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G et Triangulations

A simplex is a generalization of the notion of a triangle or tetrahedron to
arbitrary dimensions.

A triangulation T'(S) of the n points S = {p1,...,p,} € R% is a set of
non overlapping simplices that covers exactly the convex hull 2(S) of the
point set, and leaves no point p; isolated.

Points p; are in general position when they do not fall on subvarieties of
lower degree than necessary; in the plane two points should not be
coincident, three points should not fall on a line, four points should not
fall on a circle.
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Triangulation

There exist a finite but combinatorial number of triangulations (Catalan
numbers) for a given set of points. In dimension 2, the number of
triangles is constant for every triangulation of the same set of points.
This is not true in 3D and in higher dimensions.

The Delaunay triangulation is a special triangulation that exist and is
unique if points are in general position.

There exist algorithms to generate the Delaunay triangulation in
(O)nlog(n) complexity! Yet, the constant grows rapidely with d.
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Delaunay triangulation

The Delaunay triangulation DT(.S) of a point set S has the fundamental
geometrical property that the circumsphere of any tetrahedron is empty.

If the empty empty sphere condition is verified for all tetrahedra, the
triangulation T'(.S) is said to be a Delaunay triangulation.

In dimension 2, DT(S) has interresting properties.
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' The Voronoi Diagram

Definition: Consider a finite set S = {p1,...,pn} C R? of n distinct
points in the plane. The Voronoi cell V; of p; € S is the set of points x
that are closer to p; than to any other points of the set:

Vi={z e R*| [le —pil| < llo—pjll, V1 <i<nyi#j}

where ||z — y|| is the euclidian distance between = and y.

© pi
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& et The Voronoi Diagram

The Voronoi diagram V (S) is the unique subdivision of the plane into n

cells. lts is the union of all Voronoi cells V,:
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The Delaunay triangulation DT(.S) is the geometric dual of the Voronoi
diagram
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The circumcircle of any triangle in the Delaunay triangulation is empty
i.e. it contains no point of S.
o Consider the Delaunay triangle A; = p;p;pi. Assume now that
point p; € Ct where C is the circumcircle of Aj.
o By definition, the triple point vy is at equal distance to p;, p; and py
and no other points of S are closer to v; than those three points.
e Then, if a point like p; exist in .S, vy is not a triple point and
triangle A; cannot be a Delaunay triangle.

B UCLouvain
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& et The MaxMin property

The Delaunay triangulation DT(.S) is angle-optimal: it maximizes the
minimum angle among all possible triangulations.

Thales theorem (left) and MaxMin property illustrated (right)
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Let DT,, be the Delaunay triangulation of a point set

Sy ={p1,-..,pn} C R? that are in general position. We describe an
incremental process allowing the insertion of a given point p,11 € Q(S,)
into DT,, and to build the Delaunay triangulation DT, of

Sn—i—l = {pla s 7pnapn+1}-

DT,+1 =DT, —C(DTy,pnt1) + B(DTw, pri1)- (1)
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Consider a polygon ¥ with m corners o1, ..., 0, that is bounded by m
edges Tiy O(i+1)%mys 1 < & < m.

The kernel ker(X) is the set of point z € R? that are visible to every o;
i.e. the line segment zo; them do not intersect any edges of the polygon.
The kernel ker(X) can be computed by intersection of the halfplanes that
correspond to all oriented edges of the polygon (see Figure).
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The Delaunay cavity C(T,,, pn+1) is the set of m triangles
Aq,...,A,, € DT, for which their circumcircle contains p,1.

The Delaunay cavity contains the set of triangles that cannot belong to
T,+1. The region covered by those invalid triangles should be emptied
and re-triangulated in a Delaunay fashion. The Delaunay cavity has some
interresting properties.

Theorem: The Delaunay cavity C(T,,prn+1) is a non empty connected
set of triangles which the union form a star shaped polygon with p,, 41 in
its kernel.
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& et Bowyer-Watson Algorithm

Super triangles :

pi

Q

VA7
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Let DT,, be the Delaunay triangulation of a point set

Sy ={p1,-..,pn} C R? that are in general position. We describe an
incremental process allowing the insertion of a given point p,11 € Q(S,)
into DT,, and to build the Delaunay triangulation DT, of

Sn—i—l = {pla s 7pnapn+1}-

DT,+1 =DT, —C(DTy,pnt1) + B(DTw, pri1)- (2)
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Consider a polygon ¥ with m corners o1, ..., 0, that is bounded by m
edges Tiy O(i+1)%mys 1 < & < m.

The kernel ker(X) is the set of point z € R? that are visible to every o;
i.e. the line segment zo; them do not intersect any edges of the polygon.
The kernel ker(X) can be computed by intersection of the halfplanes that
correspond to all oriented edges of the polygon (see Figure).
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The Delaunay cavity C(T,,, pn+1) is the set of m triangles
Aq,...,A,, € DT, for which their circumcircle contains p,1.

The Delaunay cavity contains the set of triangles that cannot belong to
T,+1. The region covered by those invalid triangles should be emptied
and re-triangulated in a Delaunay fashion. The Delaunay cavity has some
interresting properties.

