

Triangulation

Jean-François Remacle¹ and Christophe Geuzaine²

 1 Université catholique de Louvain (UCLouvain)

² Université de Liège (ULiege)

<http://www.gmsh.info>

October 7, 2024

Triangulations

A triangulation $T(S)$ of the *n* points $S = \{p_1, \ldots, p_n\} \in \mathbb{R}^d$ is a set of non overlapping simplices that covers exactly the convex hull $\Omega(S)$ of the point set, and leaves no point *pⁱ* isolated.

Points *p^j* are *in general position* when they do not fall on subvarieties of lower degree than necessary; in the plane two points should not be coincident, three points should not fall on a line, four points should not fall on a circle.

Triangulation

The Delaunay triangulation is a special triangulation that exist and is unique if points are in general position.

There exist algorithms to generate the Delaunay triangulation in $(O)n \log(n)$ complexity! Yet, the constant grows rapidely with d.

Delaunay triangulation

The Delaunay triangulation DT(*S*) of a point set *S* has the fundamental geometrical property that the circumsphere of any tetrahedron is empty.

If the empty empty sphere condition is verified for all tetrahedra, the triangulation *T*(*S*) is said to be a Delaunay triangulation.

In dimension 2, DT(*S*) has interresting properties.

The Voronoï Diagram

Definition: Consider a finite set $S = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^2$ of *n* distinct points in the plane. The *Voronoi cell* V_i of $p_i \in S$ is the set of points x that are closer to p_i than to any other points of the set:

$$
V_i = \left\{ x \in \mathbb{R}^2 \mid ||x - p_i|| < ||x - p_j||, \ \forall 1 \le i \le n, i \ne j \right\}
$$

where $||x - y||$ is the euclidian distance between x and y.

The Voronoï Diagram

The Voronoi diagram V (*S*) is the unique subdivision of the plane into *n* cells. Its is the union of all Voronoi cells *Vp*:

The Delaunay triangulation

The Delaunay triangulation $DT(S)$ is the geometric dual of the Voronoï diagram

The empty circle property

- i.e. it contains no point of *S*.
	- Consider the Delaunay triangle $\Delta_I = p_i p_j p_k$. Assume now that point $p_l \in C_I$ where C_I is the circumcircle of Δ_I .
	- *•* By definition, the triple point *v^I* is at equal distance to *pi*, *p^j* and *p^k* and no other points of S are closer to v_I than those three points.
	- *•* Then, if a point like *p^l* exist in *S*, *v^I* is not a triple point and triangle Δ_I cannot be a Delaunay triangle.

The MaxMin property

The Delaunay triangulation $DT(S)$ is angle-optimal: it maximizes the minimum angle among all possible triangulations.

Thales theorem (left) and MaxMin property illustrated (right)

Let DT_n be the Delaunay triangulation of a point set $S_n = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$ that are in general position. We describe an incremental process allowing the insertion of a given point $p_{n+1} \in \Omega(S_n)$ into DT_n and to build the Delaunay triangulation DT_{n+1} of $S_{n+1} = \{p_1, \ldots, p_n, p_{n+1}\}.$

Consider a polygon Σ with *m* corners $\sigma_1, \ldots, \sigma_m$ that is bounded by *m* edges σ_i , $\sigma_{(i+1)\%m}$, $1 \leq i \leq m$.

The kernel ker(Σ) is the set of point $x \in \mathbb{R}^2$ that are visible to every σ_i i.e. the line segment $x\sigma_j$ them do not intersect any edges of the polygon. The kernel $\ker(\Sigma)$ can be computed by intersection of the halfplanes that correspond to all oriented edges of the polygon (see Figure).

The Delaunay cavity $C(T_n, p_{n+1})$ is the set of *m* triangles $\Delta_1, \ldots, \Delta_m \in \mathsf{DT}_n$ for which their circumcircle contains p_{n+1} . The Delaunay cavity contains the set of triangles that cannot belong to T_{n+1} . The region covered by those invalid triangles should be emptied and re-triangulated in a Delaunay fashion. The Delaunay cavity has some interresting properties.

Theorem: The Delaunay cavity $C(T_n, p_{n+1})$ is a non empty connected set of triangles which the union form a star shaped polygon with p_{n+1} in its kernel.

Super triangles :

Let DT_n be the Delaunay triangulation of a point set $S_n = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$ that are in general position. We describe an incremental process allowing the insertion of a given point $p_{n+1} \in \Omega(S_n)$ into DT_n and to build the Delaunay triangulation DT_{n+1} of $S_{n+1} = \{p_1, \ldots, p_n, p_{n+1}\}.$

Consider a polygon Σ with *m* corners $\sigma_1, \ldots, \sigma_m$ that is bounded by *m* edges σ_i , $\sigma_{(i+1)\%m}$, $1 \leq i \leq m$.

