Triangulations / Quadrangulations

Jean-François Remacle ${ }^{1}$ and Christophe Geuzaine ${ }^{2}$
${ }^{1}$ Université catholique de Louvain (UCLouvain)
${ }^{2}$ Université de Liège (ULiege)
http://www.gmsh.info

November 16, 2020

Algebraic topology for meshes

Delaunay triangulations in the plane

N -symmetry direction fields

Euler's second most famous result

Platonic solids

There exist exactly 5 "ideal" polyedra:

Tetrahedron

Hexahedron/Cube

Octahedron

Dodecahedron

Icosahedron

There a are exactly 5 platonic solids

- Consider a polyhedron with n vertices, n_{e} edges, n_{f} planar facets. Euler Formula is written

$$
\begin{equation*}
n-n_{e}+n_{f}=2 \tag{1}
\end{equation*}
$$

- Let m denote the number of edges and vertices of each facet and k the degree of each vertex i.e. the number of facets adjacent to the vertex.
- Each vertex has k adjacent faces and each face has m vertices. This implies that

$$
\begin{equation*}
m n_{f}=k n \quad \rightarrow \quad n_{f}=\frac{k n}{m} \tag{2}
\end{equation*}
$$

- Each edge has 2 adjacent faces and each face has m edges. This implies

$$
\begin{equation*}
m n_{f}=2 n_{e} \quad \rightarrow \quad n_{e}=\frac{m n_{f}}{2}=\frac{k n}{2} \tag{3}
\end{equation*}
$$

- Putting (1), (2) and (3) together gives

$$
n\left(1+\left(\frac{k}{m}-\frac{k}{2}\right)\right)=2
$$

There a are exactly 5 platonic solids

- We can expand

$$
n\left(1+\left(\frac{k}{m}-\frac{k}{2}\right)\right)=2 .
$$

into

$$
(2 m+2 k-m k) n=4 .
$$

- Since $n>0$ and $m>0$, we must have

$$
2 m+2 k-m k>0 .
$$

- Since

$$
2 m+2 k-m k=-(k-2)(m-2)+4>0
$$

the condition is transformed into

$$
(k-2)(m-2)<4 .
$$

- Since $k \geq 3$ and $m \geq 3$, the only possible values for (m, k) are $(3,3),(4,3),(5,3),(3,4)$ and $(3,5)$.

There a are exactly 5 platonic solids

$$
n\left(1+\left(\frac{k}{m}-\frac{k}{2}\right)\right)=2 \quad, \quad n_{f}=\frac{k n}{m} .
$$

- Tetrahedron: $(m, k)=(3,3) \rightarrow n=4, n_{f}=4$.
- Hexahedron: $(m, k)=(4,3) \rightarrow n=8, n_{f}=6$.
- Octahedron : $(m, k)=(3,4) \rightarrow n=6, n_{f}=8$.
- Dodecahedron: $(m, k)=(5,3) \rightarrow n=20, n_{f}=12$.
- Icosahedron : $(m, k)=(3,5) \rightarrow n=12, n_{f}=20$.

Euler-Poincare Characteristic

- The topology of a 3D surface S can be described by a topological invariant that is its Euler-Poincare characteristic χ.
- Two surfaces S_{1} and S_{2} with the same χ are topologically equivalent: it is possible to deform S_{1} onto S_{2} smoothly.
- Assume that our surface is a sphere with n_{b} holes and n_{h} handles. We have :

$$
\chi=2-n_{h}-2 n_{h}
$$

- A disk can be seen (topologically) as a sphere with one hole in it so $\chi=2-1=1$.
- The surface of a cylinder can be seen (topologically) as a sphere with two holes in it so $\chi=2-2=0$.
- The Euler-Poincare formula is a generalization of Euler's formula for general 3D surfaces that may have a topology that is not the one of a sphere. Assume a polyhedron (n vertices, n_{e} edges and n_{f} facets) that covers a surface of topology χ, we have

$$
n-n_{e}+n_{f}=\chi
$$

Euler-Poincare - Triangular meshes

Assume a triangular mesh mesh with n vertices, n_{e} edges and n_{f} triangular facets that covers a domain that has the topology of a sphere ($\chi=2$):

$$
n-n_{e}+n_{f}=\chi .
$$

- Each edge has exactly two neighboring triangles and each triangle has three edges:

$$
3 n_{f}=2 n_{e}
$$

- With Euler's formula:

$$
n_{f}=2(n-2) \quad, \quad n_{e}=3(n-2) .
$$

Euler-Poincare - Triangular meshes

Assume a triangular mesh mesh with n vertices, n_{e} edges and n_{f} triangular facets that covers a domain with topology χ :

$$
n-n_{e}+n_{f}=\chi
$$

Assume that n_{h} edges and vertices are located on the boundaries of the surface.

