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& e Platonic solids

There exist exactly 5 “ideal” polyedra:

Tetrahedron Hexahedron/Cube Octahedron

9\
A

Dodecahedron Icosahedron
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e Let m denote the number of edges and vertices of each facet and k the degree of each
vertex i.e. the number of facets adjacent to the vertex.
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o Consider a polyhedron with n vertices, n. edges, ns planar facets. Euler Formula is written
n—ne+ng=2. (1)

e Let m denote the number of edges and vertices of each facet and k the degree of each
vertex i.e. the number of facets adjacent to the vertex.

e Each vertex has k adjacent faces and each face has m vertices. This implies that
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mny =kn — ny=
m
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G et There a are exactly 5 platonic solids

o Consider a polyhedron with n vertices, n. edges, ns planar facets. Euler Formula is written
n—ne+ng=2. (1)

e Let m denote the number of edges and vertices of each facet and k the degree of each
vertex i.e. the number of facets adjacent to the vertex.

e Each vertex has k adjacent faces and each face has m vertices. This implies that

kn
=k — =—. 2
mny = kn ng=_ (2)
e Each edge has 2 adjacent faces and each face has m edges. This implies
mns  kn
mnf:2ne — ne:T:7. (3)

e Putting (1), (2) and (3) together gives

(o (2-8)
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(2m + 2k — mk)n = 4.

e We can expand

into

e Since n > 0 and m > 0, we must have

2m + 2k — mk > 0.
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' There a are exactly 5 platonic solids

(3-8

(2m + 2k — mk)n = 4.

e We can expand

into

e Since n > 0 and m > 0, we must have
2m + 2k — mk > 0.

e Since
2m+2k—mk=—-(k—2)(m—2)+4>0

the condition is transformed into

(k—2)(m—2) < 4.
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There a are exactly 5 platonic solids

(3-8

(2m + 2k — mk)n = 4.

e We can expand

into

e Since n > 0 and m > 0, we must have
2m + 2k — mk > 0.

e Since
2m+2k—mk=—-(k—2)(m—2)+4>0

the condition is transformed into
(k—2)(m—2) < 4.

e Since k > 3 and m > 3, the only possible values for (m, k) are (3,3), (4,3), (5,3), (3,4)
and (3,5).
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There a are exactly 5 platonic solids
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e Tetrahedron: (m,k) =(3,3) — n=4 , ny=4.

B UCLouvain
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e Tetrahedron: (m,k)=(3,3) — n=4, ny=4
e Hexahedron : (m, k) =
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ko k kn
n<1+(m—2>>—2 y nf—E.

e Tetrahedron: (m,k) =(3,3) — n=4 , ny=4.

e Hexahedron : (m,k) =(4,3) — n=8 , ny=6.
e Octahedron : (m,k)=(3,4) — n=6, ny=_8.
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G et There a are exactly 5 platonic solids

ko k kn
n<1+(m—2>>—2 y nf—E.

Tetrahedron : (m, k) = (3,3) — n=4, ny=4.
Hexahedron : (m,k) = (4,3) — n=8 , ny=6.

e Octahedron : (m,k)=(3,4) — n=6, ny=_8.

e Dodecahedron : (m,k) =(5,3) — n=20 , n;=12.

—

m
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G et There a are exactly 5 platonic solids

ko k kn
n<1+(m—2>>=2 y nf:E.

Tetrahedron : (m, k) = (3,3) — n=4, ny=4.
4,3) - n=8, ny=6.
3,4 n=6, ny=38.

Hexahedron : (

e Octahedron : (

e Dodecahedron : (m,k) =(5,3) — n=20 , n;=12.
k)=(3,5) — n=12 , ns; = 20.

i

e lcosahedron : (m,
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e Assume that our surface is a sphere with n, holes and n, handles. We have :

X=2—np—2n
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Euler-Poincare characteristic .

e Two surfaces S; and S2 with the same x are topologically equivalent: it is possible to
deform S onto S2 smoothly.
e Assume that our surface is a sphere with n, holes and n, handles. We have :

X=2—np—2n

e A disk can be seen (topologically) as a sphere with one hole initso xy =2—-1=1.
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e The topology of a 3D surface S can be described by a topological invariant that is its
Euler-Poincare characteristic .
e Two surfaces S; and S2 with the same x are topologically equivalent: it is possible to
deform S onto S2 smoothly.
e Assume that our surface is a sphere with n, holes and n, handles. We have :