The kernel ker(Σ) is the set of point $x \in \mathbb{R}^2$ that are visible to every σ_i i.e. the line segment $x\sigma_j$ them do not intersect any edges of the polygon. The kernel $\ker(\Sigma)$ can be computed by intersection of the halfplanes that correspond to all oriented edges of the polygon (see Figure).

The Delaunay cavity $C(T_n, p_{n+1})$ is the set of *m* triangles $\Delta_1, \ldots, \Delta_m \in \mathsf{DT}_n$ for which their circumcircle contains p_{n+1} . The Delaunay cavity contains the set of triangles that cannot belong to T_{n+1} . The region covered by those invalid triangles should be emptied and re-triangulated in a Delaunay fashion. The Delaunay cavity has some interresting properties.

Theorem: The Delaunay cavity $C(T_n, p_{n+1})$ is a non empty connected set of triangles which the union form a star shaped polygon with p_{n+1} in its kernel.

Super triangles :

LIÈGE
université **DT of** *n* **points in** *n* log(*n*) **complexity**

• Use Bowyer-Watson algorithm (not the best choice in 2D)

$$
\mathsf{DT}_{k+1} = \mathsf{DT}_k - \mathcal{C}(\mathsf{DT}_k, p_{k+1}) + \mathcal{B}(\mathsf{DT}_k, p_{k+1})
$$

IÈGE DT of *n* points in $n \log(n)$ complexity UCLOUVGIN

- *•* Use Bowyer-Watson algorithm (not the best choice in 2D)
- *•* **Sort the points**, N. Amenta, S. Choi, and G. Rote. *Incremental constructions con brio.*, 2003.

Without sort: $\mathcal{O}(n^{1/d})$ "walking" steps per insertion \rightarrow overall (best) complexity of $\mathcal{O}(n^{1+\frac{1}{d}})$

- *•* Use Bowyer-Watson algorithm (not the best choice in 2D)
- *•* **Sort the points**, N. Amenta, S. Choi, and G. Rote. *Incremental constructions con brio.*, 2003.
- *•* **Robust predicates with static filters**, H. Si. *Tetgen, a delaunay-based quality tetrahedral mesh generator.*, 2015.

UCLouvain DT of *n* points in $n \log(n)$ complexity

- *•* Use Bowyer-Watson algorithm (not the best choice in 2D)
- *•* **Sort the points**, N. Amenta, S. Choi, and G. Rote. *Incremental constructions con brio.*, 2003.
- *•* **Robust predicates with static filters**, H. Si. *Tetgen, a delaunay-based quality tetrahedral mesh generator.*, 2015.
- *•* **Multitreading**: distribute the Hilbert curve in *M* threads.

$$
\mathsf{DT}_{k+1} = \mathsf{DT}_{k} + \sum_{i=0}^{M-1} \left[-\mathcal{C}(\mathsf{DT}_{k}, p_{k+i\frac{n}{M}}) + \mathcal{B}(\mathsf{DT}_{k}, p_{k+i\frac{n}{M}}) \right].
$$

A curve $x(t)$ is defined as the mapping

 $x(t)$, $t \in [0,1] \to x \in \mathbb{R}^3$.

Curves are perceived as one dimensional objects. Yet, it can be shown that a continuous curve can pass through every point of a unit square. The Hilbert space filling $H(t)$ curve is a one dimensional curve which visits every point within a two dimensional space. It may be thought of as the limit

$$
\mathcal{H}(t) = \lim_{k \to \infty} \mathcal{H}_k(t)
$$

of a sequence of curves *H^k* (see Figure [1\)](#page-23-0).

Figure: Sequense of Hilbert curves *Hk*.

Curves H_1 and H_2 are depicted on Figure [2.](#page-24-0)

Figure: Curves \mathcal{H}_1 and \mathcal{H}_2 .

Look at hilbert2d.cpp.

Hilbert curves provide an ordering for points on a plane. Forget about how to connect adjacent sub-curves, and instead focus on how we can recursively enumerate the quadrants.

