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Euler’s second most famous result
A polyhedron is a 3-dimensional solid made by joining together polygons.
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nf ≠ ne + nv = 2 – Proof

A Spanning tree of a graph is a set of edges of the graph that contains
ne cycles but that “touches” all vertices.

Start with node n, add all edges (n, nj) adjacent to n fow which nj has
not been “touched” yet. Do the same for all nj . At the end, nv ≠ 1
edges will be added in the spanning tree.

Spanning tree T of the vertex/edge graph and T
Õ the spanning tree of

the dual face/edge graph.
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nf ≠ ne + nv = 2 – Proof

Spanning trees T and T
Õ contain “edges” of the polyhedron.

The co-tree T
ú of T is a spanning tree of �Õ. At first, T

ú “touches” all
faces of the polyhedron. If it was not the case there would be a cycle of
edges in T that encloses a face. Then T

ú does not contain cycles. If it
was the case, it would separate the dual graph in two parts and T would
not be a tree.
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nf ≠ ne + nv = 2 – Proof

Any spanning tree T of � is of size nv ≠ 1.

Any spanning tree T
Õ of �Õ is of size nf ≠ 1.

The co-tree T
ú of T is of size ne ≠ (nv ≠ 1).

T
Õ and T

ú have the same size so

ne ≠ (nv ≠ 1) = nf ≠ 1 æ nf ≠ ne + nv = 2.
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A first “Gmsh” python script

Open euler.py.

import gmsh
import numpy as np
gmsh.initialize(sys.argv)
# Let’s create a simple model and mesh it:
gmsh.model.occ.addBox(0, 0, 0, 1, 1, 1)
gmsh.model.occ.synchronize()
gmsh.option.setNumber("Mesh.MeshSizeMin", 2.)
gmsh.model.mesh.generate(2)
...

Create a simple geometry

Generate a surface mesh

Create all mesh edges including internal edges that are not in the data
model of Gmsh

Compute nv ≠ ne + nf .
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Genus

The genus g of a connected, orientable surface is an integer representing
the maximum number of cuttings along non-intersecting closed simple
curves without rendering the resultant manifold disconnected.

It is equal to the number of handles on the surface.
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Euler Characteristic
For every combinatorial cell complex, one defines the Euler characteristic
as the number of 0-cells, minus the number of 1-cells, plus the number of
2-cells, etc.,

‰ = nv ≠ ne + nf .

• For the sphere (g = 0): nf = 6, ne = 12, nv = 8 so ‰ = 2.
• For the torus (g = 1): nf = 16, ne = 32, nv = 16 so ‰ = 0.
• For the double torus (g = 2): nf = 30, ne = 60, nv = 28 so

‰ = ≠2.
Thus

‰ = 2 ≠ 2g.
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Boundaries

• Start from the sphere (‰ = 2)
• Remove 2 to ‰ for every handle
• Remove 1 to ‰ for every hole. Every hole is a boundary
• The annulus has ‰ = 0 but has not the topology of a torus
• Two surfaces with the same topology have the same ‰ but two

surfaces with the same ‰ may not have the same topology.

‰ = 2 ≠ 2g ≠ b = nf ≠ ne + nv

Go back to euler.py.
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Platonic Solids

A Platonic solid is a convex, regular polyhedron in three-dimensional
Euclidean space.

Being a regular polyhedron means that the faces are congruent (identical
in shape and size) regular polygons (all angles congruent and all edges
congruent), and the same number of faces meet at each vertex.

There are exacly 5 platonic solids.
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Platonic Solids
Let x Ø 3 denote the number of edges/vertices of the faces of the solid
and y Ø 3 the valence of each vertex (nr. of adjacent faces/edges).

Classic reasoning: dual graphs contain the same amount of information
i.e. #E ◊ #F . Each edge has two adjacent triangles and each face has
m edges:

2ne = xnf .

Each vertex has y adjacent edges and each edge has two vertices:

ynv = 2ne æ ynv = xnf = 2ne

nv≠ne+nf =2˙˝¸˚æ nv

1
1 ≠ y

2 + y

x

2
= 2.

nv(2x + 2y ≠ xy) = 4x.