X=2—np—2n

e A disk can be seen (topologically) as a sphere with one hole initso xy =2—-1=1.
e The surface of a cylinder can be seen (topologically) as a sphere with two holes in it so
x=2-2=0.
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S et Euler-Poincare Characteristic

e The topology of a 3D surface S can be described by a topological invariant that is its
Euler-Poincare characteristic .
e Two surfaces S; and S2 with the same x are topologically equivalent: it is possible to
deform S onto S2 smoothly.
e Assume that our surface is a sphere with n, holes and n, handles. We have :

X=2—np—2n

e A disk can be seen (topologically) as a sphere with one hole initso xy =2—-1=1.
e The surface of a cylinder can be seen (topologically) as a sphere with two holes in it so
x=2-2=0.
e The Euler-Poincare formula is a generalization of Euler's formula for general 3D surfaces
that may have a topology that is not the one of a sphere. Assume a polyhedron (n
vertices, n. edges and ny facets) that covers a surface of topology x, we have

n—"Ne+nf=X.
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G et Euler-Poincare — Triangular meshes

Assume a triangular mesh mesh with n vertices, n. edges and n; triangular facets that covers
a domain that has the topology of a sphere (x = 2):

n—"Ne+ng=x.

e Each edge has exactly two neighboring triangles and each triangle has three edges:

377,f = 2716
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G et Euler-Poincare — Triangular meshes

Assume a triangular mesh mesh with n vertices, n. edges and n; triangular facets that covers
a domain that has the topology of a sphere (x = 2):

n—"Ne+ng=x.

e Each edge has exactly two neighboring triangles and each triangle has three edges:
377,f = 2716

e With Euler's formula:
ng=2n-2) , n.=3Mn-2).
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G et Euler-Poincare — Triangular meshes

Assume a triangular mesh mesh with n vertices, n. edges and n; triangular facets that covers
a domain with topology x:

n—"ne+ny=x.
Assume that n;, edges and vertices are located on the boundaries of the surface.

e Each triangle has 3 edges. Each internal edge has two triangles and each edge on the
boundary is asjacent to on triangle:

3ng =2(ne — np) + np
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G et Euler-Poincare — Triangular meshes

Assume a triangular mesh mesh with n vertices, n. edges and n; triangular facets that covers
a domain with topology x:
n—"ne+ny=x.

Assume that n;, edges and vertices are located on the boundaries of the surface.

e Each triangle has 3 edges. Each internal edge has two triangles and each edge on the
boundary is asjacent to on triangle:

3ng =2(ne — np) + np
o With Euler’s formula:

ng=2n—x)—nn , nNe=3M—x)—np.
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G et Euler-Poincare — Triangular meshes

Assume a triangular mesh mesh with n vertices, n. edges and n; triangular facets that covers
a domain with topology x:
n—"ne+ny=x.

Assume that n;, edges and vertices are located on the boundaries of the surface.

e Each triangle has 3 edges. Each internal edge has two triangles and each edge on the
boundary is asjacent to on triangle:

3ng =2(ne — np) + np
o With Euler’s formula:
ng=2n—x)—nn , nNe=3M—x)—np.

e There are asymptotically 3 times more edges than nodes and 2 times more triangles than
nodes in a triangular mesh.
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G et Euler-Poincare — Triangular meshes

o A triangle has three vertices and each vertex is adjacent in average to n, triangles. This

leads to
3np, 4+ 3x

npfn =3ny =32(n—x)—np) — Nyp=06—
n
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e A triangle has three vertices and each vertex is adjacent in average to n, triangles. This
leads to
3np + 3x

nygn =3ny =3(2(n—x) —np) = Ny =6— n

e This means that, for large meshes, there is in average 6 triangles surrounding every vertex.

A triangulation 7" with n = 12 and n; = 9. The average
number of triangles adjacent to a vertex is

Nyp =6 — % = 3,25. This average can also be
computed explicitely: n,; = 33 = 3,25.
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e A triangle has three vertices and each vertex is adjacent in average to n, triangles. This
leads to
3np + 3x

nem=3ny=32(n—x)—np) — Nyr=06—

e This means that, for large meshes, there is in average 6 triangles surrounding every vertex.
e There is, in average, exactly 6 triangles surrounding each vertex on a triangular mesh of a
torus (np, = x =0).