A local frame is associated to each quadrant: it consist in its center x_0 two orthogonal vectors *b* and *r* (see Figure [2\)](#page-24-0). At the root level, enumerating the points is simple: proceed around the four quadrants, numbering them

$$
(0) = x_0 - \frac{b+r}{2} \quad (1) = x_0 + \frac{b-r}{2} \quad (2) = x_0 + \frac{b+r}{2} \quad (3) = x_0 - \frac{b-r}{2}.
$$

We want to determine the order we visit the sub-quadrants while maintaining the overall adjacency property. Examination reveals that each of the sub-quadrants curves is a simple transformation of the original pattern. Figure [2](#page-24-0) illustrate the first level of that recursion.

Quadrant (0) is itself divided into four quadrants (0*,* 0), (0*,* 1), (0*,* 2) and $(0, 3)$. Its center is simply set to (0) and two vectors *b* and *r* are changed as

 $b \leftarrow r/2$ and $r \leftarrow b/2$.

For quadrant $(0, 1)$ and $(0, 2)$ we have

 $b \leftarrow b/2$ and $r \leftarrow r/2$ *.*

and finally for quadrant (0*,* 3):

$$
b \leftarrow -r/2 \text{ and } r \leftarrow -b/2.
$$

creates 4 sub quadrants. If we consider a maximal recursion depth of *d*, each of the final subquadrants will be assigned to a set of *d* "coordinates" i.e. $(k_0, k_1, ..., k_d)$, k_i being 0,1,2 or 3. Algorithm in Listings **[??](#page-0-0)** compute the Hilbert coordinates of a given point x, y , starting from an initial quadrant define by its center $x₀, y₀$ and two orthogonal directions.

Each point x of \mathbb{R}^2 has its coordinates on the Hilbert curve. Sorting a point set with respect to Hilbert coordinates allow to ensure that two successive points of the set are close to each other. In the context of the Bowyer-Watson algorithm, this kind of data locality could potentially decrease the number of local searches *Nsearch* that were required to find the next invalid triangle.

Sets of 1000 and 10000 sorted points are presented on Figure [3.](#page-28-0) On the Figure, two successive points in the sorted list are linked with a line. The main cost of sorting points is on the sorting algorithm itself and not on the computation of the Hilbert curve coordinates: sorting over a million points takes less than a second on a standard laptop. Table [1](#page-27-0) present timings and statistics for the same point sets as in table **[??](#page-0-0)**, but while having sorted the points *S* using the Hilbert curve.

Table: Results of the delaunayTrgl algorithm applied to random points. Points were initially sorted through using a Hilbert sort.

The number of serarches is not increasing anymore with the size of the set. This is important: the complexity of the Delaunay triangulation algorithm now is linear in time. Of course, sorting points has a *n* log *n* complexity so that the overall process is in *n* log *n* as well. Yet, the relative cost of sorting the points is negligible with respect to the cost of the triangulation itself.

Figure: Hilbert sort of sets of 1000 and 10000 random points.

L.

Results for 5×10^6 vertices

Sorting using HXTSort

FIGURE 3 Performances of HXTSort for sorting 31-bit integers produced by rand() on an Intel® Xeon Phi™ 7210 CPU and comparison with widely used implementations. Each integer is both the key and the value.

Comparison (sequential)

(a) Intel® CoreTM i7-6700HQ CPU, maximum core frequency of 3.5Ghz

FIGURE 7 Vertices are partitionned such that each vertex belongs to a single thread. A triangle can only be modified by a thread that owns all of its three vertices. Triangles that cannot be modified by any thread form a buffer zone.

 (b)

100 Intel i7-6700HO dillion tetrahedra per second The Intel Xeon Phi 7210 $-$ AMD EPYC 7551 10 $10⁵$ $10⁶$ $10⁷$ 10⁸ $10⁴$ $10⁹$ Number of points (random uniform distribution)

FIGURE 9 Scaling of our parallel Delaunay for a random uniform distribution of 15 million points, resulting in over 100 million tetrahedra on 3 machines: a quad-core laptop, an Intel Xeon Phi with 64 cores and a dual-socket AMD EPYC 2×32 cores.

FIGURE 10 Number of tetrahedra created per second by our parallel implementation for different number of points. Tetrahedra are created more quickly when there is a lot of points because the proportion of conflicts is lower. A rate of 65 million tetrahedra created per second is obtained on the EPYC.

UCLouvain

Number of points (random uniform distribution)

(a) 4-core Intel[®] CoreTM i7-6700HQ CPU.

WEEKLY CONSTRUCTED AT CONSTRUCTION AND RESIDENCE ACCOUNTANT AT A RECONSTRUCTION OF THE CONSTRUCTION OF A VEHICLE.

and the company

500 thin fibers

 $#$

Mochanical nont