) and an edge pipj in the triangulation that is adjacent to two

triangles ∆I = pipjpk and ∆J = piplpj . We call edge pipj locally Delaunay if pl lies
outside the circumcircle of ∆I .

• Edge pipj is not locally Delaunay on the Figure.
• It is easy to see that this condition is symmetric: if point pl lies inside circle CI , then

point pk lies inside circle CJ . We’ll prove that below.

C J

pl

p j
C I

pk

pi
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Edge Flip
• Consider again the situation of two triangles adjacent to edge pipj as depicted in the

Figure.
• Flipping edge pipj consist in replacing triangles pipjpk and pjpipl by triangles plpkpi and
pkplpj .

• Edge pipj has been flipped and replaced by edge pkpl.

C J

pl

p j
C I

pk

pi
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Edge Flip
The edge flip operator can only be applied to a pair of triangles that form a convex
quadrilateral. If it is concave, then flipping the edge leads to an invalid configuration with two
overlapping triangles

Invalid flip

pi

pk
pl

p j

pi

pk
pl

p j

• An edge that is not locally Delaunay is flippable and the new edge resulting of the flip
operation is locally Delaunay.

• If all edges of triangulation T (S) are locally Delaunay, then T is the Delaunay
triangulation DT (S).
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The Flip Algorithm
Flip until you drop:

• Insert all the internal edges of T (S) in a stack.
• Do while the stack is not empty

• Take edge pipj at the top of the stack. This edge is adjacent to triangles pipjpk and
pjpipl. If pipj is not locally Delaunay, then flip it and add edges pipk,pkpj , pjpl and plpi in
the stack. If one of those edges was already present in the stack, update its neighbors.

• Remove pipj from the stack.
Two questions should be asked at that point: (i) does this algorithm produce the Delaunay
triangulation of S and (ii) if it achieves to create DT (S), what is its complexity (does it simply
terminate)?

The edge flip algorithm converges to DT (S) in at most O(n2) flips

This result is outmost importance. It means that every triangulation T (S) is “connected” to
the Delaunay triangulation DT (S) by at most O(n2) flips. It also means that any two
triangulations T and T ′ are flip connected.
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The Flip Algorithm
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The MaxMin property
The Delaunay triangulation DT (S) is angle-optimal: it maximizes the minimum angle among
all possible triangulations.

C A

Æ<Ø

pi

p j

CB

a
b1

Ø

Ø b2

γ2

κ1 κ2

λ1 C

C ′

pj

pk

pl

ι2
ι1 γ1

λ2pi

Thales theorem (left) and MaxMin property illustrated (right)
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Bowyer-Watson Algorithm
Let DTn be the Delaunay triangulation of a point set Sn = {p1, . . . , pn} ⊂ R2 that are in
general position. We describe an incremental process allowing the insertion of a given point
pn+1 ∈ Ω(Sn) into DTn and to build the Delaunay triangulation DTn+1 of
Sn+1 = {p1, . . . , pn, pn+1}.

DTn+1 = DTn − C(DTn, pn+1) + B(DTn, pn+1). (4)

pn+1

C (DTi , pn+1)
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Bowyer-Watson Algorithm
Consider a polygon Σ with m corners σ1, . . . , σm that is bounded by m edges σi, σ(i+1)%m,
1 ≤ i ≤ m.
The kernel ker(Σ) is the set of point x ∈ R2 that are visible to every σj i.e. the line segment
xσj them do not intersect any edges of the polygon.
The kernel ker(Σ) can be computed by intersection of the halfplanes that correspond to all
oriented edges of the polygon (see Figure).

pn+1

σ1

σm

σ2

ker(Σ)
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Bowyer-Watson Algorithm
The Delaunay cavity C(Tn, pn+1) is the set of m triangles ∆1, . . . ,∆m ∈ DTn for which their
circumcircle contains pn+1.
The Delaunay cavity contains the set of triangles that cannot belong to Tn+1. The region
covered by those invalid triangles should be emptied and re-triangulated in a Delaunay fashion.
The Delaunay cavity has some interresting properties.
Theorem: The Delaunay cavity C(Tn, pn+1) is a non empty connected set of triangles which
the union form a star shaped polygon with pn+1 in its kernel.

pn+1

C (DTi , pn+1)

47



Bowyer-Watson Algorithm

pn+1

C (DTi , pn+1)

p j

B(DTi , pn+1)

σ j+1σ j

pn+1
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Bowyer-Watson Algorithm
Super triangles :

p j

pi

pk

pl

Ω(S)

p−1p−4

p−3 p−2
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N-symmetry direction fields
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