A triangulation T with n = 12 and nj; = 9. The average
number of triangles adjacent to a vertex is

Nyyp =6 — % = 3,25. This average can also be
computed explicitely: n,; = 33 = 3,25.
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e Closed surface, no boundaries, n;, = 0.
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e Closed surface, no boundaries, n;, = 0.

o Regular topology: exactly 6 triangles adjacent to a vertex:

dng=6n — ny=2n.
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G et Regular triangulations

ng =2(n—x) — na.

e Closed surface, no boundaries, n;, = 0.

o Regular topology: exactly 6 triangles adjacent to a vertex:
dng=6n — ny=2n.

e Restriction:
n=2n—x) — x=0.
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ng =2(n—x) — np.

e Closed surface, no boundaries, n;, = 0.
o Regular topology: exactly 6 triangles adjacent to a vertex:

dng=6n — ny=2n

o Restriction:
n=2n-x) — x=0.

e Regular triangulations of closed surfaces are only possible for torus topologies (x = 0).

a b c a

12
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ng =2(n —x) — na.

e We have n;, edges/vertices on the boundaries of the surface.
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& et Regular triangulations with boundaries

ng =2(n —x) — na.

e We have n;, edges/vertices on the boundaries of the surface.

o Regular topology: exactly 6 triangles adjacent to an internal vertex and 3 triangles
adjacent to a boundary vertex.

3ng=6(n—ny)+3n, — ny=2n-—n,.
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& et Regular triangulations with boundaries

ng =2(n —x) — na.

e We have n;, edges/vertices on the boundaries of the surface.

o Regular topology: exactly 6 triangles adjacent to an internal vertex and 3 triangles
adjacent to a boundary vertex.

3ng=6(n—ny)+3n, — ny=2n-—n,.

e Same restriction:
n—np=2n—x)—n, — x=0.
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ng =2(n—x) — Np.

e We have n;, edges/vertices on the boundaries of the surface.
e Regular topology: exactly 6 triangles adjacent to an internal vertex and 3 triangles
adjacent to a boundary vertex.
3ng=6(n—np)+3n, — ny=2n-—n,.
e Same restriction:
2n—np=2(n—x)—np — x=0.
e Regular triangulations of general surfaces are only available for x = 0 i.e. surface of a
cylinder or torus.
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e Introduction of m; , [ = —2,—1,1,2 non-regular boundary vertices of degree 3 — k.
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et Quasi-regular triangulations

e Introduction of ng , Kk = —2,—1,1,2 non-regular internal vertices of degree 6 — k.
e Introduction of m; , [ = —2,—1,1,2 non-regular boundary vertices of degree 3 — k.
e This leads to

Bng = _[(6—k)n + (3= k)my + 6(n — ng — np) + 3(nn — my)]
k
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et Quasi-regular triangulations

e Introduction of ng , Kk = —2,—1,1,2 non-regular internal vertices of degree 6 — k.
e Introduction of m; , [ = —2,—1,1,2 non-regular boundary vertices of degree 3 — k.
e This leads to

Bng = _[(6—k)n + (3= k)my + 6(n — ng — np) + 3(nn — my)]
k

Finally , using ny = 2(n — x) — ny, we get

6n — 6x — 3n), = Z (6 —k)ng + (3 — k)my, + 6(n — ng —my) + 3(np, — my)]
k

that simplifies into

»M
@\;v
)
>~
+
3
=
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k
This formula has quite interresting implications

o It is possible to compute x only by counting singularities
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This formula has quite interresting implications

o It is possible to compute x only by counting singularities

e Each singularity of index k count as —k/6 in the Poincare characteristic.
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Xzfzg(nk+mk)-

k
This formula has quite interresting implications
o It is possible to compute x only by counting singularities
e Each singularity of index k count as —k/6 in the Poincare characteristic.
e A vertex with 5 neighboring triangles counts for 1/6
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=3 & i)

k

This formula has quite interresting implications
o It is possible to compute x only by counting singularities

e Each singularity of index k count as —k/6 in the Poincare characteristic.

e A vertex with 5 neighboring triangles counts for 1/6
o A vertex with 7 neighboring triangles counts for —1/6

B UCLouvain
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Quasi-regular triangulations

X:_Zg(”k“‘mk)-

k
This formula has quite interresting implications
e It is possible to compute x only by counting singularities
e Each singularity of index k count as —k/6 in the Poincare characteristic.
e A vertex with 5 neighboring triangles counts for 1/6

e A vertex with 7 neighboring triangles counts for —1/6

n "

o In the example, x = 1 and vertices a, a’, a” and a’’ are irregular: a and a’’ have indices
k= —1and &' and a” have indices k = —2, which leads to 1/6 +1/6 +2/6 +2/6 = 1.