Condition (2x + 2y ≠ xy) > 0 can be visualized using desmos :
https://www.desmos.com/calculator/g5nepfdrsl?lang=fr.
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Platonic solids
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Euler characteristic in dimension 3

In dimension 2
np ≠ ne + nf = ‰.

The disk : ‰ = 1.

In dimension 3
np ≠ ne + nf ≠ nv = ‰.

The 3-ball : ‰ = 1 as well.
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Euler-Poincare – Triangular meshes

Assume a triangular mesh mesh with n vertices, ne edges and nf

triangular facets that covers a domain with topology ‰:

n ≠ ne + nf = ‰.

Assume that nh edges and vertices are located on the boundaries of the
surface.

• Each triangle has 3 edges. Each internal edge has two triangles and
each edge on the boundary is adjacent to on triangle:

3nf = 2(ne ≠ nh) + nh

• With Euler-Poincare formula:

nf = 2(nv ≠ ‰) ≠ nh , ne = 3(nv ≠ ‰) ≠ nh.

• There are asymptotically 3 times more edges than nodes and 2 times
more triangles than nodes in a triangular mesh.
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Euler-Poincare – Triangular meshes

• A triangle has three vertices and each vertex is adjacent in average
to nvf triangles. This leads to

nvf nv = 3nf = 3 (2(nv ≠ ‰) ≠ nh) æ nvf = 6 ≠ 3nh + 3‰

nv
.

• This means that, for large meshes, there is in average 6 triangles
surrounding every vertex.

• There is, in average, exactly 6 triangles surrounding each vertex on a
triangular mesh of a torus (nh = ‰ = 0).

2

2

2

3

3

2

2

2

3 ! 4
7 ! 6

5 ! 6

6 ! 5

A triangulation T with nv = 12 and nh = 9.
The average number of triangles adjacent
to a vertex is nvf = 6 ≠ 3◊9+6

12 = 3.25.

This average can also be computed
explicitely: nvf = 39

12 = 3.25.
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Regular triangulations

nf = 2(n ≠ ‰) ≠ nh.

• Closed surface, no boundaries, nh = 0.
• Regular topology: exactly 6 triangles adjacent to a vertex:

3nf = 6n æ nf = 2n.

• Restriction (we knew there was no such a platonic solid):
2n = 2(n ≠ ‰) æ ‰ = 0.

• Regular triangulations of closed surfaces are only possible for torus
topologies (‰ = 0).

a b c a

d d

a acb
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Regular triangulations with boundaries

nf = 2(n ≠ ‰) ≠ nh.

• We have nh edges/vertices on the boundaries of the surface.
• Regular topology: exactly 6 triangles adjacent to an internal vertex

and 3 triangles adjacent to a boundary vertex.
3nf = 6(n ≠ nh) + 3nh æ nf = 2n ≠ nh.

• Same restriction:
2n ≠ nh = 2(n ≠ ‰) ≠ nh æ ‰ = 0.

• Regular triangulations of general surfaces are only available for
‰ = 0 i.e. surface of a cylinder or torus.

c 0b0 a0a0

d d

a acb
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Quasi-regular triangulations

• Introduction of nk , k = ≠2, ≠1, 1, 2 non-regular internal vertices of
degree 6 ≠ k.

• Introduction of ml , l = ≠2, ≠1, 1, 2 non-regular boundary vertices
of degree 3 ≠ k.

• This leads to

3nf =
ÿ

k

[(6 ≠ k)nk + (3 ≠ k)mk + 6(n ≠ nk ≠ nh) + 3(nh ≠ mk)]

Finally , using nf = 2(n ≠ ‰) ≠ nh, we get

6n≠6‰≠3nh =
ÿ

k

[(6 ≠ k)nk + (3 ≠ k)mk + 6(n ≠ nk ≠ mk) + 3(nh ≠ mk)]

that simplifies into
‰ = ≠

ÿ

k

k

6 (nk + mk).
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Quasi-regular triangulations

‰ = ≠
ÿ

k

k

6 (nk + mk).