- Each triangle has 3 edges. Each internal edge has two triangles and each edge on the boundary is asjacent to on triangle:

$$
3 n_{f}=2\left(n_{e}-n_{h}\right)+n_{h}
$$

- With Euler's formula:

$$
n_{f}=2(n-\chi)-n_{h} \quad, \quad n_{e}=3(n-\chi)-n_{h} .
$$

- There are asymptotically 3 times more edges than nodes and 2 times more triangles than nodes in a triangular mesh.

Euler-Poincare - Triangular meshes

- A triangle has three vertices and each vertex is adjacent in average to $n_{v f}$ triangles. This leads to

$$
n_{v f} n=3 n_{f}=3\left(2(n-\chi)-n_{h}\right) \quad \rightarrow \quad n_{v f}=6-\frac{3 n_{h}+3 \chi}{n}
$$

- This means that, for large meshes, there is in average 6 triangles surrounding every vertex.
- There is, in average, exactly 6 triangles surrounding each vertex on a triangular mesh of a torus $\left(n_{h}=\chi=0\right)$.

A triangulation T with $n=12$ and $n_{h}=9$. The average number of triangles adjacent to a vertex is $n_{v f}=6-\frac{3 \times 9+6}{12}=3,25$. This average can also be computed explicitely: $n_{v f}=\frac{39}{12}=3,25$.

Regular triangulations

$$
n_{f}=2(n-\chi)-n_{h} .
$$

- Closed surface, no boundaries, $n_{h}=0$.
- Regular topology: exactly 6 triangles adjacent to a vertex:

$$
3 n_{f}=6 n \quad \rightarrow \quad n_{f}=2 n .
$$

- Restriction:

$$
2 n=2(n-\chi) \quad \rightarrow \quad \chi=0 .
$$

- Regular triangulations of closed surfaces are only possible for torus topologies $(\chi=0)$.

Regular triangulations with boundaries

$n_{f}=2(n-\chi)-n_{h}$.

- We have n_{h} edges/vertices on the boundaries of the surface.
- Regular topology: exactly 6 triangles adjacent to an internal vertex and 3 triangles adjacent to a boundary vertex.

$$
3 n_{f}=6\left(n-n_{h}\right)+3 n_{h} \quad \rightarrow \quad n_{f}=2 n-n_{h}
$$

- Same restriction:

$$
2 n-n_{h}=2(n-\chi)-n_{h} \quad \rightarrow \quad \chi=0
$$

- Regular triangulations of general surfaces are only available for $\chi=0$ i.e. surface of a cylinder or torus.

Quasi-regular triangulations

- Introduction of $n_{k}, k=-2,-1,1,2$ non-regular internal vertices of degree $6-k$.
- Introduction of $m_{l}, l=-2,-1,1,2$ non-regular boundary vertices of degree $3-k$.
- This leads to

$$
3 n_{f}=\sum_{k}\left[(6-k) n_{k}+(3-k) m_{k}+6\left(n-n_{k}-n_{h}\right)+3\left(n_{h}-m_{k}\right)\right]
$$

Finally, using $n_{f}=2(n-\chi)-n_{h}$, we get

$$
6 n-6 \chi-3 n_{h}=\sum_{k}\left[(6-k) n_{k}+(3-k) m_{k}+6\left(n-n_{k}-m_{k}\right)+3\left(n_{h}-m_{k}\right)\right]
$$

that simplifies into

$$
\chi=-\sum_{k} \frac{k}{6}\left(n_{k}+m_{k}\right)
$$

Quasi-regular triangulations

$$
\chi=-\sum_{k} \frac{k}{6}\left(n_{k}+m_{k}\right)
$$

This formula has quite interresting implications

- It is possible to compute χ only by counting singularities
- Each singularity of index k count as $-k / 6$ in the Poincare characteristic.
- A vertex with 5 neighboring triangles counts for $1 / 6$
- A vertex with 7 neighboring triangles counts for $-1 / 6$
- In the example, $\chi=1$ and vertices $a, a^{\prime}, a^{\prime \prime}$ and $a^{\prime \prime \prime}$ are irregular: a and $a^{\prime \prime \prime}$ have indices $k=-1$ and a^{\prime} and $a^{\prime \prime}$ have indices $k=-2$, which leads to $1 / 6+1 / 6+2 / 6+2 / 6=1$.

