
Triangulation

Jean-François Remacle1 and Christophe Geuzaine2

1 Université catholique de Louvain (UCLouvain)

2 Université de Liège (ULiege)

http://www.gmsh.info

October 7, 2024

49

http://www.gmsh.info

Triangulations

A simplex is a generalization of the notion of a triangle or tetrahedron to
arbitrary dimensions.

A triangulation T (S) of the n points S = {p1, . . . , pn} œ Rd is a set of
non overlapping simplices that covers exactly the convex hull �(S) of the
point set, and leaves no point pi isolated.

Points pj are in general position when they do not fall on subvarieties of
lower degree than necessary; in the plane two points should not be
coincident, three points should not fall on a line, four points should not
fall on a circle.

50

Triangulation

There exist a finite but combinatorial number of triangulations (Catalan
numbers) for a given set of points. In dimension 2, the number of
triangles is constant for every triangulation of the same set of points.
This is not true in 3D and in higher dimensions.

The Delaunay triangulation is a special triangulation that exist and is
unique if points are in general position.

There exist algorithms to generate the Delaunay triangulation in
(O)n log(n) complexity! Yet, the constant grows rapidely with d.

51

Delaunay triangulation

The Delaunay triangulation DT(S) of a point set S has the fundamental
geometrical property that the circumsphere of any tetrahedron is empty.

If the empty empty sphere condition is verified for all tetrahedra, the
triangulation T (S) is said to be a Delaunay triangulation.

In dimension 2, DT(S) has interresting properties.

52

The Voronöı Diagram

Definition: Consider a finite set S = {p1, . . . , pn} ™ R2 of n distinct
points in the plane. The Voronoi cell Vi of pi œ S is the set of points x

that are closer to pi than to any other points of the set:

Vi =
)

x œ R2 | Îx ≠ piÎ < Îx ≠ pjÎ , ’1 Æ i Æ n, i ”= j
*

where Îx ≠ yÎ is the euclidian distance between x and y.

Vi

p j

pl

pi

pk

53

The Voronöı Diagram

The Voronoi diagram V (S) is the unique subdivision of the plane into n

cells. Its is the union of all Voronoi cells Vp:

vI

Vi

p j

pl

pi

pk

Vl

≠(S)

54

The Delaunay triangulation
The Delaunay triangulation DT(S) is the geometric dual of the Voronöı
diagram

55

The empty circle property
The circumcircle of any triangle in the Delaunay triangulation is empty
i.e. it contains no point of S.

• Consider the Delaunay triangle �I = pipjpk. Assume now that
point pl œ CI where CI is the circumcircle of �I .

• By definition, the triple point vI is at equal distance to pi, pj and pk

and no other points of S are closer to vI than those three points.
• Then, if a point like pl exist in S, vI is not a triple point and

triangle �I cannot be a Delaunay triangle.

pl

CI

¢I

pi

p j

pk

vI

56

The MaxMin property

The Delaunay triangulation DT(S) is angle-optimal: it maximizes the
minimum angle among all possible triangulations.

C A

�<�

pi

p j

CB

a
b1

�

� b2

�2

1 2

�1 C

C 0

pj

pk

pl

◆2
◆1 �1

�2pi

Thales theorem (left) and MaxMin property illustrated (right)

57

Bowyer-Watson Algorithm
Let DTn be the Delaunay triangulation of a point set
Sn = {p1, . . . , pn} µ R2 that are in general position. We describe an
incremental process allowing the insertion of a given point pn+1 œ �(Sn)
into DTn and to build the Delaunay triangulation DTn+1 of
Sn+1 = {p1, . . . , pn, pn+1}.

DTn+1 = DTn ≠ C(DTn, pn+1) + B(DTn, pn+1). (1)

pn+1

C (DTi , pn+1)

58

Bowyer-Watson Algorithm
Consider a polygon � with m corners ‡1, . . . , ‡m that is bounded by m

edges ‡i, ‡(i+1)%m, 1 Æ i Æ m.
The kernel ker(�) is the set of point x œ R2 that are visible to every ‡j

i.e. the line segment x‡j them do not intersect any edges of the polygon.
The kernel ker(�) can be computed by intersection of the halfplanes that
correspond to all oriented edges of the polygon (see Figure).

pn+1

æ1

æm

æ2

ker(ß)

59

Bowyer-Watson Algorithm
The Delaunay cavity C(Tn, pn+1) is the set of m triangles
�1, . . . , �m œ DTn for which their circumcircle contains pn+1.
The Delaunay cavity contains the set of triangles that cannot belong to
Tn+1. The region covered by those invalid triangles should be emptied
and re-triangulated in a Delaunay fashion. The Delaunay cavity has some
interresting properties.
Theorem: The Delaunay cavity C(Tn, pn+1) is a non empty connected
set of triangles which the union form a star shaped polygon with pn+1 in
its kernel.

pn+1

C (DTi , pn+1)

60

Bowyer-Watson Algorithm

pn+1

C (DTi , pn+1)

p j

B(DTi , pn+1)

æ j+1æ j

pn+1

61

Bowyer-Watson Algorithm

Super triangles :

p j

pi

pk

pl

≠(S)

p°1p°4

p°3 p°2

62

Bowyer-Watson Algorithm
Let DTn be the Delaunay triangulation of a point set
Sn = {p1, . . . , pn} µ R2 that are in general position. We describe an
incremental process allowing the insertion of a given point pn+1 œ �(Sn)
into DTn and to build the Delaunay triangulation DTn+1 of
Sn+1 = {p1, . . . , pn, pn+1}.

DTn+1 = DTn ≠ C(DTn, pn+1) + B(DTn, pn+1). (2)

pn+1

C (DTi , pn+1)

63

Bowyer-Watson Algorithm
Consider a polygon � with m corners ‡1, . . . , ‡m that is bounded by m

edges ‡i, ‡(i+1)%m, 1 Æ i Æ m.
The kernel ker(�) is the set of point x œ R2 that are visible to every ‡j

i.e. the line segment x‡j them do not intersect any edges of the polygon.
The kernel ker(�) can be computed by intersection of the halfplanes that
correspond to all oriented edges of the polygon (see Figure).

pn+1

æ1

æm

æ2

ker(ß)

64

Bowyer-Watson Algorithm
The Delaunay cavity C(Tn, pn+1) is the set of m triangles
�1, . . . , �m œ DTn for which their circumcircle contains pn+1.
The Delaunay cavity contains the set of triangles that cannot belong to
Tn+1. The region covered by those invalid triangles should be emptied
and re-triangulated in a Delaunay fashion. The Delaunay cavity has some
interresting properties.
Theorem: The Delaunay cavity C(Tn, pn+1) is a non empty connected
set of triangles which the union form a star shaped polygon with pn+1 in
its kernel.

pn+1

C (DTi , pn+1)

65

Bowyer-Watson Algorithm

pn+1

C (DTi , pn+1)

p j

B(DTi , pn+1)

æ j+1æ j

pn+1

66

Bowyer-Watson Algorithm

Super triangles :

p j

pi

pk

pl

≠(S)

p°1p°4

p°3 p°2

67

DT of n points in n log(n) complexity

• Use Bowyer-Watson algorithm (not the best choice in 2D)

• Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental

constructions con brio., 2003.
• Robust predicates with static filters, H. Si. Tetgen, a

delaunay-based quality tetrahedral mesh generator., 2015.
• Multitreading: distribute the Hilbert curve in M threads.

DTk+1 = DTk ≠ C(DTk, pk+1) + B(DTk, pk+1)

DTk

pk+1

C (DTk , pk+1) B(DTk , pk+1)

pk+1

DTk+1

68

DT of n points in n log(n) complexity

• Use Bowyer-Watson algorithm (not the best choice in 2D)
• Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental

constructions con brio., 2003.

• Robust predicates with static filters, H. Si. Tetgen, a

delaunay-based quality tetrahedral mesh generator., 2015.
• Multitreading: distribute the Hilbert curve in M threads.

Without sort: O(n1/d) “walking” steps per insertion æ overall (best)
complexity of O(n1+ 1

d)

ø

t pk+1

pk

68

DT of n points in n log(n) complexity

• Use Bowyer-Watson algorithm (not the best choice in 2D)
• Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental

constructions con brio., 2003.
• Robust predicates with static filters, H. Si. Tetgen, a

delaunay-based quality tetrahedral mesh generator., 2015.

• Multitreading: distribute the Hilbert curve in M threads.

n 103 104 105 106 103 104 105 106
2D 3D

Nwalk 23 73 230 727 17 38 85 186
t(sec) 3.6 10≠3 9.1 10≠2 3.98 187 1.2 10≠2 1.8 10≠1 3.42 73

2D (BRIO) 3D (BRIO)

Nwalk 2.3 2.4 2.5 2.5 2.9 3.0 3.1 3.1
t(sec) 2 10≠3 1.5 10≠2 1.5 10≠1 1.47 9.0 10≠3 7.5 10≠2 7.8 10≠1 7.81

68

DT of n points in n log(n) complexity

• Use Bowyer-Watson algorithm (not the best choice in 2D)
• Sort the points, N. Amenta, S. Choi, and G. Rote. Incremental

constructions con brio., 2003.
• Robust predicates with static filters, H. Si. Tetgen, a

delaunay-based quality tetrahedral mesh generator., 2015.
• Multitreading: distribute the Hilbert curve in M threads.

DTk+1 = DTk +
M≠1ÿ

i=0

#
≠C(DTk, pk+i n

M
) + B(DTk, pk+i n

M
)
$

.

68

Hilbert curves
A curve x(t) is defined as the mapping

x(t) , t œ [0, 1] æ x œ R3
.

Curves are perceived as one dimensional objects. Yet, it can be shown
that a continuous curve can pass through every point of a unit square.
The Hilbert space filling H(t) curve is a one dimensional curve which
visits every point within a two dimensional space. It may be thought of
as the limit

H(t) = lim
kæŒ

Hk(t)

of a sequence of curves Hk (see Figure 1).

Figure: Sequense of Hilbert curves Hk.

69

Hilbert curves
Curves H1 and H2 are depicted on Figure 2.

(3)

b

rx0

(1)

(0)

(2)

(0,3)

(0,0) (0,1)

(0,2)

Figure: Curves H1 and H2.

Look at hilbert2d.cpp.

70

Hilbert curves
Hilbert curves provide an ordering for points on a plane. Forget about
how to connect adjacent sub-curves, and instead focus on how we can
recursively enumerate the quadrants.
A local frame is associated to each quadrant: it consist in its center x0
two orthogonal vectors b and r (see Figure 2). At the root level,
enumerating the points is simple: proceed around the four quadrants,
numbering them

(0) = x0 ≠ b + r

2 (1) = x0 + b ≠ r

2 (2) = x0 + b + r

2 (3) = x0 ≠ b ≠ r

2 .

We want to determine the order we visit the sub-quadrants while
maintaining the overall adjacency property. Examination reveals that
each of the sub-quadrants curves is a simple transformation of the
original pattern. Figure 2 illustrate the first level of that recursion.

71

Hilbert curves
Quadrant (0) is itself divided into four quadrants (0, 0), (0, 1), (0, 2) and
(0, 3). Its center is simply set to (0) and two vectors b and r are changed
as

b Ω r/2 and r Ω b/2.

For quadrant (0, 1) and (0, 2) we have

b Ω b/2 and r Ω r/2.

and finally for quadrant (0, 3):

b Ω ≠r/2 and r Ω ≠b/2.

creates 4 sub quadrants. If we consider a maximal recursion depth of d,
each of the final subquadrants will be assigned to a set of d

“coordinates” i.e. (k0, k1, . . . , kd), kj being 0,1,2 or 3.
Algorithm in Listings ?? compute the Hilbert coordinates of a given point
x, y, starting from an initial quadrant define by its center x0, y0 and two
orthogonal directions.

72

Hilbert curves
Each point x of R2 has its coordinates on the Hilbert curve. Sorting a
point set with respect to Hilbert coordinates allow to ensure that two
successive points of the set are close to each other. In the context of the
Bowyer-Watson algorithm, this kind of data locality could potentially
decrease the number of local searches Nsearch that were required to find
the next invalid triangle.
Sets of 1000 and 10000 sorted points are presented on Figure 3. On the
Figure, two successive points in the sorted list are linked with a line.
The main cost of sorting points is on the sorting algorithm itself and not
on the computation of the Hilbert curve coordinates: sorting over a
million points takes less than a second on a standard laptop. Table 1
present timings and statistics for the same point sets as in table ??, but
while having sorted the points S using the Hilbert curve.

n 103 104 105 106

Nsearch 2.34 2.46 2.50 2.50
Ncavity 4.06 4.13 4.16 4.17
t(sec) 0.0097 0.090 0.92 9.2

Table: Results of the delaunayTrgl algorithm applied to random points.

Points were initially sorted through using a Hilbert sort.

73

Hilbert curves
The number of serarches is not increasing anymore with the size of the
set. This is important: the complexity of the Delaunay triangulation
algorithm now is linear in time. Of course, sorting points has a n log n

complexity so that the overall process is in n log n as well. Yet, the
relative cost of sorting the points is negligible with respect to the cost of
the triangulation itself.

Figure: Hilbert sort of sets of 1000 and 10000 random points.

74

Results for 5 ◊ 106
vertices

75

Sorting using HXTSort

76

Comparison (sequential)

77

Multithreading

78

Multithreading

79

Multithreading

80

Multithreading

81

Multithreading

82

Multithreading

83

	Algebraic topology