(l"” b c (l”,




5 * LIEGE B UCLouvain
G et Euler-Poincare — Quadrangular meshes

Assume a quad-mesh with n vertices, n. edges and ny quad facets that covers a domain with

topology x:
n—ne+ng=x.

Assume that n;, edges and vertices are located on the boundaries of the surface.

e Each quad has 4 edges. Each internal edge has two adjacent quads and each edge on the
boundary is adjacent to on quad:

dny =2(ne —np) +np
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G et Euler-Poincare — Quadrangular meshes
Assume a quad-mesh with n vertices, n. edges and ny quad facets that covers a domain with
topology x:
n—ne+ng=x.
Assume that n;, edges and vertices are located on the boundaries of the surface.

e Each quad has 4 edges. Each internal edge has two adjacent quads and each edge on the
boundary is adjacent to on quad:

dng = 2(ne — np) + 0y,

o With Euler’s formula:
nh
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G et Euler-Poincare — Quadrangular meshes

Assume a quad-mesh with n vertices, n. edges and ny quad facets that covers a domain with
topology x:

n—ne+ng=x.
Assume that n;, edges and vertices are located on the boundaries of the surface.

e Each quad has 4 edges. Each internal edge has two adjacent quads and each edge on the
boundary is adjacent to on quad:

dny =2(ne —np) +np

o With Euler’s formula:
nh

e Quad meshes are only possible if n; is even!
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np
np=n-Xx- o

e Closed surface, no boundaries, n;, = 0.

17
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G et Regular quadrangulations

np
np=n-Xx- o

e Closed surface, no boundaries, n;, = 0.

o Regular topology: exactly 6 triangles adjacent to a vertex:

dny=4n — nyp=n.
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2
ng=n-X- o

o Closed surface, no boundaries, n;, = 0.

o Regular topology: exactly 6 triangles adjacent to a vertex:
dny=4n  — nyp=n.
e Regular quadrangulations of closed surfaces are only possible for torus topologies (x = 0).

a b c a

17
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& et Regular quadrangulations with boundaries

ng =2(n —x) — na.

e We have n;, edges/vertices on the boundaries of the surface.
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& et Regular quadrangulations with boundaries

ng =2(n —x) — na.

e We have n;, edges/vertices on the boundaries of the surface.

o Regular topology: exactly 4 quads adjacent to an internal vertex and 2 quads adjacent to
a boundary vertex.

dng =4(n—np) +2n, — ng=n-— -
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ng =2(n—x) — np.

e We have n;, edges/vertices on the boundaries of the surface.
o Regular topology: exactly 4 quads adjacent to an internal vertex and 2 quads adjacent to
a boundary vertex.

n

dny =4(n—np)+2n, —  ny :n—7h.

e Regular quadrangulations of general surfaces are only available for y = 0 i.e. surface of a
cylinder or torus.
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e Introduction of ng , Kk = —2,—1,1,2 non-regular internal vertices of degree 4 — k.
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& et Quasi-regular quadrangulations

e Introduction of ng , Kk = —2,—1,1,2 non-regular internal vertices of degree 4 — k.

e Introduction of m; , [ = —2,—1,1,2 non-regular boundary vertices of degree 2 — k.
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& et Quasi-regular quadrangulations

e Introduction of ng , Kk = —2,—1,1,2 non-regular internal vertices of degree 4 — k.
e Introduction of m; , [ = —2,—1,1,2 non-regular boundary vertices of degree 2 — k.
e This leads to

dng = [(4 = k)nk + (2 — k)my + 4(n — ng — np) + 2(nn — my)]
k
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& et Quasi-regular quadrangulations

e Introduction of ng , Kk = —2,—1,1,2 non-regular internal vertices of degree 4 — k.
e Introduction of m; , [ = —2,—1,1,2 non-regular boundary vertices of degree 2 — k.
e This leads to

dny = Z [(4—Fk)ng + (2= Kk)my +4(n —ng —np) + 2(np — my)]
k

Finally , using ny = 2(n — x) — ny, we get
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& et Quasi-regular quadrangulations

=3 )

k
This formula has quite interresting implications

o It is possible to compute x only by counting singularities

20
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& et Quasi-regular quadrangulations

Xzfzg(nk+mk)-

k
This formula has quite interresting implications

o It is possible to compute x only by counting singularities

e Each singularity of index k count as —k/4 in the Poincare characteristic.