Euler-Poincare - Quadrangular meshes

Assume a quad-mesh with n vertices, n_{e} edges and n_{f} quad facets that covers a domain with topology χ :

$$
n-n_{e}+n_{f}=\chi
$$

Assume that n_{h} edges and vertices are located on the boundaries of the surface.

- Each quad has 4 edges. Each internal edge has two adjacent quads and each edge on the boundary is adjacent to on quad:

$$
4 n_{f}=2\left(n_{e}-n_{h}\right)+n_{h}
$$

- With Euler's formula:

$$
n_{f}=n-\chi-\frac{n_{h}}{2}
$$

- Quad meshes are only possible if n_{f} is even!

Regular quadrangulations

$$
n_{f}=n-\chi-\frac{n_{h}}{2}
$$

- Closed surface, no boundaries, $n_{h}=0$.
- Regular topology: exactly 6 triangles adjacent to a vertex:

$$
4 n_{f}=4 n \quad \rightarrow \quad n_{f}=n
$$

- Regular quadrangulations of closed surfaces are only possible for torus topologies $(\chi=0)$.

Regular quadrangulations with boundaries

$$
n_{f}=2(n-\chi)-n_{h}
$$

- We have n_{h} edges/vertices on the boundaries of the surface.
- Regular topology: exactly 4 quads adjacent to an internal vertex and 2 quads adjacent to a boundary vertex.

$$
4 n_{f}=4\left(n-n_{h}\right)+2 n_{h} \quad \rightarrow \quad n_{f}=n-\frac{n_{h}}{2}
$$

- Regular quadrangulations of general surfaces are only available for $\chi=0$ i.e. surface of a cylinder or torus.

Quasi-regular quadrangulations

- Introduction of $n_{k}, k=-2,-1,1,2$ non-regular internal vertices of degree $4-k$.
- Introduction of $m_{l}, l=-2,-1,1,2$ non-regular boundary vertices of degree $2-k$.
- This leads to

$$
4 n_{f}=\sum_{k}\left[(4-k) n_{k}+(2-k) m_{k}+4\left(n-n_{k}-n_{h}\right)+2\left(n_{h}-m_{k}\right)\right]
$$

Finally, using $n_{f}=2(n-\chi)-n_{h}$, we get

$$
\chi=-\sum_{k} \frac{k}{4}\left(n_{k}+m_{k}\right) .
$$

Quasi-regular quadrangulations

$$
\chi=-\sum_{k} \frac{k}{4}\left(n_{k}+m_{k}\right) .
$$

This formula has quite interresting implications

- It is possible to compute χ only by counting singularities
- Each singularity of index k count as $-k / 4$ in the Poincare characteristic.
- A vertex with 3 neighboring triangles counts for $1 / 4$
- A vertex with 5 neighboring triangles counts for $-1 / 4$
- In the example, $\chi=1$ and vertices $a, a^{\prime}, a^{\prime \prime}$ and $a^{\prime \prime \prime}$ are irregular and of index $k=-1$, which leads to $1 / 4+1 / 4+1 / 4+1 / 4=1$.

Quasi-regular quadrangulations

- Quadrilateral meshes of a non smooth domain. Five singularities of index $1 / 4$ (in red) and one singularity of index $-1 / 4$ (in blue) are required to have the sum of the indices to be one (left).
- It is also possible to use 4 irregular nodes only (right), leading to a different result.
- Quadrilateral mesh with 8 vertices of index $-1 / 4$, and 12 of index $1 / 4$, leading to $\chi=12 / 4-8 / 4=1$.

The Voronoï Diagram

Definition: Consider a finite set $S=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{2}$ of n distinct points in the plane. The Voronoi cell V_{i} of $p_{i} \in S$ is the set of points x that are closer to p_{i} than to any other points of the set:

$$
V_{i}=\left\{x \in \mathbb{R}^{2} \mid\left\|x-p_{i}\right\|<\left\|x-p_{j}\right\|, \forall 1 \leq i \leq n, i \neq j\right\}
$$

where $\|x-y\|$ is the euclidian distance between x and y.