This formula has quite interresting implications
• It is possible to compute ‰ only by counting singularities (let’s code

that in euler.py).
• Each singularity of index k count as ≠k/6 in the Poincare

characteristic.
• A vertex with 5 neighboring triangles counts for 1/6
• A vertex with 7 neighboring triangles counts for ≠1/6
• In the example, ‰ = 1 and vertices a, a

Õ, a
ÕÕ and a

ÕÕÕ are irregular: a

and a
ÕÕÕ have indices k = ≠1 and a

Õ and a
ÕÕ have indices k = ≠2,

which leads to 1/6 + 1/6 + 2/6 + 2/6 = 1.
a0000 a000

a00

d 0

c 0b0a0

d

cb
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Tetrahedra

Consider the 3-sphere (‰ = 0). We have

np ≠ ne + nf ≠ nt = 0.

Each terahedra has 4 faces and each face has 2 tetrahedra so

4nt = 2nf .

There are thus twice more faces in a tet mesh than tetrahedra. Now, it

is not possible to elaborate an “exact formula” like for triangles.

A regular tetrahedron is a tetrahedron in which all four faces are
equilateral triangles. Disappointingly, it is not a space-filling polyhedron,
see Filling space with tetrahedra (Naylor, 1999) or Space-filling

Tetrahedra in Euclidean Space (Sommerville, 1923)!
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Tetrahedra

Dihedral angle of a regular tetrahedron is arccos(1/3) ¥ 70o32Õ. We thus
can put a little more than 5 regular tetrahedra around an edge to
approximatively fill the space (5 ◊ 70o = 350o). We thus can write

6nt ¥ 360
70 ne æ 7nt ¥ 6ne.

Thus, in a regular mesh,

6np≠6ne+6nf ≠6nt = 0 æ 6np≠7nt+12nt≠6nt ¥ 0 æ nt ¥ 6np

that is observed in practice in good tet meshes.
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Euler-Poincare – Quadrangular meshes

Assume a quad-mesh with n vertices, ne edges and nf quad facets that
covers a domain with topology ‰:

n ≠ ne + nf = ‰.

Assume that nh edges and vertices are located on the boundaries of the
surface.

• Each quad has 4 edges. Each internal edge has two adjacent quads
and each edge on the boundary is adjacent to on quad:

4nf = 2(ne ≠ nh) + nh

• With Euler’s formula:

nf = n ≠ ‰ ≠ nh

2
• Quad meshes are only possible if nf is even!
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Regular quadrangulations

nf = n ≠ ‰ ≠ nh

2

• Closed surface, no boundaries, nh = 0.
• Regular topology: exactly 6 triangles adjacent to a vertex:

4nf = 4n æ nf = n.

• Regular quadrangulations of closed surfaces are only possible for
torus topologies (‰ = 0).

a

b c aa

dd

acb
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Regular quadrangulations with boundaries

nf = 2(n ≠ ‰) ≠ nh.

• We have nh edges/vertices on the boundaries of the surface.
• Regular topology: exactly 4 quads adjacent to an internal vertex and

2 quads adjacent to a boundary vertex.

4nf = 4(n ≠ nh) + 2nh æ nf = n ≠ nh

2 .

• Regular quadrangulations of general surfaces are only available for
‰ = 0 i.e. surface of a cylinder or torus.

c 0

b c aa

dd

a0 a0b0
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Quasi-regular quadrangulations

• Introduction of nk , k = ≠2, ≠1, 1, 2 non-regular internal vertices of
degree 4 ≠ k.

• Introduction of ml , l = ≠2, ≠1, 1, 2 non-regular boundary vertices
of degree 2 ≠ k.

• This leads to

4nf =
ÿ

k

[(4 ≠ k)nk + (2 ≠ k)mk + 4(n ≠ nk ≠ nh) + 2(nh ≠ mk)]

Finally , using nf = 2(n ≠ ‰) ≠ nh, we get

‰ = ≠
ÿ

k

k

4 (nk + mk).
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Quasi-regular quadrangulations

‰ = ≠
ÿ

k

k

4 (nk + mk).

This formula has quite interresting implications
• It is possible to compute ‰ only by counting singularities
• Each singularity of index k count as ≠k/4 in the Poincare

characteristic.
• A vertex with 3 neighboring triangles counts for 1/4
• A vertex with 5 neighboring triangles counts for ≠1/4
• In the example, ‰ = 1 and vertices a, a

Õ, a
ÕÕ and a

ÕÕÕ are irregular
and of index k = ≠1, which leads to 1/4 + 1/4 + 1/4 + 1/4 = 1.

a0000 b c

d

a0 b0 c 0

d 0

a00

a000
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Quasi-regular quadrangulations

• Quadrilateral meshes of a non smooth domain. Five singularities of
index 1/4 (in red) and one singularity of index ≠1/4 (in blue) are
required to have the sum of the indices to be one (left).