20



% * LIEGE B UCLouvain
& et Quasi-regular quadrangulations

Xzfzg(nk+mk)-

k
This formula has quite interresting implications
o It is possible to compute x only by counting singularities
e Each singularity of index k count as —k/4 in the Poincare characteristic.
e A vertex with 3 neighboring triangles counts for 1/4

20
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=3 )

k

This formula has quite interresting implications
o It is possible to compute x only by counting singularities

e Each singularity of index k count as —k/4 in the Poincare characteristic.

e A vertex with 3 neighboring triangles counts for 1/4
e A vertex with 5 neighboring triangles counts for —1/4

B UCLouvain

20
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Quasi-regular quadrangulations

X:_Zg(”k“‘mk)-

k
This formula has quite interresting implications
e It is possible to compute x only by counting singularities
e Each singularity of index k count as —k/4 in the Poincare characteristic.
e A vertex with 3 neighboring triangles counts for 1/4
o A vertex with 5 neighboring triangles counts for —1/4

o In the example, x = 1 and vertices a, a’, a” and a'” are irregular and of index k = —1,
which leadsto 1/4+1/44+1/4+1/4 =1.
(l"” b c (lIN
d d’
a/ U/ c/ a//

20
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¢ Quadrilateral meshes of a non smooth domain. Five singularities of index 1/4 (in red) and
one singularity of index —1/4 (in blue) are required to have the sum of the indices to be
one (left).

21



G unerste Quasi-regular quadrangulations

B UCLouvain

¢ Quadrilateral meshes of a non smooth domain. Five singularities of index 1/4 (in red) and
one singularity of index —1/4 (in blue) are required to have the sum of the indices to be

one (left).

e It is also possible to use 4 irregular nodes only (right), leading to a different result.
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G unerste Quasi-regular quadrangulations

B UCLouvain

¢ Quadrilateral meshes of a non smooth domain. Five singularities of index 1/4 (in red) and
one singularity of index —1/4 (in blue) are required to have the sum of the indices to be

one (left).

e It is also possible to use 4 irregular nodes only (right), leading to a different result.
¢ Quadrilateral mesh with 8 vertices of index —1/4, and 12 of index 1/4, leading to

x=12/4—8/4=1.
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Definition: Consider a finite set S = {p1,...,p,} C R? of n distinct points in the plane. The
Vioronoi cell V; of p; € S is the set of points x that are closer to p; than to any other points of
the set:

Vi={z e R*| [le —pil| <o —pjll, Y1 <i<ni#j}

where ||z — y|| is the euclidian distance between z and y.

© pi
O

Pk

22
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& e The Voronoi Diagram of 2 points p; and p; oavam

The perpendicular bissector of p;p; divides R? into two halfplanes H;; and Hj;:
Hij={z e R*| |lz —pil| < |z —p;]} -
We have Vvl = Hij-

23
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Let's make the problem a little more complicated and consider a set S = {p;, p;, pr} of 3
points. The Voronoi cell associated to p; is the intersection of half planes H;; and Hjy:
Vi=Hi; N Hy.

B UCLouvain
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The Voronoi Diagram
The Voronoi diagram V (S) is the unique subdivision of the plane into n cells. Its is the union
of all Voronoi cells V,:

B UCLouvain
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W Green and Sibson'’s algorithm (O(n?)) W UcLouvaln
e Incremental: adding a point only modifies the diagram locally
e Let S, = {p1,p2,...,0n} and V(S,). Add p,41 to form V (S, 1) with
S’n+l = {p17p27 s apﬂ+1}-
1. Find voronoi cell V; such that p,4+1 € V.
2. Draw orthogonal bissector of p,+1p; and compute x1 and 2 its intersections with V; (only
2 intersections because V; is convex.
3. x1x2 is the Voronoi edge that separates V11 and V;. Start with x5 that sits on a Voronoi
edge of V(S) that separates V; with Vj.
4. Replace i by j and goto 2 until z2 goes back to x;.
5. The Voronoi cell V41 relative to p,41 has been created. Remove the parts of all V;'s that
have been “eaten” by V,41.
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Green and Sibson’s algorithm
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e Line sweep (like intersection of lines) e.g. from left to right. Main issue, a part of the
diagram on the left of the line depends on points on the right of the line.

e Fortune solves the issue by introducing a “beach line” that is (i) made of parabolas and
that is (ii) delayed with respect to the sweep line.

e For each point left of the sweep line, one can define a parabola of points equidistant from
that point and from the sweep line; the beach line is the boundary of the union of these
parabolas.

e As the sweep line progresses, the vertices of the beach line, at which two parabolas cross,
trace out the edges of the Voronoi diagram.

e The algorithm maintains as data structures a binary search tree describing the
combinatorial structure of the beach line, and a priority queue listing potential future
events that could change the beach line structure.