The Voronoï Diagram of 2 points p_{i} and p_{j}
université
The perpendicular bissector of $p_{i} p_{j}$ divides \mathbb{R}^{2} into two halfplanes $H_{i j}$ and $H_{j i}$:

$$
H_{i j}=\left\{x \in \mathbb{R}^{2} \mid\left\|x-p_{i}\right\|<\left\|x-p_{j}\right\|\right\} .
$$

We have $V_{i}=H_{i j}$.

The Voronoï Diagram of 3 points
Let's make the problem a little more complicated and consider a set $S=\left\{p_{i}, p_{j}, p_{k}\right\}$ of 3 points. The Voronoi cell associated to p_{i} is the intersection of half planes $H_{i j}$ and $H_{i k}$:
$V_{i}=H_{i j} \cap H_{i k}$.

The Voronoï Diagram

The Voronoi diagram $V(S)$ is the unique subdivision of the plane into n cells. Its is the union of all Voronoi cells V_{p} :

Green and Sibson's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right)$

- Incremental: adding a point only modifies the diagram locally
- Let $S_{n}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $V\left(S_{n}\right)$. Add p_{n+1} to form $V\left(S_{n+1}\right)$ with $S_{n+1}=\left\{p_{1}, p_{2}, \ldots, p_{n+1}\right\}$.

1. Find voronoi cell V_{i} such that $p_{n+1} \in V_{i}$.
2. Draw orthogonal bissector of $p_{n+1} p_{i}$ and compute x_{1} and x_{2} its intersections with V_{i} (only 2 intersections because V_{i} is convex.
3. $x_{1} x_{2}$ is the Voronoï edge that separates V_{n+1} and V_{i}. Start with x_{2} that sits on a Voronoï edge of $V(S)$ that separates V_{i} with V_{j}.
4. Replace i by j and goto 2 until x_{2} goes back to x_{1}.
5. The Voronoï cell V_{n+1} relative to p_{n+1} has been created. Remove the parts of all V_{i} 's that have been "eaten" by V_{n+1}.

Green and Sibson's algorithm

Fortune's algorithm $(\mathcal{O}(n \log (n))$)

- Line sweep (like intersection of lines) e.g. from left to right. Main issue, a part of the diagram on the left of the line depends on points on the right of the line.
- Fortune solves the issue by introducing a "beach line" that is (i) made of parabolas and that is (ii) delayed with respect to the sweep line.
- For each point left of the sweep line, one can define a parabola of points equidistant from that point and from the sweep line; the beach line is the boundary of the union of these parabolas.
- As the sweep line progresses, the vertices of the beach line, at which two parabolas cross, trace out the edges of the Voronoi diagram.
- The algorithm maintains as data structures a binary search tree describing the combinatorial structure of the beach line, and a priority queue listing potential future events that could change the beach line structure.

Fortune's algorithm $(\mathcal{O}(n \log (n)))$

- Sweep line L passes through a first point p_{1} and initiates a parabola P_{1} s.t. $d\left(L, P_{1}\right)=d\left(p_{1}, P_{1}\right)$.
- Sweep line L passes through a second point p_{2} and initiates a parabola P_{2}. Intersection point I between P_{1} and P_{2} verifies $d\left(I, p_{1}\right)=d\left(I, p_{2}\right)$ so I belongs to the Voronoï edge between p_{1} and p_{2}.
- Sweep line L passes through a third point p_{3} and initiates a parabola P_{3}. If points are in general position, there exist a circle C containing the 3 points. When L is tangent to C, its center is a Voronoï vertex. At that point, a part of P_{1} must be removed from the beachline.

Fortune's algorithm $(\mathcal{O}(n \log (n)))$

Two types of events:

- Point event A new parabola P_{i} is created whenever the sweep lines encounters seed p_{i}.
- Circle/Vertex event Disparition of a piece of parabola when the sweep line encounters a vertex i.e. the circumcircle of three "seeds".
- Both the point event and the vertex event can be handled in $\mathcal{O}(\log (n))$ time.
- Fortune's algorithm computes the Voronoï diagram in $\mathcal{O}(n \log (n))$ time. The storage space requirement is $\mathcal{O}(n)$.