• It is also possible to use 4 irregular nodes only (right), leading to a
di�erent result.

• Quadrilateral mesh with 8 vertices of index ≠1/4, and 12 of index
1/4, leading to ‰ = 12/4 ≠ 8/4 = 1.
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Geometry

• Many types of geometries in nature
• Two major categories

• IMPLICIT – test if a point is inside/outside the shape

• EXPLICIT – list of points, edges...

• Lots of representations for both
• Today – EXPLICIT representation for manifold surfaces.
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Manifold Surface

• Any point is locally 2d
• Polygonal surface is manifold if every edge is exactly adjacent to one

or two faces.
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Manifold Surface

• Which surface is manifold?
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Manifold Polygonal Surface

• Which surface is manifold?
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Manifold Polygonal Surface

• What about boundaries?
• Boundary vertex’s adjacent triangles look like PACMAN...
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Encoding Manifold Polygonal Surfaces

Polygonal soup
• For each triangle encode coordinates
• No information about adjacencies
• Really simple :-)
• Redundant :-(
• Only for drawing :-(
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Encoding Manifold Polygonal Surfaces
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Half Edge Datastructure

• Only for manifold surfaces
• Allows to deal with boundaries
• Allows to access adjacencies in constant time
• Allows simple algorithmics to modify locally a representation
• Key idea two half edges act as a glue between two neighboring

polygons.
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Half Edge Datastructure

The magic of half edge datsatructure
• Each vertex, edge of face points to one of its half edges.
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Encoding Manifold Polygonal Surfaces
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Polygon Triangulation
Polygon triangulation is the partition of a polygonal area P into a set of

triangles.
The total number of ways to triangulate a convex n-gon by is the
(n ≠ 2)nd Catalan number, which equals

n(n + 1)...(2n ≠ 4)
(n ≠ 2)! .

For n = 7, we have 42 triangulations.
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Polygon Triangulation

• Is this always possible for any simple polygon

• Partition a simple polygon P into non-overlapping triangles using
diagonals only.

• Every triangulation of a n-gon, has exactly n ≠ 2 triangles
(Euler-Poincaré).
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Art Gallery Theorem

• Every simple polygon has at least two ears.
• What is an ear? If one takes two consecutive edges uv and vw of a

polygon, and the line segment that joins vertices u and w is an
internal diagonal, then vertex v is called an ear of the polygon.

• The two ears theorem is equivalent to the existence of polygon
triangulations.
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Art Gallery Theorem

How many guards needed to see the whole room?

Story: Problem posed to Vasek Chvatal by Victor Klee at a math
conference in 1973. Chvatal solved it quickly with a complicated proof,
which has since been simplified significantly using triangulation.
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Art Gallery Theorem

• x and y visible if xy œ P .
• g(P ) minimum of guards to see P .
• g(n) maximum G(P ), |P | = n.
• Art Gallery Theorem asks for bounds on function g(n): what is the

smallest g(n) that always works for any n-gon?
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Art Gallery Theorem

• For n = 3, 4, 5, g(n) = 1.
• For n = 3, 4, 5, P is star shaped.
• Is there a general formula for g(n)?
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Art Gallery Theorem

• Fig. on left shows that seeing the boundary ”= seeing the whole
interior!

• Putting a guard at every “blue” vertex is not su�cient (Left Figure)
• Putting guards on vertices alone might not give the best solution

(Right Figure)
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Art Gallery Theorem
Theorem: g(n) =

%
n
3

&

• Triangulation graph can be 3-colored
• 3-coloring means vertices can be labeled 1,2, or 3 so that no edge or

diagonal has both endpoints with same label
• Remove an ear.
• Inductively 3-color the rest
• Put ear back, coloring new vertex with the label not used by the

boundary diagonal.
• For g, choose vertices with the color that is the less present thus

g(n) =
%

n
3

&
.
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Triangulation theory
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	Algebraic topology