Theorem: The Delaunay cavity C(T,,prn+1) is a non empty connected
set of triangles which the union form a star shaped polygon with p,, 41 in
its kernel.
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Super triangles :
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o Use Bowyer-Watson algorithm (not the best choice in 2D)

DTit1 =DTr —C(DTk, pry1) + B(DT g, prt1)
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¢ Use Bowyer-Watson algorithm (not the best choice in 2D)

e Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental
constructions con brio., 2003.

Without sort: O(n'/4) “walking” steps per insertion — overall (best)
1
complexity of O(n'ta)

Pk
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DT of n points in nlog(n) complexity

o Use Bowyer-Watson algorithm (not the best choice in 2D)

e Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental
constructions con brio., 2003.

¢ Robust predicates with static filters, H. Si. Tetgen, a
delaunay-based quality tetrahedral mesh generator., 2015.

n 103 104 10° 108 ] 103 104 10° 100
2D 3D
Nwalk | 28 73 230 737 17 38 35 186
t(sec) 3.6103  9.11072  3.98 187 1.210~2 1.810~1 3.42 73
2D (BRIO) 3D (BRIO)
Newalk | 23 3.4 25 25 2.9 3.0 3.1 3.1
t(sec) 2103 1.5102 1.510" 1 1.47 ‘ 9.010~3 7.5102 7.810"1 7.81
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¢ Use Bowyer-Watson algorithm (not the best choice in 2D)

e Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental

constructions con brio., 2003.
¢ Robust predicates with static filters, H. Si. Tetgen, a
delaunay-based quality tetrahedral mesh generator., 2015.
e Multitreading: distribute the Hilbert curve in M threads.

M-1

DTiy1 =DTy + Z [—C(DTk, prtiz ) + BDTk, pryiz)] .

=0

STy
e ﬁ“ii%i&%w

-
-
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A curve z(t) is defined as the mapping
x(t), t€[0,1] =z € R

Curves are perceived as one dimensional objects. Yet, it can be shown
that a continuous curve can pass through every point of a unit square.
The Hilbert space filling #(t) curve is a one dimensional curve which
visits every point within a two dimensional space. It may be thought of
as the limit
H(t) = lim Hp(t)
k—o0

of a sequence of curves Hy, (see Figure 1).

Figure: Sequense of Hilbert curves Hy.
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Curves H1 and Ho are depicted on Figure 2.

B UCLouvain
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Figure: Curves H1 and Ha.

Look at hilbert2d.cpp.
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Hilbert curves provide an ordering for points on a plane. Forget about
how to connect adjacent sub-curves, and instead focus on how we can
recursively enumerate the quadrants.

A local frame is associated to each quadrant: it consist in its center xg
two orthogonal vectors b and r (see Figure 2). At the root level,
enumerating the points is simple: proceed around the four quadrants,
numbering them

(0) =20 —

(1):$0+ (2):(E0+

2 2 2

We want to determine the order we visit the sub-quadrants while
maintaining the overall adjacency property. Examination reveals that
each of the sub-quadrants curves is a simple transformation of the
original pattern. Figure 2 illustrate the first level of that recursion.

b+r b—r b+r b—r
x .

B UCLouvain
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Quadrant (0) is itself divided into four quadrants (0,0), (0,1), (0,2) and
(0,3). lts center is simply set to (0) and two vectors b and r are changed
as

b<1r/2 and r <+ b/2.

For quadrant (0,1) and (0,2) we have
b<«b/2 and 1<+ r/2.
and finally for quadrant (0, 3):
b« —r/2 and r <+ —b/2.

creates 4 sub quadrants. If we consider a maximal recursion depth of d,
each of the final subquadrants will be assigned to a set of d
“coordinates” i.e. (ko,k1,...,kq), k; being 0,1,2 or 3.

Algorithm in Listings ?? compute the Hilbert coordinates of a given point
x,y, starting from an initial quadrant define by its center zg,yo and two
orthogonal directions.

72



& * LIEGE . .
& wnierst Hilbert curves il UCLouvain

Each point o of R? has its coordinates on the Hilbert curve. Sorting a
point set with respect to Hilbert coordinates allow to ensure that two
successive points of the set are close to each other. In the context of the
Bowyer-Watson algorithm, this kind of data locality could potentially
decrease the number of local searches Ngq.cn, that were required to find
the next invalid triangle.
Sets of 1000 and 10000 sorted points are presented on Figure 3. On the
Figure, two successive points in the sorted list are linked with a line.
The main cost of sorting points is on the sorting algorithm itself and not
on the computation of the Hilbert curve coordinates: sorting over a
million points takes less than a second on a standard laptop. Table 1
present timings and statistics for the same point sets as in table ??, but
while having sorted the points S using the Hilbert curve.

n 10° 10 10°  10°

Nsearch | 2.34 246  2.50 2.50

Nevity | 4.06 413 416 4.17

t(sec) 0.0097 0.090 0.92 9.2

Table: Results of the delaunayTrgl algorithm applied to random points.
Points were initially sorted through using a Hilbert sort.
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The number of serarches is not increasing anymore with the size of the

set. This is important: the complexity of the Delaunay triangulation
algorithm now is linear in time. Of course, sorting points has a nlogn
complexity so that the overall process is in nlogn as well. Yet, the
relative cost of sorting the points is negligible with respect to the cost of
the triangulation itself.