Point Event

Point Event:

- To process a point event:
- Determine the arc of the beach line directly above the new point
- Split the arc into two by inserting a new infinitesimally small arc at this point
- As the sweep proceeds this arc will start to widen

Circle/Vertex Event

1. P_{i}, P_{j}, and P_{k} whose arcs appear consecutively on the beach line. The circumcircle lies partially below the sweep line

2. Circumcircle is empty and the center is equidistant to p_{i}, p_{j}, p_{k}, and L. The center is a Voronoi vertex.
3. The arc of p_{j} disappears from the beach line

The Delaunay triangulation

The Delaunay triangulation $D T(S)$ is the geometric dual of the Voronoï diagram

The empty circle property

The circumcircle of any triangle in the Delaunay triangulation is empty i.e. it contains no point of S.

- Consider the Delaunay triangle $\Delta_{I}=p_{i} p_{j} p_{k}$. Assume now that point $p_{l} \in C_{I}$ where C_{I} is the circumcircle of Δ_{I}.
- By definition, the triple point v_{I} is at equal distance to p_{i}, p_{j} and p_{k} and no other points of S are closer to v_{I} than those three points.
- Then, if a point like p_{l} exist in S, v_{I} is not a triple point and triangle Δ_{I} cannot be a Delaunay triangle.

Delaunay Edges

- Two circles C_{1} and C_{2} sharing an edge $p_{i} p_{j}$. The centers of the circles c_{1} and c_{2} lie on the perpendicular bissector of segment $p_{i} p_{j}$ (in dashed lines).
- Edge $p_{i} p_{j}$ divides disk C_{1} into two disk sectors and one of the two sectors completely lies inside C_{2}. On the Figure, the pink sector of C_{1} is inside C_{2} and the yellow sector of C_{2} lies inside C_{1}.

Delaunay Edges

An edge $p_{i} p_{j}$ of a triangulation is a Delaunay edge if there exist a circle that contains p_{i} and p_{j} and that is empty i.e. that contain no point of S.
A mesh is a Delaunay Triangulation if and only if all its edges are Delaunay edges.

Delaunay Edges

Let us first show that a Delaunay triangulation has only Delaunay edges.

- Assume a Delaunay triangulation $T(S)$ and an edge $p_{i} p_{j}$ that is not Delaunay.
- This means that there exist no circle passing through p_{i} and p_{j} that is empty.
- Consider Delaunay triangle $\Delta_{I}=p_{i} p_{j} p_{k}$ that contains edge $p_{i} p_{j}$.
- Its circumcircle is empty by definition because T is a Delaunay triangulation.
- This is in contradiction with the hypothesis that there exist no circle passing through p_{i} and p_{j} and that is not empty.

Delaunay Edges

Now let's proof that if every edge of a triangulation is Delaunay, then every triangle is Delaunay as well.

- Assume that triangle $\Delta_{I}=p_{i} p_{j} p_{k}$ is not Delaunay (p_{l} is inside its circle), but all its 3 edges $p_{i} p_{j}, p_{i} p_{k}$ and $p_{j} p_{k}$ are Delaunay.
- Point p_{l} cannot be inside triangle Δ_{I}. It is then situated inside one of the three circular sectors delimited by p_{i}, p_{j} and p_{k}.
- Assume that p_{l} and p_{j} are on opposite sides of $p_{i} p_{k}$. By hypothesis, there exist a circle passing through p_{i} and p_{k} and that is empty. The center of such a circle lies on the orthogonal bissector of $p_{i} p_{k}$. Any circle like C_{1} with its center c_{1} that is below c_{I} contains p_{j} any circle C_{2} that is above c_{I} contains p_{l}, which is in contradiction with the hypothesis that there exist a circle passing through $p_{i} p_{k}$ and that is empty.

Local Delaunayhood

- Given a triangulation $T(S)$ and an edge $p_{i} p_{j}$ in the triangulation that is adjacent to two triangles $\Delta_{I}=p_{i} p_{j} p_{k}$ and $\Delta_{J}=p_{i} p_{l} p_{j}$. We call edge $p_{i} p_{j}$ locally Delaunay if p_{l} lies outside the circumcircle of Δ_{I}.
- Edge $p_{i} p_{j}$ is not locally Delaunay on the Figure.
- It is easy to see that this condition is symmetric: if point p_{l} lies inside circle C_{I}, then point p_{k} lies inside circle C_{J}. We'll prove that below.