Beach Line

¥ L (Sweep Line)
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e Sweep line L passes through a first point p; and initiates a parabola P; s.t.
d(L,Pl) = d(pl,P1>.
e Sweep line L passes through a second point ps and initiates a parabola P;. Intersection

point I between P, and P; verifies d(I,p1) = d(I,p2) so I belongs to the Voronoi edge
between p; and p-.

e Sweep line L passes through a third point p3 and initiates a parabola P5. If points are in
general position, there exist a circle C' containing the 3 points. When L is tangent to C,
its center is a Voronoi vertex. At that point, a part of P; must be removed from the
beachline.

29
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et Fortune’s algorithm (O(nlog(n)))
Two types of events:
e Point event A new parabola P; is created whenever the sweep lines encounters seed p;.
« Circle/Vertex event Disparition of a piece of parabola when the sweep line encounters a
vertex i.e. the circumcircle of three “seeds”.
e Both the point event and the vertex event can be handled in O(log(n)) time.
e Fortune's algorithm computes the Voronoi diagram in O(nlog(n)) time. The storage
space requirement is O(n).
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Point Event

Point Event:

<Py P> <Py P3 Py P> <Py P3Py P, >

* To process a point event:
— Determine the arc of the beach line directly above the new point
— Split the arc into two by inserting a new infinitesimally small arc at this
point
— As the sweep proceeds this arc will start to widen
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Circle/Vertex Event W UCLouvain
P, P, and P, whose arcs appear
consecutively on the beach line. The
circumcircle lies partially below the
sweep line

Circumcircle is empty and the center is
equidistant to p, p;, py, and L. The
center is a Voronoi vertex.

The arc of p; disappears from the
beach line '
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The Delaunay triangulation DT(.S) is the geometric dual of the Voronoi diagram
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The circumcircle of any triangle in the Delaunay triangulation is empty i.e. it contains no point
of S.
o Consider the Delaunay triangle A; = p;p;pr. Assume now that point p; € C; where Cf is
the circumcircle of Aj.
o By definition, the triple point vy is at equal distance to p;, p; and py and no other points
of S are closer to v; than those three points.
e Then, if a point like p; exist in S, vy is not a triple point and triangle A; cannot be a
Delaunay triangle.

B UCLouvain
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Delaunay Edges

e Two circles C'; and (' sharing an edge p;p;. The centers of the circles ¢; and c; lie on
the perpendicular bissector of segment p;p; (in dashed lines).

o Edge p;p; divides disk C'; into two disk sectors and one of the two sectors completely lies
inside C5. On the Figure, the pink sector of C is inside Cy and the yellow sector of Cy
lies inside C1.
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An edge p;p; of a triangulation is a Delaunay edge if there exist a circle that contains p; and
p;j and that is empty i.e. that contain no point of S.
A mesh is a Delaunay Triangulation if and only if all its edges are Delaunay edges.
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Assume a Delaunay triangulation T'(.S) and an edge
p;ip; that is not Delaunay.

This means that there exist no circle passing
through p; and p; that is empty.

Consider Delaunay triangle A; = p;p;py that
contains edge p;p;.

Its circumcircle is empty by definition because T is a
Delaunay triangulation.

This is in contradiction with the hypothesis that
there exist no circle passing through p; and p; and
that is not empty.

Delaunay Edges

Let us first show that a Delaunay triangulation has only Delaunay edges.

B UCLouvain
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et Delaunay Edges

Now let's proof that if every edge of a triangulation is Delaunay, then every triangle is

Delaunay as well.

o Assume that triangle A; = p;p;py, is not Delaunay
(p: is inside its circle), but all its 3 edges p;p;, pPip
and p;pi are Delaunay.

e Point p; cannot be inside triangle A;. It is then
situated inside one of the three circular sectors
delimited by p;, p; and py.

o Assume that p; and p; are on opposite sides of
pipk. By hypothesis, there exist a circle passing
through p; and pi and that is empty. The center of
such a circle lies on the orthogonal bissector of p;py.
Any circle like C; with its center ¢; that is below ¢
contains p; any circle C that is above c; contains
i, which is in contradiction with the hypothesis
that there exist a circle passing through p;px and
that is empty.
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G et Local Delaunayhood
e Given a triangulation T'(S) and an edge p;p; in the triangulation that is adjacent to two
triangles A; = p;p;pr and A; = p;pip;. We call edge p;p; locally Delaunay if p; lies
outside the circumcircle of Aj.
o Edge p;p; is not locally Delaunay on the Figure.

e It is easy to see that this condition is symmetric: if point p; lies inside circle Cy, then
point p; lies inside circle C';. We'll prove that below.
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Edge Flip

o Consider again the situation of two triangles adjacent to edge p;p; as depicted in the
Figure.

B UCLouvain

e Flipping edge p;p; consist in replacing triangles p;p;pr and p;p;p; by triangles pypyp; and
PrPipP;-
o Edge p;p; has been flipped and replaced by edge ppp;.
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The edge flip operator can only be applied to a pair of triangles that form a convex

quadrilateral. If it is concave, then flipping the edge leads to an invalid configuration with two

overlapping triangles

Invalid flip

pi pe Pl Pk

e An edge that is not locally Delaunay is flippable and the new edge resulting of the flip
operation is locally Delaunay.

e If all edges of triangulation T'(S) are locally Delaunay, then 7" is the Delaunay
triangulation DT(S).
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Flip until you drop:
e Insert all the internal edges of T'(S) in a stack.
e Do while the stack is not empty
e Take edge p;p; at the top of the stack. This edge is adjacent to triangles p;p;pr and
p;pipi- If pip; is not locally Delaunay, then flip it and add edges p;pr,prp;, pjpi and pip; in
the stack. If one of those edges was already present in the stack, update its neighbors.
e Remove p;p; from the stack.
Two questions should be asked at that point: (i) does this algorithm produce the Delaunay
triangulation of .S and (ii) if it achieves to create DT(S), what is its complexity (does it simply
terminate)?

The edge flip algorithm converges to DT(S) in at most O(n?) flips

This result is outmost importance. It means that every triangulation T'(S) is “connected” to
the Delaunay triangulation DT(S) by at most O(n?) flips. It also means that any two
triangulations T' and T” are flip connected.

B UCLouvain
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The Delaunay triangulation DT(.S) is angle-optimal: it maximizes the minimum angle among
all possible triangulations.

Thales theorem (left) and MaxMin property illustrated (right)
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Let DT,, be the Delaunay triangulation of a point set S,, = {p1,...,pn} C R? that are in
general position. We describe an incremental process allowing the insertion of a given point
Prnt1 € Q(S,,) into DT,, and to build the Delaunay triangulation DT, ;1 of

SnJrl - {ph cee 7pn7pn+1}-

DTn—i—l - DTn - C(DTn7pn+1) + B(DTnap7L+1)~ (4)
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Consider a polygon 3 with m corners 4, ..., 0., that is bounded by m edges o, o (i11)%m.
1<i<m.

The kernel ker(X) is the set of point z € R? that are visible to every o; i.e. the line segment
xo; them do not intersect any edges of the polygon.

The kernel ker(X) can be computed by intersection of the halfplanes that correspond to all
oriented edges of the polygon (see Figure).
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G universie Bowyer-Watson Algorithm

The Delaunay cavity C(T,,, pn1) is the set of m triangles Ay, ..., A, € DT, for which their
circumcircle contains p,y;.

The Delaunay cavity contains the set of triangles that cannot belong to T}, 1. The region
covered by those invalid triangles should be emptied and re-triangulated in a Delaunay fashion.
The Delaunay cavity has some interresting properties.

Theorem: The Delaunay cavity C(T,,,pn+1) is @ non empty connected set of triangles which
the union form a star shaped polygon with p,, 11 in its kernel.
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Super triangles :

Q(

M2 \p,

Pk
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& “¢ Triangulation of n points in nlog(n) complexity ™ "

¢ Use Bowyer-Watson algorithm (not the best choice in 2D)

DTyry1 =DTir —C(DTy, pry1) + B(DTg, prs1)
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o Use Bowyer-Watson algorithm (not the best choice in 2D)

e Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental constructions con brio.,
2003.

Without sort: O(n'/?) “walking” steps per insertion — overall (best) complexity of O(n!'*ti)
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Triangulation of n points in nlog(n) complexity

o Use Bowyer-Watson algorithm (not the best choice in 2D)

e Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental constructions con brio.,
2003.

¢ Robust predicates with static filters, H. Si. Tetgen, a delaunay-based quality
tetrahedral mesh generator., 2015.

n 103 10% 10° 105 [ 103 10% 10° 108
) 3D
Newalk | 23 73 230 727 17 38 85 186
t(sec) 3.6103 9.1102 3.98 187 1.210~2 1.810" 1 3.42 73
2D (BRIO) 3D (BRIO)
Newalk | 23 3.4 25 35 2.9 3.0 3.1 3.1
t(sec) 2103 1.5102 1.510"1 1.47 ‘ 9.010—3 7.5102 7.810°1 7.81
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e Use Bowyer-Watson algorithm (not the best choice in 2D)

e Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental constructions con brio.,
2003.

¢ Robust predicates with static filters, H. Si. Tetgen, a delaunay-based quality
tetrahedral mesh generator., 2015.

e Multitreading: distribute the Hilbert curve in M threads.
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& wmert , Hilbert curves
A curve z(t) is defined as the mapping

z(t), t€[0,1] =z € R
Curves are perceived as one dimensional objects. Yet, it can be shown that a continuous curve

can pass through every point of a unit square. The Hilbert space filling #(t) curve is a one
dimensional curve which visits every point within a two dimensional space. It may be thought

of as the limit
H(t) = lim Hy(t)
k—o0

of a sequence of curves Hy, (see Figure 1).

=

Figure: Sequense of Hilbert curves Hy.
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Hilbert curves

Curves H1 and Ho are depicted on Figure 2.

B UCLouvain
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Figure: Curves H1 and Hs.
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‘ Hilbert curves

Hilbert curves provide an ordering for points on a plane. Forget about how to connect adjacent
sub-curves, and instead focus on how we can recursively enumerate the quadrants.

A local frame is associated to each quadrant: it consist in its center xy two orthogonal vectors
b and r (see Figure 2). At the root level, enumerating the points is simple: proceed around the
four quadrants, numbering them

b+r b—r b+r b—r
1) = a9 + 2) = + = —
5 (1) ==xo 5 (2) = xo 5 (3) = xo 5

(0) =20 —
We want to determine the order we visit the sub-quadrants while maintaining the overall

adjacency property. Examination reveals that each of the sub-quadrants curves is a simple
transformation of the original pattern. Figure 2 illustrate the first level of that recursion.
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Quadrant (0) is itself divided into four quadrants (0,0), (0,1), (0,2) and (0,3). Its center is
simply set to (0) and two vectors b and r are changed as

b+ r/2 and r <+ b/2.
For quadrant (0,1) and (0,2) we have
b« b/2 and r + r/2.
and finally for quadrant (0, 3):
b« —r/2 and 7+ —b/2.

creates 4 sub quadrants. If we consider a maximal recursion depth of d, each of the final
subquadrants will be assigned to a set of d “coordinates” i.e. (ko,k1,...,kq), k; being 0,1,2 or
3.

Algorithm in Listings ?? compute the Hilbert coordinates of a given point x,y, starting from
an initial quadrant define by its center xg, y9 and two orthogonal directions.
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Hilbert curves

Each point = of R? has its coordinates on the Hilbert curve. Sorting a point set with respect to

Hilbert coordinates allow to ensure that two successive points of the set are close to each

other. In the context of the Bowyer-Watson algorithm, this kind of data locality could

potentially decrease the number of local searches Ny.qrcn that were required to find the next

invalid triangle.

Sets of 1000 and 10000 sorted points are presented on Figure 3. On the Figure, two successive

points in the sorted list are linked with a line.

The main cost of sorting points is on the sorting algorithm itself and not on the computation of

the Hilbert curve coordinates: sorting over a million points takes less than a second on a

standard laptop. Table 1 present timings and statistics for the same point sets as in table 77,

but while having sorted the points using the Hilbert curve.

n 10° 107 10° 10°
Nsearch 234 246 250 250
Neavity 4.06 4.13  4.16 4.17
t(sec) | 0.0097 0.090 0.92 9.2

Table: Results of the delaunayTrgl algorithm applied to random points. Points were initially sorted
through using a Hilbert sort.
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The number of serarches is not increasing anymore with the size of the set. This is important:

the complexity of the Delaunay triangulation algorithm now is linear in time. Of course, sorting
points has a nlogn complexity so that the overall process is in nlogn as well. Yet, the relative
cost of sorting the points is negligible with respect to the cost of the triangulation itself.

T EA S N SR T R

Figure: Hilbert sort of sets of 1000 and 10000 random points.
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