ST

i ,”\‘1"5: S

R e
Y SR s
R

Figure: Hilbert sort of sets of 1000 and 10000 random points.
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Results for 5 x 10° vertices
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Ours Geogram

TetGen

SEQUENTIAL_DELAUNAY 12.7 34.6
INIT + SORT 0.5 42
INCREMENTAL INSERTION 12.2 30.4

WALK 1.0 2.1
orient3d 0.7 14

CAVITY 6.2 114
inSphere 32 6.2

DELAUNAYBALL 4.5 124
Computing sub-determinants 1.3 /

Other operations 0.5 45

329
2.1

30.8

1.6
1.1
~ 10
5.6
~ 15
/
~4
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Sorting using HXTSort

—— Ours
10" | - - - Intel TBB parallel_sort  parallel (64 threads)
—o— Ours (single thread)
-+ Intel ippsSortRadixAscend_32s_I_L
o a gsort sequential (1 thread)
=
o
£
[
1073
Lo B et 9% T
1075 oo mmmmm -
10! 102 108 10 108 108 107 108

Number of integers

FIGURE 3 Performances of HXTSort for sorting 31-bit integers produced by rand () on an Intel® Xeon Phi™ 7210 CPU and
comparison with widely used implementations. Each integer is both the key and the value.

B UCLouvain
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Comparison (sequential)

100
—e— Ours (sequential version)
- - - Geogram 1.5.4 (sequential version)
0l = - CGAL 4.12 (sequential version)
O —+— TetGen 1.5.1-betal
= # vertices 104 105 10° 107
E 1 | Ours 0.027 021 2.03 21.66
= Geogram  0.060 0.51 5.53 56.02
CGAL 0.062 0.64 6.65 66.24
0.1 E| TetGen 0.054 056 5.89 63.99

Il
10* 108 10° 107
Number of points (random uniform distribution)

(a) Intel® Core™ i7-6700HQ CPU, maximum core frequency of 3.5Ghz
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FIGURE 7 Vertices are partitionned such that each vertex belongs to a single thread. A triangle can only be modified by a
thread that owns all of its three vertices. Triangles that cannot be modified by any thread form a buffer zone.
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~—o— Intel i7-6700HQ
—— Intel Xeon Phi 7210
—e— AMD EPYC 7551

- - - perfect scaling

1 |
1 2 4 8 16 32 64
Number of threads

FIGURE 9 Scaling of our parallel Delaunay for a random
uniform distribution of 15 million points, resulting in over 100
million tetrahedra on 3 machines: a quad-core laptop, an Intel
Xeon Phi with 64 cores and a dual-socket AMD EPYC 2 x 32

cores.

00
—e— Intel i7-6700HQ

—e— Intel Xeon Phi 7210
—e— AMD EPYC 7551

Million tetrahedra per second

10* 10% 10° 107 108 10°
Number of points (random uniform distribution)

FIGURE 10 Number of tetrahedra created per second by
our parallel implementation for different number of points.
Tetrahedra are created more quickly when there is a lot of
points because the proportion of conflicts is lower. A rate of
65 million tetrahedra created per second is obtained on the
EPYC.
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Multithreading

B UCLouvain

Number of points (random uniform distribution)

(@) 4-core Intel® Core™ i7-6700HQ CPU.

il
S 2
o # vertices 10+ 10° 10° 107
Ours 0.032 0.13 0.85 740
Geogram  0.041 0.19 1.73 17.11
= CGAL 0.037 0.24 220 2337
10° 10° 107

81



¢ LIEG_E [ UCLouvain
& et Multithreading

100 thin fibers
#threads  # tetrahedra ¢, tees t

1 325,611,841 3.1 4921 497.2

2 325,786,170 2.9 3297 3343

4 325,691,796 2.8 229.5 2339

8 325211989 2.7 1546 1587
16 324,897,471 2.8 968 100.9
32 325221,244 27 717 758
64 324,701,883 2.8 558 60.1
127 324,190,447 29 476 520

500 thin fibers
#threads  # tetrahedra

Lorec Ires !
723,208,595 189 12058 12344
723,098,577 160 780.3  804.8
722,664,991 86.6 567.1  659.8
722,329,174 15.8 349.1 370.1
723,093,143 156 2162 2365
32 722,013,476 15.6 149.7 169.8
64 721,572,235 159 119.7 1404
127 721,591,846 15.9 1142 135.2

oo AN =

A T A R VI £ 717 A A A, T B A T AV A A
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Mechanical part
#threads # tetrahedra  t,,. 1,/ t
1 24275207 86 436 563
24,290,299 84 304 418
24,236,112 81 246 353
24,230,468 8.1 21.8 32.6

0 A~ N
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