Edge Flip

- Consider again the situation of two triangles adjacent to edge $p_{i} p_{j}$ as depicted in the Figure.
- Flipping edge $p_{i} p_{j}$ consist in replacing triangles $p_{i} p_{j} p_{k}$ and $p_{j} p_{i} p_{l}$ by triangles $p_{l} p_{k} p_{i}$ and $p_{k} p_{l} p_{j}$.
- Edge $p_{i} p_{j}$ has been flipped and replaced by edge $p_{k} p_{l}$.

Edge Flip

The edge flip operator can only be applied to a pair of triangles that form a convex quadrilateral. If it is concave, then flipping the edge leads to an invalid configuration with two overlapping triangles

- An edge that is not locally Delaunay is flippable and the new edge resulting of the flip operation is locally Delaunay.
- If all edges of triangulation $T(S)$ are locally Delaunay, then T is the Delaunay triangulation $D T(S)$.

The Flip Algorithm

Flip until you drop:

- Insert all the internal edges of $T(S)$ in a stack.
- Do while the stack is not empty
- Take edge $p_{i} p_{j}$ at the top of the stack. This edge is adjacent to triangles $p_{i} p_{j} p_{k}$ and $p_{j} p_{i} p_{l}$. If $p_{i} p_{j}$ is not locally Delaunay, then flip it and add edges $p_{i} p_{k}, p_{k} p_{j}, p_{j} p_{l}$ and $p_{l} p_{i}$ in the stack. If one of those edges was already present in the stack, update its neighbors.
- Remove $p_{i} p_{j}$ from the stack.

Two questions should be asked at that point: (i) does this algorithm produce the Delaunay triangulation of S and (ii) if it achieves to create $D T(S)$, what is its complexity (does it simply terminate)?

The edge flip algorithm converges to $D T(S)$ in at most $\mathcal{O}\left(n^{2}\right)$ flips

This result is outmost importance. It means that every triangulation $T(S)$ is "connected" to the Delaunay triangulation $D T(S)$ by at most $\mathcal{O}\left(n^{2}\right)$ flips. It also means that any two triangulations T and T^{\prime} are flip connected.

The Flip Algorithm

The MaxMin property

The Delaunay triangulation $D T(S)$ is angle-optimal: it maximizes the minimum angle among all possible triangulations.

Thales theorem (left) and MaxMin property illustrated (right)

Bowyer-Watson Algorithm

Let $D T_{n}$ be the Delaunay triangulation of a point set $S_{n}=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{2}$ that are in general position. We describe an incremental process allowing the insertion of a given point $p_{n+1} \in \Omega\left(S_{n}\right)$ into $D T_{n}$ and to build the Delaunay triangulation $D T_{n+1}$ of
$S_{n+1}=\left\{p_{1}, \ldots, p_{n}, p_{n+1}\right\}$.

$$
\begin{equation*}
D T_{n+1}=D T_{n}-\mathcal{C}\left(D T_{n}, p_{n+1}\right)+\mathcal{B}\left(D T_{n}, p_{n+1}\right) \tag{4}
\end{equation*}
$$

Bowyer-Watson Algorithm
Consider a polygon Σ with m corners $\sigma_{1}, \ldots, \sigma_{m}$ that is bounded by m edges $\sigma_{i}, \sigma_{(i+1) \% m}$, $1 \leq i \leq m$.
The kernel $\operatorname{ker}(\Sigma)$ is the set of point $x \in \mathbb{R}^{2}$ that are visible to every σ_{j} i.e. the line segment $x \sigma_{j}$ them do not intersect any edges of the polygon.
The kernel $\operatorname{ker}(\Sigma)$ can be computed by intersection of the halfplanes that correspond to all oriented edges of the polygon (see Figure).

Bowyer-Watson Algorithm

The Delaunay cavity $\mathcal{C}\left(T_{n}, p_{n+1}\right)$ is the set of m triangles $\Delta_{1}, \ldots, \Delta_{m} \in D T_{n}$ for which their circumcircle contains p_{n+1}.
The Delaunay cavity contains the set of triangles that cannot belong to T_{n+1}. The region covered by those invalid triangles should be emptied and re-triangulated in a Delaunay fashion. The Delaunay cavity has some interresting properties.
Theorem: The Delaunay cavity $\mathcal{C}\left(T_{n}, p_{n+1}\right)$ is a non empty connected set of triangles which the union form a star shaped polygon with p_{n+1} in its kernel.

université

Bowyer-Watson Algorithm

Bowyer-Watson Algorithm

Super triangles:

